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ABSTRACT

Visual Inertial Simultaneous Localization and Mapping (VI-SLAM) and Visual In-
ertial Odometry (VIO) systems are widely used in various areas such as augmented
reality, autonomous cars and aerial vehicles’ navigation systems where there is need
for navigating the platform in the absence of the GPS information. There are many
different configurations of the VI-SLAM and VIO systems in the literature in terms
of the sensor types, methods that are used in estimating the states of the platform,
sensor fusion methods and the front and back end structures of the visual-inertial
systems. In this thesis, the focus will be on monocular graph optimization based VI-
SLAM and VIO systems. For this purpose, end-to-end VI-SLAM and VIO structures
have been built and the trajectory results have been evaluated using the Euroc-Mav
dataset. Moreover, as a contribution to the current studies, a solution to the prob-
lem of neglecting dynamic objects in the environment has been proposed to increase
the robustness of the visual-inertial navigation systems.
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ÖZET

GPS BAGIMSIZ ORTAMLARDA OPTIMIZASYON TABANLI GORSEL
ATALETSEL ES ZAMANLI HARITALAMA VE KONUMLANDIRMA

SISTEMLERI

FATIH MEHMET DEMIREL

MEKATRONIK MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, ARALIK 2021

Tez Danışmanı: Prof. Dr. Mustafa Ünel

Anahtar Kelimeler: Gorsel-Ataletsel Es Zamanli Haritalama ve Konumlandirma
Sistemleri, GPS Bagimsiz Ortamlarda Navigasyon, Görsel-Ataletsel Odometri

Görsel-ataletsel eş zamanlı haritalama ve konumlandırma sistemleri ve görsel
odometri artırılmış gerçeklik, otonom arabalar, GPS bağımsız ortamlarda hava
araçlarının navigasyon sistemleri gibi çeşitli alanlarda yaygın olarak kullanılmak-
tadır. Literatürde görsel-ataletsel eş zamanlı haritalama ve konumlandırma sistem-
leri ve görsel odometri sistemlerinin sensör tipleri, platformun durumlarını hesapla-
mak için kullanılan yöntemler, sensör füzyon yöntemleri, sistemin önyüz ve arkayüz
yapıları konularında farklı konfigürasyonlar bulunuyor. Bu tezde odak noktası
monoküler poz grafiği optimizasyonu üzerine görsel-ataletsel eş zamanlı haritalama
ve konumlandırma sistemleri olacaktır. Bu amaçla uçtan uca görsel ataletsel eş za-
manlı haritalama ve konumlandırma sistemi oluşturuldu ve poz sonuçları Euroc-Mav
veri seti kullanılarak değerlendirildi. Ayrıca, mevcut çalışmalara katkı olarak, görsel-
ataletsel navigasyonun sağlamlığını artırmak için çevredeki dinamik nesnelerin elim-
ine edilmesi üzerine bir çözüm önerilmiştir.
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1. INTRODUCTION

Today, autonomous systems are getting involved in many different areas, from man-
ufacturing to the daily used devices. Autonomous cars, drones, vacuum cleaners,
transportation robots, aerial vehicles could be given as autonomous systems that are
getting more popular day to day from different areas. These autonomous systems
could be categorized into surveillance systems, transportation, precision agriculture,
home electronics etc. The application area of autonomous systems is getting wider
day after day thanks to the smaller and more energy-efficient, cheap devices that ca-
pable of supporting those systems’ autonomy. In common, the autonomous systems
should perceive its surrounding and navigate in their environment autonomously. In
that aspect, several different structural and algorithmic designs are studied in the
literature, making the autonomous system perceive its environment and locate itself
in that environment.

The focus of this study is building end to end visual inertial SLAM system and
investigating the state-of-the-art approaches in visual-inertial slam and odometry
systems while contributing to the algorithm in eliminating dynamic objects from
the scene in order to increase the robustness of the algorithm in dynamic environ-
ments. In addition to that, some modules of the SLAM systems are replaced and
tested with recent studies in the literature. Moreover, the studied state-of-the-art
algorithms is compared with the experimented results on both public datasets and
real-world experiments. Based on that comparison, results are discussed in terms
of the different and common approaches in their algorithm structure and the used
novel methods. In order to test the algorithms and the contributed system module,
a visual-inertial monocular platform is built with Nvidia Jetson Nano, raspberry pi
monocular camera, and 9250 IMU with ROS in the backend.

The described navigation system is based on the visual and inertial sensor data
fusion. Moreover, the system output will be the map of the environment and the
location of the aerial vehicle in that environment. The location consists of the
position and the orientation of the aerial vehicle in that map. In literature, this
problem is called visual-inertial navigation.

Even though several state-of-the-art works propose a solution for visual-inertial nav-
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igation systems for aerial vehicles, in this thesis the most well-known ones (Kimera,
ORB-SLAM3 and VINS-MONO) that give the most accurate results are considered.

Figure 1.1 Performance results of common VIO algorithms based on root mean
square error. Adapted from "A Benchmark Comparison of Monocular Visual-Inertial
Odometry Algorithms for Flying Robots" by J. Delmerico and D. Scaramuzza, IEEE
International Conference on Robotics and Automation(ICRA), 2018

According to Figure 1.1 Delmerico & Scaramuzza (2018) there isn’t any comparison
of the latest visual-inertial SLAM algorithms such as Kimera Rosinol et al. (2020)
and ORB-SLAM3 Campos et al. (2020). In this thesis, the state-of-the-art algo-
rithms is compared in terms of the APE(Absolute Pose Error) and RPE(Relative
Pose Error) with the corresponding computational power needs on several public

2
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datasets such as kitti, tum-rgbd and euroc. Moreover, stated algorithms compared
with the custom dataset obtained with the built platform mentioned above.

According to the survey study results throughout the thesis, I have decided to focus
on a tightly-coupled monocular visual-inertial odometry system to solve the GNSS
problem. In Figure 1.2, the overall schema of tightly coupled fusion in visual inertial
SLAM pipeline is given by modules. In the steps of building the VIO system struc-
ture, several variables need to be decided—those selecting according to the needs of
the system that it will be applied. As an outcome of our literature survey, the most
suitable configuration for our system is figured out.

As an outcome of the literature survey, I have figured out the most suitable con-
figuration for the system. There are reasons behind the selection of the system
properties. In section 2 the rationales behind those selections will be explained in
detail.

Furthermore, in the proposed visual-inertial system design, I plan to increase the
system’s accuracy in real-world experiences by considering the dynamic object in
the environment such as humans, animals, moving vehicles, etc. Because in the
application areas of the visual-inertial systems, such as mobile robots in industries,
autonomous vehicles in public areas, etc., there are moving, dynamic objects around
most of the time. The features detected on those objects will not be stable in the
point cloud, which will affect the relative pose calculations in the pose graph. The
aim is to detect those objects with semantic segmentation in the frames. After
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detecting those objects, features detected on those objects will not be saved in the
point cloud. In the end, only features from the static objects will be taken into
consideration in the visual measurements. By following that feature elimination
strategy, I aim to increase the robustness of the visual-inertial system in real-world
experiences.

Figure 1.3 General base structure of the VIO algorithm. Adapted from "Robust
Stereo Visual-Inertial Odometry Using Nonlinear Optimization" by S. Ma, X. Bai,
Y. Wang, R. Fang, Sensors(Basel), 2019, 19(17): 3747

Figure 1.3 represents the general framework of the visual-inertial pose estimation
structure. Most of the VIO systems use a camera for visual data and the IMU
sensor. In terms of the type of camera, there are two approaches. One of them
is building the system using stereo cameras, and the other one is using monocular
cameras. In our case, I will go over the monocular camera approaches. There is
a need for a considerable baseline length for accurate results in the stereo camera
approaches. The baseline is the distance between the two lenses of the stereo camera,
and it influences the depth range that can be observed and depth resolution. In that
sense, in high altitudes, there is a need for massive baselines. That is why in our
case, the system should be independent of this feature. Thus, I decided to go over
monocular camera approaches.

In this general structure in Figure 1.3, inputs are the image from the monocular
or stereo cameras and the IMU data, which contains the acceleration and angu-
lar velocity measurements. Based on those inputs, the output is the 6-DOF pose
estimation of the platform. The system starts with feature extraction and IMU pre-
integration. The inertial and visual poses are combined to estimate the platform
with its pose, velocity, gyroscope bias, gravity vector. The visual-inertial odome-
try algorithm iteratively updates these values. In the end, the 6-DOF pose of the
platform is calculated.
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1.1 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the notation that
used throughout the thesis and gives background information about the methods
used in the visual-inertial navigation SLAM systems.

In chapter 3 state of the art algorithms are discussed and analyzed in terms of the
standard and different approaches in the methodologies they have used for different
modules of the visual-inertial SLAM systems that they proposed. Those modules
could be summarized as; visual-inertial system initialization, visual-inertial process
loop, loop closure, and graph optimization.

In chapter 4, proposed visual-inertial SLAM pipeline is introduced and details given
about the sub modules that implemented in the system. Moreover logic behind the
connections of those submodules are also discussed.

Experimental results are presented in chapter 5. In chapter 6, the thesis is concluded
with several remarks and possible future directions are provided.

5



2. LITERATURE SURVEY AND BACKGROUND

In this chapter, different system configurations in the modules of the visual inertial
structure in the literature are discussed. Furthermore, visual structure, the meth-
ods used in the literature and inertial structure are discussed in separate sections.
Finally, fusion methodology of inertial and the visual data are discussed in the last
section.

2.1 VISUAL-INERTIAL SYSTEM CONFIGURATIONS

In this section, general system configurations of the visual inertial structure are
discussed in detail. In addition, the advantages and disadvantages of the selections
are also discussed.

2.1.1 Sensor Types

First of all, there are several options to collect the measurements from the environ-
ment in SLAM systems. For that purpose, the most used sensors are LIDAR and
the cameras. For the cameras, the most common ones in the SLAM systems are
the monocular and stereo cameras. There are pros and cons of each sensor type
regarding the measurement properties for different use cases. LIDARs and stereo
cameras have the advantage of collecting scale data by measuring the depth in the
environment. This property would be beneficial in the data association process of
any SLAM system. However, for instance, for LIDARs, the type of sensor is an
active sensor, and its sending rays to the environment in taking the measurements.
In that aspect, LIDARs can not be used in defensive industries because it prevents
the system from being stealth. Therefore, to preserve the stealth property of the
aircraft, we will use the camera as a passive sensor.

In terms of the camera, there are stereo and monocular cameras. Stereo cameras are
advantageous and robust in small-scale, mostly indoor applications of the SLAM.
They are not applicable in large environments. To get accurate depth information in
stereo cameras, the camera baseline and distance to the landmark ratio should not be
too small. In aerial case, when thinking about the baseline - altitude ratio, it is too
small to get the accurate depth information from the stereo camera directly. There
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is a disadvantage of monocular cameras that they are incapable of recovering the
metric scale. The IMU comes into play to solve this lack of capability of monocular
cameras to observe the metric scale. In order to observe the metric scale, we need
acceleration in at least two axes, and this information will provided by the IMU.

In the visual-inertial SLAM system, a map of the environment and the 6-DOF pose
state of the agent are estimated by fusing the visual and inertial measurements.
Those sensors are complementary. Cameras have a limited output rate of around
100Hz, and scale could not be determined from monocular cameras. IMUs are
scene independent and have high output rate around 1000Hz. But they suffer from
noise in signals and bias. Those disadvantages results in accumulated drift in the
calculations. Therefore, in order to overcome those disadvantages’ of both sensors,
they are used as complementary sensors in the visual-inertial slam systems.

Another type of camera that recently started to be used in SLAM systems is event
cameras, which have advantages and disadvantages compared with standard cam-
eras. The first commercial event cameras is proposed Lichtsteiner et al. (2008) and
in study Vidal et al. (2018) event cameras are used in visual-inertial slam system.
The most important advantage of event cameras upon standard cameras is that they
can work in fast movements, blurred inputs, and low light conditions thanks to their
capability to capture a high dynamic range of inputs. On the other hand, as the
name describes, they capture the event, and those inputs are asynchronous. There-
fore fusing asynchronous data from the event camera with another sensor could be
harder to implement to build a robust system. In addition to their advantages, the
latency is very low compared to the standard cameras, where, in event cameras, the
latency is in the order of microseconds.

2.1.2 Front-End Structure

We can state that there are two main parts of the generic SLAM algorithm. Those
are stated as front-end and back-end. In literature, they are also called data associ-
ation and optimization parts, respectively. In the front-end part, the pose graph is
built by using the measurements from the sensors. In that pose graph, nodes are rep-
resenting the platform’s position and the landmarks in the environment. Moreover,
there are edges between those nodes, which represents the measurement constraints
between those nodes.

The front-end structure is mostly based on visual data processing. As described in
Cadena et al. (2016), in the front-end structure, the features are extracted from the
frames and the landmarks in the environment are related with those extracted fea-

7



tures. In order to relate 3D landmarks with extracted 2D features from the image,
the triangulation method is used. The assumption in triangulation is the knows
relative pose between the related frames. In order to calculate that relative pose
between the related frames, methods that are using epipolar geometry are used by
calculating homography, fundamental or essential matrix—making the decision be-
tween one of those matrixes in the structure based on the knowns such as camera
intrinsics and the scene conditions. The feature correspondences need to be known
in order to calculate the relative pose of the related frames. For feature correspon-
dence in literature, there are different methods used in the studies. For instance,
in Campos et al. (2020) feature descriptors are matched in order to find feature
correspondences between the frames. On the other hand, in Qin et al. (2017), KLT
optical flow algorithm Lucas & Kanade (1981) is used in order to track the features.
The advantages and disadvantages of those approaches will be discussed in section
2.2.

Data association could be divided into three as short-term, mid-term, and long-term
data associations. Typically short-term data association stands for the data associ-
ation in the feature tracking level, which describes the association in the consecutive
frames or in a single window of sliding frames. On the other hand, long-term data
association provided with the loop closure methods in the literature—mid term data
associations not much common as compared to the short and long term. Mid-term
data association approach proposed in the Campos et al. (2020) and Zubizarreta
et al. (2020) where data is associated not in consecutive frames but the frames
located in the local map of the visual-inertial SLAM system.

2.1.3 Back-End Structure

In the back-end part, there are two approaches stated as filtering-based and
optimization-based. In the filtering approach, there is no re-linearization process for
old measurements. It uses older state information to estimate the latest state and
drop the older states permanently. That results in making the linearization errors
and erroneous measurements permanent. In the literature, optimization methods
are also called smoothing methods.

On the other hand, in the smoothing methods, there is re-linearization for older
states. When the estimate is updated, older measurements re-linearized, and mul-
tiple states are estimated instead of the only latest state; that needs more compu-
tational power than the filtering approach but more accurate. The recent studies
show that the optimization method becomes more accurate and becomes applica-
ble in near real-time applications of the visual-inertial navigation system. Therefore
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optimization-based methods became more popular in the last decade. Optimization-
based methods are divided into fixed lagged smoothing and full smoothing. Both
approaches are explained in detail in the following section.

2.1.3.1 Fixed Lag Smoothing and Full Smoothing

Optimization-based back-end structure in VINS can be divided into two methods
which are called fixed lag smoothing and full smoothing Huang (2019). The differ-
ence between those two methods relies on the older states’ relinearization procedure,
which was stated as the prior in optimizing the pose graph in VINS. In fixed lagged
smoothing, some of the older states are marginalized, and the rest is relinearized
and set as the prior. On the other hand, in the full smoothing approach, all past
states are relinearized and set prior to the optimization problem. The increase in the
number of states that linearizerd in the optimization means decreasing the reprojec-
tion errors in the feature-based in-direct VINS. Therefore full smoothing approaches
are more accurate but need more computational power to handle the relinearization
process of all older states. In the same perspective, the nonlinear optimization prob-
lem to solve in the full smoothing approach getting greater than it is in the fixed
lag smoothing approach.

In both optimization methods, fixed lagged smoothing and full smoothing, selecting
key-frames to process is common. In three state of art papers that investigated
in this study Qin et al. (2017), Campos et al. (2020), Rosinol et al. (2020), all
of them used their key-frame selection strategy in their visual-inertial navigation
algorithms. In the key-frame selection model, not all of the frames included in the
sliding window set in the fixed lag smoothing and the full smoothing. The key-frame
selection model is based on deciding whether the frames are essential to consider in
processing—this decision strategy is based on the design of the algorithm. There
are stated constraints to decide whether the current frame is key-frame or not.
Those constraints could be the parallax between consecutive frames, new feature
quantity in the current frame different from the older frame, etc. Based on those
constraints, for instance, in Qin et al. (2017) if the current frame is stated as key-
frame, visual and inertial measurements of that frame are included in the formulated
cost function. On the other hand, if the current frame is not selected as a key-frame,
visual measurements of that frame are neglected, and only IMU measurements are
taken into consideration when solving the related cost function Qin et al. (2017).
That helps increase the VINS algorithm’s computational efficiency without losing
valuable information from the frame with key-frame selecting protocol applied.
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2.1.4 Direct and In-Direct SLAM

VINS (visual-inertial navigation systems) are separated into direct and in-direct in
terms of the visual residual models. Those methods are distinguished in terms of
error types that they are trying to minimize Huang (2019). In in-direct methods, ini-
tially, feature points are extracted from the frame, and based on the correspondences
of those feature points, geometric re-projection error is calculated. In contrast, in the
direct methods, the photometric error is calculated upon all pixel intensities in the
image frame. In terms of computational efficiency, in-direct methods are more com-
putationally heavy because of the feature extraction and finding correspondences of
those extracted features.

On the other hand, direct methods give better results in the low texture environ-
ments, because as mentioned above, the photometric error is calculated from pixel
intensities in the image. However, in in-direct methods, feature extraction could
be problematic in low detailed texture environments, resulting in not enough fea-
tures in the scene. Therefore it will not be robust working in low texture areas
with the in-direct methods. On the other hand, besides the low texture and blurry
environments, in-direct methods are more robust and accurate than direct methods.

In Campos et al. (2020), it is mentioned that direct methods have their limitations
in different aspects. In order to increase the accuracy of the tracking, the base-
line should be wide enough to overcome the depth constraint. However, in direct
methods, due to the photometric consistency, the baseline of the correspondences
is restricted to some extent. That limits the tracking accuracy, and therefore, the
model of the direct method should be designed perfectly in order to sustain the
tracking robustness. On the other hand, in in-direct methods, extracted features
could be matched in wider baselines and from different perspectives. That is the
one advantage of the in-direct methods over the direct methods.

Moreover, in terms of the error calculation part of the process, in-direct methods are
more computationally efficient thanks to it only operates on the extracted features.
On the other hand, in terms of the error minimization and the accuracy, with bundle
adjustment applied on the indirect methods, results are close as it is in the direct
methods.

2.1.5 Fusion Methods

Another aspect of deciding in VIO algorithm is whether the built the structure
upon tightly or loosely coupled fashion. Typically there are two main parts that
the fusion of the sensor output could be used in the calculation of the state vector.
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The first part is the initialization of the visual-inertial navigation algorithm, which
bootstraps the system with estimating the initial parameters. The second part is
the visual-inertial loop of the system.

In loosely coupled fusion, the pose of the platform is estimated with both camera
and IMU measurements separately, and at the end, fusion is applied to their es-
timation. In a loosely coupled approach, fusing visual and inertial information is
not considered in the raw data level; this makes the system incapable of correcting
the drifts in vision only pose estimation. On the other hand, in the tightly coupled
approach, raw measurements of the camera and IMU are used together to estimate
the platform’s position. The tightly coupled approach needs more computational
power than loosely coupled fusion, but it is more accurate than the loosely coupled
approach.

In literature, another naming convention for those two fusion methods are joint
and disjoint approaches. Joint approaches stand for the tightly coupled fashion,
and the disjoint approach stands for the loosely coupled fashion. As described in
the Zubizarreta et al. (2020), in joint methods, the inertial and visual residual are
used together in the MAP estimation. On the other hand, in disjoint methods,
inertial and visual residuals are not using in the same maximum-a-posteriori(MAP)
estimation.

2.1.6 Additional Properties

Additionally, visual-inertial navigation systems could have some properties which
enhance the visual-inertial odometry and slam system’s accuracy and robustness.
Firstly, there is loop closure in the structure. Loop closure means that when the
platform becomes the same position as one of the older states, it detects the state
and optimizes the whole path.

Moreover, in the data association part, different algorithms using different key-frame
selection constraints. Running the algorithm with the key-frames makes it efficient
without crucial information from missing frames. Therefore the key-frames should
be selected carefully in order not to miss information from elected frames as non-
key-frame. Typically, algorithms calculate how much the current frame is essential
with calculating the parallax and the number of different features in that frame.
Moreover, there are threshold values for both feature count and the parallax, which
vary between applications and environments. For instance, if the number of different
features exceeds a stated threshold, then that means there is no need to consider
this frame as a new frame. That helps us to prevent storing unnecessary data.
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Another issue is about the visual-inertial odometry and slam algorithm is being
online or offline. In the offline approach, the optimization process runs after the
whole data association is completed. On the other hand, in the online approach,
data association and optimization are processed in the same frame in nearly real-
time.

2.2 VISUAL STRUCTURE

In this chapter, modules of the visual structure in visual inertial SLAM system are
discussed. Overall system is named as structure from motion in the literature. Name
itself describes the system where structure defines the map of the environment and
"from the motion" tells that the environment is built by the motion. There are also
vision modules discussed in structure from motion as PnP, tirangulation, epipolar
geometry, feature extraction and matching, feature tracking methods as optical flow
and descriptor matching.

2.2.1 Structure from Motion

Structure from motion describes the whole visual structure used in the visual-inertial
systems. The input in the structure from motion is the image key-frames, and the
output of that processed key-frames are rotation, and up-to-scale translation of the
camera poses with respect to the reference frame. In all three studies that are the
main focus of this thesis, Qin et al. (2017), Campos et al. (2020), and Rosinol et al.
(2020) based on sliding windows based processing in their visual structures. There
are differences in terms of the methods applied in the sections of the structure of
motion, which will be discussed in the related sections below.

2.2.1.1 PnP

The perspective-n-point algorithm is used to determine the pose of the camera us-
ing the 3D locations of the landmarks in the environment. The input in the PnP
algorithm is the 3D location of the landmarks and the related 2D feature locations
in the respective image frame. By using these two pieces of information, the pose of
the camera with respect to the reference frame could be calculated. The minimum
required point quantity is 3 in the PnP algorithm, but the PnP algorithm gave four
solutions with three points. In order to find a unique correct solution among those
four solutions, one or more additional feature points are needed. In Qin et al. (2017),
P3P is used in the visual front end part.
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2.2.1.2 Triangulation

The triangulation method is used to determine the 3D locations of the landmarks
related to the corresponded features in two frames. In triangulation, the relative
transformation between those two frames should be known to calculate the 3D lo-
cations of the landmarks in the environment with respect to the frame taken as
the reference. Moreover, the camera matrices need to be known to calculate the
rays from camera projection center to the related correspondence point. Intersec-
tion of those rays from two different views resulted in the 3D location of the related
correspondence point.

In triangulation, the calculated locations of the landmarks are calculated in the
respected reference image frame. In order to get the position of the landmarks
in the world frame, the transformation between the world frame and the reference
image frame should be known.

2.2.1.3 Fundametal Matrix - Epipolar Geometry

In structure from motion, there is a need to know the relative orientation of the
frames with respect to each other in order to calculate the pose of the camera with
respect to the reference image frame or at the end world frame. Several approaches
are used to get the relative transformation between the consecutive frames in the
sliding window in visual-inertial systems. Those approaches are based on the epipo-
lar geometry in computer vision which contains the fundamental matrix, essential
matrix, and homography matrix calculations. The selection between those matrix
calculations is based on the environment observed and the algorithm’s structure. For
instance, if the observed scene is mostly planar, the homography matrix could be
selected to be calculated to get the relative transformation between the consecutive
frames. On the other hand, if the observed scene is mostly non-planar, the funda-
mental or essential matrix is calculated to get the relative transformation between
consecutive frames.

There are different methods to calculate the fundamental and homography matrix.
Essential and fundamental matrices are convertible to each other with knowing the
calibration matrix of the camera. In order to find the unique fundamental matrix,
there are at least 8 point correspondences needed to be known in consecutive frames.
The fundamental matrix is a 3x3 matrix that contains nine elements, but the last
element came as an up-to-scale parameter and is stated as one. Then for the rest of
the eight elements, there are eight unknowns in the matrix. Therefore there are at
least eight equations needed to solve that eight unknowns. Those equations are built
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upon the epipolar geometry constraints with known point correspondences between
the consecutive frames. In epipolar geometry, coplanarity constraint is considered
to build those equations in calculating the fundamental matrix. In coplanarity
constraint, it is assumed that the three vectors, which are the first camera to the
correspondent point, the second camera to the correspondent point, and the vector
between the two cameras called baseline vector, shape a planar surface. There is
a theorem saying that if three vector builds a planar surface, their triple product
should be equal to zero. Hartley & Zisserman (2003)

For the homography matrix case, where the corresponding points are assumed to
lie on the same planar surface, at least 4 points are known to solve the homog-
raphy matrix unknown elements. The homography matrix is the same size as the
fundamental matrix, which is 3x3 and contains nine elements. Same with the funda-
mental matrix, the last element of the homography matrix is set as the up-to-scale
parameter as 1. Therefore again, there are eight unknowns to be solved in order
to get to the homography matrix. The constraint of being on the same plane for
the corresponding points, each correspondent point has two constraints in the x and
y-direction. Therefore, 4 points have eight constraints to build eight different equa-
tions. By using the homography matrix, feature correspondences between related
frames could be found. The 2D location of a point in the first frame multiplied
with the homography matrix calculated between those two frames; the result of this
equation is expected to equal its corresponding 2D location in the second frame.

2.2.1.4 Feature Extraction and Tracking

Feature extraction and feature tracking are two of the main essential parts of the
visual and visual-inertial SLAM. The success of the structure from the motion al-
gorithm is based on the accurate feature correspondences between the respected
key-frames. Therefore, in terms of feature extraction, features should be extracted
consistently and accurately. Another important point about the features is the
uniqueness. In order to match the extracted features, their descriptors should be
unique among themselves. Moreover, for a single point, its descriptors ideally ex-
pected to be same in images that taken from different point of views.

In terms of the accuracy of the feature tracking between the related frames, it is
very important to match the features correctly. Moreover, in order not to lose the
track, tracking should be stable in different conditions such as fast movements and
different distances between the key-frames. In recent studies about visual-inertial
SLAM systems, optical flow and descriptor matching methods are the most popular
methods that are used in feature tracking. Both methods will be discussed in the
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following sections respectively.

In terms of the features that extracted from the frames, the recent studies on visual-
inertial SLAM systems mostly used hand-crafted features such as, shi-Tomasi, orb
Rublee et al. (2011) which is faster and computationally more efficient than SIFT
Lowe (2004), and harris corners. On the other hand, recent studies on feature
extraction methods mostly focused on the deep learning based methods. In terms of
the computational efficiency most of them are more computationally heavy than the
handcrafted methods. But in terms of the accuracy and robustness to the viewpoint
changes, learning based methods are more accurate Jin et al. (2020). One of the
most popular feature extractor from the Magic Leap company is the Superpoint.
Revaud et al. (2019)

In image matching challenge that CVPR presented in 2020 Trulls et al. (2020),
for the restricted keypoint section where they have tested with 2k features, as a
handcrafted feature descriptor SIFT resulted in with NI(number of inliers) 76.84
and mAA(mean average accuracy) as 0.366 . On the other hand, in the same
section, the mentioned learning based feature descriptor SuperPoint resulted with
NI-441 and mAA-0.681 . There could be some restrictions in learning based feature
extractors. For instance without manipulation, SuperPoint could handle at most 2k
features in the image. On the other hand, for instance for Revaud et al. (2019), it
can handle up to 8k features in the image. That shows the application properties
will be determinant to select the proper extraction method.

2.2.1.5 Optical Flow

Optical flow is using for tracking the extracted features or directly the pixels through
the consecutive frames. Optical flow methods could be separated as sparse and
dense. In sparse optical flow, tracking is upon the windows on the image, system
tracks the given features with specific pixel locations in the image. On the other
hand, in dense optical flow, the flow of the all pixels are calculated at the end of
the process. Dense methods are more accurate in tracking, but the processing time
is not suitable for real-time in high complexity applications such as SLAM systems.
In most of the visual SLAM systems in the literature, sparse optical flow is used
as a feature tracking method. But in near feature, with the development of the
processors and GPUs, sparse optical flow algorithms would be replaced by learning
based dense optical flow algorithms.

Other than directly using optical flow for feature tracking, dense optical flow meth-
ods can be used to extract the relative depth map of the objects from the image.
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Especially, recent learning-based dense optical flow studies such as RAFT Teed &
Deng (2020), the flow calculated very accurately, and the object’s masks in the im-
age can be extracted in detail. That flow maps can be used to solve the occlusion
by using dense flow algorithm to extract object masks in the specific applications.

In terms of the SLAM applications, KLT sparse optical flow algorithm Lucas &
Kanade (1981) is very popular among recent studies. VINS-MONO and Kimera are
using KLT Optical flow algorithm to track the features between the frames.

2.2.1.6 Descriptor Matching

One of the methods that used to find the correspondent features between the corre-
sponding frames is descriptor matching. In Campos et al. (2020), instead of optical
flow as in Qin et al. (2017) and Rosinol et al. (2020), features tracked with descriptor
matching method where the features are ORB features.

In the descriptors matching method, each extracted feature has its description array
calculated with various methods. Most of the handcrafted methods used the neigh-
bour pixels to calculate the descriptor for an exact point in the image. One of the
recent works, called Superpoint DeTone et al. (2018), is one of the learning-based
descriptors with 256 length float array as descriptors of one feature point. It is very
robust in different environmental conditions, illumination changes and the viewpoint
changes. It resulted better than SIFT in terms of the viewpoint changes, and better
than FAST in terms of illumination changes as indicated in the SuperPoint paper
DeTone et al. (2018). In Jin et al. (2020), it is stated that in terms of the number
of inliers in handcrafted feature extraction methods are mostly higher than the av-
erage, but in terms of the mAA(mean average accuracy), mostly, the results are not
high as the learning based methods.

The step of matching those calculated descriptors is kindly based on finding the
similarities between the descriptors. Other than traditional methods to find the
similarities between the descriptor array, recently, there are learning-based works
which are not only considering the visual descriptor of the point. One of the robust
learning-based feature matching methods is SuperGlue Sarlin et al. (2019) where
points are evaluated as both in visual descriptors and their spatial appearance in
the image frame. Moreover, another way that trying to be improved in feature
matching in recent studies is the efficiency. The data getting enormously huge and
the matching systems should handle this data in near real time for most of the ap-
plications. One of the most popular work in terms of the accuracy and the efficiency
to find the similarities between the sequences in work from the Facebook Research
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Group, which is called Faiss Johnson, Douze & Jégou (2017) . It is described as
finding similarities between million sized arrays for the algorithm and it can work
both on CPU and GPU.

2.3 INERTIAL STRUCTURE

In this chapter, inertial structure of the visual inertial SLAM is discussed. The main
focus is IMU-preintegration which briefly synchronize IMU data with the camera
data.

2.3.1 IMU-PREINTEGRATION

In both VINS-MONO and ORB-SLAM3, the same approach is applied in the inertial
integration as a pre-processing part in the VINS systems. In both algorithms, IMU
pre-integration method explained in the Forster et al. (2015) used to integrate the
inertial measurements between the time period of taking two consecutive image
frames.

The rational behind the IMU pre-integration is that the inertial sensor’s data collec-
tion frequency is much greater than the camera sensor, there is a need to preintegrate
those sensor readings between two selected key-frames from the camera sensor. Pre-
integrating those inertial sensor readings between two consecutive selected camera
frames becomes a single relative transformation constraint used in visual-inertial
alignment in the VINS.

2.4 VISUAL INERTIAL FUSION

In this chapter, two methods, tightly and loosely coupled fusion, that used in fusing
inertial and visual data in the visual inertial SLAM structure are discussed.

2.4.1 Tightly - Loosely Coupled Visual-Inertial Fusion

Tightly and loosely coupled fusion methods are most common visual inertial data
fusion approaches in the literature. In tightly coupled fusion, as it is described in
Figure 2.1 inertial and the visual data are fused in feature level.
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On the other hand, as modeled in Figure 2.2, in loosely coupled fusion of the visual
and the inertial data; position and orientation are estimated separately with visual
and inertial data. At the end respected position and the orientation estimations are
fused.
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Figure 2.2 Loosely-Coupled Fusion
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3. VISUAL-INERTIAL SLAM SYSTEM

In chapter 2 visual-inertial system configurations and the rationale behind those
configurations are discussed. In this section, those configurations will be discussed
in detail upon recent state of the art studies Qin et al. (2017), Campos et al. (2020)
and Rosinol et al. (2020). Throughout the section, mathematical approaches to both
visual and inertial structures and the fusion methods used in those studies will be
discussed. The discussion will be made on the different and common approaches
that those studies have in different sections of the visual-inertial slam structures.

As standard, visual-inertial slam structure starts with an initialization procedure,
which bootstraps the whole visual-inertial system to estimate the system’s initial pa-
rameters. This thesis is based on investigating the monocular camera-based visual-
inertial systems, which means there is a need to estimate the scale parameter in the
visual side of the system. In the initialization procedure, together with the scale
parameter, different parameters are estimated.

After successful initialization of the system parameters, the system continues in
the loop called tightly or loosely coupled visual-inertial system based on the MAP
estimation. Based on the used fusion structure, which is tightly or loosely, visual
and the inertial residuals are combined in the cost function, which will be solved as
a minimization problem for each iteration.

In Figure 3.1, visual and inertial pipelines of the visual inertial SLAM systems are
represented separately by given the details about the inputs and the outputs of each
module. Moreover, in each module examples about the methods of each module
from literature are also given.
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3.1 Inertial Measurements

In VINS, the IMU sensor readings are integrated for time period between two visual
frames. This method is called IMU-preintegration. In IMU pre-integration, velocity,
position, rotation changes of the IMU frame are calculated between the time interval
of taking two consecutive visual frames. The quaternion-based IMU pre-integration
is explained in detail and published in Shen et al. (2015). The acceleration and
angular velocity calculation using raw gyroscope and accelerometer measurements
are defined as:

â= at+ bat +Rawg
w +na (3.1a)

ŵ = wt+ bwt +nw (3.1b)

Where â is accelerometer measurement and the ŵ is the gyroscope measurement. ba,
bw terms represents the bias and the na, nb represents the noise for both accelerom-
eter and the gyroscope. Noises are stated as Gaussian white noise na ~ N(0,σ2),
nw ~ N(0,σ2). And derivative of respective noises are stated as the biases.

In the pre-integration part Forster et al. (2015), briefly, the position, velocity, and
rotation differences between two consecutive frames are calculated as follows:

αbk
bk+1

=
∫ ∫ tk+1

tk
Rbk
t (ât− bat)dt2 (3.2a)

βbk
bk+1

=
∫ tk+1

tk
Rbk
t (ât− bat)dt (3.2b)

γbk
bk+1

=
∫ tk+1

tk
1/2Ω(ŵt− bwt)γ

bk
t dt (3.2c)

In order to find the position difference between two consecutive frames, in equation
3.2a double integration applied to calculated acceleration from raw accelerometer
measurement and the bias and noises. α represents the position change in the time
interval between two consecutive poses. In the same way, in equation 3.2b and 3.2c
Qin et al. (2017), single integration applied to both acceleration and the angular
velocity to calculate the velocity and rotation difference represented with β and γ
respectively. The accelerometer and gyroscope measurements are integrated with
the time interval of the two consecutive image frames taken from the monocular
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camera.

3.2 Visual Measurements

The system uses both the visual and inertial measurements in order to get the rela-
tive orientation and location of the consecutive frames in the pose graph. Initially,
there is no information about the world frame; therefore, c0, the camera frame while
taking the first image, is stated as the reference frame for the estimator initialization.
The system is highly non-linear; therefore, the initialization of the parameters plays
a significant role in the system’s robustness. Those parameters are the velocities of
the body frame while taking the respective image frames, gravity vector and scale
coefficient. In order to estimate those parameters, after obtaining the inertial and
visual measurements, visual-inertial alignment is applied.

In obtaining the visual measurements, SfM(structure from motion) is proposed. As
an outcome of the SfM, the relative orientation of the poses while taking the cor-
responding image frames is obtained. However, the scale coefficient could not be
obtained through SfM. It is extracted from the visual-inertial alignment. In the SfM
structure, the correspondent features of two consecutive frames are initially found
with the KLT sparse optical flow algorithm. The relative orientation and transla-
tion between two consecutive keyframes are obtained with a five-point algorithm
upon those correspondent points. After that, triangulation is applied to the feature
detected on those two frames. The outcome of triangulation 3D locations of the
features points obtained with respect to the camera coordinate frame. With known
3D locations of the features, with the P3P algorithm (perspective 3 points), the
orientations and the locations of the individual poses of the frame could be obtained
for the rest of the frames that observe the same set of features. In the end, bundle
adjustment applied to minimize the reprojection error in all poses in the pose graph.
This structure gives the initial estimation of the orientations and locations of the
nodes in the pose graph. Based on this initial estimation of the poses, the system
continues with the visual-inertial fusion.

qc0
bk

= qc0
ck
⊗ (qbc)−1 (3.3a)

sp̄c0
bk

= p̄c0
ck
⊗Rc0

bk
pbc (3.3b)
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In equations 3.3a and 3.3b Qin et al. (2017), where qbc and pbc are rotation and
translation from camera frame to body frame, those matrices are fixed due to the
rigid design of the platform. The connection between the IMU(body frame) and
the camera is fixed. s represents the scale coefficient that will be obtained from the
visual-inertial alignment. qc0

ck
and p̄c0

ck
are obtained from the SfM. They are used to

obtain translation and rotation from the current body frame to the initial camera
frame.

3.3 Visual-Inertial Alignment

In visual-inertial alignment, the gyroscope bias is calibrated, and the parameter
vector is estimated. The parameter vector contains the velocities in the body frame
while taking the corresponding images, gravity vector, and scale coefficient. Both
gyroscope bias calibration and parameter vector estimation are solved with fusing
visual and inertial measurements.

For the gyroscope bias calibration, relative rotation obtained from the SfM and the
rotation difference γ obtained from the IMU preintegration are used to estimate
the gyroscope bias. They are used in the cost function described below in equation
3.4a Qin et al. (2017). The expected norm of this quaternion tensor product is 1.
Therefore tensor product solved as minimization problem to find the change in the
bias. After the gyroscope bias is found, the rotation difference γ linearized with
found gyroscope bias by multiplying it with its Jacobian 3.4b Qin et al. (2017).

min
δbw

∑
k∈B
‖(qc0

bk+1
)−1⊗ qc0

bk
⊗γbk

bk+1
||2 (3.4a)

γbk
bk+1
≈ (γ̂)bk

bk+1
⊗

 1
1
2(J)γbw

δbw

 (3.4b)

Using the new estimated gyroscope bias, the α, β and γ values are calculated again
as in the preintegration equations 3.2a, 3.2b and 3.2c.

For the state vector, in other words, parameter vector, the position, velocity, and
rotation difference are calculated with the obtained relative orientation vectors from
the SfM. Then minimization problem structured by subtracting the position, veloc-
ity, orientation values obtained from IMU preintegration and calculated values with
SfM outcomes as in equation 3.5b and 3.5c Qin et al. (2017). This linear minimiza-
tion problem is solved for the parameter vector. Initial parameter vector is stated
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in 3.5a Qin et al. (2017).

XI =
[
vb0
b0
, ...,gc0 , s

]
(3.5a)

αbk
bk+1

=Rbk
c0 (s(p̄c0

bk+1
− p̄c0

bk
) + 1

2g
c0∆tk2−Rc0

bk
vbk
bk

∆tk) (3.5b)

βbk
bk+1

=Rbk
c0 (Rc0

bk+1
v
bk+1
bk+1

+gc0∆tk−Rc0
bk
vbk
bk

) (3.5c)

Ẑbk
bk+1

=
 αbk

bk+1

βbk
bk+1

= Hbk
bk+1

XI +nbk
bk+1

(3.5d)

min
XI

∑
k∈B
||Ẑbk

bk+1
−Hbk

bk+1
XI ||2 (3.5e)

Position and velocity change in between two consecutive frames are calculated in
equations 3.5b and 3.5c Qin et al. (2017) respectively with the rotations and transla-
tions from SfM. Ẑ vector contains the position and velocity change calculated from
the IMU pre-integration equations. The expectation is both calculations to give
the same results and at the and their subtraction is equal to 0 in zero noise, drift
case. Therefore minimizing equation 3.5e Qin et al. (2017) gives us the estimation
of elements of initial parameter vector XI .

3.3.1 Initialization In VINS and ORB-SLAM3

In order to determine the state vector before the estimator process of the VINS,
the initialization process plays a crucial role in bootstrapping the VINS. In the
initialization process, the velocity, direction of the gravity vector, sensor biases are
aimed to be stated. Based on this state vector, world frame also stated as an outcome
of the initialization process.

In Vins-Mono Qin et al. (2017), the state vector contains the direction of the gravity,
the velocity of the body frames in consecutive time stamps, and IMU biases. The
initialization procedure is based on loosely coupled sensor fusion of the monocular
camera and the IMU. Linear least square function formulated based on Newton kine-
matics and minimization problem solved for the state vector with the Gauss-Newton
method. The fundamental matrix approach is used to get the relative transformation
between two consecutive frames in the vision part. In order to determine individual
poses in the current sliding windows, triangulation followed by the PnP method is
applied. The vision process and linear cost function for VINS-MONO are mentioned
in previous reports; therefore, it is not described in that report in detail.

In ORB-SLAM3 Campos et al. (2020), similar to the VINS-MONO, the initializa-
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tion procedure is based on formulating a linear cost function to determine the state
vector. Unlike the VINS-MONO, in ORB-SLAM3, they are not using the funda-
mental matrix approach to get the relative transformation between the consecutive
images in the fixed sliding window. Their novel approach has the mechanism to
determine whether the environment for initialization is proper for homography or
fundamental matrix. In a different thread, with using the 8-point algorithm and
DLT for fundamental matrix and homography, respectively. As a result of those
algorithms, the score is calculated to decide which one to use in the initialization.
It is called automatic initialization procedure in their past work Burri et al. (2016).

xc =Hcrxr (3.6a)

xTc Fcrxr = 0 (3.6b)

In equation 3.6a and 3.6b Campos et al. (2020) F and H represents the fundamental
and homography matrix that calculated in the automatic initialization procedure in
ORB-SLAM3 Campos et al. (2020).

SH,F =
∑
i

(pM (d2
cr(xic,xir,M)) +pM (d2

rc(xic,xir,M))) (3.7)

In equation 3.7 Campos et al. (2020) d2
cr and d2

rc are symmetric transfer errors
between corresponding frames. SH and SF represent the score values for the ho-
mography and fundamental matrix. Indices c and r represents the corresponded
frames in the window.

RH = SH
SH +SF

(3.8)

In the automatic map initialization model, selection of whether homography or
fundamental matrix made by checking the R H value that calculated in equation 3.8
Campos et al. (2020). RH value is calculated in equation 3.8 with the score values
of the homography and fundamental matrices which calculated in the equation 3.7.
In the decision model, if the computed RH value is bigger than 0.45, then the
homography approach is used because it means that the scene is planar, nearly
planar, or low texture or low parallax. In contrast, if the RH value is calculated as
smaller than 0.45, then it means that there is enough parallax. In that case, the
fundamental approach gives better results.
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In real-world tests of the VINS-MONO, I observed that the estimator could not be
initialized due to a low parallax issue in the observed environment. The lack of
compatibility to the planar or low parallax scenes of the VINS-MONO algorithm in
the initialization, based only on the fundamental matrix, 5-point algorithm, prevents
the algorithm estimator from accurately initialized. On the other hand, thanks to
the ORB-SLAM3 algorithm’s automatic map initialization model, which decides
whether to use homography or fundamental matrix according to the environment,
it resolves low parallax by selecting using homography in such planar environments.
In the next step ORB-SLAM3 aimed to test with the same bag file which used to
be tested the VINS-MONO.

3.4 Tightly Coupled Monocular Visual Inertial Odometry

Tightly coupled monocular VIO is based on the non-linear minimization problem
where it is modeled in Figure 3.2. The structure is similar to the estimator initial-
ization part. The state vector contains the IMU states, rotation and translation
between camera and IMU frame, the inverse distance of the last observation of a
specific feature, and its first observation. The state vector is estimated by minimiz-
ing the sum of the prior, visual measurement residual and the inertial measurement
residual.

Visual
Residuals

Inertial
Residuals

Cost Function

Prior

Optimized
Pose Graph

Formulation of
reprojection errors

of features

Figure 3.2 Tightly-Coupled Fusion

The visual measurement residual is obtained by calculating the feature location
from its first observation to current observation—this calculation is made with the
rotation and translation matrices obtained from SfM. For instance, the ith feature
initially observed in frame k, and the current frame is j. The rotation and translation
from kth frame to jth frame applied to that feature location in kth frame to find
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its location in jth frame. After the location is estimated via this described method,
residual is found by subtracting this estimated location from the observed ith feature
location in jth frame.

rC(Ẑcj

l ,X) =
[
b1 b2

]T
.

(
ˆ̄P cj

l −
P
cj

l

||P cj

l ||

)
(3.9a)

ˆ̄P cj

l = π−1
c

 û
cj

l

v̂
cj

l

 (3.9b)

P
cj

l =Rcb

Rbj
w

Rwbi

Rbc 1
λl
π−1

 ûci
l

v̂ci
l

+pbc

+pwbi
− rwbj

−pbc
 (3.9c)

λl represents the inverse distance of the feature l from its first observation to its
current observation. π is the back projection from pixel coordinates. Equation 3.9c
Qin et al. (2017) calculates the translation of feature l from its initial observation to
the current frame j with translations and rotations obtained from SfM. The inertial
measurements are obtained by subtracting the estimated position, velocity, and
rotation differences from relative orientations obtained by the SfM from the observed
values taken from the IMU preintegration process. The equations are similar as they
are in the estimator initialization part. Equation 3.9a Qin et al. (2017) states the
visual measurement residual which calculated with subtracting the projected feature
that calculated in 3.9c from observed feature location obtained from equation 3.9b
Qin et al. (2017).

rB(Ẑbk
bk+1

,X) =



δαbk
bk+1

δβbk
bk+1

δθbk
bk+1

δba

δbg


=



Rbk
bk+1

(
pwbk+1

−pwbk
+ 1

2g
w∆t2k−vwbk

∆tk
)
− α̂bk

bk+1

Rbk
w

(
vwbk+1

+gw∆tk−vwbk

)
− β̂bk

bk+1

2
[
qw

−1
bk
⊗ qwbk+1

⊗ (γ̂bk
bk+1

)−1
]
xyz

babk+1− babk

bwbk+1− bwbk


(3.10a)

Where rB stated the inertial measurement residual. After both inertial and vi-
sual measurement residuals are calculated, they are solved together in a non-linear
minimization problem to find the state vector X.

X = [x0,x1, . . . ,xn,x
b
c,λ0, . . . ,λm] (3.11)

27



Where x is the IMU states and the λ is the inverse distance from the lth feature first
observation to the location in current observation. m is the number of the features,
and the n is the number of the pose states.

3.5 Marginalization

The marginalization procedure is applied to increase the efficiency of the algorithm.
Increasing the efficiency is directly related to how the algorithm becomes closer
to run in real-time. In such applications, real-time feedback to the platform con-
troller is very crucial in autonomous systems. In this work, there are two cases of
marginalization. If the previous keyframe’s previous frame is keyframe, then the
initial keyframe of the measurements of the sliding windows removed and becomes
prior. On the other hand, if the previous frame of the latest keyframe is not a
keyframe, its visual measurements are removed, but IMU measurements are still
kept. Because IMU measurements are continuous in time intervals, they should be
considered in the algorithm if the frame is not counted as a keyframe.

3.6 Dynamic Object Elimination in SfM and Fundamental Matrix

In this chapter, dynamic object elimination approach in visual SLAM is discussed.
Initially points that extracted from the dynamic object is eliminated. In the scope
of this thesis, candidate dynamic object stated as human. In further studies these
candidates would be increased by training more objects in Yolo Bochkovskiy et al.
(2020). Results are also validated with the fundamental matrix calculation upon
the correspondence points.

3.6.1 Dynamic Object Elimination

In order to increase the robustness of the visual-inertial slam system, dynamic ob-
jects are aimed to eliminate from the scene. Elimination is described as eliminating
the detected features on the dynamic objects in the current image frame. Those
eliminated features are not considered in the feature correspondences while calcu-
lating the fundamental matrix.

In the initial design of this project, humans and animals in the environment are
counted as dynamic objects. For further versions, the variety of the objects could
be extended. In order to keep the efficiency of the algorithm to process in near
real-time, the dynamic objects that have the low possibility of being in the daily
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environments are not considered in this project.

YoLo Bochkovskiy et al. (2020) framework is used to detect the dynamic objects in
the environment. As an output of the YoLo framework, the bounding boxes of the
detected objects are given. Based on those bounding boxes’ coordinates, the features
detected by the harris corner detector labeled as to whether they are locating in one
of those bounding boxes or not. The features that stay inside of those bounding
boxes are not considered. The fundamental matrix is calculated with the rest of the
features that have correspondences with consecutive frames.

Figure 3.3 YoLo framework output for a single frame

Illustration 3.3 shows the output of the YoLo framework with a pre-trained network
and weighs as parameters to the object detection. For further steps, in order to
detect the custom desired objects, a custom network could be designed to get the
weights to detect those objects. As mentioned, the animals and the humans are
counted as the dynamic objects at first hand in this project. Therefore the bounding
box coordinates of the humans in this specific single frame scene are taken as an
output from the YoLo framework. For this specific frame, the YoLo output for
bounding boxes are shown below:
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Table 3.1 Detection Output

Type Output

person 81% (leftx : 155topy : 169width : 35height : 66)
person 96% (leftx : 163topy : 127width : 15height : 43)
car 90% (leftx : 209topy : 103width : 50height : 43)
car 95% (leftx : 211topy : 82width : 34height : 27)
car 99% (leftx : 225topy : 126width : 50height : 42)
truck 82% (leftx : 259topy : 76width : 50height : 48)
car 34% (leftx : 260topy : 79width : 48height : 45)
car 99% (leftx : 296topy : 189width : 99height : 74)
person 60% (leftx : 315topy : 200width : 19height : 12)
car 85% (leftx : 322topy : 83width : 38height : 27)
car 89% (leftx : 365topy : 86width : 36height : 25)

Figure 3.4 Detected Harris Corners Before Elimination

Figure 3.4 shows the extracted Harris features without eliminating the features
detected on dynamic objects (human or animal).
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Figure 3.5 Detected Harris Corners After Elimination

Illustration 3.5 shows the Harris features after eliminating the features detected on
dynamic objects.

After obtaining the final set of harris features, the KLT feature tracker was applied
to track those features on the consecutive image frames. To find the relative orien-
tation and up to scale translation between those consecutive frames, one approach
is using a fundamental matrix. In this report, I have focused on the fundamental
matrix where the cameras are not calibrated. The fundamental matrix is calculated
based on the correspondences from two consecutive frames. After calculating the
fundamental matrix, the calculated fundamental matrix is also verified with those
correspondent features. This verification is made by multiplying the vectors from
image coordinates to specific feature points on the world frame with the baseline
vector. This multiplication should give ‘0′ because of the coplanarity constraint.
There are 3 vectors extracted that make a planar surface, and their triple scalar
product should be 0 in theory. Two of those vectors are vectors from the camera
projection centers to the corresponding point in the world frame, and the third is
between the camera projection centers. Direction vectors are represented as;

nx′ = (R′)−1(K ′)−1x′ (3.12)

Where nx′ is the normalized direction vector, R is the rotation, and K is the calibra-
tion matrix of the first camera. x′ is the image coordinates of the correspondence
point in the first frame. In the same way, the normalized direction vector of the sec-
ond camera is extracted. Those two vectors are the two elements of the mentioned
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triple scalar product which will be equal to 0 because of the coplanarity constraint.

b=X ′−X ′′ (3.13)

Where b is the baseline between the camera projection centers. X ′, X ′′ represents
the camera projection centers of two cameras that took the corresponding frames.
b vector is the final element of the triple scalar product that makes a planar surface
with the normalized direction vectors. Then, according to the coplanarity constraint;

[nx′bnx′′] = nx′.(b×nx′′) = nx′TSb
nx′′ = 0 (3.14)

When we put the equation for normalized direction in the equation 3.12 into the
equation 3.14, the fundamental matrix could be found as,

F = (K ′)−TR′SbR′′T (K ′′)−1 (3.15)

Where K, K are calibration matrices of the cameras. In the fundamental matrix
approach, the cameras are not calibrated, and in my case, both calibration matrices
are equal because we are using the same camera to capture all frames. R, R are the
rotation vectors from the corresponding camera projection center to the 3D feature
point in the world frame. Finally, Sb represents the baseline vector from the first
camera projection center to the second one.

To verify the results with the calculated fundamental matrix, I have initially con-
verted the corresponding point sets into a homogeneous coordinate system. After
that, I have multiplied the transpose of the respected correspondence point from the
first frame with the fundamental matrix that I have found. After that, I have mul-
tiplied this resulted matrix with the respected correspondence point in the second
frame. I have checked the results whether they are close to ‘0′ or not. I observed
that the equation gave me numbers very close to the ‘0′ for all correspondence
points in the set. The numbers below stated the results of the multiplication for
correspondence points in the set.

(x1)TFx2 = 0 (3.16)

Where x1 and x2 represent corresponding image points respectively and F represents
the fundamental matrix.
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Table 3.2 Fundamental Matrix Check on Correspondence Points

x′Fx

-0.04851716756820679
-0.37185138463974
-0.2456498295068741
-0.1752408146858215
-0.2976421415805817
-0.3518350124359131
-0.4493158459663391
-0.1280926913022995
-0.1153489872813225
-0.5757604241371155
-0.3942645490169525
-0.1491507142782211
-0.2330176681280136
-0.2046927213668823
-0.231176570057869
-0.4219972193241119
0.008003597147762775

Figure 3.6 Tracked Correspondent Points with KLT Optical Flow

Illustration 3.6 shows the tracked eliminated correspondent points in two consecutive
frames from the video stream input.
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4. PROPOSED VISUAL-INERTIAL SYSTEM STRUCTURE

In this chapter, proposed end-to-end visual inertial SLAM structure is presented
and discussed in detail by each module and the relations between these modules.
General structure and the relations between the modules are also represented in
Figure 4.1

4.1 System Overview

Proposed visual inertial system divided into two main modules which are visual and
the inertial. In visual module there structure from motion system is implemented
with the keyframe selection. Detailed explanations about each module in Figure 4.1
are given in the following sections.

Figure 4.1 System Overview
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4.1.1 Visual Module

In the vision section of the structure, pose trajectory is built with respect to the
zeroth frame. Zeroth frame is set as reference frame of the system and also it directly
set as the first keyframe. Pipeline structured based on the keyframe system. By
selecting keyframes to process, it will end up with more efficient and close to real
time system.

In proposed system keyframes are selected in two steps. Initially keyframe candi-
dates are selected in a fixed time period between the frame sequence. After the
selection of the keyframe candidates, Superpoint features DeTone et al. (2018) are
extracted from each of the keyframe candidates. Extracted Superpoint features from
a candidate keyframe is represented in Figure 4.2.

Figure 4.2 Extracted Superpoint Features
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Superpoint feature extraction is configurable in terms of the uniquness of the fea-
ture, feature quantity and the nms. In the current structure Superpoint extraction
configuration is as follows; 2000 point per keyframe candidate, keypoint threshold
which describes the keypoint quality in Superpoint side set as 0.005 (bigger value is
giving more qualified points), and the nms radius is set to 2 which determined the
how much that the extracted keypoints could be close to each other in the current
frame.

The extracted keypoints are stored by their respected keyframes ids and point ids in
order to use them in further processes as triangulation and optimization. After fea-
ture extraction, by using Faiss matcher Johnson et al. (2017), consecutive keyframe
candidates’ features are matched and besed on that match, the ratio of number of
matched keypoints to the total extracted keypoints is calculated. Feature matching
with Faiss is represented in Figure 4.3.

Figure 4.3 Feature Matches with Faiss
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Considering the stated threshold which is %75 in the current pipeline, if the calcu-
lated ratio is above that threshold then that means the current candidate keyframe
are very close to the previous one and there is no need to select and process it
as keyframe. This approach is also helps to eliminate rotation only motion issues
while calculating the essential matrix in that circumstances. Poses in rotation only
motions will be evaluated as ordinary frame and the pose will calculated with the
SQPNP Terzakis & Lourakis (2020).

After the keyframe selection process, relative motion between the keyframes are
calculated. Initially, with given camera intrinsics essential matrix between the con-
secutive keyframes are calculated. In order to eliminate the outliers in the process
of calculating essential matrix, MAGSAC Barath & Matas (2018) used as a scoring
method which scores points in terms of likelihood to become an inlier. Calculated
essential matrix and the inlier points are used to get relative rotation and up-to-scale
translation by decomposing the essential matrix.

In order to keep the trajectory other than relative rotation and translation matrices,
rotation and translations with respect to the reference frame are also need to be
calculated. For the current rotation matrix, dot product of previous rotation matrix
and the current relative rotation matrix is calculated as in equation 4.1.

~curr_rot= ~rot_pre · ~relative_rot (4.1)

In the same manner, for the current translation, previous translation vector is added
to the multiplication of scale factor with the dot product of the previous rotation
vector with the current relative translation vector as shown in the equation 4.2.

~curr_t= ~t_pre+ scale_factor ∗ ( ~rot_pre · ~relative_t) (4.2)

In order to calculate relative scale directly from the vision pipeline, by setting the
zeroth frame as reference frame for calculating the relative scale, matched points be-
tween consecutive keyframes are trinangulated. Based on two seperate point clouds,
the common points are extracted and ramdomly selected point pairs 3D location
distance ratios are used for calculating the relative scale between the keyframes.
That section is really noise dependent and in order to prevent huge miscalculations
there is another step as thresholding the calculated relative scale.

In order to calculate the poses of the non-keyframe frames, 3D point cloud structure
is used. Extracting Superpoint feature for each frame is a very high cost operation,
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therefore in order to obtain features from the non-keyframe frame, points are tracked
with KLT optical flow from the closest keyframe to the current non-keyframe. As the
extracted Superpoint features are already recorded by their ids and the keyframes,
when they tracked in the optical flow which provide 2D location information of the
respected feature points. At the same time by checking the ids of those points,
3D locations of respected feature can also be obtained from the triangulated point
cloud. At the end, we have 2D-3D correcpondences of the feature in an image, the
pose of that frame is calculated with the SQPNP Terzakis & Lourakis (2020).

4.1.2 Inertial Module

The main structure of the inertial section is the IMU-Preintegration process. As
a different type of sensors, Camera and IMU differentiates in terms of the data
collection frequency. For a standard camera, the data collection frequency is around
20Hz while IMU sensor could collect data around 200Hz. In order to fuse the sensor
outputs of IMU and the camera, the collected data need to be synchronized. The
process of IMU-preintegration provides outputs from the IMU sensor in the same
frequency with the camera.

In that section GTSAM(Georgia Tech Smoothing and Mapping) library Kaess (2015)
is used. The process starts with integrating IMU acceleration and angular velocity
measurements in a loop that iterates with time diff equal to the time interval between
two consecutive IMU measurements. When it’s reached to the camera frequency,
relative transformation between initial state and the current state is predicted by
also considering the IMU biases.

For the initial calibration of the IMU, based on the dataset documentation
and the IMU specs, random white noise parameters are set as described; gyro-
scope noise density 1.6968e−04rad/s/sqrt(Hz), gyroscope random walk 1.9393e−
05rad/s2/sqrt(Hz), accelerometer noise density 2.0000e− 3m/s2/sqrt(Hz), ac-
celerometer random walk: 3.0000e−3m/s3/sqrt(Hz) .
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5. EXPERIMENTAL RESULTS

During the thesis, several different experiments are studied and reported. Proposed
visual-inertial SLAM system are tested with the Euroc MAV dataset - MH01. More-
over physical hardware are set up for real world data collection and processing those
datas with the state of the algorithms. Three main state of the art algorithms on
the visual-inertial SLAM literature are tested and compared in terms of their capa-
bilities and novelties. In addition, selected state of the art algorithms are studied
by configuring their SLAM modules by implementations and the results are also re-
ported. All those experiments are reported and discussed in the respective sections
below.

5.1 Proposed Visual-Inertial SLAM System on Euroc-MAV Dataset

Machine Hall 01 Dataset from Euroc MAV dataset is processed in the proposed
Visual-Inertial SLAM system. Trajectory output, 3DoF translation data output by
comparing it with the ground truth measurements are reported in Figures 5.1, 5.2
and 5.3.

Based on the Superpoint and Faiss matcher configurations algorithm can handle
around 30fps where the camera frequency in the Euroc dataset is collecting data at
20 fps. Efficient keyframe selection, and the GPU processes in feature extraction and
matching makes the algorithm run at that level. Moreover using only inliers in the
calculations such as SQPNP with RANSAC and calculating five point algorithm with
RANSAC make the process considerably faster, because they are iteration based
algorithms and using inliers as input to those algorithm makes the convergence time
shorter.

Overall average inlier ratio in matched features is around 0.75 with MAGSAC. On
the other hand in RANSAC implementation, the inlier ratio is more than 0.75 but
calculated essential matrix not performing well as it is in the MAGSAC implemen-
tation. This result indicates that even inlier ratio is resulted higher in the RANSAC
implementation, not all of them are real inliers.

Ground truth data of the Machine Hall 01 dataset is obtained from two devices Leica
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and Vicon. Leica is working in 20Hz and Vicon is running in 100Hz. They aligned
the measurements from Leica and Vicon to the 200Hz to make the measurement
fit with the IMU measurements. IMU running at 200Hz and stereo camera that is
used in Euroc Dataset is running at 20Hz. Therefore in order to get best fit with
the groundtruth measurements which is in 200Hz and the algorithm outputs which
is 20Hz, measurements are shifted but it is still not very accurately aligned with the
groundtruth measurements.

Algorithm tested on the Machine Hall 01 dataset where is the camera already cali-
brated with the given intrinsics.

Table 5.1 Camera Intrinsics in Euroc Mac Machine Hall Dataset

Camera Model Pinhole
Camera Intrinsics
fx 458.654
fy 457.296
cx 367.215
cy 248.375
Camera Distortion Parameters
k1 -0.28340811
k2 0.07395907
p1 0.00019359
p2 1.76187114e-05

There are 3682 images and 36383 IMU readings. Groundtruth measurements are
post processed and aligned with the frequency of IMU measurements. Therefore in
benchmarking and setting the comparison plots, groundtruth measurements aligned
with camera frequency.
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Figure 5.1 Translation X

Figure 5.2 Translation Y
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Figure 5.3 Translation Z

Figures 5.1, 5.2, 5.3 are the plots of comparison between the algorithm output and
the groundtruth trajectory. The first thing that observed from the plots is that there
is an increasing shift in the plots while it proceeds further. That may occur because
of the cumulative error in the rotation in while calculating relative motion. Other
than that there are some spikes in the plot which may occur because of the noise
in matches or not well estimated essential matrix. Optimization on the algorithm
in progress with testing more datasets. The additional results will be added to the
document.

5.2 Hardware Test Platform Setup

In order to test state-of-the-art VINS algorithms Qin et al. (2017), Rosinol et al.
(2020) and Campos et al. (2020) with manipulations in real world cases, the test
platform has built with the NVIDIA Jetson Nano, mpu 9250 IMU, and the Rasp-
berry Pi v2 camera. NVIDIA Jetson supports MIPI-CSI(Mobile Industry Processor
Interface – Camera Serial Interface) cameras as Raspberry Pi 2. In order to get the
raw data from the camera and the IMU, ROS(robot operation system) framework
is used. In ROS, two different topics for each sensor are created, which are named
as /cam and /imu, respectively. In the same way, in order to send and receive
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sensor data, two different publisher and subscribers are written which publish and
subscribe to topics /imu and /cam respectively.

In initial tests, it is observed that NVIDIA Jetson’s processing power is not sufficient
to process the VINS and visualize the output at the same time. Therefore, the
structure is adjusted with additional processing power. In the new design, publishers
run on the NVIDIA Jetson, to which the sensors are connected. On the other
hand, subscribers are run on the laptop where the NVIDIA Jetson and the laptop
connected through an ethernet network. The data reading frequency is set to 20Hz
for the camera(Raspberry Pi v2) and 100Hz for the inertial sensor(bmu9250). In
order to test the platform in an outside environment, bag files were created with
publishing IMU and camera data into it. After data collection finished, those bag
files processed offline with VINS in the laptop.

Initially camera calibrated with the algorithm Heng et al. (2013) which is built on
the papers Heng et al. (2013), Heng et al. (2014) and Heng et al. (2014). Camera
calibration output for Raspberry Pi v2 camera is given in Table 5.2

Table 5.2 Camera Intrinsics in Hardware Experiment

Camera Model Pinhole
Camera Intrinsics
fx 1.1310328085080641e+03
fy 1.2767137335706250e+03
cx 3.2866580320967523e+02
cy 2.2709250804519911e+02
Camera Distortion Parame-
ters
k1 2.4806261512816249e-01
k2 2.1941456723798769e-01
p1 -5.2838710043973868e-03
p2 -2.0383170940044690e-02

In order to read the IMU measurements, the rtimulib library [10] is used to get the
IMU data through the I2C bus. In the VINS structure, there is a fixed transforma-
tion between the IMU and the camera connected to the platform. In the designed
structure, the transformation matrix between the camera and IMU is represented in
5.4. Moreover topview of the complete hardware setup is shown in the Figure 5.5.
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IMU to Camera Transformation Matrix:

Figure 5.4 Fixed IMU-Camera Structure

Figure 5.5 Hardware Test Platform Setup
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5.2.1 Outputs

In this section, outputs of the experiments are given in detail with the evaluation
metrics. Euroc Mav dataset Machine Hall sequences are used for the evaluation.

5.2.1.1 Euroc Mav Dataset

VINS-MONO algorithm works in high accuracy in the Euroc Mav dataset. These
results are the initial observations on the public datasets and the real-world experi-
ments with built hardware.

Table 5.3 EuRoC-Mav Dataset Specifications

Dataset Year Environment Carrier Cameras IMUs Time Sync Ground Truth stat/props

EuRoC-MAV 2016 indoors MAV 1xstereogray ADIS1648 hw laser tracker 11 seqs,0.9km
2x752x480@20Hz 3-axis acc/ pos@20Hz

gyro@200Hz motioncapture
pose@100 Hz
acc 1mm

Figure 5.6 Euroc Mav - Machine Hall Dataset RVIZ Output of VINS-MONO

In Figure 5.6, green lines indicated the ground truth and the red line indicated the
estimated pose graph with the VINS-MONO algorithm.
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Evaluation Metric:

In order to evaluate the visual-inertial SLAM algorithms, absolute pose error (APE)
is calculated, and those algorithms are compared upon the calculated absolute pose
error in the trajectory of different datasets. Absolute pose error is calculated as
getting the difference between the calculated pose outcome from the visual-inertial
algorithm and the ground truth pose stored in the respected dataset. Moreover,
statistical values as mean, standard deviation, median, etc., upon calculated absolute
pose error in the respected trajectory of the dataset are also presented in the results
section below.

There are six different trajectories are evaluated with the visual-inertial algorithms
Qin et al. (2017), Campos et al. (2020) and Rosinol et al. (2020). Datasets are sep-
arated as the environments where there are two different environments the datasets
are collected, and the within those environments datasets are separated as easy,
medium, and difficult. The increase in the difficulty level of the trajectories means
more fast motions, motion blur, and quite low light conditions.

The results are presented as follows, for each environment, the trajectories are pre-
sented in figures with colored absolute pose errors in the trajectory with a respected
algorithm. Moreover, the statistical values of those trajectories and absolute pose
errors of all compared algorithms are shown in the same figure. Six different result
sets are shown as described above in sequence.

Moreover, 6 trajectory of the Machine Hall sequences in the Euroc Mav Dataset
Burri et al. (2016) are also tested with implemented configurations of the state of
the art algorithms Vins-Mono and ORB-SLAM3. In Vins-Mono in the localiza-
tion section, instead of the iterative PnP solution, more accurate solution to the
perspective-n-point problem SQPNP is implemented and evaluated. In addition, in
ORB-SLAM3 instead of the orb features, SuperPoint features are tested with the
Machine Hall sequences.
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(a) Kimera (b) ORB-SLAM3

(c) VINS-MONO

Figure 5.7 Trajectory error maps on MH01-Easy dataset in EuRoC MAV

In Figure 5.7, it can be observed that in Kimera, the trajectory in Machine Hall
01 sequence is partially estimated. Kimera’s relocalization and mapping module
is not well enough to complete the full trajectory in that sequence. ORB-SLAM3
and Vins-Mono have similar results in MH-01 sequence. Their respected APE’s are
0.075 and 0.076 for that sequence.
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(a) APE vs Time in MH01-Easy Dataset
in EuRoC MAV

(b) Histogram of APE in MH01-Easy
Dataset in EuRoC MAV

(c) Statistical Values on APE in MH01-
Easy Dataset in EuRoC MAV

(d) Box Plot on APE in MH01-Easy
Dataset in EuRoC MAV

Figure 5.8 Results: Kimera:traj_pgo, ORB_SLAM3:f_dataset, VINS-
MONO:vins_result in MH01-Easy Dataset in EuRoC MAV
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(a) Kimera (b) ORB-SLAM3

(c) VINS-MONO

Figure 5.9 Trajectory error maps on MH03-Medium dataset in EuRoC MAV

In between the sequences of the Euroc Dataset, environment gets darker and fea-
ture candidates get lower in the surfaces. Machine Hall 03 sequence stated as in
medium difficulty in terms of the environment. As it can be seen from Figure 5.10,
comparing with the results in Figure 5.8, overall APE results are increased in all
of the sequences. Moreover it can be observed from the trajectory results in Figure
5.9 that same with the MH01 results, in Kimera there are poses that couldn’t be
estimated. In terms of the overall APE by checking Figure 5.10 (b) histogram of
the APE indicates that ORB-SLAM3 overperforms the rest in that sequence.
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(a) APE vs Time in MH03-MEDIUM
Dataset in EuRoC MAV

(b) Histogram of APE in MH03-Medium
Dataset in EuRoC MAV

(c) Statistical Values on APE in MH03-
Medium Dataset in EuRoC MAV

(d) Box Plot on APE in MH03-Medium
Dataset in EuRoC MAV

Figure 5.10 Results: Kimera:traj_pgo, ORB_SLAM3:f_dataset, VINS-
MONO:vins_result in MH03-Medium Dataset in EuRoC MAV
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(a) Kimera (b) ORB-SLAM3

(c) VINS-MONO

Figure 5.11 Trajectory error maps on MH05-Difficult dataset in EuRoC MAV

Machine Hall 05 sequence is the most environmetally challenging dataset among the
Machine Hall sequences. It is also shorter than the rest. In that sequence, different
from the previous ones, Kimera could handle to estimate most of the trajectory.
ORB-SLAM3 has the the least accuracy in the trajectory. Based on the trajectory
plot in Figure 5.11 Vins-Mono seem overperforms the rest. In addition, in Figure
5.12 (a) which shows the APE error vs time, ORB-SLAM3 seems suffer from wrong
calculation about the scale and the system is not accurately initialized.

51



(a) APE vs Time in MH05-Difficult
Dataset in EuRoC MAV

(b) Histogram of APE in MH05-Difficult
Dataset in EuRoC MAV

(c) Statistical Values on APE in MH05-
Difficult Dataset in EuRoC MAV

(d) Box Plot on APE in MH05-Difficult
Dataset in EuRoC MAV

Figure 5.12 Results: Kimera:traj_pgo, ORB_SLAM3:f_dataset, VINS-
MONO:vins_result in MH05-Difficult Dataset in EuRoC MAV
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(a) Kimera (b) ORB-SLAM3

(c) VINS-MONO

Figure 5.13 Trajectory error maps on V101-Easy dataset in EuRoC MAV

Vicon Room dataset recorded in different environment than Machine Hall sequence.
In same way with the Machine Hall sequence, it gets gradually weak by visual clues
and increase in visual challenges in the environments. In Vicon Room 101 dataset,
same with the Machine Hall, Kimera is not able to estimate the whole trajectory
which can be observed directly from the trajectory plot in Figure 5.13 and APE vs
time plot in Figure 5.14 (a). Overall performance in Vicon Room 101 sequence is
slightly better than the performance than the Machine Hall 01 sequence. As it can
be observed in Figure 5.14 (c) ORB-SLAM3 has the lowest mean APE value close
to the 0.04 . On the other hand rest is above 0.04 for the Vicon Room 101 sequence.
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(a) APE vs Time in V101-Easy Dataset in
EuRoC MAV

(b) Histogram of APE in V101-Easy
Dataset in EuRoC MAV

(c) Statistical Values on APE in V101-
Easy Dataset in EuRoC MAV

(d) Box Plot on APE in V101-Easy
Dataset in EuRoC MAV

Figure 5.14 Results: Kimera:traj_pgo, ORB_SLAM3:f_dataset, VINS-
MONO:vins_result in V101-Easy Dataset in EuRoC MAV
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(a) Kimera (b) ORB-SLAM3

(c) VINS-MONO

Figure 5.15 Trajectory error maps on V102-Medium dataset in EuRoC MAV

In vicon room 102 sequence which is more difficult than the v101 sequence in terms
of the visual perception, Vins-Mono and ORB-SLAM3 overperforms Kimera in the
trajectory APE observed in Figure 5.15. In terms of the APE statistics in the
trajectory, as it’s observed in Figure 5.16 (a), Vins-Mono and ORB-SLAM3 suffers
from initialization. Even Kimera handles initialization better, for the rest of the
sequence its overall mean APE lower than rest as in 5.16 (c).
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(a) APE vs Time in V102-Medium
Dataset in EuRoC MAV

(b) Histogram of APE in V102-Medium
Dataset in EuRoC MAV

(c) Statistical Values on APE in V102-
Medium Dataset in EuRoC MAV

(d) Box Plot on APE in V102-Medium
Dataset in EuRoC MAV

Figure 5.16 Results: Kimera:traj_pgo, ORB_SLAM3:f_dataset, VINS-
MONO:vins_result in V102-Medium Dataset in EuRoC MAV
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(a) Kimera (b) ORB-SLAM3

(c) VINS-MONO

Figure 5.17 Trajectory error maps on V103-Difficult dataset in EuRoC MAV

Vicon room 103 is most difficult and longest sequence among the Vicon Room
Dataset. It can clearly observed from the trajectories with errors in Figure 5.17
that ORB-SLAM3 overperforms the rest. This is the sequence which there is the
most difference in terms of APE between the best APE with the second closest
APE in the results. ORB-SLAM3 has APE mean around 0.01 while Vins-Mono and
Kimera’s have around 0.16 in Figure 5.18 (c).
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(a) APE vs Time in V103-Difficult Dataset
in EuRoC MAV

(b) Histogram of APE in V103-Difficult
Dataset in EuRoC MAV

(c) Statistical Values on APE in V103-
Difficult Dataset in EuRoC MAV

(d) Box Plot on APE in V103-Difficult
Dataset in EuRoC MAV

Figure 5.18 Results: Kimera:traj_pgo, ORB_SLAM3:f_dataset, VINS-
MONO:vins_result in V103-Difficult Dataset in EuRoC MAV

Table 5.4 APE - RMSE

Algorithms MH01 MH03 MH05 V101 V102 V103
EASY MEDIUM DIFFICULT EASY MEDIUM DIFFICULT

VINS-MONO 0.07617 0.07890 0.13757 0.04549 0.07265 0.18138
ORB-SLAM3 0.04678 0.04564 1.28198 0.03588 0.02171 0.01966
Kimera 0.07584 0.11961 0.27756 0.05232 0.07695 0.15424
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As it can be seen from Table 5.4, in most of the sequences, ORB-SLAM3 outperforms
both Kimera and VINS-MONO. Only for the MH-05 sequence, Kimera and VINS-
MONO end up the sequence with significantly lower rmse of the absolute pose errors
by the time. The reason behind this could be the relocalization module of the ORB-
SLAM3. In ORB-SLAM3, when both camera and IMU sensors are available, short-
term relocalization is implemented as depending only on the motion model based on
the inertial data. The absence of visual data in detecting short-term relocalization
could result in possible edge cases that will not be covered.

5.2.1.2 Test Platform Experiment

The Nvidia Jetson platform tested with VINS-MONO algorithm with custom camera
intrinsics and IMU to camera rotation matrix in the Istanbul Technopark campus.
Feature tracking works properly on harris corners in the environment. However,
due to the misalignment between the IMU and the camera frequency algorithm,
the system frequently lost pose tracking. In order to solve this problem, IMU-
camera calibration should be handled for the specific combination of the hardware
structures. Below can be seen the RVIZ output screenshot from the experiment.

Table 5.5 Collected Data Information

Path technopark.bag
Experiment Location Technopark Istanbul Campus
Duration 5:09s (309s)
Size 2.1 GB
Messages 18545
Types Sensor_msgs/Image Sensor_msgs/Imu
Topics /cam 6182 msgs /imu 12363 msgs
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Figure 5.19 RVIZ screen output during real-world experiment in Istanbul Technopark

Figure 5.20 RVIZ screen output during real-world experiment in Istanbul Technopark

Using the same platform setup, indoor data is also collected by walking around the
office in Technopark building. In the same way, indoor data processed with the
Vins-Mono Qin et al. (2017) algorithm. Figure 5.19, shows the RVIZ user interface
while processing collected outdoor data. In Figure 5.20, terminal outputs that logs
the errors about the initialization and the example image that the extracted feature
points are represented. There are additional challenges for the visual perception sys-
tem when the indoor data used. It is observed that in indoor experiment extracted
features get lowered due to the low light and textureless surfaces.
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5.2.1.3 Using SQPNP in VINS-MONO

In Qin et al. (2017) PnP algorithm is used in both initialization and the visual-
inertial estimation sections. In the sliding window approach, in the initialization
section, the extracted features are tracked with the KLT optical flow algorithm be-
tween the frames in the sliding window. After that, by using the feature matches
between the consecutive frames with a known camera matrix, the essential matrix
is calculated. By decomposing the essential matrix, up to scale relative transforma-
tion between the corresponding frames is found. With known relative transformation
with respect to the reference frame, extracted features are triangulated in order to
get the 3D locations of the points. In the end, with known 2D-3D correspondences,
using the iterative PnP method, which is based on the Levenberg-Marquardt algo-
rithm Levenberg (1944), poses of the rest of the frames in the sliding window are
found.

There are cases that the iterative method does not work correctly for the pose
estimation. The most common case is for all of the points located in the same
plane in the 3D space. That results in inconsistent, non-accurate pose estimation
calculation with the PnP. In recent PnP solutions, that problem tried to be solved
with various approaches. One of the recent works about the PnP solution called
SQPNP Terzakis & Lourakis (2020) claimed to be robust in such planar cases.

In this thesis study, I have used the SQPNP instead of the iterative PnP used in the
VINS-MONO. I have compared the absolute pose error results with using different
PnP methods in VINS-MONO. In comparison, there is a parameter used about
whether to use the initial pose guess in the PnP solution or not.

In sequences V1-03 and V1-03, there are edge cases in the initialization part for the
SQPNP. It calculates jumps in the initialization. For the rest of the trajectory and
in the other sequences, SQPNP seems to outperform iterative PnP without initial
pose guess. When using initial pose guess, iterative PnP solution resulted in more
accuracy in all sequences.
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(a) APE vs Time in MH01-Easy Dataset
in EuRoC MAV

(b) Histogram of APE in MH01-Easy
Dataset in EuRoC MAV

(c) Statistical Values on APE in MH01-
Easy Dataset in EuRoC MAV

Figure 5.21 Results: SQPNP: result_loop_sqpnp, Iterative without initial guess:
result_loop_iterative_no_initial, Iterative with initial guess: result_loop in MH01-
Easy Dataset in EuRoC MAV

In Figure 5.21 (a), it can be observed when iterative perspective-n-point algorithm
used without initial guess, in initial part of trajectory pose couldn’t be estimated.
Moreover overall APE results are also higher that the method with initial guess. In
Figure 5.21 (c), mean APE results indicates that tested methods to the perspective-
n-point problem give similar results but with a slightly difference SQPNP overper-
forms iterative PnP in terms of overall accuracy in the pose estimation.
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(a) APE vs Time in MH03-Medium
Dataset in EuRoC MAV

(b) Histogram of APE in MH03-Medium
Dataset in EuRoC MAV

(c) Statistical Values on APE in MH03-
Medium Dataset in EuRoC MAV

Figure 5.22 Results: SQPNP: result_loop_sqpnp, Iterative without initial guess:
result_loop_iterative_no_initial, Iterative with initial guess: result_loop in MH03-
Medium Dataset in EuRoC MAV

In the experiment with medium difficulty sequence of the Machine Hall dataset,
iterative PnP solution without initial guess seems suffer from scale issue in most of
the parts of the trajectory. There are huge jumps in estimations shown in Figure
5.22 (a). Also in APE histogram of the experiments in Figure 5.22 (b), it can be
observed that there are pose estimation that have APE above 12. Moreover, in
terms of the overall performance, mean APE results in Figure 5.22 (c) shows that
SQPNP overperforms iterative PnP in sequence Machine Hall 03.
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(a) APE vs Time in MH05-Difficult
Dataset in EuRoC MAV

(b) Histogram of APE in MH05-Difficult
Dataset in EuRoC MAV

(c) Statistical Values on APE in MH05-
Difficult Dataset in EuRoC MAV

Figure 5.23 Results: SQPNP: result_loop_sqpnp, Iterative without initial guess:
result_loop_iterative_no_initial, Iterative with initial guess: result_loop in MH05-
Difficult Dataset in EuRoC MAV

In the most environmentally difficut conditioned Machine Hall dataset, all three
solutions to the PnP problem have the least accuracy among Machine Hall datasets.
It can be observed from the mean APE results in both Figure 5.22 (c) and Figure
5.23 (c), APE results are almost doubled in that sequence for both SQPNP and
iterative PnP. Besides that, there is not much difference between the method that
initial guess used and the method that it is not used in the PnP solution as shown
in the trajectory in Figure 5.23 (a).
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(a) APE vs Time in V101-Easy Dataset in
EuRoC MAV

(b) Histogram of APE in V101-Easy
Dataset in EuRoC MAV

(c) Statistical Values on APE in V101-
Easy Dataset in EuRoC MAV

Figure 5.24 Results: SQPNP: result_loop_sqpnp, Iterative without initial guess:
result_loop_iterative_no_initial, Iterative with initial guess: result_loop in V101-
Easy Dataset in EuRoC MAV

In vicon room 101 dataset, iterative PnP solution without initial guess has a huge
jump in the initial pose estimation as it can be observed in Figure 5.24 (a). The
reason behind this could be the solution could stuck in the local minimum. Even
the max value for the APE seems very high in Figure 5.24 (c) for that solution, the
rest of the trajectory have similar results with the SQPNP and iterative PnP with
initial guess.
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(a) APE vs Time in V102-Medium
Dataset in EuRoC MAV

(b) Histogram of APE in V102-Medium
Dataset in EuRoC MAV

(c) Statistical Values on APE in V102-
Medium Dataset in EuRoC MAV

Figure 5.25 Results: SQPNP: result_loop_sqpnp, Iterative without initial guess:
result_loop_iterative_no_initial, Iterative with initial guess: result_loop in V102-
Medium Dataset in EuRoC MAV

In vicon room 102 dataset, SQPNP implementation withhout initial guess fails in
the whole trajectory as it can be observed in Figure 5.25. SQPNP APE is around
74 while the mean of the rest is around 0.05. PnP solutions could be effected by
issues when there is feature points that only from a single plane, single line. In
that sequence there is an issue about the feature point representations that makes
SQPNP fails in total. But both iterative PnP solutions are well performed in vicon
room 102 dataset.
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(a) APE vs Time in V103-Difficult Dataset
in EuRoC MAV

(b) Histogram of APE in V103-Difficult
Dataset in EuRoC MAV

(c) Statistical Values on APE in V103-
Difficult Dataset in EuRoC MAV

Figure 5.26 Results: SQPNP: result_loop_sqpnp, Iterative without initial guess:
result_loop_iterative_no_initial, Iterative with initial guess: result_loop in V103-
Difficult Dataset in EuRoC MAV

In vicon room 103 dataset, same with the vicon room 102 dataset SQPNP fails in
the experiment. In Figure 5.26 (a), it can be observed that SQPNP failed in the
begininning of the trajectory, even the rest of the trajectory has low APE, the huge
APE in initial section effects the overall mean APE in Figure 5.26 (c). That means
overall performance of SQPNP is not that much low in that sequence, initial huge
jumps affects the statistical results.
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Table 5.6 APE - RMSE of PnP methods used in VINS-MONO

PnP Methods MH01 MH03 MH05 V101 V102 V103
EASY MEDIUM DIFFICULT EASY MEDIUM DIFFICULT

SQPNP(no initial guess) 0.075653 0.08046 0.15126 0.04630 74.19366 38.25552
Iterative PnP(no initial guess) 0.07539 0.13408 0.13436 0.21445 0.05911 0.18130
Iterative PnP(with initial guess) 0.07617 0.07890 0.13757 0.04549 0.07265 0.18138

5.2.1.4 Using Superpoint Features in ORB-SLAM

In this experiment, Superpoint features that are presented in DeTone et al. (2018)
are used instead of the ORB features in ORB-SLAM. Superpoint is one of the
recent works about learning-based interest point extractors. There are many other
learning-based feature detectors as Revaud et al. (2019), Mishchuk et al. (2017).
Among those studies, the reason behind the selection of the Superpoint for this
experiment is its score in the CVPR image matching challenge Trulls et al. (2020).
In that benchmark, the algorithms that got the highest scores for the 2k feature
point category use Superpoint interest points with various matchers.

Moreover, in that challenge, there is a category where the number of features is
not restricted. Instead of a non-restricted number of feature point categories, a 2k
interest point category is considered because more than the 2k points is not suitable
for real-time applications. Even with 2k interest points for each frame, there is a
need for high-performance hardware to maintain the system running in near real-
time. Superpoint descriptors matched with knn matcher in the experiment, and the
distance metric is used as L2-Norm between Superpoint feature descriptor arrays.
The pre-trained weights are used for Superpoint, which is trained with MSCOCO
Lin et al. (2014). Implementation is based on the work of the Deng et al. (2019) and
the parameters of the Superpoint features are tuned with several iterations, which
are based on the APE results of the sequences in the EuRoC MAV dataset Burri
et al. (2016). As a result of the parameter tuning, Superpoint configuration is set as;
2000 features per image, confidence threshold of the points are set as 0.07, and NMS
is set to 4. The ratio test is applied for the matching part, and the ratio threshold is
set to 0.7. In order to use python implementation of the Superpoint in C++ for orb
slam, C++ API of the PyTorch Paszke et al. (2019) library is used. The algorithm
runs on the GPU device Nvidia 2060 super with six GB memory.

The APE results of the Superpoint features seem to outperform the ORB features in
most of the sequences. However, in most sequences, the number of frames that the
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pose is calculated is lower in Superpoint. The calculated ones are mostly better in
APE scores, but there are missing frames in most sequences. Especially in sequences
V102 and V103, most of the trajectory could not be calculated in Superpoint. The
output of the absolute pose error does not represent the robustness of the algorithm.
In a recent study and the most comprehensive dataset for SLAM algorithms Wang
et al. (2020), there is another metric called success rate described for evaluating the
SLAM systems in terms of robustness. They are calculating the ratio of missing
frames to the number of all frames, and that ratio represents the success rate. Using
ORB features in terms of the SR(success rate) resulted in much better rates than
using Superpoint features in ORB-SLAM.

(a) Stats of Superpoint and ORB in
MH01-EASY - EuRoC MAV Dataset

(b) Trajectories in x-y-z of Superpoint
and ORB in MH01-EASY - EuRoC MAV
Dataset

Figure 5.27 Results: Superpoint features: mono, ORB features: mono_orb in MH01-
EASY Dataset in EuRoC MAV

In Machine Hall 01 dataset, the results are very similar in terms of the APE as it can
be observed from the Figure 5.27 (a) . In Figure 5.27 (b), the trajectoris are plotted
and it is shown that there are some intervals that couldn’t be estimated in the
SuperPoint implementation. The reason behind this could be the implementation
in the SuperPoint features in ORB-SLAM3. There could be some missing cases that
didn’t covered in the implementation. In the rest of the trajectory, it is observed
that both feature are performing similarly in Machine Hall 01 dataset.
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(a) Stats of Superpoint and ORB in
MH03-MEDIUM - EuRoC MAV Dataset

(b) Trajectories in x-y-z of Superpoint and
ORB in MH03-MEDIUM - EuRoC MAV
Dataset

Figure 5.28 Results: Superpoint features: mono, ORB features: mono_orb in MH03-
Medium Dataset in EuRoC MAV

In medium difficulty dataset in the Machine Hall sequence, same with the MH 01
dataset there are poses that couldn’t be estimated in the SuperPoint implementa-
tion in Figure 5.28 (b). In terms of the APE results of the estimated poses, in that
seqeunce SuperPoint implementation is slightly better that the ORB implementa-
tion.

(a) Stats of Superpoint and ORB in
MH05-DIFFICULT - EuRoC MAV
Dataset

(b) Trajectories in x-y-z of Superpoint
and ORB in MH05-DIFFICULT - EuRoC
MAV Dataset

Figure 5.29 Results: Superpoint features: mono, ORB features: mono_orb in MH05-
Difficult Dataset in EuRoC MAV
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In the most difficult conditioned sequence in the Machine Hall dataset, SuperPoint
implementation overperforms the ORB implementation as it can be observed from
the Figure 5.29 (a). Still there are poses that couln’t be estimated in SuperPoint
implementation but the results are better than ORB features. It can be said that
SuperPoint give more reliable features in the low light, low textured environments.

(a) Stats of Superpoint and ORB in V101-
EASY - EuRoC MAV Dataset

(b) Trajectories in x-y-z of Superpoint
and ORB in V101-EASY - EuRoC MAV
Dataset

Figure 5.30 Results: Superpoint features: mono, ORB features: mono_orb in V101-
EASY Dataset in EuRoC MAV

In vicon room 101 dataset, results are similar in terms of APE as in the easiest
sequence of the Machine Hall dataset. It can be said that, the difference appears
more in the difficult environments for the visual perception. In vicon room 101
dataset, the poses that couldn’t be estimated in SuperPoint imlementation is higher
that the Machine Hall sequences that observed in Figure 5.30 (b).
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(a) Stats of Superpoint and ORB in V102-
MEDIUM - EuRoC MAV Dataset

(b) Trajectories in x-y-z of Superpoint and
ORB in V102-MEDIUM - EuRoC MAV
Dataset

Figure 5.31 Results: Superpoint features: mono, ORB features: mono_orb in V102-
Medium Dataset in EuRoC MAV

In medium version of the Vicon dataset, Superpoint overperforms Orb implementa-
tion as it can be observed in Figure 5.31 (a). When the condition gets more difficult
in the environment, difference between the SuperPoint and the ORB implementation
gets bigger in terms of the APE.

(a) Stats of Superpoint and ORB in V103-
DIFFICULT - EuRoC MAV Dataset

(b) Trajectories in x-y-z of Superpoint and
ORB in V103-DIFFICULT - EuRoCMAV
Dataset

Figure 5.32 Results: Superpoint features: mono, ORB features: mono_orb in V103-
Difficult Dataset in EuRoC MAV
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In the most difficult sequence in the vicon room dataset, Superpoint overperforms
the ORB implementation. The difference in the APE shown in Figure 5.32 (a) not
totally represent the real performance. Because in SuperPoint implementation there
are missing pose estimations in the trajectory as it can be observed in Figure 5.32
(b).

Table 5.7 APE - RMSE of Superpoint and ORB features in ORB-SLAM

Feature Extractors MH01 MH03 MH05 V101 V102 V103
EASY MEDIUM DIFFICULT EASY MEDIUM DIFFICULT

Superpoint 0.04321 0.03822 0.10309 0.08405 0.00723 0.00912
ORB 0.04297 0.03842 0.04757 0.08742 0.06370 0.06576
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6. CONCLUSION & FUTURE WORK

Visual-inertial SLAM systems are getting more attention in the literature and in-
dustry. Vehicles are becoming more autonomous, virtuality in our lives is increasing
with augmented reality applications and visual - inertial SLAM is in the core of
these promising application areas. In this thesis, literature on both visual and
visual-inertial SLAM systems are reviewed. Moreover modules of the visual and
inertial structures are also discussed. In that discussion, different configurations
in visual modules, sensors, smoothing approaches are expressed and compared in
detail. In addition, fusion methods in visual and inertial data, tightly and loosely
coupled fusion, are discussed.

Furthermore, an end-to-end visual inertial pipeline is proposed and implemented.
In terms of the visual modules, for the feature extraction SuperPoint DeTone et al.
(2018) is used. SuperPoint features are matched with faiss Johnson et al. (2017).
Based on feature matches essential matrix is calculated by five point algorithm and
MAGSAC Barath & Matas (2018) which described as advanced RANSAC. In order
to track features KLT Lucas & Kanade (1981) is used and for estimating the pose
from 2D-3D correspondences SQPNP Terzakis & Lourakis (2020) is used. In iner-
tial side, GTSAM Kaess (2015) library is used for IMU-preintegration Forster et al.
(2015) and pose estimation from IMU. Implemented visual inertial SLAM pipeline
is tested on one of the most popular public dataset Euroc Mav Burri et al. (2016).
Moreover in the scope of the thesis, state of the art algorithms are studied by con-
figuring modules and comparing the results with the configured implementations.
For that purpose, in ORB-SLAM3, instead of ORB features that are used in the
pipeline originally, SuperPoint features are tested. In that experiment it is observed
that, when the environment gets difficult for the visual perception by getting darker,
less detailed textures, blurred images, SuperPoint seems more reliable in that con-
ditions. The calculated APE difference between the orb implementation and the
SuperPoint implementation is gradually increased when the environment gets diffi-
cult to perceive. Furthermore, in another implementation, one of the most promising
perspective-n-point solution SQPNP is implemented within the Vins-Mono instead
of the originally used iterative PnP solution. The results showed that even there
is no initial guess in SQPNP implementation, in some sequences it overperforms
iterative PnP solution. But it is observed that there is edge cases for the SQPNP
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solution where there are huge pose error in some timestamps in Vicon Room se-
quence. In addition to those experiments, in order to experience visual inertial
SLAM in real-time, hardware platform is set up and data collected from the envi-
ronment separately as indoor and outdoor. Collected real world data is processed
and results are discussed. Finally, state of the art algorithms are studied, compared
and the results are discussed in terms of both the algorithmic logic behind their
structure and used visual and inertial modules.

As a future work, I will be more focused on the visual inertial alignment and solving
the minimization problem to get the scale. In the current pipeline visual and inertial
measurements are well aligned but not being solved in an equation yet. Furthermore,
based on visual modules there are promising studies based on the deep learning such
as Yang et al. (2020). I am planning to focus on comparing learning based methods
with traditional approaches by benchmarking both on public datasets.
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