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ABSTRACT

MATHEMATICAL AND STATISTICAL ANALYSIS OF EXCITEMENT SCORE
IN PENALTY SHOOTOUTS

EZGİ GENÇ

INDUSTRIAL ENGINEERING M.Sc. THESIS, DECEMBER 2021

Thesis Supervisor: Asst. Prof. Sinan Yıldırım

Keywords: excitement, penalty shootouts, machine learning, winning expectancy

Quantitative measurement of excitement during sports games is a field of study
that has not been explored much. In this thesis, our aim was to find the expected
excitement score of penalty shootouts mathematically. The excitement score formu-
lations were generated based on the variation in the winning probabilities of teams
after each penalty. Probability of success for each penalty originates from a Beta
distribution in cases where players’ scoring probabilities are unknown. Expectation-
Maximization (EM) algorithm was utilized to find the parameter estimations of Beta
distribution.

A survey was conducted to understand what makes shootouts exciting for the view-
ers and participants were asked to choose between two penalty shootout scenarios
by examining scenario features at each question. Subsequently, the Bradley-Terry
model was used to rank the scenario preferences of the viewers. This ranking was
then used to make comparisons with the ranking of the scenarios obtained by using
excitement scores. Predictive models were built using machine learning algorithms
including Logistic Regression, Random Forest, AdaBoost Classifier and XGBoost to
find feature importances. An alternative excitement score calculation was formed by
taking the incremental excitement into consideration. Lastly, the excitement score
was calculated for cases where scoring probabilities of teams vary at each round for
a realistic approach. Discrete-time Markov chain process was used to find winning
probabilities of each team. The results demonstrated that our excitement score
calculations were successful in determining the least exciting shootouts. Moreover,
features deemed as important by the viewers were also crucial mathematically.
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ÖZET

PENALTI ATIŞLARINDA HEYECAN SKORUNUN MATEMATİKSEL VE
İSTATİKSEL ANALİZİ

EZGİ GENÇ

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, ARALIK 2021

Tez Danışmanı: Dr. Sinan Yıldırım

Anahtar Kelimeler: heyecan, penaltı atışları, makine öğrenmesi, kazanma
beklentisi

Spor müsabakaları sırasında duyulabilecek heyecanın nicel ölçümü çok fazla ince-
lenmemiş bir araştırma alanıdır. Bu tezin amacı penaltı atışlarının beklenen heye-
can skorunu matematiksel olarak bulmaktır. Heyecan skoru formülleri, her penaltı
atışından sonra takımların kazanma olasılıklarındaki değişime göre oluşturulmuştur.
Oyuncuların penaltı atma olasılığının bilinmediği durumlarda, her penaltının başarı
olasılığı bir beta dağılımından gelmektedir. Beklenti-Maksimizasyonu algoritması
bu beta dağılımının parametrelerini tahmin etme amaçlı kullanılmıştır.

Penaltı atışlarını izleyiciler için nelerin heyecanlı kıldığını anlayabilmek için bir anket
tasarlanmış ve her soruda katılımcılardan iki penaltı atışı senaryosu arasından izle-
meyi tercih edecekleri senaryoyu, senaryo özelliklerini de dikkate alarak seçmeleri
istenmiştir. İzleyicilerin senaryo tercihlerini sıralamak için Bradley-Terry modeli
kullanılmıştır. Bu sıralama, heyecan skorları kullanılarak elde edilen sıralama ile
karşılaştırma yapmak için kullanılmıştır. Tahmine dayalı modeller, Lojistik Re-
gresyon, Rassal Orman, AdaBoost sınıflandırıcı ve XGBoost gibi makine öğrenimi
algoritmaları kullanılarak oluşturulmuştur. Artımlı heyecan dikkate alınarak alter-
natif heyecan skoru hesaplaması yapılmıştır. Son olarak, gerçekçi bir yaklaşım için
takımların penaltı atma olasılıklarının her turda farklılık gösterdiği baz alınarak
heyecan skoru hesaplanmıştır. Takımların kazanma olasılıklarını bulmak için ayrık
zamanlı Markov zinciri kullanılmıştır. Sonuçlar, heyecan skoru hesaplamalarımızın
en az heyecan verici atışları belirlemede başarılı olduğunu gösterdi. Ayrıca izleyiciler
tarafından önemli görülen özellikler matematiksel olarak da önemli bulundu.
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1. INTRODUCTION

Sports games have a significant place in most people’s daily lives. They provide a
sense of community, help people to socialise by bringing them together and allow
them to escape from their daily struggles. One of the most popular sports games in
the world is football. It can bring excitement, sadness or joy into our lives. That is
why, it may be useful to look for what excites us during a football match.

In this study, we focus on a special segment of football matches, the penalty
shootouts. They can be the determinant part of a match; hence finding out which
aspects of a shootout make it more exciting to the viewers can be used as a game
refinement method in the future. The scope of this study can be explained in two
parts. First is to find the excitement score of penalty shootouts mathematically and
second is to compare mathematical results with the real viewer opinions by using
survey data and statistical tools.

The remainder of this thesis is organized as follows. In Chapter 2, we provide a
literature review for measuring emotions in various sports and analyse their for-
mulations. In Chapter 3, we introduce the mathematical formulations of winning
probability and expected excitement to calculate the excitement score for constant,
varying and unknown scoring probabilities. We also provide a maximum likelihood
estimation for Beta distribution with real-life data for cases where scoring probabil-
ities of the players are unknown. In Chapter 4, we provide the results of a survey
that we conducted to compare mathematical results with the real-life. We build
a Bradley-Terry preference model by using survey data to make comparisons with
the mathematical findings. In addition, we use machine learning applications and
SHAP values to derive the feature importances and to understand which features of
a penalty shootout affect the viewers’ decision making process the most while select-
ing a penalty shootout to watch. Finally, in Chapter 5, we present the concluding
remarks and possible future work for this thesis.
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2. RELATED WORK

Understanding people’s emotions and responses towards different circumstances has
been an area of interest in the academic community. Quantitative techniques are
used vigorously to evaluate human behaviour and feelings. However, a field of study
that has not been examined much is the quantitative measure of viewer emotions
in various sports competitions. Our study focuses on the quantitative measure-
ment of excitement in penalty shootouts. We provide mathematical calculations
derived from the variability of the winning expectancy to measure the excitement
of a penalty shootout. Consequently, we can understand the motivation behind the
viewer’s preference to watch a game and use it to improve game rules and overall
game entertainment.

In the literature, researchers have employed different strategies to improve game
entertainment. One of the first studies in this field by Iida, Takeshita & Yoshimura
(2003) developed the foundations of game refinement theory which is a game theory
that focuses on improving the attractiveness of games. Following Iida, Takeshita and
Yoshimura’s research in 2003, there have been a number of studies that focused on
improving the game entertainment by using game refinement theory. The first for-
mal definition of game refinement theory was made by Iida, Takahara, Nagashima,
Kajihara & Hashimoto (2004). In their paper, Iida, Takeshita and Yoshimura ex-
plained game refinement theory as a way to measure game uncertainty to understand
the value of a game. Higher uncertainty would mean that accrued information on
the game result over time by the viewer would be lower, thus game would be more
exciting and fascinating. They believed that the gaming rules needed to be refined
and optimized over time in order to keep the viewers’ or players’ attention. This
process of evolution can be presented as the game refinement theory. Similarly, a
study by Sutiono, Purwarianti & Iida (2014) explains the game refinement theory
based on the concept of information of game outcome uncertainty. Another study by
Nossal & Iida (2014) applies game refinement theory to the current scoring system
in badminton and compares results with the old scoring system. In the old scoring
system, also known as side-out, only the server side could score the point and if they

2



lose the rally, no point was awarded to both sides, thus, causing an increase in the
match times. In the new scoring system, serving side is not taken into consideration
and the side which wins the rally scores the point regardless. Nossal and Iida’s find-
ings suggest that the new scoring system makes the game approximately 29% more
interesting. A different study by Chetprayoon, Iida & Takahashi (2017) compared
best-of-three and best-of-five set competitions in tennis by using game refinement
theory and concluded that best-of-three set competitions were approximately 21%
more entertaining for each tournament that they have explored. Junki, Rido & Hi-
royuki (2014) used game refinement theory to compare three variants of volleyball.
In time, volleyball’s scoring system has changed to a 25-point rally point system for
a better game understandability. Previously, it had different scoring systems such
as 30-point rally system and 15-point side out scoring system. Comparison of three
variants resulted with 25-point rally point system being the most exciting scoring
system since it has the highest game-refinement value. In contrast to game refine-
ment theory, there have been several other studies that focused on finding emotional
scores of sports games rather than improving their game rules. While some of these
studies focus on measuring the emotion factor over analysing the game videos by
considering different aspects to understand highlights of a game, others propose
quantitative models to calculate the excitement.

Hanjalic (2005) designed a video abstraction algorithm to keep the most interesting
parts of a sports event. He generated an excitement time curve and described it
as a function of the excitement level variety over the video frames caused by the
stimulus that is represented by a feature. These features were later explained as the
excitement components that mimicked the changes in a user’s excitement. In order
to achieve a more explanatory curve, Hanjalic only included the video segments that
contained an event of a particular strength in the curve. This strength was deter-
mined by the total excitement level of an event. Another study in the same field
was performed by Lee, Kim & Kim (2009). They combined video analysis with sta-
tistical modeling. Semantic video analysis was utilized to extract score information
of basketball games. Following that, excitement of the shots was estimated from a
statistical model created by the authors. As a result, excitement information was
used to determine the highlights of the game.

As stated previously, some of the other studies developed quantitative models for
excitement calculation. A study from Pollard (2016) concentrated on finding excite-
ment of a point in a tennis game. He determined that excitement of a point in each
score is associated with a pre-defined importance of the point at that score. Formu-
lation of the excitement score, therefore, can be constructed as p | qI | + q| −pI |
where p is player A’s probability of winning a point with importance I and q is equal

3



to 1− p. In the framework of a football game, Vecer, Ichiba & Laudanovic (2007)
examines the probabilistic excitement of a football game as follows

Excitement = TV(Probability of Team 1 Wins) + TV (Probability of Team 2 Wins)

where, for a probability function of time, f(·), TV(f) corresponds to total variation
formulated as

TV(f) = lim
maxi|ti+1−ti|→0

∑
i

| f(ti+1)−f(ti) |

Vecer et al. (2007) stated that, as the variability of winning expectancy increases,
excitement of that game also increases. In addition, according to their findings,
people tend to watch games in which opposing teams have the same strength. They
concluded their work with a comparison of theoretical results and real-life examples
by using data from FIFA World Cup Soccer 2006. While it demonstrates the quan-
titative measure of excitement in a football game, Vecer et al. (2007) paper does
not elaborate on the excitement of penalty shootouts. In our study, we will apply
Vecer et al. (2007)’s principles regarding the relationship between variability of win-
ning expectancy and excitement of a game to penalty shootouts. Furthermore, we
will compare mathematical findings of our research with the statistical analysis of a
survey that we have conducted.
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3. EXCITEMENT SCORE CALCULATION

In this chapter, we introduce the mathematical formulations related to the expected
excitement score of a penalty shootout sequence between two teams, team A and
team B. The act of scoring a penalty shootout is discrete and teams act in turn. At
each turn, a player from the team will take a single penalty with a certain scoring
probability. This chapter explores three different cases for scoring probabilities:
constant (i.e. equal), varying and unknown. A round is formed by the succession of
player A’s and player B’s trials. Finally, we introduce the Graphical User Interface
that we created to calculate the excitement scores of the penalty shootout scenarios
automatically.

3.1 Winning Probability Formulations

Probability of winning is a term used for explaining the winning chance of a sports
team at any point during the game. It can be based on the previous performances
or the current success of the team. In this section, we will focus on calculating the
winning probabilities of opposing teams during their penalty shootouts at certain
times.

A penalty shootout can be considered as a sequence of penalty kicks. Before 1970,
laws of association football did not have a certain method used for a drawn match.
The first association football tournament, known as FA Cup, used extra time, coin
tosses and replays to decide the winner. Penalty shootouts were introduced offi-
cially to football after they were proposed by Joseph (also known as Yosef) Dagan
to Fédération Internationale de Football Association (FIFA) in 1970. After their im-
plementation to the game, the winner of a single-elimination tournament in which
the opposing teams were drawing after the regular 90 minutes playing time and
extra 30 minutes would be determined by penalty shootouts.

Some of the most important rules for the penalty shootouts that were determined
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by Laws of the Game are as follows:

1) Coin toss will be used to determine which team will use the penalty kick first.

2) Teams will select five different players to shoot penalties from the players that
were on the pitch at the end of the match. Each penalty shootout must be
performed by a different player.

3) Teams will take turns until each has taken five kicks. If one of the teams has
scored more successful kicks than the other could possibly reach with all of
its remaining kicks, the penalty shootouts end despite the number of kicks
remaining.

4) After these five rounds of kicks the teams have scored, if they have an equal
number of goals, they will perform sequential kicks until one of the teams has
one more goal than the other with the same number of penalty kick attempts.
This process is also known as sudden death.

After the revision of penalty shootout rules, the winning probabilities of opposing
teams can be calculated, starting with the explanation of some of the notations that
will be used throughout this chapter.

Table 3.1 General Notation of Mathematical Formulations

T Total number of regular penalty rounds
t Total number of penalties taken by teams up to current round
t1 Penalties taken by Team A up to round t
t2 Penalties taken by Team B up to round t
x Current score of team A
y Current score of team B

St1,t2 Score when team A used t1 penalties and team B used t2 penalties
a Scoring probabilities of team A
b Scoring probabilities of team B

Let St1,t2 be the score after teams A and B have just taken t1≥ 1 and t2≥ 1 penalties,
respectively. Given scoring probabilities a = (a1,a2, . . .) and b = (b1, b2, . . .) for teams
A and B, respectively, we define

Aa,b
t1,t2(x,y) = P (Team A wins|St1,t2 = (x,y))

Ba,b
t1,t2(x,y) = P (Team B wins | St1,t2 = (x,y)),

1≤ t1, t2 ≤ T. (3.1)

where the superscript denotes the scoring probabilities of team A and team B. Since
summation of teams winning probabilities will be equal to 1, it can be observed that
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Ba,b
t1,t2(x,y) = 1−Aa,b

t1,t2(x,y) (3.2)

Consequently, the winning probabilities of team A and team B at the beginning of
the game are given by Aa,b

0,0 (0,0) and Ba,b
0,0 (0,0).

Remark 3.1. It is useful at this point to introduce the notation for winning proba-
bilities from now on.

Unless necessary, we will drop the superscript a,b from the notation if it is clear from
the context that the scoring probabilities are the default probabilities a and b. The
notation in (3.1) will be useful when we want to calculate the winning probabilities if
a pair of scoring probabilities are swapped in a or b. To be concrete, for a sequence
v = (v1,v2, . . .), we let σt(v) = (vt,v2, . . . , vt−1,v1,vt+1, . . .), the sequence obtained
by swapping v1 and vt in v. It will be revealed soon that for expected excitement
calculations, we will need winning probabilities such as

A
σt(a),b
1,0 (1,0), A

σt(a),b
1,0 (0,0), B

a,σt(b)
0,1 (0,1), B

a,σt(b)
0,1 (0,0)

When all at’s and bt’s are the same, we will again drop the superscript from the
notation.

The following intermediate results, presented as Lemmas 3.1, 3.2, 3.3 and will be
helpful for the subsequent derivations for the expected excitement.

Lemma 3.1. By using the notation in this part, we have the following trivial in-
equalities of winning probabilities

1. At,t−1(x,y)≤ At−1,t−1(x,y),

2. At,t−1(x+1,y)≥ At−1,t−1(x,y),

3. At,t(x,y)≥ At,t−1(x,y),

4. At,t−1(x,y)≤ At,t(x,y+1).

First inequality demonstrates that the winning probability of a team after an un-
successful penalty shootout cannot be greater than its previous winning probability.
In contrast, second inequality demonstrates that the winning probability of a team
after a successful penalty shootout must be greater than or equal to its previous
winning probability.

Third and fourth inequalities explain the winning probability of team A after oppos-
ing team’s penalty shootout. Third inequality applies for the case when opposing
team misses its penalty shootout while fourth inequality is for the case when the
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opposing team scores its penalty shootout.

In order to define upcoming Lemmas and the incremental expected excitement in
this section properly, we have to show scoring probabilities at a certain time. Let
us define

pt1,t2(x,y) = P (St1,t2 = (x,y))

as the probability of having the score (x,y) after using t1 and t2 penalty kicks,
respectively.

Lemma 3.2. For any 1≤ t1, t2 ≤ T , we have

A0,0(0,0) =
∑
x,y
pt1,t2(x,y)At1,t2(x,y), B0,0(0,0) =

∑
x,y
pt1,t2(x,y)Bt1,t2(x,y).

Lemma 3.3. For any t≥ 1, have

∑
x,y
pt−1,t−1(x,y)At,t−1(x+1,y) = A

σt(a),b
1,0 (1,0)

∑
x,y
pt−1,t−1(x,y)At,t−1(x,y) = A

σt(a),b
1,0 (0,0)

∑
x,y
pt,t−1(x,y)Bt,t(x,y+1) =B

a,σt(b)
0,1 (0,1)

∑
x,y
pt,t−1(x,y)Bt,t(x,y) =B

a,σt(b)
0,1 (0,0).

3.2 Expected Excitement Formulations

In this section, we define a mathematical formula for the expected excitement
of a penalty shootout, adopting the approach of Vecer et al. (2007). Let S =
(S1,0,S1,1,S2,1,S2,2, . . .) denote a random game with where the elements of the se-
quence are the scores. According to Vecer et al. (2007), the total excitement given
a random game is as follows

E(S) =
∞∑

t=1
{|At,t−1(St,t−1)−At−1,t−1(St−1,t−1)|+ |At,t(St,t)−At,t−1(St,t−1)|} (3.3)

whose realization given S = s can be written as

E(s) =
∞∑

t=1
{|At,t−1(st,t−1)−At−1,t−1(st−1,t−1)|+ |At,t(st,t)−At,t−1(st,t−1)|} (3.4)
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Table 3.2 Notations for the Mathematical Formulations of the Expected
Excitement

S = (S1,0,S1,1,S2,1,S2,2, . . .) Random game with random sequence of scores
s= (s1,0, s1,1, s2,1, s2,2, . . .) Realization of S

Equations in (3.3) and (3.4) depict the summation of the variation in winning prob-
ability of team A after their tth penalty shootout and the variation in winning prob-
ability of team A after team B’s tth penalty shootout. They represent the change in
team A’s winning probability per round. These equations could have been written
for team B as well, however, penalty shootouts will result with a winner in each
case. Therefore, multiplying these equations by 2 would be sufficient.

The expected excitement will be expectation of E(S), which can be written as

E = E[E(S)]

=
∞∑

t=1
{E [|At,t−1(St,t−1)−At−1,t−1(St−1,t−1)|]+E [|At,t(St,t)−At,t−1(St,t−1)|]}

=
∞∑

t=1
Et,1 +Et,2. (3.5)

where Et,1 and Et,2 in (3.5) are defined as the first and second expectation terms in
the sum, called incremental expected excitements at round t for Team A’s and Team
B’s penalty takes, respectively.

Let fA,t(x′,y′|x,y) (resp. fB,t(x′,y′|x,y)) be the transition probability for the score
from (x,y) to (x′,y′) when team A (resp. B) takes a penalty at round t. Thus,
incremental expected excitements at time t can be written as

Et,1 =
∑

x,y,x′,y′
pt−1,t−1(x,y)fA,t(x′,y′|x,y)|At−1,t−1(x,y)−At,t−1(x′,y′)|

Et,2 =
∑

x,y,x′,y′
pt,t−1(x,y)fB,t(x′,y′|x,y)|Bt,t−1(x,y)−Bt,t(x′,y′)|

which shows the expected absolute difference in winning probabilities. (x,y) rep-
resents the score before a certain penalty shootout and (x′,y′) represents the score
after a certain penalty shootout. Thus, the total expected excitement can be written
as ∞∑

t=1
(Et,1 +Et,2). (3.6)

We find the total excitement in two steps. First, for regular rounds we derive the
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incremental expected excitement and summing those we will get ∑T
t=1(Et,1 +Et,2).

Secondly, we derive the probability of a draw after T rounds and the expected
excitement for the tie-break period, which, when multiplied together, yield the rest
of the sum, ∑∞

t=T +1(Et,1 +Et,2).

3.2.1 Incremental Expected Excitement for Regular Rounds

For the regular rounds, we have the result, whose proof is based on Lemmas 3.1,
3.2, and 3.3.

Proposition 3.1. For the regular rounds, i.e., for 1 ≤ t ≤ T , the incremental ex-
citements for round t can be written as

Et,1 = atA
σt(a),b
1,0 (1,0)− (1−at)Aσt(a),b

1,0 (0,0)+(1−2at)A0,0(0,0)

Et,2 = btB
a,σt(b)
0,1 (0,1)− (1− bt)Ba,σt(b)

0,1 (0,0)+(1−2bt)B0,0(0,0)
(3.7)

Proof. For the regular rounds, i.e., for 1≤ t≤ T , we have

Et,1 =
∑
x,y
pt−1,t−1(x,y) [at | At−1,t−1(x,y)−At,t−1(x+1,y) |

+(1−at) | At−1,t−1(x,y)−At,t−1(x,y) |]

=
∑
x,y
pt−1,t−1(x,y) [at{At,t−1(x+1,y)−At−1,t−1(x,y)}

+(1−at){At−1,t−1(x,y)−At,t−1(x,y)}] .

The absolute values can be resolved by using the trivial inequalities in Lemma 3.1
and Lemma 3.2. In addition, we use first two equations in Lemma 3.3 to rewrite
Et,1 as follows

Et,1 = at

∑
x,y
pt−1,t−1(x,y)At,t−1(x+1,y)−at

∑
x,y
pt−1,t−1(x,y)At−1,t−1(x,y)

+(1−at)
∑
x,y
pt−1,t−1(x,y)At−1,t−1(x,y)− (1−at)

∑
x,y
pt−1,t−1(x,y)At,t−1(x,y)

= atA
σt(a),b
1,0 (1,0)− (1−at)Aσt(a),b

1,0 (0,0)+(1−2at)A0,0(0,0)

Similarly, for the second part of a round in which B uses their penalty shootout,
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Et,2 can be written as

Et,2 =
∑
x,y
pt,t−1(x,y) [bt|At,t(x,y+1)−At,t−1(x,y)|+(1− bt)|At,t(x,y)−At,t−1(x,y)|]

=
∑
x,y
pt,t−1(x,y) [bt{At,t−1(x,y)−At,t(x,y+1)}+(1− bt){At,t(x,y)−At,t−1(x,y)}]

= bt
∑
x,y
pt,t−1(x,y)At,t−1(x,y)− bt

∑
x,y
pt,t−1(x,y)At,t(x,y+1)

+(1− bt)
∑
x,y
pt,t−1(x,y)At,t(x,y)− (1− bt)

∑
x,y
pt,t−1(x,y)At,t−1(x,y)

= (2bt−1)A0,0(0,0)+(1−2bt)+ btB
a,σt(b)
0,1 (0,1)− (1− bt)Ba,σt(b)

0,1 (0,0)

= btB
a,σt(b)
0,1 (0,1)− (1− bt)Ba,σt(b)

0,1 (0,0)+(1−2bt)B0,0(0,0).

Hence we conclude.

3.2.2 Expected Excitement of the Tie-break

The tie-break period of a penalty shootout is played if teams have a draw at the end
of the T rounds. In the tie-break, the game continues until either team is ahead at
the end of a round. Let E0 be the excitement of a tie-break game, and

D = P ({ST,T = (x,x) : x ∈ {0, . . . ,T})

be the probability of a draw after. Then, the total expected excitement of a penalty
shootout can be written as

E =
T∑

t=1
(Et,1 +Et,2)+DE0 (3.8)

In the most general case, calculating E0 requires an infinite sequence of scoring
probabilities, since the tie-break game continues indefinitely. To simplify, let us
assume that the scoring probabilities of team A and B in each round of the tie-
break are constants and given as a and b. Under this assumption, we can derive a
closed form expression for E0.

Proposition 3.2. The total excitement of the tie-break with scoring probabilities a
and b is given by

E0 = 4ab(1−a)(1− b)
(a+ b−2ab) . (3.9)
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Proof. The expected excitation of a tie-break game can be written as

E0 =
∞∑

i=0
pi

dEr (3.10)

where pd is the probability of a draw in a round, given by

pd = ab+(1−a)(1− b), (3.11)

which corresponds to either both teams’ successfully scoring the penalty shootout
or missing the penalty shootout at the same round d. The excitement per round,
Er is given by

Er =[a|(1− b)+ bpA−pA|+(1−a)|(1− b)pA−pA|

+ab|pA− ((1− b)+ bpA)|+a(1− b)|1− ((1− b)+ bpA)|

+(1−a)b|0− (1− b)pA|+(1−a)(1− b)|pA− (1− b)pA|]

=[a(1− b)(1−pA)+(1−a)bpA +2ab(1−pA)(1− b)

+2(1−a)(1− b)bpA]

where pA corresponds to the probability of team A winning the penalty shootouts
eventually, given by

pA =
∞∑

i=0
pi

dP (A wins in a round) = a(1− b)
1−pd

= (1− b)a
a+ b−2ab (3.12)

Combining the above, we have the desired result. (See the section Calculations for
(3.9) under Appendix A for a detailed derivation.)

3.3 Formulas for Equal Scoring Probabilities

For this section, we will consider the scoring probabilities at each round as constants
and calculate the conditional expected excitement of a penalty shootout sequence.

It is important to note that E is invariant under permutations of a1:T and b1:T .
Additionally, if at = a and bt = b for all t≥ 1, we have

E = T (E1,1 +E1,2)+DE0 (3.13)

where D can be simply found as ∑T
i=0 Binom(i;T,a)Binom(i;T,b).
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3.3.1 Conditional Excitement Formulations

In this section, we focus on calculating the remaining expected excitement of a
game given its score at a given time. We call this quantity the conditional expected
excitement. Calculating the conditional expected excitement for a game given its
score at a time can provide useful insights in determining the most exciting aspects
of the shootouts. In fact, we use the derived calculations in this section in our
experimental work in Chapter 4.

For this section, we assume that the scoring probabilities of teams are constant
at each round, denoted by a and b. The more general case can also be handled,
although with increased complexity of calculations.

Suppose that in a game with T regular rounds, the current time is (t1, t2) and the
score is (x,y). The conditional expected excitement given S = {St1,t2 = (x,y)} can
be shown to be

E(S) = max{0,T − t1}F (S)+max{0,T − t2}G(S)+D(S)E0 (3.14)

where

F (S) = aAt1+1,t2(x+1,y)− (1−a)At1+1,t2(x,y)+(1−2a)At1,t2(x,y),

G(S) = bBt1,t2+1(x,y+1)− (1− b)Bt1,t2+1(x,y)+(1−2b)Bt1,t2(x,y).
(3.15)

and D(S) is the draw probability after max{T,max{t1, t2}} rounds.

Although for t1, tt ≤ T , the interpretation of the above formula is clear; the cases
that correspond to a time in the tie-break needs elaboration.

• If t1 = t2 ≥ T , that means that the game is in a tie-break stage and teams have
taken equal number of penalty shootouts, the remaining part of the shootouts
is as exciting as any tie-break game, in which excitement is denoted by E0.

• If t1 = t2 +1≥ T , that means that the first team have taken one more penalty
than the second team during the overtime, and score is (x,y) with x−y = s ∈
{0,1}, it can be considered as a game where T = 1 and the score is (s,0) at
time t1 = 1 and t2 = 0.

13



3.4 Calculating the Winning Probabilities

It is clear from the above analysis that, in order to calculate expected excitements,
we need to be able to calculate winning probabilities of several types. A general
recipe for that is to model the game as a discrete time Markov chain with a discrete
state-space and utilize this Markov chain for the calculation of the score probabilities
at the rounds (which are the time steps of the chain), and deduce the winning
probabilities from the score probabilities.

In this section, we introduce discrete time discrete Markov chains in general and
show their application for our work.

3.4.1 Discrete-time Markov Chains

Discrete-time Markov chains (DTMCs) are stochastic processes that consist of a
sequence of random variables. A DTMC is characterized by a discrete set of states
visited by the process at a discrete set of times. The distinguishing property of a
Markov chain is the conditional independence of the next state on the entire past
given the current state, which is also known as the one-step memory property.

Assume that {Xn : n= 0,1, . . .} is a discrete-time stochastic process with a discrete
state space S = {1, . . . , s}. The joint probability model of stochastic process will be
represented as

P (X0 = x0,X1 = x1, . . . ,Xn = xn)

for n= 0,1, . . . and x0,x1, . . . ,xn ∈ S. This process is a homogeneous Markov chain
if for all times n≥ 0 and all states x0, . . . i, j ∈ S,

P (Xn+1 = j |X0 = x0,X1 = x1, . . .Xn = i) = P (Xn+1 = j |Xn = i)

= pij

where pij is the one-step transition probability and denotes the probability of moving
from state i to state j in one-step.

We could represent this chain by a s× s square matrix M with the elements of pij

where i, j ∈ S. This square matrix is called the transition matrix and each row will
sum up to one due to the fact that leaving state i, the chain must move to one of
the states in j ∈ S. So, for all i ∈ S

∑
j∈S

pij = 1.
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To summarize, the future sequence of the chain i.e. {Xn+1,Xn+2, . . .} only depends
on Xn, that is, it is independent of any past states, namely X0, . . . ,Xn−1.

For our study, DTMC could be used for the score, which is a bivariate random
quantity. However, to calculate the winning probabilities, it suffices to track the
probabilities of the score difference, which is univariate quantity and easier to use.
Therefore, we consider a DTMC for the goal difference over the rounds. DTMC
is suitable for this process since each player’s success in scoring can be considered
independent of the other players.

For example, suppose we have a penalty shootout with T = 5 rounds. Then the state
space is {−5,−4,−3,−2,−1,0,+1,+2,+3,+4,+5}. The state “−5” stands for the
case where the score difference between team A and team B is five goals and team
B is ahead of team A. The state “+3” state shows that the score difference between
team A and team B is three goals and team A is ahead of team B. Actually, according
to the rules of penalty shootouts, maximum score difference allowed between two
teams is ⌈T +1

2 ⌉ goals. Even though a difference of 4 or 5 goals is not possible,
since there are a couple of rare cases that we need to be aware of to represent all
possibilities clearly, we will not make any arrangements on the state space. If we
were to rearrange the state space with the maximum difference, we would miss the
winning probability of team B in a case where T = 5, current score is 3-0 and teams
A and B have used 3 and 2 penalties, respectively. We display the exemplary state
diagrams for a penalty shootout sequence with T = 3 rounds in Figure 3.1. For this
case, we have 7 different states. State diagrams were drawn under the assumption
of constant scoring probabilities, a and b, respectively.

Figure 3.1 State diagram for a single round. Top: Team A’s turn, Bottom: Team
B’s turn
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The restriction of equal scoring probabilities can be relaxed, leading to a non-
homogeneous Markov chain where the transition probabilities depend on the time
step n, i.e.,

p
(n)
ij = P (Xn = j |Xn−1 = i) ,

that is, p(n)
ij is the probability of moving from state i to state j at time step n.

A non-homogeneous DTMC is relevant to this work. Since the player to score the
penalty will be different for each round, the probability of scoring the penalty may
change. This suggests that the probability of moving from a score state i to score
state j will be different at each step.

In the following, we will show the necessary derivations to calculate the expected
excitement of a penalty shootout when the scoring probabilities vary across rounds.
The derivations will reveal that the calculations depend on being able to calculate
winning probabilities at any point of the penalty shootouts. To calculate those
winning probabilities, the DTMC for the score difference will be utilized.

In Algorithm 1, we provide the general algorithm to calculate the eventual winning
probabilities for Team A and Team B, as well as the drawing probability after T
regular rounds, given a score (x,y) at time (t1, t2), meaning that St1,t2 = (x,y).
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Algorithm 1 Conditional winning probability after T rounds given St1,t2 = (x,y)
Input: Scoring probabilities a1, . . . ,aT ; b1, . . . , bT ; tie-break scoring probabilities

a0, b0; regular rounds T ; current score S = {St1,t2 = (x,y)}.
Output: Eventual winning probabilities At1,t2(x,y), Bt1,t2(x,y); draw probabil-

ity after T rounds D(S).
Set s= 2T +1.
Set current difference d= x−y, and

π(k) =

1 k = d+T +1

0 else
, k = 1, . . . , s.

for t= 1,2, . . . ,T do
if t > t1 then

Set the s×s matrix MA such that MA(i, j) =



at j = i+1

1−at 1< j = i < s

1 j = i= 1 or j = i= s

0 otherwise

Update π← πMA

end if
if t > t2 then

Set the s×s matrix MB such that MB(i, j) =



bt i= j+1

1− bt 1< j = i < s

1 j = i= 1 or j = i= s

0 otherwise

Update π← πMB

end if
end for
At1,t2(x,y) = {π(T +2)+ . . .+π(s)}+π(T +1) a0(1−b0)

a0+b0−2a0b0
.

Bt1,t2(x,y) = {π(1)+ . . .+π(T )}+π(T +1) b0(1−a0)
a0+b0−2a0b0

.
D(S) = π(T +1).
return At1,t2(x,y), Bt1,t2(x,y), and D(S)

Example 3.1. In this example, we show the steps of Algorithm 1 for a simple case.
Consider the game with T = 5 regular rounds whose scoring probabilities are given
in Table 3.3. Assume that a0 and b0 are the averages of a1, . . . ,a5 and b1, . . . , b5,
respectively. That is, i.e. a0 = 1

T

∑T
t=1at and b0 = 1

T

∑T
t=1 bt. For our example, these
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Table 3.3 DTMC Example with T = 5 Rounds

Symbol Explanation Value
T Total number of rounds 5

a1, . . . ,a5 scoring probabilities of team A players [0.60 0.70 0.55 0.80 0.45]
b1, . . . , b5 scoring probabilities of team B players [0.90 0.65 0.70 0.50 0.60]

are

a0 = 0.6+0.7+0.55+0.8+0.45
5 = 0.62, b0 = 0.9+0.65+0.7+0.5+0.6

5 = 0.67.

Our goal is to calculate A0,0(0,0), which is the winning probability of team A at the
beginning of a penalty shootout.

Total number of states for T rounds is s = 2T + 1, which is s = 11 for
T = 5. The initial probability distribution for the score difference is π0,0 =[
0 0 0 0 0 1 0 0 0 0 0

]
, since S0,0 = (0,0).

Since the scoring probability of Team A at the first round is 0.60, transition proba-
bility matrix for the score difference at Team A’s turn will be

MA,1 =



1 0 0 0 0 0 0 0 0 0 0
0 0.4 0.6 0 0 0 0 0 0 0 0
0 0 0.4 0.6 0 0 0 0 0 0 0
0 0 0 0.4 0.6 0 0 0 0 0 0
0 0 0 0 0.4 0.6 0 0 0 0 0
0 0 0 0 0 0.4 0.6 0 0 0 0
0 0 0 0 0 0 0.4 0.6 0 0 0
0 0 0 0 0 0 0 0.4 0.6 0 0
0 0 0 0 0 0 0 0 0.4 0.6 0
0 0 0 0 0 0 0 0 0 0.4 0.6
0 0 0 0 0 0 0 0 0 0 1


. Multiplying π0,0 by MA, we have the probability distribution of the score difference
after team A’s penalty kick at the first round as

π1,0 = π0,0MA,1 =
[
0 0 0 0 0 0.4 0.6 0 0 0 0

]
.

Next, we can construct the transition probability matrix of for the score difference
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at Team B’s turn in the first round as

MB,1 =



1 0 0 0 0 0 0 0 0 0 0
0.9 0.1 0 0 0 0 0 0 0 0 0
0 0.9 0.1 0 0 0 0 0 0 0 0
0 0 0.9 0.1 0 0 0 0 0 0 0
0 0 0 0.9 0.1 0 0 0 0 0 0
0 0 0 0 0.9 0.1 0 0 0 0 0
0 0 0 0 0 0.9 0.1 0 0 0 0
0 0 0 0 0 0 0.9 0.1 0 0 0
0 0 0 0 0 0 0 0.9 0.1 0 0
0 0 0 0 0 0 0 0 0.9 0.1 0
0 0 0 0 0 0 0 0 0 0 1


. The probability distribution of the score difference after team B’s penalty kick at
the first round can be found in a similar manner, as

π1,1 = π1,0MB,1 =
[
0 0 0 0 0.36 0.58 0.06 0 0 0 0

]
By following the same steps for the next four rounds, the winning probability after
T = 5 regular rounds is calculated as π5,5(7)+π5,5(8)+π5,5(9)+π5,5(10)+π5,5(11) =
0.3028. However, this is not the overall winning probability A0,0(0,0), since the game
can continue to tie-break rounds. The winning probability for Team A in tie-break
rounds, pA is given in (3.12). Applying it to our example, we have

pA = 0.33×0.62
0.62+0.67−2×0.62×0.67 = 0.4455.

Therefore, we have

A0,0(0,0) = (π5,5(7)+π5,5(8)+π5,5(9)+π5,5(10)+π5,5(11))+π5,5(6)pA = 0.4205.

Similar steps can be followed to calculate Aσt(a),b
1,0 (1,0) and A

σt(a),b
1,0 (0,0), the prob-

abilities needed to calculate the incremental excitement Et,1, for any t = 1, . . . ,T .
For each of those, a different initial distribution should be set given the score and
the transition matrices should be applied as many as the remaining trials for each
team. For example, Aσt(a),b

1,0 (1,0) is the winning probability of Team A given that the
probability sequence for Team A is σt(a) and Team A missed their first penalty. The
initial distribution for this calculation is π1,0 =

[
0 0 0 0 0 1 0 0 0 0 0

]
.

This initial distribution should be multiplied by MB,1MA,2MB,2 . . .MA,5MB,5 where
the transition matrices MA,2, . . . ,MA,5 are constructed from the probabilities in
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a−t = (a2, . . . ,at−1,a1,at+1, . . . ,aT ) and MB,1, . . . ,MB,5 are constructed from the
probabilities in b. By following those steps for t= 1, we have

Aa,b
1,0 (1,0) = 0.3973+0.4455×0.2831 = 0.5234,

Aa,b
1,0 (0,0) = 0.1609+0.4455×0.2360 = 0.2660,

Therefore, the incremental excitement is calculated as

E1,1 = 0.6×0.5234−0.4×0.2660−0.2×0.4205 = 0.1235.

Just as the winning probabilities for Team A, we can also calculate B0,0(0,0),
B

a,σt(b)
0,1 (0,0) and Ba,σt(b)

0,1 (0,1), the probabilities needed to calculate the incremental
excitements Et,2, for t= 1, . . . ,T , by following similar steps.

For the values in our example, Ba,σt(b)
0,0 (0,0), Ba,σt(b)

0,1 (0,1) and Ba,σt(b)
0,1 (0,0) can be

calculated as 0.5794, 0.6053 and 0.3460, respectively. Thus,

E1,2 = 0.9×0.6053+0.1×0.3460−0.8×0.5794 = 0.0466.

So, for the first round combined, the excitement will be equal to E1,1 +E1,2 = 0.1701.

Calculations for the remaining steps can be found in Table A.4 under Appendix A.

3.4.2 Numerical Exploration of Expected Excitement

In this section, we illustrate our mathematical findings with numerical examples.
Example 3.2 shows the expected excitement score for 9 cases with different scoring
probability pairs. For this example, the scoring probabilities of each team remains
the same at each round. Example 3.3 elaborates on calculating the expected ex-
citement for varying scoring probabilities at each round for various T values. Some
cases also provides the excitement during various stages of a penalty shootout.

The code for this section was written in Python programming language using Jupyter
Notebook environment. All computational experiments in this section were carried
out on a 64-bit machine with Intel Core i5-4260U processor at 1.60 GHz and 4GB
RAM.

Example 3.2. In this example, we illustrated our mathematical findings for constant
scoring probabilities with computational experiments. Scoring probabilities of both
teams were entered by the user. The upper limit for the number of rounds T was
determined as 200. However, some of the cases did not converge even after T =
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200 rounds due to scoring probabilities of the opposing teams. Expected excitement
for various cases with their properties can be found in Table 3.4. Their graphical
illustrations can be found in Figure 3.2.

Table 3.4 Expected Excitement of Scenarios with Different Scoring Probability
Pairs

Graph Scoring Probabilities Highest Excitement Score Round of Highest Excitement Score
a b

(1) 0.1 0.6 0.42 1
(2) 0.3 0.4 2.23 43
(3) 0.5 0.5 7.99 > 200
(4) 0.7 0.5 1.18 10
(5) 0.7 0.7 7.33 > 200
(6) 0.4 0.8 0.51 1
(7) 0.9 0.3 0.32 1
(8) 0.8 0.9 1.13 22
(9) 0.9 0.9 4.82 > 200

Figure 3.2 Graphical illustrations of scenarios with different scoring probability
pairs

Graphs (3), (5) and (9) represent scenarios in which the opposing teams have equal
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scoring probabilities. Results suggest that if opponents have the same scoring proba-
bilities (i.e. same strength), the excitement score would constantly increase at each
round. The highest excitement score was obtained for the case where both teams had
the scoring probability of 0.50, which corresponds to Graph (3). That scenario can
be considered as the ultimate penalty shootout scenario with the highest excitement
score. Graphs (1), (6) and (7) show cases in which difference between scoring prob-
abilities of the opponents are very high. In these cases, the excitement score would
peak at the beginning of the shootouts and constantly decrease afterwards. These
results illustrate that it would not be so exciting to watch a penalty shootout between
two teams with a huge difference in scoring ability. Graph (4) shows a similar re-
sult, however, since the gap between the scoring probabilities of opposing teams is
smaller, the highest excitement score for this scenario is greater than (1), (6) and
(7)’s highest excitement scores. Finally, graphs (2) and (8) show teams with similar
strengths. For graph (2), both teams are weak and have low scoring probabilities and
for graph (8), both teams are strong and have high scoring probabilities. Compari-
son of these graphs shows that, mathematically, when opposing teams have similar
strengths, penalty shootout scenario with the weaker teams would be more exciting.
This may be related to the fact that weak teams would miss more shootouts compared
to strong teams and it could cause their shootouts to last longer.

Example 3.3. In order to understand the excitement score calculation with vary-
ing scoring probabilities at each round, alternative penalty shootout sequences were
created. These sequences, also known as scenarios, can be found in Table 3.5. Ex-
planations for the excitement difference between these scenarios are also presented.

Interpretations of the scenarios in Table 3.5 are as follows.

• Scenario (1) represents a penalty shootout sequence between two weak teams
that will last for 3 rounds. The current score is 0-0 and neither of the teams
have shot a penalty yet. The excitement score for this scenario is 1.150. In
contrast, (2) represents a penalty shootout sequence between two very strong
teams that will last for 3 rounds. The excitement score for this scenario is
1.124. By comparing first two scenarios, it can be observed that excitement
score for both ends of the spectrum will be very similar to each other. In
(3), another scenario with the same setup is represented. However, this time
both teams have an average scoring probability. Thus, excitement score slightly
increases to 1.278.

• Scenarios (4) and (5) have the same scoring probability setups. The first sce-
nario has the current score of 0-0 and neither of the teams have shot a penalty
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Table 3.5 Expected Excitement of Scenarios with Scoring Probability Vector Pairs

Scenario T Scoring Probabilities x y tA tB Excitement

1 3 0.30 0.25 0.40
0.20 0.45 0.15 0 0 0 0 1.150

2 3 0.80 0.95 0.75
0.85 0.90 0.80 0 0 0 0 1.124

3 3 0.50 0.60 0.55
0.50 0.55 0.60 0 0 0 0 1.278

4 5 0.35 0.45 0.25 0.35 0.4
0.85 0.90 0.70 0.80 0.80 0 0 0 0 0.258

5 5 0.35 0.45 0.25 0.35 0.4
0.85 0.90 0.70 0.80 0.80 3 3 4 4 1.455

6 5 0.85 0.90 0.70 0.80 0.80
0.90 0.85 0.80 0.90 0.70 3 3 4 4 2.301

7 5 0.5 0.7 0.6 0.45 0.65
0.46 0.60 0.65 0.70 0.50 3 3 4 4 2.962

8 5 0.85 0.90 0.70 0.80 0.80 0.70
0.90 0.85 0.80 0.90 0.70 0.80 6 5 6 5 2.297

9 5 0.50 0.70 0.60 0.45 0.65
0.50 0.60 0.65 0.55 0.50 0 0 0 0 1.452

10 5 0.70 0.50 0.45 0.65 0.60
0.65 0.50 0.5 0.55 0.60 0 0 0 0 1.451

11 5 0.50 0.70 0.60 0.45 0.65
0.50 0.60 0.65 0.55 0.50 3 3 3 1 0.317

12 7 0.50 0.80 0.10 0.40 0.60 0.40 0.75
0.45 0.30 0.80 0.90 0.85 0.35 0.55 0 0 0 0 1.378

13 7 0.50 0.80 0.10 0.40 0.60 0.40 0.75
0.45 0.30 0.80 0.90 0.85 0.35 0.55 5 5 5 5 3.201

yet. On the other hand, second scenario depicts a sequence in which both teams
had 3 successful shootouts. (4) has an excitement score of 0.258 whereas (5)
has an excitement score of 1.455. This difference stems from the fact that
team A is much weaker than team B and the outcome of the shootouts is very
predictable. Thus, at the beginning of the shootout sequences the excitement is
very low. However, in (5), team A has the same score as team B against all
odds which makes the shootouts more exciting by increasing the variability in
winning probabilities.

• Scenario (6) represents shootouts between two strong teams and the current
score is 3-3. The excitement for this scenario is 2.301. Since both teams are
very strong, the outcome is unpredictable and the excitement is at its maxi-
mum. Under the same circumstances, scenario (5) has an excitement score
of 1.455 because one of the teams is much weaker than the other. Another
example with the same setup is scenario (7). This time, both teams have an
average scoring probability. Similar to the results displayed in Table 3.4, ex-
citement score formulation with varying scoring probabilities also considers
scoring probabilities that are closer to 50% as the most exciting ones. That is
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why, scenario (7) has an excitement score of 2.962 and it is the most exciting
shootout sequence among the scenarios with the same setup.

• Scenario (8) shows a penalty shootout sequence that went into overtime and it
has an excitement score of 2.297. It has the same scoring probability setup as
(6) for both teams which shows the fact that after a certain point, the excite-
ment score between two highly competitive teams remains constantly high.

• Scenarios (9) and (10) were built to show that the excitement score is invariant
under permutations of teams’ scoring probabilities if the penalty shootouts have
not started yet. These scenarios can be considered as two different penalty
shootout sequences among the same opposing teams. However, the order of the
players is shuffled between scenarios for both teams. Even though the order is
shuffled, the excitement score remains the same for both scenarios.

• Scenarios (9) and (11) have the same scoring probabilities, but their setup is
different. Scenario (9) has 0-0 as its current score whereas scenario (11)’s
current score is 3-1. On the other hand, (9) has an excitement score of 1.452
and (11) has an excitement score of 0.317. This shows the importance of goal
difference between two teams and aligns with the feature importance findings
that will be explored in Chapter 4.

• Finally, two penalty shootout sequences with 7 rounds were considered. Both
scenario (12) and scenario (13) have the same random scoring probabilities.
(12) has 0-0 as its current score and neither of the teams have shot a penalty
yet whereas (13) has 5-5 as its current score and each team have shot 5 penal-
ties. Comparison of these scenarios provides insights for understanding the
excitement in sports. If two teams with similar strengths have successfully
scored each of their penalty shootouts up until the very last moment, the ex-
citement of final penalties will be very high. Thus, the excitement of (13) will
be 3.201 and it is higher than the excitement score of (12) which represents
the beginning of the penalty shootouts.

3.5 Maximum Likelihood Estimation for Scoring Probability
Distribution

We know how to calculate the expected excitement of a penalty shootout given
the scoring probabilities. Therefore, if we were given a probability distribution
for the scoring probability of a team, we could identify the best T , which yields
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the maximum expected excitement ET in expectation with respect to the scoring
probability distribution.

However, the probability distribution of the scoring probability of a team is unknown
in general. This motivates for the task of estimating the probability distribution of
the scoring probability of a team in a random game. In this section, we investigate
maximum likelihood estimation for this purpose and apply it to real data.

The Beta-Binomial distribution can be described as a form of Binomial distribu-
tion in which probability of success at each trial is randomly drawn from a Beta
distribution. During penalty shootouts, probability of success is not known, thus,
considering the randomness is very important. That is why, we need to estimate
the parameters of the Beta distribution for cases where scoring probabilities of the
opposing teams are unknown. The Beta distribution has two parameters, namely
α and β. In order to obtain a maximum likelihood estimation for these parame-
ters, iterative methods such as Expectation-Maximization algorithm combined with
Newton-Raphson method algorithm was utilized. Notations for this part can be
found in Table 3.6.

Table 3.6 Notations for Binomial Distribution

N Total number of penalty trials
K Number of successful penalties

3.5.1 Real Data

The data X, including 314 penalty shootouts, were generated using the results of
the penalty shootouts from 1982-2018 FIFA World Cup, 1976-2020 UEFA European
Cup, 2016-2020 Turkish Cup, 1993-2019 Copa América and 1991-2019 CONCACAF
Cup. Data consist of the total number of penalty shootouts taken by each team and
the number of successful penalties for each team. A representative sample from the
data can be found in Figure 3.3.
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Figure 3.3 A sample from the penalty shootouts data

3.5.2 Calculations

Suppose each data point i from the setX follows xi∼Binom(ni,pi). The probability
of success for each penalty comes from pi ∼Beta(α,β), given that {pi}Pi=1 and pi ∈
(0,1). In addition, for each data point i, total number of penalties are represented
as ni and number of successful penalties are represented as ki. The probability mass
function of Binomial distribution and beta density are as follows

f(ki | pi) =
(
ni

ki

)
·pki

i · (1−pi)ni−ki (3.16)

f(pi) = Γ(α+β)
Γ(α)Γ(β)p

(α−1)
i (1−pi)(β−1) = pα−1

i (1−pi)β−1

B(α,β) . (3.17)

The joint distribution can be formulated as f(ki,pi) = f(pi)f(ki | pi) which is equal
to

Γ(α+β)
Γ(α)Γ(β)p

(α−1)
i (1−pi)(β−1)

(
ni

ki

)
·pki

i · (1−pi)ni−ki

= Γ(α+β)
Γ(α)Γ(β)

Γ(ni +1)Γ(ki +1)
Γ(ni−ki +1) p

(α+ki−1)
i (1−pi)(ni−ki+β−1)

(3.18)

Beta distribution is the conjugate prior for the Binomial distribution in Bayesian
inference which provides an easier numerical computation. That is why, it was
selected as the probability distribution for our study.

f(ki) =
∫ 1

0
f(ki,pi)dpi.

= Γ(α)Γ(β)
Γ(α+β)

Γ(ni +1)Γ(ki +1)
Γ(ni−ki +1)

Γ(α+ki)Γ(ni +β−ki)
Γ(ni +α+β)

(3.19)
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f(pi | ki) = f(ki,pi)
f(ki)

= Γ(α+β+ni)Γ(α+ki)
Γ(ni +β−ki)

p
(α+ki−1)
i (1−pi)(ni−ki+β−1)

(3.20)

posterior distribution is a Beta distribution with αpost,i = α+ki and βpost,i = β+
ni−ki.

3.5.3 Maximum Likelihood Estimation

General formulations of the maximum likelihood estimation are as follows.

Let X1, . . . ,Xn be iid random variables sampled from a distribution with f(x | θ)
density. Suppose parameters of this distribution are represented by θ in a parameter
space. Thus, the likelihood function for X1:n = x1:n will be

Ln(θ;x1:n) =
n∏

i=1
f(xi | θ). (3.21)

The log-likelihood function can be written as

ℓn(θ;x1:n) = logLn(θ | x1:n) =
n∑

i=1
logf(xi | θ). (3.22)

The maximum likelihood estimate of θ is defined as

θ̂MLE = argmax
θ

ℓn(θ | x1:n). (3.23)

Given that ℓn(θ | x1:n) is differentiable in θ, take the logarithmic derivative with
respect to θ and set it to 0.

∂ℓn(θ | x1:n)
∂θ

= 0. (3.24)

For our study, maximum likelihood estimation of the parameters of the Beta distri-
bution given a set of probabilities will be relevant. Maximum likelihood estimation
for Beta distribution given the a sequence of variables p1:n with each pi ∈ (0,1)
consists of the following steps.
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1. Let θ = (α,β). Derive the log-likelihood function.

ℓ(α,β;p1:n) =
n∑

i=1
lnf(pi | θ)

=
n∑

i=1
ln
(

Γ(α+β)
Γ(α)Γ(β)p

(α−1)
i (1−pi)(β−1)

)

= (α−1)
n∑

i=1
lnpi +(β−1)

n∑
i=1

ln(1−pi)+

n(lnΓ(α+β)− lnΓ(α)− lnΓ(β))

(3.25)

2. Take the logarithmic derivatives w.r.to α and β. It should be noted that

ψ(x) = ∂ lnΓ(x)
∂x

= Γ′(x)
Γ(x)

For α:

∂

∂α

(
(α−1)

n∑
i=1

lnpi +(β−1)
n∑

i=1
ln(1−pi)+n(lnΓ(α+β)− lnΓ(α)− lnΓ(β))

)

= n(ψ(α+β)−ψ(α))+
n∑

i=1
lnpi

(3.26)

For β:

∂

∂β

(
(α−1)

n∑
i=1

lnpi +(β−1)
n∑

i=1
ln(1−pi)+n(lnΓ(α+β)− lnΓ(α)− lnΓ(β))

)

= n(ψ(α+β)−ψ(β))+
n∑

i=1
ln(1−pi)

(3.27)

3. Set the derivatives to 0 and solve for α and β.

3.5.4 Expectation Maximization Algorithm & Newton-Raphson Method

The expectation-maximization (EM) algorithm can be considered as an iterative
method to obtain local maximum likelihood or maximum a posteriori (MAP) param-
eter estimations. It was first introduced in 1977 and described as a solver for models
including latent variables, known data points and unknown parameters (Dempster,
Laird & Rubin, 1977). It consists of two steps: E-step and M-step.

E-step: EM algorithm will start with initialization of parameters. Suppose you
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have a set X of observed data points, set of unobserved data points ∆ and a vector
of unknown parameters θ. The likelihood function given the complete data will be
L(θ;∆,X) = p(∆,X | θ). For the expectation step, a function Q will be defined as
the expected value of the log-likelihood function of θ at each step n.

Q
(
θ | θ(n)

)
= E[logL(θ;∆,X)] = E[ ℓ(θ;∆,X)] (3.28)

M-step: This step will consist of maximizing the function Q with respect to θ at
each iteration until it converges.

θn+1 = argmax
θ

Q
(
θ | θ(n)

)
(3.29)

For our study, we used the EM algorithm to estimate the parameters of a Beta-
Binomial distribution that is used to model the number of successful penalties. This
model corresponds to assigning a Beta distribution for the scoring probability of
each team in each penalty shootout, and assuming that given those probabilities the
number of successful penalties has a Binomial distribution. The E-step of the EM
algorithm for this model requires taking the posterior expectations of each logpi and
log(1− pi) given the data point ni,ki (trials, successes) where pi ∼ Beta(α,β) for
the set of n observed data points in Section 3.5.2.

In Section 3.5.2, it was determined that if f(pi) is a beta density with parameters
α and β, f(pi |Ki = ki) is a beta density with parameters α+ki and β+ni−ki.

Initial parameters are defined as θ0 = (α0,β0). E-step at the j’th iteration of EM is
calculated as follows

Si = Eθj−1 [ logpi |Ki = ki] = ψ(αj−1 +ki)−ψ(αj−1 +βi−1 +ni)

Yi = Eθj−1 [ log(1−pi) |Ki = ki] = ψ(βj−1 +ni−ki)−ψ(αj−1 +βj−1 +ni)

For the EM algorithm for the Beta-Binomial distribution, the M-step reduces to
maximizing a function over α and β of the form

S̄(α−1)+ Ȳ (β−1)− lnΓ(α+β)+ lnΓ(α)+ lnΓ(β)

where
S =

∑n
i=1Si

n
, Y =

∑n
i=1Yi

n
. (3.30)

are derived in the E-step preceding the M-step using the parameters of the previous
iteration. Since the maximization is not tractable, the Newton-Raphson algorithm
can be used.
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Newton-Raphson method approximates the roots of a function f(x) by calculating

xn+1 = xn−
f(xn)
f ′(xn) (3.31)

in which xn and xn+1 represents nth and (n+1)th iterations.

Using this method in the M-step of the EM algorithm, we have an inner loop for
the maximization process for θ where the iterates of this loop are calculated as

θ(r+1) = θ(r)−G−1(θ(r))g(θ(r)) (3.32)

starting from θ(0) = θj−1. When the inner loop is run for a certain number of
iterations, say m> 0, the last iterate θ(m) is taken as θj = (αj ,βj), the estimate of
the j’th iteration of the EM algorithm.

In (3.32), the gradient vector and the Hessian matrix are defined as

g(θ) =
 ψ(α+β)−ψ(α)+S

ψ(α+β)−ψ(β)+Y

 (3.33)

and

G(θ) =
 ψ1(α+β)−ψ1(α) ψ1(α+β)

ψ1(α+β) ψ1(α+β)−ψ1(β)

 (3.34)

where ψ1 represents trigamma function. The derivations behind these equations are
shown in (3.26) and (3.27).

For our model, we set the initial parameters as α0 = 0 and β0 = 0. After 10000 itera-
tions, parameter estimations for α and β converges to 106.08 and 33.58, respectively.
The graph representing their convergence can be seen in Figure 3.4.

Figure 3.4 α and β parameter estimations
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By obtaining these estimated values for the Beta distribution parameters, we could
approximate the expectation of the expected excitement with respect to the distri-
bution of the scoring probabilities, which is given by

∫
E[ET (S)|a,b]Beta(a;α,β)Beta(b;α,β)dadb

Since we estimated α and β using MLE, we have the distributions of the scoring
probabilities a and b. Hence, we can calculate an importance sampling estimate
of the expectation above by sampling a and b from their Beta distributions, re-
spectively. Algorithm 2 displays the process of calculating the expectation of the
expected excitement with probability distributions.

Algorithm 2 Excitement Score Calculation with Estimated Beta Parameters
Input: α= 106.08, β = 33.58, T = 200,M = 5

Start with Emax = 0
for T = 1,2, . . . ,Tmax do

for m= 1,2, . . . ,M do
Draw a∼Beta(106.08,33.58) and b∼Beta(106.08,33.58)
Calculate E(m) = E[ET (S) | a,b]

end for

E(T ) =
∑M

m=1E
(m)

M
if Emax <E(T ) then
Emax← E(T )
Tbest← T

end if
end for
max_excitement← Emax

best_penalty_round← Tbest

return max_excitement,best_penalty_round

3.6 Excitement Score Calculator

Graphical User Interface (GUI) is an interface which allows users to interact with
electronic devices by using graphical icons. It provides a comfortable experience
for the user, since navigating through your desktop or your applications would be
easier with icons representing the function of a program. First prototype of GUI
was developed by Xerox Paro Alto Research Center in 1979.
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In this study, GUI was created to provide a user-friendly experience in calculating
the excitement scores of different penalty shootout scenarios. In Figure 3.5, we
provide an example case where current score is 6-6, probability of scoring a penalty
shootout for teams are 70% and 60% and number of completed penalty shootouts for
teams are 7 and 7. For the excitement score calculation, formulations in Chapter 3
were used. In return, GUI returns the excitement score for this scenario as 0.9527.

Figure 3.5 Graphical user interface for excitement score calculation
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4. MODELING

In this chapter, we compare the findings of mathematical excitement calculations
with the viewers’ perception in real-life by examining the data of a survey that
we have conducted. This survey consists of the paired comparisons of 20 penalty
shootout scenarios. The excitement score of each penalty shootout scenario in this
survey is calculated and ranked by using the formulations in Chapter 3. For the real-
life part, preferences of the participants regarding which penalty shootout scenario
they found more exciting are evaluated using the Bradley-Terry model. Furthermore,
using machine learning applications, we explore which features of a penalty shootout
influence people’s decision making process.

4.1 Excitement Survey

We have conducted a survey with 310 participants. This survey consisted of ques-
tions regarding pairwise comparison of 20 different penalty shootout scenarios. All
of these scenarios have been compared against each other, which corresponds to a
total of 190 paired comparison, thus, our survey consisted of 190 questions. Among
these 190 possible questions, each participant answered 15 questions that were ran-
domly assigned to them. Example survey questions can be found in Appendix A
shown as Table A.1, Table A.2, Table A.3.

As the outcome of this survey, we had the preferences of the participants for different
paired scenario comparisons. Therefore, we were able to rank these scenarios based
on the number of times they were preferred. As a more principled approach, we also
utilised Bradley-Terry model to rank preferences of the participants. Attributes of
each penalty shootout scenario are explained in Table 4.1. The penalty shootout
scenarios created for this study are represented in Table 4.2.
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4.1.1 Survey Participants

Out of 310 respondents, 117 of them were average football viewers and 193 of
them can be considered as football fans. Since we would like to observe different
participant groups, preference models were also built separately for these participant
classes in Section 4.3.

Table 4.1 Attributes and Definitions

Round Current time in each penalty shootout. Round ends when
both teams have taken the penalty shootout.

Score Current score of the penalty shootouts
Scoring Probability Probability of scoring the penalty shootout for each team

in each round
Penalty Kick In Indicates which team will take the penalty kick next

Table 4.2 Survey Scenarios

Scenario Round Score
Scoring

probability
(Team A)

Scoring
probability
(Team B)

Penalty
kick in

Scenario 1 4 3-1 70% 50% Team A
Scenario 2 1 1-0 60% 50% Team B
Scenario 3 5 4-4 70% 60% Team A
Scenario 4 3 1-1 55% 55% Team A
Scenario 5 7 4-4 90% 30% Team A
Scenario 6 4 2-2 45% 55% Team A
Scenario 7 3 0-1 80% 80% Team A
Scenario 8 1 0-0 85% 75% Team A
Scenario 9 6 6-5 80% 60% Team B
Scenario 10 2 1-1 90% 90% Team B
Scenario 11 8 6-6 70% 60% Team A
Scenario 12 5 2-1 25% 80% Team A
Scenario 13 4 4-2 75% 55% Team B
Scenario 14 1 1-0 80% 90% Team B
Scenario 15 10 8-8 75% 85% Team B
Scenario 16 5 4-3 55% 45% Team B
Scenario 17 5 3-3 85% 85% Team A
Scenario 18 3 3-1 40% 70% Team B
Scenario 19 6 5-5 70% 70% Team A
Scenario 20 2 2-0 90% 30% Team B
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4.1.2 Survey Data Generation

We were able to obtain pairwise comparisons of the scenarios due to the structure
of this survey. That is why, the survey data consist of 4656 entries and these entries
are generated depending on how many times a scenario is selected and not selected
in their respective pairwise comparison. Sample from the raw data can be found
in Figure A.1 under Appendix A. It can be seen that Scenario 1 was selected 11
times and not selected 17 times during its comparison with Scenario 2. In order to
make the data computationally easier to calculate, we have merged each comparison
as a difference of feature values and created a processed data. A sample from the
processed data can be found in A.2 under Appendix A in which feature values of
Scenario 1 and Scenario 3 are merged.

In total, 8 features were considered for the machine learning algorithms to come and
their detailed explanations can be found in Table 4.7. The values of these features
were derived from the difference between compared scenarios, again, due to pairwise
comparisons and to make calculations computationally easier.

4.2 Bradley-Terry Model

The Bradley-Terry model was introduced by Bradley & Terry (1952) and it can be
described as a probability model used for pairwise evaluations. Suppose there exists
a pair of individuals m and k from a population. The probability estimation for
the pairwise evaluation where m> k depicts that m is preferred to k which can be
written as

P(m> k) = αm

αm +αk
. (4.1)

αm and αk are designated real-valued scores assigned for m and k, respectively.
These score factors can be expressed in many ways. The variation used by Bradley
and Terry is the exponential score function which can be written as αm = eβm . Thus,
P(m> k) can also be represented as

P(m> k) = eβm

eβm + eβk
. (4.2)
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Alternatively, Bradley-Terry model can be expressed in a log-linear formulation to
reduce the model into a logistic regression form which is denoted in (4.3).

logit(P(m> k)) = σ−1(P(m> k)) = log
(

P(m> k)
1−P(m> k)

)
= βm−βk

(4.3)

where βm = log(αm) is the ability parameter with logarithmic scale.

The Bradley-Terry model is a very common method for comparing the teams in a
sports tournament with regard to their power. In that case, αm can represent the
strength of a team which may be estimated from the total number of games team m

have won. Various studies used this model for forecasting the outcome of a sports
tournament or to compare the powers of teams in a league. In some studies, Bradley-
Terry model was used to predict the results of tennis matches (Ian & Morton, 2011)
or to estimate abilities and rankings of basketball teams by considering their winning
percentages and home-field advantages (Cattelan, Varin & Firth, 2013).

For psychometric applications, it can be used to compare preferences of subjects,
including subject-specific attributes. In their research, Dittrich, Katzenbeisser &
Reisinger (2000) used Bradley-Terry model and its subclass applications to rank
newspaper preferences of people considering subject-specific variables such as age,
income and gender. In our study, the Bradley-Terry model was used to determine
the preference scores αm of the scenarios based on the responses of the survey
participants. Scenario 1 was taken as a baseline for easier interpretation and its
log-ability is equal to β1 = 0. In order to calculate the ability parameters and create
the Bradley-Terry model, R package BradleyTerry2 was used. Results can be seen
in Table 4.3 and in Figure 4.1 .

According to the ability estimates, the most preferred scenario is Scenario 19 and the
least preferred scenario is Scenario 20. Bradley-Terry scenario rankings are presented
with the excitement score rankings and voting-based ranking in Section 4.8.
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Table 4.3 Bradley-Terry Model Scenario Ability Estimates

Scenario Estimate Standard Error Quasi-Standard Errors
Scenario 1 0.000 0.000 0.101
Scenario 2 0.507 0.136 0.092
Scenario 3 1.106 0.139 0.093
Scenario 4 0.878 0.136 0.090
Scenario 5 0.799 0.141 0.097
Scenario 6 0.795 0.135 0.090
Scenario 7 0.766 0.136 0.091
Scenario 8 0.706 0.137 0.092
Scenario 9 0.906 0.136 0.090
Scenario 10 0.942 0.138 0.092
Scenario 11 1.413 0.141 0.096
Scenario 12 0.761 0.139 0.094
Scenario 13 0.136 0.137 0.094
Scenario 14 0.538 0.138 0.092
Scenario 15 1.389 0.142 0.098
Scenario 16 0.996 0.136 0.091
Scenario 17 1.409 0.140 0.096
Scenario 18 0.693 0.137 0.092
Scenario 19 1.456 0.143 0.010
Scenario 20 -0.044 0.139 0.009

Figure 4.1 Estimation intervals based on quasi-standard errors

37



4.3 Bradley-Terry Preference Rankings for Survey Participant Groups

As we previously stated in Section 4.1.1, survey participants consist of two groups:
average football viewers and football fans. Their preference ranking results can be
seen in Table 4.4.

Table 4.4 Bradley-Terry Preference Rankings Based on Participant Groups

Rank Scenario Ability -
Football Fans Scenario

Ability -
Average Viewer

1 Scenario 19 1.944 Scenario 10 1.126
2 Scenario 15 1.843 Scenario 17 0.972
3 Scenario 11 1.841 Scenario 11 0.888
4 Scenario 17 1.718 Scenario 19 0.809
5 Scenario 3 1.522 Scenario 15 0.766
6 Scenario 16 1.460 Scenario 8 0.693
7 Scenario 4 1.258 Scenario 14 0.629
8 Scenario 5 1.235 Scenario 9 0.571
9 Scenario 6 1.186 Scenario 3 0.557
10 Scenario 12 1.155 Scenario 18 0.498
11 Scenario 9 1.152 Scenario 2 0.461
12 Scenario 7 1.023 Scenario 7 0.375
13 Scenario 10 0.915 Scenario 4 0.311
14 Scenario 18 0.832 Scenario 6 0.261
15 Scenario 8 0.749 Scenario 16 0.213
16 Scenario 14 0.555 Scenario 5 0.205
17 Scenario 2 0.551 Scenario 12 0.181
18 Scenario 13 0.126 Scenario 13 0.139
19 Scenario 20 0.076 Scenario 1 0.000
20 Scenario 1 0.000 Scenario 20 -0.279

By examining the outcome, we can explore the similarities and differences between
these groups. To begin with, ability estimates for the football fans are much higher
than the estimates for the average viewers. This can be interpreted as a sign of
football fans enjoying most penalty shootouts and it leads to them being indecisive
while choosing one to watch. For the average football viewer, making a decision is
a lot easier and excitement a penalty shootout brings is much less.

The most and the least exciting scenarios are very similar for both groups with a
couple of minor differences. For average football viewers, the most exciting scenario
is Scenario 10, which shows a rally between two very strong teams. It is understand-
able for an average viewer to prefer a shootout with the strongest teams. They may
want to spend their time watching a competitive and probably popular shootout
scenario since they are not a constant football fan.
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4.4 Expected Excitement Scores of Survey’s Penalty Shootout Scenarios

By using the mathematical formulations in Chapter 3, we found the excitement
scores of the penalty shootout scenarios in Table 4.2. Python programming language
was utilised for the coding of this section. Excitement scores are shown in Table
4.5.

Table 4.5 Scenario Rankings for Excitement Score

Rank Scenario Excitement
Score

1 Scenario 4 1.246
2 Scenario 2 1.150
3 Scenario 8 1.103
4 Scenario 6 1.073
5 Scenario 14 1.009
6 Scenario 19 1.000
7 Scenario 17 1.000
8 Scenario 18 0.995
9 Scenario 11 0.952
10 Scenario 3 0.952
11 Scenario 7 0.702
12 Scenario 12 0.668
13 Scenario 16 0.630
14 Scenario 9 0.606
15 Scenario 10 0.580
16 Scenario 15 0.224
17 Scenario 5 0.173
18 Scenario 13 0.134
19 Scenario 1 0.051
20 Scenario 20 0.004

According to the mathematical formulation rankings, the most exciting penalty
shootout scenario is Scenario 4. It is consistent with our experiments since scoring
probabilities in this scenario are the same (%55) and they are very close to %50,
which tends to be the probability that provides the most variability in a penalty
shootout. Additionally, the current score of Scenario 4 is 1-1, which means variability
in the winning probabilities of both teams will be high.

On the other hand, the least exciting penalty shootout scenario is Scenario 20.
Again, it is consistent with the previous results since there is a huge scoring proba-
bility difference between two teams and the current score shows that the variability
in the winning probabilities of both teams is not high. In this scenario, Team A is
very close to winning the penalty shootouts which mathematically makes the penalty
shootouts less exciting to watch.
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4.4.1 Modifications in Conditional Expected Excitement Score Formula-
tion

Conditional expected excitement formulation in (3.14) can be modified and alter-
native excitement scores can be obtained. In order to have an outcome that is
closer to the survey results, the remaining number of penalties can be removed from
the formulation. Even though general rule in football is to shoot 5 penalties each
and mathematical applications should take that into consideration, in some cases
penalty shootouts extend beyond that limitation. In our formulations, that exten-
sion is evaluated by calculating the tie-break excitement, however, according to the
viewer, the number of penalty shootouts remaining is a mystery. That is why, an
alternative to (3.14) can be proposed as follows

Ê(S) = F (S)+G(S)+D(S)E0. (4.4)

where S = {St1,t2 = (x,y)} is the given score. The excitement scores of the penalty
shootout scenarios obtained by using (4.4) are shown in Table 4.6.

Table 4.6 Scenario Rankings for the Alternative Excitement Score

Rank Scenario Alternative
Excitement Score

1 Scenario 16 1.098
2 Scenario 19 1.001
3 Scenario 17 1.000
4 Scenario 11 0.952
5 Scenario 3 0.952
6 Scenario 9 0.905
7 Scenario 6 0.713
8 Scenario 12 0.668
9 Scenario 4 0.546
10 Scenario 18 0.538
11 Scenario 14 0.483
12 Scenario 8 0.437
13 Scenario 2 0.418
14 Scenario 7 0.390
15 Scenario 10 0.319
16 Scenario 15 0.198
17 Scenario 5 0.173
18 Scenario 13 0.114
19 Scenario 1 0.035
20 Scenario 20 0.001

40



4.5 Feature Importance

In this section, machine learning algorithms were utilised to examine the survey
results in more detail and to identify the factors affecting the scenario preferences of
the participants. This survey can be considered as a binary classification problem,
in which the participants indicate the penalty shootout scenario that they prefer to
watch. Thus, data utilised for this research have binary output and consist of partic-
ipants’ responses. In every question, specific details related to compared scenarios
were provided. These details were then considered as the features of that scenario.
General properties of the data were summarised in Section 4.1.2. Description of the
features and the output of the data can be found in 4.7.

Table 4.7 Survey Inputs and Output
ID Name Type Description
1 Total Goal Numeric Total number of successful penalty kicks in a scenario
2 Round Numeric Current penalty round of a scenario
3 Goal Difference Numeric Successful penalty kick difference between two teams in a scenario
4 Scoring Probability - Team A Numeric Penalty scoring probability of the first team in a scenario
5 Scoring Probability - Team B Numeric Penalty scoring probability of the second team in a scenario
6 Probability Difference Numeric Penalty scoring probability difference between the first team (A) and the second team in a scenario (B)
7 Penalty Turn Binary Displays which team has the penalty kick turn in a scenario
8 Output: Selected Binary Displays if that scenario is selected by the survey participant.

Various machine learning algorithms have been used for binary classification prob-
lems. In their research, Yamak, Saunier & Vercouter (2015) have used Support Vec-
tor Machine, Random Forest, Naive Bayesian, K-Nearest Neighbor and Adaptive
Boosting algorithms for a binary classification problem in which they aim to detect
a special case of social media manipulation, multiple identity accounts. Deep learn-
ing algorithms were also used in binary classification problems as more advanced
methods. Abdulla & Alashoor (2020) have used Artificial Deep Neural Networks
(ADNN) in a binary classification problem setting for the malicious packet detection
whereas Khullar, Salgotra, Singh & Sharma (2021) have used 2-dimensional Con-
volutional Neural Network (CNN) algorithm to diagnose ADHD using resting state
MR images.

Machine learning algorithms were also utilised as a tool to determine importance
features in a model. In a study by Guo, Zhou, Zhang & Yang (2018), the main ob-
jective was to forecast the short-term electricity load with the intention of improving
electricity consumption efficiency. In addition, Guo, Zhou, Zhang and Yang have
used random forest and gradient boosting algorithms to find which factors were
influencing the electricity consumption. Another study by Jia, Lin & Liu (2019)
have analysed the attributes affecting the earthquake fatalities in China mainland
and utilised deep learning methods to estimate potential fatalities by using these
attributes. For their research regarding feature importance, Jia, Lin and Liu have
used random forest, classification, regression tree and adaptive boosting algorithms.
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In our research, we have created different binary classification models using logistic
regression (LR), random forest (RF), eXtreme gradient boosting (XGBoost), adap-
tive boosting (AdaBoost), K-Nearest Neighbors(k-NN) and artificial neural network
(ANN) algorithms. Among these algorithms; logistic regression, random forest,
XGBoost and adaptive boosting algorithms were utilised in order to determine im-
portant features. Grid Search and Random Search were used for hyperparameter
tuning and 10-fold cross-validation was used for model validation. Accuracy was
used as the main performance metric. However, the models also have precision and
recall values as well as a confusion matrix.

4.5.1 Accuracy

In this study, if a survey participant preferred a certain penalty shootout scenario at
a question it was labeled as 1. If that scenario was not preferred by the participant, it
was labeled as 0. To illustrate, consider a scenario that was selected by 14 different
participants and not selected by 11 different participants among those who have
answered that question. So, there were 14 rows labeled as 1 and 11 rows labeled as
0. By doing so, accuracy can be considered as the percentage of correctly labeled
outcomes by the model versus total number of outcomes.

Accuracy = True Positive + True Negative
True Positive + True Negative + False Positive + False Negative

Recall computes how frequently a model accurately recognizes a positive outcome
for people who have selected a certain scenario at a question.

Recall = True Positive
True Positive + False Negative

Precision computes how frequently a model accurately recognizes a negative outcome
for people who have not selected a certain scenario at a question.

Precision = True Negative
True Negative + False Positive

In this study, data were split by using 70/30 ratios for machine learning models.
70% of the data was used for training set and 30% of the data was used for test set.
There was no need for a separate validation set since 10-fold cross validation was
performed.
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4.5.2 Models

Machine learning algorithms that we utilised to create the models are presented in
this section.

4.5.2.1 Logistic Regression

Logistic regression is a supervised learning algorithm technique that is heavily used
for classification problems. It is a predictive analysis algorithm in which observations
are assigned to two or more discrete classes. Generally, it has binary dependent
variables, however, it can be performed for multinomial and ordinal variable types
too.

Logistic regression model starts with the set of known independent variables and
the corresponding dependent variable for each observation. There is an intercept
term and each independent variable has a coefficient (also known as weight) which
is predicted by the model. Training part consists of model learning the intercept
and coefficients. In order to obtain the best coefficients, log-likelihood function for
all observations must be maximized. Mathematical formulation of these operations
are as follows.

Suppose there exists a set of k predictors represented as X = (X1,X2, . . . ,Xk). In
addition, there exists a response yi for each observation i= 1 . . .n. The linear com-
bination of predictors with θ coefficients is θ0 + θ1X1 + θ2X2 + · · ·+, θkXk. Thus,
linear function f(x) will be written as

f(x) = θ0 + θ1X1 + θ2X2 + · · ·+, θkXk. (4.5)

However, this linear function is an unbounded linear equation and we need the
probability of an observation being assigned to one of the classes. In addition, this
probability must vary between 0 and 1. That is why, sigmoid function will be used
as a logarithmic transformation to map predicted values between 0 and 1.

Sigmoid function = σ(z) = 1
1+ e−z

(4.6)

For this case, p(x) is the sigmoid function of f(x) and it can be interpreted as the
predicted probability that the output for a given set of predictors is equal to 1.
Thus, 1−p(x) can be interpreted as the predicted probability that the output for a
given set of predictors is equal to 0. As a side note, given that p(x) = p, the odds of
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an event can be represented as
p

1−p.

p(x) = p(Y = 1 |X) (4.7)

σ(f(x)) = p(x) =
1

1+ e(−f(x)) =
1

1+ e(−(θ0+θ1X1+θ2X2+···+,θkXk)) (4.8)

With a threshold value equal to 0.5, logistic regression can be used as a linear
classifier. The model predicts y as 1 when p(x) ≥ 0.5 as 0 when p(x) < 0.5. To obtain
more accurate predictions for the coefficients at each iteration, we will consider
likelihood for fitting. Likelihood can be written as

Pr(Y | θ;X) = L(θ | y;x) =
n∏

i=1
Pr(yi | xi, θ) =

n∏
i=1

pθ(xi)yi(1−pθ(xi))(1−yi). (4.9)

For simplicity, the log-likelihood function will be calculated as

L(θ | y;x) = ℓ(θ | y;x) =
n∑

i=1
yilog(pθ(xi))+(1−yi)log(1−pθ(xi)). (4.10)

In order to find optimal coefficients, we need to obtain θ values that maximizes
log-likelihood function. To make mathematical calculations easier, an optimization
algorithm such as gradient ascent or gradient descent can be used. By taking partial
derivative of the log-likelihood with respect to each parameter using chain-rule, we
can get closer to optimal coefficient values at each iteration.

4.5.2.2 Random Forest

Random forest algorithm is a supervised learning technique that is used for both
regression and classification problems. It was introduced by Breiman (2001) as a
combination of decision trees and bagging. It is considered as an ensemble learning
method due to using a combination of decision trees for training. Random forest is
a heavily used algorithm since it can handle missing data, reduces overfitting and
increases precision. For classification problems, predicted output is determined by
the majority-voting system.

4.5.2.3 Extreme Gradient Boosting
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Extreme Gradient Boosting (XGBoost) is a fairly new algorithm released in 2014.
It is a supervised learning technique that can be used for both regression and clas-
sification problems. Similar to random forest, it is an ensemble learning method
since it uses a combination of decision trees by adding them one at a time to correct
the predictions of the previous models. This method is also known as boosting.
Finally, these models are fit by gradient descent optimization algorithm. As oppose
to gradient boosting algorithm, XGBoost uses similarity score and gain for building
trees. Due to its ability to control overfitting, it is a highly popular machine learning
algorithm.

4.5.2.4 Adaptive Boosting

Adaptive Boosting (AdaBoost) is a supervised learning technique that was created
to increase the efficiency of binary classifiers. It is an ensemble learning method that
combines various weak classifiers, usually decision trees with a single split known
as decision stumps, in order to build one strong classifier. After each iteration,
AdaBoost puts more weight into the data points that are harder to classify. In
addition, classifiers are weighted based on their accuracy.

4.5.2.5 K-Nearest Neighbors

K-Nearest Neighbors (k-NN) algorithm is one of the simplest methods among the
supervised machine learning algorithms. It was developed as a non-parametric clas-
sification method by Fix & Hodges (1951) , however, it can be used to overcome
classification and regression problems. For the classification case, a data point is
assigned to the class that it most common among its k nearest neighbors. For the
regression case, value of the output is equal to the average of its k nearest neighbors.
Since the most important hyperparameter is k, determining the optimal value for
it may be a complex task. In addition, it does not work well with the large data
due to computational costs and complexity in distance measurements. Similarly,
as number of input variables increase, k-NN struggles with its predictions. This
phenomenon is also known as the curse of dimensionality.

4.5.2.6 Artificial Neural Network

Artificial neural networks (ANNs) are computational models originating from an
aspiration towards human brain. They were built to simulate the network of neurons
in a human brain that processes information and perform computing activities.
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Models used for the binary classification of survey results along with their fine-tuned
hyperparameters can be found in Table 4.8. Performance metrics of these models
can be found in Table 4.9.

Table 4.8 Machine Learning Algorithms for Binary Classification

Models Parameters Value
C 1

penalty l2
Logistic Regression solver liblinear

maximum number of iterations 200

K 9
k-Nearest Neighbor algorithm brute

weights distance
minimum sample leaf 3
minimum sample split 10

Random Forest Classifier maximum depth 80
number of estimators 100

learning rate 0.01
XGBoost Classifier maximum depth 90

number of estimators 100

learning rate 1
AdaBoost Classifier number of estimators 300

batch size 12
epochs 100

Artificial Neural Network activation function sigmoid
optimizer Adam

Table 4.9 Performance Metrics of the Models

Models Accuracy (%) Precision (%) Recall (%)
Logistic Regression 61.56 59.47 61.52
k-Nearest Neighbors 57.40 57.36 59.21

Random Forest Classifier 59.91 59.71 59.98
XGBoost Classifier 60.83 61.02 60.83
AdaBoost Classifier 61.41 61.27 61.42

Artificial Neural Network 64.06 62.19 62.03

Under normal circumstances, these accuracy values may not be satisfactory since
they are less than the general threshold of %70. However, the primary focus of this
research was to determine which attributes effect people’s preferences while choosing
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a penalty shootout to watch. For random forest, XGBoost and AdaBoost models,
feature importance was obtained by using fitted feature_importances attribute from
the scikit-learn library. For logistic regression, feature importance was obtained by
the best.coef_ attribute from the scikit-learn library. The most important features
for each model can be found in Table 4.10. Using the estimated coefficients of the
features, ranking of the feature importance as a combination of all models can be
found in Figure 4.2.

Table 4.10 Feature Importance

Ranking LR RF XGBoost AdaBoost
1 Goal Difference (R) Goal Difference (R) Goal Difference (R) Total Goal
2 Probability Difference (R) Probability Difference (R) Total Goal Scoring Probability A (R)
3 Total Goal Total Goal Probability Difference (R) Scoring Probability B
4 Scoring Probability A (R) Scoring Probability B Round Round
5 Round Scoring Probability A (R) Scoring Probability A (R) Probability Difference (R)
6 Penalty Turn Round Scoring Probability B Goal Difference (R)
7 Scoring Probability B Penalty Turn Penalty Turn Penalty Turn

Notes: (R) represents reversely proportional. It means, that feature negatively
effects the response variable.

Figure 4.2 Combination of feature importance of all models

As it can be observed from table and graph shown above, the most important feature
in distinguishing between two classes is the goal difference. Further analysis have
shown that, as the goal difference between the two teams’ penalty shootouts in a
scenario increases, the participants’ desire to watch that penalty shootout scenario
decreases. Similarly, as the scoring probability difference between two teams in a
scenario increases, the participant’s desire to watch that penalty shootout scenario
decreases. Thus, it can be concluded that people tend to watch penalty shootouts
where the strengths of the two teams were similar. Another important factor affect-
ing people’s preference is the total number of total goals. As the total goal count
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in a penalty shootout increases, participants’ desire to watch that penalty shootout
also increases.

4.6 SHAP Values

Shapley additive explanations (SHAP) were developed by Lundberg & Lee (2017)
in order to describe individual predictions and they are based on the shapley values
from game theory. They aim to calculate the contribution of each feature in order
to understand the prediction of each target data point. They can be considered as a
measure of feature importance. SHAP feature importance suggests that the features
with larger absolute shapley values are more important.

In order to find the total importance, we need to sum each absolute shapley value per
feature in data. It is important to note that after determining feature importance
in Section 4.5, we eliminated Penalty Turn feature from our list. That is why it is
not included in graphs of SHAP.

4.6.1 Variable Importance Plots

SHAP has a function that creates summary plot of the feature contributions. The
top features in the plot contribute more to the model than the bottom features which
indicates higher predictive capability. In this section, we provide the summary
plots for models created using Logistic Regression, Random Forest and XGBoost
algorithms. Since SHAP library does not support AdaBoost, we could not include
it to our study.

4.6.1.1 Logistic Regression Model

According to Figure 4.3, feature with the highest predictive capability is the goal
difference, denoted as GoalDiff and feature with lowest predictive capability is the
scoring probability of team B, denoted as TeamBProb. Figure 4.4 shows the effect of
each feature in classifying a data point. For example, as the value of goal difference
between two teams increases, impact on the model output becomes negative. This
indicates that data points labeled as 0 have higher goal differences. In contrast,
as the total number of goals increases, its impact on the model output becomes
positive. This indicates that data points labeled as 1 have higher total number of
goals.
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Figure 4.3 SHAP variable importance plot for logistic regression

Figure 4.4 Detailed SHAP variable importance plot for logistic regression

4.6.1.2 Random Forest Model

According to Figure 4.5, feature with the highest predictive capability is the goal
difference, denoted as GoalDiff and feature with lowest predictive capability is the
scoring probability of team B, denoted as TeamBProb.

Figure 4.7 shows an individual feature importance detection case. Feature values in
red causes an increase in the predicted value whereas feature values in blue causes
a decrease in the predicted value. Size of the bar displays the magnitude of that
feature’s overall effect. The sum of these bars helps us to explain the difference
between the predicted value and baseline value.

For this data point, model predicted 0.37 and the base value was equal to 0.4721.
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Thus, since predicted value is smaller than the baseline value, this data point was la-
beled as 0. The most effective feature was goal difference and it dropped the chances
of that scenario being selected. Similarly, the probability difference of 0.2 decreased
chances of being selected along with the difference between scoring probability of
team B of two scenarios being 0.3. On the other hand, total number of goals being
3 increased the chances of getting selected.

Figure 4.5 SHAP variable importance plot for random forest

Figure 4.6 Detailed SHAP variable importance plot for random forest

Figure 4.7 Individual feature importance example for random forest
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4.6.1.3 XGBoost Model

According to Figure 4.8, feature with the highest predictive capability is the goal
difference, denoted as GoalDiff and feature with lowest predictive capability is the
scoring probability of team B, denoted as TeamBProb. Similarly, for Figure 4.9,
the feature with the highest impact on the model output is GoalDiff. Higher goal
difference effect the output negatively, which means a decrease in that scenarios’
chances of being selected. GoalDiff feature is followed by the feature denoting the
probability difference between two teams. According to Figure 4.9, similar to goal
difference, as the probability difference between two teams increases, the chances of
that scenario being selected decreases. Thus, ProbDiff has a negative effect on the
output.

Figure 4.8 SHAP variable importance plot for XGBoost

Figure 4.9 Detailed SHAP variable importance plot for XGBoost
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4.7 Alternative Survey Structure and Feature Importance

In order to evaluate the survey from a different perspective, we formed our survey
data with an alternative structure. This alternative structure consists of same fea-
tures, however, their types are binary instead of numeric. This form of data can be
considered as a summarized version of the previous one. As we have discussed in
Section 4.1.2, the survey has 190 questions. Each of these questions compares two
different scenarios and asks participants to prefer one of them. For the alternative
structure, if, among these pairwise comparisons a scenario was selected more than
its opponent, they will be labeled as 1. In addition, their features will be labeled
as 0 or 1 based on the fact that whether they have higher feature values than their
opponents or not. A portion of this data are shown in Figure 4.10.

Figure 4.10 Sample from alternative data

Figure 4.10 shows comparison of Scenario 1 and Scenario 2. Table 4.2 shows char-
acteristics of each scenario. Accordingly, it can be seen that Scenario 1 has higher
total number of goals, higher number of rounds, higher goal difference, higher team
A probability and higher probability difference between its opposing teams. Team
B probability is %50 in both scenarios, so it is labeled as 0. Finally, since Scenario
2 was selected more than Scenario 1, it is labeled as 1.

In total, this data consist of 380 rows and there are two rows per question. Simi-
larly, classifier models were created for this data by utilising same machine learning
algorithms except Artificial Neural Network. Along with their fine-tuned hyper-
parameters, classification models are shown in Table 4.11. Performance metrics of
these models can be found in Table 4.12.
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Table 4.11 Machine Learning Algorithms for Binary Classification with Alternative
Data

Models Parameters Value
C 0.01

penalty l2
Logistic Regression solver liblinear

maximum number of iterations 100

K 7
k-Nearest Neighbor algorithm auto

weights uniform
minimum sample leaf 4
minimum sample split 12

Random Forest Classifier maximum depth 80
number of estimators 100

learning rate 0.01
XGBoost Classifier maximum depth 3

number of estimators 100

learning rate 0.01
AdaBoost Classifier number of estimators 1000

Table 4.12 Performance Metrics of the Models

Models Accuracy (%) Precision (%) Recall (%)
Logistic Regression 72.63 73.58 73.26
k-Nearest Neighbor 73.08 76.94 73.68

Random Forest Classifier 73.68 74.19 73.95
XGBoost Classifier 71.05 71.44 71.00
AdaBoost Classifier 74.56 74.99 75.06

Naive Bayes Classifier 73.68 75.48 74.72

Without considering the numerical effects of the features, accuracy of the models are
much higher. By creating a summarized version of the data, we had an opportunity
to explore the feature importance more clearly. Again, the estimated coefficients of
features can be used to find ranking of feature importance as a combination of all
models. The result of this combination is demonstrated in Figure 4.11.

53



Figure 4.11 Combination of feature importance of all models using alternative data

According to Figure 4.11, higher goal difference is the main factor in the selection
process. The total number of rounds and total number of goals can be considered
as other crucial factors. Penalty turn, named as CloserToEnd for this case, is not
relevant to the selection process. Thus, it is eliminated. It can be observed that
people do not prefer to watch penalty shootouts with higher probability differences.
In addition, they prefer penalty shootouts with higher total number of goals, i.e.
higher number of successful penalties must be performed.

4.8 Results and Discussion

In this section, we display the final scenario rankings based on the voting results of
survey participants, Bradley-Terry preference model and excitement score calcula-
tions in Table 4.13. The voting based ranking can be considered as a baseline and
represents the total number of votes received for each scenario.

By comparing mathematical and empirical results, it can be concluded that the
mathematical calculations were successful in determining the least exciting shootout
scenarios. Conversely, while determining the most exciting shootout scenarios,
mathematical results were quite different than the preferences of the viewers. Fig-
ure 4.12 shows the differences between four ranking models based on the excitement
ranking. According to this figure, the most exciting scenario (i.e. Scenario 4) in
excitement score model is the 9th most exciting scenario for the remaining models.
Similarly, the second most exciting scenario (i.e. Scenario 2) in excitement score
model is the 13th most exciting scenario for the alternative excitement model, 16th
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most exciting scenario for the Bradley-Terry’s ability model and 17th most exciting
scenario for the voting based model.

In Figure 4.13, we display the differences between three ranking models based on
the alternative excitement ranking. According to this figure, alternative excitement
ranking is a lot more consistent with the voting based and Bradley-Terry preference
rankings. Since alternative excitement ranking is based on the incremental excite-
ment, it can be depicted that the viewers are more focused on the current round’s
excitement and they do not consider the remaining number of rounds during their
selection process.

In general, the most exciting scenarios according to the viewers were Scenario 11,
Scenario 17 and Scenario 19. Common features of these scenarios can be described
as shootouts going into overtime, performing higher number of successful penalty
shootouts and opposing teams with similar strengths. According to the viewers,
excitement of a penalty shootout stems from a long rally among strong opponents.
We further explain the similarities and differences between the mathematical and
statistical analysis in the following paragraphs.

The mathematical calculations presented in this thesis to find the excitement score
consider a penalty shootout sequence with higher variability in the winning prob-
ability as exciting. This means that recently started penalty shootouts tend to be
more exciting, since winning probability of both teams will vary significantly during
the course of shootouts. It is clear that each of the top 5 most exciting scenarios
according to our excitement calculations were at the beginning of their shootouts as
their current scores were in between 0-0 and 2-2 and their rounds had smaller values.
In addition, if opposing teams had similar strengths with scoring probabilities that
were close to 50%, that scenario will be considered as more exciting. Finally, similar
to the preference of the viewers, shootout scenarios with less goal differences were
found more exciting.

One of the main differences between viewers’ ranking and mathematical ranking is
that viewers perceive penalty shootouts with higher number of goals more exciting.
They do not consider the remaining number of penalties left and the variability
in winning probabilities of both teams. For viewers, a fierce competition among
opposing teams finalising with a golden goal is more exciting than the suspenseful
overall shootout experience. Additionally, competition among stronger teams is
preferred rather than teams with average scoring probabilities.

Alternative excitement score formulation focuses on resolving the first difference and
ignores the remaining number of penalty shootouts. As a result of that, ranking for
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the alternative excitement score calculation is very similar to the viewer preference
rankings. Our first excitement score formulation predicts the remaining number of
penalty shootouts by subtracting the number of penalties used by each team from
T = 5, which is the regular number of rounds for a penalty shootout. However, from
the survey results it can be understood that viewer’s excitement accumulates each
round and it may not be ideal to reduce it with an assumption. By omitting the
remaining number of penalties, we were able to have results that are closer to the
perception of the football viewers.

Table 4.13 Scenario Preferences

Rank
Voting
Based

Ranking

Ability
Based

Ranking

Excitement
Score

Ranking

Alternative
Excitement

Score
Ranking

1 Scenario 17 Scenario 19 Scenario 4 Scenario 16
2 Scenario 11 Scenario 11 Scenario 2 Scenario 19
3 Scenario 19 Scenario 17 Scenario 8 Scenario 17
4 Scenario 15 Scenario 15 Scenario 6 Scenario 11
5 Scenario 3 Scenario 3 Scenario 14 Scenario 3
6 Scenario 16 Scenario 16 Scenario 19 Scenario 9
7 Scenario 9 Scenario 10 Scenario 17 Scenario 6
8 Scenario 10 Scenario 9 Scenario 18 Scenario 12
9 Scenario 4 Scenario 4 Scenario 11 Scenario 4
10 Scenario 6 Scenario 5 Scenario 3 Scenario 18
11 Scenario 7 Scenario 6 Scenario 7 Scenario 14
12 Scenario 18 Scenario 7 Scenario 12 Scenario 8
13 Scenario 8 Scenario 12 Scenario 16 Scenario 2
14 Scenario 12 Scenario 8 Scenario 9 Scenario 7
15 Scenario 5 Scenario 18 Scenario 10 Scenario 10
16 Scenario 2 Scenario 14 Scenario 15 Scenario 15
17 Scenario 14 Scenario 2 Scenario 5 Scenario 5
18 Scenario 13 Scenario 13 Scenario 13 Scenario 13
19 Scenario 20 Scenario 1 Scenario 1 Scenario 1
20 Scenario 1 Scenario 20 Scenario 20 Scenario 20
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Figure 4.12 Comparison of the scenario rankings

Figure 4.13 Comparison of the scenario rankings for alternative excitement

For the second part of this study, we focused on determining which factors were influ-
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encing the viewer’s decision making process and compared them with the results of
our mathematical analyses. Although we had some differences between mathemat-
ical calculations and statistical results, we were also able to find some similarities.
Most of the time, features deemed as important by the viewers were also pivotal in
ascertaining the excitement score.

Figure 4.14 represents the importance of each feature in each binary classification
model by using their coefficients. The results for this study were obtained by using
the survey data which consists of 4656 entries. As mentioned in Section 4.5, the
most effective factor is the goal difference between two opposing teams and it is
reversely proportional with the frequency of selecting a scenario. The second most
important factor is the total number of goals, which is one of the main factors
causing differences among the ranking results.

Correspondingly, the most influential factor in calculating the excitement score of a
scenario is also the goal difference between two teams. From Table 4.13 it can be
seen that least preferred scenarios and scenarios with the lowest excitement score
are the same. The common feature of these scenarios (i.e. Scenario 1, Scenario
13 and Scenario 20) is that the goal difference between opposing teams is 2, which
is the maximum allowable difference. From the mathematical point of view, higher
goal difference suggests a lack of variability in winning probabilities which makes the
final score of the shootouts very predictable. Thus, that penalty shootout scenario
would be evaluated as not exciting. Similarly, it would be easier for the viewer to
predict the outcome of a shootout with higher goal difference, which makes it less
desirable to watch.

As a consequence of the structure of the survey, scoring probability of team A was
usually higher than the scoring probability of team B. Since third most important
factor is the scoring probability of team A and it is reversely proportional to the re-
sponse variable, it can be observed that survey participants prefer to watch shootouts
with teams that have similar strengths. Following very closely, fourth most effective
factor is the scoring probability difference between opposing teams and it is re-
versely proportional to the response variable as well. Again, viewers prefer to watch
shootout scenarios with teams that have a similar strength. Thus, increasing the
scoring probability difference decreases the chances of that scenario being selected.
This is another similarity with the mathematical excitement score calculation. As
represented by Table 3.4 and Figure 3.2, increasing the scoring probability difference
between teams causes excitement score to decrease significantly.
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Figure 4.14 Feature importance of each classification model

Finally, Figure 4.15 shows the relationship between number of times a penalty
shootout scenario is selected by the survey participants and its features as a heat
map. By examining this heat map, we can observe a strong negative correlation
between goal difference and frequency of choosing that scenario. We also notice a
negative correlation between probability difference and frequency of choosing that
scenario. On the contrary, as the total number of goals increase, the chance of that
scenario being selected increases. Similarly, as the penalty shootout scenario goes
into overtime, chances of that scenario being selected becomes higher. The heat
map can be interpreted as a supplementary material and confirms the arguments
that we have established in this section.
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Figure 4.15 Correlation heat map representing relations between scenario features
and selection frequency
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5. CONCLUSION

The main objective of this thesis was to calculate the excitement score of penalty
shootouts and explore an area of sports analytics that is often overlooked by the re-
searchers. Furthermore, we aimed to understand which factors of a penalty shootout
have a determinant role in viewer’s selection process. To achieve these goals, we first
calculated the expected excitement for penalty shootout scenarios in which the scor-
ing probabilities at each around remains constant. In order to obtain more realistic
results, we calculated the excitement for cases where scoring probabilities are un-
known or they vary at each round. Then, we compared the mathematical results
with the statistical analysis of a survey that we conducted with 310 participants. By
using the results of this survey, we built several models utilising machine learning
algorithms to find feature importance. Different survey structures and alternative
mathematical excitement calculations were used to provide elaborated outcomes.

We display and explain the findings of our study in Section 4.8. We concluded that
the excitement score calculations were consistent with the viewer’s preferences while
determining the least exciting penalty shootouts. For the most exciting shootouts,
excitement score rankings differed from the viewer’s preferences. We observed that
this difference was due to the fact that viewers tend to focus on the current round of
the shootouts, rather than considering the remaining number of rounds. To obtain
similar results with the viewers’ preference rankings, we altered the excitement score
calculation. The results of the alternative excitement score calculations were more
similar to the preference rankings since they were calculated by using the incremen-
tal excitement formulations. Finally, we found that the most important factor for
the excitement score calculation and the viewers’ was the goal difference between
opposing teams.

For future work, the excitement score of an entire football match can be calculated
and the methodology can be used to calculate the excitement of various sports. By
understanding people’s feelings towards sports games, we hope to improve the tra-
ditional game rules and make sports competitions more entertaining to the viewers.
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APPENDIX A

Calculations for Equation 3.9
First component:

a(1− b)(1−pA) = a(1− b)
(

1− (1− b)a
a+ b−2ab

)

(1−pA) = a+ b−2ab−a+ab

a+ b−2ab = b−ab
a+ b−2ab = b(1−a)

a+ b−2ab

= ab(1−a)(1− b)
a+ b−2ab (1)

Second component:

(1−a)bpA = (1−a)b
(

(1− b)a
a+ b−2ab

)

= ab(1−a)(1− b)
a+ b−2ab (2)

Third component:

2ab(1−pA)(1− b) = 2ab(1− b) b(1−a)
a+ b−2ab

= 2ab2(1− b)(1−a)
a+ b−2ab (3)

Fourth component:

2(1−a)(1− b)bpA = 2(1−a)(1− b)b
(

(1− b)a
a+ b−2ab

)

=
(

2ab(1−a)(1− b)2

a+ b−2ab

)
(4)

(1)+(2)+(3)+(4) =
(

2ab(1−a)(1− b)+2ab2(1− b)(1−a)+2ab(1−a)(1− b)2

a+ b−2ab

)

=
(

2ab(1−a)(1− b)[(1+ b+(1− b)]
a+ b−2ab

)
= 4ab(1−a)(1− b)

a+ b−2ab
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Raw Survey Data Sample for Chapter 4

Figure A.1 Raw survey data sample
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Processed Survey Data Sample for Chapter 4

Figure A.2 Processed survey data sample

66



Example Survey Questions

1. Which of these penalty shootout scenarios would you prefer to watch?

Table A.1 Example Survey Question 1

Scenario 1 Scenario 2
Round 4 1
Score 3-1 1-0
Penalty kick in Team A Team B
Scoring Probability (Team A) %70 %60
Scoring Probability (Team B) %50 %50

2. Which of these penalty shootout scenarios would you prefer to watch?

Table A.2 Example Survey Question 2

Scenario 3 Scenario 14
Round 5 1
Score 4-4 1-0
Penalty kick in Team A Team B
Scoring Probability (Team A) %70 %80
Scoring Probability (Team B) %60 %90

3. Which of these penalty shootout scenarios would you prefer to watch?

Table A.3 Example Survey Question 3

Scenario 7 Scenario 19
Round 3 6
Score 0-1 5-5
Penalty kick in Team A Team A
Scoring Probability (Team A) %80 %70
Scoring Probability (Team B) %80 %70
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Calculations for Example 3.1
For simplicity, superscripts are not written since they are the same as the example.

Table A.4 Calculations for Example 3.1

Parameter - A Value Parameter - B Value
t=1

A0,0(0,0) 42.05% B0,0(0,0) 57.94%
A1,0(0,0) 26.61% B1,0(0,0) 34.60%
A1,0(1,0) 52.35% B1,0(1,0) 60.53%

a1 0.6 b1 0.9
E1,1 0.1235 E1,2 0.0466

t=2
A0,0(0,0) 42.05% B0,0(0,0) 57.94%
A1,0(0,0) 24.56% B1,0(0,0) 40.65%
A1,0(1,0) 49.55% B1,0(1,0) 67.25%

a2 0.7 b2 0.65
E2,1 0.1049 E2,2 0.1210

t=3
A0,0(0,0) 42.05% B0,0(0,0) 57.94%
A1,0(0,0) 27.73% B1,0(0,0) 39.25%
A1,0(1,0) 53.77% B1,0(1,0) 65.91%

a3 0.55 b3 0.7
E3,1 0.1288 E3,2 0.1119

t=4
A0,0(0,0) 42.05% B0,0(0,0) 57.94%
A1,0(0,0) 22.75% B1,0(0,0) 44.63%
A1,0(1,0) 46.90% B1,0(1,0) 71.08%

a4 0.8 b4 0.5
E4,1 0.0772 E4,2 0.1322

t=5
A0,0(0,0) 42.05% B0,0(0,0) 57.94%
A1,0(0,0) 30.14% B1,0(0,0) 41.87%
A1,0(1,0) 56.59% B1,0(1,0) 68.56%

a5 0.45 b5 0.6
E5,1 0.1309 E5,2 0.1281

DE(0) = 0.2612

E =
5∑

t=1
[Et,1(a1:5, b1:5)+Et,2(a1:5, b1:5)]+DE(0)

= 1.1041+0.2612

= 1.3653
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