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ABSTRACT

ANOMALY DETECTION FOR VIDEO-BASED SURVEILLANCE USING
COVARIANCE FEATURES AND MODELING OF SEQUENCES VIA LSTMS

ALI ENVER BILECEN

ELECTRONICS ENGINEERING M.S. THESIS, DECEMBER 2021

Thesis Supervisor: Assist. Prof. Dr. Huseyin Ozkan

Keywords: anomaly detection, covariance features, long short-term memory,
autoregressive modeling, support vector regression

In this thesis, we propose three different methods for anomaly detection in surveil-
lance videos based on autoregressive modeling of observation likelihoods. By means
of the methods we propose, normal (typical) events in a scene are learned in a prob-
abilistic framework by estimating the features of consecutive frames taken from the
surveillance camera. The proposed methods are based on long short-term memory
(LSTM), linear regression, and support vector regression (SVR). To decide whether
an observation sequence (i.e. a small video patch) contains an anomaly or not,
its likelihood under the modeled typical observation distribution is thresholded. An
anomaly is decided to be present if the threshold is exceeded. Due to its effectiveness
in object detection and action recognition applications, covariance features are used
in this study to compactly reduce the dimensionality of the shape and motion cues
of spatiotemporal patches obtained from the video segments. Our proposed meth-
ods that are based on the final state vector of LSTM and support vector regression
(SVR) applied to mean covariance features, and achieve an average performance of
up to 0.95 area under curve (AUC) on benchmark datasets.
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ÖZET

VIDEO BAZLI GÖZETIM SISTEMLERINDE KOVARYANS ÖZNITELIKLERI
KULLANIMI VE DIZILERIN LSTM MODELLENMESI ILE ANOMALI SEZIMI

ALI ENVER BILECEN

ELEKTRONİK MUHENDİSLİĞİ YÜKSEK LİSANS TEZİ, ARALIK 2021

Tez Danışmanı: Dr. Öğr. Üyesi Hüseyin Özkan

Anahtar Kelimeler: anomali sezimi, kovaryans öznitelikleri, uzun kısa-soluklu
bellek, özbağlanımsal modelleme, destek vektör bağlanımcı

Bu tezde, güvenlik kamera görüntülerinde anomali sezim problemi için özbağlanım-
sal olasılık kestirimine dayalı üç farklı yöntem önerilmektedir. Önerdiğimiz yön-
temler vasıtasıyla bir sahnedeki normal yani tipik olaylar, güvenlik kamerasından
alınan ardışık çerçeve özniteliklerinin olasılıksal bir çatı altında tahmin edilmesiyle
öğrenilir. Önerilen yöntemler uzun kısa-soluklu bellek, doğrusal bağlanım ve destek
vektör bağlanımcısı tabanlıdır. Bir gözlem dizisinin (bir video kesitinin) anomali
içerip içermediğine karar vermek için modellenmiş tipik gözlem dağılımı altındaki
olabilirliği eşiklenir. Kovaryans öznitelikleri nesne tespiti ve eylem tanıma uygu-
lamalarındaki etkinliğinden dolayı, video kesitlerinden elde edilen zaman-mekansal
parçaların şekil ve hareket işaretlerini kompakt bir şekilde düşük boyuta indirge-
mek için kullanıldı. Ayrıca gözlem dizisinin olasılıksal formülasyonu sonucunda
dizideki statik ve dinamik bilginin video anomali sezim problemine katkılarını ayrı
ayrı görünür kılarak probleme yeni bir bakış açısı kazandırmaktayız. Önerdiğimiz
yöntemlerden uzun kısa-soluklu bellek’in son durum vektör modellemesi ve ortalama
kovaryans öznitelikleri üzerinde çalışan destek vektör bağlanımcısı, genel kullanıma
açık kıyaslama veri setlerinde 0.95 ortalamaya varan eğri altındaki alan (EAA) per-
formansları elde etmektedirler.
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1. INTRODUCTION

Building a model that can robustly capture the normal modes of an environment is
a long-studied research problem in machine learning and computer vision, enabling
the detection of novelties/outliers in variety of applications such as industrial in-
spection, network security, healthcare, and automated surveillance [1–5]. In recent
years, extensive research has been carried out on the anomaly detection problem for
computer vision based surveillance purposes [6–11]. With the rapid deployment of
surveillance cameras, the amount of data produced by these cameras far exceeds the
amount that can be manually inspected by the security personnel. This indicates
that anomaly detection has an immense practical value, and robust algorithms de-
signed to this end can direct the attention of the security personnel with a minimum
delay to unusual events such as violent acts, traffic accidents, and violation of public
rules [12].

Anomalous events can be defined as observations that deviate significantly from
the statistical patterns of normal, i.e. typical, observations [13] that are observed
frequently. For example, in the context of surveillance-based anomaly detection,
typical observations are pedestrians acting in ordinary ways, e.g. walking, whereas
some example anomalous events are fighting, and illegal crossing, as can be seen in
Fig. 1.1. Such events are generally low probable observations, hence it is usually
infeasible to collect a sufficient amount of data from the set of such events. For this
reasons, in the anomaly detection literature, generally the training set only consists
of samples from the normal class and the problem is recast as the estimation of the
shape of the distribution of these normal samples. New observations at test time are
classified as normal or abnormal based on the degree of agreement with the modeled
typical data distribution. On the other hand, since anomalies occur very rarely
and in unprecedented ways, their distribution cannot be estimated reliably, and
in the literature, anomalies are generally assumed to be uniformly distributed [13].
Under this assumption, thresholding the negative log-likelihood of samples under the
typical data distribution yields the classifier which maximizes the detection power
while minimizing the false positive rate [14–17].
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(a) (b)

(c) (d)

(e) (f)

Figure 1.1 Examples from the ShanghaiTech Campus dataset containing both nor-
mal and abnormal activity. In the figures located at the left column, normal scene be-
havior is observed. Right column of figures contain abnormal scene activity, namely,
a bicycle and a motorcycle illegally crossing the pedestrian walkway, and instance
of a violent pedestrian action.

1.1 Extended Summary of the Thesis

In this thesis we propose methods to detect and localize anomalies in a given surveil-
lance video. To this end, a video is partitioned into spatiotemporal patches (se-
quences of frame patches). Each patch is represented by a sequence of covariance
features (each one extracted from a frame). The developed approaches operate on
the level of spatiotemporal patches for modeling the normal events in the scene.
LSTM-based approaches work under a nonlinear sequential prediction framework to
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learn temporal evolution of covariance features, whereas the linear regression based
method discards the temporal dynamics of the sequence. At test time, to decide
whether a spatiotemporal patch is anomalous or not, the deviation from the learned
model is examined. We evaluate our methods on two benchmark datasets, and also
report our findings on the dataset we gathered on Sabanci University campus.

The rest of the thesis is organized as follows. In Chapter 2 we provide background
information on covariance features and anomaly detection, and discuss relevant ap-
proaches. In Chapter 3, we provide the problem description, and explain how a video
is represented as spatiotemporal parts and modeled for anomaly localization. After
we explain the process of extracting the covariance features and propose variants of
them in Chapter 4, we introduce our proposed methods based on linear and nonlin-
ear regression in Chapter 5. We present our performance evaluation results on two
benchmark datasets in Chapter 6, introduce the surveillance dataset we gathered
on campus in Chapter 7 and finally conclude with Chapter 8.
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2. RELATED WORK

In this chapter, relevant methods in the literature are discussed. Covariance features
provide a way of compactly representing a region in the image by computing a sample
covariance matrix of several low-level feature descriptors. In most object detection
scenarios, the essence of a classes’ distribution is captured by its covariance [18].
We start with an overview of methods that employ covariance features, and then we
continue by discussing recent approaches to anomaly detection problem.

2.1 Covariance Features

Covariance features were first introduced in [18] for object tracking, since then they
have proved to be effective in other computer vision tasks such as texture classi-
fication [19], pedestrian detection [20, 21], and action recognition [22, 23]. Work
in [24] extends covariance features to model spatiotemporal patches by also calcu-
lating temporal gradients, for fire and flame detection. However, use of covariance
features on video based anomaly detection applications has remained limited. [25]
computes covariance features from whole spatiotemporal patches extracted from a
video by using optical flow maps and RGB values as feature descriptors, and one-
class SVM (OCSVM) is adopted for anomaly detection. Ergezer et al. [26] proposes
a object tracking module based on covariance features that can be plugged into
any model-free anomaly detection algorithm, such as [27–29]. In this thesis, co-
variance features are computed to summarize spatiotemporal information extracted
from video patches. More specifically, a temporal sequence of feature vectors (each
one corresponding to a frame) is computed to represent a video segment. We pro-
pose a novel approach to the anomaly detection problem by modeling the probability
distribution of these sequences using long short-term memory (LSTM) and linear
regression based methods.
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2.2 Anomaly Detection

Anomaly detection refers to the identification of out-of-distribution data and is
critical for safety and security applications.

Early work in vision-based anomaly detection considered tracking based methods
[30–34]. Generally in these methods, objects that follow an unexpected trajectory
are labeled as anomalies. However, robust tracking of objects is computationally
challenging as the number of objects gets large or the objects get occluded. For
this reason, histogram based features of low level descriptors (HOG, HOF) [35–37]
are used to summarize patches extracted from frames to detect rare shape and/or
motion patterns. In [38], different from previously proposed approaches, videos
are represented from two views by two distinct and partially independent feature
descriptors. First of these feature descriptors is used for detecting anomalies in
the whole video frame, whereas the second one is used for anomaly localization.
These features are learned using denoising autoencoders. Also, a new approach
is presented for integrating the two views to perform both anomaly detection and
localization in the testing phase in real-time. In a similar work [39], authors propose
to train one autoencoder by minimizing the reconstruction error, while the other one
is trained by sparsity constraints for obtaining sparse representations. These two
autoencoders are combined as a cascade classifier for fast detection. Heuristically, a
spatiotemporal cuboid is considered as a potential anomaly if it has a sparsity value
higher than a sparsity threshold. These patches are resized to larger dimensions and
analyzed for reconstruction errors by the first autoencoder. An anomaly is decided
to be present if an error threshold is exceeded. With a slight deviation from the
unsupervised learning paradigm, and as the first time in the literature, [40] trains
a neural network model composed of alternating 3D and 2D convolutional layers,
using both abnormal and normal samples, treating the anomaly detection as a binary
classification problem.

Deep Autoencoding Methods More recently, deep learning methods have been
extensively used to discover representations from typical data that better explain
the underlying structure of normality than hand-crafted, problem specific feature
descriptors. In [7], a convolutional autoencoder is trained to learn regular mo-
tion patterns by minimizing the reconstruction error of a temporal stack of frames.
In [41], authors build up on [7] by further processing the temporal stack of feature
maps at the bottleneck of the autoencoder by a ConvLSTM [42] layer while pre-
serving the spatial information for anomaly localization. Abati et al. [11] propose
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to train an autoencoder by jointly minimizing the reconstruction error of samples
and the latent variables’ entropy using autoregressive models as a way of forcing
the autoencoder to capture regular patterns. [6] follows a patch-based modeling ap-
proach and trains separate Stacked Denoising Autoencoders(SDAE) using patches
extracted at multiple scales and their corresponding optical flows, as well as their
combination. However, the final anomaly score is obtained from one-class SVMs
trained by the latent representations extracted from the bottleneck layer of SDAEs.
Since these features are not learned in an end-to-end manner, they are suboptimal.
Building upon this work, authors in [43] propose to learn the temporal regular-
ity of the features extracted by the SDAEs via LSTMs. Also, a graph manifold
ranking algorithm is proposed to reduce the false alarm rate. Similarly, motivated
by the capability of sparse coding based anomaly detection algorithms, [44] pro-
poses a temporally-coherent sparse coding algorithm and employ stacked-LSTMs
for modeling temporal evolution of sparse coefficients. Ionescu et al. [10] encode
both motion and appearance information of region proposals extracted from video
frames using a convolutional autoencoder and treats the anomaly detection problem
as a one-versus-rest classification problem by clustering the latent representations of
samples into normality clusters, leveraging the advantages of supervised methods.
Sabokrou et al. [8] extract features from intermediate feature maps of a pretrained
CNN model for the statistical modeling of temporal and spatial regularities. A
Gaussian distribution is fitted to each location in the intermediate feature map,
and a local observation inside a particular feature map that do not conform to the
corresponding distribution is rolled back into the original input image for anomaly
localization. Work in [45] aims to detect anomalies and also to provide evidence for
the occurence of these anomalies through the use of a kernel density estimator, which
can be beneficial in real world applications. It’s also the first step step towards pro-
ducing explainable models in anomaly detection literature. Sultani et al. [46] works
in a weakly-supervised anomaly detection framework. In the UCF-Crime dataset
published along with the proposed detection algorithm, video-level ground truths
are available, and the task is to localize the sources of anomalies in time. This
work is unique, in the sense that it tackles the detection of abnormal activities in
very long and untrimmed surveillance videos. For this, C3D features [47] which are
originally proposed for action recognition tasks are used to drastically reduce the
dimensionality of the lengthy video data. Building on this work, [48] employs graph
convolutional networks to extract frame-level labels using video-level ground truths,
and proposes an EM-like training schedule for cleaning the label noise, an inherent
problem in weakly-supervised learning. These progressively cleaned labels at each
iteration of the training phase are used for training neural network based anomaly de-
tectors at the same time, which further boosts the performance. Sabokrou et al. [49]
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proposes a cubic patch-based anomaly detection framework. A cascade of classifiers
is used to improve accuracy and reduce the computational cost. Representing dif-
ferent normal events by just one set of features leads to inaccurate results and high
computational costs. As there are events with varying levels of complexity (simple
non-events such as background, and more complex events are dynamic anomalies
involving motion), the provided solution works by weeding out less complex patches
in earlier layers, using weak Gaussian classifiers. Between each layer of the network,
classifiers are used to differentiate between normal patches and abnormal patches,
as the patches get more complex in deeper layers of the network. As the first stage
of the network, a deep but light 3D autoencoder is used for early identification of
many normal patches. At the second stage of the network, remaining candidate
patches are analyzed using a deeper 3D CNN model. A study of deep convolutional
autoencoders in [50] examines the effects of different input combinations (such as
optical flows, image gradients, and dynamic images) on the detection performance.
The paper also proposes to measure the spatial complexity of a frame based on Kol-
mogorov complexity. In [51] 3D gradient features are calculated using PCANet [52],
an unsupervised deep learning algorithm which uses principal component analysis
to compute filters in its layers in a hierarchical manner. By computing 3D gradients,
gradients in spatial domain encode appearance information while the gradients in
temporal domain encode motion information. High-level gradient features obtained
from PCANet are used to model events using deep Gaussian mixture models. At
test time, if the likelihood of a patch is below some threshold value, that patch
is labeled as an anomaly. Similar to [7], Tran et al. [53] train winner-take-all [54]
convolutional autoencoders only on whole optical flow frames, but rather than using
reconstruction error to decide for anomalies, latent features are applied to OC-SVM
to obtain an anomaly score. This variant of autoencoders are trained by imposing
sparsity in the convolution kernels, which enforces the discovery of distinct features.

Pretrained Plug-and-Play Methods In [55] authors propose to use any pre-
trained plug-and-play fully convolutional network without further training. Seman-
tic features extracted from the last convolutional layer on a frame by frame basis, are
used to compute a binary map with same spatial size using Iterative Quantization
Hashing [56] (ITQ). ITQ is a method for projecting high-dimensional feature vec-
tors into a binary space, and the parameters are learned in an unsupervised manner.
The goal of the training is to produce similar binary maps for frames that indicates
normal behaviour, such that when encountered with abnormal behaviors, they can
be detected by observing abrupt changes of appearance in the binary maps. To
localize anomalies in frames, corresponding locations in the binary map are rolled
back to their receptive fields. The work in [57] proposes an abnormal event detection
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framework based on unmasking, a technique previously used for authorship verifi-
cation in text documents, without needing training data. The method works with
short sliding-window and detect anomalies based on the sudden changes in extracted
features’ values.

Adversarial Learning Methods Recently, GANs have obtained outstanding re-
sults on video anomaly detection. GANs enable end-to-end training of two net-
works in such a way that both networks learn the underlying input distribution.
More specifically, a GAN module is trained by conditioning the generation process
on the input image to reconstruct/predict a semantically related image. Based on
the anomaly detection algorithm, a combination of two networks(generator and/or
discriminator) is used for producing the anomaly score. Building on the idea that
abnormal frames cannot be predicted ahead of time under typical data distribu-
tion, [9] proposes to detect anomalies in a future frame prediction framework, and
trains a GAN module to predict the next frame given a history of frames and the
optical flow of the current frame, by regularizing the outputs of the generator net-
work’s intensity and gradients to be closer to the ground truth frames. A predicted
future frame that deviates significantly from its corresponding ground truth frame
is labeled as anomaly. In [58], two sets of GAN modules are trained to reconstruct
the optical flow frame from the original frame and vice versa. These two studies
assign anomaly scores based on deviations of the predictions/reconstructions from
the ground truth. Similarly in [59], two sets of GAN modules are trained for cross-
channel reconstruction. After the training phase, generators of the modules are
discarded and the discriminator networks are used for locally detecting anomalies
in a patch based manner. Wu et al. [60] also train a two-stream module, but differ-
ent from other methods, they propose to use VAE/GAN module, where the latent
spaces of the generator and the encoder of the VAE networks are connected. As the
authors argue, this combination helps achieve better modeling the normal modes of
behavior in the scene, and anomalies are decided based on the reconstruction errors.
The studies [9, 58–60] show that the incorporation of the optical flow information
boosts the performance of the anomaly detection algorithms drastically. The work
in [61] proposes to train a “refiner” network (analogous to generator) to reconstruct
the uncorrupted version of the input while the discriminator tries to discern be-
tween the real and reconstructed images. Both networks learn the normal data
distribution, and using both networks back-to-back at testing time further boosts
the performance as opposed to using only one of the networks. In similar terms, [62]
trains an “inpainter” network that tries to produce uncorrupted version of its input,
while the discriminator operates on patches of the outputs of the inpainter. Such
a formulation enables robust localization of visual anomalies as well as providing
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a way of controlling the trade-off between false-alarm and missed detection rates,
generally caused by pixel-level and patch-level detectors, respectively.

In [7, 9, 41], anomalies are assigned directly to frames without localization. In our
work [63], we localize anomalies, similar to [6] and [25], by extracting spatiotemporal
volumes from a video and processing them independently. The works [11,43,44] are
of special interest to us. In a similar manner to [11], we autoregressively model
features extracted from frames, through the use of LSTM networks as in [44], while
operating on the level of spatiotemporal patches [43].

2.3 Novel Contributions and Highlights

• We propose to use covariance features to fuse appearance and motion, both
of which convey discriminative information, into a compact form for anomaly
detection.

• We propose to incorporate mean information of low level descriptors into the
calculation of covariance features, since the average activities of these descrip-
tors also provide useful information for separating anomalous samples from
normal ones.

• We model normal modes of behavior in a scene through a sequential prediction
framework employing linear/nonlinear regression models, and declare anoma-
lies based on the probabilistic modeling of the prediction errors or final state
vectors of LSTMs.

• Methods that we propose achieve average AUC scores of up to 0.95 on
three benchmark datasets, indicating the suitability of covariance features for
anomaly detection.

• We present our own surveillance dataset, where the footage is collected from
two scenes on Sabanci University campus, and present our results on this
dataset.

9



3. PROBLEM DESCRIPTION

The aim of this study is to detect and localize video anomalies in space and time.
A video is divided into spatiotemporal patches called cuboids, each of which con-
sists of τ consecutive frames. From each cuboid, a sequence of feature vectors
X ≜ {x1, . . . ,xτ } is obtained. The probability distribution of this sequence can be
expressed as the product of conditional probabilities:

(3.1) p(X) =
τ∏

i=1
p(xi

∣∣∣x1, . . . ,xi−1).

To detect an anomaly given a feature sequence extracted from a cuboid, the proba-
bility distribution in (3.1) can be modeled using different methods such as quantizing
each xi and modeling them as multinomials [11], or by stacked masked convolutional
layers [64]. Then, using these autoregressive probability models, the negative log-
likelihood of the feature sequence is compared to a threshold Ta to decide whether
the corresponding cuboid is anomalous or not. An anomaly is decided to be present
if the threshold is exceeded

ϕ(X) =

1 (abnormal) − logp(X) ≥ Ta,

0 (normal) − logp(X) < Ta.

where ϕ is the anomaly decision rule.

In our approach, the minimum mean squared estimator (MMSE) θ
(i)
MMSE estimates

the mean of the distribution p(xi

∣∣∣x1, . . . ,xi−1) for i = 1, · · · , τ . Each distribution is
modeled as Gaussian around the corresponding mean and with variance equal to the
mean squared prediction error of the estimator. LSTM networks [65] are suitable for
this task as sequential nonlinear estimators [66, 67] since the autoregressive nature
of the problem is automatically captured by recurrence. Moreover, LSTMs model
all conditional distributions in (3.1) using the same set of parameters by keeping
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a summary of all previously applied inputs using a state vector. We also consider
using estimators based on support vector regression (SVR) and linear regression.
Probabilities are assigned under the typical data distribution based on the predic-
tion errors. Unlike these models that assign probabilities based on the prediction
errors, the final state vector of LSTM can also be employed to assign probabilities
to cuboids, since it is a condensed version of all sequentially applied inputs. Typical
data distribution is approximated through the final state vector, and in test time,
final state vectors that are observed to be outside of this distribution are labeled
as anomalies. To estimate a feature value in the feature sequence based on the
previous observations, dynamic information contained in the sequence is required to
be extracted. However, for the initial observation x1, since there is no history, the
best prediction is simply the mean of the marginal distribution, and hence constant.
In the next section, we start with extracting covariance features from consecutive
frame patches in cuboids.

11



4. EXTRACTION OF COVARIANCE FEATURES

In order to localize anomalies in space and time, we partitioned an RGB surveillance
video into spatiotemporal volumes called cuboids, and each cuboid is assigned an
anomaly score based on its likelihood under the typical data distribution. These
cuboids can overlap in their spatial and temporal axes for precise localization. For
a robust likelihood model, the dimensionality of the data must be reduced while
preserving information that is relevant for anomaly detection. Covariance features
provide an efficient way of summarizing local cuboid activity in a compact manner.
Second order statistics that capture the linear relationship between random variables
provide sufficient information for visual tasks [20,22] when the random variables are
chosen as appropriate low level descriptors, such as image gradients and optical flow
maps. Covariance features are also scale-invariant and robust to local distortions
[18], which further boosts the generalization ability of the algorithms. Moreover,
drastic reduction in dimensionality of the shape and motion descriptors, enabled by
the covariance features, increases the computational power and alleviates problems
encountered during training which arise due to high dimensional data.

To that end, a video V ∈ RH×W ×T ×3 is partitioned into cuboids V (c) ∈
RHc×Wc×Tc×3, with a certain stride in space and time, depending on how densely
cuboids are to be sampled. Anomalies can occur as a result of irregular shape and/or
motion patterns. Image gradients [19, 68] and optical flow maps [22, 23, 25], when
used as low level descriptors for the calculation of sample covariance matrix, give
satisfactory results for tasks which require good visual and motion representations,
respectively. Hence, from video V, we consider computing image gradient, optical
flow and binary foreground videos with the same spatial and temporal dimensions
(IG,OF ∈ RH×W ×T ×2 and FG ∈ ZH×W ×T ×1

2 , respectively). To extract covariance
features from a cuboid, we take the corresponding regions of these videos, namely
V(c), IG(c), and OF(c), all of which have dimensions (spatial and temporal) of
Hc ×Wc ×Tc. This process is illustrated in Fig. 4.1.

In order for a cuboid to be anomalous, there needs to be a considerable amount of
activity inside it. To determine whether a cuboid is active or not, the percentage of
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Figure 4.1 Extraction of the Covariance Features. From a video frame, low level
descriptors such as RGB luminance values, image gradients, optical flows are ob-
tained and stacked with x-y coordinate grids along the last axis. This frame stack
is multiplied element wise with the corresponding foreground frame to obtain the
masked frame stack by removing the background information. The cuboids that
are determined as active are processed further by computing the covariance matrix
from the region which corresponds to that cuboid. To covariance matrices, Cholesky
decomposition is applied, and the feature vector is formed by taking all the nonzero
elements of the resulting lower triangular matrix. Subsequently, these feature vec-
tors are used by the proposed sequential prediction algorithms in Chapter 5.

the active pixels inside the corresponding region of the foreground video is thresh-
olded with αa and cuboids that surpass this threshold are named as active cuboids,
i.e., active bricks satisfy the condition

1
Hc ×Wc ×Tc

∑
x,y,t

FG
(c)
x,y,t ≥ αa,(4.1)

where x and y are indices for space, and t is the index for time. In this study, only
the active cuboids are used for training the models and deciding for anomalies at
test time. For each t ∈ {1, . . . ,Tc}, the corresponding RGB image, image gradient
and optical flow map are stacked along with the x-y coordinate grid Ω ∈ RHc×Wc×2,
at the last axis. To get rid of the background information, this frame stack is
multiplied element wise with FG(c)

t , the corresponding foreground image at time
t. As the result of this multiplication, we obtain the background-free frame stack
F(c)

t ∈ RHc×Wc×9 as follows: F(c)
t =

[
V(c)

t ,IG(c)
t ,OF(c)

t ,Ω
]
⊙ FG(c)

t . For notational
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convenience, we refer to this tensor shortly as F̄. We compute the sample covariance
matrix C by considering the last axis elements of F̄ as random variables. The ith

row and jth column of C is computed by

Ci,j = 1
Na −1

∑
k,l

(F̄k,l,i −µi)(F̄k,l,j −µj),

where Na is the number of active pixels in the foreground image, and µi =
1

Na

∑
k,l F̄k,l,i is the sample mean of the ith entry in the last axis of F̄, at time

t. Lastly, for further dimensionality reduction and achieving a Euclidean embed-
ding, we apply Cholesky decomposition C = LL⊤ following the work in [69]. We
take all the nonzero elements of the lower triangular matrix L ∈ R9×9 as the entries
of the feature vector xt ∈ R45. Consequently, from a cuboid of length Tc, a feature
vector sequence {x1, . . . ,xTc} is obtained.

4.1 Variants of the Proposed Covariance Features

We point out that the use of covariance features disposes of the information of mean
activations of feature values, which can play a critical role for anomaly detection.
For example, the mean of optical flows can provide useful information for determin-
ing the motion magnitude of an object. To incorporate mean information into the
covariance features, we also consider adding the mean activities back to the covari-
ance matrix to obtain the correlation matrix as R = C + µµ⊤, and the Cholesky
decomposition is applied to R. Similarly, the use of foreground masks discards the
global motion information (motion of the object as a whole) by placing the origin
point on the center of mass of the moving object. One can also consider not masking
the foreground frame to preserve this information. As a result, we obtain 4 com-
binations of features: covariance with/without foreground masking, and correlation
with/without foreground masking. For ease of exposition, all these features will be
simply mentioned as covariance features.
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5. PROPOSED METHODS

In this section, we present our methods that model the typical data distribution
based on covariance features. First two of these methods work under an autoregres-
sive nonlinear prediction framework and model temporal evolution of covariance
features. In these methods, a feature vector x at time t is predicted as a function
of all the observation history. However, in the last two methods, limitations are
put on the observation history, and linear prediction models are used. The dataset
{(x(i)

1 ,x(i)
2 , . . . ,x(i)

τ )}N
i=1 (we use τ instead of Tc for simplicity and generality) is ob-

tained by extracting covariance features from active cuboids. Each sample, indexed
by i, consists of a sequence of τ vector observations, xt ∈ Rd for t ∈ {1, . . . , τ} and
d = 45. This dataset is used for training the 3 different methods that will be pre-
sented shortly. First two of these methods, LSTM-GSV and LSTM-GPE, employ
nonlinear regression whereas the last method, MCF-LRGM, uses linear regression to
model sequences. Two additional methods, ϵ-SVR and ν-SVM are used as baselines.

5.1 LSTM-based Nonlinear Methods

For the nonlinear methods, LSTM networks are used. This enables modeling se-
quences of different lengths while having a fixed number of parameters through
weight sharing. Additionally, unlike hidden Markov models (HMM) [70,71], predic-
tions of the network depend on all previously applied inputs, i.e., the length of the
window of the observation history is infinite. At each time step t, LSTM network
takes the current observation xt and the previous state vector st as input, then out-
puts the prediction for the next observation x̂t+1 in the sequence and the next state
vector st+1, as shown in Fig. 5.1. Training is also conducted in a many-to-many
setting, where the first τ − 1 observations in the sequence, in order, are applied
as inputs to predict the last τ − 1 of them. Specifically, we calculate the sum of
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Figure 5.1 Block diagram illustrating the training of the LSTM. The weights are
learned in a many-to-many sequential prediction paradigm by minimizing the sum
of squared errors of predictions.

squared prediction errors at all timesteps, for a single observation sequence, by the
loss function shown below:

L({xi}τ
i=2,{x̂i}τ

i=2) = 1
τ −1

τ∑
t=2

∥x̂t −xt∥2
2.

Then, for a minibatch of M samples (observation sequences), total average loss is
calculated by:

L({{x(j)
i }τ

i=2,{x̂(j)
i }τ

i=2}M
j=1) = 1

M

M∑
k=1

L({x(k)
i }τ

i=2,{x̂(k)
i }τ

i=2),

where j ∈ {1, . . . ,M} is the index of the samples.

However, when used in a sequential prediction setting, LSTMs (and RNNs in gen-
eral) do not fully learn the joint distribution of the observation sequence in (3.1).
Since the LSTM is not tasked with predicting the initial observation x1, its distri-
bution p(x1) is not modeled by the network. By training the LSTM in a sequential
prediction setting, the network learns to discard the static information carried in
the sequence since it’s not useful to predict the next observation in the sequence.
The initial observation x1, which we consider as the carrier of static information
neglected by the network, might also indicate an anomaly, hence the initial obser-
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vation needs to be incorporated into the probability models explicitly. An overview
of LSTM-based methods is illustrated in Fig. 5.2.

Figure 5.2 Block diagram representations of the LSTM-based nonlinear methods. In
the LSTM-GPE method, deviations of the predictions from their ground truths are
accumulated for all timesteps t = 1, · · · , τ , and anomalies are decided by thresholding
the accumulation of deviations. The deviations are assumed to be distributed nor-
mally, separately for all timesteps. In the LSTM-GSV method, to decide whether
the observation sequence contains an anomaly or not, the likelihood of the obtained
final state vector after applying all the inputs is thresholded. Gaussianity is assumed
for the final state vector. An anomaly is decided to be present if the threshold is
not exceeded.

5.1.1 LSTM-GSV: Modeling the Final State Vector of LSTM as Gaussian

The final state vector sτ is obtained by feeding the sequence {x1, . . . ,xτ−1} to the
LSTM. The state vector encodes information about previously applied inputs, there-
fore, the probability distribution in (3.1) can be approximated via the distribution
p(sτ ):
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p(sτ ) ≈
τ∏

i=2
p(xi| x1, . . . ,xi−1).

We assume that the final state sτ is a normally distributed random vector with pa-
rameters mean vector µs and covariance matrix Σs. To estimate these parameters
from data, the dataset of covariance observation sequences {(x(i)

1 ,x(i)
2 , . . . ,x(i)

τ )}N
i=1

is applied to the LSTM, and the dataset of final state vectors {s(i)
τ }N

i=1 is ob-
tained. Sample mean vector µs = 1

N

∑N
i=1 s(i)

τ , and the sample covariance matrix
Σs = 1

N−1
∑N

i=1(s(i)
τ − µs)(s(i)

τ − µs)⊤ are computed. The likelihood of the observa-
tion sequence, p(X), is calculated through p(sτ ) as

p(sτ ) = 1
(2π)d/2|Σs|1/2 exp{−1

2(sτ −µs)⊤Σ−1
s (sτ −µs)}.

By taking the logarithm, the log-likelihood of sτ is obtained:

logp(sτ ) = −1
2 log(2π)d|Σs|−

1
2(sτ −µs)⊤(Σs)−1(sτ −µs).

Incorporating the Initial Observation To incorporate the effect of the initial
observation x1, we concatenate sτ and x1 to obtain the augmented final state vector
s̄τ = [sτ ,x1], the same steps mentioned above are followed to calculate logp(̄sτ ).

5.1.2 LSTM-GPE: Modeling Prediction Errors of LSTM as Gaussian

In this method, we model the prediction errors of the LSTM network, separately
for all timesteps t. Let ft(.) be the function that takes as input all feature vectors
observed till time t, and outputs a prediction x̂t corresponding to the actually ob-
served feature vector xt, at time t. The input-output relationship can be shown
as x̂t = ft(x1, . . . ,xt−1). Since the set of previous observations is empty at t = 1,
the function f1(.) that predicts x1 does not take any inputs, and its output is
identically 0 by construction. It should be noted that this function can take any
constant value, and the end result of the algorithm will not be affected due to the
Gaussian assumption on prediction errors. For all t and samples i ∈ {1, . . . ,N},
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error vectors e(i)
t ≜ x(i)

t − x̂(i)
t are calculated and modeled as normally distributed:

p(x1) ≜ N (e1;µ1,Σ1) and p(xi|x1, . . . ,xi−1) ≜ N (ei;µi,Σi).

Here, µi and Σi are the mean vector and covariance matrix of the error vector
ei corresponding to the ith observation, and computed in the same way as in the
LSTM-GSV method in 5.1.1. Then, the likelihood of the observation sequence X is
calculated through the likelihood of the sequence of prediction errors E = {e1, . . . ,eτ }
as

p(E) =
τ∏

i=1

1
(2π)d/2|Σi|1/2 exp{−1

2(ei −µi)⊤Σ−1
i (ei −µi)}.

By taking the logarithm, logp(E) is calculated as follows:

logp(E) =
τ∑

i=1
−1

2 log(2π)d|Σi|−
1
2(ei −µi)⊤Σ−1

i (ei −µi).(5.1)

Incorporating the Initial Observation It should be noted that unlike in the
LSTM-GSV method, the step of incorporating the initial observation x1 is seamless
and controlled by changing the starting value of the summation variable in 5.1 from
i = 2 to i = 1, as the prediction x̂1 is identically equal to 0, hence x1 = e1.

5.2 MCF-LRGM: Autoregressive Gaussian Modeling of Mean

Covariance Features

This method is based on linear regression and provides an alternative to LSTM-based
methods. Although the probability distribution of a feature sequence X can directly
be modeled as in (3.1), the learned model can only be applied to sequences of fixed
length τ , as the distributions of st and et change with respect to t, and therefore
the parameters have to be calculated for all t. Additionally, using different sets of
parameters for each step of the prediction increases the parameter complexity of the
model as the sequence gets longer. Moreover, for complex models, in the absence
of sufficient training data, parameter estimation errors can accumulate and affect
the prediction performance in a detrimental way. For these reasons, to reduce the
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dimensionality of the observations, we take the average of all τ vector observations
to obtain the mean feature vector x̄ ∈ Rd, for which we hypothesize that it still
carries a considerable amount of information about the activity in a cuboid. The
probability distribution of x̄ can be expressed as

p(x̄) =
d∏

i=1
p(x̄i

∣∣∣x̄1, . . . , x̄i−1),

where x̄i ∈ R is the ith component of the mean observation vector x̄, computed
by averaging the corresponding elements of the observation sequence X. Under
the assumption of Gaussianity, unconditional distribution p(x1) and the conditional
distributions p(xi

∣∣∣x1, . . . ,xi−1) for i = 2, . . . ,d are modeled with parameters mean µi

and variance σ2
i . For each distribution, linear regression models fi(.) are trained

to predict xi given all the previous observations x1, . . . ,xi−1. For the distribution
p(xi

∣∣∣x1, . . . ,xi−1), µi is chosen as the prediction of the ith model, i.e., x̂i = µi =
fi(x1, . . . ,xi−1) and the variance σ2

i = 1
N

∑N
i=1(xi − x̂i)2 is calculated as the mean

squared prediction error of the model. For the initial observation x1, the linear
prediction function f1(.) does not take any argument since the history of observations
before x1 is an empty set. For this reason the prediction for x1 is constant, i.e.
f1(.) ≡ x̄1, and it is simply taken as the mean of all initial observations in the
dataset. Variance σ2

1 is calculated in the same manner. The likelihood of X is
calculated through the mean observation vector x̄ as

p(x̄) =
d∏

i=1

1
(2πσ2

i )1/2 exp{−1
2(xi −µi

σi
)2}.

The log-likelihood of p(x̄) is calculated as

logp(x̄) = −1
2

d∑
i=1

log2πσ2
i − 1

2

d∑
i=1

(x̄i −µi)2

σ2
i

.
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5.3 Using Object Detection Modules for Detecting Scene Activity

The criterion based on a background subtraction algorithm for determining active
regions in surveillance footage tend not to work as desired when the camera is not
static, there are sudden illumination changes, and the objects in motion are the
same color as the background, resulting in false alarms and misses in the detection
of the activities, respectively. Also, the object in motion can be much smaller
than the cuboid in terms of their spatial size, in which case the foreground activity
generated by the object will be absorbed by the relative largeness of the cuboid,
hence the activity will not be detected. In order to alleviate these issues, as an
alternative to the activity detection method based on the average foreground activity
to determine whether a brick is active or not, we consider using an object detection
module, YOLO [72], a fast and lightweight deep neural network that can robustly
work in diverse settings. The YOLO object detection module is mostly invariant to
the textures and colors of the objects that it detects, and it can work in different
illumination conditions and when there is camera motion. The output of this module
is a bounding box that encapsulates the detected object. Possibly, it can output
multiple bounding boxes, each for a different detected object. In most cases, a
non maximum suppression (NMS) step is not needed due to the additional training
the networks that forces them to output bounding boxes that place the objects of
interest at the dead center [73], enabling the overall detection pipeline to be much
more faster for real-time applications.

Given an RGB image It ∈ RH×W ×3 assumed to be containing objects, taken
from a video at time t, the YOLO module outputs a list of region of interests
(RoI) {(x(i)

tl ,y
(i)
tl ,x

(i)
br ,y

(i)
br )}C

i=1 where (x(i)
tl ,y

(i)
tl ) is the coordinate of the top-left, and

(x(i)
br ,y

(i)
br ) is the coordinate of the bottom-right corner of the ith bounding box, and

C is the total number of detected objects (as illustrated in Fig. 5.3). We crop
spatiotemporal patches of length Tc starting with time t forward in time, with the
given coordinates, to obtain cuboids. Then, from each frame patch, we extract co-
variance figures. It should be noted that, cuboids that are extracted via the YOLO
module do not have a fixed spatial size. However, the extracted covariance features
will have a fixed dimensionality of 45, and with the scale-invariance property of the
covariance features, the generalization capacity of the algorithms will be promoted.
The proposed methods in Chapter 5 can be directly applied to the cuboids extracted
using the YOLO module.
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(a) Bicycle (b) Violence

(c) Motorcycle (d) Skateboard

Figure 5.3 Obtained bounding boxes by the YOLOv5 object detection module. Using
the coordinates of these bounding boxes, we extract spatiotemporal patches from
the consecutive frames of the video, and compute covariance features to represent
the spatiotemporal patch.

5.3.1 YOLO-GMM: Gaussian Mixture Modeling of Object Proposals

We propose an additional method that shows covariance features can also yield good
performance without the sequential modeling via LSTM networks. To this end, we
closely follow the work in [74] for detecting regions of interest using YOLO object
detection module. Different from this work, to represent the regions of interest,
we compute covariance features of the region instead of extracting features using
autoencoders. By passing through all the data to obtain bounding boxes with the
YOLO module, we extract frame patches and compute the covariance features. In
the proposed methods introduced above, due to multiple steps of linear/nonlinear
projections of the covariance features as input data, Gaussianity assumption that is
made for the outputs were appropriate, as also validated by the experimental results.
However, in the case of modeling raw covariance features (covariance features that
are not processed in any way, e.g. LSTM-based methods), Gaussianity assumption
yields subpar results. For this reason, we model raw covariance features via mixture
of Gaussians.

A covariance feature x’s probability density under a mixture model is found as
follows:
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p(x) =
K∑

k=1
πk N (x;µk,Σk),

with πk’s being the mixing coefficients (priors) where

K∑
k=1

πk = 1 and πk ≥ 0 ∀k,

and where K is a hyperparameter for determining the number of Gaussian compo-
nents. The parameters πk,µk, and Σk of the mixture are found by the Expectation-
Maximization (EM) algorithm [75]. Deriving an analytical expression for logp(x) is
not trivial, hence, we directly threshold p(x) to decide for abnormal regions.

5.4 Anomaly Score Function

The anomaly scores are determined based on the likelihood ratio test (LRT). Let y
be the observation that can be the final state vector sτ , a temporal stack of prediction
errors {e1, . . . ,eτ }, and so on, depending on the method of choice. Let H0 : y ∼ p0

and H1 : y ∼ p1 be the hypotheses that y follows the typical data distribution p0 or
the anomalous data distribution p1, respectively. Since we do not have any infor-
mation regarding the distribution of anomalies, they are assumed to be uniformly
distributed, i.e., anomalies can be encountered anywhere on the observation space
equally likely. In that case, the anomaly score function Sa(y) can be expressed as

Sa(y) ≜ L(y) = p1(y)
p0(y) ∝ − logp0(y)

since p1(y) is constant for all observations of y, based on the uniformity assumption.
Anomaly detection can be carried out by thresholding the negative log-likelihood of
observations under the typical data distribution, which is modeled by the proposed
methods.
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5.5 Baseline Methods

We explain two baseline methods based on support vector machines, namely Support
Vector Regressor (ϵ-SVR) and One-Class Support Vector Machine (ν-SVM). These
powerful methods are used for comparing our proposed algorithms in terms of area
under curve (AUC) scores.

5.5.1 ϵ-SVR: Support Vector Machine for Regression

Support Vector regression (ϵ-SV regression) is a machine learning technique intro-
duced in [76] that aims to regress a target variable y through the use of a sparse
weight vector w, which is determined only by the samples xi that are the Support
Vectors. For the linear regression case where x ∈ R the target function f is in the
form of

f(x) = ⟨w,x⟩+ b,

and the goal is to find f that makes no absolute error larger than ϵ, and oblivious
to errors as long as the predictions are inside the "ϵ-tube" of their corresponding
ground truths. Additionally, flatness of w is enforced, meaning that out of all w’s
that satisfy the ϵ-tube condition, the one with the smallest norm is preferred as a
way of regularization. However, such a target function f that makes a maximum
absolute error of ϵ does not always exist, therefore, through the introduction of slack
variables ξi and ξ∗

i for each instance xi, the optimization problem that was infeasible
becomes copeable. Now, the optimization problem is formulated as

minimize 1
2 ||w||2 +C

N∑
i=1

(ξi + ξ∗
i )

subject to

yi −⟨w,x⟩− b ≥ ϵ+ ξi,

⟨w,x⟩+ b−yi ≥ ϵ+ ξ∗
i ,

ξi, ξ
∗
i ≥ 0,
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where the constant C ≥ 0 is a hyperparameter for determining the trade-off between
the flatness of w and tolerance for errors that are larger than ϵ. This idea for the
linear regression can be generalized for the nonlinear case as well, through the use
of appropriate kernel functions [76].

We use the ϵ−SV regression algorithm in the context of modeling mean covariance
features introduced in 5.2, to model x̄ in an autoregressive manner. For this, we
use the Gaussian Kernel (RBF), where the kernel parameter σ and box constraint
C are chosen by using 5-fold nested cross-validation.

5.5.2 ν-SVM: One-Class Support Vector Machine

One-class SVM (ν-SVM) was introduced in [77], for problems of outlier/novelty
detection. In the case of having a single class where the task is to find the deviations
from the distribution of this class, the data is lifted to a high dimensional space
through a kernel mapping, and a hyperplane which encapsulates a specified portion
of the data is found by solving an optimization problem. This corresponds to finding
the minimum volume set of the data that covers N(1−ν) of the samples, where N

is the number of samples, and ν ∈ (0,1] is a hyperparameter of the algorithm.

More specifically, ν-SVM finds a decision rule f such that, on average, ν portion of
the data sampled from the classes’ distribution is mapped to 1 through

f(x) = sgn
(∑

i

αik(xi,x)−ρ

)
,

where k(xi,x) = (Φ(xi).Φ(x)), and Φ is a feature mapping function. k(xi,x) selected
as the radial basis kernel function (RBF), and xi’s are the support vectors with
coefficients αi’s that are nonzero. The coefficients αi’s are found by solving the
optimization problem given below:

minimize 1
2 ||w||2 + 1

νl

N∑
i=1

ξi −ρ

subject to

yi − (w,Φ(xi)) ≥ ρ− ξi,

ξi ≥ 0.
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These coefficients can also be found by solving the dual problem with respect to
coefficients:

minimize 1
2
∑
i,j

αiαjk(xi,xj)

subject to

0 ≤ αi ≤ 1
νl

,∑
i

αi = 1.

This method is also used in the context of modeling mean covariance features in
5.2. Different from the ϵ-SVR method, no probabilistic modeling is carried out. To
determine whether an observation sequence contains an anomaly or not, we calculate
the anomaly score S(x) as

S(x) = −
(∑

i

αik(xi,x)−ρ

)
,

where a larger score indicates an out-of-distribution sample with high probability.

In the next chapter, we explain our experimental setup and provide performance
evaluation results.
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6. PERFORMANCE EVALUATIONS

In this chapter, we present our experimental results on three benchmark datasets:
ShanghaiTech Campus [9], UCSD Ped1 and UCSD Ped2 [78]. We also introduce a
new evaluation criterion called cuboid-level criterion to measure the performance of
the presented algorithms.

6.1 Datasets and Experimental Setup

Datasets UCSD Ped 1&2 datasets contain recordings of a single scene and anoma-
lies are defined as vehicles such as cars, bicycles and skateboards passing through
pedestrian walkways. ShanghaiTech Campus dataset includes recordings of multi-
ple scenes. In addition to vehicles with anomalous activities, this dataset introduces
anomalies that are characterized by sudden motion such as brawling and chasing.
In this dataset, we use the scene with the prefix “01" for evaluation. This is the
scene that has the most training/testing samples, making up a big portion of the
dataset with approximately 70000 training and 12000 testing frames.

Cuboid-level evaluation criteria The evaluation criteria proposed in [78], namely
frame-level and pixel-level criteria, are used for determining the locality agnostic
detection and localization performance, respectively. Based on these criteria, it
is sufficient to find a single anomalous pixel to label the corresponding frame as
abnormal. We consider that this procedure can cause relatively more false alarms,
without any substantial and observable change in the pixel-level decisions. The pixel-
level decisions should cover a considerable number of pixels to declare anomalies in a
meaningful way. For that, we introduce a new evaluation criterion called cuboid-level
criterion for robustness against pixel-level classification noise.

Cuboid-level anomaly labels are determined based on the experimental setup (user
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specified cuboid size and the spatial overlap factor) so that each cuboid has a corre-
sponding label. This label assignment is carried out in a similar manner to cuboid
activity detection. Let Ω ∈ NHc×Wc×Tc denote the cubic grid of coordinates corre-
sponding to a cuboid, and GT(x,y, t) be the function that maps a coordinate in the
video to its pixel-level ground truth. A cuboid-level ground truth is determined as
1 (abnormal) if

1
|Ω|

∑
(x,y,t)∈Ω

GT(x,y, t) ≥ β,

where |Ω| is the cardinality of Ω and β is a user specified threshold. We reasonably
choose β = 0.2 as it covers a considerable percentage of the anomaly volume. In this
study, Receiver Operating Characteristic (ROC) curves are generated based only on
the cuboids that are determined as active.

6.2 Experimental Results

To extract covariance features, cuboid activity threshold αa is chosen as 0.25. Spatial
cuboid sizes are chosen as 24×16 and 64×32 for UCSD Ped 1&2 and ShanghaiTech
Campus datasets, respectively. These spatial sizes are chosen in such a way that
pedestrians that are close to the cameras can fit inside, and the ones that are far
away are also captured by the action detection algorithm. In ShanghaiTech Cam-
pus dataset, we test out three different temporal cuboid sizes 6, 11, 21 and report
performances for each. In UCSD Ped1&2 datasets, the temporal cuboid size of 21 is
not considered in the experiments, since the spatial sizes of the cuboids are already
small, and moving objects simply enter and leave the cuboids in much less number
of frames.

For the LSTM-GSV and LSTM-GPE methods, the state dimensionality is chosen
as 1024 and 8, respectively. For training, 10% of the dataset is used as validation
data. Minibatch size is chosen as 512, initial learning rate is 10−3 and is reduced
with a factor of 0.75 when validation loss plateaus. For the LSTM based methods,
we repeat the experiment 10 times with different initializations and report their
average result. As previously mentioned, we observe that the covariance feature
variant of the best performance varies from a dataset to another. Furthermore, we
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provide results for two other methods based on mean covariance features in Method
5.2 (MCF-LRGM), based on one-class support vector machine (ν-SVM) [77] and
support vector regressor (ϵ-SVR) [79]. For each dataset and method, the reported
AUC scores correspond to the best performing variant of the covariance features.

For all datasets, ϵ-SVR and MCF-LRGM methods achieve the highest performance
using correlation features with FG masking while no FG masking variant of the
covariance feature performs better in the SVR method. Information about used
covariance feature variant for LSTM methods are provided with the results tables.
Performance evaluations for ShanghaiTech Campus dataset are shown in Table 6.1.
It can be seen that SVR and MCF-LRGM are the highest performing methods with
averages of 0.92 and 0.894, respectively. Fig. 6.2 shows the successful detection
of anomalous activities, such as a car and bicycle passing through the pedestrian
walkway. Results for UCSD Ped1 and Ped2 are presented in Table 6.2 and Table
6.3, respectively indicating that SVR and MCF-LRGM perform favorably.

6.2.1 Results on the ShanghaiTech Campus Dataset

AUC

Method Tc = 6 Tc = 11 Tc = 21 Avg.

LSTM-GSV 0.876 0.877 0.903 0.885
LSTM-GPE 0.881 0.880 0.900 0.887
MCF-LRGM 0.888 0.888 0.907 0.894

ν-SVM 0.778 0.793 0.810 0.794
SVR 0.917 0.916 0.931 0.921

Table 6.1 ShanghaiTech Campus Dataset Results. LSTM-based methods using co-
variance features without FG masking.

As can be seen from Table 6.1, all methods except the ν-SVM algorithm perform
favorably, in terms of AUC score, on ShanghaiTech Campus dataset. Although
SVR is the best performing method for this dataset, it has much longer training
time compared to all other algorithms.
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Figure 6.1 ROC curves obtained from the ShanghaiTech Campus dataset for (a)
Tc = 6, (b) Tc = 11 and (c) Tc = 21 by the proposed methods.

ROC figures in Fig 6.1 for ShanghaiTech Campus dataset indicates that, for all
cuboid lengths Tc = 6,11,21, SVR performs with the lowest false positive rate (FPR)
when the true positive rate (TPR) is kept constant across all other methods. When
compared against the ROC curves for UCSD Ped1 and UCSD Ped2 datasets in
Fig. 6.3 and Fig. 6.4 respectively, the earlier parts of the plots are much less
steep. This suggests that differentiating between the normal and abnormal samples
in ShanghaiTech Campus dataset is a much complicated task.
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(a) Car (b) Bicycle

(c) Motorcycle (d) Handcart

Figure 6.2 Detected anomalies on ShanghaiTech Campus dataset by the proposed
LSTM-GSV method.

The detected anomalies in ShanghaiTech Campus dataset are shown in Fig 6.2.
The LSTM-GSV method can successfully detect abnormal events and objects, such
as illegal crossings from a pedestrian walkway and an unlikely object (handcart),
without producing false alarms for regular pedestrians.

6.2.2 Results on the UCSD Ped1 Dataset

AUC

Method Tc = 6 Tc = 11 Avg.

LSTM-GSV 0.900 0.889 0.899
LSTM-GPE 0.886 0.875 0.881
MCF-LRGM 0.909 0.902 0.906

ν-SVM 0.904 0.902 0.903
SVR 0.919 0.902 0.911

Table 6.2 UCSD Ped1 Dataset Results. LSTM-based methods using correlation
features with FG masking.
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UCSD Ped1 dataset consists of short 34 training and 36 testing video samples.
Videos are recorded with a frames per second (FPS) and have low resolution. For
this reason, almost no meaningful events are captured within cuboids of length 21.
We carry out our experiments only with Tc = 6,11.
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Figure 6.3 ROC curves obtained from the UCSD Ped1 dataset for (a) Tc = 6, (b)
Tc = 11 by the proposed methods.

6.2.3 Results on the UCSD Ped2 Dataset

UCSD Ped2 dataset consists of short 16 training and 12 testing video samples. With
similar reasons as in UCSD Ped1 dataset, we only use cuboids of length 6 and 11.

AUC

Method Tc = 6 Tc = 11 Avg.

LSTM-GSV 0.941 0.945 0.943
LSTM-GPE 0.932 0.933 0.932
MCF-LRGM 0.946 0.959 0.953

ν-SVM 0.927 0.955 0.941
SVR 0.963 0.971 0.967

Table 6.3 UCSD Ped2 Dataset Results. LSTM-based methods using correlation
features with FG masking.
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Figure 6.4 ROC curves obtained from the UCSD Ped2 dataset for (a) Tc = 6, (b)
Tc = 11 by the proposed methods.

As can be seen in Tables 6.2 and 6.3 for UCSD Ped1 and Ped2 datasets, all methods
perform favorably, while SVR produces the best results in terms of AUC scores. It
should be noted that correlation features with foreground (FG) masking is used for
both of these datasets, whereas covariance features without FG masking is used for
ShanghaiTech Campus dataset. This demonstrates that global motion information
plays a discriminative role in the case of ShanghaiTech Campus dataset. Qualita-
tively, it can be observed that the discplacement of different types of objects (regular
pedestrian versus a vehicle) between frames provide useful information for anomaly
detection. This distinction between global motion of objects is much more bleak in
the case of UCSD Ped1&2 datasets, since the velocity of vehicles and pedestrians are
closer to each other compared to the ShanghaiTech Campus dataset. On the other
hand, using correlation features incorporates mean values of low-level descriptors
back to the feature vector, which could give further cues about the spatial distribu-
tion of optical flows inside a spatiotemporal patch and also about the shape of the
objects. It is reasonable to assume that this type of information would help to dif-
ferentiate between normal and abnormal scenes when the global motion information
does not play a discriminative role.
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6.2.3.1 YOLO-GMM Result on UCSD Ped2 Dataset

Here, we present our results obtained by the YOLO-GMM method on the UCSD
Ped2 dataset. It should be noted that different from other results reporting cuboid-
level performances, we evaluate YOLO-GMM method using frame-level criteria.
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Figure 6.5 Frame-level ROC curve obtained from the UCSD Ped2 dataset using
YOLO-GMM method. Here, we use correlation features without FG masking.

YOLO-GMM method achieves a frame-level AUC score of 0.896 (Fig. 6.5) with K =
20, indicating the effectiveness of covariance features when combined with object
detectors.

In the following chapter, we present our qualitative findings on the surveillance
dataset recorded on Sabanci University campus.
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7. SURVEILLANCE DATASET

We publish a new dataset for surveillance-based anomaly detection. The videos
are recorded at 30 frames per second (FPS) from two high resolution cameras at
the Sabanci University campus center, in different times of the day with varying
illumination and weather conditions, crowd behavior and rich set of events. In line
with the published datasets for anomaly detection, the durations of the recordings
are between 10 and 30 seconds, in which meaningful scene events can be observed.
Some of the key challenges in real-world anomaly detection applications are camera
jitter, sudden illumination changes between daytime/nighttime or due to weather
conditions, installment of new stationary objects to the scene, and changes in scene
dynamics depending on the time of the day. All of these challenges can be observed in
the dataset, making it a pushing factor for further development of new algorithms
for anomaly detection, scene analysis and action recognition. Moreover, the two
cameras in the campus are in close proximity and can be configured such that their
fields of view overlap for studying multi-view anomaly detection problems. Here,
we present some of the scene samples from the dataset and present our findings via
the methods in 5, in the context of anomaly detection.
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7.1 Detected Anomalies From University Center Camera

(a) Bike (b) Bike

(c) Scooter (d) Scooter

(e) Bike (f) Bike

(g) Scooter (h) Bicycle

Figure 7.1 Frames from SUrveillance Dataset. Cuboids that have maximum anomaly
scores are painted in red. LSTM-GSV method is used.
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The detected anomalies shown in Fig. 7.1 correspond to the spatiotemporal patches
that produce maximum anomaly scores when the LSTM-GSV method in 5.1.1 is
used. It can be seen that these patches contain objects with abnormal shapes (bike,
bicycle, scooter), but also have irregular motion patterns.

In the following chapter, we conclude with final remarks and future directions.
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8. CONCLUSION

In this thesis, we proposed methods for anomaly detection in surveillance videos
based on autoregressive probability modeling and estimation. We investigated the
suitability and effectiveness of different types of covariance features for this task.
LSTM-based methods model the temporal dynamics of these features using au-
toregressive probability estimation, whereas the other proposed methods model the
average activity in a spatiotemporal volume. Successes of both types of methods
indicate the overall usefulness of covariance features in the framework of autoregres-
sive probability estimations for video anomaly detection. Moreover, we used object
detectors as an alternative to the foreground-based activity detection criterion, and
observed that this choice results in more accurate detection of activities in the scene
and fewer miss detections, as well as an improved richness in the extracted features.
We published a dataset gathered on the campus of Sabanci University, and showed
that our proposed methods are able to successfully differentiate between normal and
abnormal scene activities.
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