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Abstract

This paper concerns differentially private Bayesian estimation of the parameters
of a population distribution, when a statistic of a sample from that population is
shared in noise to provide differential privacy.

This work mainly addresses two problems: (1) What statistic of the sample should
be shared privately? For the first question, i.e., the one about statistic selection, we
promote using the Fisher information. We find out that, the statistic that is most
informative in a non-privacy setting may not be the optimal choice under the privacy
restrictions. We provide several examples to support that point. We consider several
types of data sharing settings and propose several Monte Carlo-based numerical
estimation methods for calculating the Fisher information for those settings. The
second question concerns inference: (2) Based on the shared statistics, how could we
perform effective Bayesian inference? We propose several Markov chain Monte Carlo
(MCMC) algorithms for sampling from the posterior distribution of the parameter
given the noisy statistic. The proposed MCMC algorithms can be preferred over
one another depending on the problem. For example, when the shared statistics
is additive and added Gaussian noise, a simple Metropolis-Hasting algorithm that
utilizes the central limit theorem is a decent choice. We propose more advanced
MCMC algorithms for several other cases of practical relevance.

Our numerical examples involve comparing several candidate statistics to be shared
privately. For each statistic, we perform Bayesian estimation based on the posterior
distribution conditional on the privatized version of that statistic. We demonstrate
that, the relative performance of a statistic, in terms of the mean squared error of
the Bayesian estimator based on the corresponding privatized statistic, is adequately
predicted by the Fisher information of the privatized statistic.

Keywords: Differential privacy; Markov chain Monte Carlo; Fisher Information; Statistic

selection; Bayesian Statistics.
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1 Introduction

In recent years, differential privacy has become a popular framework for achieving privacy-
preserving data sharing and inferential analysis of sensitive data sets (Dwork, 2006; Dwork
and Roth, 2013). In this paper, we are interested in differentially private Bayesian estimation
for the parameters of a population distribution, when a statistic of a sample from that
population is shared in noise so as to provide differential privacy. This work concerns two
problems:

1. What statistic of the sample should be shared?

2. Based on the shared statistics, how could we make inference?

For the first question, i.e., the one about statistic selection, we consider using the Fisher
information. For the second question, we propose Markov chain Monte Carlo (MCMC) in
general, to draw samples from the posterior distribution of the parameter given the noisy
statistic.

Bayesian inference using MCMC has been recently studied in the data privacy context.
One of the first works concerning using Monte Carlo for differentially private posterior
sampling is Wang et al. (2015). In Wang et al. (2015), a class of Stochastic Gradient
MCMC techniques are adapted for differential privacy. The scheme is later improved by a
few works including Li et al. (2019). A general purpose and scalable differentially private
MCMC algorithm was proposed in Heikkilä et al. (2019). Both Wang et al. (2015) and
Heikkilä et al. (2019) lead to non-exact MCMC algorithms, in the sense that the target
distribution is sampled from only asymptotically. Yıldırım and Ermiş (2019) developed
an exact MCMC algorithm based on the penalty algorithm that targets the posterior
distribution and provides differential privacy at the same time. The penalty algorithm
is based on the classical Metropolis-Hastings algorithm; the adoption of the differentially
private penalty algorithm in Yıldırım and Ermiş (2019) for Hamiltonian Monte Carlo is
recently proposed in Räisä et al. (2021).

The above-mentioned works propose MCMC algorithms where in every iteration some
function of the sensitive data is revealed in noise so that the iterations are made differentially
private. Consider, for example, two parties, an analyst and a data-holder, where the analyst
wishes to perform inference based on the sensitive data held secret by the data-holder.
By their nature, the algorithms mentioned above require ongoing queries to the database.
Although this can be available in some cases, it may not be practical in other situations due
to the requirement of continuous interaction between the two parties as long as the course
of the algorithm. Instead, in such situations it may be more feasible for the data-holder to
share the data in a private manner once and for all and for the analyst to perform inference
based on the shared statistic without further interaction with the data-holder. In this paper
we consider the latter case, i.e., the one where instead of the involved interaction between
iterations, summaries of data are shared privately prior to statistical analysis.

Foulds et al. (2016) considered adding Gaussian noise to the statistics and showed the
asymptotic properties of posterior distribution when the noisy statistics are used as if
the true values. The differential privacy of the generic Metropolis-Hastings algorithm is
also analyzed in Foulds et al. (2016). Foulds et al. (2016) then proposed Gibbs sampling
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for problems when the likelihood belongs to an exponential family. The restriction to
exponential families can be indeed limiting. In theory, with advanced MCMC methodology,
one can sample from the posterior distribution of a parameter when any informative
statistic of the sensitive data is shared. Moreover, the method of Foulds et al. (2016) is only
asymptotically biased as it does not account for the added noise to the sufficient statistics
in its model.

Unlike Foulds et al. (2016), the works of Williams and Mcsherry (2010); Karwa et al.
(2014); Bernstein and Sheldon (2018); Gong (2019) correctly accommodate the shared noisy
statistic of the sensitive data into a hierarchical model which has the structure

parameter→ sensitive data→ noisy statistic.

The posterior distribution based on the noisy statistic has very strong resemblance to
the already existing approximate Bayesian computation (ABC) literature. Although the
hierarchical model above has been considered earlier, e.g. in Williams and Mcsherry (2010);
Karwa et al. (2014); Bernstein and Sheldon (2018), the relation between differentially
private statistics and approximate Bayesian computation, in particular noisy ABC, is
pronounced for the first time in Gong (2019). While Bernstein and Sheldon (2018) proposed
Gibbs sampler for the hierarchical model and released samples from the posterior using two
stage updating process, a rejection sampler for the ABC posterior as well as an expectation-
maximization (EM) algorithm is proposed in Gong (2019). In a following work, Park et al.
(2021) developed an differentially private ABC method in maximum mean discrepancy
is used as the distance metric between artificial and observed data and the acceptance
probability is randomized.

In ABC, the artificial and real data are usually compared via a statistic. In this paper,
we consider the following scenario. A statistic of the sensitive data is shared in a privacy
preserving manner. Then, one samples from the noisy ABC posterior of the parameter
of interest conditional on the noisy statistic. Nevertheless, the choice of the statistic is
important for inference from finite data: In the case without privacy concerns, one would
like to choose the statistic that is most informative about the parameter to be estimated
(Fearnhead and Prangle, 2012). When ABC is done in a DP context, however, the most
informative statistic in the non-private setting is not necessarily the best choice. This is
because the statistic is revealed in privacy preserving noise and the noise variance depends
on the sensitivity of the statistic. In order to determine the best choice for the statistic to
be shared, one must compare among the informativeness of the noisy statistics.

The question of scope and efficiency of statistical learning with differential privacy has
been studied in the literature (Kasiviswanathan et al., 2008; Dwork and Lei, 2009; Dwork
and Smith, 2010; Smith, 2011; Lei, 2011). Kasiviswanathan et al. (2008) demonstrated
that, in most problems where the relation between examples to labels are learned, a private
learner can learn what a non-private learner can in the same order of the number of
samples. Smith (2011) established the existence of differentially private estimators with
the same asymptotic variance as their non-private counterparts, also proposing such an
estimator which can be seen as an improved version of those in Dwork and Lei (2009);
Dwork and Smith (2010). Both Smith (2011) and Dwork and Lei (2009); Dwork and Smith
(2010) are based on the subsample and aggregate technique of Nissim et al. (2007). There
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also exist related works where robust statistics and M-estimators (Lei, 2011; Smith, 2011;
Avella-Medina, 2019) are studied in a data privacy context.

Although the works mentioned above contain methods with certain convergence guar-
antees, they are not directly concerned with choosing the best representation of the data,
either individually or in an aggregate fashion. This motivates our first contribution of
the paper, which is a method for statistic selection to be used in the private data-sharing
step. We propose to use the Fisher information contained in the noisy statistic for the
parameter as the criterion to compare. The Fisher information is a relevant measure
when one wishes to use a likelihood-based estimation for the unknown parameter, such
as maximum likelihood estimation and Bayesian estimation. The Fisher information is
a function of the parameter and it depends jointly the statistic, its sensitivity, and the
targeted privacy level.

The statistic selection step of private data sharing indeed bears practical importance.
Take, for example, two choices for the shared statistic of a sensitive sample X1:n from a
normal population with mean 0 and an unknown variance: one being the sample average
of squares X2

i and the other being the sample average of the absolute values |Xi|. While
the order of the sample size to learn the unknown variance is the same for both choices,
a non-asymptotic analysis will reveal one of them preferable over the other. Indeed, in
Examples 1, 2, and 3, we show on simple distributions that the conventional statistics may
not be the best choices to share the data privately.

As a second contribution, we propose effective MCMC algorithms that target the true
posterior of the noisy ABC based on the noisy statistic. Obviously, there is no ideal
algorithm that performs best in all the scenarios considered here. However, the broad family
of exact-approximate MCMC algorithms offer effective choices. We inspect specifically
algorithms that are based on pseudo-marginal MCMC (Andrieu and Roberts, 2009) and
the recently introduced framework called Metropolis-Hastings with averaged acceptance
ratio (MHAAR) in (Andrieu et al., 2020).

The organization of the paper is as follows. In Section 2, we introduce the basic concepts
of differential privacy. In Section 3, we discuss the problem of parameter estimation using
privatized noisy statistics of the sensitive data and propose Fisher information as a measure
of informativeness of the shared statistic (in noise). We show with analytical examples
that, according to Fisher information, sharing non-standard statistics for a population
parameter may be more beneficial compared to standard statistics. Section 4 is reserved
for the MCMC based Bayesian inference algorithms proposed for the models induced by
the privacy preserving sharing scenarios described in Section 3. In Section 5 we present
the results of some numerical experiments. Finally, we give our concluding remarks and
possible future work in Section 6.

2 Differential Privacy

In this section, we take differential privacy as the primary definition of data privacy;
although we also mention other closely related definitions.

Let X be a universal set of individual data values. We call two data sets x1:n, x
′
1:n ∈ X n

neighbors if x′1:n can be obtained by changing the value of a single entry in x1:n. In other
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words, the Hamming distance between the data sets, shown as h(x1:n, x
′
1:n) and defined

as as the number of different elements between x1:n and x′1:n, is equal to 1. We call A
a randomized algorithm whose output upon taking the input x1:n is a random variable
A(x1:n) taking values from some Y .

Definition 1 (Differential privacy). We say that A is (ε, δ)-differentially private if, for
any pair of neighboring data sets x1:n, x

′
1:n ∈ X n from an input set and any subset of output

values O ⊆ Y, it satisfies the inequality Dwork (2006)

P [A(x1:n) ∈ O] ≤ eεP [A(x′1:n) ∈ O] + δ.

According to the above inequality, a randomized algorithm is differentially private if
the probability distributions for the output obtained from two neighboring databases are
‘similar’. The privacy parameters (ε, δ) are desired to be as small as possible as far as
privacy is concerned.

Assume that a privacy preserving algorithm is required to return the value of a function
ϕ : X 7→ R evaluated at the sensitive data set x1:n in a private fashion. One basic way
of achieving this is via the Laplace mechanism Dwork (2008), which relies on the (global)
sensitivity of this function.

Definition 2 (Global sensitivity). The Lp sensitivity of a function ψ : X 7→ Rdψ for p ≥ 1
is given by

∇ψ,p = sup
x1:n,x′1:n:h(x1:n,x′1:n)=1

‖ψ(x1:n)− ψ(x′1:n)‖p.

Theorem 1 (Laplace mechanism). Let A be an algorithm that returns ψ(x1:n) + V on an

input x1:n ∈ X n, where Vi
i.i.d.∼ Laplace(∇ψ,1/ε) for i = 1, . . . , dψ. Then A is ε-DP.

While the Laplace mechanism achieves pure differential privacy, i.e., with δ = 0, another
popular mechanism, called the Gaussian mechanism (Dwork and Roth, 2013) achieves
differential privacy with δ > 0. This mechanism adds Gaussian noise to ψ(x1:n) where
the variance of the noise is determined by the global sensitivity of ψ(·). The Gaussian
mechanism is also a central tool according to other related definitions of differential privacy,
such as the zero-concentrated differential privacy (Bun and Steinke, 2016) or the more
recently introduced Gaussian differential privacy (Dong et al., 2022). For an example, the
following theorem presents the privacy property of the Gaussian mechanism according to
Gaussian differential privacy.

Theorem 2 (Gaussian differential privacy of the Gaussian mechanism (Dong et al., 2022)).
Gaussian mechanism that returns ψ(x1:n) + V , where Vi ∼ N (0,∇2

ψ,2/ε
2), for i = 1, . . . , dψ,

satisfies ε-Gaussian differential privacy.

A similar result regarding the Gaussian mechanism also exists for the zero-concentrated
differential privacy (Bun and Steinke, 2016). Moreover, the mentioned privacy definitions
are interrelated; see Dong et al. (2022) and Bun and Steinke (2016) for the detailed relations.

One property of differential privacy relevant to our work is the post-processing property,
which simply holds that the privacy loss is not increased by transforming the output through
an algorithm independent of the private data given the output.
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Theorem 3 (Post-processing). Let A1 be an (ε, δ)-DP algorithm with inputs from X and
outputs from S1, and let A2 : S1 7→ S be an algorithm that does not depend on X. Then,
the algorithm A = (A2oA1) is (ε, δ)-DP.

In this work, all the Bayesian inference algorithms in Section 4 act as post-processing
operations.

3 Statistic selection based on Fisher information

We consider a data privacy setting where we have some sensitive data X1, . . . , Xn
i.i.d∼ Pθ

for some distribution Pθ on X with parameter θ ∈ Θ. We assume that each Xi belongs
to a distinct individual. We aim to infer θ based on the outputs of a differentially private
operation on the sensitive data X1:n. One example case is when a statistic of the data
Sn : X n 7→ Rds , for some ds ≥ 1, is released in noise as

Y = Sn(X1:n) + V, V ∼ Pε,Sn , (1)

where Pε,Sn is the distribution of the privacy preserving noise V whose parameter(s) is (are)
adjusted according to Sn and ε. We will show two examples of Pε,Sn in Sections 3.1 and 3.2,
which arise from the Gaussian and Laplace mechanisms, respectively. A common choice of
Sn is an additive statistic as in

Sn(X1:n) =
1

n

n∑
i=1

s(Xi). (2)

However, in this paper we will consider non-additive statistics as well.
In (1), (a statistic of) the collected data is released in batch manner. An alternative to

that is when each Xi is shared privately as

Yi = s(Xi) + Vi, Vi ∼ Pε,s. (3)

We will call this setting the sequential release, as opposed to the batch release in (1).
There are several other forms of differentially private data sharing, such as the exponen-

tial mechanism. In this paper we will confine the discussion to the scenarios in (1) and (3).
However, as it will be clear, the proposed ideas can also be adopted for other mechanisms.

How should we choose the statistic Sn (or s)? We would like to make a choice (among
several candidates) so that the resulting Y is most ‘informative’. In this paper, we consider
the Fisher information as the measure of the amount of ‘information’ that Y carries about
θ. The Fisher information not only arises naturally in frequentist contexts, but it is also
relevant to Bayesian estimation, especially for big data, owing to the Bernstein-von Mises
theorem (Cam, 1986) Under certain regularity conditions, the posterior distribution tends
to have a normal distribution with covariance determined by the Fisher information.

The Fisher information at θ is determined by the population distribution Pθ, the
function Sn (or s), and the privacy level ε. To concretize the discussion, we confine the
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Table 1: Model-method matching for calculating F (θ)

Model Method Requirement
additive statistic, normal noise Section 3.1 µs(θ) and Σs(θ) are differentiable w.r.t. θ

additive statistic, non-gaussian noise Algorithm 1 µs(θ) and Σs(θ) are differentiable w.r.t. θ
non-additive statistic Algorithm 2 p(x|θ) is differentiable w.r.t. θ

sequential release Algorithm 3 p(x|θ) is differentiable w.r.t. θ

attention to the batch sharing setting in (1). The marginal density of Y = y given θ can
be written as

pε,Sn(y|θ) =

∫
pε,Sn(y|x1:n)

n∏
i=1

p(xi|θ)dx1:n. (4)

The Fisher information with respect to this marginal distribution can be expressed as

F (θ) = E
[
−∂

2 log pε,Sn(Y |θ)
∂θ∂θT

]
(5)

= E
[
γε,Sn(θ; y)γε,Sn(θ; y)T

]
, (6)

where γε,Sn(θ; y) is the well-known score vector, defined as

γε,Sn(θ; y) =
∂ log pε,Sn(Y |θ)

∂θ
.

Whether F (θ) above can be calculated exactly or not and how it should be calculated
approximately in the latter case depend on the nature of the statistic and/or the privacy
preserving mechanism. Specifically for (5), it is critical whether the statistic is additive or
not, and/or the privacy preserving noise is Gaussian or not. Furthermore, the approach to
calculate F (θ) also depends on whether the data is shared in a batch or sequential manner.

Clearly, F (θ) is a function of θ and one cannot know the informativeness of the selected
statistic for the stochastic process in question without knowing the true value θ that governs
the process. This appears to be an issue in applying the proposed strategy of choosing
statistics based on F (θ). However, the proposed strategy can be useful in several ways.
For example, in some cases one statistic can be shown to yield a larger F (θ) than another
uniformly over the domain of θ (see Example 2.) In other cases F (θ) can be combined with
the prior distribution of θ, say η(θ), to come up with an overall score such as

∫
F (θ)η(θ)dθ.

Finally, when one statistic is not uniformly better in terms of F (θ) than the other statistic
and no prior information is available, an initial chunk of the data can be used to obtain a
posterior distribution, which is then to be used to determine the best statistic as well as to
act as the prior distribution for the rest of the data.

In the rest of this section, we propose algorithms to (approximately) compute F (θ)
under several practically relevant combinations of those mentioned conditions. Table 1
shows the scenario-algorithm matching which indicates the most suitable algorithm to
compute F (θ) for the scenario considered.
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3.1 Fisher information with additive statistic and Gaussian noise

In the classical DP setting, imperfect privacy, i.e, (ε, δ)-DP for δ > 0, can be obtained via
the Gaussian mechanism (Dwork and Roth, 2013). The Gaussian mechanism is not only
a popular choice in differential privacy studies, but also the natural choice for Gaussian
differential privacy (Dong et al., 2022), a privacy definition that leads to a more interpretable
Neyman-Pearson type error analysis than the classical differential privacy.

The Gaussian mechanism is a noise adding mechanism which can be described generally
as

Y = Sn(X1:n) + V, V ∼ N (0, σ2
s,n,εI). (7)

For ease of exposition, one can take σ2
s,n,ε = ∆2

s,2/(n
2ε2), where, recall that, ∆s,2 is the

L2 sensitivity of s(·). Here, the parameter ε has a slightly different meaning than in
the definition of classical differential privacy. Specifically, the above choice for the noise
distribution provides ε-Gaussian DP and not ε-DP. We could make the variance also depend
on a δ > 0 parameter to provide (ε, δ)-DP, but this would distract the main messages of
the discussion.

Suppose that Sn is additive as in (2). Then one can employ a normal approximation for
the distribution of Sn(X1:n), along the lines of Bernstein and Sheldon (2018). Let

µs(θ) = Eθ[s(X)], Σs(θ) = Varθ[s(X)]

be the mean and covariance of s(X). For large n, the additive statistic approximately has
a normal distribution

Sn(X1:n) ∼ N (µs(θ),Σs(θ)/n), (8)

Combining (8) with (7), the marginal distribution of Y is approximated as

Y ∼ N
(
µs(θ),Σs(θ)/n+ σ2

s,n,εI
)
. (9)

Finally, considering the transformation

θ 7→
[
µs(θ),Σs(θ)/n+ σ2

s,n,εI
]
,

the (i, j)’th element of F (θ) for the distribution in (9) is given by

[F (θ)]i,j =
∂µs(θ)

T

∂θi
Hs,ε,n(θ)−1∂µs(θ)

∂θj
+

tr(G)

2

where Hs,ε,n(θ) := Σs(θ)
n

+ σ2
s,n,εI is the covariance of Y and

G =
1

n2

(
Hs,ε,n(θ)−1∂Σs(θ)

∂θi
Hs,ε,n(θ)−1∂Σs(θ)

∂θj

)
.

Examples 1, 2, and 3 demonstrate how the proposed scheme can be used in simple but
common inference problems.
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Figure 1: F (θ) for the mean parameter of N (θ, 1) when s(x) = |x|a. Left: ε = 1, Right: ε = ∞
(non-private case).

Example 1 (Mean of the normal distribution). Assume that X = (0, A) and the considered
population distribution for X is Pθ = N (θ, 1). Here A is a number which arises due to
the nature of the data generation process, large enough to have negligible effect on the
distribution of X (The same will be assumed in the other examples in the paper.) For
statistic selection, one may want to use s(x) = xa, where a is an odd integer. Let us
compare a = 1 and a = 3. We have

µs(θ) =

{
θ for a = 1

θ3 + 3θ for a = 3
, Σs(θ) =

{
1 for a = 1

9θ4 + 36θ2 + 15 for a = 3
,

which are differentiable w.r.t. θ with derivatives straightforward to calculate. With the
Gaussian mechanism, the variance of Y becomes Hs,ε,n = Σs(θ)/n+ A2a/(n2ε2).

Figure 1 compares F (θ) for a = 1 and a = 3, separately for ε = 1 and ε = ∞
corresponding to the non-private case, with n = 100 and A = 10. As it can be observed,
while s(x) = x is always better in the non-private case, in the private case (when ε = 1) the
choice s(x) = x3 seems better for larger values of θ.

Example 2 (Variance of the normal distribution). Assume that X = (−A,A) and the
assumed population distribution for X is Pθ = N (0, θ). Consider s(x) = |x|a. So

µs(θ) = (2θ)a/2
1√
π

Γ

(
a+ 1

2

)
,

Σs(θ) = (2θ)a
[

1√
π

Γ

(
2a+ 1

2

)
− 1

π
Γ2

(
a+ 1

2

)]
,

which are differentiable w.r.t. θ. With the Gaussian mechanism, we have Hs,ε,n = Σs(θ)/n+
A2a/(n2ε2).

Figure 2 compares F (θ) for various values of a, separately for ε = 1 and ε = ∞
corresponding to the non-private case, with n = 100 and A = 100. As it can be observed,
while s(x) = x2 is always better in the non-private case, in the private case (when ε = 1),
the best choice is s(x) = |x|.
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Figure 2: F (θ) for the variance parameter of N (0, θ) when s(x) = |x|a. Left: ε = 1, Right: ε = ∞
(non-private case).

Example 3 (Width of the uniform distribution). Let Pθ = Unif(−θ, θ) so that 2θ is the
width parameter of the uniform distribution. Assume that s(x) = |x|a for some a > 0. We
have

µs(θ) =
θa

a+ 1
, Σs(θ) =

θ2aa2

(a+ 1)2(2a+ 1)
,

which are differentiable w.r.t. θ. Assume that X = (−A,A). Then the sensitivity of s is
Aa, hence ∆s,n = Aa/n. This yields that Hs,ε,n(θ) = Σs(θ)/n+ A2a/(n2ε2).

Figure 3 compares F (θ) for several values of a, separately for ε = 1 and ε = ∞
corresponding to the non-private case, with n = 100 and A = 100.
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10
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Figure 3: F (θ) for the width parameter of Unif(−θ, θ) when s(x) = |x|a. Left: ε = 1, Right: ε = ∞
(non-private case).

Example 3 reveals that while F (θ) does not exist for the width parameter of the uniform
distribution, it does exist for the marginal distribution of Y as long as µs(θ) Σs(θ) are
differentiable with respec to θ, thanks to the normal approximation of the distribution
of the statistic. This is a promising fact for the breadth of models where the proposed
methodology for statistic selection applies.
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Algorithm 1: Monte Carlo estimation of F (θ) for (1) - normal approximation for
fSn(u|θ).

Input: θ: parameter; n: data size; N , M : Monte Carlo parameters

Output: F̂ (θ): Estimate of F (θ)
1 for i = 1, . . . , N do
2 Sample y(i) ∼ pε,Sn(y|θ)
3 for j = 1, . . . ,M do
4 Sample u(j) ∼ qθ(·), calculate

wj =
fSn(u(j)|θ)gε,Sn(y(i)|u(j))

qθ(u(j))

using (11).

5 Using (11), calculate

γ̂ε,Sn(θ; y(i)) =
N∑
j=1

∂ log fSn(u(j)|θ)
∂θ

wj∑N
j′=1 wj′

.

6 return F̂ (θ) = 1
N

∑N
i=1 γ̂ε,Sn(θ; y(i))γ̂ε,Sn(θ; y(i))T .

3.2 Fisher information with additive statistics and non-gaussian
noise

In the previous section, the Gaussian mechanism enabled us to perform an analytical
comparisons between statistics. For other privacy preserving mechanisms, comparisons
based on F (θ) can still be made in the same spirit, however by using Monte Carlo estimates
of F (θ), as we will see next.

A typical example to a non-gaussian mechanism is the Laplace mechanism. In the
Laplace mechanism to provide ε-DP, privacy preserving noise in (1) is distributed according
to

V ∼ Laplace(∆s,1/(nε)).

As long as Sn is an additive statistic, we can employ the normal approximation in (8) for its
distribution. Even so, the approximation of F (θ) given in Section 3.1 may not be accurate
when non-gaussian noise is used to preserve privacy. Furthermore, the integral in (4) will
be typically intractable, as well as the derivative of its logarithm. As a result, it may also
be difficult to calculate F (θ) exactly. Fortunately, a consistent Monte Carlo estimator of
F (θ) is available. We present its details in the following.

Define the variable U = Sn(X1:n), and let fSn(u|θ) be the probability density of U given
θ evaluated at u. In most of the models considered in this paper, the conditional distribution
pε,Sn(y|x1:n) depends only on u = Sn(x1:n). (See the discussion about smooth sensitivity in
Section 3.3 for an exception to this.). If that is the case, we can define gε,Sn(y|u) to be the
density of the conditional distribution of Y given U calculated at Y = y, U = u. Then the
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marginal distribution can also be written as

pε,Sn(y|θ) =

∫
gε,Sn(y|u)fSn(u|θ)du. (10)

Based on (10), the Fisher’s identity for the score vector can be written as

γε,Sn(θ; y) =

∫
∂ log fSn(u|θ)

∂θ
p(u|y, θ)du.

where the integral is taken with respect to the posterior distribution

p(u|y, θ) ∝ fSn(u|θ)gε,Sn(y|u).

The Monte Carlo estimation of F (θ) is based on estimating the above integral via importance
sampling, exact sampling (e.g. via rejection sampling) or approximate sampling (via MCMC)
from p(u|y, θ). Once we have a method for obtaining a numerical approximation of the
score vector at given y and θ, F (θ) can be estimated according to (6).

A Monte Carlo estimator of F (θ) in the presence of additive statistic and non-gaussian
noise is given in Algorithm 1. The estimator is based on the estimation of the score vector
using self-normalised importance sampling with proposal distribution qθ(u). Further, the
normal approximation in (8) is employed, enabling

fSn(u|θ) = N (u;µs(θ),Σs(θ)/n) (11)

in the calculations. Sampling from pε,Sn(y|θ) can be performed straightforwardly since
the model for Y is generative. Also, the importance sampling stage (the inner loop) can
be replaced by a MCMC routine to collect M samples with equal weights for u from the
conditional distribution p(u|y, θ) and estimate the score by 1

M

∑M
j=1

∂ log fSn (u|θ)
∂θ

.

3.3 Fisher information based on the true marginal distribution

Note that Algorithm 1 exploits the normal approximation in (8) for the statistic S(X1:n).
In some cases, this approximation may be unavailable or unjustifiable. This may be because
Sn(X1:n) is a non-additive statistic, or the moments µ(θ) and Σ(θ) are intractable.

In such cases, one can still devise a Monte Carlo method to estimate F (θ) based on
the true marginal distribution of the observed (noisy) statistic in (1). Such a method is
given in Algorithm 2. Algorithm 2 exploits (4), which expresses the marginal distribution
in terms of X1:n. The reason we resorted to X1:n instead of U = Sn(X1:n) is that in
this part we are concerned with a setting where the probability distribution of U is hard
to find or approximate. Accordingly, the algorithm samples X1:n from their population
distribution and uses importance sampling to calculate the score vector as an expectation of
the derivative of the log-joint density of (X1:n, Y ) with respect to the posterior distribution
of X1:n given Y . As a result a requirement is that the population distribution is differentiable
with respect to θ.

At this point it is worth pointing to smooth sensitivity (Nissim et al., 2007), a method
that has proven quite useful in reducing privacy preserving noise considerably, especially
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Algorithm 2: Monte Carlo estimation of Fisher information for (1) - exact
marginal distribution

Input: θ: parameter; n: data size; N , M : Monte Carlo parameters

Output: F̂ (θ): Estimate of F (θ)
1 for i = 1, . . . , N do
2 Sample y(i) ∼ pε,Sn(y|θ)
3 for j = 1, . . . ,M do
4 for t = 1, . . . , n do

5 Sample x
(j)
t ∼ p(x|θ).

6 Set wj = pε,Sn(y(i)|x(j)
1:n).

7 Calculate

γ̂ε,Sn(θ; y(i)) =
N∑
j=1

(
n∑
t=1

∂ log p(x
(j)
t |θ)

∂θ

)
wj∑N
j′=1 wj′

.

8 return F̂ (θ) = 1
N

∑N
i=1 γ̂ε,Sn(θ; y(i))γ̂ε,Sn(θ; y(i))T .

for non-additive statistics, which are under consideration in this section. As before, one
could use the global sensitivity of Sn as in Definition 2 to determine the amount of noise to
generate Y . However, for some non-additive statistics, such as max and median, adding
noise based on the global sensitivity can be quite ineffective. This is because the global
sensitivity of the those functions is as large as the range of Sn. For example, if X 7→ [0, A],
the global sensitivites of max and median are both A. Instead, one can generate the noisy
statistic Y by adjusting the amount of noise using the smooth sensitivity defined in Nissim
et al. (2007).

Definition 3 (Smooth sensitivity). For a function ψ : X n 7→ Rdψ and β > 0, define the
β-smooth sensitivity as

∆smooth
ψ,β (x1:n) = max

x′1:n∈Xn
Lψ(x′1:n)e−βh(x1:n,x′1:n),

where Lψ(x1:n) is called the local sensitivity at x1:n and defined as

Lψ(x1:n) = max
x′1:n:h(x1:n,x′1:n)=1

‖ψ(x1:n)− ψ(x′1:n)‖1.

Differential privacy can be provided based on local sensitivity using appropriate noise-
adding mechanisms. For example, to satisfy (ε, δ)-DP for ε, δ ∈ (0, 1), one can generate
Y = Sn(X1:n) + V with

V ∼ Laplace
(
∆smooth
Sn,β (X1:n)/α

)
,

where α = ε/2 and β = ε/[2 ln(2/δ)]. (Pure differential privacy, i.e., with δ = 0, can also
be obtained using smooth sensitivity, however with a noise distribution whose tails decay
slower than exponentially, such as Cauchy distribution.)
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Algorithm 3: Monte Carlo estimation of F (θ) for (3)

Input: θ: parameter; n: data size; N , M : Monte Carlo parameters

Output: F̂ (θ): Estimate of F (θ)
1 for i = 1, . . . , N do
2 Sample y(i) ∼ pε,s(y|θ)
3 for j = 1, . . . ,M do
4 Sample x(j) ∼ qθ(x) and calculate

wj = p(x(j)|θ)gε,s(y(i)|s(x(j)))/qθ(x
(j)).

5 Calculate

γ̂ε,s(θ; y
(i)) =

N∑
j=1

∂ log p(x(j)|θ)
∂θ

wj∑N
j′=1 wj′

.

6 return F̂ (θ) = n
N

∑N
i=1 γ̂ε,Sn(θ; y(i))γ̂ε,Sn(θ; y(i))T .

Note that, contrary to the earlier examples, using smooth sensitivity determines the
noise distribution dependent on X1:n, rendering a quite non-standard joint distribution,
in particular a non-standard posterior distribution for the parameter of interest θ. This
highlights the importance of general-purpose inference methods in the privacy context such
as MCMC.

Finally, a remark on the notation. When smooth sensitivity is used, the density of the
conditional distribution y given X1:n = x1:n depends on not only Sn(x1:n) but also x1:n

itself, since x1:n determines the noise variance also. To cover those cases, in Algorithm 2 we
resort the more general representation pε,Sn(y(i)|x(j)

1:n) to denote the conditional distribution
of y given x1:n.

3.4 Fisher information with sequential release

In Sections 3.1-3.3 we looked at scenarios where a single statistic of the sensitive data X1:n

is shared. Alternatively, private data can be sequentially released as Y1, . . . , Yn, where each
Yi is a noisy version of s(Xi) as in (3). This corresponds to a scenario where the analyst
collects data from the individuals separately in a privacy preserving way. The former
and the latter models are also referred to as the centralized model and the local model
(Kasiviswanathan et al., 2008), respectively. The local model comes with the expense of
adding much more noise to each Yi than the statistic S(X1:n). Specifically, to provide ε-DP
with the Laplace mechanism, we must have

Yi = s(Xi) + Vi, Vi ∼ Laplace(∆s,1/ε)

which no longer has the 1/n factor in its noise parameter.
In the local model, we can talk about the marginal distribution of each Yi, whose
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probability density can be written as

pε,s(y|θ) =

∫
p(x|θ)gε,s(y|s(x))dx, (12)

where gε,s(y|s(x)) is the probability density function of the conditional distribution of Y
given S(X), which, according to (3), reduces to the probability of Pε,s evaluated at y− s(x).

The Fisher information corresponding to this mechanism can be numerically calculated
by estimating the Fisher infrormation of a single Yi via Monte Carlo as in Algorithm 3.
The algorithm requires that the probability density (mass) function of Xi is differentiable
w.r.t. θ.

Example 4 (Binary responses). Let Xi ∈ {0, 1} with Xi
iid∼ Bern(θ) for i = 1, . . . , n. In

a non-private setting, a natural estimator for θ is X̄. Instead, we consider estimating θ
privately. We will compare three mechanisms.

1. It is well known, and can be easily verified that releasing the randomized binary
responses Y1, . . . , Yn, where

Yi =

{
X with probability eε

eε+1

1−Xi else

provides ε-DP. The probability of the randomized response being 1 is given by

τ := P(Y = 1) =
θeε + (1− θ)

1 + eε
.

The probability density of Y given θ and ε is

log p(y|θ) = y ln τ + (1− y) ln τ.

Therefore, letting α = (eε − 1)/(eε + 1), the Fisher information of Y1, . . . , Yn is given
by

F1(θ) = nE
[
−∂

2 log p(Y |θ)
∂θ2

]
=

nα2

τ(1− τ)
.

2. One alternative to the above is to release Zi = Xi + Vi, with Vi
i.i.d∼ N (0, 1/ε2). It

is obvious that Z1, . . . , Zn is as informative as θ̂2 = Z̄, which approximately has
the normal distribution N (θ, θ(1 − θ)/n + 1/(ε2n)) hence its Fisher information is
approximately

F2(θ) =
n(θ(1− θ) + 1/ε2) + (1− 2θ)2

[θ(1− θ) + 1/ε2]2
.

3. Finally, we consider adding noise to the mean X̄ and obtain θ̂3 = X̄ + V , where
V ∼ N (0, 1/(n2ε2)). Therefore, θ̂3 ∼ N (θ, θ(1− θ)/n+ 1/(ε2n2)). This last estimator
is based on a noisy average whose Fisher information is

F3(θ) =
n(θ(1− θ) + 1/(ε2n)) + (1− 2θ)2

[θ(1− θ) + 1/(ε2n)]2
.

Notice the improvement due to adding noise to the average (output) rather than
averaging noisy inputs.
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Figure 4 shows a comparison between F1(θ) and F2(θ) as well as between F1(θ) and F3(θ) for
n = 100. It can be seen that, for small values of ε, revealing the average of the randomizing
the responses is better than revealing the average of the noisy responses created by the
Gaussian mechanism. However, in the same ε regimes, using the noisy average is better
than the average of the randomised responses.
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Figure 4: Comparison among F1(θ), F2(θ), F3(θ).

Graphical summary: Figure 5 shows graphical representations of the models respected
by the F (θ) calculations in this section. Note that the graphs (1-3) correspond to the
same batch model in (1), but represented with different sets of variables, while graph
(4) corresponds to the model with sequential release in (3). Moreover, the graphs (1-4)
correspond to the MCMC algorithms in Sections 4.1-4.4, respectively.

(4)(3)(2)(1)

Figure 5: Graphical representations of the models respected in the F (θ) calculations and MCMC
algorithms. Models (1-4) refer to Sections 3.1-3.4, respectively, and correspond to the MCMC algorithms
in Sections 4.1-4.4, respectively. Shaded variables are observed; the others are latent.
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Table 2: Algorithm-model matching for differentially private Bayesian learning via MCMC

Model Algorithm

Additive statistic, Gaussian noise Algorithm 4
Additive statistic, non-gaussian noise Algorithm 5, 6

Non-additive statistic Algorithm 7
Sequential release Algorithm 8

4 Bayesian inference using MCMC

For the statistic selection method to be useful in practice, it should be accompanied with an
inference method. Within the Bayesian framework, one could use ideas from approximate
Bayesian computation. This relation is already observed in Gong (2019), where an EM
algorithm is presented for maximum likelihood estimation of θ. The EM algorithm can
be somewhat restrictive, for its E- and M- steps may require exact posterior expectations.
An alternative to EM is to consider Bayesian estimation by means of sampling from the
posterior distribution of θ given the shared statistics. Owing to the availability of Monte
Carlo techniques for sampling from various forms of posterior distributions, Bayesian
estimation is usually less demanding about the nature of the model in hand.

In the batch setting, where a statistic Sn(X1:n) is shared in noise as in (1), the posterior
distribution is

pε,Sn(θ|y) ∝ η(θ)pε,Sn(y|θ), (13)

where η(θ) is the probability density of the prior distribution of θ and the likelihood
pε,Sn(y|θ) is defined in (10). In the sequential setting, where a function s of each Xi is
shared in noise, the posterior distribution becomes

pε,s(θ|y1:n) ∝ η(θ)
n∏
t=1

pε,s(yt|θ). (14)

In the following, we propose MCMC algorithms for sampling from the posterior distribution
for the settings investigated separately in the subsections of Section 3.

MCMC is the name for a family of methods that (approximately) sample from a given
probability distribution, say π(θ). An MCMC algorithm is specified by an ergodic Markov
chain {θi}i≥0 which is designed to have π(θ) as its invariant distribution. In that way, the
generated sequence {θi}i≥0 from this Markov chain converges in distribution to π(θ). The
methods we propose in this paper are either variants or sophisticated imitations of the
Metropolis-Hastings (MH), arguably the most popular MCMC algorithm. One iteration
of the MH algorithm involves (i) a proposal mechanism where, given the current value
θi = θ, a candidate value θ′ is proposed from the conditional distribution q(θ′|θ), and (ii)
an accept-reject mechanism in which the proposal is accepted and θi+1 = θ′ is taken with
the acceptance probability

α(θ, θ′) = min

{
1,
q(θ|θ′)
q(θ′|θ)

π(θ′)

π(θ)

}
;
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and otherwise it is rejected and the new sample is taken as the current sample, i.e., θi+1 = θ.
In the following subsections, we will propose MH-based algorithms that are suitable for

each data-sharing model investigated in Sections 3.1-3.4.

4.1 MH for additive statistic and Gaussian noise

Recall that when S(X1:n) is an additive statistic as in (2) and the noise is Gussian, the
marginal likelihood of Y given θ can be approximated as (9). We can use that approximation
to obtain

p̂ε,Sn(θ|y) ∝ η(θ)N (y;µs(θ), Hs,ε,n(θ)). (15)

If this distribution is intractable, MCMC can be used to sample from it. Algorithm 4
presents the MH algorithm for this distribution.

Algorithm 4: MH for (15) - one iteration

Input: Current value: θ; privately shared statistic: y, privacy level: ε
Output: New sample

1 Propose θ′ ∼ q(·|θ)
2 Accept the proposal and return θ′ with probability

min

{
1,
q(θ|θ′)
q(θ′|θ)

η(θ′)

η(θ)

N (y;µs(θ
′), Hs,ε,n(θ′))

N (y;µs(θ), Hs,ε,n(θ))

}
;

otherwise reject the proposal and return θ.

4.2 MH for additive statistic and non-gaussian noise

Here we study inference for the setting discussed in Section 3.2, where Sn(X1:n) is still
additive as in (2), however a non-Gaussian mechanism (such as the Laplace mechanism) is
used to preserve privacy.

Due to the additivity of Sn, we can still use the normality approximation in (8) for
U = Sn(X1:n). However, due to non-gaussianity of the noise, the marginal distribution of
the shared statistic Y may not reliably be approximated as a normal distribution any more.

In this model, inference can still be made via suitable MCMC algorithms. Define the
joint posterior distribution

π(θ, u|y) ∝ η(θ)fSn(u|θ)gε,Sn(y|u) (16)

where, recall that, gε,n(y|u) is the conditional distribution of y given u = Sn(x1:n). We
consider sampling from this posterior distribution by using MCMC. Note that the marginal
distribution of θ with respect to π(θ, u|y) can be shown to be pε,Sn(θ|y) in (13), which
validates sampling from π(θ, u|y) as a means of sampling from pε,Sn(θ|y).

There are many possible ways to design a correct MCMC algorithm for π(θ, u|y). A
standard option is to use the MH-within-Gibbs algorithm, where one iteration consists of
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an update of u conditional on θ, y which is followed by an update of θ conditional on u, y.
The MH-within-Gibbs algorithm may not be efficient in the presence of high dependence
between the variables θ and u given y.

Alternative to MH-within-Gibbs, exact-approximate MCMC algorithms (Andrieu and
Roberts, 2009; Andrieu et al., 2010, 2020) mimic the MH algorithm for the marginal
posterior distribution in (13). The term “exact-approximate” comes from the fact that the
Markov chains of those algorithms still correctly converge to the exact posterior distribution
(hence “exact”) and they are approximations of the ideal (but intractable) MH algorithm
for the marginal posterior distribution pε,Sn(θ|y) (hence “approximate”). Those algorithms
can be useful since they circumvent the problem of dependency between θ and u by relying
on sample-based estimators of the marginal MH acceptance ratio. The variance of the
estimator reduces with amount of computation. Moreover, the amount of computation can
be mostly parallelized.

In the following we present two exact-approximate MCMC algorithms.

4.2.1 Pseudo-Marginal MH

The pseudo-marginal MH (PMMH) of Andrieu and Roberts (2009), adopted to the posterior
distribution in (13) is described in Algorithm 5. The PMMH algorithm targets the posterior
distribution in (16), but it mimics the MH algorithm by estimating the intractable marginal
likelihood (10) in (13) using importance sampling. Observe that the computational cost of
one iteration of this algorithm is O(N), the sample size of the importance sampling step,
which can largely be parallelised.

Algorithm 5: PMMH for the posterior distribution in (16) - one iteration

Input: Current sample: (θ, Ẑ), number of proposals for u: N privately shared
statistic y

Output: New sample
1 Propose θ′ ∼ q(·|θ)
2 Sample u(j) ∼ qθ′(·) for j = 1, . . . , N .

3 Calculate Ẑ ′ = 1
N

∑N
j=1 fSn(u(j)|θ)gε,n(y|u(j))/qθ′(u

(j)) using (11).

4 Return (θ′, Ẑ ′) with probability

min

{
1,
q(θ|θ′)
q(θ′|θ)

η(θ′)

η(θ)

Ẑ ′

Ẑ

}
;

otherwise, reject and return (θ, Ẑ).

4.2.2 MH with Averaged Acceptance Ratios

In PMMH, the estimate Ẑ in the denominator of the acceptance ratio is carried over from the
previous iteration, which can lead to stickiness in its Markov chain. The correlated pseudo-
marginal algorithm of Deligiannidis et al. (2018) partially alleviates the stickiness problem
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by making the numerator and denominator correlated, which is achieved by employing a
common source of randomness in the estimators of the the numerator and denominator
of the marginal acceptance ratio. This idea of using correlated estimators is taken to its
limit by a more recent class of exact-approximate MCMC algorithms proposed in Andrieu
et al. (2020) with the name “MH with Averaged Acceptance Ratio (MHAAR)”. Unlike
PMMH or its correlated version, in MHAAR both the numerator and the denominator of
the acceptance ratio estimator are (almost) fully refreshed in every iteration, which is one
advantage of MHAAR over PMMH.

While there are several versions of MHAAR which can be applied to the posterior
distribution in (16), we present a particular variant in Andrieu et al. (2020, Section 3) in
Algorithm 6. The requirement in Algorithm 6 to work properly, the proposal distribution
for u has to satisfy qθ,θ′(u) = qθ′,θ(u) for all θ, θ′ and u.

Algorithm 6: MHAAR for the posterior distribution in (16) - one iteration

Input: Current value: (θ, u); number of proposals for u: N ; privately shared
statistic: y

Output: New sample
1 Propose θ′ ∼ q(·|θ)
2 for j = 1, . . . , N do
3 If j = 1 set u(1) = u; otherwise sample u(j) ∼ qθ,θ′(·).
4 Using (11), calculate

wj =
fSn(u(j)|θ)gε,n(y|u(j))

qθ,θ′(u(j))
, w′j =

fSn(u(j)|θ′)gε,n(y|u(j))

qθ,θ′(u(j))

5 With probability

min

{
1,
q(θ|θ′)
q(θ′|θ)

η(θ′)

η(θ)

∑N
j=1 w

′
j∑N

j=1 wj

}
,

sample k ∈ {1, . . . , N} with probability proportional to w′k and return (θ′, u(k)).
Otherwise, reject the move, sample k ∈ {1, . . . , N} with probability proportional
to wk, and return (θ, u(k)).

4.3 Exact inference based on the true posterior

The algorithms in the previous sections can be restrictive, since µs(θ) and Σs(θ) may not be
analytically available, or the normality approximation may not be valid if Sn is an extreme
statistic of X1:n, such as S(x1:n) = max1≤t≤n s(xt). In such models, the true posterior of θ
may be targeted via a special variable augmentation. Consider, for example, the extended
posterior distribution

π(θ, x1:n|y) ∝ η(θ)p(x1:n|θ)pε,Sn(y|x1:n).
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(Alternatively, one may choose to augment the space with the statistic u = S(x1:n) and
work with (16) if fSn(u|θ) can be calculated exactly. However we do not pursue this option
to avoid diverting from the main point.)

One can go to an even lower-level representation and express the joint distribution in
terms of the random variables that generate Xi’s and have distributions that do not depend
on θ. Letting those random variables Zi ∼ µ(·), assume a transformation ϕθ(·) such that if

Zi
i.i.d∼ µ(·)⇒ Xi = ϕθ(Zi)

i.i.d∼ Pθ, i ≥ 1 (17)

Without loss of generality, Z1:n can be thought of a sequence of random variables from
Unif(0, 1), owing to the role of uniformly distributed pseudo-random variables in generation
of random variables from any distribution via some suitable transformation.

Presence of such Z1:n induces the joint posterior distribution

π(θ, z1:n|y) ∝ η(θ)
n∏
t=1

µ(zt)hε,Sn(y|z1:n, θ), (18)

where hε,Sn(y|z1:n, θ) = pε,Sn(y|x1:n), with xi = ϕ(xi), is a re-parametrization of the condi-
tional density in terms of z1:n. Crucially, it can be shown that the marginal distribution for
θ with respect to π(θ, z1:n|y) is the target posterior distribution pε,Sn(θ|y).

Choosing Z1:n such that its density does not depend on θ enables the MHAAR method-
ology of Andrieu et al. (2020), where estimates of the acceptance ratio can efficiently be
averaged to reduce variance. Algorithm 7 is inspired from Andrieu et al. (2020) and can be
thought of a variant of MHAAR. However, it bears methodological novelty in the sense that,
if desired, only a subset of the latent variables z1:n can be updated per iteration instead
of the whole z1:n (which may be computationally cheap in some cases.) Hence, Algorithm
7 requires to be proven for its validity. We establish that in the following proposition. A
proof is given in Appendix A.

Proposition 1. The Markov kernel of Algorithm 7 has π(θ, z1:n|y) in (18) as its invariant
distribution.

4.4 Exact inference based on sequential releases

Here we consider the scenario in Section 3.4, where the individuals’ data are obtained in
privacy preserving noise as in (3). Here we have independent sequential observations Yi,
whose generative model involves a latent variable, Xi. As in Section 4.3, we will adopt the
representation of the generative model in terms of random variables Zi whose distribution
does not depend on θ. Specifically, we assume that (17) holds for some distribution µ(·)
and functions ϕθ(·) for all θ. Again, as long as one can sample from Pθ, existence of such
Z is secured. This enables the joint distribution

π(θ, z1:n|y1:n) ∝ η(θ)
n∏
t=1

µ(zt)hε(yt|zt, θ), (19)
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Algorithm 7: MHAAR for (18) - one iteration

Input: Current sample: (θ, z1:n), subset size: m < n, number of samples for z1:n:
N , privately shared statistic: y.

Output: New sample
1 Propose θ′ ∼ q(·|θ)
2 if full mode then

3 Set z
(1)
1:n = z1:n and propose z

(2)
1:n, . . . , z

(N)
1:n ∼ µ(·).

4 else

5 Set z
(1)
1:n = z1:n.

6 Sample (without replacement) a subset b = {b1, . . . , bm} ⊂ {1, . . . , n} uniformly.
7 for i = 2, . . . , N do

8 Set z
(i)
/b = z/b, propose z

(i)
b ∼

∏m
i=1 µbi(·), and set z

(i)
1:n = (z

(i)
b , z/b).

9 Sample k with probability proportional to hε(y|z(k)
1:n, θ

′).

10 Accept θ′, z
(k)
1:n as the new sample with probability

min

{
1,
q(θ|θ′)
q(θ′|θ)

η(θ′)

η(θ)

∑N
i=1 hε(y|z

(i)
1:n, θ

′)∑N
i=1 hε(y|z

(i)
1:n, θ)

}
;

otherwise reject and repeat (θ, z1:n) as the new value.

where hε(yt|zt, θ) = gε(yt|s(ϕθ(zt))). We aim to sample from the posterior distribution in
(19) using Algorithm 8, which we adopt from a recently developed MHAAR algorithm in
Andrieu et al. (2020). The reason we choose this particular algorithm is that the variance
of its acceptance ratio does not increase with n as long as the proposal distribution for
θ is properly scaled with the data size n; see Yıldırım et al. (2018) for a related result.
Note that this is in contrast to the PMMH algorithm of Andrieu and Roberts (2009) whose
acceptance rate increases with n, leading to higher rejection rates, hence to slowing of the
algorithm.

5 Numerical examples

In this section we show some numerical examples which justify the proposed way of choosing
the statistic of the sensitive data, as well as demonstrate the performance of the MCMC
algorithms proposed for the different privacy settings that are described in Section 3.

For Bayesian inference, a method for statistic selection can be reasonably justified if it
yields the statistic that results in smallest MSE for the posterior expectation θ̂(Y ) = E(θ|Y ),
that is,

MSE = EY [(θ̂(Y )− θ∗)2], (20)

In our experiments we will follow that way of justification for our statistic selection method
based on the Fisher information. For a given y, θ̂(y) will be obtained by one of the MCMC
algorithms presented in Section 4, depending on the nature of the data generation model.
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Algorithm 8: MHAAR for (19) - one iteration

Input: Current sample (θ, z1:n), subset size m < n, number of samples for z1:n: N ,
privately shared sequence: y1:n.

Output: New sample
1 Propose θ′ ∼ q(·|θ)
2 for t = 1, . . . , n do

3 Set z
(1)
t = zt and propose z

(2)
t , . . . , z

(N)
t ∼ µ(·).

4 Calculate the acceptance probability

α = min

{
1,
q(θ|θ′)
q(θ′|θ)

η(θ′)

η(θ)

∏n
t=1

∑N
i=1 hε(yt|z

(i)
t , θ

′)∏n
t=1

∑N
i=1 hε(yt|z

(i)
t , θ)

}
.

5 Sample v ∼ Unif(0, 1).
6 if v < α then

7 Return (θ′, z1:n = (z
(k1)
1 , . . . , z

(kn)
n )), where each kt ∈ {1, . . . , N} is sampled with

probability proportional to hε(yt|z(kt)
t , θ′).

8 else

9 Return (θ, z1:n = (z
(k1)
1 , . . . , z

(kn)
n )), where each kt ∈ {1, . . . , N} is sampled with

probability proportional to hε(yt|z(kt)
t , θ).

MSE in (20) will approximated by MSE ≈ 1
M

∑M
i=1(θ̂(Y (i))−θ∗)2, where the M independent

samples for Y (i) are drawn conditional on the true value θ∗.

5.1 Comparison of additive statistics with the Gaussian mecha-
nism

Our first example refers to the setting in Example 2, where Pθ = N (0, θ) with the natural
limits [−A,A] for the data and we computed F (θ) when the noisy statistic in (1) is
constructed from s(x) = |x| and s(x) = x2, separately. In Example 2 we showed that
s(x) = |x| results in larger F (θ) than s(x) = x2 when ε = 1, while s(x) = x2 becomes more
informative when there is no privacy.

Here we compared the choices s(x) = |x| and s(x) = |x2| in terms of MSE at various
values of ε. We took A = 10, n = 100, and θ∗ = 2. For MSE calculations, we took M = 103.
To obtain the posterior expectations, we ran Algorithm 4, with flat prior on θ, to generate
a total of K = 105 iterations and took the sample average after discarding the first quarter
as burn-in.

The results are summarized in Figure 6. We observe that s(x) = |x| outperforms
s(x) = x2 in terms of MSE unless ε is very large. Critically, we observe that when F (θ)
is larger we have smaller MSE, which justifies the use of Fisher information for statistic
selection.
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Figure 6: MSE for Algorithm 4 and (Logarithm of) F (θ) for different moments when there is Gaussian
noise.

5.2 Comparison of additive statistics with the Laplace mecha-
nism

In this part, we repeat the previous experiment but with the following differences: We
consider the Laplace mechanism, where the additive statistic is corrupted by Laplace noise
as

Y =
1

n

n∑
i=1

|xi|a + V, V ∼ Laplace(0, Aa/(nε)),

For Bayesian inference, we used Algorithm 5. Note that one could use Algorithm 6 as well,
which would yield the same qualitative results in terms of MSE.

Figure 7 shows MSE, obtained with M = 100 noisy observations, and F (θ) for the
choices s(x) = |x| and s(x) = x2. We observe that, like in the case where we use Gaussian
mechanism, s(x) = |x| provides more information than s(x) = x2 under the Laplace noise.
Moreover, MSE values and F (θ) are consistent also in this problem.
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Figure 7: MSE (left) and F (θ) (right) for s(x) = |x| (blue) and s(x) = x2 (red), under Laplace mechanism.
MSE is calculated from the samples obtained from Algorithm 5.
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5.3 Comparison of Algorithms 5 and 6 in terms of mixing

Recall that Algorithms 5 and 6 are instances of PMMH and MHAAR, respectively, that
both target the same posterior distribution in Section 4.2. In this part we compare
their performances in terms of integrated auto-correlation (IAC) time for θ, which is the
asymptotic variance of an average of samples generated by the MCMC algorithm relative
to that of the average of i.i.d samples from the target distribution. (Hence, smaller IAC
time is preferable.)

We continue with the setting in Section 5.2. We compared the IAC times of the
algorithms with s(x) = |x| and ε = 5.

For Algorithm 5, the importance sampling distribution for u was selected as qθ(u) =
fSn(u|θ). For Algorithm 6, we chose the symmetric proposal distribution for u as qθ,θ′(u) =
fSn(u|(θ + θ′)/2). In both algorithms, we used the same flat prior and the same random
walk proposal for θ.

Table 3 shows for both algorithms the IAC times vs sample size N to estimate the
acceptance ratios. As can be seen from Table 3, Algorithm 6 outperforms Algorithm 5 with
lower IAC values for almost all of the N ’s, while the performance gap closes as N increases.

Table 3: IAC values of Algorithms 5 and 6

N Algorithm 5 Algorithm 6

2 44.03 17.99
5 28.19 17.10
10 21.11 16.13
20 18.16 15.44
50 15.32 13.78
100 16.42 15.86

5.4 Inference based on a non-additive statistic

In this part we demonstrate the use of statistic selection method as well as the inference
method when the compared statistics Sn(X1:n) are non-additive. Specifically, we choose
the maximum of s(xi)’s

Sn(X1:n) = max{s(Xi); i = 1, . . . , n}, (21)

and the median of s(xi)’s

Sn(X1:n) = median{s(Xi); i = 1, . . . , n} (22)

as two competitors for the statistic to be shared privately. As discussed in Section 3.3,
adding noise to the maximum and median based on the global sensitivity is ineffective,
because the global sensitivity of the those functions are determined by the range of s(·)
irrespective of n. Instead, we consider generating the noisy statistic Y by adjusting the
amount of noise using the smooth sensitivity of the maximum and median functions.
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The smooth sensitivity formulas for the maximum and median can be found in Nissim
et al. (2007), we give them here for the sake of completeness. Let As = maxx∈X s(x) and
assume minx∈X s(x) = 0. (Otherwise s(·) can be shifted by a constant so that the minimum
of their range is 0.) Given the function s(·) and x1, . . . , xn, let s1, . . . , sn be the sorted
values of s(x1), . . . , s(xn) so that 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ As. For the maximum in (21),
the smooth sensitivity is given by

∆smooth
max,β (x1:n) = max{e−kβbk; k = 0, . . . , n},

with bk = max{As− sn−k, sn− sn−k−1}. For the median in in (22), the smooth sensitivity is

∆smooth
med,β (x1:n) = max{e−kβbk; k = 0, . . . , n}

with bk = max{sm+i − sm+i−k−1; i = 0, . . . , k + 1}.
As in the previous examples, we have the same population distribution, Pθ = N (0, θ),

and the data generation process limits X’s to [−A,A].
We ran Algorithm 7 with each of the above choices for Sn with s(x) = |x|. We took

θ = 2, n = 100, and the differential privacy parameters are taken as (ε = 5, δ = 1/n2).
Table 4 shows the MSE values obtained with M = 100. We also report in Figure 8 the
estimates of F (θ) for the median and maximum statistics, obtained with Algorithm 2, for
various values of θ.

Table 4: MSE for median and maximum statistics

Sn(X1:n) MSE

median 0.391
max 22.64
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Figure 8: F (θ) (left) for median (blue) and maximum (red) of s(x) = |x|, Auto-correlation function (ACF)
for Algorithm 7 for median (blue) and maximum (red). Privacy parameters are (ε, δ) = (5, 1/n2).

By observing F (θ) values and MSE values in Figure 8 and Table 4, we can see that
empirical results agree with the theoretical expectations. In Figure 8, in terms of F (θ),
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median has better performance since it is definitely more informative as it can be interpreted
from F (θ) values. Also, MSE values reveal that estimates obtained by using median
statistics are closer and variate less from the desired parameter even in the non-additive
and non-gaussian case.

Figure 8 shows the sample auto-correlation function, averaged over 5 runs each with an
independent noisy observation, for the median and maximum for |xi|’s. We observe from
the plots that Algorithm 7 mixes well for both statistics, which suggests that the MSE
calculations are reliable.

5.5 Comparison of statistics in sequential release

In this part, we utilize Algorithm 8 to compare statistics using sequential release. Laplace
mechanism and normal posterior distribution with unknown variance is again the target
in this case. However, as it was described in Section 4.4, algorithm aims to draw samples
from individual noisy data points instead of summary statistics such as mean or median.

Comparison of s(x) = |x| and s(x) = x2 are represented in Figure 9. We deduce from
the figure that that s(x) = |x| yields smaller MSE, as predicted by F (θ).
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Figure 9: MSE (left) and F (θ) (right) for s(x) = |x| (blue) and s(x) = x2 (red), under Laplace mechanism
using sequential release. MSE is calculated from the samples obtained from Algorithm 8.

6 Conclusion

In this paper, we propose a method for statistic selection for parameter estimation in a
data privacy context. The method is based on the Fisher information. When one candidate
statistics are not uniformly better than the other in terms of its Fisher information, the prior
information for the parameter can be incorporated to make a final decision. To calculate
the Fisher information, we propose several Monte Carlo algorithms for various data-sharing
scenarios depending on the nature of the statistic and the privatization mechanism. We
equip the statistic selection method with suitable MCMC algorithms for Bayesian parameter
estimation given the shared (noisy) statistics of data. Our findings showed the usefulness
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of the statistic selection based on the Fisher information as well as the effectiveness of the
proposed MCMC algorithms.

The proposed framework for selecting the statistic to be privately shared is not presented
as a competitor of differentially private estimation methods. In principle, the method can
be useful and incorporated into any likelihood-based parameter estimation algorithm by
providing the most informative statistic among those considered. Bayesian estimation via
MCMC is adopted and promoted in this paper not only due to offering incorporation of
the prior distribution for θ but also for the breadth of the models for which it can be
applied. However, statistic selection based on Fisher information can also be utilised for
differentially private maximum likelihood estimation via EM as in Gong (2019). Moreover,
the work developed in this paper can be used in the schemes of Dwork and Smith (2010),
where several estimators, obtained from batches, are combined into one private estimator.

The methodology presented in this paper is not specific to additive mechanisms in
differential privacy. Moreover, it also extends to other definitions of privacy. Specifically, a
privacy preserving mechanism can be constructed to satisfy a certain privacy level with
respect to a privacy definition. The necessary condition for the presented methodology to
be applied for that mechanism is the ability to write the conditional distribution of the
generated output given the sensitive data.

One limitation of the work arises from the possibility of one Fisher information matrix
not being greater than the other (in the sense of the difference being positive definite). In
such a case, an alternative overall measure such as the trace of the Fisher information can
be considered.

One possible extension of this work is adaptive clipping method in an online estimation
setting where individuals’ data are entered into the system sequentially and one-by-one. In
such a case, each individual data can be received after clipping (so that the sensitivity is
shrunk). The range of clipping can be determined in an adaptive way based on the data
received so far. Adaptive clipping is already used for differentially private gradient-based
algorithms (Pichapati et al., 2019; Andrew et al., 2021). It would be interesting to compare
those methods to one that applies clipping to maximize informativeness of the clipped data.

Supplementary material

The code to generate the numerical results in this paper can be found at
https://github.com/barisalparslan1/Statistic_Selection_and_MCMC.
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A Proof of Proposition 1

Proof of Proposition 1. We will prove the Proposition for the more general version where a
subset of z1:n is updated.

Fix a subset b ⊆ {1, . . . , n}. Let z := z1:n and µ(z) =
∏n

t=1 µ(zt) for a short-hand
notation. Consider the joint distribution

πb(θ, θ
′, z(1:N), k) := η(θ)µ(z(1))h(y|z(1), θ)q(θ′|θ)

N∏
i=2

Rb(z
(i)|z(1))

h(y|z(k), θ′)∑
k′ h(y|z(k′), θ′)

where Rb(·|·) is some conditional distribution whose selection will prove critical.
Finally, let B be the random variable corresponding to the subset b whose probability

distribution is denoted by ξ(b) = P(B = b). Consider the extended distribution

π(θ, θ′, z(1:N), k) =
∑

b⊆{1,...,n}

ξ(b)πb(θ, θ
′, z(1:N), k)

The important point about π(θ, θ′, z(1:N), k) is that the marginal probability density of
θ, z(1) is the desired posterior distribution in (18) evaluated at θ, z(1) and the rest of the
variables are the auxiliary variables to enable a tractable MCMC algorithm. Therefore,
one can sample from π(θ, θ′, z(1:N), k) and consider the components θ, z(1), in particular the
former, as samples from the true posterior distribution.

We show that when B = b is sampled, Algorithm 7 targets πb(θ
′, z(2:N), k|θ, z(1)).

Its proposal mechanism of corresponds to sampling θ′, z(2:N), k from their conditional
distribution πb(θ

′, z(2:N), k|θ, z(1)) and proposing the swapping

θ ↔ θ′, z(1) ↔ z(k).

The resulting acceptance ratio is

πb(θ
′, θ, z(k), z(1:k−1), z(k+1:N), k)

πb(θ, θ′, z(1), . . . , z(N), k)

=
q(θ|θ′)η(θ′)µ(z(k))h(y|z(k), θ′)

q(θ′|θ)η(θ)µ(z(1))h(y|z(1), θ)

∏N
i 6=k Rb(z

(i)|z(k)) h(y|z(1),θ)∑N
i=1 h(y|z(i),θ)∏N

i=2Rb(z(i)|z(1)) h(y|z(k),θ′)∑N
i=1 h(y|z(i),θ′)

=
q(θ|θ′)η(θ′)µ(z(k))h(y|z(k), θ′)

q(θ′|θ)η(θ)µ(z(1))h(y|z(1), θ)

∏N
i 6=k Rb(z

(i)|z(k)) h(y|z(1),θ)∑N
i=1 h(y|z(i),θ)∏N

i=2Rb(z(i)|z(1))
hθ′ (y|z(k))∑N
i=1 h(y|z(i),θ′)

=
q(θ|θ′)η(θ′)µ(z(k))

∏N
i 6=k Rb(z

(i)|z(k))

q(θ′|θ)η(θ)µ(z(1))
∏N

i=2 Rb(z(i)|z(1))

∑N
i=1 h(y|z(i), θ′)∑N
i=1 h(y|z(i), θ)

If the distribution µ(z(1))
∏N

i=2Rb(z
(i)|z(1)) is exchangeable with respect to z(1:N), then the

acceptance ratio above simplifies to

q(θ|θ′)η(θ′)

q(θ′|θ)η(θ)

∑N
k′=1 h(y|z(k′), θ′)∑N
k′=1 h(y|z(k′), θ)

.
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The proposal mechanism for the z variable in Algorithm 7, which corresponds to Rb here,
satisfies the exchangeability property just mentioned. Hence, conditional on B = b, one
iteration of Algorithm 7 targets πb(θ, θ

′, z(1:N), k).
The proof is complete by observing that one iteration of Algorithm 7 targets a

πb(θ, θ
′, z(1:N), k) with probability ξ(b), hence it targets π(θ, θ′, z(1:N), k).
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