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Abstract

REINFORCEMENT LEARNING BASED ENERGY MANAGEMENT
STRATEGY FOR FUEL CELL HYBRID VEHICLES

Zekeriya Ender Eğer

Mechatronics Engineering, Master’s Thesis, December 2022

Thesis Supervisor: Assist. Prof. Dr. Tuğçe Yüksel
Thesis Co-Supervisor: Prof. Dr. Serhat Yeşilyurt

Keywords: reinforcement learning, fuel cell electric vehicles, energy management,
optimization, fuel cell, battery, DC-DC converter

There is an increasing concern on the usage of vehicles powered by internal com-
bustion engines due to their high emission levels. The demand for cleaner energy
technologies have led to research and development of electric and hybrid vehicles.
Among these, fuel cell vehicles have started to draw attention due to the fact that it
is clean, sustainable and it has high energy density. Thus, fuel cell hybrid vehicles
have the potential to compete with vehicles powered by internal combustion engine
in the future, yet there are challenges for fuel cell such as slow dynamics requiring
that their operation together should be managed favorably.

The primary objective of the thesis is to address the problem of energy management
in fuel cell vehicles. For this purpose, first a model of the powertrain is developed.
Then, in order to achieve an efficient energy management, a model free reinforcement
learning algorithm called deep deterministic policy gradient (DDPG) is employed.
The energy management strategy focuses on running the fuel cell in its high efficiency
range while limiting the deviation of state of charge of the lithium-ion battery from
a target value. It is found that the DDPG agent trained simply with step power
inputs can achieve up to 2.7% less energy consumption compared to commonly used
rule-based energy management strategies while maintaining the state of the charge
of the battery within a certain interval. Our results show that DDPG algorithm
shows promising potential to be utilized in such applications.
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Özet

HİDROJEN YAKIT HÜCRELİ ARAÇLAR İÇİN PEKİŞTİRMELİ ÖĞRENMELİ
ENERJİ KONTROL STRATEJİSİ

Zekeriya Ender Eğer

Mekatronik Mühendisliği ,Yüksek Lisans Tezi, Aralık 2022

Tez Danışmanı: Dr. Öğr. Üyesi Tuğçe Yüksel
Tez Eş Danışmanı: Prof. Dr. Serhat Yeşilyurt

Anahtar Kelimeler: Pekiştirmeli öğrenme, yakıt hücreli elektrikli araçlar, enerji
kontrol stratejisi, optimizasyon, yakıt hücresi, batarya, DC-DC dönüştürücü

Son yıllarda içten yanmalı motorların emisyonları sebebiyle çevreye etkisi problem
olmaya başlamıştır. Daha temiz enerji teknolojilerilerine olan talep elektrikli ve
hibrit araçların araştırma ve geliştirme sürecinin başlamasına sebep olmuştur. An-
cak bataryaların karakteristik özellikleri yüzünden elektrikli araçların menzil, şarj
etme süresi ve maliyet gibi bazı dezavatajları bulunmaktadır. Buna alternatif olarak
bataryalar başka enerji kaynaklarıyla birlikte çalışmaktadır. Diğer enerji kaynakları
konusunda yakıt hücreleri temiz, sürdürülebilir ve yüksek enerji yoğunluğuna sahip
olması sebebiyle dikkat çekmeye başlamıştır. Yakıt hücreli hibrit araçların, bu se-
beplerle içten yanmalı motorla çalışan araçlara alternatif olma potansiyeli vardır,
ancak yakıt hücrelerinin yavaş dinamiğe sahip olması gibi bazı dezavantajları ol-
ması nedeniyle, bu tarz araçlardaki enerji kaynaklarının birlikte çalışması önem arz
etmektedir.

Bu tezin öncelikli amacı enerji kontrol stratejisi sorununa odaklanmaktır. Öncelikle
aracın güç sistemi modellenmiş olup efektif bir enerji kontrol sistemi tasarlanmıştır.
Öğrenme algoritmalarının farklı problemlere uygulanabilir hale gelmesinin avantajı
kullanılarak kontrol sistemi modelden bağımsız çalışan derin deerministik ilke türevi
(DDPG) algoritması ile eğitilmiştir. Enerji kontrol stratejisinin amacı yakıt hücresini
en verimli bölgelerde çalıştırmak ve bunu yaparken bataryanın şarj seviyesindeki
sapmaları en aza indirmektir. DDPG algoritmasıyla basit basamak güç girişleriyle
eğitilen kontrol sisteminin performansı, farklı sürüş çevrimleri altında denenmiştir
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ve enerji tüketiminde % 2.7 ye kadar varan bir azalış gözlemlenmiştir. Bu sonuçlar
DDPG algoritmasının bu tarz uygulamalar için potansiyeli olduğunu göstermektedir.

vi



Acknowledgements

I would like to express my deepest gratitude to my advisor Dr. Tuğçe Yüksel for
her guidance, support and particularly patience during my master’s years. It was
a remarkable experience working with her and I had the opportunity to develop
myself in research benefiting from her experience.

I appreciate the support of moy co-advisor Prof. Dr. Serhat Yeşilyurt as he guided
me wherever I was lacking the key knowledge in the whole process of working on
the thesis. I am really thankful that I had the opportunity to work with him and
benefit from his experience.

I would also like to thank Prof. Dr. Ayşe Berrin Yankıoğlu, Dr. Melih Türkseven
and Dr. Vahid Tavakol Aeghei for accepting to take place in the jury comittee of
my thesis defense. Their valuable comments have helped me improve the thesis.

Farzad Rokhsar Talabazar has been a valuable friend for me as he always supported
me whenever I struggled with the pressure. I would like to thank him also for his
encouragement and motivational talks he gave in important times.

I would like to thank my dear friends Ece Kurt and Can Alper Önol for their great
friendship and making my master’s years more enjoyable.

My lab mates Kazi Sher Ahmed and Peyman Khandar Shahabad have always been
wonderful towards me and I would like to thank them for their support.

I would also like to thank my friends Mehmet Alper Okur and Doğay Kamar for
helping me understand concepts of the topics I worked on.

Special thanks to my genuine group of friends Erdem Çalışkan, İzzet Can Bekar,
Oğulcan Güdülü, Şükrü Tarık Kostak and Emre Uzun for standing with me during
my bachelor years. My deepest appreciation for my friends goes to Özen Yılmaz
and Dilara Toprakhisar for their long and warm friendship.

I would like to thank my dear family for their encouragement and unconditional
support throughout my life. None of this would be possible without their guidance
and support.

vii



To my parents,
for their love and patience.

viii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Hybrid Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Energy Storage and Conversion Systems in FCHEV . . . . . . . . . . . . . . . . . . 4
1.3. Energy Management in Hybrid Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4. Thesis Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Fuel Cell Hybrid Vehicle Power Unit Modelling . . . . . . . . . . . . . . . . . . . . . 11
2.1. Battery Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2. Fuel Cell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1. Compressor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3. DC-DC Converter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. RL-Based Energy Management Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1. Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3. Deep Q Learning (DQN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4. Deep Deterministic Policy Gradient (DDPG) . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5. Training Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4. Simulation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1. Performance of RL Based Energy Management . . . . . . . . . . . . . . . . . . . . . . . 40
4.2. Comparison With Other Energy Management Strategies . . . . . . . . . . . . . . 42
4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1. UDDS Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ix



4.3.2. HWFET Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.3. US06 Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5. Conclusion and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2. Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

x



List of Tables

Table 1.1. Fuel Cell Types [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Table 3.1. Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 3.2. DDPG Training Hyper-Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 3.3. DQN Training Hyper-Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 4.1. Results under UDDS Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 4.2. Results under HWFET Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 4.3. Results under US06 Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xi



List of Figures

Figure 1.1. Architecture of a FCHEV [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 1.2. Power/Energy Density Diagram of Different Battery Technolo-

gies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.1. Simulation Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2.2. Topologies of FCHEV power unit [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.3. Schematic of a Lithium-ion Battery [4] . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2.4. Equivalent Circuit Model [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 2.5. Schematic of a PEM Fuel Cell [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2.6. Efficiency of a PEM Fuel Cell [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 2.7. Schematic of a DC-DC Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 2.8. Active Current Sharing Control Scheme . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.1. The agent environment interaction in reinforcement learning [7] 24
Figure 3.2. Artificial and Deep Neural Network [8] . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 3.3. Training Power Input for DDPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 3.4. Training Power Input for DQN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 3.5. Critic Network Structure of DDPG Algorithm . . . . . . . . . . . . . . . . . 36
Figure 3.6. Actor Network Structure of DDPG Algorithm . . . . . . . . . . . . . . . . . 37
Figure 3.7. Training with DDPG Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 3.8. Network Structure of DQN Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 3.9. Training with DQN Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.1. Speed Profile of the Selected Drive Cycles . . . . . . . . . . . . . . . . . . . . . 41
Figure 4.2. Behaviour of the RL-Based EMS trained with DDPG and

DQN under the UDDS drive cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 4.3. Comparison of SOC behaviour of the controller developed with

Rule-Based EMS and RL-Based EMS trained with DDPG. . . . . . . . . . . . 44
Figure 4.4. Comparison of low power region performances of controller

developed with Rule-Based EMS and RL-Based EMS trained with
DDPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xii



Figure 4.5. Comparison of mid power region performances of controller
developed with Rule-Based EMS and RL-Based EMS trained with
DDPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.6. Comparison of near constant power region performances of
controller developed with Rule-Based EMS and RL-Based EMS
trained with DDPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.7. Comparison of cycle tracking performances of controller de-
veloped with RL-Based EMS trained with DDPG and DQN . . . . . . . . . . 50

Figure 4.8. Comparison of high power region performances of controller
developed with Rule-Based EMS and RL-Based EMS trained with
DDPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xiii



List of Algorithms

1. Deep Q-learning with Experience Replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2. DDPG algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xiv



Chapter 1

Introduction

Chapter 1 introduces the hybrid vehicles and modelling of the energy sources. Then
it discusses the application of rule based, deterministic and stochastic optimization-
based methods on the fuel cell hybrid electric vehicle in order to minimize energy
consumption while satisfying the power demand. The discussion is followed by a
brief overview of reinforcement learning methods and their utilization on such a
problem that is the most important aim of the thesis.

1.1 Hybrid Vehicles

Since the industrial revolution, fossil fuels have been the main energy source of
vehicles and evolved into mostly gasoline or diesel due to the several advantages it
offers, such as long range, high power and energy density, fast replacement, easy
storage. However extensive exploitation of those fuels caused shortage in fossil
energy as they can only be formed in thousands of years. Furthermore it started
to affect environment and human health adversely due to its hazardous emissions.
Thus, the demand for vehicles utilizing by alternative energy sources has increased
recently.

In order to achieve less or zero emission and also decrease the dependency on fossil
fuels vehicles propelled by electric motors are offered instead of combustion engines.
However, although recently we see a lot of improvements, there have always been
concerns about this vehicle mainly about limited range, long charge duration and
lack of charging infrastructure. On the other hand in hybrid electric vehicles where
different sources are utilized together are offered to eliminate these issues. The most
popular HEVs (Hybrid Electric Vehicle) are categorized as such: Parallel hybrid, se-
ries hybrid and power-split hybrid. As there are several different configurations of
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these type of vehicles, classifications cannot draw a certain line and be conclusive.
A hybrid vehicle configuration where an internal combustion engine (ICE) and an
electric motor (EM) both partake in the propulsion of the vehicle mechanically is
classified under the category of parallel hybrid vehicle. To achieve such an archi-
tecture an extra electric motor operating as a generator is not required since the
standalone electric motor is able to serve the purpose when necessary. The most
important advantage of such a system is that it provides the opportunity to run
the engine and the motor in their efficient ranges creating an optimization problem.
Unlike parallel hybrid if the ICE is not involved in propelling the vehicle mechan-
ically, such a vehicle falls into the category of series hybrid vehicles. The ICE is
only required to supply power to charge the battery that the EM uses. In this con-
figuration since the only purpose of the ICE is charging the battery, it is possible
to operate it in its most efficient ranges. Since EM is the only source of thrust,
the control problem is not a complicated one. In series hybrid, hybridisation of the
ICE and EM is established via electrical connection whereas parallel hybrid benefits
from a mechanical connection. Power split hybrid combines those connections with
the assistance of an extra electric motor. The vehicle can be powered by only ICE
or only EM or both of them at the same time.

So far the hybrid vehicles in question were the ones employing two machines that
are ICE and EM. Another hybrid type that is similar to a series hybrid system
can be accomplished with adoption of EM only whose energy is supplied by two
energy sources. Alongside the battery that is the most conventional energy source
particularly in hybrid vehicles, fuel cell has gained popularity and found itself a
place as the secondary or primary energy source. In that case hybridisation is on a
different level and an optimization of two different energy sources must be achieved.

Fuel cell hybrid electric vehicles (FCHEV) are the most promising hybrid vehicle
type in terms of achieving zero emission. The system does not produce any haz-
ardous end product after the chemical reactions occur when producing the energy.
The application of fuel cell the technology in transportation is relatively new and
has potential to be improved. It has advantages over traditional vehicles powered by
ICE, PHEV, HEV and pure EV. The range problem of EV is eliminated in FCHEV
thanks to similarity of operation as in HEV or conventional vehicles with ICE. It
requires a hydrogen tank that will not take more than a few minutes to be refilled
resulting in a continuous travel. Since no combustion occurs unlike ICE, the effi-
ciency of the fuel cell can go up to %60. The range of such vehicles is also not a
problem. There are challenges of utilizing fuel cell as the only energy source, as in
the initial start-up it might take some time due to the structural requirement of
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the system. Using it with a battery on the other hand can eliminate this problem.
There are other challenges as well such as the cost, hydrogen supply to customer,
energy management strategy, safety and reliability, but in this study we will focus
on minimizing the energy consumption of such vehicles [9]. Figure 1.1 shows the
structure of a FCHEV. Hydrogen fuel tank and the oxygen in the air are used by
the fuel cell stack that comprises several fuel cells in order to generate electricity
alongside the battery pack. Via the DC-DC converted the electricity is transmitted
in to the EM. Also there must be a cooling system as the sources generate heat as
well as a side product.

Figure 1.1: Architecture of a FCHEV [2]

The most common classification of FCHEVs shows that there are two types of con-
figuration in these vehicles depending on the size [10]. Either the fuel cell or the
battery is the main power source. If the battery size is greater then the fuel cell
is used as a range extender. On the other hand, if the fuel cell is the main power
source then the battery supports the fuel cell. As fuel cell hybrid vehicles (FCHEV)
is a relatively a new type of hybrid vehicles it is not common in industry compared
to HEVs and only three brands Toyota, Hyundai and Honda have manufactured
such vehicles so far. Several studies are present on the topic of energy management
of fuel cell vehicles utilizing optimization or rule based methods. On the other hand
reinforcement learning applications on energy management are not that common.

Another important element in FCHEVs is the DC-DC converter as the energy man-
agement system decisions are exerted on the switches of the converter. If there is
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only one converter in the system then there is no need for external control as the
ratio of the voltage of the motor to voltage of the source will set the value of the
switches with a simple closed loop model. However if there are two converters en-
suring a better control scheme, then there should be another loop for setting the
current. Then it is possible to control the power sharing.

1.2 Energy Storage and Conversion Systems in FCHEV

Energy storage in transportation is clearly an important subject as any vehicle is
obligated to move without any external energy supply at least for a certain amount
of time. Traditionally energy is stored as a fuel in a fuel tank, whose range is
limited by the capacity of the tank. Combustion engines are still the most common
energy converters today and it requires gasoline, diesel or kerosene as the fuel. On
the other hand, these vehicles utilize batteries not necessarily as an energy source
for propulsion but as a source for accessory purposes. However as the emission
problem of these vehicles are becoming an environmental issue, alternative energy
sources started to replace the conventional petroleum products used by combustion
engines. The transition from ICE vehicles to battery electric vehicles (BEV) on the
other hand has not been straightforward since the energy and power density of the
traditional batteries were not sufficient for a vehicle to travel in long distances and
needed abundant of time to be recharged. Developments in battery technologies
have made it possible for them to be used only in HEV and PHEV but also BEV.

Lithium-ion battery is a rechargeable type of battery that has started to be
used extensively in all types of electric vehicles to replace Nickel Metal Hydrate
(NiMH),Nickel Cadmium (NiCd) and Lead Acid batteries. The most important ad-
vantages the lithium-ion batteries offer are that they are able to hold high energy
density, they have higher Coulombic efficiency and do not self-discharge easily [11].
As shown in figure 1.2, compared to its predecessors lithium-ion batteries cover the
area corresponding to a higher energy and power density region and even have more
potential in this aspect with selection of different material in cathode.

The lithium ion batteries consist of several cells. The cells are combined together
to form battery modules. The plant used in vehicles is in the structure of battery
packs. Thus the cells can be configured to satisfy the demands of a converter in
terms of maximum voltage and current hence the capacity.
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Figure 1.2: Power/Energy Density Diagram of Different Battery Technologies
[11]

Another alternative energy source is the fuel cell that is relatively a new technology.
It converts the chemical energy stored in hydrogen to electricity. The fact that the
end products of reactions occurring in the fuel cell are water and electricity, makes
it a perfect candidate to replace the conventional technologies. As a plus it requires
oxygen alongside hydrogen that has clearly ease of access.

There are variety of fuel cell types listed in the Figure ?? featuring different char-
acteristics and used in different applications. Thanks to its advantages such as high
efficiency, operation in low temperatures and less susceptibility to corrosion PEM
fuel cells are preferred in transportation systems.

1.3 Energy Management in Hybrid Vehicles

As there is not a single energy source or a power converter in hybrid vehicles, a
control method is required regardless of its being an HEV, PHEV or a FCHEV.
Different machines have different efficiency characteristics and optimal operating
points. The general purpose is to minimize the total energy consumption. Even
though HEVs and PHEVs are more common in the market resulting in the fact
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Table 1.1: Fuel Cell Types [1]

FC
Type

Operating
Temperature
and Efficiency

Typical
Stack
Size

Automotive
Applications Advantages Disadvantages

Polymer
Electrolyte
Membrane
(PEM)

<120°C
50-60% 1 - 100 kW

-Backup power
-Portable power
-Transportation

-High power density
-Low temperature
-Quick start-up
-Quick load following
-Solid electrolyte
reduces corrosion

-Sensitive to
fuel impurities
-Expensive catalysts

Solid
Oxide
(SOFC)

500-1000 °C
60% 1 kW-2 MW -Auxillary power

-Electric Utility

-Tolerance to
fuel impurities
-Fuel flexibility
-High efficiency

-Long start-up
-Slow dynamic
load behaviour
-High temperature
-Corrosion of components

Molten
Carbonate
(MCFC)

600-700°C
50% 0.3 - 3MW -Electric Utility -High efficiency

-Fuel flexibility
-Low power density
-High temperature
-Long start-up time

Alkaline
(AFC)

<100 °C
60% 1-100 kW

-Military
-Space
-Backup power
-Transportation

-Low cost components
-Low temperature
-Quick start-up

-Sensitive to CO2
in fuel and air
-Electrolyte management
-Electrolyte conductivity

Phosphoric
Acid
(PAFC)

150-200 C
40% 5-400 kW -Distributed generation

-Suitable for CHP
-Increased tolerance
to fuel impurities

-Expensive catalysts
Long start-up time
-Low power density

that energy management strategies (EMS) are extensively researched, there are still
studies on EMS in FCHEVs as well. The EMS can be divided into two main cat-
egories as optimization based and rule based. The optimization methods on the
other hand can be applied in a way that either a global optimum point is found
with the driving cycle data which is known beforehand or a sub optimal point is
found with not only the past information but also present and future information.
The distinction between the methods is that the optimality in the first one cannot
be updated whereas in the latter is indeed a dynamic one and adaptive as well.

Rule-based strategies require a set of conditions to be checked in each time instance.
Those rules are derived heuristically and cannot guarantee an optimal operating
point. However it is widely used today due to the fact that it is practical, easy
to apply and works fast. Based on those rules controller decides how to share the
power demand of the vehicle between the energy sources. The strategy is applied to
vehicle systems [12] and also in the form of fuzzy logic [13]. The same strategy is
applied to a FCHEV as well [14] and the adaptation will be used for comparison in
this study.

Real time optimization (RTO) methods predicts the optimal output within a
process and keeps measuring the the real data. By doing so instead of finding a
global optimum point, several optimization problems are created to be solved at
each time step. The method is developed in order to address the uncertainty of
the real-time interaction of the controller with the environment. It is aimed for the
controller to respond properly in the case of existence of a disturbance. The method
provides a framework for not only past but also present and the future information
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to be utilized. The most popular methods applied for RTO are equivalent cost
minimization strategy (ECMS) [15] [16] and model predictive control (MPC) [17]
[18].

Global Optimization methods tries to find the optimum point of a given objective
function using a set of data most often driving cycles in our case. Mostly a combina-
tion of different drive cycles are fed into the model and best set of decisions are made
in order to optimize the given function. Dynamic programming (DP) is widely used
for that purpose [19] [20] [21] that is a method benefiting from the principal of opti-
mality idea of Bellman equation. Linear programming [22] and convex optimization
[23] are also used for that purpose however DP is still the most common approach
as it almost ensures that global optimum is found. The only drawback in terms of
accuracy stems from the discretization of control input which can be avoided largely
for the expense of simulation time. Such methods are obviously excellent for com-
paring the performance of any other method as it sets the best achievable target
for the objective function. Moreover the result of the other optimization or even
rule based methods can be updated in order for it to be closer to the best possible
outcome [24].

There are also stochastic optimization methods some of which is only involved in
the offline optimization seeking to find the global optimum point of the objective
function. Those methods utilizes a Markov Decision Process (MDP) along with the
Bellman equation [7]. The most important concepts to comprehend an MDP are
state, action, probability of state transition, reward and policy. States are variables
in a model that is helpful to observe the behaviour of the system. Actions are the
variables that interacts with the model/environment and cause a state transition.
For each transition there is probability and the action gets the reward. Lastly the
policy is the map of action variables for each state and the objective is to find the
policy that maximizes the reward.

Lately as the reinforcement learning algorithms started to become a promising tech-
nique and being applied to many control problems, thanks to development of the
model-free algorithms that can be applied to any environment defined as an MDP.
Q learning and Deep Q learning (DQN) are the most common model-free algorithms
in the studies focusing on HEV or PHEV that are similar to FCHEV. In Q learn-
ing or also denoted as Q table learning a random action is selected causing a state
transition and a reward is obtained. The sum of future and immediate rewards are
collected in the Q table consisting of state and action values. In every step if the
current reward is greater than the previous reward, the table containing the value of
the reward corresponding to that state and action value is updated. The Q learning
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algorithm is applied to an FCHEV [25, 26], presented as a favorable method, results
of which are compared to the conventional control methods. There are also studies
of adapting a derivative of DQN, which is a method similar to Q learning yet uti-
lizing a deep network for mapping, for FCHEV. In [26], the focus is on the effect
of initial state of charge and they prove the applicability of reinforcement learning
algorithm. Fuel cell degradation is another important phenomena that is studied
in [27] along with the energy minimization with DQN. Also importance of selecting
the best objective function is emphasized in [28] by comparing the performance with
the outputs obtained by dynamic programming as well as comparing them with Q-
learning based EMS. In almost all of these studies the converter is only modelled
as an efficiency map or just a single efficiency value. There are also applications of
DQN in transportation applications whose energy is supplied by the combination of
fuel cell and battery such as railway vehicles and ships [29] [30, 31]. DQN application
is also common in HEV [32–36] and PHEV [37, 38], several studies tried to explore
the application of the method. DQN utilizes neural networks instead of a table and
is proposed as a faster algorithm applicable to simulations that are considered to
last longer. Instead of updating the values inside the table, parameters inside the
network are revised.

There are also combinations of real time and global optimization that aim to
exploit the advantages of these methods [33]. As the speed of training process
of the algorithms is crucial several studies attempted to modify the algorithms
in order to increase the convergence rate [25, 39]. Another algorithm called
as Dyna-H is proposed [33] and modified it in order to obtain better perfor-
mance. Deep Deterministic Policy Gradient (DDPG) is another algorithm of
reinforcement learning evolved from the DQN algorithm. The most important
advantage of the DDPG algorithm over DQN is that it can take a continuous
action space as an input unlike DQN in which the action space must be discretized.
The DDPG algorithm is applied for a HEV [40] and also for a hybrid electric bus
(HEB) [41] showing that it is able to perform better in terms of energy consumption.

1.4 Thesis Objectives and Contributions

The rule based energy management strategy is the most common method used in
industrial application since it is easy to implement, practical and operates in high
speed. However since it is not an optimization method, the best energy efficiency
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cannot be achieved. On the other hand global optimization methods require massive
amount of time and cannot guarantee the best performance when applied in real-
time. Finally real-time applications on its own may not find the optimum results
since it divides the main objective function in time domain. Hence we aim to
construct a reinforcement learning framework using a cutting edge algorithm to
improve efficiency of the fuel cell where SOC deviation is limited compared to the
most common strategies by getting as close as possible to the global optimum.
Moreover we aim to benefit from the fact that the neural networks trained with
prior knowledge, can be updated with online traffic information. Thus, creating
a base controller trained with only the data acquired before hand, to be further
improved by real-time applications is our purpose. We also intend to accomplish
creating the framework by controlling the duty cycles of the switches in the DC-DC
converter as it would be in the real-life application.

These guide the the objectives of this thesis to propose a novel energy man-
agement strategy where the purpose is reducing the energy consumption
of a FCHEV model involving the energy sources and DC-DC converters
by improving the efficiency of the fuel cell and maintaining the state of
charge of the battery within certain limits, by using the reinforcement
learning algorithm DDPG.

To meet the objectives, the main contributions of this thesis are focused on the
modelling and optimization of the energy management system of FCHEV by using
the DDPG algorithm and demonstrate that it outperforms the rule-based approaches
in terms of energy consumption. Specifically:

A. Development of a realistic FCHEV power unit model and control system as
well.

B. Application of a powerful reinforcement learning algorithm DDPG on the min-
imization of energy.

C. Comparing the results of the DDPG algorithm with commonly used DQN
algorithm and rule-based strategies.
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1.5 Thesis Outline

The thesis is organized as follows:

• The power unit modelling of the FCHEV is one of the most important segments
in the study. Chapter 2 describes the modelling of the energy sources and
the DC-DC converter as well. It further explains the control method of the
two separate DC-DC converters individually connected to the energy sources
and both connected to the electric motor requiring both current and voltage
control.

• Since the purpose of the study is to show that reinforcement learning algo-
rithms can bu utilized in energy management in FCHEV, general descriptions
of the approach are given and the algorithms to be employed are explained
in Chapter 3 It further discloses the implementation of DQN and DDPG
algorithms in our model.

• Chapter 4 provides the simulation and the methods that we aim to compare
our approach with. Their implementation is explained and the performances
of all EMS strategies are evaluated based on several drive cycles.

• Finally, the thesis is concluded in Chapter 5 with recommendations on the
training and validation of the algorithms for future work.
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Chapter 2

Fuel Cell Hybrid Vehicle Power Unit Modelling

A fuel cell hybrid vehicle is powered by an electric motor whose energy is supplied
by the battery and the fuel cell. A converter is required to establish the electrical
connection between the energy sources and the electric motor. The schematic of the
simulation model is given in figure 2.1.

Figure 2.1: Simulation Model Overview

When the power demand is set by the driver, duty cycle of the switches in the
converters are controlled based on the energy management strategy, in order to
split the power between the energy sources. Those components can be combined
in different combinations as every topology have their own advantages. They are
divided in four categories as summarized in figure 2.2. The fourth topology is
selected in this study as it provides the opportunity to control the power flow from
both of the sources.

The main power source in the vehicle is the fuel cell and the battery supports the fuel
cell when necessary. Thus, the purposes of the battery can be listed as accumulating
the energy from braking, power the vehicle when the demand is relatively low, and
help the fuel cell operate within an efficient range when possible. This chapter
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Figure 2.2: Topologies of FCHEV power unit [3]

describes the modelling of the fuel cell, battery and the DC-DC converter. The
energy management strategy will be discussed in the next chapter.
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2.1 Battery Model

One of the power sources of FCHEV is the lithium-ion battery. A lithium-ion
battery consists of two current collectors, an anode and a cathode, separator and
electrolyte as seen in figure 2.3. When discharging the battery, the anode material
that is usually graphite whose surface contains lithium ions, releases those after
half chemical reactions resulting in formation of electrons. As the separator allows
only the lithium ions to pass through, electrons are forced to use another channel
to move towards the cathode side where a metal oxide compound is present. As a
result electricity is produced and supplied to the load connected to current collectors.
Both of the anode and cathode materials have lithium in their structure. Electrons
and the lithium ions combine again in the cathode, intercalating into the cathode
material.

Figure 2.3: Schematic of a Lithium-ion Battery [4]

There are two common approaches to model the behaviour of a lithium ion
battery cell under charge and discharge. The first one is a mathematical model
where the behaviour is approximated by using common circuit elements such as
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resistor and capacitors, derived after observing the data collected in testing where
it is charged or discharged with different currents and State of Charge (SOC)
values [42]. It is rather easy to compose these equations, use them in real time
control operations and able to demonstrate the behaviour of the battery within
an acceptable margin of error. The other approach is physics based modeling of
the charge and mass conservation of the solid particles and electrolyte, and also
the movement of lithium between phases. Sharp accuracy is the purpose of this
approach as it involves complex chemical equations used to model what is really
happening inside the battery, whereas for the same reason it is not suitable for
real-time applications. In this study due to its practical benefits, the lithium ion
battery is modelled with equivalent circuit model as in figure 2.4. The model
is developed in order to simulate the response of the battery under different
SOC and currents. The procedure of the derivation of the model starts from
discharging a battery under controlled conditions followed by the observation of the
collected SOC and voltage data. Those outputs are then stored and used to form
a lookup-table. It provides the voltage output of the battery pack, with respect
to the current input drawn by the DC-DC converter. The values of resistors and
capacitors in the model defines the characteristics of the battery. The purpose
of the resistors is to demonstrate the voltage drop when current is drawn and
capacitors are crucial to show the voltage recovery behaviour of the battery. Their
values change with SOC and the temperature of the battery. Furthermore the
voltage that the source provides changes with respect to SOC and when there
is no load on the battery, the voltage that the battery has is called open circuit
voltage (OCV). Since one of the important aspects of the study is to maintain
the SOC level within a narrow margin, the temperature dependency of OCV,
resistances and the capacitances is neglected. In addition constant resistance and
capacity values are adopted, although it causes the model to be slightly less accurate.

The SOC of the battery changes when it supplies power to the motor via the con-
verter. This change can be calculated as follows:

dSOC

dt
=− ibat

Qbat
(2.1)

where ibat is the current drawn from the battery in amperes (A) and Qbat is the
energy capacity of the battery in ampere-hours (Ah). ibat is positive when charged.
The change in the SOC is then used to determine the charge state of the battery in
percentage.
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Figure 2.4: Equivalent Circuit Model [5]

The current provided by the battery controlled by the DC- DC converter causes
voltage loss from OCV. The battery voltage under a load can be calculated using
equation 2.2 shown below:

Vbat = VOCV −V1−V2−V0 (2.2)

In this equation, V0 represents the instant loss when current drawn from the battery
and found by the multiplication of this current with R0. Since the voltage loss of
a real battery develops over time V1 and V2 are required to represent that type of
behaviour. VOCV refers to open circuit voltage, is a function of SOC only and can
be obtained by the look-up tables recorded after charge and discharge test applied
to batteries. The current passing through the resistors R1 and R2 (iR1 and iR2) can
be found by equations 2.3 and 2.4 respectively.

i̇R1 = ibat− iR1

R1C1
(2.3)

i̇R2 = ibat− iR2

R2C2
(2.4)
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2.2 Fuel Cell Model

The main power source of the vehicle considered in this study is the polymer elec-
trolyte membrane fuel cell. A fuel cell uses hydrogen and oxygen to generate elec-
tricity, heat and water. It is similar to the batteries in some aspects such that it has
elements as anode, cathode, electrolyte and separator resulting in a similar architec-
ture. The main difference is that fuel cells are not energy storage devices but energy
conversion devices. They can generate electricity as long as the fuel (H2) is flown
into the anode. In the anode, particularly the catalyst later, hydrogen is split into
H+ ions and electrons through the chemical reactions. Hydrogen ions are allowed
to pass through the exchange membrane as electrons are not and instead they move
to the outer circuit supplying electricity for the load. On the other side of the fuel
cell in the cathode, oxygen flow is performed capturing the electrons and the H+

ions producing water as summarized in figure 2.5. Hydrogen is stored in a tank in
a pressurized form whereas oxygen flow is conducted via a compressor which takes
the air as the input.

Figure 2.5: Schematic of a PEM Fuel Cell [6]

16



When there is no load on the fuel cell the cell voltage is equal to ideal Nernst
voltage. There are three main phenomena which are ohmic (Vohm), activation (Vact)
and concentration (Vcon) losses causing voltage drop when current is drawn. The
output voltage is expressed in equation:

Vcell = Enernst−Vohm−Vconc−Vact (2.5)

where Vcell represents the cell voltage and Enernst is the potential voltage the cell
can provide. It can be calculated by equation 2.6. Hydrogen partial pressure PH2

and temperature of the cell Tst are the variables in the equation.

Enernst = 1.229−0.85×10−3(Tst−298.15)+4.3085

×10−5[ln(PH2)+0.5× ln(PO2)] (2.6)

Ohmic Loss: In a fuel cell due to the resistance of current collectors, polymer elec-
trolyte membrane for ion exchange and electrodes, sudden voltage drop occurs as
soon as the current starts flowing. ifc is the current drawn from the fuel cell where
RM is the resistance of the membrane.

Vohm = ifc(RM ) (2.7)

The resistance of the membrane is proportional to the membrane thickness tm and
the conductivity σm :

RM = tm

σm
(2.8)

In order to calculate the membrane conductivity, water content denoted as λm and
the temperature of the membrane are used as input. The temperature of the stack
is assumed to be equal to membrane temperature.

σm = (b1λm− b2)exp(b3( 1
303 −

1
Tst

)) (2.9)

The coefficients b1 b2 and the membrane thickness are derived from Nafion 117
membrane and b3 is used as a fitting coefficient [43].

Concentration Losses: Concentration polarization effect occurs as the fuel cell is
discharged with high current. When the current demand is high, H2 and the oxidants
decrease in high rates at the gas channels. However, in the inlet portion of the fuel
cell the concentration of these reactants stays high. The difference causes supply
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voltage to fall. The loss is modeled as in equation 4. j is the current density [44].

Vconc =−RTst

2F
ln(1− j

jmax
) (2.10)

Activation Losses: An electrochemical reaction is similar to a chemical reaction.
In each step reactants have to overcome a certain threshold of activation energy to
form a product. Even though there are several factors in the electrochemical reaction
resulting in activation loss, the voltage drop can be expressed with the equation.

Vact = RTst

F
ln(ifc

i0
) (2.11)

Like many energy and power source fuel cell cannot maintain the same level of
efficiency throughout different power demands. Particularly when the power demand
is low, the efficiency is very low as well due to the characteristics of the PEM fuel
cell. After the peak efficiency point, the efficiency starts decreasing as the power
demand increases further. Figure 2.6 shows the efficiency of the fuel cell with respect
to power demand.

Figure 2.6: Efficiency of a PEM Fuel Cell [6]
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2.2.1 Compressor Model

In order to produce electricity using hydrogen and oxygen as in a fuel cell, they have
to be in high pressure in the reaction. Assuming hydrogen is supplied steadily from
a tank , oxygen flow only can be achieved by a compressor. It causes some of the
energy to be consumed even before the fuel cell produces electricity. Mass flow rate
of oxygen reacting in the cathode is calculated in the equation:

ṁca,rec = MO2nfcifc

4F
(2.12)

where nfc is the number of cells in a stack and if c is the fuel cell current. Using
the excess ratio λO2 ,which is the proportion of flow of oxygen into the cathode to
the flow mass of oxygen reacted, and also taking oxygen proportion in the air into
consideration that is denoted by ϕair−oxygen, flow into the cathode is calculated in
equation 25.

ṁcomp = ṁca,recλO2ϕair−oxygen (2.13)

The power output of the compressor is then calculated by equation 2.16 whose
derivations are shown in steps in the equation 2.14 and 2.15, where P is the pressure
and ν is the specific volume.

Wcomp = ṁcomp

∫
νdP (2.14)

Wcomp = ṁcomp
kR(Tout−Tin)

k−1 (2.15)

Wcomp = ṁcomp
kRTin

k−1 [(Pout

Pin
)(k−1)/k−1] (2.16)

2.3 DC-DC Converter Model

DC-DC converters are power converters designed to raise or lower the voltage. Since
voltage of the energy sources and operating voltage of the electric machines usually
mismatch, they cannot be connected to each other directly. If the converter raises the
voltage, then it works in boost mode whereas if it lowers the voltage then it operates
in buck mode. The voltage transformation is achieved by the switches inside the
circuit of the converter and usually they are one of metal–oxide–semiconductor field-
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effect transistor (MOSFET), insulated-gate bipolar transistor (IGBT) and bipolar
junction transistor (BJT). The voltage is increased due to the coil in the circuit
which is loaded by the source during the phase that the circuit is a closed one.
If the switch is open, then the load on the coil releases to the motor side. The
frequency of the opening and closing the switch adjusts the amount of voltage to be
raised or lowered. These switches are controlled by pulse width modulation (PWM)
which is simply square waves taking the value of 0 or 1. Some converters can work
only in one mode and some of them are capable of achieving both. In terms of
electric current direction, there are two types of DC-DC converters one of them is
bidirectional and the other one is unidirectional. The first one can operate in either
directions and the latter can only work in one direction.

Due to the fact that unlike fuel cell, battery pack can be charged, a bidirectional
converter that adjusts the current accordingly in case of charging, has to be con-
nected in series with the battery, on the other hand fuel cell requires a unidirectional
converter. When the power flow direction is to the motor both of the converters
act as a boost converter since the voltage of the battery pack is lower than the re-
quired voltage at the electric motor. When the battery is charged the bidirectional
converter acts as a buck converter. Since boost and buck are accomplished by the
IGBT switch, energy management is indeed performed by the PWM duty cycle fed
into it. The schematic of the model is presented in figure 2.7.

Figure 2.7: Schematic of a DC-DC Converters
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u1 and u2 are the duty cycles of the switches used to boost the voltage and regulate
the current drawn from fuel cell and battery respectively.

u1 = Kp[iL1−Ffc ∗ [Kp(Vbusref −Vbus)+Ki

∫
(Vbusref −Vbus)]]+

Ki

∫
[iL1−Ffc ∗ [Kp(Vbusref −Vbus)+Ki

∫
(Vbusref −Vbus)]] (2.17)

u2 = Kp[iL2−Fbat ∗ [Kp(Vbusref −Vbus)+Ki

∫
(Vbusref −Vbus)]]+

Ki

∫
[iL2−Fbat ∗ [Kp(Vbusref −Vbus)+Ki

∫
(Vbusref −Vbus)]] (2.18)

Figure 2.8: Active Current Sharing Control Scheme

Fbat and Ffc are the gains that the energy management algorithm adjusts in order
to decide the proportion of the power demand that is to be supplied by each power
source [45]. As there are two separate converters one of which is connected to the
battery and the latter to fuel cell, aiming to keep the motor voltage constant when
at the same time setting the current demands according to source voltages, their
control must involve both current and voltage closed loop systems summarized figure
2.8. Difference between the bus/motor voltage and the reference is multiplied with
gains denoted as F after being fed into the voltage controller. The difference is
defined as the error and is given as the input of PI controller that behaves as a
voltage to current converter. The output signal sets the target of currents for both
sources. A similar logic is applied as it was in voltage-loop, difference between the
current values is fed into the current controller and converted into the duty cycle.
Again this loop is controlled by a PI controller. Based on the duty cycle of the
switches, current drawn from the battery and fuel cell is calculated in equation 2.19.
iL is the current flowing through the inductor and L is the inductance of it. Vbus
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and Vsource are the voltages of the bus and the source respectively.

VL = Vbusu−Vbus +Vsource (2.19)

i̇L = Vbusu−Vbus +Vsource

L
(2.20)

The effect of input current and shared currents on bus voltage can be calculated
as in equation 2.21. iC and C are the current and the capacitance of the capacitor
connected parallel to the bus/electric motor respectively.

iC = iL− ibus− iLu (2.21)

V̇bus = iL− ibus− iLu

C
(2.22)

Since the converter is able to operate in buck and boost modes, when the power
flow is in reverse, from wheel to the source particularly when regenerative braking
occurs, buck mode is activated whose equations are:

˙iL = Vbusu3−Vbat

L1
(2.23)

˙Vbus = u3ibus− iL

C1
(2.24)
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Chapter 3

RL-Based Energy Management Strategy

Energy management strategies in HEV aim to minimize total energy consumption
and keep SOC between certain limits by allocating the power demand to different
sources while at the same time meeting that demand. When the power is supplied
by battery it will then require to be charged by either fuel cell or regenerative
braking since it cannot be charged externally. A basic approach for this problem
would be extracting power from fuel cell where the efficiency of the source is close
to maximum. As the power demand increases the fuel cell start to run relatively
less efficiently, in that case battery can be of service supplying power up to a point
that is limited by its SOC. If the power demand increases even more, since the main
priority is to ensure that vehicle tracks the velocity profile, there is not much of an
option causing fuel cell to run on with low efficiency. The other concern that is to
maintain SOC within an interval. As external charging is not possible in an HEV
unlike a PHEV, it must be ensured that SOC level must be maintained between
certain limits by the fuel cell or regenerative braking during vehicle operation.

In order to accomplish these goals, rule-based and the optimization-based ap-
proaches are commonly employed. The optimization based approaches also fall into
two categories: deterministic and stochastic optimization methods. The application
of the latter is the focus of this study as the popularity and applicability of the
model-free reinforcement learning methods have increased recently. In this chapter
reinforcement learning will be introduced first and the specific algorithms that are
applied to this problem will be defined afterwards.
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3.1 Reinforcement Learning

Reinforcement learning is considered one of the three paradigms in machine learning
alongside supervised and unsupervised learning and applied extensively in many
areas. It is a method in which an agent learns how to form the relation between
the states and the actions based on the reward function. A random action selected
starting from the initial time step for a certain state causing a state transition, action
interacts with the environment and as a result a reward value is gained for every
single time step. The relation is illustrated in figure 3.1. There are several algorithms
serving the purpose, using Markov Decision Process (MDP) which contains state,
action, reward and the next state (St,At,Rt,St+1), as formalization of the problem.
In order to comprehend the interactions, elements of the reinforcement learning
algorithms, states, actions and rewards, must be introduced.

Figure 3.1: The agent environment interaction in reinforcement learning [7]

States in reinforcement learning can be considered as an input to the agent con-
sisting of neural networks. It provides the information of the environment after
an action interaction. It must contain enough variable for the agent to completely
understand the system. If the number of variables in the state increases then it will
take extensive amount of time for the training process to be concluded and reward
to be maximized. Systems must be investigated thoroughly and minimum number
of state variables must be defined because of the curse of dimensionality.

Actions are the outputs of the agent and inputs for the environment. The agent
selects those randomly and feeds into the environment then checks the situation via
states. As they are the only feature the agent can control, variables in that space
must chosen carefully. Compared to state selection it is simpler to choose action
variables in any case.

For a state an agent takes an action and it return it gets a reward. Since the main
purpose of the reinforcement learning is to maximize reward, it must be somewhat
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similar to the objective function. It is not always easy to select the right reward
function. Setting it as a similar function to objective function is a simple yet an
inefficient approach. The agent sometimes requires some extra encouragements when
it is choosing an action in the right direction. Apart from the function itself that is
supposed to produce higher rewards when an action serves its purpose, extra rule
based implementations might steer the agent to the right direction in a shorter time.
Another factor is the numerical range of reward output. If the difference between
two rewards is too high then it is possible for the network to be updated drastically
causing divergence. Another issue is that the reward might be deceptive for some
episodes. This is particularly a problem of the initialization process. If the range of
initial variables of the system is too large, a reward similar to the objective function
is likely to fail since it will never be clear which actions are actually good. For
instance initialization might start somewhere close to the target and an action even
though it is completely inaccurate might take more reward than an action simulated
in the system initialized far from the target and that is indeed is the best of all.
Furthermore it is possible and even certain that the agent will take some actions
that will result in deviation from the goal particularly in the first steps of training.
In that case a penalty should be defined in order to discourage the agent to take
those actions again.

As the simulation progresses the rewards are not accumulated directly, instead future
rewards are multiplied by a discount factor to ensure that in a long horizon total
reward converges to a value. The value of the discount factor is crucial for both
continuous tasks where the problem defined in a time horizon cannot be divided into
sub-simulations and episodic tasks where simulation time can be set thus dividing
the complete process into sub-groups. In episodic tasks as in our problem until the
terminal state is reached, in most case it is the last time step of the simulation or the
time when the simulation is stopped as a punishment, target of the value function
is updated as in equation 3.1.

yi = Ri +γ max
A′

Qt

(
S′

i,A
′ | ϕt

)
(3.1)

The target is the sum of the immediate reward and the expected future rewards.
As the discount factor approaches to zero target value will always be zero meaning
that in every step the next state will be considered as a terminal state and only the
immediate reward will be taken into account. On the other hand a discount ratio
equal to 1 will cause the future rewards as equally as important compared to the
immediate reward.
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For several steps at the beginning action selection is always random, but all state
transitions, the actions inducing that and the resulting return is stored in the ex-
perience buffer. This stored information is used to select the next action sets. The
length of the time until when the actions are completely randomized is called mini-
batch. That is to say selection of actions, the policy, the mapping between the
states and the actions are updated as the time hits the mini-batch size. Every once
time step reaches to a multiplier of the mini-batch, the parameters in the mapping,
in the policy that is formed by the neural networks are altered based on the experi-
ence. As the size of the mini-batch increases, for one update of the networks, more
experience is used resulting in the increase in the probability that the new values
of the parameters in the network are more accurate. On the other hand that leads
to a time-consuming process. If the mini-batch size is too small, then the update is
conducted based on the information provided by only a few time steps. Thus a good
balance must be stroke. Another factor effecting the update is the learning rate that
is multiplied with the average gradient over the experience. A high learning rate
will cause the average gradient have more effect on the next update, hence the value
is expected to be low.

In the final step the loss function is calculated. As mentioned above a value function
was calculated with the immediate and expected rewards. The loss function is the
square of the difference between value function target and the current value of the
value function as in equation 3.2.

L = 1
M

M∑
i=1

(yi−Q(Si,Ai | ϕ))2 (3.2)

It is a metric of how close the value function is to the target or how small the values
of the expected rewards are. The update of the mapping occurs at this step, after
minimizing the loss function.

In order to apply any model-free algorithm of reinforcement learning the problem
must be defined. Unlike model-based algorithms, the model-free algorithms as the
name suggests can be applied to any model as long as the problem definition includes
the elements to be described are action and state space and reward function. Before
introducing those, the objective function should be explained as it will demonstrate
itself the reason behind the selection of the elements.
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3.2 Problem Formulation

The objective function set for this problem involves two main variables and they are
related to the energy sources of the vehicle. In order to minimize the energy that the
fuel cell provide, it must produce power as efficient as possible. The fuel cell efficiency
used in this study demonstrates that as long as the power output of the source is
close the 10 kW, the purpose of energy management will be satisfied. On the other
hand that condition is naturally contradictory for battery usage as an optimization
based on solely fuel cell battery might supply so much power that it might exceed the
maximum power of the source and also shorten the life of the battery. Minimization
of the energy consumption of the battery is the second variable implemented as the
change of SOC. Thus the objective function takes the form of:

J =
∫ t

t0
{α[H2,eff −H2,effmax]+β[SOC−SOCdesired]2}dt (3.3)

The purpose is to ensure that fuel cell efficiency is close to the maximum and SOC
variance is maintained in a narrow range. It is mentioned that SOC loss means that
battery is discharged and it is supplying power to the electric motor. The increase
in SOC, on the other hand means that the battery is charged and it can only be
performed by the fuel cell or the regenerative braking system. Since the case that
fuel cell charges the battery might have advantages or disadvantages, in the training
process it is the situation that is evaluated. The latter case is assumed to occur
at all times meaning that whenever the vehicles brakes, the regenerative braking
energy is captured completely by the battery.

The model-free reinforcement learning algorithms used in this study are DQN and
DDPG. They slightly differ from each other. The common approach in the liter-
ature is DQN or DQN-based algorithms as discussed in the introduction. DDPG
is relatively a more recent concept and it has not been implemented widely for
problems similar to the one in this study. The convergence for those algorithms is
achieved with different states and initialization. Thus the selection of action, state
and reward will be defined after the algorithms are explained individually.
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3.3 Deep Q Learning (DQN)

Before explaining DQN method, first the most basic reinforcement learning algo-
rithm called Q-learning must be introduced. In Q learning the Q-value is stored in
a Q-table in which the dimensions are state and action. The most common prac-
tice is to use the temporal difference method that is integrated into the Bellman
equation. The equation is the founding base of the learning algorithm and may be
slightly modified in different algorithms. Q value calculation with temporal differ-
ence is given:

Qnew (st,at)←Q(st,at)+α ·
(

rt +γ ·max
a

Q(st+1,a)−Q(st,at)
)

(3.4)

The table is updated in each step with the learning rate multiplier denoted as
α and ends when the Q-value cannot increase anymore supposedly because the
best action sets for each state is found. It is also possible that actions are stuck
because of their greediness. The trade-off between exploration and exploitation
that is defined by ϵ is the most common problem. When ϵ that is defined between
0 and 1 increases exploration rate increases as well resulting in more random action
selection thus giving priority to the future rewards. When the number is close to 0
the algorithms becomes greedy and approaches to the immediate reward. The most
striking downside of the algorithm is that it requires a Q-table whose number of
elements is the multiplication of the number of states and the actions.

DQN utilizes deep neural network (DNN) instead of a Q table and makes it possible
for problems involving with a larger state-action space to be solved in shorter time
or solvable at all. DNN consists of several layers first of which is called the input
layer and it ends with the output layer; it is derived from artificial neural networks
that only consists of an input, hidden and the output layer. DNN on the other
hand benefits from several hidden layers in order to provide the opportunity for
more complex correlations to be found. Those layers have nodes and all the nodes
in each layer are connected to each other. Depending on the application they the
connections may differ however in its basic form it has a feed-forward structure as
observed in figure 3.2.

In each node there is an activation function whose parameters are updated in order
to map the input to the output correctly. The accuracy of mapping or fitting is
naturally affected by the number of nodes and the layers. Even though there is not
a straightforward guideline to find the numbers that will produce the best results,
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Figure 3.2: Artificial and Deep Neural Network [8]

the basic approach is to build the network as simple as possible and try to see if the
fitting has acceptable error. When the layer and node number increases it takes a
lot of computation time and that might be misleading in terms of convergence. It
is possible that in such a case it requires vast amount of time that is not predicted
by the user. However it is not simple to define the level of complexity.

The DQN algorithm as mentioned before utilizes this approach and below is the
pseudo-code of the algorithm [46]:

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1,M do

Initialise sequence s1 = {x1} and preprocessed sequenced ϕ1 = ϕ(s1)
for t = 1,T do

With probability ϵ select a random action at

otherwise select at = maxa Q∗ (ϕ(st) ,a;θ)
Execute action at in emulator and observe reward rt and image xt+1
Set st+1 = st,at,xt+1 and preprocess ϕt+1 = ϕ(st+1)
Store transition (ϕt,at, rt,ϕt+1) in D
Sample random minibatch of transitions (ϕj ,aj , rj ,ϕj+1) from D

Set yj =


rj

rj +γ maxa′ Q(ϕj+1,a′;θ) for terminal ϕj+1
for non-terminal ϕj+1

Perform a gradient descent step on (yj−Q(ϕj ,aj ;θ))2 according to eq. 3
end for

end for

Instead of using temporal difference method in the value function, and storing this
q value in a table, DQN uses a target value function in which only the immediate
and future rewards are summed. The network is then updated with the gradient
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descent of the loss function. In addition instead of evaluating every case one by one,
experience is utilized as explained in the reinforcement learning section.

DQN is applied to our problem and the action to be taken is a form of how much of
the demand power will be supplied by the battery. The power flow is controlled by
the switches in the converter. Fbat is the gain in the converter model that is selected
as the action. Instead of choosing FF C and Fbat as the action variables it is decided
that only one of them will be included. Their sum is constant, one is dependant
and the other one is independent variable. The equation below shows the relation
between the gains and the battery current.

Ibat = Fbat

Fbat +FF C
∗ Iin (3.5)

As long as sum of Fbat and FF C is greater than one the system works robustly.
It can be concluded from the computational experiments that it is observed that
changing this sum improves system response thus it is picked as 4 .

a = {Fbat} where FF C = 4−Fbat (3.6)

The range of the action is selected as below after trial and error, as the DQN
algorithm requires discrete actions the range is split into 16 steps with a step size
of 0.4.

−2 < Fbat < 4 (3.7)

Table 3.1 shows the modes of power sharing.

Table 3.1: Operation Modes

Mode FF C Fbat

FC charges battery and supplies power 6 -2
Only FC supplies power 4 0
FC and battery supplies equal current 2 2
Only Battery supplies power 0 4

State variable candidates in the problem are Pdemand,Pbat,Pfc,Fceff ,SOC,SOC −
SOCdesired that are power demand, power supplied by the battery and fuel cell, fuel
cell efficiency, state of charge and deviation of the state of charge respectively. They
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can be defined in a different form however those are the main variable candidates. In
the training process several combinations are tried and finally reward maximization
achieved. Those state variables for DQN are:

s = {SOC−SOCdesired,Pdemand} (3.8)

As the state Pdemand is indeed the input of the system, there cannot be any limita-
tions. On the other hand the first state SOC−SOCdesired is limited as:

−SOCdifference,limit < SOC−SOCdesired < SOCdifference,limit (3.9)

Reward function given below is a form of the objective function whose final form is
obtained after a trial and error process.

r =−wSOC ∗ (SOC−SOCdesired)2−wH2 ∗ (H2,effmax−H2,eff ) (3.10)

The simulation stops if the state exceeds the limit shown in equation 3.9 and the
agent is given a large penalty to avoid such an action in the future.

3.4 Deep Deterministic Policy Gradient (DDPG)

DDPG algorithm is similar to DQN however differs when it comes to updating the
network parameters. DDPG is a member of the actor-critic algorithms though DQN
has only one network structure. Actor-critic approach resembles the relation between
a child and a mother. When an action is decided and interacts with environment
the critic guides the actor in the right direction whereas in DQN there is only one
network and it is led by the value function only. The algorithm of DDPG method
is demonstrated in algorithm 2 [47].

31



Algorithm 2 DDPG algorithm

Initialize critic network Q
(
s,a | θQ

)
and actor µ(s | θµ) with weights θQ and θµ.

Initialize target network Q′ and µ′ with weights θQ′ ← θQ, θµ′ ← θµ

Initialize replay buffer R

for episode = 1,M do
Initialize a random process N for action exploration
Receive initial observation state s1

for t = 1, T do
Select action at = µ(st | θµ)+Nt acc. to the policy and exploration noise
Execute action at and observe reward rt and observe new state st+1

Store transition (st,at, rt, st+1) in R

Sample a random minibatch of N transitions (si,ai, ri, si+1) from R

Set yi = ri +γQ′
(
si+1,µ′

(
si+1 | θµ′) | θQ′)

Update critic by minimizing the loss: L = 1
N

∑
i

(
yi−Q

(
si,ai | θQ

))2

Update the actor policy using the sampled policy gradient:
∇θµJ ≈ 1

N

∑
i∇aQ

(
s,a | θQ

)∣∣∣
s=si,a=µ(si)

∇θµµ(s | θµ)
∣∣∣∣
si

Update the target networks:
θQ′ ← τθQ +(1− τ)θQ′

θµ′ ← τθµ +(1− τ)θµ′

end for
end for

DDPG utilizes the actor critic approach and those two different networks are up-
dated with different methods. Critic network is updated in the same way networks
are updated in DQN. On the other hand the update of the actor network is conducted
by the gradient descent. Similar approach is observed in the way that parameters are
updated. However by doing so it is possible to define the action space continuously
and decreases the errors caused by the discretizetion. The gradient is calculated as:

∇θµJ ≈ 1
N

∑
i

∇aQ
(
s,a | θQ

)∣∣∣∣∣
s=si,α=µ(si)

∇θµµ(s | θµ)

∣∣∣∣∣∣
si

(3.11)

The gradient of the critic with respect to action and the actor output with respect
to the actor parameters is multiplied in order to find the gradient. DDPG is a more
complex algorithm and the training process takes longer time compared to DQN.
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However the fact that it does not require discrete action space is a huge advantage.
The action is selected according to the current policy and is distorted with a noise
function that is decaying throughout the process in order to increase exploration.

The action space defined for DDPG algorithm is the same that of DQN with one
difference, they are not discrete. State space on the other hand is slightly different.
Again after several training episodes the state variables are chosen as:

s = {SOC,H2,eff} (3.12)

As in DQN state variables are limited in DDPG as well. The limitation for the
variables SOC and H2,eff respectively are:

SOCmin < SOC < SOCmax (3.13)

H2,effmin < H2,eff < H2,effmax (3.14)

Efficiency of the fuel cell is directly related to the power supplied by the fuel cell. As
the agent observes the efficiency value without knowing how much power is supplied
by the fuel cell, it takes a reward in that state. The idea here is that the agent
does not need to know the fuel cell power but only the efficiency curve. So it is
not important that if the power is sliding left or to the right as the focus is on the
efficiency. The sign of the power difference is obtained by the other state variable
SOC. Reward function is also similar with one little difference and defined as:

r =−wSOC ∗ (SOC−SOCdesired)2−wH2 ∗ (H2,effmax−H2,eff )2 (3.15)

If the state limits are exceeded then the simulation is stopped and the agent gets a
penalty.

3.5 Training Process

Implementation of both reinforcement learning algorithms commences with the
training process. The model set up apart from the energy management block stays
same except for the variables to be initialized randomly for each episode of the
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training. For DDPG algorithm training episodes last for 15 seconds with a step size
of 0.1 second. In each episode at the beginning initial value of the SOC and the
power demand is randomly generated within a certain interval. Power demand is
kept constant during the episode. An example of the power demand is presented in
figure 3.3. On the other hand DQN is trained with a a portion of a driving cycle
shown in figure 3.9. The training power input is selected as it cover different power
levels within a wide range. Since DQN is a learning technique relatively faster and
less accurate, it allowed for the duration of an episode to be longer. An episode in
DQN training lasts for 35 seconds with the same step size of 0.1 second. As the
cycle possesses random power demand, an initial power demand randomization was
not employed. Also as it was possible for the agent to explore more SOC values it
was also not randomized.
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Figure 3.3: Training Power Input for DDPG

In the training process hyper-parameters are the parameters that should be tuned
in order to control the learning that are given in table 3.2. The table shows the
values of these parameters tuned for the DDPG algorithm.
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Figure 3.4: Training Power Input for DQN

Table 3.2: DDPG Training Hyper-Parameters

Parameters Values

Actor Learning Rate 1e-4
Critic Learning Rate 1e-4
Discount Factor 0.99
Mini Batch Size 128
Experience Buffer Length 1e6
Agent Noise Variance 0.1
Agent Noise Variance Decay Rate 1e-3
Sample Time 0.1
Simulation Time 15

The first two hyper-parameters are the learning rates. They are chosen as same in
this case. Higher learning rates cause divergence mostly whereas lower ones slows
down the procedure. In our case if it is high (higher than 1e-4) it is observed that
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actor approaches either upper or lower limit. Discount factor that has a lower limit of
0 and an upper limit of 1 determines how much of the future rewards agent will take
into account. If it is large it considers the possibility of future rewards for actions
and if it is small it will only care about the immediate rewards. In many examples
this value is chosen to be between 0.9 and 0.99. Before defining mini batch size, full
batch learning and stochastic learning must be introduced. In full batch learning
network parameters θ are updated according to the sum of calculated gradients of
each episode set. In other words in full batch exact answer is provided with respect
to optimum gradient. In stochastic learning however gradient is updated in every
single step. Even though full batch learning is bound to converge by maximizing
reward, the disadvantage is that it takes a lot of time. Stochastic learning on the
other hand is fast as long as it converges. Since the gradients are calculated very
often, there could be examples of misleading experience and the maximization of
reward might not be achieved. Mini-batch size is the trade off parameter between
these two methods. If it is higher it is close to full-batch, if it is lower it is close
to stochastic learning. Experience buffer length opens up a space in the computer
storage in order to store experience information. Agent exploration within its range
is encouraged by the exploration noise variance. Variance decay rate determines
how far the variance effect will go in terms of samples. Network structure is shown
in figure 3.6 in which there are total of 3 hidden layers and a relu layer containing
300 nodes each. Relu layer has an activation function that converts negative values
into 0. Actor network on the other hand has 3 hidden layers directly as a string and
the connections are provided by relu layers. The final layer is tanh layer which has
an activation function used to output values squeezed between -1 and 1.

Figure 3.5: Critic Network Structure of DDPG Algorithm
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Figure 3.6: Actor Network Structure of DDPG Algorithm

Maximization of the reward function under the given hyper-parameters and the
initial conditions started to occur around 7000th episodes as shown in figure 3.7
where blue points shows the reward of the episode and red points shows the average
reward over 20 episodes. Until then it can be said that the agent was still exploring
the environment and after the 8500th episode the reward started to increase even
further to the values close to 0. An agent that achieved such a reward on the
episodes particularly between 9000 and 10000 is selected and afterwards used as the
controller.

In the DQN training the hyper-parameters that are set are given in table 3.3. As the
importance of them are emphasized for DDPG training process already, only lack
of hyper-parameters should be pointed out. Since there is no actor-critic scheme in
DQN, only one learning rate should be defined. Also as it is not continuous actor
space randomization is not required thus there is no parameter about actor variance.

Table 3.3: DQN Training Hyper-
Parameters

Parameters Values

Learning Rate 1e-3
Discount Factor 0.9
Mini Batch Size 2048
Experience Buffer Length 1e6
Sample Time 0.1
Simulation Time 35
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Figure 3.7: Training with DDPG Algorithm

Network structure of the DQN is similar to the critic network of DDPG as shown
in figure 3.8. There are total of 8 layers 3 of which are relu layers. In each layer 24
nodes are present. The structure is simpler than that of DDPG and it is obtained
after several iterations.

With the right setting, by that it is meant with the right hyper-parameters, network
structure, state, action and reward selection the algorithm maximizes the reward in
few episodes as seen in figure 3.9. It takes only 65 episode to maximize the reward.
Red points as it was the case for DDPG, show the average reward and the blue
points show the reward of that particular episode.

In both algorithms the agents with the maximum rewards are selected and their
performance are checked. Extensive performance comparison is given in the next
chapter.
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Figure 3.8: Network Structure of DQN Algorithm

Figure 3.9: Training with DQN Algorithm
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Chapter 4

Simulation and Results

This chapter describes the simulation set-up, rule based and deterministic opti-
mization method implementation. First the system modelled in Simulink will be
introduced then energy management implementation will be explained. Reinforce-
ment learning methods will be followed by rule based and deterministic optimization
methods that are used in order to compare the results obtained with reinforcement
learning.

4.1 Performance of RL Based Energy Management

There are 5 main blocks in the model named as Fuel Cell Model Lithium-ion Battery
Model, DC-DC Converter Model, Voltage-Current Controller and Energy Manage-
ment System as demonstrated in figure 2.1.

Simulation starts with the drive cycle input and it is fed into both energy man-
agement block and the DC-DC converter. Based on the decision made in energy
management block, the voltage/current controller sets the current demands (ibat

and ifc) for both converters. Getting the target current and voltage values, the
converter block outputs the currents to be drawn from the energy sources and after
they interact with these blocks they return the voltage values that is captured by
the DC-DC converter again.

Drive cycle is a set of points that represents the velocity of a vehicle with respect to
time. It is commonly used in vehicle testing on dynamometers particularly to check
the level of emission that a vehicle produces. On the other hand as it provides useful
information about the behaviour of a driver or vehicle the application of those drive
cycles are extended. They are also benefited in this study to test and validate our

40



model. These cycles are converted into power demand of the EM by Autonomie [48]
that is a commercial software in order to feed it into the energy management system
and the DC-DC converter as well.

There are several types of drive cycles in order to manifest driving characteristics of
the drivers depending on different traffic conditions and also for different regions. For
example a driving cycle named HWFET (Highway Fuel Economy Test) is created to
represent the behaviour of the vehicle on a highway. On the other hand US06 (High
Acceleration Aggressive Driving Schedule) is a cycle useful to observe the capability
of the vehicle for situations requiring high acceleration. UDDS (Urban Dynamo-
meter Driving Schedule) is another cycle used commonly to simulate the vehicle
driven in an urban environment where the vehicle speed is low and repetitive stop-
start occurs [49]. Those three cycles are used to verify the model and also compare
the performance of different algorithms. The speed profile of these cycles is given in
figure 4.1.
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Figure 4.1: Speed Profile of the Selected Drive Cycles
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4.2 Comparison With Other Energy Management Strategies

Energy management block is where the power sharing decision is made and even
though it is not explicitly shown in the model, decision variables are sent into the
voltage/current controller block. In this study we aim to compare different control
approaches which we describe in the next section.

The first and foremost concept considered before designing a controller is to set up
conditions and breakpoints, then modify the action subject to those constraints.

A rule based strategy decides on the energy management based on a set of
rules. We implemented a rule based energy management strategy in our model.
We base our rule-based strategy to Autonomie. Autonomie is a vehicle simulation
tool developed by Argonne National Laboratory. It focuses on mainly two variables
that were also mentioned in reinforcement learning section. It checks the SOC level
and the power demand. Based on max power capacity of the components and the
current SOC level, they satisfy the required power and ensure that power gained by
regenerative braking is accurately. For that particular reason, those controllers aim
to deploy the battery as soon as it is recharged, only then it will be able to recharge
the battery later on in case of braking without deviating from the target SOC level
largely.

Unlike the rule based strategies optimization methods do not requires several condi-
tions to check and are able to decide more precisely as simply for each state values,
they are able to change the actions. In order to find the best possible outcome as
long as the algorithm is not stuck in a local minimum or maximum, that kind of
method must be used. We have implemented a deterministic optimization method
solely with the purpose to compare our results obtained with learning algorithms
and demonstrate how close it can become to the best possible solution.

Brute force search algorithm is the most general approach to any optimization
problem and the algorithm searches for all possible solutions. For each possible
action in each state it gets the value of the function. In every single state the ac-
tion providing the minimum value of the function is stored. Then a lookup table is
generated. The method is time consuming and not preferred to solve optimization
problems that are complex. In our application for the very same issue, the opti-
mization problem is reduced to a simple one. Evaluation is conduction for only a
single time step making the optimum solution short-sighted. However it is still able
represent a deterministic optimization approach and used for comparison.

42



In this study for the brute force search algorithm state vectors are power demand
and SOC. They are discretized and the action space is the same that of DQN.

4.3 Results

This section compares the results of the algorithms implemented in the model that
are DDPG, DQN, Rule-based and brute force under different drive cycles. Brute
force findings provides a target for the best control actions even though it is limited
by the discretization of variables. We present that learning techniques are able to
produce better outcome than rule-based method and close to brute force algorithm
results.

4.3.1 UDDS Cycle

The comparison will be made based on total energy consumption, average fuel cell
efficiency and SOC deviation. Under the UDDS cycle the agents trained with DDPG
and DQN algorithms are able to keep the SOC level between certain limits and the
deviation from the target that is set as % 50 is not large. At the end of the cycle
it still has an acceptable value and restarting the cycle from that point will not
cause any significant change of SOC behaviour as shown in figure 4.2. In addition
efficiency of the fuel cell is high and the system tracks the power demand within
a very small margin of error. Since DQN action space is discrete, sudden action
changes cause slight overshoots. A similar SOC behaviour is also achieved by the rule
based strategy, however figure 4.3 shows that many changes in the SOC are sharper
than that of the DDPG-trained controller. Another point is that it is possible for
the SOC level to drop slightly from the target level, if it is necessary, a situation
that cannot be observed in rule-based EMS.
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Figure 4.2: Behaviour of the RL-Based EMS trained with DDPG and DQN under
the UDDS drive cycle
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Figure 4.3: Comparison of SOC behaviour of the controller developed with
Rule-Based EMS and RL-Based EMS trained with DDPG
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SOC levels and efficiency of the fuel cell under different EMS should be discussed
together since it is obvious that there is a trade-off between these two phenomena.
Several instances are picked in order to compare the performance of the EMS. As
it is pointed out before, in the region where the SOC becomes less than % 50 in
DDPG-based EMS, the battery is used instead of the fuel cell. On the other hand
rule-based EMS is dedicated to prevent SOC fall below the target, as a result even
though the power demand at that time range is low, fuel cell is activated causing it
to run on low efficiency as shown in Figure 4.4. This is crucial in the way that as
long as SOC level is not significantly low, it is treated as a secondary objective and
fuel cell efficiency is prioritized.
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Figure 4.4: Comparison of low power region performances of controller developed
with Rule-Based EMS and RL-Based EMS trained with DDPG

Figure 4.5 shows the case where SOC level is slightly higher than the target. DDPG-
based EMS starts operating the fuel cell almost where it is the most efficient and
using the battery, it tries to keep running the fuel cell on higher efficiency region
whereas rule-based EMS under-performs and starts running the fuel cell slightly
later causing the SOC fall sharper.
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Figure 4.5: Comparison of mid power region performances of controller developed
with Rule-Based EMS and RL-Based EMS trained with DDPG

It should be pointed out that the most important contribution of DDPG-algorithm
particularly based on the UDDS cycle is that it does not spend the charge as soon as
possible, instead it always tends to be steadier in terms of state of charge. The situ-
ation provides the opportunity to exploit the DDPG-based EMS fuel cell efficiency.
In other words as long SOC level is not significantly low, the EMS will attempt to
run fuel cell on close to its maximum efficiency. Since the UDDS is an urban cycle,
there are similar behaviours that could be observed throughout the cycle.

DQN-based EMS on the other in some cases manages to perform better than the
DDPG-based EMS in terms of efficiency, however without extra effort on smoothing
the decisions taken by the DQN-controller it is inevitable that the system will suffer
from the discreteness of the actions. Even though it is true that with smaller step
size, a smoother performance can be obtained, it hurts the speed of the training in
great scale due to curse of dimensionality. This is also important since there are PI
controllers in the DC-DC converter any sharp changes will cause overshoot when
the power is drawn from both of the energy sources.
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Finally the table 4.1 shows several results obtained throughout the UDDS cycle.
Overall energy consumption is one of the most important indicator of the perfor-
mance of the strategies. DDPG and DQN-based strategies achieve a lower energy
consumption with respect to the rule based EMS. For a driving cycle lasting for
1369 seconds equivalent of approximately 23 minutes, DDPG-based and DQN-based
strategies consumes around 39 and 31 Wh less energy respectively compared with
the rule-based EMS. Average FC efficiency of DDPG and DQN-based strategies are
almost equal and higher than that of rule based EMS. Another important result is
that less energy consumption is achieved with almost equal SOC deviation.

Table 4.1: Results under UDDS Cycle

Signals BF DDPG RB DQN Units
Motor Supply Energy In 1564 1564 1564 1564 Wh
Battery Energy Out -78.47 -71 -96.6 -87.03 Wh
Fuel Cell Energy Out 1738 1731 1756 1746 Wh
Fuel Cell Energy In 2978 2972 3038 2997 Wh
Fuel Economy 84.3 84.58 82,66 83.75 mpge
Fuel Economy 83.3 83.58 81.68 82.8 mile/kg(H2)
Total Energy Consumption 2900 2902 2941 2910 Wh
Total Battery Capacity Out -27.39 -43.89 -23.33 -39 Ah
Battery Energy Consumption 600.2 485.8 541.7 581.9 Wh
Fuel Cell Charging Energy -128.4 -22.82 -87.75 -134.6 Wh
Regen Braking Energy -534.4 -534.4 -534.4 -534.4 Wh
Average FC Efficiency 0.583 0.582 0.578 0.582
Final SOC 50.33 50.52 50.28 50.5 %
Minimum SOC 49.75 49.85 49.94 49.67 %
Maximum SOC 51.35 51.38 51.33 51.37 %
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4.3.2 HWFET Cycle
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Figure 4.6: Comparison of near constant power region performances of controller
developed with Rule-Based EMS and RL-Based EMS trained with DDPG

HWFET cycle represents the behaviour of vehicle in a highway. Thus it is a cycle
where the shifts in power are not likely to be sudden. The significant portion of
this cycle is the duration where the power is always required and no regenerative
braking occurs as in figure 4.6. In this interval rule based EMS tries to charge
the battery whereas no such attempt is observed for the DDPG and DQN-based
strategies. Charging the battery in such a condition seems like a good opportunity,
on the other hand, since the power demand exceeds the maximum efficiency region
of the fuel cell, drawing more power from this source causes a less average fuel
cell efficiency. Table 4.2 shows that energy consumption of DQN and DDPG-based
strategies are almost equal and is 23 Wh less than that of rule-based EMS. The
cycle takes 764 seconds that is approximately 13 minutes.
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Table 4.2: Results under HWFET Cycle

Signals BF DDPG RB DQN Units
Motor Supply Energy In 2491.3 2491.3 2491.3 2491.3 Wh
Battery Energy Out -78.99 -73.1 -96.89 -77.67 Wh
Fuel Cell Energy Out 2636 2630 2653 2635 Wh
Fuel Cell Energy In 4512 4508 4555 4512 Wh
Fuel Economy 76.59 76.68 75.89 76.62 mpge
Fuel Economy 75.68 75.77 74.99 75.71 mile/kg(H2)
Total Energy Consumption 4433 4435 4458 4435 Wh
Total Battery Capacity Out -109.2 -109.7 -124.2 -101.8 Ah
Battery Energy Consumption 195.2 88.39 154.5 230.4 Wh
Fuel Cell Charging Energy -117 -4.67 -94.12 -151.3 Wh
Regen Braking Energy -156.9 -156.9 -156.9 -156.9 Wh
Average FC Efficiency 0.584 0.583 0.582 0.583
Final SOC 51.32 51.32 51.55 51.235 %
Minimum SOC 49.82 49.95 49.98 49.76 %
Maximum SOC 51.32 51.32 51.55 51.235 %

4.3.3 US06 Cycle

The drive cycles that were discussed had one common feature which is the power
demand never exceeded 40 kW. However US06 is a very aggressive driving cycle
literally pushing the vehicle to its limits from time to time even though it takes
600 seconds that is exactly 10 minutes. So far even though the maximum power
capacities of the energy sources were never introduced for both of the DQN and
DDPG-based algorithm particularly in the reward function, power demand in every
time step of the cycle was satisfied. It should be stated that overshoots provoked by
the PI controllers results in slight differences between the demand and the supply.
For a commercial vehicle (Toyota Mirai) the maximum power the battery and the
fuel cell can provide is around 40 and 114 kW respectively. So if a case where the
power demand is more than 40 kW and somehow EMS decides to use the battery,
occurs then no further action can be taken and the conclusion is that the power
unit cannot satisfy the demand completely for that interval. Such a situation is ob-
served for particularly the DQN-based strategy even though DDPG-based strategy
is slightly affected. After obtaining power from regenerative braking for 25 seconds,
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SOC of the battery increases as shown in figure 4.7. It must also be stated that
regenerative braking is limited and cannot exceed 20 kW. Since the all strategies
does not control regenerative braking at all, the charge is captured totally. Rein-
forcement learning based strategies consider this situation as an opportunity and
use the stored energy as soon as possible in order for the regenerative braking to be
captured again without concern for high deviation from the target SOC. However
the power demand in the next following seconds is highly aggressive and it goes
from 0 to 80 kW in just 5 seconds. It can be observed that both DQN and DDPG
attempts to use the battery, however as it tries to exceed the maximum power limit,
power demand of the cycle is not satisfied. It also can be observed that DDPG-based
strategy starts using the fuel cell only a second after the mismatch occurs. However
DQN-based strategy fails to do so and misses the target for almost 8 seconds.
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Figure 4.7: Comparison of cycle tracking performances of controller developed
with RL-Based EMS trained with DDPG and DQN

Apart from that as shown in figure 4.8 average efficiency of the fuel cell of the
DDPG-based strategy is higher than that of rule based EMS in an interval that
requires high power. In that instance rule based EMS tends to charge the battery
slightly. Since the efficiency of the fuel cell decreases in higher rates as the power
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demand increases after the peak efficiency point, such an action causes the efficiency
to be lower.
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Figure 4.8: Comparison of high power region performances of controller developed
with Rule-Based EMS and RL-Based EMS trained with DDPG

In the table 4.3 DDPG-based approach achieves less energy consumption than the
rule based EMS by 140 kW and the DQN-based approach looks even better. However
it must be taken into account it cannot meet the power demand for 10 seconds and
misses approximately 60 Wh whereas DDPG based strategy only misses 3 Wh.
Deviation from the target SOC is acceptable for all EMS. The general behaviour of
RL-based approaches is that they try to utilize the regenerative braking energy so
that fuel cell is running on high efficiency regions. DDPG-based approach do not
charge the battery from fuel cell as much as the other methods, thus contributing
the lifetime of a battery.
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Table 4.3: Results under US06 Cycle

Signals BF DDPG RB DQN Units
Motor Supply Energy In 2682.65 2682.65 2682.65 2682.65 Wh
Battery Energy Out -176.8 -148 -259 -207.5 Wh
Fuel Cell Energy Out 2971 2968 3080 2984 Wh
Fuel Cell Energy In 5242 5232 5489 5271 Wh
Fuel Economy 51.48 51.57 49.16 51.2 mpge
Fuel Economy 50.87 50.96 48.57 50.59 mile/kg(H2)
Total Energy Consumption 5065 5084 5224 5063 Wh
Total Battery Capacity Out -82.5 -86.44 -284.2 -62.26 Ah
Battery Energy Consumption 418.6 355.8 349.8 685.7 Wh
Fuel Cell Charging Energy -98.11 -9.1 -102.9 -204.8 Wh
Regen Braking Energy -494.7 -494.7 -495.7 -494.7 Wh
Average FC Efficiency 0.566 0.567 0.561 0.566
Final SOC 51 51.05 53.5 50.75 %
Minimum SOC 49.9 49.9 49.9 49.55 %
Maximum SOC 52.34 52.33 53.5 52.25 %
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Chapter 5

Conclusion and Recommendations

The studies presented in this thesis are concluded here along with the recommen-
dations for future work.

5.1 Concluding Remarks

This thesis focuses primarily on three areas: (1) modelling of fuel cell hybrid vehicle
power unit, (2) the implementation of model free reinforcement learning algorithms
DDPG and DQN, (3) comparison of the results under different drive cycles with
rule based and optimization based approaches.

A fuel cell vehicle model is developed whose power unit including fuel cell, lithium-
ion battery and DC-DC converter is modelled. The vehicle load model is obtained
from Autonomie software which converts speed input to the power demand from
converter all the way from the wheels to the electric motor. The fuel cell and the
lithium-ion battery models produce outputs as the voltage (Vfc and Vbat) when
the currents are given as inputs. The voltage becomes the input for the DC-DC
converters which sends the current signals (ifc and ibat) into the energy sources
depending on the difference between the source and bus voltage. How much current
to be drawn from the sources is decided by the energy management system that
outputs gains (Fbat and Ffc) fed into the voltage current controller. Based on the
gains and voltage differences the controller then sends the duty cycle of switches
into the converter.

Implementing reinforcement learning algorithms in the energy management strategy
is the main purpose of this study. In that aspect it is concluded that apart from
Q-learning, DQN algorithm is the most common model-free reinforcement learning
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algorithm that is applied energy management systems in HEV, PHEV and FCHEV.
The algorithm is implemented and after training the agent with drive cycles, the
agent with the maximum reward is selected and its performance is investigated under
different drive cycles. Then another algorithm named as DDPG is implemented and
a similar procedure is followed. It is an algorithm with the advantage of having
continuous action space that is highly promising particularly in the applications
such as fuel cell hybrid vehicles. As a disadvantage it is bound take longer for the
agent to be trained. In the training process instead of drive cycles, random step
power inputs are used.

Once the agents are trained their performance under drive cycles are compared
with the energy management strategies where rule-based and optimization-based
approaches are applied. We based our rule based approach on the Autonomie soft-
ware and the optimization based method is selected as the brute force search algo-
rithm. The evaluation criterias are total energy consumption, the fuel cell efficiency
and the SOC of the battery. UDDS, HWFET and US06 cycles are selected as they
represent different type of driver behaviours.

It is found that in all of these drive cycles, energy management strategies based on
DDPG and DQN are able to consume less energy than the rule based approach while
achieving a similar SOC behaviour and small deviation in SOC. Their performances
are slightly worse than BF method. DQN particularly in the HWFET cycle is very
close to DDPG and slightly worse than DDPG in UDDS cycle, nevertheless it faces
to the issue of not being able to track the power demand in US06 cycle for a very
short time. It can be deduced that the DDPG algorithm has the potential to be
used to find the global optimum whose learning process can continue in real-time
applications.

5.2 Recommendations for Future Work

For the next steps including the realization of the fuel cell hybrid electric vehicle
model and the energy management strategy, a few recommendations are listed below.

• The lithium-ion battery that is modelled with ECM should be improved in
order to increase the accuracy.

• Fuel cell compressor model should be improved. In this study it is only im-
plemented as a steady state however a model that will represent the slow
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dynamics of the source is recommended.

• Global optimization methods will be able to give the best possible outcome.
It is recommended that a dynamic programming algorithm should be imple-
mented for each of the cycles individually. This will show the quality of general
approaches in terms of finding a global optimum. In this the global optimiza-
tion method that is applied is also a general approach. By general approaches
it is meant that they are optimized not solely focused on one specific cycle
or condition, instead they seek to find the best result under several different
conditions.

• The network structure, hyper-parameter the states and the rewards are se-
lected after a trial and error process. Thus they can always be improved.
Indeed several cases should be created and the validation should be carried
out by the comparison with the results found by dynamic programming.

• Real-time application potential is also recommended. Since an agent can still
learn even after the initial validation, it makes learning techniques even more
appealing.
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