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ABSTRACT

DEVELOPING TOOLS TO SUPPORT THE SEARCH NEEDS OF NEWS
READERS AND NEWS WRITERS

KENAN FAYOUMI

MS in Computer Science THESIS, JANUARY 2022

Thesis Supervisor: Asst. Prof. REYYAN YENİTERZİ

Keywords: Wikification, Entity Linking, Entity Ranking, Background Linking,
Information Retrieval

The ongoing digitization of online news has changed and democratized the industry
of news writing. The huge increase in the number of news sources has called for
research on automated methods that link relevant news articles or entities that
provide background information and enhance the reader’s experience. In this work,
we tackle three different tasks in the context of news articles: Wikification, Entity
Ranking, and Background Linking. The work done on these tasks is in alignment
with the tasks in News Track of Text REtrieval Conference (TREC). In Wikification,
we detect a list of mentioned entities in articles, link them to their corresponding
Wikipedia entry and rank the list of entities in terms of relevance to the article.
Standalone Entity Ranking task is only concerned with the final ranking step of
Wikification where the list mentioned entities are given. As for Background Linking,
the task is to retrieve and rank a list of relevant articles given a query news article.

Our proposed solutions for these tasks are oriented towards deep modelling and us-
ing vector representations to estimate similarity and relevance. For Entity Ranking,
we encode news articles and entities using Doc2Vec then use proximity between the
pair to rank entities. As for Wikification, we use transformer-based architectures
for detecting entity mentions and encoding mentions and entities into vector rep-
resentations. These vectors are used for candidate retrieval and ranking as part of
the entity linking pipeline. In Background Linking, we again use a transformer-
based language model to encode news articles and fine-tune it for relevance ranking
between articles.
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For evaluation, we compare our approaches to classic information retrieval systems
to analyze the quality or increase in performance brought by using deep complex ar-
chitectures. Using Doc2Vec and Cosine similarity to measure relevance in a setting
of perfect entity linking yields high performances. In Wikification, encoding men-
tions and performing dense vector search for candidate retrieval performs on-par
with baseline. However, using contextual encoding for candidate entity ranking sig-
nificantly improves the Wikification performance. The transformer-based re-ranker
used in Background Linking does not improve over full-text search baseline but shows
promising improvements in results when provided with more data for fine-tuning.
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ÖZET

HABER OKUYUCULARI VE YAZARLARININ HABER ARAMA
IHTIYAÇLARI IÇIN ARAÇLAR GELIŞTIRILMESI

KENAN FAYOUMI

BİLGİSAYAR MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, OCAK 2022

Tez Danışmanı: Asst. Prof. REYYAN YENİTERZİ

Anahtar Kelimeler: vikifikasyon, varlık sıralaması, geçmiş bağlantısı, doğal dil
işleme, bilgi getirimi ve çıkarımı

Çevrimiçi haberlerdeki dijitalleşme, haber yazma endüstrisini hem değiştiriyor hem
de demokratikleştiriyor. Son yıllarda haber kaynaklarının sayısındaki büyük artış,
ilgili haber makalelerini veya arka plan bilgisi sağlayan ve okuyucunun deneyimini
geliştiren varlıkları birbirine bağlayan otomatik yöntemler üzerinde araştırma yapıl-
masını gerektirdi. Bu çalışmada, haber makaleleri bağlamında üç farklı görevi ele
alıyoruz: Vikifikasyon, Varlık Sıralama ve Geçmiş Bağlantısı. Bu görevler üzerinde
yapılan çalışma, News Track of Text Retrieval Conference (TREC) görevleriyle
uyumludur. Vikifikasyonda, maddelerde adı geçen varlıkların bir listesini tespit
eder, bunları ilgili Vikipedi girişlerine bağlar ve varlık listesini maddeyle alakalarına
göre sıralarız. Bağımsız Varlık Sıralaması görevi, yalnızca listede belirtilen varlık-
ların verildiği Vikifikasyonun son sıralama adımı ile ilgilidir. Gemiş Bağlantısında
ise görev, bir sorgu haber makalesi için verilen ilgili makalelerin bir listesini almak
ve sıralamaktır.

Bu görevler için önerilen çözümlerimiz, derin modellemeye ve benzerlik ve alaka
düzeyini tahmin etmek için vektör temsillerini kullanmaya yöneliktir. Varlık Sırala-
ması için, Doc2Vec kullanarak haber makalelerini ve varlıkları kodlarız, ardından
varlıkları sıralamak için çift arasındaki yakınlığı kullanırız. Vikifikasyona gelince,
varlık ifadelerini tespit etmek ve bahsedenleri ve varlıkları vektör temsillerine kodla-
mak için dönüştürücü tabanlı mimariler kullanıyoruz. Bu vektörler, varlığı bağlayan
sistemin bir parçası olarak aday bulma ve sıralama için kullanılır. Geçmiş Bağlan-
tısında, haber makalelerini kodlamak ve makaleler arasındaki alaka düzeyi sıralaması
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için ince ayar yapmak için yine dönüştürücü tabanlı bir dil modeli kullanıyoruz.

Değerlendirme sırasında, derin karmaşık mimarileri kullanmanın getirdiği kaliteyi
veya performans artışını analiz etmek için yaklaşımlarımızı klasik bilgi erişim sis-
temleriyle karşılaştırıyoruz. Varlık bağlama ortamında alaka düzeyini ölçmek
için Doc2Vec ve Kosinüs benzerliğini kullanmanın yüksek performans sağladığı
görülmüştür. Vikifikasyon’da, adayların belirlenmesi sırasında bağlamsal kodla-
manın ile yoğun vektör araması yapmak, diğer yöntemlerle benzer performans göster-
miştir. Bununla birlikte, aday varlık sıralaması için bağlamsal kodlamanın kul-
lanılması, Vikifikasyon performansını önemli ölçüde artırır. Geçmiş Bağlantısında
kullanılan dönüştürücü tabanlı yeniden sıralayıcı tam metin arama yöntemini iy-
ileştirmemiştir, ancak ince ayar için daha fazla veri sağlandığında sonuçlarda umut
verici gelişmeler gözlenmiştir.
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1. INTRODUCTION

Online news reporting services have changed the way individuals consume and ex-
change news dramatically over the last decade (Soboroff, Huang & Harman, 2018).
According to a Pew Research poll from 20161, 38 percent of adult Americans get
their news from a source on the internet.

News authors sometimes presume readers have some prior context or understanding
of the topic or issue discussed in the news piece. However, this isn’t the case for all
the readers. A news article might be discussing an event or a certain topic and unless
a certain piece of background information or context is provided, this can lead to
a misinterpretation that can effect the reader’s understanding of the bigger picture.
Simply adding additional information to each article is not an ideal solution, as it
may result in impractically long articles. As for the news writer’s perspective, the
writer might not know or remember all the background information when writing
the article.

These reasons call for automating the process of news contextualization. Contex-
tualization in news articles might come in two format. First, links to other news
articles that give the essential background knowledge must be included in each
article to give the reader the full picture. These articles might discuss specific top-
ics,aspects or events that happened in the past and providing articles that discusses
these therefore providing the necessary background information or context needed to
fully comprehend the news article. Secondly, linking mentions of concepts, objects,
and entities to internal or external sites that provides more detailed information
that can assist the reader better understand the context of some events or aspects
in the news article. These two formats are visualized in Figure 1.1 where a news
article from The Washington Post is linked with other news articles that provides
background information and mentions of entities are linked to their corresponding
Wikipedia page where there are extended details about each entity.

Over the past 29 years, Text REtrieval Conference (TREC) has created a series

1https://www.pewresearch.org/journalism/2016/07/07/the-modern-news-consumer/
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of tracks aimed at encouraging research on information retrieval for large text col-
lections. In 2018, TREC News track (Soboroff et al., 2018) was introduced with
the motivation of encouraging research in the news domain. This track is focused
on information retrieval or search tasks to help create tools that automates news
contextualization and improves the news reading and writing experience. The track
started with two task: Background Linking and Entity Ranking. Later, the Entity
Ranking task was expanded into a full Wikification task.

Articles with
background
information

Mentioned  
Entities

Figure 1.1 Contextualization in News Articles

1.1 Task Definition

The tasks offered in TREC News track focus on the retrieval of relevance informa-
tion/document to enhance the readers experience. These tasks can be splitted into
two main genres: relevant news article retrieval (Background Linking), and impor-
tant entity retrieval such as Wikification and Entity Ranking. In this section, we
discuss the formal task definition for each of the offered tasks in TREC News track.

1.1.1 Wikification

The terms wikification and entity linking are used interchangeably in the literature.
The input for this task is a text document and a knowledge base containing a
collection of pre-defined entities. The task is to recognize mentions of entities in the
text and connect them to their corresponding entry in the knowledge base. In the
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wikification case, Wikipedia is used as the knowledge base, and mentions of entities
within the text are linked to the corresponding Wikipedia pages.

In the TREC News Wikification task, the task is not only about linking entities but
also ranking them based on their relevance or importance to the news article. So
given a document, a system should identify mentions, link them to their entities and
then apply Entity Ranking to obtain a list of mentioned entities ordered in terms of
importance.

A simplification of this task is shown in Figure 1.1 where systems detect and provide
a list Wikipedia entities that were mentioned in an article. However, in Wikification
task, systems should also provide a ranking for this mentioned entities.

1.1.2 Entity Ranking

Given a news article and a list of entities mentioned in that article, systems must
return a rank for each of the provided entities which reflects the significance and
relevance of each entity compared to the query article.

This task can be considered as the last step of Wikification where mentioned entities
were already detected and linked such as in Figure 1.1 , and systems should only
rank these entities in terms of relevance to the article.

1.1.3 Background Linking

In Background Linking, systems are provided with a news article as input and should
retrieve a list of different news articles that give vital background and contextual
information. The retrieved list of articles must be ordered in terms of importance
and relevance to the query article. The retrieved articles should also be diverse and
address different "topics".

An example of this task can be shown in the background linked article in Figure 1.1.
It should be noted that these articles should also be ranked in terms of relevance to
the query article.
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1.2 Research Questions

In this work, we focus on developing search and retrieval tools for news articles
domain. To solve our main tasks, we use vector representation and deep modelling
based approaches as we aim to answer the following research questions:

RQ How successful are vector representation and deep modelling based approaches
compared to baseline information retrieval methods in the domain of news
articles?

This research question can be splitted into several sub-question related to our
main tasks in this work:

RQ1 How effective are document representations for embedding different
topics or concepts in news articles into a singular vector representation?

RQ2 How effective are out-of-the-box pre-trained language models compared
with classic Information Retrieval systems for the task of ranking news articles
in terms of relevance?

RQ3 Is mutual vector modelling of news articles and entities effective for
ranking entities in terms of relevance to an article?

1.3 Thesis Outline

First chapter (this chapter) contains the introduction, task definitions, and a state-
ment of research questions. Chapter 2 provides a review over the literature and
previous work done on our main tasks. In chapter 3 we describe in detail the
dataset and Knowledge base used in this work. Chapters 4, 5 and 6 are dedicated
for the work on Wikification, Entity Ranking, and Background Linking respectively.
In these separate chapters, we discuss task-specific data format, inputs, outputs, and
evaluation metrics. We also describe our methodology and the experiments done in
the scope of the task and then report and analyze the results obtained in our work.
Finally, chapter 7 concludes the thesis by summarizing the findings of this work and
discusses potential directions for future work.
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2. RELATED WORK

In this chapter, we provide a literature overview of the main tasks discussed in
this work: Wikification, Entity Ranking and Background Linking. We first go over
previous work done on the different sub-tasks of Entity Linking. Then, we provide
a summary on the work done in TREC News for the Wikification, Entity Ranking
and Background Linking in that respective order.

2.1 Entity Linking

Generally, there are two types of Entity Linking (EL) systems. First, EL systems
that contain 3 separate components: (1) a mention detection model, (2) a candidate
generation or retrieval model and (3) a candidate ranking or Entity Disambiguation
(ED) model. In this case, each model is trained separately and one model’s output is
sent to the next and so on. Second type of EL systems is end-to-end entity linking
systems in which systems learn the sub-tasks of entity linking jointly. It’s worth
noting that the joint learning process usually only includes mention detection and
entity disambiguation components.

2.1.1 Mention Detection

For such approaches, mention detection is mostly done by using Named Entity
Recognition (NER) models. van Hulst, Hasibi, Dercksen, Balog & de Vries (2020);
Wu, Petroni, Josifoski, Riedel & Zettlemoyer (2020) utilized state-of-the-art NER
model Flair (Akbik, Bergmann, Blythe, Rasul, Schweter & Vollgraf, 2019) for de-
tecting mentions. Another approach for generating candidate entity mentions is by
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utilizing the pre-computed mention-to-entity mapping dictionary (Hoffart, Yosef,
Bordino, Fürstenau, Pinkal, Spaniol, Taneva, Thater & Weikum, 2011) where any
text span that retrieves a list of candidate entities is detected as a possible entity
mention (Peters, Neumann, Logan, Schwartz, Joshi, Singh & Smith, 2019; Poerner,
Waltinger & Schütze, 2020).

2.1.2 Candidate Generation/Retrieval

Knowledge bases (i.e., Wikipedia) are typically huge and contain millions of entities.
Searching the entire entity universe can be very expensive and impractical. AIDA
(Hoffart et al., 2011) an entity linking system, computes a dictionary based entity
candidate set. Given a string, this dictionary returns a list of candidate entities
and a list of prior-probabilities. This dictionary was calculated using features based
on entity page titles, hyperlinks, nicknames, Wikipedia disambiguation pages and
redirects. This dictionary set is used in most ED and end-to-end EL approaches
as candidate generator. Also, as mentioned earlier, this dictionary is utilized for
detecting candidate mentions.

BLINK entity linking system (Wu et al., 2020) utilizes more recent methods such
as deep learning as they use BERT (Devlin, Chang, Lee & Toutanova, 2019) to
encode and learn the optimal vector representations for mentions and Wikipedia
pages then apply dense vector search FAISS (Johnson, Douze & Jégou, 2017) as a
way for candidate retrieval.

2.1.3 Candidate Ranking/Entity Disambiguation

As for candidate ranking or ED, contextual information and textual features are
usually used to help in finding the similarity and making the final prediction. After
the recent success of BERT and newer transformer-based models in many different
NLP tasks, there has been some work on utilizing BERT for entity representation
and ED. In the approach proposed in Yin, Huang, Zhou, Li, Lan & Jia (2019),
BERT’s Next Sentence Prediction task was used for ED. Sentence A contains the
context around the mention and Sentence B was the entity Wikipedia page.
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Yamada, Washio, Shindo & Matsumoto (2020) learn entities as special BERT tokens
similar to their approach in LUKE (Yamada, Asai, Shindo, Takeda & Matsumoto,
2020). BERT is then trained to predict masked entities for entity disambiguation.
The approach also utilizes a global iterative predicting mechanism which disam-
biguates entities with highest confidence first and use these in disambiguating more
ambiguous mentions in the same document.

BLINK (Wu et al., 2020) encodes mention context and entity page information into
a singular embedding by concatenating the two and obtaining BERT’s encoding and
then calculates a ranking with a simple feed-forward neural network.

2.1.4 Entity Representation

As most ED methods require a way to represent entities. There has been different
approaches to embed entity knowledge into numerical vectors. Wikipedia2Vec (Ya-
mada, Asai, Sakuma, Shindo, Takeda, Takefuji & Matsumoto, 2020) learns word
and entity vectors in a manner based on Word2Vec’s (Mikolov, Chen, Corrado &
Dean, 2013) Skip-Gram model. This was done by by jointly optimizing 3 Skip-Gram
models trained on Wikipedia pages: (1) a model that predicts context around words
(2) a model that predict context around entities, (3) a model that predict neighbor-
ing entities given an entity in a linked Wikipedia Graph. These representations have
showed great performances when integrated in ED and other entity-related systems.

A more recent work LUKE (Yamada et al., 2020) utilized transformer-based model
RoBERTa (Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer & Stoyanov,
2019) to learn entity representation. In this approach, RoBERTa’s vocabulary is
extended to include entities as special tokens. The model is trained on Wikipedia
articles on a modified Masked Language Modelling where the model tries to predict
masked words and entities.

Knowbert (Peters et al., 2019) worked on enhancing BERT’s knowledge for entities
by injecting an entity linking component between BERT’s attention layers and pre-
training BERT for entity-oriented Masked Language Modelling task. The entity
linker takes BERT’s layer output, incorporates mention-span and entity information
into the representations then passes it to the consequent BERT layer.

A more recent approach E-BERT (Poerner et al., 2020) propose a workaround
for the expensive pre-training process needed by KnowBERT, by aligning pre-
trained Wikipedia2Vec with BERT tokens. E-BERT learns a linear mapping be-
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tween BERT’s and Wikipedia2Vec word vectors and applies that mapping to project
Wikipedia2Vec’s entity vectors into BERT’s vector space. BERT is then fine-tuned
on a special Masked Entity Modeling task where the model tries to predict the
masked entity tokens.

2.1.5 End-to-End Models

Early work on end-to-end EL (Durrett & Klein, 2014; Nguyen, Theobald & Weikum,
2016) utilized hand-engineered features and set strong baseline results for EL.

A more recent approach by Kolitsas, Ganea & Hofmann (2018) was the first work
to successfully use deep learning for E2E entity linking by outperforming previous
SOA models and eliminating the need for hand-engineered features. In this work,
the authors jointly optimize MD and ED by learning many components to represent
characters, words, mentions, entities, local and global context utilizing LSTMs.

In the work of Broscheit (2019) the authors investigate how much entity knowledge
is already learned in pre-trained BERT models. They approach E2E entity linking
as a token classification problem where the number of token classes is the entity
universe.

A more recent approach Chen, Zukov-Gregoric, Li & Wadhwa (2020) reported SOA
results by jointly learning two task-specific layers on top of BERT (MD and ED).
In their approach MD is handled as I-O-B token classification task, and ED layer
tries to minimize the distance between golden Wikipedia2Vec entity vectors and
mention-spans representations.

2.2 TREC News Wikification

As discussed earlier, the difference between TREC’s Wikification task and vanilla
Entity Linking is the extra step in TREC News to rank the detected mention-entity
pairs in terms of importance to the reader.

For the task of wikification, Ningtyas, El-Ebshihy, Piroi, Hanbury & Andersson
(2020) first perform mention spotting by using a look-up dictionary that identifies
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candidate text spans that represents an entity mention. This look-up dictionary
is constructed with Aho-Corasick algorithm for tree-like string search by using the
titles of Wikipedia articles. For candidate retrieval, Jelinek-Mercer smoothing is
applied to the mention query and the top 10 candidate entities are retrieved. Then,
a weighted-sum of three features (commonness, topic modeling and embedding sim-
ilarity) is used for re-ranking the retrieved candidates. Commonness measures the
probability this mention is used to link this entity while considering a mention can
refer to other entities. Topic Modeling feature utilizes Latent Dirichlet Allocation
for detecting topic distribution of the mention context and the first paragraph of
the entity’s Wikipedia article. Hellinger Distance is then used to compare the two
distributions. As for embeddings similarity feature, Doc2Vec is used to represent
the query mention paragraph and entity Wikipedia article then the vectors are com-
pared using cosine similarity. Then, probability of a mention to be linked to an
entity in Wikipedia is used for the last step of ranking mention-entity pairs.

In the work of Ak, Köksal, Fayoumi & Yeniterzi (2020), mention detection is per-
formed by utilizing Stanford CoreNLP (Manning, Surdeanu, Bauer, Finkel, Bethard
& McClosky, 2014) tool for extracting named-entity mentions. To perform linking,
Elastic-Search is used to retrieve entities by simply querying the detected mentions
using the default scoring mechanism by just matching the Wikipedia page title.
The retrieved (mention,entity) pairs are then ranked using their appearance in text.
Meaning, first mention in the query article receives the highest rank, second mention
is second highest and so on and so forth.

For the task of Entity Linking, many of the recent effective and state-of-the-art
approaches utilize the knowledge of pre-trained language models and extend it to the
domain of entity and KBs. Such approaches have proven very successful especially
for Entity Disambiguation task when understanding context around mentions is
crucial for entity prediction.

2.3 Entity Ranking

Signal (van der Sluis, Albakour & Martinez, 2018) participated in the first iterations
of TREC News Track Entity Ranking task. The authors treat the task as an entity
salience ranking task. Entity salience is a measure that determines the extent to
which an entity stand out as more important than other entities in a text. For this
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purpose, van der Sluis et al. (2018) use Salient Entity Linking algorithm introduced
by Trani, Lucchese, Perego, Losada, Ceccarelli & Orlando (2018). SEL is a two
step supervised algorithm for entity linking and salience ranking. As TREC News
task only includes Entity Ranking, the authors adapt SEL architecture to use the
given entities and rank them in terms of salience. To do so, they train a supervised
regression using generated features. These features include position of mention span
text, frequency and length. Other features include Wikipedia graph related features
such as node (entity) degree, distance to other nodes, graph size, diameter...etc.
Since this is a supervised approach, Dexter Entity Salience dataset 1 is used to train
the salience regression model.

TREMA-UNH and ICTNETAT (Ding, Lian, Zhou, Liu, Ding & Hou, 2019;
Kashyapi, Chatterjee, Ramsdell & Dietz, 2018) follow simple approaches by using
Okapi BM25 retrieval model with an index built on Wikipedia pages. Both teams ex-
periment with different query formulations for retrieving ranked Wikipedia. These
include using the Washington Post news article title, first paragraph or first 200
characters content and other combinations as queries. DMINR (Missaoui, MacFar-
lane, Makri & Gutierrez-Lopez, 2019) follow a similar path but uses an index built
only on Washington Post documents. Then, they extract entity mention spans using
spaCy tool 2 and score these mentions against the document by using BM25.

CMU (Gonçalves, Magalhães & Callan, 2019) handle this task as a learning-to-rank
(Liu, 2009) problem. They generate various features based on retrieval models such
as BM25 and TF-IDF over a built index. They also use count and statistical features
such as TF, number of unique surface forms, and count of entity pairs in a document.
To train their model, the authors use previous year’s topics (TREC 2018 News Track
Entity Ranking). In their work, Gonçalves et al. (2019) were aiming to validate the
inverted pyramid writing scheme (Pöttker, 2003) in the context of entity ranking.
This widely used scheme states that most significant and crucial content of a news
article is written in the beginning of the article. This was reflected on their feature
generation as they experiment with different models that utilize different parts of
the article such as using the title, first 5 paragraphs or using the whole article.

Radboud (Kamphuis, Hasibi, de Vries & Crijns, 2019) experiment by applying dif-
ferent heuristics or simple statistics directly to decide on the final ranking. For
instance, they use the order of appearance. Another method for ranking is using the
number of times an entity is mentioned. Their best performing method is ranking
entities using the number of tokens in the entity’s Wikipedia page where less tokens

1https://github.com/dexter/dexter-datasets/tree/master/entity-saliency

2https://spacy.io/
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means higher rank. Kamphuis et al. (2019) argue that having a shorter Wikipedia
page are more likely to be relevant since they are more discriminative.

UQ (Le & Demartini, 2019) approach this task as a similarity problem. The authors
use spaCy tool to identify entity mentions and extract sentences that contains a
certain entity. Then they spaCy semantic similarity function, which is based on
Word2Vec (Mikolov et al., 2013), to calculate similarity between entity sentences
and the original news article or Wikipedia article.

DMINR (Missaoui et al., 2019) also follow a pipeline of entity linking followed by
entity ranking. In this approach, the authors extract named-entity mentions from
documents using spaCy tool. Then, they utilize Robertson Term Selection Value
(RSV) (Chandra & Dwivedi, 2020) to map mentions to a list of similar entities
in Wikipedia. By doing so, this list of similar entities act as a representation for
mentioned entity. Finally, they use a probabilistic model to rank mentioned entities
(representation) based on their relevance to the article.

To summarize, a number of different approaches were used for Entity Ranking. Many
of the approaches utilize NLP tools to detect entity mentions. A couple of approaches
use these detected mentions to simply query indices built on Wikipedia. Other
approaches calculate representations for these mentions and estimate the relevance
between mentions representation and Wikipedia entities to produce the final ranking.

2.4 Background Linking

A majority of the published work on background linking task utilize pre-built in-
dexes for querying the Washington Post corpus and retrieving candidate background
articles. Most of the approaches mentioned below include a pre-processing step or
a candidate pruning step that utilizes the meta-data of the news articles. Articles
that has the values “Opinion”, “Letters to the Editor”, or “The Post’s View” in
the “kicker” field are not be linked as mentioned in TREC News’ guidelines. Also,
retrieved article should be filtered using the date. A number of approaches also
check retrieved candidates for duplicates by matching titles.

Anserini 3 is an open-source toolkit based on Apache Lucene 4 search engine library.

3https://github.com/castorini/anserini

4https://lucene.apache.org/
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Anserini focuses on reducing the gap between academical Information Retrieval
and real-world search solutions facilitate reproducing academical research results in
Information retrieval. In their work for background linking (Yang, Lin & Cheriton,
2019), the authors build an index on Washington Post news corpus and experiment
with different query expansions. One query formulation is using the top 1000 word
in the query article using their TF-IDF score. Another formulation is using the
article’s first 5 paragraphs in 5 different queries and then selecting the top N final
candidates out of all the queries results. The retrieved news articles are ranked using
BM25.

SINAI (López-Úbeda, Díaz-Galiano, Valdivia & López, 2018) perform clustering to
separate the document collection into different topical clusters. At query time, top
documents are retrieved from the corresponding cluster and the documents are re-
ordered using their relevance of the queried article . Each document is represented
by TF-IDF vector of its title and abstract.

HTWSAAR (Bimantara, Blau, Engelhardt, Gerwert, Gottschalk, Lukosz, Piri, Shaft
& Berberich, 2018) utilize Elastic-Search 5 for building an index over the news
articles corpus and experiment with different querying methods. For example, using
TF-IDF score to select top 20 keyword from query article, Another method is extract
named entity mentions using Stanford CoreNLP (Manning et al., 2014) toolkit, and
query using extracted mentions. Other experiment is to utilize TextRank Mihalcea
& Tarau (2004) to extract key phrases from the query document and then use all key-
phrases and entity mentions in the document to query the index. When queried,
the detected phrases and mentions are assigned a boosting factor to give higher
influence on the search. For instance, key-phrases and person-tagged mentions are
given a higher boost factor than organization and location tagged mentions.

UdelFang (Lu & Fang, 2018) investigate the effect of indexing the news collection
in two different ways. First method include the usual pre-processing and settings.
In their other method, they apply entity linking using DBpedia Spotlight (Mendes,
Jakob, Garcia-Silva & Bizer, 2011) entities and replace the mention keyword with
the canonical form of the entity and then perform indexing while treating entities
as a single keyword. In their more recent work (Lu & Fang, 2019) they continue
their focus on utilizing entities as they try to estimate entity weights depending on
its context. For this purpose, they generate two language models for the context
around entity and the article document then use KL-Divergence as a way to estimate
entity’s importance and weight. Their work for background linking also includes us-
ing different paragraphs for querying the index and applying different methods for

5https://github.com/elastic/elasticsearch
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ranking such as retrieval score order or number of times a document was retrieved
out of different paragraph queries. In a continuation of their work on utilizing enti-
ties, their most recent work (Lu & Fang, 2020) revolves around identifying aspects
or topics using an entity graph and levereging individual topics for background link-
ing. The authors create an entity graph for each document where each node is an
entity mentioned in the document and the connection is the word distance between
entities. The Louvain method (Blondel, Guillaume, Lambiotte & Lefebvre, 2008)
for community graph segmentation is used to extract sub-graphs that represents
topics. Then, individual topics keywords or entities are used to construct query
and retrieved candidates for that specific topic. Lastly, to combine individual topics
candidates, weights were given to topics by comparing the language models of the
topics and the original document.

Similar to their approach for entity ranking, DMINR (Missaoui et al., 2019) use RSV
(Chandra & Dwivedi, 2020) to extract the top K named entities that represents the
queried news article. Then, using a Hill Climber iterative algorithm, they optimize
to find the best named-entities. These best named entities are then used to query a
Washington Post news articles index.

CLAC (Khloponin & Kosseim, 2019,2) hypothesize that background articles that
should be linked are similar to the query article in document vector space com-
pared to other articles. To test their hypothesis, the authors experiment with dif-
ferent methods for document representation like Doc2vec (Le & Mikolov, 2014) and
Transformer-based pre-trained language models such as BERT (Devlin et al., 2019),
XL-NET (Yang, Dai, Yang, Carbonell, Salakhutdinov & Le, 2020) , GPT-2 (Rad-
ford, Wu, Child, Luan, Amodei & Sutskever, 2019). Different distance or proximity
measures where also used such as Cosine distance, Jaccard distance and Minkowsky
Lp distance. To produce a ranking score, candidates were retrieved during using
BM25 and then similarity functions were used to compare the vector representa-
tions and obtain a re-re-ranking for the candidates list.

Similarly, IRLabISI (Rahul Gautam, 2020) utilized Word2Vec to generate series of
vectors representing each document. Then, for the final representation they sum up
the vector of top 300 TF-IDF scoring words and then apply cosine similarity and
search the entire documents space for retrieval and ranking. Their other experiments
include extracting named-entity mentions using Stanford CoreNLP and utilize these
and top TF-IDF scoring keywords to generate queries.

Another work that followed a vector similarity approach was OSC (Nathan Day,
2020). In their work, the authors utilize Sentence-BERT (Reimers & Gurevych,
2019) to obtain a vector representation for the first 3 paragraphs. Final document
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vector is then calculated by summing up the 3 vectors. Then, cosine similarity is
used to produce a re-ranked list of candidates retrieved by TF-IDF scored query.

ICTNETAT (Ding et al., 2019) follow the idea of relevance feedback to enhance
queries. They use BM25 as their baseline model to retrieve ranked background arti-
cles. Rocchio relevance feedback algorithm is used with TF-IDF vector representa-
tions (Joachims, 1997) of the documents to expand the original query. Specifically,
they label the top and bottom 20 BM25 retrieved documents as relevant and irrel-
evant documents respectively, and then query the system using the new optimized
query. The authors also try learning-to-rank with BERT (Devlin et al., 2019). In
that method, BERT is used to rank BM25 retrieved candidates by scoring query
and candidate pairs as a next sentence prediction task. They create a fine-tuning
dataset that consists of relevant and irrelevant documents by the same methodology
used earlier for Rocchio query expansion.

IRQatar (Essam & Elsayed, 2019) use term co-occurrence graph to extract keywords
and build search queries for background linking. They construct a graph for each
article where each node represents a uni-gram and its connection represents the co-
occurrences with other uni-grams in the document. These graphs are trimmed into
segmented into smaller sub-graphs using graph decomposition methods (Rousseau &
Vazirgiannis, 2015; Tixier, Malliaros & Vazirgiannis, 2016). The motivation behind
this methodology is that useful keyword are usually at the core of sub-graphs and
can reach many other nodes. These keyword are used for constructing a query and
the sum of their neighbors weights is used as a weight to boost the terms in query.

In the work of Radboud (Boers, Kamphuis & de Vries, 2020), the authors follow a
graph-based approach to enhance document representations for retrieval. In their
work, they build a graph for each document where nodes represents terms and are
weighted using their TF-IDF score and location in the documents. Terms are repre-
sented as vectors using Gerritse, Hasibi & de Vries (2020), and the cosine similarity
between word vectors are used to weight connections in the graph. The authors
also perform entity linking (van Hulst et al., 2020) to extract entities and populate
the graph. To perform ranking, Greatest Maximum Common Sub-graph criterion
(Bunke & Shearer, 1998) was calculated to measure relevance between articles and
achieve the final ranking. Radboud (Kamphuis et al., 2019) also experiment with
different ways of retrieval and re-ranking. Their retrieval methods include BM25,
and Sequential Dependency Model (SDM). For re-ranking, they query Relevence-
Based Language Model (RM3) (Lavrenko & Croft, 2001) with using different query
formulations for instance: using the top 100 works in terms of TF-IDF score. An-
other re-ranking method is based on Entity Linking incorporated Retrieval Hasibi,
Balog & Bratsberg (2016) where detected linked entities, using TAGME (Ferragina
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& Scaiella, 2010), are incorporated into the queries to produce the final ranking.

SMITH (Foley, Montoly & Pena, 2019) handles this task as a learning-to-rank prob-
lem. The authors use a variety of features from different categories. These include
retrieval model based features for the candidate article by querying the original ar-
ticle such as BM25, RM3, SDM, Query Likelihood and others. Reverse retrieval
model features where the candidate article is used for querying and the query article
is retrieved. Helper features such as article entropy, document length difference in
publication time. Keywords and key-phrases are also extracted using different algo-
rithmes such TextRank, SingleRank (Wan & Xiao, 2008), and TopicRank (Bougouin,
Boudin & Daille, 2013), then used as features. The authors also train other models
to provide features such as click-bait probability, using a classifier trained on click-
bait detection dataset. Another model is poetry category classifier where this model
classifies texts into categories such as "Arts/Science", "Social Comment", "Activities"
and other classes.

UNC (Qu & Wang, 2019) also take learning-to-rank approach for this task. In
their work, they utilize similarity features to re-rank BM25 retrieved results. The
similarity features are the cosine similarity of the query and candidate pairs using
TF-IDF representation for different fields such as article title, content, named-entity
mentions (spaCy) and category. The authors also experiment with ensembling BM25
and re-ranking scores to produce the final ranking.

In summary, a number of different approaches were used to solve the problem of
Background Linking. A large number of these approaches can be classified into
3 different types. The first and most successful methods are classic information
retrieval methods where different query expansions and boosting techniques are used
to query search indices. Second, are vector similarity based approaches. Vector
representation of articles learned or calculated and then proximity measures are
used to estimate relevance and rank articles. Finally, Learn-To-Rank approaches
where different types of features are used such as textual, similarity or graph-based
features.
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3. DATASET

In this chapter, we discuss and provide statistics and visualization for the datasets
used in the different tasks addressed in this work. These comprise of the two main
datasets: Washington News Post Corpus and Wikipedia.

3.1 Washington Post News Corpus

The work and experiments in TREC News track is in cooperation with The Wash-
ington Post (WaPo), one of the biggest news papers in The United States. The
National Institute of Standards and Technology (NIST) provide a sizeable news cor-
pus comprised of Washington Post news articles. This news corpus is to be used for
TREC News track tasks such as Entity Ranking, Background Linking and Wikifi-
cation.

In Table 3.1 we report the total number of news articles in Washington Post corpus
over different TREC News iterations. On its first iteration (TREC 2018 News Track)
the size of the corpus was 608,180 news articles. These articles contain duplicates
such as when Washington Post republish an old article. A high percentage of these
duplicates were removed in 2019 which results in a smaller corpus. After reducing
the dataset in 2019 by removing duplicates, the corpus size grows significantly in
2020 and 2021 as the corpus got populated with much more recent news articles.

Track Year Number of Articles Duplicates Removed?
2018 608,180 Only Exact
2019 595,037 Exact&Near
2020 671,947 Exact&Near
2021 728,626 Exact&Near

Table 3.1 Washington Post Corpus Summary
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Duplicates can be troublesome for uniformity in system evaluations (background
linking) (Soboroff et al., 2018). System might rightfully retrieve duplicate articles
that should not be in the articles pool in the first place. Exact duplicates where
article content is matched were dropped in 2018’s corpus (Soboroff et al., 2018).
However, the corpus still posses an amount of near-duplicates. The coordinators
address this problem in the 2019 track iteration (Soboroff, Huang & Harman, 2019)
by checking for similarity between articles using fast algorithms such as MinHashing
(Broder, 2000) and Locality Sensitive Hashing (Datar, Immorlica, Indyk & Mirrokni,
2004) and eliminating documents above a certain Jaccard similarity threshold score.
Hence, eliminating 13,143 duplicate articles to drop the corpus size to 595,037 news
articles. Over the next TREC conference iterations (2020 and 2021), the corpus
was expanded with more recent news articles while applying the same duplicate
elimination method discussed earlier.

Dataset is provided as JSON-lines format, where each line is an article represented
as a JSON object. Each article JSON object is comprised of 8 fields:

• id

• article_url

• title

• author

• published_date

• type: article type (article, blog post, etc.)

• source: article source (WaPo, Bloomberg News, etc.)

• content

The content of the news article is en-capsuled in the content field. This field contain
text paragraphs, image captions and links, section headers. Textual data might
include HTML tags. A simplified example JSON document is shown in Figure
3.1. The objects in the contents field are ordered as they appear in the news article
(Figure A.1). Keeping the original ordering is important for Wikification task as rel-
evance judgements (golden labels) are provided on the content block level. Original
state of the JSON document is shown in Figure A.2.
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"article_url": "https://www.washingtonpost.com/sports/nationals/the−minor−leagues−life−in−pro−baseballs−shadowy−corner
/2016/08/26/96ab542e−6a07−11e6−ba32−5a4bf5aad4fa_story.html",

"author": "Kent Babb; Jorge Castillo",
"id": "96ab542e−6a07−11e6−ba32−5a4bf5aad4fa",
"published_date": 1472222644000,
"source": "The Washington Post",
"title": "Baseball’s minor leaguers pursue their dreams below the poverty line",
"type": "article"
"contents": [
{"fullcaption": "A rainbow arches across the sky over Lake Olmstead Stadium during the playing of the national anthem as Class−

A Augusta GreenJackets play the Delmarva Shorebirds in Augusta on July 15. (John McDonnell/The Washington Post)"},
{"content": "AUGUSTA, Ga.−− They trickled into the mid−July night, a rain−shortened loss beginning their Friday night early. A

25−year−old catcher hung back."},
{"content": "Matt Pare chatted with teammates and underwent a long treatment session as other Augusta GreenJackets players

exited through a clubhouse door wedged open with a broken bat. He kept himself awake with a marathon shower."}
]

Figure 3.1 WaPo article from Figure A.1 in reduced JSON format

3.2 Wikipedia

The famous Wikipedia is an open-source managed encyclopedia that contains mil-
lions of entries or articles. Wikipedia is used as a Knowledge Base for TREC News’
entity related tasks such as Entity Ranking and Wikification. The data in Wikipedia
is semi-structured. Textual data is stored in structures such as sections, lists, tables
and information boxes. Articles are categorized with respect to their type, or topic.
Relationship between different articles are defined through mentions, disambiguation
pages, redirects. The Knowledge Base used in Entity Ranking tasks in TREC News
Track 2018 (Soboroff et al., 2018) and 2019 (Soboroff et al., 2019) is TREC-CAR
Wikipedia dump as of August 2017. After two iterations of Entity Ranking task, the
track coordinators expand the task to full a task of Wikification. Wikification task
in TREC News Track 2020 (Soboroff, Huang & Harman, 2020) and (Soboroff, 2021)
uses the provided Wikipedia dump of January 2020 containing 7,893,275 entities.
The dump is provided in Concise Binary Object Representation (CBOR) format.
CBOR is a format for storing name-value paired data (like JSON) in binary format.
To parse the corpus, we use the scripts provided by TREC CAR organizers1. A
sample entry is provided in Figure A.4. This entry was parsed from CBOR format
into plain un-structured text. It should be noted that the parsed data still holds the
structure information such as titles, headers, child sections, paragraphs, lists, etc. .

1https://github.com/TREMA-UNH/trec-car-tools
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4. Wikification

In this chapter, we discuss the dataset, as in inputs and outputs, used in the Wiki-
fication task. We also explain the methodology and algorithms used in tackling the
different sub-tasks of Wikification task. We also discuss our experiments, results,
and findings in the course of the work on this task.

4.1 Dataset

The task pipeline is composed of detecting mentions of entities and linking these
mentions/anchors to their correspondent page in Wikipedia. Finally, the list of de-
tected mention-entity pairs should be ranked in a manner similar to Entity Ranking.
Wikification task appeared in TREC 2020 and 2021. Similar to Entity Ranking, the
participants are provided with testing topics and are asked to submit a list of ranked
linked-mentions for each topic. However, in Wikification mentions and entities are
not provided unlike Entity Ranking. XML format of the test topics is shown in
Figure 4.1.
<top>

<num> Number: 886 </num>
<docid>AEQZNZSVT5BGPPUTTJO7SNMOLE</docid>
<url>https://www.washingtonpost.com/politics/2019/06/05/trump-says-transgender-

troops-cant-serve-because-troops-cant-take-any-drugs-hes-wrong-many-ways/</
url>

</top>

Figure 4.1 Wikification Test Topic

For submission, the systems should provide the text span location, length and the
linked entity link as output. Exact submission format is shown below:
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C1 C2 C3 C4 score
False False False False 0
True True False False 1
True True True False 5
True True True True 10

Table 4.1 Wikification Scoring Methodology

topicNum score cNum start len link
936 17.86 4 94 6 enwiki : Ephron
936 18.56 4 201 8 enwiki : Silkwood
936 10.53 6 14 8 enwiki : Perelman

Figure 4.2 Wikification Output Format

Here "cNum" stands for the content block number. As shown in the JSON format of
the articles in Figure A.2, articles are made up of content blocks where each block
can be a paragraph, heading, image, caption, etc. "start" is the character index since
the beginning of the content. Each "len" is the number of characters in the mention
span. It’s worth noting that for each detected mention span, systems should only
submit the best predicted link rather than a list of ranked links.

To evaluate systems, assessors score each linked mention on 4 criteria:

C1 Sensible mention span: this criteria judges whether it makes sense to have an
entity link in this text span.

C2 Useful mention link: this criteria judges whether it would help the reader to
link this mention.

C3 Correct link: this criteria judges whether the provided link matches the actual
correct link.

C4 Useful link content: this criteria judges whether the content in the linked entity
is useful in providing context or background information to the reader.

These multiple binary criteria represent are converted to a singular numerical score
as shown in Table 4.1. This criteria reflects the correctness and relevance of a
mention. If all criteria are false, this means the relevance score of the mention is 0.
If both the mention span and entity link are correct and relevant (all 4 criteria are
satisfied) the relevance score of the mention is 10.

Similar to TREC News 2019’s Entity Ranking task, the main metric to evaluate
systems performances is nDCG but with a cutoff value of 10 (nDCG@10). 50 and 51
test topics were provided for 2020 and 2021 TREC News track iterations respectively.
TREC also provides a Wikipedia dump as of 2020 as the KB for both 2020 and 2021
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track iterations.

4.2 Methodology

The pipeline of our approach in the Wikification task contains 4 sub-tasks. First
sub-task is Mention Detection (MD) were we find text spans that mentions entity
from the KB. We utilize the effective FLAIR NER tool (Akbik et al., 2019) for the
MD sub-task. Second sub-task is Candidate Generation (CG) or retrieval where
we generate a list candidate entity to send for ranking. CG system utilizes search
engines such as Elastic-Search for term-matching or FAISS for dense vector search.
Third sub-task in our pipeline is Candidate Ranking (CR) where we predict the
best candidate entity. In this sub-task we perform context encoding and apply
neural ranking select the best candidate. In Figure 4.3 we demonstrate the general
pipeline used in our first three sub-tasks. The input in the pipeline is a Washing Post
(WaPo) document, and the output is a non-ranked list of entities detected in that
document. Lastly, the final sub-task is the previously featured Entity Ranking (ER)
task where the list of detected entities for a document is ranked. For this sub-task,
we use a simple but effective method for ranking based on the order of appearance in
text. Figure 4.4 summarizes the entire Wikification pipeline. Entity Linking model
basically comprises of our first 3 models: Mention Detection, Candidate Generation
and Candidate Ranking models.
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Articles

For each  
mention

Candidate
Retrieval Wikipedia

ArticlesWikipedia
Article

Mention Detection 
(NER) MentionWaPo

Article

Wikipedia
ArticlesWikipedia

ArticlesWikipedia
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Article
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Predicted  
Entity

Candidate Ranking
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Figure 4.3 Entity Linking Pipeline
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Figure 4.4 Full Wikification Pipeline

4.2.1 Mention Detection

Our first sub-task in the Wikification pipeline is MD. In this sub-task, our goal is to
identify text spans that refer to named entities so we can later link these entries to
our KB. We treat this task as a NER task. Namely, we utilize NLP tool FLAIR. At
the time of its publication (Akbik et al., 2019), FLAIR has shown state-of-the-art
results on NER benchmark datasets such as the famous CoNLL-2003 NER dataset
(Tjong Kim Sang & De Meulder, 2003). FLAIR learns contextual character embed-
dings by performing neural character-level language modeling. These embeddings
are used as sentence representation and are passed to BiLSTM-CRF (Huang, Xu &
Yu, 2015) to perform NER as a sequence labeling task.

Furthermore, we experiment with another successful NLP tool, Stanford Core-NLP
1. Stanford Core-NLP is an NLP analysis tool based on statistical modeling. This
tool provides many annotation services such as tokenization, Part-Of-Speech tag-
ging, lemmatization, co-reference resolution, and NER.

We also experiment with the recent state-of-the-art transformer-based BERT (De-
vlin et al., 2019) with a token classification head fine-tuned on CoNLL 2003 dataset
for NER2.

4.2.2 Candidate Generation

Detected entity mentions form the previous step are used as queries to retrieve
lists of candidate entities. KBs are naturally huge in size and contain millions of
entries. Simply searching the entire entity universe for the golden entity is costly
and impractical. This calls for fast methods to produce a smaller sub-set of entities

1https://stanfordnlp.github.io/CoreNLP/

2https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english
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that possibly contains the golden entity with high recall. In our work, we explore
two different methods for generating candidates.

Our first method is a search index built on Wikipedia dump using Elastic-Search
search engine identical to the one described in Ak et al. (2020). To construct the
index, we parse the provided TREC CAR Wikipedia dump and use the following
fields to construct the index:

• Title: Entity article page title

• Content: The textual content of the Wikipedia article concatenated into one
text field

• Redirect Names: The list of surface forms or names that are used to re-direct
to the entity page

• Categories: The list of wiki categories this article belongs to.

• Headings: The list of headings or section titles in the article.

Default Elastic-Search settings were used while building the index. To perform
candidate retrieval, we experiment with different query formulation to search the
index utilizing the detected mention text spans and the context around it. Query
formulation include exact term matching, or fuzzy search with the title, content
and disambiguation names fields. For scoring the candidates, we use Elastic-Search
default scoring function BM25.

Our second candidate generation system utilizes vector similarity search to retrieve
candidates. This approach is based on BLINK’s Bi-Encoder model (Wu et al., 2020).
In this approach, mentions and entities are encoded using BERT to obtain a vector
representation for each. Vector representation of mentions is obtained by encoding
the mention as it appears in text along with its left and right context (in WaPo).
The method below demonstrates how a sequence of tokens is created by using special
tokens to signify the mention boundaries:

[CLS] left context [Mstart] mention text [Mend] right context [SEP ]

[Mstart] and [Mend] special token are used to signify the beginning and end mention
and separate it from the preceding and following context. Last layer’s output repre-
sentation for the first token in the sequence [CLS] is used to represent the mention.
The constructed token sequence is padded or cropped to match the maximum se-
quence length parameters of 256. Left and right context is limited to 128 tokens
each.
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Similarly, to obtain entity vectors, the corresponding Wikipedia article title and text
is encoded in BERT by constructing the following sequence:

[CLS] title [ENT IT Y ] description [SEP ]

[ENTITY ] special token is used to separate the title from the article content. Sim-
ilarly, [CLS] token representation is extracted as used as a vector representation for
entity. The constructed sequence is also limited to 256 tokens.

The vector pairs are passed into a simple single-layer neural network that scores the
entity-mention vector pairs using their dot-product as a way to measure similarity.

A vast amount of mentions in Wikipedia articles are typically linked to their cor-
responding entity pages. This produces a large entity linking dataset that can be
used to train entity linking components. BLINK (Wu et al., 2020) create a training
set of 9 million examples out of Wikipedia’s set of linked mentions. This dataset is
used to learn model parameters such as the representations of mentions and entities
and optimize the weights of the scoring layer.

After training, the entirety of the entity universe is encoded, cached and used to
build FAISS index (Johnson et al., 2017). FAISS is a library for efficient dense
vector similarity search. Finally, to produce a list of candidates at inference time,
the mention is encoded and used to query the vector search index (FAISS) and
retrieve N closest candidates using Euclidean (L2) distance. These candidates can
also be ranked using the scoring layer and make the final entity prediction based on
the highest scoring entity.

The output of our CG methods , Elastic-Search and Bi-Encoder, is a list of 100
candidate entities for each detected mention. These candidates are then sent for the
re-ranking model where the best candidate is selected as prediction.

4.2.3 Candidate Ranking

In this step, we use the list of candidates to make the final prediction for each de-
tected mention. This step is optional, as our two retrieval methods already provide
scores that can be used for ranking. However, the reduced entity space after can-
didate retrieval (100 compared to over 7 millions), now allows us to apply much
complex and expensive methods and further incorporate the context around the
mention to make a better entity link prediction.
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For this purpose, we use the Cross-Encoder model described utilized in BLINK
(Wu et al., 2020). Cross-Encoder follows the same encoding methodology as the
Bi-Encoder. However, instead of encoding the mentions and entities as separate
strings, the pair is used to construct a singular sequence as shown below:

[CLS] left context [Mstart] mention text [Mend] right context

[SEP ] title [ENT IT Y ] description [SEP ]

The representation in a singular sequence allows the encoder to naturally apply
attention mechanism between the mention’s and entity’s tokens. Similar to the case
of Bi-Encoder, last layer’s output for the [CLS] token is extracted. This is then
passed to a linear layer that produces a ranking score. After producing a score
for each mention-candidate pair from the candidate list, the candidate with the
highest score is selected as predicted entity. Wikipedia’s linked mentions dataset is
again used to optimize model’s parameters such as the encoder’s and ranking layer’s
weights.

4.2.4 Entity Ranking

After making the final prediction for each mention-entity pair. We obtain a list
of detected entities in each document. The final output for the Wikification task
is to rank these entities in terms of importance and significance to the reader. To
do this, we experiment with two methods of producing the final ranking. Our first
method is best performing method 2020 Wikification task submissions (Ak et al.,
2020). Where entities are simply ranked using the natural order entities appear
in text. Our second method is to utilize our deep learning models scores from the
previous step. These scores reflect the confidence made in the entity prediction.
Hence, using these score tests whether similarity between document and entity text
can be effective for ranking.

4.3 Experiments
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2020 2021
System Recall Precision F1 Recall Precision F1
Stanford CoreNLP 0.642 0.105 0.181 0.716 0.114 0.1973
FLAIR 0.782 0.131 0.225 1.0 0.158 0.274
BERT-Large-Ner 0.770 0.098 0.173 0.839 0.098 0.176

Table 4.2 Mention Detection system scores on testing topics

In this section, we discuss our experiments for the different sub-tasks of Wikification
and report the results obtained by our different approaches.

4.3.1 Mention Detection

In our first sub-task in the Wikification pipeline, we use out-of-the-box NER models
without performing any fine-tuning. This is due to our small labeled dataset size. To
evaluate our standalone Mention Detection models, we extract the golden mentions
from 2020 and 2021 QRELS and a create small testing dataset consisting of 422
and 481 mentions respectively. We use our three NER models to detect mentions in
the testing topics. We report the models performances in terms of Recall, Precision
and F-1 Score in Table 4.2. FLAIR model scores highest in terms of Recall on
both testings sets where it shows a perfect recall score for 2021 set. BERT-based
model scores 1% and %16 lower than FLAIR on 2020 and 2021 sets respectively.
CoreNLP’s scores 14% and 28.4% worse that FLAIR.

As for Precision score, all of our NER models over-produce mentions with a high-
rate of false positives which yields low Precision results. For the nature of our task,
we believe the most important metric is Recall. We believe false positive examples
can be filtered out during our Entity Ranking task at the end. However, undetected
mentions or false negatives can have a higher direct impact on the final Wikification
performance.

Error Analysis: Mention Detection

In our experiments we explore different components and methodologies for our differ-
ent sub-tasks in Wikification. To better understand the differences in performance
between different methodologies we analyze error cases where one system fails but
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(a) Passage 1
(b) Passage 2

Figure 4.5 Organization name entity mentions that were detected by FLAIR but
not with CoreNLP

(a) Passage 3 (b) Passage 4

Figure 4.6 Location-related entity mentions that were detected by FLAIR but not
with CoreNLP

the other alternative system doesn’t.

We analyze the performance differences between different Mention Detection models.
Specifically we examine TREC 2020 golden mentions that were successfully detected
by FLAIR but not with CoreNLP (63 mentions). In summary, we notice a big
percentage CoreNLP undetected mentions belongs to organization names with long
names (3 or more tokens). We report an example of these names in Passage 1
and 2 in Figure 4.5 . We also observe CoreNLP’s low performance on location-
related entity mentions. This is more demonstrated in Figure 4.6 where we report
3 undetected entity mentions that refer to street names.

Error Analysis: Incorrect Annotations

While performing manual error analysis on our Mention Detection systems, we dis-
covered several faulty annotated mention spans. TREC provides the golden entity
mentions and link in their QRELS files. We don’t have the exact number of faulty
samples. However, a number of miss-aligned annotations seems to happen in content
blocks that contains HTML code. The mention start index provided in the QRELS
seems to have incorrect values. An example of an incorrectly annotated mention is

27



“With social media and 24-hour cable and an environment in which experts and
the value of science is <a href="https://www.washingtonpost.com/national/
health-science/big-turnout-expected-for-march-for-science-in-dc/
2017/04/21/67cf7f90-237f-11e7-bb9d-8cd6118e1409_story.html?utm
_term=.84327e8cc336">increasingly questioned</a>, we just can’t assume in
a crisis that we can get up and talk to the American people,” said Margaret
Hamburg, a former commissioner of the Food and Drug Administration , who
played the health and human services secretary. Otherwise, she said, “it’s
an environment where one thing that goes out in the media can suddenly
mushroom, and before you know it, everything you’re doing in the most
scientific way can be derailed.”
Provided annotation (QRELS): mention_start: 470, mention_length: 28, link:
enwiki:Food%20and%20Drug%20Administration
Extracted mention using annotation: "nd Drug Administration, who "
Correct mention: "Food and Drug Administration"

Figure 4.7 An example of incorrect annotations for mentions

shown in Figure 4.7.

It is worth noting that for the rest of this work and experiments, we use the original
dataset as it is with any manual corrections or modifications.

4.3.2 Candidate Generation

In our work, we explore two main methodologies for Candidate Generation: text-
based and vector-based retrieval.

Elastic Search Query Formulations

Using the mentions surface form, we build different search queries by using different
matching methods: Exact-Match and Fuzzy-Match. Fuzzy-match or approximate
match is basically partial matching the search query.

We also explore different fields for matching: title, disambiguation names, and text
content. Here is the list of different query formulations used for our Elastic-Search
experiments:

• EM-T: Exact matching using the title field only.
28
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Query Formulation 2020 Topics 2021 Topics
EM-T 0.905 0.906
EM-DN 0.689 0.792
EM-C 0.596 0.770
EM-ALL 0.933 0.979
EM-T+FZ-T 0.935 0.915
EM-ALL+FZ-T 0.950 0.977
EM-ALL+FZ-ALL 0.952 0.975

Table 4.3 Recall@100 score for our different Elastic-Search query formulations

• EM-DN: Exact matching using the disambiguation names field only.

• EM-C: Exact matching using the text content field only.

• EM-ALL: Exact matching using the title, disambiguation names, or the text
content field (in that order) using the OR clause.

• EM-T+FZ-T: Exact or fuzzy matching using the title field only.

• EM-ALL+FZ-T: Same as EM-ALL but include another fuzzy matching clause
with title field.

• EM-ALL+FZ-ALL: Same as EM-ALL but include 3 fuzzy matching clauses
with the title, names, and text content fields.

To test our different query formulations, we extract the set of golden mentions from
2020’s QRELS file (422 mentions). We use the golden mentions spans as the query
content for our queries.

We report the Recall@100 score for all query formulations in Table 4.3. We observe
the highest gain in Recall for a single field goes to exact matching the title field (EM-
T). Naturally, the title field is the most significant field for retrieval. We observe a
good increase in performance when adding fuzzy matching to the title query (EM-
T+FZ-T). Adding the disambiguation names and the text content fields provides a
boost. The best performing query formulation is EM-ALL+FZ-ALL where we use
exact and fuzzy matching for all 3 fields and we use this query for retrieval before
Candidate Ranking.

Bi-Encoder Wikipedia Version

BLINK (Bi-Encoder and Cross-Encoder) uses English Wikipedia dump of August
2019 as the main knowledge base in their work (Wu et al., 2020). This Wikipedia
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dump is used for learning entity’s vectors and training the Bi-Encoder and Cross-
Encoder. BLINK’s authors provide their pre-trained models and entity universe
vectors in their GitHub repository3. The authors report training setup and details
in their paper. Using 8 Nvidia Volta v100 GPUs for training their models, training
the Bi-Encoder took 70 hours while training the Cross-Encoder takes around 37.5
hours.

As reported earlier in Dataset Chapter, TREC News’ 2020 and 2021 Wikification
task uses TREC CAR’s Wikipedia dump of January 2020. To validate our use
of BLINK’s entity universe, we use 2020 golden Wikification qrels to investigate if
golden entities are found in BLINK’s Wikipedia dump. Out of 422 golden linked
entities, only 4 entities were not found in BLINK’s Wikipedia dump.

The output of Bi-Encoder and Cross-Encoder is Wikipedia entity titles from
BLINK’s dump. To ensure the predicted the entities are mapped correctly to the
equivalent TREC CAR’s Wikipedia entry, we apply a simple alignment technique
when making predictions using BLINK’s models (Bi-Encoder or Cross-Encoder) .
Our technique comprises of two steps to generate Wikification output in TREC’s
format of "enwiki:entry_id" from BLINK’s outputs:

Step 1 Use Elastic-Search to find TREC CAR’s entity that matches the title returned
by BLINK (exact match).

Step 2 If step 1 fails, fetch BLINK’s prediction entity’s text content and use Elastic-
Search to search the contents of TREC CAR’s Wikipedia articles and match
with highly similar articles.

Step 2 in our approach allows us to match entities for which titles where changed but
the content is still very similar. For example: "Eleanor Butler Alexander-Roosevelt"
entity page was re-named to "Eleanor Butler Roosevelt" in the newer Wikipedia.

Entity Embeddings Visualization

Neural entity linking systems depend greatly on effective entity representations.
These representations must encode semantic relatedness between entities in various
aspects. To validate this aspect of BLINK’s entity representation, we perform a
simple visualization experiment. We select 5 different topics: "basketball", "politi-
cian", "animal wildlife", "programming language" and "deep learning". We retrieve

3https://github.com/facebookresearch/BLINK
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Figure 4.8 Visualized entity embeddings space for 100 entities from 5 selected topics
visualized using t-SNE

100 entities related to these topics using Elastic-Search. We then extract the 768-
dimensional vector representations of these entities and use t-SNE (van der Maaten
& Hinton, 2008) for visualizing these entities in 2-D vectors space. The visualized
entity embeddings are shown in Figure 4.8 . To test this, we use some entities as
test cases and observe the relatedness and distance shown in the location of these
entities. "Michael Jordan" the basketball player is located in the "basketball" cluster
of vectors and away from "Michael Jordan (Irish politician)" and the "politician"
cluster. The same can be observed with "Python (programming language)" and
"Python (genus)". We also observe "TensorFlow" entity as being close to both "deep
learning" and "programming language" clusters.

Candidate Generation Results

Furthermore, We analyze our two different Candidate Generation/Retrieval sub-
systems. We use the set of golden mentions from 2020’s test topics. We perform
candidate retrieval using our Bi-Encoder and Elastic-Search with the best query
formulation (EM-ALL+FZ-ALL). We report the recall scores at different cutoffs:

31



Model R@1 R@5 R@10 R@25 R@50 R@100 R@1000

2020 ES-BEST 0.594 0.841 0.886 0.931 0.940 0.952 0.974
Bi-Encoder 0.879 0.929 0.941 0.955 0.955 0.957 0.969

2021 ES-BEST 0.736 0.868 0.908 0.944 0.955 0.975 0.975
Bi-Encoder 0.948 0.966 0.981 0.981 0.993 0.993 0.993

Table 4.4 Recall scores at different cutoffs for our retrieval models on 2020 and 2021
Test Topics

1,5,10,25,50,100 and 1000 in Table 4.4. For Elastic-Search, we observe high increase
in recall when going from 1 candidate to 5 candidates. Elastic-Search provides
the highest system recall score at 1000 candidates in 2020 topics while Bi-Encoder
scores higher on 2021 topics. However, Bi-Encoder performances at all cutoff points
except 1000 proves to be more effective than Elastic-Search. Since Bi-Encoder in-
cludes the context while encoding the mention, it can provide a good filtered list of
candidates at a much lower cutoff. This can seen in Bi-Encoder’s Recall@1 score is
significantly higher than Elastic-Search’s Recall@1 score and is even comparable to
Elastic-Search’s Recall@10 and Recall@50 scores.

4.3.3 Candidate Ranking

After receiving a list of candidate entities for each mention, we apply Candidate
Ranking to decide on the final prediction by linking an entity for each mention. We
utilized two methods for ranking: retrieval models scores or BLINK’s Cross-Encoder.
To evaluate the performances between the two methods, we perform candidate re-
trieval using Bi-Encoder and ES. Then, we use Cross-Encoder to apply re-ranking
for the candidates list. We then measure the ranking performance for raw retrieval
models scores and Cross-Encoder re-ranked scores. It should be noted that here
we also use alignment methodology mention earlier to align BLINK’s entities into
TREC Wikipedia names. We also measure the time efficiency of both methods. Re-
ranking using the transformer-based Cross-Encoder is resource and time extensive
so we would like to highlight the trade-off between our methodologies.

We report the nDCG@5 scores and total time taken (average) combined for retrieval
and re-ranking in Table 4.5.

First, we note the low performance of Elastic-Search using the best query method
(EM-ALL+FZ-ALL) without any re-ranking. This is shown as Elastic-Search (Non-
Boosted) in Table 4.5. This low score is expected as we have seen earlier in Recall@1
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Candidate Retrieval Re-ranking 2020 2021 Avg Mins
Elastic-Search (Non-Boosted) None 0.1716 0.3812 6
Elastic-Search (Boosted) None 0.3483 0.6483 6
Bi-Encoder None 0.3326 0.6422 11
Elastic-Search Cross-Encoder 0.4306 0.7482 70
Bi-Encoder Cross-Encoder 0.4223 0.7542 74

Table 4.5 Candidate Retrieval and Ranking performances reported in nDCG@5 and
average minutes taken for inference

score for the best candidate retrieval query (EM-ALL+FZ-ALL). This query for-
mulation retrieves a better candidate list. However, making the prediction as the
candidate with the highest raw retrieval score does not perform well since we intro-
duce fuzzy-search into our queries. Fuzzy-search can be helpful in retrieval when
search terms only partially match. But, in doing so it also introduces some noise
(irrelevant candidates). To counter this, we apply boosting to the non-fuzzy fields.
Therefore, giving these fields such as title field more weight when scoring search
results. Title field is given a weight of 10, disambiguation names is given a weight
of 5 and other fields are weighted as 1. We observe noticeable improvements when
apply boosting in the Candidate Ranking stage. Elastic-Search with boosted queries
performs on-par with Bi-Encoder. Re-ranking using the Cross-Encoder significantly
improves the final wikification performance.

As for computing performance, Elastic-Search is the most time and resource efficient.
Both Bi-Encoder and Cross-Encoder are deep complex algorithms and require both
memory and computation power for longer periods. Running the Cross-Encoder
takes one hour (on average) longer on 2020 or 2021 testing topics.

4.3.4 Entity Ranking

After linking each detected mention to an entity, we would like to rank the list
of linked mentions/entities in each document in terms of relevance. To perform
ranking, we use two different methods: 1) Candidate Ranking model scores 2) Cosine
similarity on Doc2Vec representations of articles and entities. Also, we reduce the
list of retrieved linked mentions in a document to 100 to comply with the constraints
of TREC evaluations. For this purpose we use the order of appearance in text to
eliminate entities appearing later in text and reduce the list to 100 mention-entities
pairs per-document.
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Ranking: Model Scores

After obtaining the list of detected mention-entity pairs in each document. We get
the model score of that was used in predicting that entity. This score can be obtained
using Bi-Encoder, Elastic-Search or Cross-Encoder depending on which model was
used to make the final entity prediction for each mention. This score represents the
model’s confidence in its prediction. In this approach, we use this score to rank
mention-entity pairs in terms of relevance to the document.

Note that we use only the top scoring candidate score for each mention. We are not
using different candidates for the same mention. Hence, the list of mention-entity
pairs we use for Entity Ranking in each document looks like the following:

• "mention1 text", entityA, score

• "mention2 text", entityB, score

• "mention3 text", entityC, score

• "mention4 text", entityA, score

In Table 4.6 we report the NDCG@5 score of the final wikification utilizing only
the top-K scoring entities in each document for our 3 different Candidate Ranking
models.

Generally, using the highest scoring entity (top-1) in a document, achieves more
than 50 percent of the performance that we get for using top-5 entities. This high-
lights the low-precision trait of our Mention Detection model. For 50 testing topics
(2020 dataset), our MD system detects over 2500 mentions where only 421 of these
are mentions link-able to Wikipedia (2020 topics). Using only 50 (top-1 in each doc-
ument) of these 2500 accounts for over 50% of the full performance. This reflects
on the idea of prediction confidence (model scores) and why it is useful in our case
to eliminate the false-positive mentions produced by our MD model.

Ranking: Doc2Vec

In our TREC News 2019 participation, we utilized Doc2Vec and Cosine simlarity
for the task Entity Ranking. We re-visit this approach for the purpose of Entity
Ranking sub-task as part of the Wikification task. We handle this task as a simple
vector similarity task between the test article and the detected entities.

In Table 4.7 we report the final Wikification score of entities ranked using Cosine
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Candidate Ranking K 2020 Topics 2021 Topics
Cross-Encoder 5 0.4262 0.7461
Cross-Encoder 3 0.3774 0.6879
Cross-Encoder 2 0.3299 0.5402
Cross-Encoder 1 0.2625 0.4518
Bi-Encoder 5 0.3301 0.6392
Bi-Encoder 3 0.2980 0.5679
Bi-Encoder 2 0.2436 0.5003
Bi-Encoder 1 0.2040 0.3838
Elastic-Search 5 0.3271 0.6489
Elastic-Search 3 0.2950 0.5785
Elastic-Search 2 0.2407 0.5169
Elastic-Search 1 0.1906 0.3872

Table 4.6 Wikification’s nDCG@5 score for using the top K scoring entities for Entity
Ranking

similarity between the article and entity Doc2Vec vectors. As seen in the results,
Doc2Vec does not provide any improvements over Cross-Encoder. The methodology
used in the Cross-Encoder already uses the principle of vector similarity but using a
much more sophisticated representation for both mentions and entities, and uses an
optimized ranking model to produce the similarity scoring. Also, it should be noted
that in our previous Entity Ranking experiments, we use a manually validated golden
list of entities. However, in this case, we are using a much larger list of detected
entities that includes both true-positives and false-positives.

Entity Ranking method 2020 Test Topics 2021 Test Topics
Doc2Vec-Article 0.2294 0.3786
Doc2Vec-Paragraph 0.218 0.3560
Cross-Encoder Top-1 0.2625 0.4518

Table 4.7 nDCG@5 Wikification score for using Doc2Vec vector similarity in Entity
Ranking. The list of document entities are linked by using our Cross-Encoder model.

Reducing the number of retrieved items

We reduce the number of retrieved mention-entity pairs in each document to 100
per document to comply with the TREC constraints.

In order to understand entity’s relevance to the article, we analyze the distribution
of detected entities with respect to their location in the article. In Figure 4.9 where
we report the Cross-Encoder wikification performance on 2020 topics while using
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only the first N% entities in each document. We observe that using the first 4̃5%
occurring entity mentions counts for most of the total Wikification performance
0.411 compared to 0.430 when retrieving all entities. We also observe that in some
cases, retrieving more than first 45% mention can reduce the performance.

Figure 4.9 Wikification performance by using only the first N% of Entities for ranking

4.3.5 Other Participants Results

We report our final wikification results compared with 2020 Wikification participants
in Table 4.8. All of our approaches score better compared to 2020’s participants.
We also report our results on 2021 testing set. For our final results, we use the first
100 appearing mention-entity pairs in each document. These 100 pairs are ranked
using their Candidate Ranking (model) scores.

We observe the Cross-Encoder effectiveness and improvement is consistent through-
out this testing set. Elastic-Search only results proves better than Bi-Encoder. Bi-
Encoder and Cross-Encoder combination scores slightly better than Elastic-Search
and Cross-Encoder. However, this small improvement does not hold in the previous
year. Elastic-Search shows a better overall performance as a Candidate Retrieval
method.
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Candidate Retrieval Re-ranking 2020 Topics 2021 Topics
Elastic-Search None 0.3483 0.6483
Bi-Encoder None 0.3326 0.6422
Elastic-Search Cross-Encoder 0.4306 0.7482
Bi-Encoder Cross-Encoder 0.4223 0.7542

Ak et al. (2020) 0.3168 -
Ningtyas et al. (2020) 0.1191 -

Table 4.8 Wikification nDCG@5 score for 2020 and 2021 testing topics
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5. Entity Ranking

In this chapter, we discuss the dataset, as in inputs and outputs, used in the Entity
Ranking task. We also explain the methodology and algorithms used in tackling this
task. It should be noted, this task was approached in 2019 before the Wikification
task came out (in 2020) as part of our participation in TREC News 2019.

5.1 Dataset

In entity ranking task, the input is a document and the list of entities mentioned
in that document. The task is to rank these entities in terms of importance to the
reader and how much it will help the user in understanding the article or providing
the needed context. To create the dataset, Stanford CoreNLP tool was used to
detect named-entities. Then, the coordinators manually link each detected mention
to its entry in the Wikipedia KB.

The testing topics are given in XML format as shown in Figure 5.1. The topic
number "num" is used for easier reference to an article in the news corpus where
the corresponding "docid" is also provided in the XML file. Original corresponding
article is shown in Figure A.2 article The entities object contain a list of entities to be
ranked by the system for that given article. Each entity is given an ID and the link
for KB entry (enwiki:entity_link). Since an entity can be mentioned several times
in article, different surface forms used to mention that entity are also provided. In
2018’s track iteration, 50 test topics were provided. While there were 60 test topics
provided for 2019 experiments. TREC also provides Wikipedia dump of 2017 as
the KB for both 2018 and 2019 experiments. It’s worth noting that this task was
extended to a full Wikification task in 2020.
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<top>
<num> Number: 826 </num>
<docid>96ab542e-6a07-11e6-ba32-5a4bf5aad4fa</docid>
<url>https://www.washingtonpost.com/sports/nationals/the-minor-leagues-life-in-

pro-baseballs-shadowy-corner/2016/08/26/96ab542e-6a07-11e6-ba32-5
a4bf5aad4fa_story.html</url>

<entities>
<entity>

<id> 826.1 </id>
<mention>Richmond</mention>
<link>enwiki:Richmond,%20Virginia</link>

</entity>
<entity>

<id> 826.2 </id>
<mention>Boston College</mention>
<link>enwiki:Boston%20College</link>

</entity>
.
.
<entity>

<id> 826.8 </id>
<mention>San Francisco Giants</mention>
<mention>Giants</mention>
<link>enwiki:San%20Francisco%20Giants</link>

</entity>
</entities>
</top>

Figure 5.1 Entity Ranking Input

For system evaluation, NIST assessors judge the entities for each test topic on a
scale from 0 to 4 in terms of importance. The scoring criteria is the following:

4: Entity must be linked else crucial information is missing from the article.

3: Entity provides necessary context for the reader.

2: Entity provides important background information for the reader.

1: Entity might be helpful in understanding the larger picture or context of the
article.

0: Entity does not provide any significant background information.

After the system evaluations of each year, the golden relevance judgements (qrels)
used for evaluation are provided. These qrels provide the scoring for all test topic
and entity pairs of that year.
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The primary metric when this task was first released was Average Precision (AP)
as shown in the following formula:

AP =
∑
n

(Rn −Rn−1)Pn

However, without a cut-off (@K), this metric takes all the list of entities where in
a real-life application the ranking should be cut-off after some specific value. For
better evaluation, 2019 News Track uses Normalized Discounted Cumulative Gain
(nDCG) with cut-off @5 :

nDCG = DCG
IDCG

DCG =
∑
n

reln
log2(i+1)

Where IDCG is the ideal discounted cumulative gain.

After performing ranking for each topic, participants should submit their results
as a file where each line contains a tuple of test topics, mentioned entity and the
ranking score:

topicNum entityID score
825 825.1 0.923
825 825.2 0.81

Figure 5.2 Entity Ranking Output Format (simplified)

5.2 Methodology

In this task, we hypothesize that the vector representation of important entities in a
document should be close in vector space compared to the vector representation of
the query document. To test this hypothesis, we learn the vector representation of
Washington Post News and Wikipedia articles using Doc2Vec (Le & Mikolov, 2014).
Then, we use cosine similarity as a proximity measure to produce a ranking for the
list of entities. We provide a summary of the pipeline used in Figure 5.3 .
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Figure 5.3 Entity Ranking Pipeline

5.2.1 Doc2Vec

Document distributed representations, or Doc2Vec (Le & Mikolov, 2014), is an un-
supervised approach for learning a vector representation for phrases, paragraphs,
or documents. Doc2Vec encapsulates both semantic and contextual into fixed-sized
vectors for documents of all lengths. Doc2Vec is based on Word2Vec (Mikolov et al.,
2013) algorithm for learning vector representation for words.

To train Doc2Vec, we use our provided corpora: Washington Post and Wikipedia.
Training Doc2Vec only requires minimal pre-processing such as white-space tok-
enization. Embedding size was set to 200. As a training framework, we use the Dis-
tributed Memory (PV-DM) framework over the distributed Bag-Of-Words (dBOW)
as PV-DM considers word ordering when learning the representations. After train-
ing Doc2Vec, we use the model to obtain vector representation for articles and each
of their mentioned entities.

5.2.2 Vector Similarity and Ranking

After obtaining the vector representations for articles and entities, we calculate a
proximity/similarity score between each article and mentioned entity. Our approach
is based on the idea that articles and important entities share a good amount of
keywords or phrases in their text. Therefore, the representations of the pair should
be close to each other in vector space. To calculate vector similarity we use the
Cosine Similarity.

Ranking score R for entity ei mentioned in article D is calculated using the cosine
similarity as the following:

(5.1) RD
ei

= cos_sim(V (D),V (ei))

This score is calculated for every entity that is mentioned in the query article. The
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full pipeline of ranking is summarized in Figure 5.3.

5.2.3 Using Background Linked Articles

We also extend our vector similarity-based hypothesis for Entity Ranking and inves-
tigate whether using similar articles such as Background Linked articles can benefit
in Entity Ranking. The idea is that similar articles that share the same topic or im-
portant entities can have different keywords and phrases while discussing the topic.
Therefore, including these similar articles while ranking entities might help in some
cases.

To test this, we use Doc2Vec to encode all Washington Post articles into our 200-
dimensional vector space. Then for each test article, we search the entire vector
space and obtain the N most similar article using cosine similarity. These similar
articles will now be used along with the original test topic to determine the ranking
score for mentioned entities.

To perform the ranking, we explore different ways of including similar articles. We
first use the cosine similarity from our original approach (see Equation 5.1) along
with the cosine similarity between the top 1 similar article’s vector and each entity’s
vector in a weighted fashion where the original score dominantly effects the final
ranking. This approach is referred to as orig + top1 . For top 1 similar article
SIMD

1 , we calculate the ranking score using the following formula:

(5.2) RD
ei

= 0.9∗ cos_sim(V (D),V (ei))+0.1∗ cos_sim(V (SIMD
1 ),V (ei))

We also retrieve the top 5 similar articles and incorporate their similarity score into
the final ranking. This approach is referred to as orig + top5 . Here, we using the
following weighting :
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(5.3) RD
ei

= 0.8∗ cos_sim(V (D),V (ei))

+0.05∗ cos_sim(V (SIMD
1 ),V (ei))

+0.05∗ cos_sim(V (SIMD
2 ),V (ei))

+0.04∗ cos_sim(V (SIMD
3 ),V (ei))

+0.03∗ cos_sim(V (SIMD
4 ),V (ei))

+0.03∗ cos_sim(V (SIMD
5 ),V (ei))

We also test the effect of using similar articles by just using the similarity of the
similar article vectors and the entities without including the original test article. We
experiment with using only the top 1 similar article. This approach is referred to as
top1 . We calculate the final ranking score as the following:

(5.4) RD
ei

= cos_sim(V (SIMD
1 ),V (ei))

Also, we use the top 5 retrieved articles in an averaged fashion (approach is referred
to as top5):

(5.5) RD
ei

= 1
5

5∑
n=1

cos_sim(V (SIMD
n ),V (ei))

5.3 Results and Discussion

In this section we discuss our experiments for choosing Doc2Vec’s vector dimension
size. We also report and discuss the results for our similarity-based approach and
compare to other participants in TREC News Entity Ranking task.

To select the optimal vector dimension size for the article and entity representation,
we explore 3 different dimension sizes for our representations. We report the Entity
Ranking performance using orig ranking method for the different vector sizes in
Table 5.1. Based on the reported results, 50 and 500 dimensions proves too small
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TREC 2018 TREC 2019
Dimension Size MAP nDCG@5 MAP nDCG@5

50-D 0.7941 0.6982 0.6932 0.6384
200-D 0.8023 0.6913 0.7812 0.7509
500-D 0.7933 0.6960 0.7095 0.6650

Table 5.1 Entity Ranking results using different Doc2Vec vector sizes

TREC 2018 TREC 2019
Approach MAP nDCG@5 MAP nDCG@5

orig 0.8184 0.7232 0.7906 0.7579
SIGNAL 0.7144 0.6084 - -

TREMA-UNH 0.7859 0.4278 - -
CMU - - 0.5778 0.4782
RUIR - - - 0.6220

Table 5.2 Entity Ranking results compared to Other participants

or large for embedding news articles and entities. For the rest of Entity Ranking
work, we utilize 200-D dimensional model to encode both articles and entities.

Table 5.2 reports the results for our Doc2Vec approach compared to other partici-
pants in 2018 and 2019 iterations of the Entity Ranking task. Our vector similarity
based approach outperforms all participants on both 2018 and 2019 test topics. We
observe good improvements over the salience ranking approach (SIGNAL) (van der
Sluis et al., 2018) where they train their ranking model on Dexter 1 dataset. Our
approach is without the need for any fine-tuning using an external dataset. Our
unsupervised approach only uses the provided text corpora for learning the vector
representations and doesn’t require any labeled dataset for performing the ranking.
Vector similarity approach proves to be much more effective than vanilla retrieval
methods (TREMA-UNH) (Kashyapi et al., 2018).

We also report the results of our experiments using similar articles on 2018 and 2019
Entity Ranking topics in Table 5.3. We observe a slight increase in performance
on 2018 topics when using 5 similar articles alongside the original article (orig +
top5). However, this slight improvement does not translate into 2019 test topics.
We observe that the original approach orig is still more consistent over the two
testing sets. To further understand the effects of using similar articles, we observe
the results of using only similar articles (top1 and top5). We can see results very
close to our original approach: similar articles are useful for overall Entity Ranking
task. However, our argument that similar articles can bring improvements to the
original approach does not hold. In our weighted scoring models (orig + top1 and

1https://github.com/dexter/dexter-datasets/tree/master/entity-saliency
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TREC 2018 TREC 2019
Approach MAP nDCG@5 MAP nDCG@5

orig 0.8184 0.7232 0.7906 0.7579
top1 0.8023 0.6913 0.7812 0.7509
top5 0.8154 0.6954 0.7785 0.7426

orig + top1 0.8143 0.7161 0.7551 0.7287
orig + top5 0.8199 0.7234 0.7561 0.7319

Table 5.3 Entity Ranking Results Using Similar Articles

(orig + top5) we do not observe improvements over (orig), but rather a decrease
in performance. This means that the vector representation of the similar articles
either doesn’t provide any additional information or provides useless information
that can hurt the final ranking. We further investigate this approach by using
actual Background Linking articles extracted from QRELS files in our similar articles
approaches. In other words, we use golden BL articles in the place of similar articles
obtained by Doc2Vec. Using BL articles does not introduce any significant gain or
loss in the results. In Chapter 6, we provide an analysis over the usage of Doc2Vec
and similarity ranking for the task of Background Linking.
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6. Background Linking

Background Linking is the task of retrieving and ranking articles in terms of provid-
ing background information to query article. In this chapter we discuss the dataset
used for the Background Linking task. We also discuss our methodology, experi-
ments and findings for this task.

6.1 Dataset

Background Linking task has featured in all 4 years of TREC News track versions.
For this task, the participants are given test topics (WaPo articles) and are asked to
retrieve a ranked list of news article that best provide background information and
context to the reader. The input for this task is identical to the Wikification task
where only topics are provided Figure 6.1.
<top>

<num> Number: 886 </num>
<docid>AEQZNZSVT5BGPPUTTJO7SNMOLE</docid>
<url>https://www.washingtonpost.com/politics/2019/06/05/trump-says-transgender-

troops-cant-serve-because-troops-cant-take-any-drugs-hes-wrong-many-ways/</
url>

</top>

Figure 6.1 Background Linking Test Topic

The expected output is a ranked list of 100 Washington Post documents for each
test topics in the following format:
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2018 2019 2020 2021
Background Linking Topics 50 60 50 51

Table 6.1 Background Linking testing topics in different years

topicNum docID score
825 2707 e25a -cfaf -11e6 -a87f - b917067331bb 0.923
825 513673 ee -d003 -11e6 -b8a2 -8 c2a61b0436f 0.81

Figure 6.2 Background Linking Output Format (simplified)

Where docID is the background-linked news article identifier. Score is the relevance
score used for ranking retrieved articles for each testing topic/query. Systems should
retrieve documents using the entirety of Washington Post corpus. However, the co-
ordinators provide some guidelines on articles linking (Soboroff et al., 2018). The
articles should not be of news wire services nor should they be opinion or editorial
articles. Another rule is that list of articles should be diverse, however the coordi-
nators are still indecisive on the meaning of diversity in the context of news articles.
News wire articles are already filtered from the corpus before release. However, it’s
the participants to filter out articles of types opinion and editorial. These special
articles can be distinguished using the kicker field where articles with "Opinion",
"Letters to the Editor" or "The Post’s View" value should be excluded.

For system evaluations, coordinators use the same criteria used for Entity Ranking
where articles are scored on a scale of 0-4 in terms of relevance to the core topic and
importance to the reader. Assessors manually create relevance scores for the pooled
document retrieved by systems. These are then used to evaluate systems using the
nDCG@5 metric. Number of test topics for each year is provided in Table 6.1 .

6.2 Methodology

For all of our approaches, we apply a simple date filter where we only retrieve articles
that were published before the query article.

6.2.1 Baseline: Full-Text Search
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To evaluate our proposed approaches in Background Linking, we use a robust Full-
Text search baseline that utilizes BM25 for ranking. This baseline is implemented
using Elastic-Search index built over different versions of Washington Post corpus
where we use all the content in articles as fields.

To perform Background Linking, we simply use all textual content of an article as
query and retrieve the top 100 articles that were published before the query article.

6.2.2 Vector Similarity (Doc2Vec)

Similar to our Doc2Vec approach in Entity Ranking, we cast the task of Background
Linking to a vector similarity problem. We hypothesize that articles that should be
background linked share a set of keywords or phrases related to different aspects
or topics. Therefore, vectors of background linked articles should be close in space
to the query article. In this approach, we investigate Doc2Vec’s ability to encode
different aspects or topics of news articles into vector representation.

The simple pipeline used is visualized in Figure 6.3. To encode the articles, we train
the unsupervised Doc2Vec on Washington Post Corpus and obtain d-dimensional
vector representation for all articles. At inference time, for a given test topic, we
perform vector space search to retrieve N Washington Post articles with the highest
Cosine similarity score with the query article vector.

All WaPo articles

Doc2Vec

Query Vector

Candidate Vector

Cosine 
Similarity

Candidate
Relevence

Score 

WaPo Corpus

Query 

Document

Figure 6.3 Doc2Vec-based Background Linking Pipeline

6.2.3 Neural Ranking for Ad-hoc Document Retrieval

In this approach of Background Linking, we apply neural ranking to rank a list of
candidate documents retrieved by our baseline. We follow the approach in Contex-
tualized Embeddings for Document Ranking (CEDR) (MacAvaney, Yates, Cohan
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& Goharian, 2019). In their aproach, MacAvaney et al. (2019) improve previously
successful neural ranking architectures such Conv-KNRM (Dai, Xiong, Callan &
Liu, 2018) and DRMM (Guo, Fan, Ai & Croft, 2016) by integrating BERT (Devlin
et al., 2019) contextual word embeddings into the ranking architecture. Specifically,
we utilize their proposed Vanilla BERT-based approach that uses Next Sentence
Prediction (NSP) task model for ranking query-document pairs.

First, for each Background Linking test topic, we retrieve a list 100 candidates that
will be re-ranked by BERT-based ranking model. For candidate retrieval, we use
our Full-Text Search baseline .

After obtaining a list of candidate documents, we pass the candidates into the BERT-
based re-ranking model. The re-ranking model is composed of BERT encoder with a
sentence-pair classification layer on top. This architecture is used in Next Sentence
Prediction task which is used in pre-training language models for sentence relation
tasks such as Question Answering and Natural Language Inference (Devlin et al.,
2019). Input of the sentence-pair classification task in BERT is modeled using the
following formula:

[CLS] Sentence−A [SEP ] Sentence−B

Where the task is to simply classify if Sentence-B comes after Sentence-A and the
model output is a probability for the pair. MacAvaney et al. (2019) adapt this mod-
eling for the purpose of Ad-hoc Document Ranking using the following formulation:

[CLS] Query [SEP ] Candidate Document

Where the model output is a probability that represents the relevance of the docu-
ment to the given query.

In our work, we use the same architecture proposed by CEDR to rank the list of
candidates for each test topic. Sentence-A is the test topic and Sentence-B is the
background linking candidate article retrieved by Elastic-Search.

A summary of our Background Linking pipeline is provided in Figure 6.4.

6.3 Experiments and Results
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Figure 6.4 Background Linking using BERT-based re-ranker

Model 2018 Topics 2019 Topics 2020 Topics 2021 Topics
fullText-Search 0.4151 0.5727 0.5328 0.3849
Doc2Vec 50-D 0.1576 0.2202 0.1936 0.1864
Doc2Vec 200-D 0.2624 0.3620 0.3548 0.2393
Doc2Vec 500-D 0.2370 0.3421 0.3776 0.2162
CEDR-Model-1 0.3421 0.3595 0.3919 0.2871
CEDR-Model-2 Used in training 0.3670 0.3981 0.2903
CEDR-Model-3 Used in training Used in training 0.4559 0.3101
CEDR-Model-4 Used in training Used in training Used in training 0.3361

Table 6.2 Background Linking performance on different testing topics sets

In this section, we report our experiments and results, and analyze the findings in
our different approaches for Background Linking. Our Full-Text Search baseline
results as-well as other approaches’ results are reported in Table 6.2.

6.3.1 Vector Similarity (Doc2Vec)

Similar to our experiments in Entity Ranking, we test Doc2Vec’s vector size param-
eter with three different values: 50,200,500. We then report the Background Linking
performance using these different vector sizes in Table 6.2. Vector size of 200 again
proves to be a better selection for representing articles where the Background Link-
ing performance constantly improves over other sizes except in singular case where
500-D slightly improves over 2020 testing topics.

As for the overall performance, Doc2Vec performance is very low compared to our
Full-Text search baseline. One trait for the retrieval system that should be reflected
on the list retrieved articles is diversity. We believe simply using Doc2Vec with
Cosine similarity does not enable us to retrieve a diverse list of articles on different
topics but rather a list of articles sharing the same main topic of the query.
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6.3.2 Neural Ranking for Ad-hoc Document Retrieval

As the base encoder, we use pre-trained BERT (bert-base-uncased). CEDR (MacA-
vaney et al., 2019) apply fine-tuning to optimize their ranking model performance
for the task of relevance ranking. To understand the effect of fine-tuning, we test
our model with, and without fine-tuning on our dataset. For fine-tuning, we use
the provided relevance judgements (QRELS) for different years Background Linking
testing topics. We use Adam optimizer (Kingma & Ba, 2017) with a learning rate
of 1e-6 to optimize our model using pairwise ranking loss. Moreover, our inputs,
query article and candidate article, are cropped or padded to 256 word-pieces each
to conform to BERT’s maximum sequence length of 512 word-piece tokens.

In inference time, we obtain 100 candidates retrieved by our baseline for each test
topic and re-rank them using our neural model to obtain the final ranked list of
relevant articles.

In Table 6.2 we report the nDCG@5 score for the Background Linking performance
on different testing sets. Neural ranking models are referred to as CEDR in the
table. Our aim here to is to observe the effects of fine-tuning. Model-1 was not fine-
tuned. Model-2 was fine-tuned on 2018’s topics and tested on other topics. Model-3
was fine-tuned on 2018’s and 2019’s topics and tested on other topics. Model-4 was
fine-tuned on 2018’s, 2019’s and 2020’s topics and tested on 2021 topics. In Model-2,
we observe minimal increase in performance compared to our non fine-tuned model
(Model-1). While Model-3 shows promising increase in performance on 2020 topics
and a small increase 2021 topics while trained on a bigger dataset compared to
performance without fine-tuning (Model-1). We also observe another small boost in
performance in Model-4 on 2021 testing topics.

6.3.3 Other Participants Results

Furthermore, we analyze the performance of our Background Linking approaches by
comparing with other participants in the Background Linking task over its different
iterations and the median of each year’s submitted runs by all participants as re-
ported in Table 6.3. Our Baseline approach still out-performs the median and most
approaches in Background Linking.

Khloponin & Kosseim (2020) explored different encoders to represent articles and
different proximity measures to rank them. Their best representation-based ap-
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Model 2018 Topics 2019 Topics 2020 Topics
fullText-Search 0.4151 0.5727 0.5328
Doc2Vec 200-D 0.2624 0.3620 0.3548
Neural Re-Ranker 0.3421 0.3670 0.4559
TREC Median 0.2792 0.5295 0.5250
Yang et al. (2019) 0.3293 0.4785 0.5231
Bimantara et al. (2018) 0.4619 - -
Qu & Wang (2019) - 0.5502 -
Lu & Fang (2019) - 0.6064 -
Khloponin & Kosseim (2020)(GPT) - 0.4660 0.4541
Khloponin & Kosseim (2020)(FT) - - 0.5924

Table 6.3 Background Linking performance of our approaches and different partici-
pants approaches on different testing topics sets

proach utilizes GPT-2 (Radford et al., 2019) (referred to as (GPT) in table) and
shows a significant improvement over our Doc2Vec-based approach. However, it still
doesn’t compare to full-text search Baseline.

Qu & Wang (2019) perform Learn-To-Rank on a set of TF-IDF based features such
as title, terms, and mentions similarity. This approach shows effective performance
on 2019 dataset when compared with our fine-tuning based approach.

Yang et al. (2019) reports a baseline with top TF-IDF terms and BM25 for ranking.
This approach shows better performance than our Doc2Vec and neural re-ranking
methods throughout different testing topics. Best performing approach in 2018
(Bimantara et al., 2018) uses TF-IDF to rank queries with the extracted entities
and key-phrases. Highest scoring approach in 2019 Lu & Fang (2019) builds a
search index that utilizes linked entity mentions (using DBpedia Spotlight) and
uses weighted entities and keywords for querying. Similarly for 2020, Khloponin
& Kosseim (2020) use Full-Text search with additional terms boosting (referred to
as (FT) in table) which shows an additional boost in performance over our vanilla
Full-Text search baseline.

At the time of writing this work, the official publications of TREC News 2021
Background Linking task were not made public yet. Therefore, we do not report
any work on Background Linking on 2021 testing topics.
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7. Conclusion

In this work, we address the tasks of Entity Ranking, Wikification and Background
Linking in the context of news articles. The aim in this thesis was to develop infor-
mation retrieval tools to enhance the writing and reading of news articles. In doing
so, we explore the use of deep architectures for modelling, retrieval, and ranking
purposes. Moreover, we compare the results obtained with classic information re-
trieval baselines to validate our usage for deep architectures. It should be noted that
most of work described in this paper was submitted in different iterations of TREC
News Track earlier in 2019 (Fayoumi & Yeniterzi, 2019), 2020 (Ak et al., 2020) and
2021 Fayoumi & Yeniterzi (2021).

In Entity Ranking we cast this problem as similarity ranking task while using
Doc2Vec to obtain vector representations of articles and entities. In Wikification, we
address the different sub-tasks of the Wikification pipeline using different method-
ologies and models. We use effective and robust NLP tools for Mention Detection.
For Candidate Generation we use search engines built using entity text contents and
encoded vector representations of entities. For Candidate Ranking, we utilize deep
transformer-based encoder and ranking model to provide a ranking for candidate
entities. As for Wikification’s Entity Ranking sub-task, we apply simple yet robust
ranking methods using deep learning model’s probabilities and order-of-appearance
in text. As for Background Linking, we explored a transformer-based re-ranking
model and fine-tune it for the task of relevance ranking.

Our results show Doc2Vec’s effectiveness for Entity Ranking in a perfect entity link-
ing setting where our approach ranks first in Entity Ranking on 2018 and 2019 test
topics. However, when used in Wikification pipeline where entity links are not given
but rather predicted, Doc2Vec shows sub-par performances compared to baseline.
Using transformer-based models for the Wikification sub-tasks of Mention Detection
and Candidate Ranking proves very successful with high performance. As for Can-
didate Retrieval, using a dense vector search engine does not show any significant
improvement in retrieval performance when compared to retrieval baseline. Using a
transformer-based re-ranking model for relevance ranking without any task specific
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fine-tuning yields low results. Fine-tuning on the small TREC dataset provides a
boost in performance but still couldn’t surpass a full-text search baseline as avail-
able dataset size is limited. Utilizing vector representation for relevant document
ranking is helpful but does not surpass information retrieval baselines performances
such as Full-Text search as seen in our work on Doc2Vec and other works in the
literature that utilizes SOA transfer learning model for representations.

7.1 Research Questions

To conclude our work, we re-visit our research questions and discuss our finding to
answer these questions:

RQ How successful are vector representation and deep modelling based approaches
compared to baseline information retrieval methods in the domain of news
articles?

In the course of work, we observed success of deep modelling and vector based
approaches mainly in the context of entity-related tasks. Modelling articles/-
mentions and entities in the same vector space and performing similarity search
(Entity Ranking) or ranking (Wikification) showed high results comparing to
information retrieval baselines.

As for Background Linking task, using different vector representations or prox-
imity measures as seen in our experiments and the works of authors does not
exceed the performance of robust information retrieval baselines such as Full-
Text Search.

As for our research sub-questions:

RQ1 How effective are document representations for embedding different
topics or concepts in news articles into a singular vector representation?

In our Doc2Vec experiments, we learned that vectors representations can be
useful in encoding some concepts or subjects in a document such as entities as
seen in our Entity Ranking results.

However, as we have seen in our Background Linking results, these vector
representations are not enough to capture different abstract topics and it shown
very little diversity in the retrieved results.
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RQ2 How effective are out-of-the-box pre-trained language models compared
with classic Information Retrieval systems for the task of ranking news articles
in terms of relevance?

In our work for Background Linking, we learn that language models may con-
tain useful information but are not very effective in relevance ranking out-of-
the-box (without fine-tuning) or with fine-tuning on small datasets. However,
this approach shows promising results when using larger dataset for fine-tuning

RQ3 Is mutual vector modelling of news articles and entities effective for
ranking entities in terms of relevance to an article?

In our work for Wikification we apply neural ranking on vector representa-
tions of mentions and entities and observed high results in terms Wikification
performance.

This is also supported by our results on Entity Ranking task where mutually
model the pair using Doc2Vec and use Cosine similarity to measure relevance.

7.2 Future Work

As we have seen and concluded in this work, classic information retrieval baseline
are very effective. Utilizing SOA Entity Linking systems to link entities and inject
entity knowledge when building indices can increase performance in relevance re-
trieval tasks such as Background Linking. EL systems can also be utilized for query
expansion and boosting by using model predictions and probabilities.

Also, utilizing the relationships between entities such as distance and hierarchy in the
knowledge base in the form of graphs-based features could improve the Wikification
performance.

Finally, fine-tuning on larger dataset for similar tasks can improve our relevance
neural ranking model for the task of Background Linking as we have seen limited
but promising improvements when utilizing bigger dataset for fine-tuning.
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APPENDIX A

Figure A.1 WaPo article in the original Washington Post website

61



{
"article_url": "https://www.washingtonpost.com/sports/nationals/the−minor−leagues−life−in−pro−baseballs−shadowy−

corner/2016/08/26/96ab542e−6a07−11e6−ba32−5a4bf5aad4fa_story.html",
"author": "Kent Babb; Jorge Castillo",
"id": "96ab542e−6a07−11e6−ba32−5a4bf5aad4fa",
"published_date": 1472222644000,
"source": "The Washington Post",
"title": "Baseball\u2019s minor leaguers pursue their dreams below the poverty line",
"type": "article"
"contents": [

{
"blurb": "A rainbow arches across the sky over Lake Olmstead Stadium during the playing of the national anthem as

Class−A Augusta GreenJackets play the Delmarva Shorebirds in Augusta on July 15. (John McDonnell/The
Washington Post)",

"fullcaption": "A rainbow arches across the sky over Lake Olmstead Stadium during the playing of the national anthem
as Class−A Augusta GreenJackets play the Delmarva Shorebirds in Augusta on July 15. (John McDonnell/The

Washington Post)",
"imageHeight": 2363,
"imageURL": "https://img.washingtonpost.com/rw/2010−2019/WashingtonPost/2016/08/20/Sports/Images/

a01sharp1471656070.jpg",
"imageWidth": 3184,
"mime": "image/jpeg",
"type": "image"

},
{

"content": "<span>AUGUSTA, Ga. \u2014 </span>They trickled into the mid−July night, a rain−shortened loss
beginning their Friday night early. A 25−year−old catcher hung back.",

"mime": "text/html",
"subtype": "paragraph",
"type": "sanitized_html"

},
{

"content": "<a href=\"http://www.milb.com/player/index.jsp?sid=t478&player_id=613557\" shape=\"rect\">Matt
Par\u00e9 </a>chatted with teammates and underwent a long treatment session as other Augusta GreenJackets
players exited through a clubhouse door wedged open with a broken bat. He kept himself awake with a

marathon shower.",
"mime": "text/html",
"subtype": "paragraph",
"type": "sanitized_html"

},
{

"content": "By the time Par\u00e9 dressed, he had the clubhouse to himself, along with what was left of the
GreenJackets\u2019 postgame buffet. \u201cWhat have we got, Sarge?\u201d he called toward clubhouse
manager Kristopher Nichols, a former Army drill sergeant who appreciates \u2014 and usually rewards \u2014
Par\u00e9\u2019s resourcefulness.",

"mime": "text/plain",
"subtype": "paragraph",
"type": "sanitized_html"

},
{

"content": "Par\u00e9 is the oldest player for the San Francisco Giants\u2019 Class A affiliate, and he begins most
homestands by waiting out his teammates in order to stockpile free food.",

"mime": "text/plain",
"subtype": "paragraph",
"type": "sanitized_html"

},
....

],

}

Figure A.2 WaPo article from Figure A.1 in JSON format
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Figure A.3 Wikipedia page for "Alexander Mackenzie (politician)" entity

Alexander Mackenzie (politician)

Alexander Mackenzie, (January 28, 1822April 17, 1892) was a Scottish−Canadian politician who served as the second prime
minister of Canada, in office from 1873 to 1878.

Mackenzie was born in Logierait, Perthshire, Scotland. He left school at the age of 13, following his father’s death to help his
widowed mother, and trained as a stonemason. Mackenzie immigrated to Canada when he was 19, ..., as a supporter of
George Brown.

In 1867, Mackenzie was elected to the new House of Commons of Canada for the Liberal Party. .... Mackenzie and the Liberals won
a clear majority at the 1874 election. He was popular among the general public for his humble background and apparent

democratic tendencies.
As prime minister, Mackenzie continued the nation−building programme that had been begun by his predecessor. His government

established the Supreme Court of Canada and Royal Military College of Canada,... Mackenzie’s government suffered a
landslide defeat. He remained leader of the Liberal Party for another two years, and continued on as a Member of Parliament
until his death, due to a stroke.

Early life
Mackenzie was born on 28 January 1822 in Logierait, Perthshire, Scotland, the son of Mary Stewart (Fleming) and Alexander

Mackenzie, Sr., who were married in 1817. The site of his birthplace is known as Clais−’n−deoir "The Hollow of the Weeping
", where families said their goodbyes as the convicted were led to nearby Gallows Hill. The house in which he was born was
built by his father and is still standing in 2019. He was the third of 10 boys, seven of whom survived infancy. Alexander
Mackenzie, Sr....

Figure A.4 Wikipedia page extracted content for "Alexander Mackenzie (politician)"
entity
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