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ABSTRACT

DATA DRIVEN INTRUSION DETECTION FOR 6LOWPAN BASED IOT
SYSTEMS

FAİK KEREM ÖRS

COMPUTER SCIENCE & ENGINEERING M.S. THESIS, DECEMBER 2021

Thesis Supervisor: Prof. Albert Levi

Keywords: internet of things, intrusion detection, attack classification, 6lowpan,
machine learning, deep learning, botnet

Wide adoption of Internet of Things (IoT) devices and their limitations in terms of
hardware causes them to be easy targets for attackers. Therefore, it is important
to monitor these systems, where security mechanisms are less applicable, by using
intrusion detection systems, and take the necessary actions against insider and out-
sider attackers promptly. Intrusion detection systems monitor computer networks
continuously and ensure that relevant reports are forwarded to the system admin-
istrators in case of a security incident. Recent studies have explored that machine
learning based intrusion detection systems are quite successful in detecting different
types of attacks. However, most of the models proposed in the literature were devel-
oped using simulation based or previously published testbed data that contain the
samples of outdated IoT attacks and vulnerabilities. Furthermore, the variety of the
attacks aimed to be detected are relatively low and the proposed models are binary
classifiers which are not scalable for multi-attack scenarios. Binary classifiers can
distinguish an attack type from benign traffic in contrast to multi-class classifiers,
which can classify different types of attacks together with benign traffic. In this
thesis, we propose a machine learning based multi-class classifier that can classify
6 attack types together with the benign traffic. Our node based feature extraction
and detection methodology allows to pinpoint the exact locations of the attackers
by modelling their traffic characteristics over a sliding time window. For training
and testing our models, we also propose an intrusion detection dataset generated
using the traffic data collected from real IoT devices working over the 6LoWPAN
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and RPL protocols. Besides having RPL routing attacks in the dataset, we leverage
Mirai botnet, used frequently to target IoT devices. The results show that the pro-
posed intrusion detection system can detect 6 attack types with high recall scores
ranging from 79% to 100%.
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ÖZET

6LOWPAN TABANLI IOT SİSTEMLERİ İÇİN VERİYE DAYALI SALDIRI
TESPİTİ

FAİK KEREM ÖRS

BİLGİSAYAR BİLİMİ VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ,
ARALIK 2021

Tez Danışmanı: Prof. Dr. Albert Levi

Anahtar Kelimeler: nesnelerin interneti, izinsiz giriş tespiti, saldırı sınıflandırması,
6lowpan, makine öğrenmesi, derin öğrenme, botnet

Nesnelerin İnterneti (ing. IoT) cihazlarının yaygın olarak kullanılmaya başlanması
ve donanımsal kısıtlara sahip olmaları, saldırganlar tarafından kolay hedef haline
gelmerine sebep olmaktadır. Bu yüzden, güvenlik mekanizmalarının daha az uygu-
lanabildiği bu sistemlerin, saldırı tespit sistemleri kullanılarak izlenmesi ve saldırılara
karşı doğru zamanda gerekli adımların atılması büyük önem arz etmektedir. Saldırı
tespit sistemleri, bilgisayar ağlarını sürekli olarak gözlemleyerek herhangi bir güven-
lik kazası durumunda ilgili raporların sistem yöneticilerine iletilmesini sağlar. Bu
alanda yapılan son çalışmalara bakıldığında, makine öğrenimi tabanlı sistemlerin
saldırı tespit etmede oldukça başarılı olduğu gözlemlenmiş, farklı protokol ve saldırı
tipleriyle çeşitli çalışmalar gerçekleştirildiği görülmüştür. Ancak, önerilen model-
lerin çoğu simülasyon verileri ya da geçerliliğini yitirmiş IoT saldırı ve zafiyetlerini
içeren veri setleri kullanılarak geliştirilmiştir. Ayrıca, bu çalışmaların saldırı çeşitlil-
iği nispeten düşük olmakla birlikte, birden çok saldırıyı zararsız trafikle beraber
sınıflandırabilen çok sınıflı sınıflandırıcılar yerine çoklu saldırı senaryoları için ölçek-
lendirilebilir olmayan ve sadece tek tip saldırıyı zararsız trafikten ayırt edebilen ikili
sınıflandırma modelleri önerilmiştir. Bu tezde, 6LoWPAN ve RPL protokolleriyle
çalışan IoT cihazlarından elde edilen trafik verileriyle bir saldırı veri seti oluşturul-
muş ve veri setinin içerdiği 6 saldırı tipini zararsız trafikle birlikte sınıflandırabilen
bir makine öğrenimi tabanlı çok sınıflı sınıflandırıcı önerilmiştir. Veri setini oluş-
tururken, RPL yönlendirme (ing. routing) saldırılarına ek olarak IoT cihazlarını
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sıkça hedef alan Mirai botnet saldırısı da kullanılmıştır. Bunun yanında, önerilen
cihaz bazlı öznitelik çıkarma ve saldırı tespit etme yöntemi sayesinde her cihazın
trafik özellikleri kayan bir zaman penceresi üzerinde modellenebilmekte, bu sayede
de saldırgan cihazların konumları tespit edilebilmektedir. Sonuçlara göre, önerilen
saldırı tespit sistemi 6 saldırı tipini %79 ile %100 arasında değişen duyarlılık skor-
larıyla başarılı bir şekilde tespit edebilmektedir.
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1. INTRODUCTION

With the profileration of the Internet and integrated circuits today, daily objects are
able to connect to each other via specific networking protocols. Apart from some
limitations and difficulties, the matter of size has disappeared and even the smallest
objects have become the devices that can connect to the Internet. The ecosystem
that contains such tiny objects (i.e., things) in an interconnected way is called the
Internet of Things (IoT).

IoT devices provide many benefits in terms of usability, energy saving, efficiency,
automation and portability. Therefore, they are ubiquitous and they have many
application areas such as smart homes and offices, manufacturing, transportation,
business analytics, healthcare, energy and retailing (Hassija, Chamola, Saxena, Jain,
Goyal & Sikdar, 2019; Kaur & Kaur, 2017; Lee & Lee, 2015; Marques, Pitarma,
M. Garcia & Pombo, 2019).

However, the wide adoption and hardware-related constraints of IoT devices bring
many challenges in terms of security and privacy. First of all, constituting a big
part of the daily life, both in terms of private and enterprise usage, causes them to
be appetizing targets for different types of cyber threats. Everyday, IoT systems
contain more and more privacy-sensitive data and accessing those data becomes
an important source of motivation for attackers. Further intentions may involve
gaining a physical access or giving damage to a system. Say, a smart home environ-
ment consists of different types of sensors and actuators, which can be controlled
remotely. An event can also be scheduled so that an actuator is activated based on
the measurement of a sensor (e.g., air-conditioner is actuated when the tempera-
ture surpasses a certain threshold). Considering these capabilities, an attacker who
gained unauthorized access into a smart home system may open the main door of
the house by actuating the door lock to gain a physical access. In addition, the
unauthorized agent may damage the electric wiring and cause a fire or explosion
by overheating the electric appliances. More dangerous scenarios can be populated
in mission-critical and life-sustaining systems such as factories, nuclear plants and
healthcare facilities.
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Secondly, IoT devices have many hardware-related constraints such as limited pro-
cessing power, battery, memory and bandwidth. Therefore, it is infeasible to use
the conventional security mechanisms which require substantial amount of process-
ing power and battery. This makes these devices weak links in the systems that
they reside in. In general, they are considered to be the first doors to be knocked
down before proceeding into the next stages of a complicated attack scenario. The
attackers aim to comprise these weak agents to get unauthorized access into broader
systems. When these factors are considered, IoT devices are prone to be targeted
continuously by different attackers with different motivations and intentions. There-
fore, it is important to monitor these systems by using intrusion detection systems,
and take the necessary actions against insider and outsider threats promptly.

Intrusion detection systems monitor computer networks continuously and ensure
that relevant reports are forwarded to system administrators in case of a security
incident. The system administrators proceed to the mitigation stage based on the
received reports and make sure that the attack is eliminated.

Every day, cyber attacks get more sophisticated and new variants are derived from
their originals by being more capable in propagation, hiding, exploitation and in-
fection. Since the pace of this evolution is very high, developed detection systems
should respond to changes and be robust against variations. Machine learning sys-
tems learn from experience and improve themselves based on the data that they are
trained on. Therefore, machine learning based intrusion detection systems are more
suitable for attack detection in comparison with the rule-based conventional detec-
tion systems (Eswari & Vanitha, 2013; Lunt, Jagannathan, Lee, Whitehurst & List-
garten, 1989; Ojugo, Eboka, Emmanuel, Yoro & Aghware, 2012; Sazzadul Hoque,
2012; Yong Wang, Huihua Yang, Xingyu Wang & Ruixia Zhang, 2004) as detecting
a variety of attacks using a set of specific rules is not convenient. Machine learning
models change their parameters based on a loss function that serves as an optimiza-
tion goal. The loss for a specific training period (epoch) is calculated using the
training data whereas the overall performance of the model is calculated using a
separate test data. This allows to test whether the model can generalize on a data
that is not seen during training.
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1.1 Motivation

The motivation of this thesis is five-folds: (i) First of all, due to the aforementioned
factors, IoT systems should continuously be monitored using the intrusion detection
systems that perform well. Therefore, we aim to develop an intrusion detection
system designed specifically for IoT systems. Our focus is to detect the attacks tar-
geting 6LoWPANs (IPv6 over Low Power Wireless Personal Area Networks) which
are used for a variety of purposes in the IoT domain. (ii) Secondly, recent work
has explored that machine learning-based systems are quite successful in detecting
intrusions and various studies have been carried out using different protocols and at-
tack types. However, these studies have been limited in contribution because of the
datasets used. Some of them (Al-Hadhrami & Hussain, 2020; Bhale, Dey, Biswas &
Nandi, 2020; Cakir, Toklu & Yalcin, 2020; Cakir & Yalcin, 2021; Mbarek, Ge & Pit-
ner, 2020; Raza, Wallgren & Voigt, 2013; Sharma, Elmiligi, Gebali & Verma, 2019;
Verma & Ranga, 2020; Yavuz, Ünal & Gül, 2018) use simulation data for developing
their models but such data may not be very convenient to develop machine learning
models especially in realistic attack scenarios because simulators simulate a certain
behavior and the data generated by them may not be very realistic. Some other
works (Mounica, Vijayasaraswathi & Vasavi, 2021; Rezvy, Luo, Petridis, Lasebae
& Zebin, 2019), on the other hand, use outdated network datasets which consist
of generic network attacks. The traffic data that constitute these datasets do not
represent IoT traffic characteristics. Therefore, they are not also suitable for de-
veloping IoT-specific intrusion detection systems and we aim to generate a dataset
which consists of the traffic data collected from IoT devices in a real testbed in order
to develop our models. (iii) Furthermore, the detection capabilities of the proposed
models are restricted in the previous works (Cakir et al., 2020; Cakir & Yalcin, 2021;
Ioannou & Vassiliou, 2020; Meidan, Bohadana, Mathov, Mirsky, Shabtai, Breiten-
bacher & Elovici, 2018; Mounica et al., 2021; Thamilarasu & Chawla, 2019; Yavuz
et al., 2018) because they generally propose binary classifiers which classify each
attack type against benign traffic separately in the form of anomaly detectors. This
requires to develop separate models for different attack types so that such systems
do not scale well. In this thesis, however, we aim to develop a multi-class classifier
which can classify different types of attackers together with benign nodes. Such
methodology allows to detect multiple attacks using a single model so that it does
not require to train and deploy multiple models for each attack type aimed to be
detected. (iv) Moreover, the previously proposed intrusion detection systems aim
to detect intrusions using packet-level features and this gives limited information re-

3



garding the exact location of the attacker as there can be many packets detected to
be malicious owned by different nodes. Therefore, we aim to develop a node-based
detection system by extracting node-level features to model the traffic character-
istics of the nodes and pinpoint the exact location of the attackers. (v) Finally,
the number of attacks aimed to be detected in the previous works (Al-Hadhrami
& Hussain, 2020; Anthi, Williams, Słowińska, Theodorakopoulos & Burnap, 2019;
Bhale et al., 2020; Cakir et al., 2020; Cakir & Yalcin, 2021; Ioannou & Vassiliou,
2020; Le, Park, Cho & Kim, 2018; Mbarek et al., 2020; Mounica et al., 2021; Raza
et al., 2013; Rezvy et al., 2019; Sharma et al., 2019; Verma & Ranga, 2020; Yavuz
et al., 2018) ranges from 1 to 4 so that their attack variety is relatively low. They
also focus on only one type of attacker: insider or outsider. Therefore, we aim to
increase the attack variety to be detected within the scope of this study by eval-
uating our detection system on 6 different attacks. We also focus on both insider
and outsider attackers as one of the attacks that we aim to detect is an IPv4 botnet
(Mirai) attack targeting a 6LoWPAN, which is actually an IPv6 network.

1.2 Contribution

The contributions of this thesis are as follows.

• We present an IoT intrusion dataset collected from real IoT devices employing
6 different IoT attacks including the Mirai botnet UDP flood attack.

• We present an automated data collection and random scenario generation
framework leveraged during the data collection phase.

• We propose a node-based feature extraction and detection methodology that
allows to pinpoint the exact locations of the attackers by modelling the node
traffic characteristics over a sliding time window.

• We propose a two phase intrusion detection system consisting of an anomaly
detector that detects a big proportion of the attacker nodes successfully with a
macro F1-score of 98.6% and an attack classifier classifying the attacker nodes
into one of the 6 attack types with high recall scores ranging from 75% to
100%.

• We propose a single multi-class classifier undertaking both the anomaly de-
tection and attack classification phases combined in a single stage so that it is
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able to detect 6 attack types together with the benign class with high recall
scores ranging from 79% to 100%.

1.3 Organization

The remainder of this thesis is organized as follows. In Chapter 2, we give detailed
background information about the IoT standards and protocols, Mirai botnet, intru-
sion detection systems and the machine learning algorithms that we use to develop
our detection systems. In addition, we survey the related work and introduce the
testbed that is used to collect our intrusion dataset. In Chapter 3, we present our
testbed architecture, the details of the attack implementations, Mirai botnet setup
and the data collection. In Chapter 4, we present our node-based feature extrac-
tion methodology, share the dataset features and classes, and present the developed
machine learning-based intrusion detection systems. We also share the performance
results of our models and discuss them. Chapter 5 concludes the thesis and elabo-
rates on the future work.
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2. BACKGROUND

This section gives background information about the standards, protocols, algo-
rithms, operating systems, attacks and facilities used for the realization of this the-
sis. We first give detailed information about the 6LoWPAN (IPv6 over Low-Power
Wireless Personal Area Networks) IoT standard and the RPL routing protocol.
Then, we introduce Contiki, the operating system that our IoT devices are run-
ning. After that, we give information about the details of Mirai botnet that we
use to launch DDoS attacks for incorporating its attack traffic into our dataset.
Afterwards, we give information about the IoT testbed that we leverage to collect
dataset from real devices. Then, we give a short background information about in-
trusion detection systems. Also, we describe the machine learning algorithms used
for detecting attacks in this thesis. Finally, we introduce the related work on IoT
intrusion detection.

2.1 6LoWPAN: IPv6 over Low-Power Wireless Personal Area Networks

6LoWPAN stands for IPv6 over Low-Power Wireless Personal Area Networks and
it has been developed by 6LoWPAN working group of Internet Engineering Task
Force (IETF). The aim of the standard is to provide inter-networking capability to
small devices with limited battery, memory and processing power. It allows such
devices to communicate over IPv6 so that 6LoWPAN networks can connect to other
IP-based networks with the help of IP routers. This eliminates the interoperability
issues among IoT and IP networks. 6LoWPAN is proposed on top of the IEEE
802.15.4 standard that defines the physical and media access control (MAC) layers
for low-rate wireless personal area networks (LR-WPAN). 6LoWPAN provides the
support to adapt IEEE 802.15.4 physical layers to IPv6 (Montenegro, Hui, Culler &
Kushalnagar, 2007). Figure 2.1 illustrates an IoT protocol stack using 6LoWPAN
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as an adaptation layer inside the link-layer in comparison to the simplified OSI
reference model (Braden, 1989).

Figure 2.1 IoT protocol stack using 6LoWPAN adaptation layer in comparison to
the simplified OSI reference model.

Since the largest frame size in IEEE 802.15.4 networks is 127 bytes, an IPv6 packet
cannot fit into it. When the MAC header (25 bytes at most) is removed from an
IEEE 802.15.4 frame, there remains 102 bytes of frame at the MAC layer. When the
overhead imposed by the link-layer security is also considered (21 bytes of overhead
for AES-CCM-128 at most), there remains 81 bytes of space available for an IP
packet and such size is not even close to the minimum IPv6 packet size, which is
1280 bytes (Montenegro et al., 2007). Therefore, 6LoWPAN defines an adaptation
layer between link and network layers to implement new mechanisms for supporting
the transportation of IPv6 packets over IEEE 802.15.4 networks.

A 6LoWPAN network is a mesh network where each device (i.e., node) can send
data packets to each other. The way that the data packets are forwarded between
nodes depends on the routing protocol (e.g., RPL) and it is elaborated in Section
2.2. Each node in the network have 16-bit short (used within the network) and
64-bit extended addresses. A PAN coordinator (i.e., border router, edge router) is
used for accepting new nodes into the network (Montenegro et al., 2007). Figure
2.2 illustrates an example of a 6LoWPAN network consisting of sensor nodes and
a border router. Sensor nodes carry different types of sensors to measure specific
physical quantities (e.g., temperature and humidity) and they exchange messages
to inform each other. The border router connects the network to outer IPv6 world
acting as an IPv6 router. Therefore, the packets send from a sensor node can be
forwarded to a PC or a workstation running behind an IPv6 router. Some of the
sensor nodes (S1, S2 and S3) are connected to the border router directly. These
nodes also work as a router to hand over the packets sent by the border router to
the remaining nodes in the network. The data packets from the leaf nodes can also
be relayed to the border router using the intermediate sensor nodes. The border
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Figure 2.2 An example of a 6LoWPAN mesh network with the sensor nodes con-
nected to IPv6 world.

router undertakes three main duties. It manages (i) the data exchange between the
network and the outer IPv6 world, (ii) the data exchange inside the network, (iii)
the formation and maintenance of the network topology. Border routers may also
implement NAT64 (Matthews, van Beijnum & Bagnulo, 2011) so that a 6LoWPAN
network can communicate with IPv4 networks (Olsson, Olsson).

The 6LoWPAN adaptation layer implements three main mechanisms to support
carrying IPv6 packets over IEEE 802.15.4 radio links: (i) header compression, (ii)
fragmentation and reassembly, and (iii) stateless auto configuration. Header com-
pression mechanism encodes 40-bytes IPv6 and 8-bytes UDP headers into smaller
sizes (e.g., 2 bytes and 8 bytes, respectively) by considering the fields that are
commonly used. The mechanism neglects the fields that can be deduced from the
link-layer and it is designed in a way that it supports only IPv6 but not IPv4.
Fragmentation and reassembly mechanism, on the other hand, allows to divide the
IPv6 frames into smaller fragments by addressing the frame size constraints so that
they can be carried over IEEE 802.15.4 links. For reassembling the packets in the
correct order, extra header fields are generated during the fragmentation. Those ex-
tra fields are removed when IPv6 packets are recovered during reassembly. Finally,
stateless auto configuration allows the nodes to generate their own IPv6 addresses
in an automatic way (Montenegro et al., 2007; Olsson, Olsson).

The security of 6LoWPAN relies mainly on IEEE 802.15.4 AES-128 link-layer secu-
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rity. It provides authentication and encryption per-hop during data exchange in the
wireless medium between two neighboring nodes. However, IEEE 802.15.4 security
is not enabled by default in most of the IoT applications and such applications are
vulnerable against both insider and outsider attackers. Also, key management is
still a challenging question as it was not specified in IEEE 802.15.4 standard (Mon-
tenegro et al., 2007). For example, Contiki, an open source IoT operating system,
supports IEEE 802.15.4 link-layer security only for time slotted channel hopping
(TSCH) (Watteyne, Palattella & Grieco, 2015) and it is not enabled by default.
It uses one key for beacon packets and one key for data traffic packets by being a
minimal 6TSCH architecture. It does not support IEEE 802.15.4 link-layer security
for carrier-sense multiple access (CSMA) currently (Duquennoy, 2018a). Still, IEEE
802.15.4 link-layer security is not sufficient to protect the network against outsider
threats such as botnets. Further details about Contiki operating system will be
given in Section 2.3.

2.2 RPL: Routing Protocol for Low-Power and Lossy Networks

RPL (Routing Protocol for Low-Power and Lossy Networks (LLNs)) is a routing
protocol developed for LR-WPANs (IEEE 802.15.4) where the nodes are incapable of
having sufficient memory, battery and processing power. The protocol also assumes
that routing links between the nodes are prone to packet losses, low data rates and
topological instabilities (Alexander, Brandt, Vasseur, Hui, Pister, Thubert, Levis,
Struik, Kelsey & Winter, 2012). As it was illustrated in Figure 2.1, RPL operates on
the network layer of the OSI model together with the IPv6 on top of the 6LoWPAN
adaptation layer and the IEEE 802.15.4 physical layers as it goes deeper. It supports
point-to-point (P2P), point-to-multipoint (P2MP) and multipoint-to-point (MP2P)
packet delivery. P2MP communication takes place from the border router (central
coordinator) towards the nodes inside the network whereas MP2P communication
takes place from the nodes towards the border router. MP2P is the most common
traffic flow in RPL because nodes collect data and forward them to the root which
has specific roles such as collecting data and connecting the network to the outer
networks (Tsvetkov, 2011). P2P communication, represents the case where inside
nodes exchange data with each other (Alexander et al., 2012). Figure 2.3 depicts
these traffic flows.

In RPL, a network topology is created in the form of a Directed Acyclic Graph
9



Figure 2.3 Traffic flows in RPL.

(DODAG) so that there exists a tree-like topology without having any cycles. A
DAG keeps track of the routes between the nodes in the network and the data orig-
inated from each node is routed towards one root node called DODAG (Destination
Oriented Directed Acyclic Graph) root. A DODAG is a DAG having one root that
can work as a sink node, which collects data, or a border router, which connects the
network with outer IPv6 networks. When the DODAG is constructed, each node
has an upward route based on their most preferred parent and they hand over the
collected data to the root using these upward routes. An LLN may contain multiple
RPL instances, which are running concurrently, and each instance may consist of
multiple DODAGs. The instances are assigned a unique ID called RPLInstanceID.
Each node in the network can be the member of multiple instances but they can have
only one root in each of those instances (Gaddour, Koubâa & Abid, 2015; Witwit
& Idrees, 2018). Figure 2.4 illustrates an LLN network with multiple instances that
contain one or multiple DODAGs.

RPL leverages an objective function that determines the routing parameters and
constraints to be considered during topology construction and maintenance. This
allows to maintain an optimal topology based on the routing objective. Each node
in the network is also assigned a rank that increases as they get away from the
DODAG root. Using ranks makes it easier to maintain the topology by preventing
the formation of routing loops. The ranks are not required to increase linearly
relying on the hop counts as they can be calculated based on another routing metric
or constraint (Gaddour et al., 2015; Tsvetkov, 2011). In DODAG 1 of Figure 2.4,
the node ranks were illustrated. The root has the rank value 0 and it is increased
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Figure 2.4 An example of an LLN network with multiple instances that contain one
or multiple DODAGs.

based on hop counts for the remaining nodes.

RPL uses 4 different ICMPv6 control messages for constructing and maintaining
the topology. Each control packet has an ICMPv6 header and a message body. The
header contains 3 fields: Type, Code and Checksum. Type field determines the type
of the ICMPv6 control message and the corresponding Type value for RPL is 155.
Code field, on the other hand, determines the type of the RPL control messages
that are explained below (Witwit & Idrees, 2018).

• DODAG Information Object (DIO): DODAG root multicasts DIO messages
to construct a new DAG tree. The transmitted messages contain important
routing information and allow RPL nodes to (i) find an RPL instance, (ii)
calculate their ranks, (iii) select their parents as the next hop towards the
root, (iv) access the routing configuration parameters, and (v) maintain the
DODAG tree. This, in turn, allows to construct and maintain the upward
routes from sensor nodes to the root. The corresponding Code value for DIO
messages is 0x01 (Alexander et al., 2012; Tsvetkov, 2011; Witwit & Idrees,
2018).

• DODAG Information Solicitation (DIS): DIS messages are used for requesting
DIO messages from the neighboring nodes in the DODAG tree. It is leveraged
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mainly for neighbor discovery. The corresponding Code value for DIS messages
is 0x00 (Alexander et al., 2012; Tsvetkov, 2011; Witwit & Idrees, 2018).

• Destination Advertisement Object (DAO): DAO messages allow the construc-
tion of downward routes by propagating the IP prefixes and routing tables of
the children nodes to their parents. Every node except the root transmits DAO
messages. The corresponding Code value for this type of control messages is
0x02 (Alexander et al., 2012; Tsvetkov, 2011; Witwit & Idrees, 2018).

• Destination Advertisement Object (DAO-ACK): DAO-ACK messages are sent
in response to a DAO message received by a DAO recipient which is a par-
ent or a DAG root. It contains routing-related information such as Status,
RPLInstanceID and DAO sequence. The corresponding Code value for DAO-
ACK messages is 0x03 (Alexander et al., 2012; Tsvetkov, 2011; Witwit &
Idrees, 2018).

There are two types of routing that RPL employs to realize the aforementioned
traffic flows (MP2P, P2MP, P2P): Upward routing and downward routing. Upward
routing supports MP2P communication allowing to route the data originated from
the leaf or intermediate nodes to the DODAG root. For the construction of default
upward routes, the DODAG root starts multicasting DIO messages. The nodes
receiving these messages select their parents based on the objective function used.
Then, each node calculates their own ranks. Here, the intermediate nodes act as
routers and they relay the DIO messages to all neighboring nodes after updating the
ranks inside the messages. The leaf nodes, on the other hand, only join the DODAG
tree and they do not send any DIO messages. This process is repeated until the DIO
messages arrive in the leaf nodes and there is no any other node that can receive the
messages (Tsvetkov, 2011). Downward routing, contrarily, supports the realization
of P2MP and P2P traffic flows. Every node except the DODAG root sends DAO
messages to propagate their IP prefixes and routing tables towards the DODAG
root so that the downward routes are established. The way the received DAO
messages are handled by parents depends on the mode of operation of downward
routing. Downward routing has two different modes of operation, namely Storing
and Non-Storing, and each RPL instance can employ only one of them (Alexander
et al., 2012). In Storing mode, each intermediate node maintains a routing table
for keeping track of the downward routes and a neighbor table for keeping track of
the direct neighbors. The routing tables are populated based on the information
obtained from the DAO packets that are unicasted by the child nodes (Olsson,
Olsson). In Non-Storing mode, only the DODAG root maintains a routing table
and it computes the hops to be traversed when sending a packet to its destination.
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This is also called source routing. In source routing, the packet header contains
the nodes to be visited for delivering a packet to its destination (Witwit & Idrees,
2018). Figure 2.5 illustrates the construction of downward routes using Storing and
Non-Storing modes (Tsvetkov, 2011).

(a) (b)

Figure 2.5 The construction of downward routes in (a) Storing and (b) Non-Storing
modes.

(a) (b)

Figure 2.6 P2P traffic flow in (a) Storing and (b) Non-Storing modes.

Downward routing is crucial for P2P communication. When a node in an RPL
network would like to send a packet to another node, unless the destination is not
in the upward path, the packet is sent up towards the DODAG root first regardless
of the mode of operation employed (Alexander et al., 2012). In Storing mode, the
packet can be directed down by a common ancestor of the source and destination
nodes. In non-storing node, however, the packet should be received by the root
to be directed down to the destination Alexander et al. (2012). Another difference
between using Storing or Non-Storing mode of operation is the trade-off between
having sufficient resources in the intermediate nodes when Storing mode is employed
and the packet size overhead increasing proportional to the number of nodes to be

13



visited when Non-Storing mode is employed (Olsson, Olsson). Figure 2.6 illustrates
a P2P traffic flow when Storing and Non-Storing modes are used (Hassan, 2016).

RPL leverages different mechanisms and variables to maintain a topology. A subset
of the related terminology is explained below. We focus mainly on the terminology
that has not been mentioned until here.

• DODAGID: A DODAG root is identified uniquely by a DODAGID within an
RPL Instance. The combination of RPLInstanceID and DODAGID uniquely
identifies a DODAG (Alexander et al., 2012).

• DODAGVersionNumber: Version number is incremented by the DODAG root
if a new version of the DODAG needs to be constructed. The combination of
RPLInstanceID, DODAGID and DODAGVersionNumber identifies a DODAG
version uniquely (Alexander et al., 2012; Tsvetkov, 2011).

• Trickle Timer Algorithm (Levis, Clausen, Gnawali, Hui & Ko, 2011): The
trickle timer algorithm allows to control and adjust the rate of control pack-
ets being transmitted by each node. Since control messages are being used
intensely for topology maintenance and reconstruction, they cause the con-
sumption of a lot of power. Therefore, the transmission of control packets is
accelerated and decelerated by the trickle timer algorithm only when necessary.
Specifically, the pace of control packet transmission is increased when there is
an instability in the network whereas it is slowed down when the network is
rather in a stable state (Hazarika, Matam, Mukherjee & Menon, 2020).

2.3 Contiki: The Operating System for Next Generation IoT Devices

Contiki is an operating system developed specifically for constrained IoT devices.
It supports IEEE 802.15.4 standard and implements the standard-compliant 6LoW-
PAN and RPL protocols alongside the other networking protocols, namely TCP
(Postel, 1981), UDP (Postel, 1980), DNS (Mockapetris, 1987), CoAP (Shelby,
Hartke & Bormann, 2014) and Websocket (Melnikov & Fette, 2011), in the IPv6
networking stack. Contiki is implemented mostly in C programming language and
its firmwares can be run by a variety of micro-controller boards such as ARM Cortex
M3, ARM Cortex M4 and TI MSP430 (Oikonomou, 2018,2).

Contiki operating system has two main versions: Contiki OS and Contiki-NG.
14



Contiki-NG is the next generation version of the historical Contiki OS and its devel-
opment has started in 2017. The goal of switching to a newer version was to support
the modern micro-controller boards, enhance the reliability and the security of the
IPv6 communication and improve the code base and the documentation. In this
thesis, we use Contiki-NG and it is referred as Contiki (Duquennoy, 2017).

Figure 2.7 Contiki operating system repository structure.

Contiki is fully programmable and its source code is available publicly1. Figure
2.7 illustrates its repository structure. The main folder containing the operating
system components is called os. Some of these components are processes and timers,
the networking stack and the system libraries and services. Another folder called
examples, on the other hand, contains the examples populated for different types of
applications such as an RPL border router, a CoAP server, a UDP client, an MQTT
client. All of the examples are built on top of the functions and libraries that reside

1https://github.com/contiki-ng/contiki-ng
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in the os folder. It is also possible to change and configure the hardware components
in Contiki. The respective folder for making changes in hardware is called arch. It
includes CPU, device and board drivers. The driver codes should reside here when a
new micro-controller board needs to be supported. The repository also contains the
tools that can be leveraged for realizing different tasks such as simulating a network
or flashing a firmware. These tools are not considered to be the part of the firmware
but are run on a computer or a workstation as a helper utility (Duquennoy, 2018b).

Contiki also provides a simulator called Cooja as part of its tool suite. Cooja helps
researchers to simulate an IoT network consisting of different types of nodes and
firmwares flashed. It also provides a mean to debug the developed applications in
Contiki. Figure 2.8 illustrates a Cooja instance running on a Docker container on
a Linux machine. The functionalities of each window shown on the figure is listed
below (Pedro, Mugdhe & Samarth, 2016).

Figure 2.8 Cooja simulation environment.

• Network: This window allows to visualize the locations, types, relations, ad-
dresses, log outputs, LEDs and positions of the nodes in the network. It can
also illustrate the radio traffic between the nodes. The dark arrows in Figure
2.8 represents the relations between the nodes. They constitute the DODAG
tree from the leaf nodes towards the root node.
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• Simulation Control: This window allows to start, pause and reload the simu-
lation. The speed of the simulation can also be controlled through speed limit
feature.

• Mote Type Information: This window illustrates the microcontroller board
information as well as the source and firmware used. Compilation commands
used during the compilation of the source into firmware are also provided here.

• Mote Output: This window shows the outputs of the nodes written into their
serial link.

• Timeline: This window shows the occurring events on a timeline. An event
can be the messages outputted or changes in channels and LEDs.

The communication security in Contiki is provided in two ways: Link-layer security
and application-layer security. Link-layer security ensures the confidentiality and
integrity of the communication between each hop. It is not enabled by default
and applicable only for time slotted channel hopping (TSCH). Application-security,
on the other hand, ensures the end-to-end confidentiality and integrity over the
6LoWPAN layer. Contiki supports Datagram Transport Layer Security (DTLS)
and this is achieved with a modified version of the TinyDTLS2. A secure version of
the CoAP protocol called CoAPs is also integrated on top of DTLS and it allows the
CoAP header and data to be encrypted and authenticated in an end-to-end manner
between the IPv6 devices. The setup requires the keys to be pre-distributed among
the hosts (Duquennoy, 2018a).

2.4 Mirai Botnet

A botnet can be defined as a network composed of heterogeneous devices each of
which turned into a bot through a malicious binary code (malware) injected. The
bots are controlled by a command-and-control (C&C) server to launch distributed
denial-of-service (DDoS) attacks towards specific targets. DDoS attacks aim to
disrupt specific Internet services mainly due to financial motivations. A DDoS attack
is realized by making multiple internet hosts generate a massive distributed traffic
towards a target server. The attack becomes successful when the server providing

2https://github.com/contiki-ng/tinydtls
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the service that is aimed to be disrupted fails to respond to its intended clients due
to the depletion of resources.

Mira Botnet has been one of the most disruptive cyber threats in the Internet history.
In September 2016, an enormous amount of IoT devices (e.g., IP cameras, routers,
printers) directed their network traffic towards KrebsOnSecurity3, the website of a
security expert named Brian Krebs. It was reported that the volume of the record-
breaking attack traffic exceeded 600 Gbps (Antonakakis, April, Bailey, Bernhard,
Bursztein, Cochran, Durumeric, Halderman, Invernizzi, Kallitsis, Kumar, Lever,
Ma, Mason, Menscher, Seaman, Sullivan, Thomas & Zhou, 2017; Krebs, 2016). The
attacker devices were actually the victims that are infected by a malware that allows
a Mirai C&C to control them. The propagation mechanism of the botnet was relying
on infecting the devices that use default Telnet credentials. The attacks were not
restricted to target a single website and some big cloud and DNS hosting providers
(e.g., OVH Cloud (Klaba, 2016) and Dyn) were also affected largely (Antonakakis
et al., 2017). The chain of such attacks has demonstrated that the massive traffic
that could be generated by the abundance of small inter-connected devices with
limited capabilities could be abused to disrupt services used by millions of clients.

In 30 September 2016, the source code of Mirai was released publicly by one of
the Mirai co-authors under the username Anna− senpai in an hacker forum called
HackForums (Anna-senpai, 2016). The source code is also available in a GitHub
repository4 now and it is publicized by Jerry Gamblin, a security researcher, for
research purposes. The public release has led to an increase in DDoS attacks orig-
inating from IoT bots along with the evolution of new variants with additional
capabilities. Since the number of botnet armies competing increased, some botnet
authors, including Mirai authors, started developing mechanisms to prevent their
bots from being taken over by their competitors (Krebs, 2016). As it is the case
with most of the other botnets, it was revealed that the motivation behind the de-
velopment of Mirai was financial. The Mirai authors Paras Jha, Josiah White and
Dalton Norman aimed to offer DDoS mitigation services to those servers that were
being targeted (Cloudflare, Cloudflare; Krebs, 2017).

The lifecycle of Mirai consists of 4 main phases: (i) Scanning, (ii) injection, (iii)
attack initiation and (iv) maintenance. These phases are depicted along with their
decomposed stages in Figure 2.9. (i) Scanning phase can also be named as the ini-
tial infection phase (Ghafir, Prenosil & Hammoudeh, 2017) that the botnet scans
for vulnerable IoT devices for recruiting into its bot network. At this stage, pseudo-

3https://krebsonsecurity.com

4https://github.com/jgamblin/Mirai-Source-Code
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Figure 2.9 Mirai botnet lifecycle.

random IPv4 addresses are generated by the Mirai malware that is being executed
by the bots and each bot sends TCP SYN packets to the default Telnet ports (i.e.,
23 and 2323) of these addresses to check whether there is a potential victim that
resides on them (Antonakakis et al., 2017). If an open Telnet port is detected, this
shows that the host being communicated is a potential victim and Telnet credential
brute-force attack phase starts. During this phase, the scanning bot tests a pair
of hard-coded usernames and passwords for gaining remote access to the potential
victim’s system.

When a scanning bot gains access to a potential victim IoT device, the device
becomes infected and it now becomes a victim that is going to be turned into a bot in
the botnet. At this stage, the (ii) injection phase starts and the login information of
the victim is reported to a reportserver. The report server informs the loader about
the vulnerable IoT device so that the malicious binary code (malware) that is going
to be executed can be injected. First, the loader gains remote access using the Telnet
credentials sent by the report server and executes a group of shell commands on the
victim device remotely to gain information about its processor architecture. This
information is used to to compile the malicious source code into a binary that the
victim can execute. Here, Mirai uses cross-compilers to compile its bot source code
into different binaries which can be executed in its victims’ processor architectures.
Cross-compilers allow compiling a source code into a binary that can be executed
by a specified processor architecture other hand that of the host machine that the
compilation takes place. After that, the compiled binary is downloaded by the loader
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remotely into the victim. Finally, the victim starts executing the malicious binary
because of the command sent by the loader and it turns into a bot in the Mirai
botnet.

The malware that is loaded and executed on the bot establishes the connection
between the command− and− control(C&C)server and the bot. The bot now
listens the connection in a steady situation for receiving commands from the C&C
server. In the meantime, it scans for new victims to recruit into the botnet. The
botnetmaster is a person that has access to the C&C server and, in turn, controls
the botnet army. (iii) Attack initiation phase starts when the botnet master logs
into the C&C, selects the type of the DDoS attack (e.g., UDP flood, DNS flood,
VSE flood, TCP flood, HTTP flood, GRE flood) to be employed and specifies the
DDoS target. Then, the C&C server sends the attack command to the bots through
the established connections. This launches the attack as the bots will execute the
command sent by the C&C as soon as it is received.

The persistence of a malware on a bot device can be very long-lasting as it may
not be detected until a DDoS attack is initiated. Therefore, the botnet master
may decide to patch the malware executed by the bots for a variety of reasons and
this describes the (iv) maintenance phase. For instance, the botnet may undergo
a certain set of changes and the bots may need to be patched to adapt to them.
Another patch may include improvements for making the device undetectable by
the detection techniques used at a specific time (Ghafir et al., 2017). In addition,
bots might be desired to have a new type of DDoS attack capability at a later time.
We summarize the duties of the agents that take part in Mirai botnet below.

• Botnet Master: The person who controls the botnet through command-and-
control (C&C) server. Botnet master enters commands for attack initiation or
maintenance.

• Command-and-Control (C&C) Server: C&C is responsible for relaying the
commands received from the botnet master to the bots. It parses the attack
parameters (e.g., attack type, duration, DDoS target) and relay the attack
command to the bots to launch the attack.

• Bots: Bots continuously listen the communication channel opened towards the
C&C. As soon as the attack command arrives, they employ it. They gener-
ate multiple traffic packets using multiple threads by spoofing the source IP
addresses and selecting random port numbers towards the DDoS target. The
bots are also responsible for scanning vulnerable IoT devices in the Internet
to recruit into the botnet. They enumerate random IPv4 addresses and try
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to login through default Telnet ports using default Telnet credential combina-
tions.

• Report Server: Report server receives the socket information and login creden-
tials of the vulnerable IoT devices that the scanning bots could logged in. It
then reports this information to the loader for starting the malware injection
phase.

• Loader: Loader gains remote access using the device information (e.g., IP
address, port number and login credentials) received from the report server.
Then, it makes the victim to download the malicious binary using the appropri-
ate tool, namely wget (Foundation, 2010), tftp (Sollins, 1992) or echoloader5.
Later, the malicious binary is executed and it establishes the connection be-
tween the bot and the C&C server.

Section 2.4.1 gives detailed information about the source files of the Mirai.

2.4.1 Mirai Source

This section makes a superficial analysis of the Mirai source code shared in Jerry
Gamblin’s GitHub repository6. The source code is a copy the original one shared in
Hack Forums 7.

The repository contains 4 main directories: Dlr, loader, mirai and scripts. Figure
2.10 illustrates the directory structure of the repository. The directory dlr contains
the files and binaries related to the echoloader tool that the loader uses to download
the malicious binary into the victim IoT device. If wget and tftp tools are not
available on the victim, loader loads the echoloader binary by making use of the
echo command into the victim device and it allows to download the malicious binary
by showing a behavior similar to wget (Anna-senpai, 2016; De Donno, Dragoni,
Giaretta & Spognardi, 2018). The release subdirectory contains the echoloader
binaries compiled using cross-compilers for different processor architectures. The
loader loads one of them based on the victim’s processor architecture.

The second main directory loader contains the files and binaries related to the loader

5https://github.com/jgamblin/Mirai-Source-Code/tree/master/dlr

6https://github.com/jgamblin/Mirai-Source-Code

7https://hackforums.net/showthread.php?tid=5420472
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Figure 2.10 Mirai source directory structure.

server. The subdirectory src contains the actual loader server code written in C,
whereas the bins subdirectory contains the copies of the echoloader binaries that
are also stored under dlr/release. The third main directory mirai contains the bot

and the C&C (i. e., cnc) source codes. Also, it contains the tools used for differ-
ent operational purposes. The subdirectory bot contains the actual malicious code
whose binary is downloaded into the victim IoT device. It consists of multiple head-
ers and source files written in C. These files implement the scanner module (e.g.,
scanner.h and scanner.c) for recruiting new devices into the botnet, the killer mod-
ule (e.g., killer.h and killer.c) to kill the malware deployed by the competitor botnet
armies and the attack modules (e.g., attack.h, attack.c, attack_app.c, attack_gre.c,
attack_tcp.c, attack_udp.c) to launch different types of DDoS attacks (e.g., HTTP
flood, GRE flood, TCP flood, UDP flood, DNS flood, VSE flood). Since the bots
scan random IPv4 addresses, rand.h and rand.c files implement the functionality to
generate random IPv4 addresses. Since Mirai bots connect to the C&C using its do-
main, the source codes also implement the DNS lookup functionality (e.g., resolv.h

and resolv.c). Using C&C domain allows to migrate the C&C to another IP address
easily without affecting the bots. C&C domain is hardcoded in tables.c file in an
encrypted form. The subdirectory cnc, on the other hand, contains the source code
of the C&C server and it is written in Go programming language. The source code
consists of multiple files and each of them manages a separate functionality. For
instance, main.go contains the default database credentials and manages listening
and accepting the incoming connections from the bots and the botnet admins. The
other source files handle user authentication, attack parameter parsing and relaying
the generated attack commands to the bots. Finally, the subdirectory tools contains
the custom tools to be used by the botnet agents. For instance, it contains the enc.c

script that allows to encrypt the strings (e.g., IP addresses) that are embedded in
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the bot source files.

The main directory scripts contains the shell script for downloading and extracting
the cross-compiler binaries. In addition, it contains a SQL script for creating the
C&C database that contains the user table. The user table stores the information of
the users who have authorization to enter commands to the C&C command prompt.

2.4.2 Mirai Attack: UDP Flood

Mirai employs a variety of DDoS attacks: UDP flood, DNS flood, VSE flood, TCP
flood, HTTP flood, GRE flood. Since we use Mirai to launch UDP flood attacks
during the attack data collection phase in this thesis, this section gives a brief
information about UDP flood.

A UDP flood attack scenario starts with the attacker generating a high amount of
UDP datagrams to be sent towards the random ports of the target. The source
IP addresses in these datagrams are spoofed because the attacker aims to hide its
true location and prevent a high number of response packets from reaching back to
itself. When the target receives a UDP packet on a specific port, it checks whether
there is an application that listens at that port. If there is no such application,
it responds with an ICMP Destination Unreachable packet to inform the sender
that the destination is unreachable. Since the attacker sends many such packets at
the same time window, the target is overwhelmed because of sending many ICMP
Destination Unreachable packets and checking for the applications that listen at
the specified ports. This, in turn, causes the target to be unable to respond to the
requests sent by the legitimate clients because of the depletion of the its resources.
In a DDoS scenario, multiple attackers direct their generated packets towards the
target.

Mirai provides two types of UDP flood attack commands: udp and udpplain. The
latter provides less packet configuration parameters and it is more effective in terms
of generating higher number of packets per second (Winward, 2018). Further infor-
mation regarding the udpplain command will be given in 3.3.1.1.
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2.5 FIT IoT-LAB: The Very Large Scale IoT Testbed

FIT IoT-LAB (Adjih, Baccelli, Fleury, Harter, Mitton, Noel, Pissard-Gibollet, Saint-
Marcel, Schreiner, Vandaele & Watteyne, 2015) is an open and large scale testbed
located across different sites in France: Grenoble, Lille, Lyon, Nantes, Paris, Saclay
and Strasbourg. It allows the research community to build and test IoT networks
consisting of real heterogeneous devices. The experiments done by different testbed
users are distinguished through reservations and any registered user can use the
reservation web interface to reserve a subset of the available nodes in a specific
site. After the name and the duration of the experiment is entered, it provides an
interface to reserve a desired number of nodes with different hardware architectures.
Figure 2.11 shows this interface for reserving nodes using a map. It is also possible
to reserve the nodes by stating their ids, or selecting the properties of the nodes. If
the properties are entered, the system will automatically assign the nodes with the
desired properties.

Figure 2.11 FIT IoT-LAB reservation interface for reserving nodes through a map.

The testbed brings a heterogeneity of hardware boards8 (e.g., Arduino Zero, IoT-
LAB A8-M3, Microchip SAMD21, Nordic nRF51DK, Zigduino) into use, each carry-

8https://www.iot-lab.info/docs/boards/overview/
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ing one or multiple radio chips such as IEEE 802.15.4 (Low-Rate Wireless Personal
Area Networks), Sub-GHz (Sub-Gigahertz), BLE (Bluetooth) and LoRa (Low-Power
Wide-Area Network). It provides public IPv6 prefixes and the applications devel-
oped can communicate with the other systems in the IPv6 address space. Each
board also supports an IoT operating system such as Contiki-NG9, RIOT (Baccelli,
Gündoğan, Hahm, Kietzmann, Lenders, Petersen, Schleiser, Schmidt & Wählisch,
2018), FreeRTOS10, Yocto11, Zephyr12 and MicroPython 13. Further information
regarding IoT-LAB A8-M3, the board used for realizing this thesis, will be given in
Section 2.5.1.

The testbed also provides tools for managing the experiments, configuring the mi-
crocontroller boards, monitoring and collecting data. Each experimentation site
provides SSH frontends that can be connected through SSH using an SSH key gen-
erated from the web interface. These frontends allow to connect to the SSH interfaces
of the reserved nodes, flash firmware and collect data through sniffers. The testbed
also brings a variety of CLI tools (command-line interface tools) 14 into use and
they can be used to run, stop and automate experiments. These tools also support
node-level operations such as flashing firmware, and starting, resetting and stopping
a node. In addition, radio15 and power consumption16 monitoring tools are provided
so that the network traffic and power consumption data can be collected and stored.

2.5.1 IoT-LAB A8-M3

This section gives brief information about the microcontroller board, IoT-LAB A8-
M317, used for generating the IoT attack dataset presented in this thesis. The board
actually consists of two different microcontrollers: IoT-LAB A8 and IoT-LAB M3.

9https://github.com/contiki-ng/contiki-ng

10https://www.freertos.org

11https://www.yoctoproject.org

12https://www.zephyrproject.org

13https://micropython.org

14https://www.iot-lab.info/docs/tools/cli/

15https://www.iot-lab.info/docs/tools/radio-monitoring/

16https://www.iot-lab.info/docs/tools/consumption-monitoring/

17https://www.iot-lab.info/docs/boards/iot-lab-a8-m3/
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IoT-LAB A8 microcontroller is equipped with ARM Cortex A8 microprocessor18

and it can run embedded Linux and Android operating systems. It has 256 MB
of RAM and can be used as a gateway (, a8-). The ones we use in this thesis run
embedded Linux.

The co-microcontroller, IoT-LAB M319, on the other hand, has the ARM Cortex
M3 microcontroller and it can be programmed directly from the A8. It is suitable
to be used as a sensor node on an IoT network because of having low RAM (64
KB) and ROM (256 KB). It carries a 802.15.4 radio chip and supports Contiki-
NG, RIOT and FreeRTOS operating systems. In addition, it is equipped with 4
widely-used sensors: Light sensor, pressure and temperature sensor, accelerometer
and gyroscope (, m3).

2.6 Intrusion Detection Systems

Intrusion detection systems (IDS) continuously monitor the networks and inform
the system administrators through the generated alarm reports in case of a security
incident. They can be categorized based on their detection types and two main
categories stand out: anomaly-based and signature-based. Anomaly-based detection
systems have a sense of a score range for benign behavior and determine whether
a traffic is malicious based on a pre-determined threshold. Although they are able
to detect the existence of a malicious behavior, the exact type of the attack is not
known. The advantage here is that they do not need to know a pre-defined set
of malicious behaviors for different types of attacks. They rely on benign traffic
for generating a threshold score and the traffic pattern exceeding this threshold is
reported as an intrusion. Signature-based detection systems, on the other hand,
need to know the traffic patterns or signatures (e.g., file hashes, domains) of the
attack types that are aimed to be detected. Such systems cannot detect an unknown
attack correctly. However, if the detected attack is known apriori, its exact type
is also known and this leads to a target-specific attack mitigation, which is more
effective than trying to mitigate a (generic) attack. Both of these approaches can
also be integrated to first detect the anomalies and then classify the anomalies
into known attack types but such methodology may introduce scalability issues

18https://developer.arm.com/ip-products/processors/cortex-a/cortex-a8

19https://www.iot-lab.info/docs/boards/iot-lab-m3/
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in particular cases (Örs, Aydın, Boğatarkan & Levi, 2021). For instance, an IoT
system consisting of heterogeneous devices may have different traffic patterns and
this requires to develop separate anomaly detectors for different devices (Sridharan,
Maiti & Tippenhauer, 2018). In addition, unknown attacks will still be classified
into wrong attack types if there is not a specific class for them.

Intrusion detection systems can also be divided into two categories based on the lo-
cations where they are used. Network-based intrusion detection systems (NIDS) are
placed on gateways (i.e., central hubs) or have multiple sensors across the network
so that they gather and analyze the network traffic packets belonging to multiple de-
vices. Host-based intrusion detection systems (HIDS), on the other hand, are placed
on certain devices to collect and analyze traffic packets from those host devices only.
When compared, NIDS do not put an extra computation overhead on host devices
since they are deployed on gateways that can handle higher computational loads
thanks to having better hardware specifications. HIDS are beneficial for analyzing
a local data that could otherwise be encrypted while being transmitted across dif-
ferent devices in the network. It is also important to note that both network-based
and host-based intrusion systems can be anomaly or signature based.

2.7 Machine Learning Models

This section describes random forests, XGBoost classifier and autoencoders, the
machine learning models that we leverage to develop our intrusion detection models.

2.7.1 Random Forests

We use the importance weights of the random forests (Breiman, 2001) for selecting
features before training our intrusion detection models. In decision trees, the nodes
are split based on the features that discriminate the data samples best in each step
of the training. Such features give the highest information gain by decreasing the
uncertainty. Therefore, decision trees are very sensitive to training set variations.
Random forests use bagging and consist of multiple (possibly) uncorrelated decision
trees. Each decision tree in a random forest is trained on the data which is randomly
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sampled from the original data with replacement. Therefore, these trees become
uncorrelated from each other and they make decisions based on different data and
features. This allows random forests to be less prone to errors and overfitting.

2.7.2 Extreme Gradient Boosting (XGBoost)

Gradient Boosting is an ensemble technique that combines multiple weak learners to
reduce the errors made by each of them. Initially, the classifier starts with a decision
tree and keeps adding new trees that perform better than the previous ones in each
step. In this sense, the subsequent learners learn to classify the data that are not
classified well by the previous learners. In addition to these features, XGBoost (Chen
& Guestrin, 2016) was developed to make gradient boosting faster and efficient. It
provides different features such as parallelization, distributed computing, sparse-
aware implementation and regularized gradient boosting. It allows to construct
decision trees in parallel, and handle the missing values in the data thanks to its
sparse-aware implementation.

2.7.3 Autoencoders

Autoencoders are neural network based models and they consist of two sequential
parts: Encoder and decoder. The encoder first allows the model to map the input
features into a lower dimensional space. The decoder, then, reconstructs the input
features from the encoded lower dimensional space. This, in turn, makes the model
learn the characteristics of a group of inputs given. Therefore, autoencoders are very
suitable models to be used in outlier and anomaly detection tasks. In an anomaly
detection scenario, an autoencoder is trained with only the benign traffic data so
that it learns the benign behavior. During testing, the test set contains both the
attack and benign traffic data. The model outputs a score based on the sigmoid
activation function. The instances that produce a score larger than a predetermined
threshold is selected to be the anomalies. In other words, if the error made is larger
than the threshold, the instance is selected to be an anomaly.
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2.8 Related Work on IoT Intrusion Detection

This section reviews the literature on IoT intrusion detection systems. There exists
many studies that propose intrusion detection systems developed using simulation-
based IoT data. Raza et al. (Raza et al., 2013) propose a real-time intrusion de-
tection system leveraging the data collected from the Contiki operating system’s
Cooja simulator. Yavuz et al. (Yavuz et al., 2018) use simulation data to develop
binary classifiers for detecting hello flooding, decreased rank and version number
attacks. Sharma et al. (Sharma et al., 2019) implement 4 RPL attacks and collect
simulation data to develop a multi-class classifier. Çakır et al. (Cakir et al., 2020)
leverage simulation data to detect hello flood attacks against benign traffic. There
are many such studies (Al-Hadhrami & Hussain, 2020; Bhale et al., 2020; Cakir &
Yalcin, 2021; Mbarek et al., 2020; Verma & Ranga, 2020) that use simulators to
collect IoT attack datasets. However, simulators simulate a certain behavior and
simulation data may not reflect the exact characteristics of a real attack traffic. In
contrast, this thesis proposes an intrusion dataset collected from real IoT devices.

Some previous studies also use outdated network datasets. These datasets do not
contain up-to-date IoT attacks and they are not feasible to be used for developing IoT
intrusion detection systems. Rezvy et al. (Rezvy et al., 2019) propose a deep learning
model for intrusion detection and classification in IoT networks. However, they
use the Aegean Wi-Fi Intrusion dataset (Kolias, Kambourakis, Stavrou & Gritzalis,
2016), a generic Wi-Fi dataset, for developing and evaluation their models. Similarly,
Mounica et al. (Mounica et al., 2021) use NSL-KDD dataset (Tavallaee, Bagheri, Lu
& Ghorbani, 2009), a generic network intrusion dataset, for developing an intrusion
detection system for detecting sybil attacks.

In addition to the aforementioned works, most of the previous studies (Cakir et al.,
2020; Cakir & Yalcin, 2021; Ioannou & Vassiliou, 2020; Mounica et al., 2021; Yavuz
et al., 2018) develop binary classifiers in the form of anomaly detection models and
this requires developing separate models for each attack type preventing the system
to scale. Meidan et al. (Meidan et al., 2018) propose an anomaly detection system
using autoencoders for detecting the Mirai and Bashlite botnets. In contrast, we
propose a machine learning based multi-class classifier that can classify 6 attack
types together with benign traffic.

There are also studies that leverage multi-class classifiers for mitigating the scalabil-
ity problem arising from anomaly detection models used for detecting the anomalies
in different device groups. Örs et al. (Örs et al., 2021) develop a scalable Wi-Fi
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intrusion detection system training a multi-class classifier using the Wi-Fi intrusion
dataset collected by Sridharan et al. (Sridharan et al., 2018). Their approach allows
to remove the requirement to develop separate anomaly detectors for different device
groups. However, Wi-Fi cannot be considered as an IoT specific networking protocol
and this thesis focuses mainly on IoT-specific 6LoWPAN and RPL protocols.

In contrast to the aforementioned studies using simulation data, Thamilarasu et
al. (Thamilarasu & Chawla, 2019) leverage both simulation data and the real net-
work traces collected from Raspberry PIs to evaluate their deep learning based IoT
intrusion detection system. However, they employ binary detection and evaluate
the detection capability of their model over different attacks separately. In addi-
tion, the amount of malicious transactions in their dataset is higher than that of
benign transactions. Such data distribution is not realistic as the amount of benign
traffic is expected to be much higher than that of the malicious traffic in a real net-
work with occasional attacks. In this thesis, our intrusion detection dataset contains
a much higher amount of benign traffic data than the attack traffic data.

Another study carried out by Ioannou et al. (Ioannou & Vassiliou, 2020) use FIT
IoT-LAB testbed, which is the testbed we use in this thesis, in order to collect their
dataset. However, they use the detection models as local security agents for each
node and use the RMT tool (Ioannou, Vassiliou & Sergiou, 2016) for monitoring
the nodes’ traffic. In contrast to the external sniffers that capture the radio traffic,
the RMT tool can give additional information about the forwarded and dropped
packets. Also, it is not clear whether a compromised node can still be monitored
by the tool. In addition, their attack versatility is not high as they implement two
similar attacks: Selective forwarding and blackhole. The attacks are detected as
anomalies using separate models so that their detection system is not multi-class.
The benign data ratio with respect to the attack data is also low so that their test
scenario is not realistic. This thesis, in contrast, have a higher attack versatility
(because of having 6 attack types, one being a Mirai botnet attack), a multi-class
classification capability, and a more realistic benign and attack traffic data ratio.
We also collect our data using external sniffers provided by the testbed so that we do
not gather additional information regarding the internal traffic flows of the nodes.

Similar to our node-based feature extraction methodology, Yavuz et al. (Yavuz et al.,
2018) extract node based features by dividing the simulation data into the time
windows of 1 seconds. However, they use these features together with packet based
features for representing each instance as network packets. In this thesis, however,
we generate a dataset that consists of node instances. Therefore, our approach can
detect the attacker nodes and their exact locations, instead of the malicious packets,
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by modeling the node traffic characteristics. We also leverage sliding time windows
so that our approach extracts node based features based on the latest node states.

Overall, we propose an intrusion detection system developed using the traffic data
collected from real IoT devices. Our dataset consists of node instances and each
node is represented by the node based features that are extracted over a sliding
time window. We classify them into 6 attack types and a benign class using a single
multi-class classifier. The ratio of the benign traffic data in our dataset is also much
higher than the ratio of attack traffic data as expected in a real world scenario.
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3. IOT INTRUSION DATASET GENERATION

This section describes our methodology for generating an IoT intrusion dataset com-
posed of the traffic data collected from real IoT devices running over 6LoWPAN and
RPL protocols. We first give information about our overall testbed architecture for
generating the intrusion dataset. We then describe the properties and the capabili-
ties of the nodes that are placed in the 6LoWPAN/RPL network. Later, the details
of the Mirai botnet setup, the sniffer aggregator, and the randomized data collec-
tion scenarios that we use are presented. Finally, we describe the post-processing
steps that the collected raw data undergoes and give information about the final
raw dataset obtained.

3.1 Overall Testbed Architecture

Our testbed for collecting an IoT intrusion dataset consists of 5 main components:
IoT-LAB SSH frontend, 6LoWPAN/RPL Network, Mirai C&C server, Mirai bots
and a stateless NAT64 translator. Figure 3.1 illustrates the overall architecture. In
total, we reserve 31 A8-M3 microcontroller boards from the Saclay site of the FIT
IoT-LAB testbed (Adjih et al., 2015): 1 for the border router, 26 for the DODAG
nodes in the 6LoWPAN/RPL network, 1 for the stateless NAT64 translator and 3
for the Mirai bots. In addition to the reserved nodes, we leverage the IoT-LAB SSH
frontend from the FIT IoT-LAB testbed for realizing various tasks. C&C server, on
the other hand, is a dedicated Linux server with IPv4 and IPv6 connectivity running
outside the FIT IoT-LAB testbed.

There are various reasons that makes the A8-M3 microcontroller boards suitable
for this thesis. A brief information about these boards is given in Section 2.5.1.
(i) Since the A8 microcontrollers run embedded Linux, it is easy to manage and
configure them. The embedded Linux provides the tools to collect data from and
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Figure 3.1 Overall testbed architecture.

flash firmware into the M3 co-microcontroller, which resides on the same board.
(ii) The M3 co-microcontrollers also carry an IEEE 802.15.4 radio transmitter so
that they can be programmed to run as a DODAG root or node. (iii) In addition,
border routers require to bridge the 6LoWPAN network with the public IPv6 In-
ternet trough the SLIP (serial line protocol) and this can be achieved by running
a tunnel between the A8 and M3 microcontrollers that reside on the same board1.
(iv) Finally, Mirai botnet aims to compromise IoT devices running Linux operating
systems so that we can use the main A8 microcontroller to mimic a Mirai bot. In

1https://www.iot-lab.info/legacy/tutorials/contiki-public-ipv6-a8-m3/index.html
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this case, the M3 co-microcontrollers are not utilized since Mirai bots do not need
an IEEE 802.15.4 radio transmission. The testbed provides IPv4 connectivity and
it is leveraged to launch DDoS attacks towards the 6LoWPAN/RPL network.

IoT-LAB SSH frontend, along with the web interface, is the first entry point to the
FIT-IoT LAB testbed. As it was described in Section 2.5, the web interface allows to
generate an SSH key and reserve the desired nodes from multiple experimentation
sites. After the SSH key is generated, the SSH frontend is used for flashing the
firmware compiled from a variety of operating system source code (Contiki OS in
our case) into the reserved experiment nodes. In addition, we use it to collect data
through the sniffers of the nodes and access the SSH interfaces of the reserved nodes.
Since we setup a Mirai botnet, we also use the SSH frontend as a loader to load
the malicious binary that allows to convert an IoT device into a Mirai bot in our
controlled environment.

Since Mirai is an IPv4 botnet, we also employ a stateless NAT64 translator to
convert the IPv4 traffic of the Mirai bots into an IPv6 traffic. Therefore, our setup
allows the IPv4 bots to communicate with the 6LoWPAN network that has only the
IPv6 connectivity. Further details about the Mirai setup and the translator is given
in Section 3.3.

The overall data collection system is fully-automated thanks to the scripts written
in Bash and Python. The overall procedure is as follows: (i) We reserve a desired
number of nodes. (ii) We run the Mirai C&C server. (iii) We run the loader so that
the malware is loaded into the bots. (iv) We setup the translator with appropriate IP
addresses. (v) We flash the Contiki firmware into the nodes for the 6LoWPAN/RPL
network. (vi) Finally, we generate and start random attack scenarios and activate
the sniffers to collect the traffic data. A sniffer aggregator is used to aggregate and
store the traffic data coming from the sniffers of the 6LoWPAN/RPL nodes in the
SSH frontend.

Figure 3.2 illustrates the overall intrusion detection system architecture also includ-
ing the stages that are employed after the raw data is collected. We post-process
the raw data, extract the node-based features and apply some pre-processing steps
to prepare the extracted data for the detection model development and evaluation.
The intrusion detection phase discriminates the attack nodes from the benign nodes
as well with detecting the attack types of the attackers. This chapter focuses only
on the raw dataset generation and its post-processing. We describe the latter stages
in Chapter 4.
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Figure 3.2 Overall intrusion detection system architecture.

3.2 6LoWPAN/RPL Network

The 6LoWPAN/RPL network is an IoT network that consists of the devices flashed
with the Contiki operating system firmware running over 6LoWPAN and RPL proto-
cols. It is composed of a border router for IPv6 connectivity, benign DODAG nodes
communicating with UDP datagrams (UDP clients), an in-topology RPL routing
attacker flashed with a modified malicious Contiki firmware. A benign node can also
be a Mirai victim being targeted by the outsider Mirai bots during a Mirai DDoS
attack. Our reference network consists only of a border router and benign DODAG
nodes as their traffic constitute the benign behavior. An RPL attacker or a Mirai
victim comes into play during an attack scenario and only one of them becomes
active at a time, meaning that they cannot be placed in the network at the same
time. We explain the attack scenarios in detail in Section 3.4.2.

We reserve 27 nodes to form the 6LoWPAN/RPL network. One of these nodes is
employed as the border router whereas the others are the DODAG nodes. Figure
3.3 illustrates the topology of this network from the viewpoint of the FIT IoT-LAB
reservation map. The blue nodes out of the green nodes represent the reserved nodes
and the blue node labeled with a red circle shows the border router. We reserve
adjacent nodes to make sure that they are within each other’s radio ranges.

The remainder of this section specifies the working mechanisms of the benign nodes
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Figure 3.3 6LoWPAN/RPL network topology.

and the capabilities of the in-topology attackers employing different types of RPL
routing attacks.

3.2.1 Benign Nodes

There are two types of benign nodes in our reference network: DODAG nodes and
the border router. We use one type of DODAG nodes communicating through UDP
datagrams so that the network is homogeneous.

As it was detailed in Section 2.2, each DODAG tree has a root that collects the data
incoming from the other nodes (i.e., DODAG nodes or sensor nodes). A border
router is a DODAG root that also acts as a gateway to connect the network to outer
IPv6 Internet. We give the implementation details of the DODAG nodes and the
border router employed for generating our intrusion dataset in Section 3.2.1.1 and
Section 3.2.1.2, respectively.
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3.2.1.1 DODAG Nodes

The DODAG nodes used in our topology are flashed with the firmware compiled
from the UDP client2 example that resides in the Contiki repository. These clients
send periodic messages to the border router. Each message sent contains a hello
message and a counter number as the data.

Figure 3.4 udp-client.c: A proportion of the UDP client source code.

Figure 3.4 shows a proportion of the source code for UDP clients. First, the UDP
connection is initialized using the predefined client and server ports. Then, the client
waits for some random duration only in the first iteration of the while loop. Since
the periodic event timer is set as SEND_INTERV AL (initialized to be 1 minute
at the beginning of the code) and a very short amount of at most 2 seconds (for
addressing the jitter) at the end of each iteration, the program waits about 1 minute
by starting from the second iteration. After waiting, the client sends messages that
includes the string "hello" and the counter number while the node is online and the
IP address of the DODAG root (i.e., border router) can be acquired successfully.
The counter is updated in each iteration after the UDP message is sent. Figure 3.5
illustrates a simulated network of UDP clients and a border router on the Cooja

2https://github.com/contiki-ng/contiki-ng/blob/develop/examples/rpl-udp/udp-client.c
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simulator of Contiki. The log messages in the mote output window depicts the
messages being sent and received by the nodes.

Figure 3.5 A simulated network of UDP clients and a border router.

3.2.1.2 Border Router

The UDP client and UDP server3 codes together constitute the RPL UDP example4

in the Contiki repository. UDP server acts as a DODAG root and echo replies the
received messages back to their senders. However, it does not have the ability to
assign public IP prefixes to the nodes in the network. Therefore, we merge UDP
server code with the border router example code5 from the Contiki repository. This
allows to make the network public by converting the UDP server into a border
router. Public IPv6 connectivity is required for the networks we use since the aim
of this thesis is to collect a dataset that also contains outsider intrusions such as
botnet attacks.

Figure 3.6 illustrates a proportion of the source code for the implemented UDP
border router. The callback function is defined for specifying the behavior when a
message is received. It prints out the log messages regarding the received messages
and echo replies them back to their senders. The process thread, one the other hand,
starts the border router with a web server and initializes the UDP connection for
receiving and sending UDP messages using the predefined client and server ports.

3https://github.com/contiki-ng/contiki-ng/blob/develop/examples/rpl-udp/udp-server.c

4https://github.com/contiki-ng/contiki-ng/tree/develop/examples/rpl-udp

5https://github.com/contiki-ng/contiki-ng/tree/develop/examples/rpl-border-router
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Figure 3.6 border-router.c: A proportion of the implemented UDP border router
source code.

3.2.2 Routing Attack Implementation

In this thesis, we implement and use 5 in-topology RPL routing attacks and a Mirai
botnet attack. This section describes the implementation details of the routing
attacks only. The details about the employed Mirai attack is given in Section 3.3.1.1.

We implement 5 in-topology RPL routing attacks, namely sinkhole, blackhole, se-
lective forwarding, DIS flood and version number, on Contiki operating system over
the aforementioned reference UDP client example. Each attacker represents the
malicious version of a UDP client. We leverage Contiki’s Cooja simulator to illus-
trate the capabilities and the impacts of the attacks. The simulator is used only
for visualization purposes and it is not used to collect any data. We collect our IoT
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intrusion dataset using real devices.

3.2.2.1 Sinkhole

Sinkhole attacks aim to attract the network traffic emitted by the neighboring nodes
by advertising false routing information. In this sense, a sinkhole attacker adver-
tises an optimal rank value to be selected as the preferred parent of its neighbors
(Wallgren, Raza & Voigt, 2013). This causes all neighboring traffic to pass over the
attacker and the attacker may further exploit this situation in a malicious manner.
For instance, the attacker may drop all the traffic passing through itself by employ-
ing a blackhole attack so that the traffic flow is disrupted. Sinkhole attacks affect
the routing performance negatively.

Figure 3.7 Code changes made in rpl-icmp6.c and rpl-timers.c source files for imple-
menting the sinkhole attack.

Figure 3.7 illustrates the codes changes made for implementing the sinkhole attack
(Raza et al., 2013) over a UDP client. We first advertise the rank of the attacker
to be the rank of the DODAG root, the lowest rank possible, when sending DIO
messages. Then, the interval for sending DIO messages is decreased for increasing
the rate of advertisement during a time period.

Figure 3.8 illustrates the impact of a sinkhole attacker on a simulated network. The
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Figure 3.8 The impact of a sinkhole attacker (ID: 19) on a simulated network.

green node (ID: 1) represents the border router whereas the yellow nodes represent
the benign UDP client nodes. The attacker node has the node ID 19 and its is in
purple. The black arrows, on the other hand, constitute the DODAG tree. The
figure clearly shows that the attacker was selected to be the preferred parent by its
neighbors.

3.2.2.2 Blackhole

A blackhole attacker acts as a benign node and drops all traffic passing trough itself.
The aim of the attack is to isolate the child nodes by disrupting the traffic flow.
Figure 3.9 illustrates the code changes made for implementing the blackhole attack
(Raza et al., 2013; Wallgren et al., 2013). The attacker drops all packets whose
source IP addresses are not equal to its own IP address. The conditional check is
done for filtering such packets and the corresponding log messages are printed out
if a packet is dropped.

Figure 3.10 illustrates the impact of the attack on a simulated network. Mote
output window for the child node (ID: 11) of the attacker node (ID: 19) shows that
the messages sent by the child are not responded. This is because the requests sent
by the child to the root are dropped by its parent, which is the attacker.
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Figure 3.9 tcpip.c: All foreign packets are dropped for implementing the blackhole
attack.

Figure 3.10 The impact of a blackhole attacker (ID: 19) on a simulated network.

3.2.2.3 Selective Forwarding

In contrast to a blackhole attacker, an attacker employing the selective forwarding
attack drops a proportion of the packets passing through itself. The packets to be
forwarded can be selected randomly or in a more intelligent way. In this thesis,
we drop the incoming packets randomly with %50 probability. The corresponding
attack code is shown in Figure 3.11. In addition to the blackhole attack implemen-
tation, we add a probability check inside the conditional.

Figure 3.12 illustrates the impact of a selective forwarding attack. Mote output
window for the attacker’s (ID: 19) child (ID: 12) shows that only a proportion of the
requests sent by the child are responded because the attacker forwards a random
proportion of the incoming packets and this causes a subset of the child’s requests
to be dropped.
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Figure 3.11 tcpip.c: All foreign packets are dropped with 50% probability for imple-
menting the selective forwarding attack.

Figure 3.12 The impact of a selective forwarding attacker (ID: 19) on a simulated
network.

3.2.2.4 DIS Flood

DIS flood attack aims to drain the network resources by overwhelming the network
traffic with a high rate of DIS control packets. As it was described in Section 2.2,
the reception of DIS messages cause the neighbors of a DIS attacker to transmit
DIO control packets in response and reset their trickle timers (D’Hondt, Bahmad
& Vanhee, 2016). This, in turn, causes the instability of the network to increase
because the neighboring nodes are triggered to send DIO messages continuously.
Since their trickle timers are also reset during the attack, the nodes emit a higher
amount of control messages. Therefore, DIS flood is a very effective attack that
increases the power consumption of the network.

Figure 3.13 illustrates the code changes made over the UDP client code for imple-
menting the DIS flood attack (D’Hondt et al., 2016). We first remove the time
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Figure 3.13 Code changes made in rpl-conf.h and rpl-timers.c source files for imple-
menting the DIS flood attack.

interval between transmitting DIS messages and the delay for transmitting the first
DIS message. This allows the attacker to multicast DIS messages continuously as
soon as it starts running. Then, we add a code segment into the part where the
DIS messages are handled so that the attacker transmits a high rate of DIS control
packets without making any interval and delay checks.

Figure 3.14 illustrates the behavior of a DIS flood attacker with the ID 19 on a
simulated network. The black arrows represent the DODAG tree whereas the blue
arrows represent the messages being transmitted by the nodes at a time. The figure
shows that the attacker transmits DIS messages to its neighbors constantly.
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Figure 3.14 The behavior of a DIS flood attacker (ID: 19) on a simulated network.

3.2.2.5 Version Number

Version number attack aims to deplete the network resources by creating topologi-
cal inconsistencies. The attacker achieves this by advertising an updated DODAG
version through the transmitted DIO messages. The neighbor nodes receiving these
DIO messages keep updating their parents based on the received version numbers by
performing global repairs. This causes them to rebuild the DODAG tree constantly
so that the network consumes a lot of power (D’Hondt et al., 2016). Figure 3.15
illustrates the code change made for advertising the incremented DODAG version
number at the attacker side (D’Hondt et al., 2016).

Figure 3.15 rpl-icmp6.c: An incremented DODAG version is advertised through the
DIO messages for implementing the version number attack.
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Figure 3.16 The impact of a version number attacker (ID: 19) on a simulated network.

Figure 3.16 shows the impact of a version number attacker (ID: 19) on a simulated
network. The attack causes drastic inconsistencies in the DODAG tree. For in-
stance, the benign nodes with the ID 2 and 3 selects a parent that is far away from
the DODAG root. Also, some of the nodes do not have a parent because of the
continuous reconstruction of the DODAG tree.

3.3 Mirai Setup

This section describes the deployment details of the Mirai botnet in our testbed. It
consists of two main components: C&C server and Mirai bots.

Since the botnet needs to be deployed in a controlled manner, we use the Mirai code
modified to be used in controlled environments (Lee, 2020) to disable its scanning,
infection and malware injection capabilities. We also inject the malicious binary
using our own loader that mimics a Mirai loader described in Section 3.3.2. It
allows to download the malware into the A8-M3 microcontroller boards that are
reserved to be the Mirai bots. These boards run embedded Linux operating system
so that they are a good representative of being a Mirai victim.
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3.3.1 C&C Server Setup

In contrast to the other testbed components, we run the C&C server outside the
FIT IoT-LAB testbed as a dedicated Ubuntu server having the specs 1 GB of RAM
and 25 GB of storage. It has the IPv4 and IPv6 connectivity and we only use it in
IPv4 address space because Mirai is an IPv4 botnet.

We setup the C&C server using the tools and the scripts provided in the Mirai
repository (Anna-senpai, 2016; Gamblin, 2017; Lee, 2020). We first install Go pro-
gramming language and the required Go packages to be able to build and run the
C&C server written in Go. Second, cross-compile.sh script located under the scripts
directory is used to download the required cross-compilers for different hardware ar-
chitectures. Then, build.sh script located under the mirai directory is used to build
the source codes into the C&C and bot binaries. This concludes the build procedure
and makes the binaries ready to be executed.

After the build process is done, we install MySQL DBMS and create the C&C
database using the db.sql script located under scripts directory. We also run an
authenticated HTTP server on 8082 port on the same dedicated server to publish
the bot binaries so that the loader is able to download them using the wget command
in the infected IoT devices. Finally, we run the C&C server and the admin interface
can be accessed by initiating a Telnet connection to the loopback IP address. Figure
3.18 illustrates the admin interface of our C&C server. Section 3.3.1.1 gives further
information about the admin interface together with the employed Mirai attack.

Figure 3.17 run.sh: Bash script for automating Mirai server setup phase.

We fully automate the described steps for setting up the C&C server using Bash
scripts. Figure 3.17 illustrates the Bash script that needs to be run to setup the
server. The script update_build.sh updates the git repository and runs the afore-
mentioned build.sh script for building the source codes. The figure also shows that
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the username and the password for the authenticated HTTP server are iotlab and
iotlab123*, respectively.

3.3.1.1 Mirai Attack: UDP Flood

In addition to the in-topology routing attacks, we employ an outsider Mirai DDoS
attack. This section gives information regarding the initiation of DDoS attacks
through the C&C server. Since our reference network consists of the nodes commu-
nicating with UDP datagrams, we specifically employ Mirai’s UDP flood attack.

Figure 3.18 The admin interface of our Mirai C&C server.

As it was described in 2.4.2, UDP flood has two variants and we use the udpplain

command, the more effective variant in terms of the packets being transmitted per
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second, to launch the attack. The command has two required parameters and they
are the target IP address and the duration of the attack. Figure 3.18 illustrates the
admin interface of our Mirai C&C server. We first list the available attacks using
the command "?". Then, the parameters and the optional flags of the udpplain
command are listed. The optional flags shows that the length of the UDP packets,
the destination port and the transmission of randomized packet payloads choice can
be changed.

3.3.2 Loader: Mirai Bots Setup

This section describes the details for setting up the Mirai bots. The process is
fully automated and it is as follows: In addition to the nodes to be placed in the
6LoWPAN/RPL network, we reserve 3 nodes to be converted into Mirai bots and 1
node to be employed as a stateless NAT64 translator. The details about the NAT64
translator is given in Section 3.3.2.1. We then connect to those 3 bot candidates
through SSH and make them listen the default Telnet port 23. We also replace
their passwords with a default password (pass123* in our case) so that they mimic a
vulnerable IoT device that can be a Mirai victim. We finally run our loader that is
basically a Python script which resides on the SSH frontend. It allows to download
the malicious binaries into the nodes that are reserved to be the bots.

Figure 3.19 illustrates the functional part of our loader script that mimics the Mirai
loader. Since we disable the scanning behavior while executing the malicious bina-
ries, the loader cannot get the login credentials from a report server. Therefore, we
integrate the brute-force capability into this script. It first iterates through the IP
addresses of 3 hosts to be converted into a Mirai bot and aims to gain shell access
through the default Telnet port using the default credentials that are written in a
dictionary file. If the shell access is gained, it downloads the malicious binary from
the authenticated HTTP server that is running on the dedicated server which also
runs the C&C. The downloaded binary is then executed after the execute rights
are granted. It has 4 arguments provided: C&C server public IPv4 address, local
IPv4 address, callback IPv4 address and the choice for the scanning capability. We
disable the scanning capability of the bots so that the last parameter is given the
value 0.
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Figure 3.19 loader.py: The functional part of the loader script.

3.3.2.1 Stateless NAT64 Translator

A stateless NAT64 translator is required in our setup because Mirai uses IPv4 raw
sockets and Mirai bots cannot directly communicate with a target running in the
IPv6 address space. Since the 6LoWPAN/RPL is accessible in the IPv6 address
space, we deploy the stateless NAT64 translator in-between the border router and
the Mirai bots. This allows to convert the IPv4 traffic packets into IPv6 traffic
packets and vice versa.

As it was described, we reserve 1 A8-M3 microcontroller board to be employed as a
stateless NAT64 translator. The A8 microcontroller runs embedded Linux operating
system and it supports an open source Linux-based stateless NAT64 called Jool
SIIT6 (Stateless IP/ICMP Translator). The translator basically keeps track of a
table and translates IPv4 and IPv6 addresses in two directions. The translation is
stateless because every IPv6 address maps to only one IPv4 address even though
the address space of IPv6 is much larger than the address space of IPv4.

We setup the translator in an automated manner. Figure 3.20 illustrates the Bash

6https://www.jool.mx/en/siit-dc.html
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Figure 3.20 setup-translator.sh: The script for setting up the stateless NAT64 trans-
lator.

script used for this purpose. It just takes one input that is the text file, domains.txt,
which lists the nodes to be used as Mirai bots. The text file for the target list, on the
other hand, is generated automatically during the setup phase of the Mirai bots. We
first configure the bots and the 6LoWPAN/RPL nodes to recognize the translator
as a gateway for accessing the predefined IPv4 and IPv6 subnets. Therefore, the
translator needs to have both IPv4 and IPv6 addresses. Since the DODAG nodes
are targeted by the Mirai bots, it is not needed to apply an exact mapping for
the IPv4 addresses of the bots. We define an IPv6 prefix (64:ff9b::/96) and the
translator will use it to assign an IPv6 addres for each Mirai bot. However, since a
target needs to be identified with a unique address and this should be entered by the
botnet master through the C&C when the attack needs to be launched, each possible
target needs to be assigned a unique IPv4 address and these addresses should be
known apriori. Therefore, we map target IPv6 addresses to specific IPv4 addresses
from the predefined IPv4 subnet (192.0.2.0/24). The target IPv6 addresses are
already known as they are composed of the public IPv6 prefix of the border router
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node and the node ids of the reserved nodes. This finalizes the translator setup.
The Mirai bots and the 6LoWPAN/RPL nodes can access each other through the
translator.

Figure 3.21 An example scenario of two communicating IPv4 and IPv6 nodes.

Figure 3.21 illustrates an example scenario of two communicating IPv4 and
IPv6 nodes. The translator maps 2001:0660:3207:0400::14, the IP address of
the IPv6 node, to 192.0.2.1 and 10.0.44.52, the IP address of the IPv4 node to
64:ff9b::a00:2c34.

3.4 Data Collection

This section describes the data collection procedures of our intrusion detection
dataset. We mainly give information the sniffers, attack scenarios, post process-
ing procedures and finally the details of the collected dataset.

3.4.1 Radio Monitoring and Sniffers

This section gives brief information about the sniffers used for collecting traffic data
from the 6LoWPAN/RPL nodes. FIT IoT-LAB testbed provides tools and hardware
to collect data from the reserved devices. Every experimentation device in the
testbed is attached a control node and these control nodes are used for collecting
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the radio traffic. This is achieved by equipping the control nodes with the same
radio chips that are equipped by the experimentation nodes. After a sniffer profile
is created (through the web interface of the FIT IoT-LAB testbed) by specifying
the radio channel used by the firmware, the radio chips in the control nodes start
listening on the pre-configured channel for capturing traffic packets. Then, the
incoming packets are encapsulated in ZEP (ZigBee Encapsulation Protocol) format
and they are forwarded to the IoT-LAB SSH frontend using TCP sockets through the
port 30000. The testbed also provides a tool called sniffer aggregator for aggregating
the traffic data captured from multiple nodes. It can save the resulting traffic as a
single PCAP file in the SSH frontend (, sni). We leverage the sniffer aggregator for
collecting and saving the radio communication of our 6LoWPAN/RPL nodes.

3.4.2 Automated Data Collection with Random Scenario Generation

This section describes our methodology for automated data collection with random
scenario generation. We assume that the border router is secure to prevent it to
be the single-point-of-failure as it provides the public IPv6 connectivity. Therefore,
only the DODAG nodes, constituting 26 nodes out of the 27 6LoWPAN/RPL nodes,
can be a victim of a Mirai botnet attack. In addition, only a benign DODAG
node is replaced with a malicious routing attacker during an RPL attack scenario.
Therefore, we have 26 possible in-topology malicious attacker places. During the
dataset collection, we employ 6 attack types (e.g., sinkhole, blackhole, selective
forwarding, DIS flood, version number, Mirai botnet UDP flood) and only one of
them is active during an attack scenario. Also, we have a benign scenario after every
attack scenario to collect the benign traffic data and allow the testbed to stabilize
after each attack scenario.

The automated setup phase before the data collection stage consists of multiple
steps. We first setup the Mirai C&C server and bots (e.g., 3 nodes reserved) using
the aforementioned scripts. Then, the stateless NAT64 is setup so that the 6LoW-
PAN/RPL network is reachable from the Mirai bots. Finally, the SLIP tunnel is
run for bridging the border router with the public IPv6 Internet. This concludes
the setup phase and the data collection phase starts.

The data collection phase is managed by a Python script so that it is also fully
automated. It first starts with flashing the benign firmware for the border router
and the UDP clients so that the network is prepared for the traffic capture. Then,
the sniffer aggregator is activated and the captured traffic data starts being written
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Algorithm 1 Data Collection and Random Scenario Generation
pcap_path← path for writing the pcap file
firmware_br← benign border router Contiki firmware
firmware_udp_client← benign UDP client Contiki firmware
Node_List← nodes in the 6LoWPAN/RPL network, the first element being the
border router node
Target_List← list of target_node_ID, ipv4 tuples
Attack_Firmware← routing_attack : contiki_firmware mappings
Attack_Types ← attack types: sinkhole, blackhole, selective forwarding, DIS
flood, version number, Mirai UDP flood
FLASH(Node_List[0], firmware_br)
for node in Node_List[1 :] do

FLASH(node, firmware_udp_client)
end for
ACTIVATE_SNIFFER_AGGREGATOR(pcap_path)
SLEEP(600)
while GET_FILE_SIZE(pcap_path) <= 1.5 do

attack_type← RANDOM_CHOICE(Attack_Types)
attack_duration← RANDOM_INT(600, 3600)
attack_node, attack_node_ipv4← RANDOM_CHOICE(Target_List)
if attack_type = "mirai_udp_flood" then

SEND_CNC_CMD("udpplain", attack_node_ipv4, attack_duration)
else

FLASH(attack_node, Attack_Firmware[attack_node])
end if
SLEEP(attack_duration)
benign_duration← RANDOM_INT(600, 3600)
FLASH(attack_node, firmware_udp_client)
SLEEP(benign_duration)

end while
DEACTIVATE_SNIFFER_AGGREGATOR()

as a PCAP file. The initial benign scenario takes 10 minutes for the construction
of the DODAG tree and the stabilization of the network. The collection phase then
gets into a loop of running random attack scenarios each followed by a benign sce-
nario. The benign scenarios allow the stabilization of the network by removing the
effects of the previously employed attacks. Each attack scenario has three random
parameters: Attack type, attack duration and the node that is going to be an in-
topology routing attacker or a Mirai victim. The first parameter, attack type, is
selected randomly from among the 6 attacks: sinkhole, blackhole, selective forward-
ing, DIS flood, version number and Mirai UDP flood. The second parameter, attack
duration, is picked up randomly in the range from 10 minutes to 1 hour. The third
parameter, malicious or the (Mirai) victim node, is selected randomly from among
26 DODAG nodes, excluding the border router. Then, the corresponding firmware
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for the selected routing attack is flashed. If the selected attack is the Mirai UDP
flood, we do not flash a firmware but rather send an attack command to the Mirai
C&C including the attack duration and the pre-configured IPv4 address (for the
stateless NAT64 translator) of the victim node. After an attack scenario finishes, a
benign scenario begins by re-flashing the previously selected node (an in-topology
attacker or a Mirai victim) with the benign UDP client firmware. The duration
for the benign scenario is also selected randomly in the range from 10 minutes to
1 hour. After the completion of each benign scenario, the size of the PCAP file
is checked. The scenario generation loop is terminated if the size exceeds 1.5 GB
because each user in the FIT IoT-LAB testbed is allowed to have the disk quota
of 2 GB (, cha). The described stages for the data collection and random scenario
generation is summarized in Algorithm 1.

Figure 3.22 An example labelling.

The data collection and random scenario generation script also labels the initiation
and the termination of each scenario with the scenario type (i.e., attack with a type
or benign scenario), the timestamp and the node being affected. Since flashing a
firmware might take time and the exact timestamp the firmware takes effect is not
known apriori, labelling both initiation and termination steps allows to get rid of
the ambiguous traffic data collected between the termination and the initiation of
the consecutive scenarios. For the sake of simplicity, we do not incorporate labelling
into Algorithm 1. Figure 3.22 illustrates an example labelling. State being 1 and 0
indicate that the scenario is initiated and terminated, respectively.
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3.4.3 Raw Dataset

This section describes the details of the final raw dataset we collected using the afore-
mentioned data collection and scenario generation methodology. The final dataset
is composed of the traffic data collected in separate experiments because the terms
of use of the FIT IoT-LAB testbed does not allow to schedule experiments taking
longer than 3 hours during the working hours (, ter). Therefore, we collect data over
the weekends. Having 2 GB of storage quota (, cha) also restricts the time duration
used for collecting data as PCAP file size can easily be exceeded when the number
of flood attack scenarios are high. Therefore, we collect our dataset using multiple
experiments.

Figure 3.23 The head of the data collected in the first experiment.

The final dataset is collected in 6 different experiments and their total duration
is about 57 hours. The total size of the PCAP files take up about 10.53 GB of
disk space. Each row in the raw dataset represents a traffic packet and each packet
consists of 8 columns: packet number, timestamp, source IP address, destination IP
address, protocol, packet length, frame sequence number, information (containing
the packet or control message type). Figure 3.23 illustrates the head of the data
collected in the first experiment.
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3.4.4 Post-processing

The collected dataset requires to be post-processed for several reasons. First, the
time a packet is written may not always align with its capture timestamp. This,
in turn, might cause the packets with smaller timestamps to be written after the
packets with larger timestamps with a very rare occasion. Therefore, we sort the
PCAP files based on the packet timestamps.

Second, we use the sniffers attached to every reserved node to prevent any packet
loss during traffic capture. Since all of the sniffers listen the same radio channel, a
radio packet can be heard by many or all of them. Therefore, the collected dataset
needs to undergo a duplicate packet elimination phase. Also, the sniffers do not
apply any filtering for eliminating the packets that are being transmitted by the
nodes reserved in another experiment owned by somebody else. Thus, the packets
with the foreign IP addresses should be filtered out from the data. We handle
duplicates and the foreign IP addresses at the same time. An exhaustive duplicate
packet analysis shows us that the same packet within the radio range of all sniffers
is captured in less than 0.1 seconds by all the sniffers. We match identical packets
with every packet fields, excluding the timestamps, udp payloads and the sniffer IDs
as they may differ even for the identical packets. Then, the duplicate packets within
the time window of 0.1 seconds are eliminated and only one representative of them
is written back. We also check for the IP addresses that do not belong to our own
experiment in the duplicate elimination phase and eliminate the foreigners.

Figure 3.24 The head of the data collected in the first experiment after the post-
processing phase.
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Finally, the acknowledgment packets (i.e., 802.15.4 MAC ACK) do not have any
source and destination IP addresses and the recipient node matches the sequence
number to get an acknowledgment through the shared medium. Therefore, we find
the sender and the recipients of the acknowledgment packets by matching their
sequence numbers with those of the closest packets in the PCAP files. Then, we
overwrite their source and destination IP addresses with the local IP addresses
of the recipients and the senders, respectively. This allows us to know the two
communicating parties explicitly. Figure 3.24 shows the head of the data collected
in the first experiment after the post-processing phase.
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4. NODE BASED INTRUSION DETECTION

This section describes our methodology for developing a machine learning based
intrusion detection system (IDS) for 6LoWPAN based IoT systems using the col-
lected IoT intrusion dataset described in Section 3. We first give the details of the
node-based feature extraction methodology applied over the raw dataset presented
in Section 3.4.4. Then, we present the developed machine learning model and discuss
their performance results.

4.1 Dataset

In this thesis, we employ a node-based detection methodology. In contrast to the
datasets with packet-based instances, using a node-based dataset allows to aggregate
the traffic packets transmitted and received by a group of nodes in a specific time
duration. This, in turn, gives more information regarding the exact location of an
attacker because the attacker’s characteristics and behavioral patterns can also be
modeled. Therefore, we convert the collected packet-based dataset into a node-
based one by employing a feature extraction phase. This section first describes our
methodology for extracting the node-based features. Then, we give the details of
the dataset features that are aimed to be learned by the developed detection model.

4.1.1 Node Based Feature Extraction over Sliding Windows

In this section, we describe the methodology that we follow in order to extract node-
based features from the collected raw dataset. The proposed mechanism partitions
the data into sliding windows of size 30 seconds. The features are computed for each
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node that is a sender or a receiver of a packet in the same time window. The nodes
together with their features computed constitute the instances of the dataset.

Before the actual feature extraction procedure is applied, the dataset undergoes a
small processing phase. Since the nodes in the dataset has both public and local IP
addresses, we first map their IP addresses into node IDs. This allows to uniquely
identify a node and use all of its traffic data for extracting its features for a specific
time duration even if the traffic packets contain the node’s different IP addresses.
Then, we start partitioning the data into sliding windows of size 30 seconds.

Algorithm 2 Data Partitioning into Sliding Windows
window_size← sliding window size
buffer← buffer containing the data for the current time window
dataframe← raw data collected
for packet in dataframe do
if buffer.size() > 0 and packet.T ime - buffer[0].T ime <= window_size
then

buffer.append(packet)
else

EXTRACT_FEATURES(buffer)
buffer.append(packet)
while buffer[−1].T ime - buffer[0].T ime > window_duration do

buffer.pop()
end while

end if
end for

Algorithm 2 summarizes the employed methodology for partitioning the data into
sliding windows. It is aimed to extract features over the current time window as
soon as its size reaches to 30 seconds. The time window is slid when a new packet
arrives. In such a case, the while loop keeps removing the head of the buffer until
the window size becomes smaller than or equal to the predetermined sliding window
size that is 30 seconds. Then, it is checked if the next packet in the dataframe can fit
into the buffer before the extraction of the features over the updated time window.
Thus, the extracted features reflect the characteristics of the nodes for the last 30
seconds. The described procedure does not require to have a collected dataset as it
can also be used during a real-time traffic capture.

After each buffer for a specific time window fills up, 24 node-based features for
each node ID are computed. These features can be divided into 3 main categories:
Total transmission and reception counts, statistical features of the transmitted and
received packet lengths, and transmission and reception counts of specific packet
types. Each feature has both transmission and reception variants and they are
calculated based on the destination and source node IDs. Further information about
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Figure 4.1 A subset of the features extracted over a specific time window of size 30
seconds.

the extracted features is given in Section 4.1.2. Each row represents a node indexed
with the node ID, the time window, and the dataset ID representing the experiment
ID. At this stage, the labels are also incorporated into the dataset and the malicious
nodes are labelled with the corresponding attack type at that specific time duration.
Figure 4.1 illustrates a subset of the features extracted over a specific time window
of size 30 seconds. There are 23 communicating nodes when the broadcast messages
are excluded. The node with the ID a152 conducts the blackhole attack.

4.1.2 Dataset Features and Classes

This section describes the final dataset features and the attack classes. Table 4.1
gives information about the final 24 features and their descriptions. The dataset
also involves 7 classes: Benign, sinkhole, blackhole, selective forwarding, DIS flood,
version number and Mirai UDP flood. The benign nodes are labeled as "benign"
whereas the attacker nodes are labeled as the respective attack type.
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4.2 Proposed Models

In this thesis, we propose two alternative detection systems for detecting the intru-
sions in the proposed IoT intrusion dataset. Both of the alternatives are network-
based because they use the traffic data collected from all of the nodes in the testbed.
Our methodology focuses on detecting the malicious nodes by modelling their be-
haviour at a specific time duration.

The first system consists of two main stages: Anomaly detection and attack classi-
fication. We develop and train an unsupervised deep learning model for detecting
the aforementioned IoT attacks against benign traffic. The attack nodes detected
by the anomaly detector are then forwarded to the attack classification model for
detecting the exact type of the attacker.

The second alternative, on the other hand, consists of a single supervised machine
learning model (i.e., multi-class classifier) for classifying all of the testbed nodes
into the benign class or one of the 6 IoT attack types: Mirai UDP flood, sinkhole,
blackhole, selective forwarding, DIS flood, version number. Hence, it undertakes
both the attack detection and classification tasks combined at a single stage.

Both of these alternatives can be deployed in an edge node or a gateway that has
sufficient computational resources for training the models. The deployed node should
also have sufficient storage for storing the collected traffic data and the learned model
parameters.

4.2.1 Two Phase IDS: Anomaly Detection and Attack Classification

The two phase detection system first aims to predict anomalies using deep autoen-
coders in the form of binary classes (i.e., attack or benign), and then classify the
detected attackers into their respective attack types (e.g., Mirai UDP flood, sink-
hole, blackhole, selective forwarding, DIS flood, version number.) using an XGBoost
classifier. Figure 4.2 illustrates the overall intrusion detection system architecture
consisting of the pipelined detection and classification models.

As it is described in 2.7.3, an autoencoder is a neural network that aims to recon-
struct the input data by first encoding it to a lower dimensional space and then
decoding the representation in the lower dimensional space to higher dimensional
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Figure 4.2 The overall intrusion detection system architecture consisting of the
anomaly detection and attack classification stages.

space. This allows these architectures to learn the characteristics of the input data
and makes them appropriate models in outlier detection and anomaly detection
tasks. In this sense, we train an autoencoder for the anomaly detection stage us-
ing benign node data. It models the benign node characteristics and this allows to
detect the anomalous nodes whose characteristics deviate from those of the benign
nodes.

Table 4.2 Data splits for the anomaly detection.

Classes Train Validation Threshold Validation Test

Benign 36437367 12145789 12145789 12145790

Attack 0 0 3208702 3208703

Table 4.2 illustrates the data splits used to train and evaluate the anomaly detector.
The train and validation sets consist of only the benign data because we train the
model with benign data and use the validation set to early-stop the training. The
60% and 20% of the benign node data in the collected data constitute the train and
validation sets, respectively. The test set, on the other hand, contains both benign
and attack data because we evaluate the attack detection capability of the model.
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Thus, the remaining 20% of the benign node data and a half of the total attacker
data in the colleted data constitute the test set. This set includes a much higher
amount of benign data (12145790) than the attack data (3208703) as expected in a
real-life scenario.

Autoencoders use thresholds to detect anomalies. In this thesis, we use a labeled
threshold validation split containing both benign and attack data to fine-tune the
model threshold. We first set the threshold as the value one standard deviation
away from the mean of the reconstruction errors, and grid search it around the
initial value. This, in turn, allows to fine-tune the threshold using a supervised
approach. The threshold validation set contains the other half of the attacker data
in the dataset together with the benign data contained in the validation set.

Figure 4.3 Proposed autoencoder architecture.

Figure 4.3 illustrates the autoencoder model architecture. It consists of two main
parts: Encoder and decoder. Each part consists of 4 layers. The encoder maps the
24 dimensional feature vector into a 4 dimensional vector (code vector). Then, the
decoder aims to reconstruct the 24 dimensional vector from the code vector.

We train the model for 14 epochs. Before the training, we apply scaling to map
the feature values into the range between 0 and 1. The early stopping mechanism
with the patience 5 terminates the training after 14 epochs as the ninth epoch
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gives the most optimal weights with respect to the validation set. Therefore, the
model weights are restored to weights computed after the ninth epoch. For training,
we use the batch size of 512 and the sigmoid activation function. We also apply a
dropout rate of 10% between each layer. Based on the grid search over the threshold
validation set, we set the detection threshold as 0.01286.

Table 4.3 Data splits before and after the resampling phase for the attack classifi-
cation.

Class

Before Resampling After Resampling

Train

(Attacks in Threshold Validation)

Test

(Detected by the Anomaly Detector)
Train Test

Blackhole 2334 1 5535 1

DIS Flood 149127 149127 5535 149127

Mirai UDP Flood 2904444 2904434 5535 2904434

Selective Forwarding 3750 10 5535 10

Sinkhole 5535 8 5535 8

Version Number 143512 51756 5535 51756

Benign (False Positive) N/A 33509 N/A 33509

The attack nodes detected by the autoencoder are then forwarded to the multi-class
attack classifier, XGBoost, for classifying the detected nodes into their attack types.
Table 4.3 illustrates the data splits used to train and evaluate the attack classifier.
For training the attack classification model, we use the attack data in the threshold
validation set of the anomaly detection model as the training set. However, the data
undergoes a list of pre-processing stages involving resampling, scaling and feature
selection as mentioned below.

• Since the training data is imbalanced, this makes the model harder to learn
the classes with lower amount of instances. Therefore, we first convert the set
into a balanced one using undersampling and oversampling techniques. Ran-
dom undersampling allows to randomly take out the instances that belong
to the majority classes. Random oversampling, on the other hand, randomly
replicates the data of the desired classes so that the model can see sufficiently
many instances of underrepresented classes during training. Since the differ-
ence between the number of instances of the dominant and underrepresented
classes are too high in the training set, we both undersample and oversample
the data. First, we undersample the dominant classes (e.g., DIS flood, Mirai
UDP flood and version number) to the number of instances of the sinkhole
class, which is 5535, because it is the dominant class of the underrepresented
classes (e.g., blackhole, selective forwarding and sinkhole). Then, we randomly
oversample the classes that have lower instances (e.g., blackhole and selective
forwarding) than that of the sinkhole. After these resampling steps, the train-
ing set becomes balanced in terms of the number of instances per class. We
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do not apply resampling over the test set because we use it for evaluation
purposes and it is constituted by the nodes that are detected to be malicious
by the anomaly detector. For instance, there is only 1 blackhole instance in
the test set since the anomaly detector could only detect it out of all other
blackhole nodes. The data distributions in the data splits after the resampling
phase can also be seen in Table 4.3.

• After that, we scale the data so that the input feature values stay in the range
between 0 and 1.

• Finally, we apply feature selection. This allows the model to train faster in
charge of a small potential detection performance decrease. We use a ran-
dom forest classifier with default parameters to select the features based on
importance weights. The model selects 10 features (Tr_Count, Rc_Count,
Tr_Avg_Length, Tr_Min_Length, Tr_Std_Length, RPL Control (DODAG
Information Solicitation) #Source, RPL Control (DODAG Information Ob-
ject) #Source, UDP Message #Source, Ack #Destination, Data #Destina-
tion) out of the 24 features described in Table 4.1.

We employ 5-folds stratified cross-validation over the training set to select the attack
classification model from among different machine learning models (e.g., XGBoost,
decision trees, random forests, k-nearest neighbors and support-vector machines).
Since XGBoost performs slightly better than the others, we choose it as our at-
tack classifier. We also fine-tune its hyperparameters using 5-folds stratified cross-
validation. The resulting model has the learning rate of 0.5 and the maximum depth
of 6. It also consists of 500 estimator trees.

We use Python’s Keras1 library for implementing the autoencoder model. We also
use scikit-learn2 and XGBoost3 libraries for implementing the XGBoost model.

4.2.2 Single Phase IDS: Multi-class Classification

We also propose an XGBoost classifier that classifies the testbed nodes into 6 IoT
attack types (e.g., Mirai UDP flood, sinkhole, blackhole, selective forwarding, DIS
flood, version number) and the benign class. The model takes over the two phases

1https://keras.io

2https://scikit-learn.org/stable/

3https://xgboost.readthedocs.io/en/stable/
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realized by an anomaly detector and an attack classifier. It directly classifies the
nodes into one of the 7 classes. Figure 4.4 illustrates the overall intrusion detection
system architecture leveraging the proposed multi-class classifier.

Figure 4.4 The overall intrusion detection system architecture leveraging the pro-
posed multi-class classifier (XGBoost).

Table 4.4 Data splits before and after the resampling phase for training and evalu-
ating the multi-class classifier.

Class
Before Resampling After Resampling

Train (60%) Validation (20%) Test (20%) Train Validation Test

Benign 36437367 12145789 12145790 6643 12145789 12145790

Blackhole 2801 934 933 6643 934 933

DIS Flood 178952 59651 59651 6643 59651 59651

Mirai UDP Flood 3485333 1161777 1161778 6643 1161777 1161778

Selective Forwarding 4499 1500 1500 6643 1500 1500

Sinkhole 6643 2214 2214 6643 2214 2214

Version Number 172215 57405 57405 6643 57405 57405

Table 4.4 illustrates the data splits used to train, fine-tune and evaluate our classi-
fication model. We split the collected dataset into train, validation and test splits
with the ratios 60%, 20% and 20%, respectively. Before the model development, the
data undergoes the same pre-processing stages described in the attack classification
part of Section 4.2.1. We also summarize these stages below.

• Since the training data is imbalanced, we first convert it into a balanced one
using the resampling methodology mentioned in Section 4.2.1. We resample
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the number of instances in each class to the number of instances of the sinkhole
class, which is 6643, because it is the dominant class of the underrepresented
classes (e.g., blackhole, selective forwarding and sinkhole). Thus, the training
set becomes balanced. We do not apply resampling over the validation and
test sets as they are used for evaluation purposes. The data distributions in
the data splits after the resampling phase can also be seen in Table 4.4.

• Then, we scale the data so that the feature values stay in the range between
0 and 1.

• Finally, we apply feature selection again using a random forest classifier with
default parameters. The model selects 13 features (Tr_Count, Rc_Count,
Tr_Avg_Length, Rc_Avg_Length, Rc_Max_Length, Tr_Min_Length,
Tr_Std_Length, Rc_Std_Length, RPL Control (DODAG Information Solic-
itation) #Source, RPL Control (DODAG Information Object) #Source, UDP
Message #Source, Ack #Destination, Destination Unreachable (Port unreach-
able) #Destination) out of the 24 features described in Table 4.1.

Based on the classification performances of different machine learning models (e.g.,
XGBoost, decision trees, random forests, k-nearest neighbors and support-vector
machines) over the validation set, we choose XGBoost as our multi-class classifier.
We then merge and re-scale the training and validation sets before fine-tuning the
model hyperparameters using 5-folds stratified cross-validation. Since the validation
set was imbalanced, we undersample it before the merge operation. The blackhole
class in the validation set has the lowest amount of instances, 934, so that we
undersample each class to the instance count of 934. Then, we apply the merge
operation and get 7577 (6643 + 934) instances per class in the final training set.
We use this set for fine-tuning (using cross-validation) and training the model. The
fine-tuned hyperparameter values of the model are 0.5, 6 and 500 for the learning
rate, maximum depth and the number of estimators, respectively.

4.3 Results

This section gives detailed information about the performance results of our intrusion
detection systems.
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4.3.1 Two Phase IDS

Our two phase intrusion detection consists of an anomaly detector and an attack
classifier. Section 4.3.1.1 and Section 4.3.1.2 elaborate on the performance results
of our anomaly detection model and the attack classifier, respectively.

4.3.1.1 Anomaly Detection

The anomaly detection model achieves a high detection accuracy when the benign
and attack classes are considered. Table 4.5 illustrates that the model achieves a
high F1-score for both classes being 99.4% for the benign and 97.8% for the attack
class. However, when we map the attack instances to their respective attack types
using the ground-truth labels, it comes out that the detection accuracy is dominated
by the attack types that have higher amount of instances. The model successfully
detects the attacks DIS flood and Mirai UDP flood by achieving an F1-score of 100%
for both of them. Since the number of data instances belonging to these classes are
much higher than that of the other attack classes, the scores for the attack detection
is very high. However, the recall scores for the underrepresented attack classes,
namely blackhole, selective forwarding and sinkhole, show that the model cannot
detect them successfully. It is successful in detecting DIS flood and Mirai botnet
attacks whereas it raises false negatives for the others. It is also partially successful
in detecting the version number attack. When the benign class is considered, the
model do not throw a lot of false positives and it has the high recall score of 99.7%.

Table 4.5 Evaluation results of the anomaly detector (autoencoder) over the test
set.

(a) Classification report of the anomaly
detection.

Precision Recall F1-Score Support

Benign 0.992 0.997 0.994 12145790

Attack 0.989 0.968 0.978 3208703

Accuracy 0.991 15354493

Macro Avg. 0.990 0.983 0.986 15354493

Weighted Avg. 0.991 0.991 0.991 15354493

(b) Multi-class representation of the
anomaly detection performance.

Precision Recall F1-Score Support

Benign 0.992 0.997 0.994 12145790

Blackhole 1.000 0.000 0.001 2334

DIS Flood 1.000 1.000 1.000 149127

Mirai UDP Flood 1.000 1.000 1.000 2904444

Selective Forwarding 1.000 0.003 0.005 3749

Sinkhole 1.000 0.001 0.003 5536

Version Number 1.000 0.361 0.530 143513

Accuracy 0.991 15354493

Macro Avg. 0.999 0.480 0.505 15354493

Weighted Avg. 0.993 0.991 0.990 15354493
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Figure 4.5 Confusion matrix of the anomaly detection model (autoencoder) for the
test data.

Figure 4.5 illustrates that only 33509 benign instances out of 12145790 were raised
as false alarms. Although the model cannot detect some attack classes, it detects a
big proportion of the attacker nodes successfully with a macro F1-score of 98.6%.

4.3.1.2 Attack Classification

Since the attack classifier comes after the anomaly detection phase in the pipeline,
the detection errors flowing through the anomaly detector affects the classification
performance of the attack classifier. Table 4.6 shows its classification performance
scores. The table illustrates that 33509 benign nodes are falsely detected to be the
attackers by the anomaly detection model and the attack classifier has to (falsely)
classify them into a class. Figure 4.6 also shows the attack classes where the falsely
detected benign data is classified into. Since the anomaly detection model is not
successful in detecting the underrepresented attack types, the attack classifier gets
a very small proportion of data instances belonging to those classes.

Despite these challenges, the classification results show that the recall scores for all
attack classes are above 75%. Figure 4.6 illustrates that the model can successfully
classify all of the attackers belonging to DIS flood and Mirai UDP flood attack
classes. The recall score for the version number attack is also 100% because only 6
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Table 4.6 Evaluation results of the
attack classifier (XGBoost) over the
nodes detected to be the attackers by
the anomaly detector.

Precision Recall F1-Score Support

Benign N/A N/A N/A 33509

Blackhole 0.001 1.000 0.001 1

DIS Flood 1.000 1.000 1.000 149127

Mirai UDP Flood 1.000 1.000 1.000 2904434

Selective Forwarding 0.007 0.900 0.013 10

Sinkhole 0.000 0.750 0.000 8

Version Number 0.944 1.000 0.971 51756

Accuracy 0.989 3138845

Macro Avg. 0.492 0.942 0.498 3138845

Weighted Avg. 0.988 0.989 0.989 3138845

Figure 4.6 Confusion matrix of the at-
tack classification model (XGBoost) for
the nodes detected as attackers by the
anomaly detector.

out of 51756 instances are falsely classified. Even though the selective forwarding
attack class has only 10 instances detected by the anomaly detector, only 1 of them
is classified falsely. In this sense, the attack classification model shows a promising
classification performance. Overall, it can classify the attacker nodes into one of the
6 attack types with high recall scores ranging from 75% to 100%.

4.3.2 Single Phase IDS

Since the two phase detection system with an anomaly detector cause a lot of false
negatives, we propose a scalable alternative that can classify the attack types to-
gether with the benign class combined at a single stage. Table 4.7 illustrates the
evaluation results of the classifier over the test set. As it was described in Section
4.2.2, the test set constitutes exactly the 20% of the collected dataset and it is im-
balanced due to the random scenarios generated during the data collection phase.
It specifically contains a very high amount of benign instances to illustrate a realis-
tic intrusion detection scenario. The table shows that the classifier gives promising
results in detecting the attack nodes. It achieves an F1-score of 100% for classifying
the DIS flood and Mirai UDP flood attacks. It also achieves a high recall score for
all other attacks ranging from 79% to 99.5%.

In contrast to the anomaly detection model, this model is also able to detect black-
hole, selective forwarding and sinkhole attacks successfully. However, its recall score
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Table 4.7 Evaluation results of the
multi-class classifier over the test set.

Precision Recall F1-Score Support

Benign 1.000 0.723 0.839 12145790

Blackhole 0.001 0.947 0.001 933

DIS Flood 1.000 1.000 1.000 59651

Mirai UDP Flood 1.000 1.000 1.000 1161778

Selective Forwarding 0.001 0.843 0.002 1500

Sinkhole 0.004 0.790 0.008 2214

Version Number 0.418 0.995 0.589 57405

Accuracy 0.750 13429271

Macro Avg. 0.489 0.900 0.491 13429271

Weighted Avg. 0.997 0.750 0.853 13429271

Figure 4.7 Confusion matrix of the multi-
class classifier for the test data.

for the benign class is not sufficiently high for a real deployment scenario. This
means that the model is susceptible to classify a proportion (27% in the test set)
of the benign nodes as attackers by raising false alarms. This is also seen in the
confusion matrix presented in Figure 4.7. A proportion of the benign nodes are clas-
sified into 4 different attack classes: blackhole, selective forwarding, sinkhole and
version number. Nevertheless, it is almost impossible to develop a system with no
false alarms. We specifically use 20% of all benign data in the dataset to illustrate
a realistic intrusion detection scenario as most of the collected data will belong to
the benign class.

Figure 4.8 ROC curves for each class for the multi-class classifier.

Figure 4.8 illustrates the ROC curves for each class for our multi-class classifier.
It shows that our model is effective in detecting and classifying the attack types
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together with the benign class as the curves are closer to the top left corner where
true positive rates are higher than the false positive rates.

4.4 Discussion

In this section, we discuss the advantages of the proposed intrusion detection systems
over each other. We also elaborate on the potential reasons that hinder the detection
and classification performances of our models.

Table 4.8 Recall scores of the two and single phase IDS models.

Model Benign Blackhole DIS Flood
Mirai

UDP Flood

Selective

Forwarding
Sinkhole

Version

Number

Two Phase IDS

Anomaly

Detection
0.997 0.000 1.000 1.000 0.003 0.001 0.361

Attack

Classification
N/A 1.000 1.000 1.000 0.900 0.750 1.000

Single Phase IDS
Single Phase

Classification
0.723 0.947 1.000 1.000 0.843 0.790 0.995

In this thesis, we develop two alternative intrusion detection systems. The first one
consists of two main components: Anomaly detection and attack classification.The
second one, on the other hand, consists of a single multi-class classifier which under-
takes the anomaly detection and attack classification tasks combined at the same
stage. Both of these approaches has advantages and disadvantages over each other.
Table 4.8 illustrates the recall scores of the proposed models. The anomaly detection
model in the first system cannot detect the attack types that have small number of
instances but it does not raise so many false alarms. The second model, however, is
more sensitive to the attacks and achieves a better attack detection and classifica-
tion score. Its disadvantage is that it gives a higher amount of false alarms and its
recall score for the benign class is less than that of the anomaly detector. In most
of the cases, having false alarms is better than having too many false negatives so
that the countermeasures can be taken against the detected threats promptly.

There can be several (potential) reasons that cause our detection and classification
models to be susceptible of outputting false positives and negatives. First, the
number of data instances for minority attack classes might not be sufficiently many
to model them against benign nodes which outnumber the other classes. Second,
the features extracted may not be very descriptive to distinguish between the benign

74



node data and the specific attack classes. Third, the time duration for extracting
features for a node may not be sufficiently long to model the node characteristics.
Finally, the attack characteristics may not be very dominant and the attacker node
characteristics may be similar to the benign node characteristics for some particular
attack classes. For example, a selective forwarding attacker forwards some of the
incoming messages randomly and this allows the node to stay in the DODAG tree.
Later, it might keep conducting the attack by dropping random messages.
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5. CONCLUSION AND FUTURE WORK

In this thesis, we propose two alternative node-based intrusion detection systems
and generate an IoT intrusion dataset by collecting attack traffic from real IoT
devices for training and evaluating our machine learning models. For the data
collection, we also present an automated data collection and random scenario gen-
eration framework. The final collected dataset contains 5 RPL routing attacks (e.g.,
sinkhole, blackhole, selective forwarding, DIS flood, version number) and the Mirai
UDP flood attack. We propose a node-based feature extraction and attack detec-
tion methodology in order to find the exact locations of the attackers by modelling
their traffic characteristics over a sliding time window. The results show that our
single phase detection system consisting of a multi-class classifier is able to detect
the attacker nodes with high recall scores ranging from 79% to 100% for each attack
type. On the other hand, the anomaly detection model proposed as part of the two
phase detection system is successful in detecting the DIS flood and the Mirai UDP
flood attacks. The attack classification model coming after the anomaly detector
is also successful in classifying the attacker nodes as it achieves a high recall scores
ranging from 75% to 100% for each attack type.

As a future work, we plan to incorporate a more advanced labelling methodology by
considering the effects of the attackers on their neighbors. We also plan to extract
node-based features using a variety of sliding time window durations. We aim to
test whether a duration larger than 30 seconds may bring an improvement in terms
of the detection performances of the proposed models. In addition, we may extract
new features, and evaluate additional machine learning models to check whether the
detection performances can be improved.
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