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ABSTRACT

WINPEN: A FAST CLUSTERING APPROACH FOR BLACK-BOX
PENETRATION TESTING

ÖZGÜN ÖZERK

CYBER SECURITY M.Sc. THESIS, DEC 2021

Thesis Supervisor: Asst. Prof. Dr. Erdinç Öztürk

Keywords: pentesting, clustering, unsupervised, black-box, machine-learning,
cyber-security

In black-box penetration testing, a payload is a piece of code that potentially enables
unauthorized access to a computer system through an exploit. Grouping payloads
based on the behavior they trigger in the target application is a labor-intensive pro-
cess, where each payload and the corresponding behavior of the application to that
payload should be analyzed and interpreted by humans. To assist human evalu-
ation, we propose a new algorithm WinPen, which classifies the payloads based
on the behavior they are triggering in the system. Each payload is represented as
the length of the response strings generated after a payload is submitted in the
system. WinPen performs mean-based comparisons for each point in the dataset
with respect to the point’s previous neighbors. We show on several datasets that
WinPen performs with an average 99.85% accuracy score across several datasets.
WinPen runs in O(n logn + n)) and the time complexity is reduced to O(n) for
already sorted inputs. WinPen is programming-language and source-code inde-
pendent, and can be utilized in Cyber Security applications, faster than the other
clustering algorithms (e.g., up to 46× faster than kmeans1d), without the need for
tedious hyper-parameter tuning procedures.
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ÖZET

WINPEN: KARA-KUTU SIZMA TESTLERİ İÇİN HIZLI BIR KÜMELEME
ÇÖZÜMÜ

ÖZGÜN ÖZERK

SİBER GÜVENLİK YÜKSEK LİSANS TEZİ, ARALIK 2021

Tez Danışmanı: Dr. Öğr. Üyesi Erdinç Öztürk

Anahtar Kelimeler: sızma testi, kümeleme, denetimsiz, kara-kutu,
makine-öğrenmesi

Kara-kutu sızma testlerinde yük, bir bilgisayar sistemine, sistemde varolan bir açık-
tan faydalanarak potansiyel bir yetkisiz erişim sağlayan kod parçasıdır. Yükleri,
hedef aplikasyonda tetikledikleri davranışlara göre guruplamak yoğun iş gücü gerek-
tiren bir süreçtir, çünkü her bir yükün ve bu yüklerin hedef aplikasyondaki ilgili
davranışlarının bir insan tarafından analiz edilmesi ve anlamlandırılması gerekmek-
tedir. Bu tezde, insan değerlendirmesine katkı sağlayabilmek için WinPen olarak
isimlendirilen yeni bir algoritma sunulmaktadır. Mevzu bahis algoritma, yükleri,
hedef sistemde neden oldukları davranışlara göre kümelendirmektedir. Bunu yap-
mak için, her bir yük, hedef sistemden gelen cevabın karakter dizisi uzunluğu olarak
nitelendirilir. WinPen, veri kümesindeki her bir eleman için, ilgili elemanın önceki
komşularını kıstas alarak, ortalama bazlı karşılaştırmalar yapar. Bu tezde, farklı
veri kümeleri için WinPen’in ortalama doğruluk puanı %99.85 olarak hesaplan-
mıştır. WinPen O(n logn + n)) zaman kompleksliğinde çalışmakta, hatta sıralan-
mış girdiler için bu komplekslik O(n)’e düşmektedir. WinPen, programlama dil-
lerinden ve kaynak-kodundan bağımsız olup, diğer kümeleme algoritmalarından 46
kata kadar daha hızlıdır. Üstelik zahmetli hiper-parametre ayarlama sürecine gerek
yoktur. Bu özellikleri, WinPen’i Siber Güvenlik uygulamaları için ideal bir aday
yapmaktadır.
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1. INTRODUCTION

With web applications becoming more widespread and prominent in our lives, day
by day, the security testing of software plays a pivotal role in engineering secure
applications (Stats, 2021). Most of the vulnerabilities are caused by misconfigured
interactions between the application and the user. Improper or inadequate sanitiza-
tion of user input may lead to various injection vulnerabilities (i.e. SQL injection,
code injection), some of which can lead to severe problems. For example, a SQL
(Structured Query Language) injection vulnerability may allow a malicious user to
delete all tables, or retrieve all the sensitive data and/or credentials of registered
users (Rua Mohamed Thiyab, 2017). Penetration testing aims at discovering and
identifying such security vulnerabilities in case there are any in the system under
test (Paráda, 2018).

To discover any potential vulnerabilities in the application, the software is pene-
trated with potential attack vectors. There are several approaches adopted in pene-
tration testing such as white-box, grey-box, and black-box testing. In the white-box
testing, the tester is assumed to have complete knowledge of the system under the
test (i.e. information technology infrastructure, source code of the software, tech-
nologies used in the system, etc.) (Dahl & Wolthusen, 2006; Liu, Shi, Cai & Li,
2012).

Conversely, the black-box testing, which is among the most popular approach for
penetration testing (Nidhra, 2012), assumes that the tester has no prior information
about the system and no privilege is defined for the tester account in the system.
Thus, a black-box penetration tester tries to discover the vulnerabilities in the sys-
tem from outside such as a typical user/client, or an outsider thereof (Bau, Bursztein,
Gupta & Mitchell, 2010; Seng, Ithnin & Shaid, 2018). As a concrete example, one
can consider a website with a login page; and in a typical black-box penetrating
testing scenario, the tester would inject various payloads to the login form to see if
there are any vulnerabilities present in the webserver. This black-box penetration
testing process can be divided into 3 sub-processes:
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1.1 Finding the payloads / deciding on which payloads to use / generating payloads

1.2 Injecting the payloads to the system

1.3 Analysis of the results / identifying which payloads resulted in a successful
injection

World-Wide-Web reserves numerous payloads, both for specific and general use-
cases. Additionally, there are many payloads available offline in popular penetration
testing tools for the convenience of penetration testers (i.e. Metasploit(Anonymous,
2021)).

Injecting every payload manually to the system under the test becomes tedious and
repetitive work, since the list of attack payloads is usually too large for manual
probing. Fortunately, there are tools available for automating this probing process
(second step in the above list), which enables generating a request for each payload,
and storing the corresponding response to each request. One such example can be
BurpSuite (Mainka, Mladenov, Guenther & Schwenk, 2015). Burp Suite allows the
tester to import/create his own payload list, or use a predefined one. After the
payloads are determined, Burpsuite injects all the payloads in the given list to the
selected input field of the website (i.e. username, status, password) by crafting a
specific request for each payload. Lastly, it displays the content and the length
(character count) of the responses’ text as a list. Similar scripts/programs can be
written easily to mimic the same behavior: sending a request for each payload, then
retrieving the respective response length/content.

Currently, only the second step (crafting requests for the list of payloads, and in-
jecting the system with these payloads) is automated while the third step (analysis
of the results) is performed manually by human operators. To detect if there is
any vulnerability present in the system, understand which payloads lead to differ-
ent behaviors, and which behaviors are malicious/abnormal, the stored responses to
payloads need a detailed analysis. This labor-intensive third step is still conducted
mostly by humans. Thus, it would minimize the human effort and its associated
costs to automate this analysis step.

This work aspires to offer a novel approach for further automating web penetration
testing. To this end, we present a new method, WinPen, for grouping different
behaviors based on the lengths of the responses to the payloads by the system. The
data is represented as 1-dimensional data of the payloads. WinPen proceeds in
windows of 1-dimension. To assess WinPen’s accuracy in detecting different types
of attacks, and its speed, we perform experiments on several datasets. WinPen
achieves 99.1% accuracy on one dataset, while achieving 100% for the other five
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datasets, outperforming k-means1d in both speed and accuracy. WinPen has only
one hyper-parameter and our results indicate that in a very large regime of values,
this hyper-parameter does not need to be tuned. The default hyper-parameter can
be used in all data sets, and the user can still obtain optimal results. In other
words, from a high-level abstraction, the end-user can treat WinPen as a clustering
algorithm for 1-dimensional datasets, without a hyper-parameter.

3



2. BACKGROUND

A very basic of a SQL injection/payload example:

Say, the functionality of the web application under test, is to retrieve data from a
table, with a search query. More specifically, let us imagine, when a user provides her
password, the web application reveals her e-mail address and her username stored
in the database, to the user.

Our web application will also need a back-end, that enables querying this database
represented as Table 2.1, and fetching information from it. This back-end source
code could be as simple as given in the Listing 2.1.

1 # Define POST variables
2 userInput =
3 request .POST[’password ’]
4

5 # vulnerable SQL query
6 sql = " SELECT EMAIL AND USERNAME
7 FROM TABLE WHERE PASSWORD = ’"
8 + userInput + "’"
9

10 # Execute the SQL statement
11 database . execute (sql)

Listing 2.1 back-end source-code

The expected behavior here is, when the user enters her password, this query will
run the code for every row in the table, and return TRUE for rows, whose column is
the same as that password. And ultimately, will fetch all the rows, whose result is

Table 2.1 Database of the web application

Username Email Password
Sal sal_vulcano@gmail.com i_h4t3_c4ts
Brian brian_quinn@hotmail.com sp1ders_are_sc4ry
Joe joe_frog_belly@gmail.com i_fe4r_my_w!fe
Murr murr_the_ferret@yahoo.com 1t’s_t00_high
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TRUE for this query. These fetched rows will be sent to the front-end, and displayed
to the user.

1 SELECT EMAIL AND USERNAME
2 FROM TABLE WHERE PASSWORD =
3 ’i_h4t3_c4ts ’

Listing 2.2 Expected Query

For example: if the user is Sal Vulcano, and wants to see his Username and Email
records, he can query so with his password, and the constructed query would be
Listing 2.2. This query will run for every row, and will return TRUE only for Sal’s
row, fetching the results Sal and sal_vulcano@gmail.com from the database.

However, our web application’s back-end is vulnerable to injection. Injecting the
payload in Listing 2.3, would grant access to all the rows in the table.

1 abc ’ or ’1’ = ’1

Listing 2.3 The Payload

The payload in this scenario, is the userInput (the only manipulable field in the
query). When the payload in the Listing 2.3 is injected to the back-end, the final
query would look like this:

1 SELECT EMAIL AND USERNAME
2 FROM TABLE WHERE PASSWORD =
3 ’abc ’ or ’1’ = ’1’

Listing 2.4 Injected Query

What’s happening behind the scenes is, although PASSWORD = ’abc’ will be FALSE
for each row, ’1’ = ’1’ will be TRUE for every single row, independent of the Pass-
word field’s content. Fundamentally, exploiting the query logic, this query will fetch
the Name and Email fields for every row in the database (Table 2.1 for our case).

Gaining unauthorized access to the names and e-mail addresses of every user in
the system is a critical vulnerability. One can defend the last standing brick of
this demolished fortress by arguing, the attacker still does not have access to the
passwords of other users, and it is not a critical vulnerability in that sense.

It is in fact possible to discover other users’ passwords one by one, via iterating over
our payload and improving it. Appendix A. elaborates on this, and includes the
code piece that will retrieve all the user’s passwords in the database.
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2.1 Prior Work

Majority of the work in automating the penetration testing, focuses on automating
the testing part rather than the evaluation (Appelt, Nguyen, Briand & Alshahwan,
2014; Deptula, 2013; Haubris & Pauli, 2013; Ke, Yang & Ahn, 2009; Kieyzun, Guo,
Jayaraman & Ernst, 2009; Kwon, Lee, Lee, Kim, Kim, Nam & Park, 2005; Rak,
Salzillo & Romeo, 2020).

For automating the evaluation step, Saleh et al. (Saleh, Rozali, Buja, Jalil, Ali &
Rahman, 2015), proposed using Boyer-Moore string matching algorithm for detect-
ing vulnerabilities. In a nutshell, Boyer-Moore string matching algorithm compares
the pattern with target text, by inspecting their characters from right to left using
2 heuristics (bad-character shift and the good-suffix shift)(Boyer & Moore, 1977).
However, we are questioning this approach, because of the following: it is not prac-
tical nor realistic to generate all the necessary keywords even for SQL-based attacks
only. The reason for that is, there are no strict rules or standards for developing
WEB applications, thus every developer/framework is free to craft their own behav-
iors/responses for each scenario. To give a more concrete example, a web application
might prefer to display a "404 not found" error for every exception (even for SQL
errors) that emerged in their application logic, as a cover. This approach is used to
not reveal information about the error to the end-user, whilst storing the original
detailed error description in the server logs. And some websites may prefer to create
their own custom messages to obfuscate the errors.

Aliero, Ghani, Qureshi & Rohani (2020) addressed the evaluation step of the black-
box penetration testing for SQL injections. Their work focuses on minimizing the
incidence of false-positive and false-negative results of the evaluation phase, by uti-
lizing an object-oriented approach specifically designed for SQL injections, which
does not employ any machine-learning technique. Their proposed solution is static
and specific to SQL injections, whereas our focus is to provide a general-purpose
clustering algorithm for all types of attacks. To test their score, they have de-
veloped 3 different web applications, but have not tested their method on already
existent real-world web applications. Their method SQLIVS reached a f score of
0.67.

Lastly, Ceccato et al., proposed a new security oracle, called SOFIA, made for SQL-
injection vulnerabilities(Ceccato, Nguyen, Appelt & Briand, 2016). Security oracle is
responsible for assessing whether test executions expose any vulnerabilities. SOFIA
was able to detect all SQLi vulnerabilities with inputs generated by three attack
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generation tools, and achieved a recall rate of 100%, with a false positive rate of 0.6%.
SOFIA uses k-medoids algorithm, and the tuning of hyper-parameter k is crucial, as
stated in their work. However, SOFIA’s method is relatively complicated compared
to other works (including ours). SOFIA’s workflow consists of 2 phases, Training and
Testing, and includes five steps: Parsing, Pruning, Computing Distance, Clustering,
and Classification. They mention in their paper, the first 3 steps are shared by both
phases, whereas Clustering step is being an exclusive part of the training phase,
and Classification is a unique step to the testing phase. Sofia’s process starts with
a set of SQL statements gathered from safe executions of the system under test.
Then, these statements are parsed and represented as parse trees, corresponding
to the objects to be classified. Their oracle must use a legitimate statement for
this purpose. In other words, the SQL statements need to be selected and verified
as legitimate prior to feeding them to the SOFIA. After pruning the parse trees,
the clustering step groups the similar SQL statements with respect to the distance
between them. This concludes the training phase. The first three steps are also
present in the testing phase. After these 3 steps, the classification step of the new
SQL statements is being performed by assessing their distance to the center of the
clusters (determined in the training phase). If a new statement is close enough to
the center of the clusters, it is labeled as benign, otherwise as a potential attack
vector.

The most significant difference that separates WinPen from the prior work men-
tioned here is, Winpen clusters the payloads based on their difference, without
labeling them as malicious or benign. WinPen’s sole purpose is to aid the pene-
tration tester via grouping the payloads regarding their behaviors, hence reducing
the workload of the penetration tester significantly. For example, assume that the
penetration tester has 300 payloads to inspect, and these payloads will result in 3
different main behaviors in the system under test. Without WinPen, the penetra-
tion tester would have to analyze each one of the payloads one by one. Instead of
analyzing each payload, or trying to group payloads, the penetration tester can use
WinPen, and then analyze only 3 payloads (one from each group) to determine if
the system has a vulnerability.

Because of this property of WinPen (not labeling the payloads as benign or ma-
licious), there is no need for a training phase, unlike traditional machine-learning
algorithms.

Web technologies (especially frameworks) change and evolve at a fast pace. What is
considered not critical or malicious today, can be an attack vector tomorrow. And
also, depending on the application, what can be a security flaw, may not be for
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another. An example of that would be: an open-source company’s application re-
vealing some static source code when injected with a certain payload. The company
may think this is behavior is for sure unexpected, yet harmless, since the source
code is already available as this application is an open-source one. However, for an-
other application that is not open-sourced, accessing the source code as an outsider
is probably a quite impactful attack scenario. Hence, leaving the decision to the
penetration tester on whether the behavior is benign or not, is a solid strategy when
it comes to diverse and evolving web technologies.

This emphasizes another advantage of WinPen: letting the penetration tester decide
whether the result is benign or malicious. Although this may sound like a disadvan-
tage, it is quite the contrary. The definitions of benign and malicious do vary across
different applications, and evolve constantly as explained above.

For example, to keep up with a penetration tester, SOFIA’s database (SQL state-
ments gathered from safe execustions) would be in need of constant maintenance
and updates throughout the time, and these changes should be tailored specifically
to the application’s purpose. On top of that, this cumbersome process needs to be
done for every type of vulnerability (not just for SQLi), whereas WinPen would just
work out of the box.

To the best of our knowledge, this work is the first one, that approaches interpreting
the results of black-box penetration testing as a clustering problem (for all types
of cyber attacks, not only SQL injections). Since WinPen is not deciding whether
the payload is malicious or not, but only clustering the payloads into groups, it is
more meaningful to compare WinPen with a clustering algorithm, that is suited for
working on 1-dimensional data, that does not have a sequential relationship (like
time-series), since all payloads are independent of each other.

kmeans1d is a Python library with the implementation of k-Means clustering on
1D data, based on the algorithm proposed by Xiaolin’s work (Wu, 1991), as pre-
sented in section 2.2 of Grønlund’s work (Grønlund, Larsen, Mathiasen & Nielsen,
2017). Finding optimal k-Means clustering is an NP-hard problem; however, there
are polynomial-time algorithms for clustering 1-dimensional arrays. In the paper,
Grønlund et al., propose dynamic programming and generalize it to data structures
that can find the globally optimal k-Means clustering for any k. Their improvements
make it possible to reduce the space to O(n), and provide O(nlogn + kn) running
time (O(kn) if the input is sorted).

Our clustering algorithm for 1-dimensional data, WinPen outperformed kmeans1d in
both speed and accuracy. Also, all the other clustering algorithms that are currently
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available, require hyper-parameter tuning specific to the data. The tuning process
of hyper-parameter can be costly in terms of time, and can be detrimental in Cyber
security applications, since the number and the type of payloads and tests to be
done can vary greatly depending on the application to be tested.
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3. PROBLEM DESCRIPTION

At the moment, no human intervention is needed for creating the requests, retrieving
the responses, and calculating the lengths of the latter. The interpretation of the
results, however, does necessitate human intervention.

Figure 3.1 manual testing approach

For every payload (as represented in Fig. 3.1), a human decides if there is a vulner-
ability. Considering there are numerous payloads present on the world wide web,
deciding upon which payloads create malicious behavior in the system can be time-
consuming and therefore, costly. The advantage of this manual testing is, application
specific edge cases are covered, since a human interpreted the results.

The prior works mentioned in this are mainly trying to label the payloads as benign
or malicious. The disadvantages of this approach are the following:

• A specific tool needs to be designed for each attack type (SQL, XSS, IDOR,
etc.).

• All these tools need to be updated (or re-trained) as the world wide web
evolves.
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Figure 3.2 labeling the payloads as malicious/benign approach

• Application specific edge cases may not be covered. A malicious behaviour for
an application may be benign for another application.

Fig. 3.2 tries to illustrate how much effort will be required for this approach.

Figure 3.3 using a clustering algorithm with hyper-parameter tuning

An alternative approach would be to use a regular clustering algorithm to diminish
the amount of payloads that the penetration tester needs to inspect.

The outputs (lengths of the responses) can be fed to an already existing clustering
algorithm to automate the clustering process (Grønlund et al., 2017; Wang & Song,
2011). This approach, however, creates another problem to solve for black-box
penetration testing: hyper-parameter tuning. To eliminate the need for human
engagement, we again needed human participation as an intermediate step that
aims to tune the hyper-parameters for the model. Also, the suggestion of feeding
the results to a clustering algorithm, assumes that the white-hat hackers have a
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background in Machine Learning, which may not always prove to be true for all.

Fig. 3.3 tries to illustrate this workflow. In this approach, the penetration tester
applies the clustering algorithm to the dataset, with each possible hyper-parameter.
Thus, generating multiple results. After that, he needs to manually inspect the
original dataset and create a basis for comparing the various results he got from
different hyper-parameters, so select the best one. Now that, this ultimate result
has grouped the payloads accordingly, the penetration tester can inspect only 1
sample from each group, and this should suffice.

However, in this approach, the penetration tester has already spent more effort than
manual testing. Hence, this approach does not help. On the contrary, it is making
the whole process more difficult, the exact opposite of what we aim.

Although our proposed algorithm needs a hyper-parameter, using the default value
for hyper-parameter turns out to generate the nearly same accuracy scores, with
a negligible difference in the performance. Thus the hyper-parameter tuning is
not necessary in most cases. This allows clustering to be done without any human
intervention, and also with better accuracy compared to other clustering algorithms.

Figure 3.4 clustering algorithm without hyper-parameter tuning

In Fig. 3.4 the workflow of the proposed algorithm from the point of view of the
penetration tester is illustrated. The penetration tester feeds the inputs to WinPen
without tuning any hyper-parameter. WinPen groups the payloads with 99.85%
accuracy. Allowing the penetration tester to inspect only 1 sample from each group,
and finalize the evaluation phase, instead of inspecting nearly every payload.

In short, here are the advantages of WinPen’s approach:

• The penetration tester dramatically less time/effort on the evaluation step (it
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is almost automated)

• Since WinPen groups the payloads based on the behaviour (it is not using
some keywords, or does not need training phase), there is no need to tweak/up-
date/train WinPen as world wide web evolves. It is expected for WinPen
to work out of the box, always.

• Ultimately, a human is interpreting the results. So, application specific edge
cases are covered.

13



4. METHODS

WinPen consists of two phases: sorting and clustering. Sorting helps to increase our
results and enables the algorithm to be simpler. Clustering is the labeling phase,
where the magic of WinPen actually happens. In this section, the details of these
steps will be explained, along with the dataset generation, input format, and the
time/space complexities of WinPen.

4.1 Data Set

There was no data set available for the experiments. So, the first task was gener-
ating the data. For the selection of payloads, we chose SQL vulnerabilities. SQL
vulnerabilities are one of the most popular vulnerabilities, increasing at a rate of
250% a year (Moyle, 2007). One of the reasons for this popularity is, SQL injections
are granting unauthorized access to databases, enabling the malicious user to query
them, modify and delete their contents. Thus, SQL injection is usually becoming
one of the ultimate goals in web penetration testing (other types of vulnerabili-
ties are becoming the intermediate steps to exploit the SQL vulnerabilities). We
obtained the necessary payloads for SQL injections from this GitHub repository:
https://github.com/sh377c0d3/Payloads.

For request forgery, each payload is embedded into a different request, that is specif-
ically crafted for the target URL. As the next step, these crafted requests are sent
to the server, which generates a response for each request. Each response has a be-
havior, which can manifest itself in different ways (e.g., displaying an error message
on syntax rules, returning an empty page, returning 403 unauthorized error, etc.).
The returned response length is stored in a list (response is a text in HTTP protocol,
length of the response means, character count in the response text). This length
information is used to represent the payload in WinPen.
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Figure 4.1 Dataset Generation Scheme: unique payloads are embedded in the crafted
requests, sent to the server, resulting in various behaviors in the responses created
by the server
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Data sets were generated from various CTF (Capture the Flag) websites (over-
thewire’s Natas Challenges, hacker101’s challenges, and hackthissite’s realistic mis-
sions) using the methodology explained in Fig. 4.1. For automated request genera-
tion and response retrieval, we use Python 3 Requests library to interact with web
servers via HTTP protocol.

4.2 Proposed Algorithm

4.2.1 Inputs

Given a series of response lengths, x1,x2, ...,xN corresponding to the re-
quests created by payloads ρ1,ρ2, ...,ρN , define a neighborhood of points η

(κ)
t =

{xt−(κ−1),xt−(κ−2), ...,xt−1,xt} where κ is the size of the neighborhood window,
starting at t− (κ−1), and ending at t.

For example, ρi might be consisting of <’ or 1=1 ’>, which is one of the most
common SQL injection payloads. This payload tries to close the input string with an
apostrophe (’), effectively ending the string, and opening a window to interfere with
the logic. Then, manipulates the condition logic, in such a way that it always returns
true for every entry in the table, ultimately resulting in retrieval of all the data in
the table that the server querying on. ρi being one of our payloads, the length of the
corresponding response we have received from the server, xi may be 927. Although
the algorithm is supplied with 2 inputs ({ρ1,ρ2, ...,ρN } and {x1,x2, ...,xN }), the
clustering process uses only {x1,x2, ...,xN }. After the abnormalities are found and
classifications are made, the generated labels {y1,y2, ...,yN } for each result are passed
on to their respective payloads, in other words, ρi is labeled with yi.

4.2.2 Sorting

Two lists were created for payloads and response lengths. The payloads do not carry
any sequential relationship, they are all unique and independent from each other.
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In other words, the payloads can be shuffled. Our goal is to find the abnormalities
and cluster the resulting behaviors, and WinPen is carrying out these computations
for response lengths. By sorting the response lengths, we are easing the clustering
process and increasing the accuracy. Although, when the list consisting of response
lengths {x1,x2, ...,xN } is sorted, in order to preserve the index relation between
payloads and response lengths, the payload list {ρ1,ρ2, ...,ρN } is also need to be
sorted with respect to the response length list.

4.2.3 Clustering

Our algorithm iterates in windows on the input sequence. A window consist of w

items (an item is an integer: response length of a payload), from the beginning
of the list till the end. To find yi, in each iteration, mean of the neighborhood of
points ηw

t is computed, represented by mw
t . If (xt−1 − mw

t ) < (xt−1 − xt), then xt is
perceived as a spike by the algorithm.

The reason for not using a simple equality check instead of mean calculation is: an
equality check amongst xt−1 and xt could not suffice for spike detection when the
application to be tested is a search form (displaying the results of relevant elements
from the database). In such cases, every payload might be resulting in different
response lengths, but show the same behavior (encountered in our datasets). Also
considering that, world wide web is a vast place to make generalized assumptions,
the mean approach provides more robustness against possible different scenarios.
Not belonging to the window can mean two different things: being an abnormality,
or the beginning of a new class. The importance of the hyper-parameter w here is, it
determines how many items should play a role in a window for getting a mean. We
have tried different values for the parameter w, which indicates how many elements
are there in the window. The results for different w values will be given and further
discussed in the Results section.
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Algorithm 1 WinPen
Input: list

Input: w = 12
Output: labels

1: length = len(list)
2: labels = []
3: newLabel = 0
4: wind = list[0 : w]
5: mean = mean(wind)
6: for i = 1; i < w; i++ do
7: diff =abs(wind[i−1]−mean)
8: spike = wind[i]−wind[i−1]
9: if diff < spike then

10: newLabel ++
11: end if
12: labels[i :] = newLabel

13: end for
14: oldV al = list[0]
15: for (i = 1; i < length− (w −1); i++) do
16: wind = list[i : i+w]
17: mean+ = (wind[w −1]−oldV al)/w

18: diff = wind[w −2]−mean

19: spike = wind[w −1]−wind[w −2]
20: if diff < spike then
21: newLabel ++
22: end if
23: labels[i+w −1 :] = newLabel

24: end for
25: return labels

4.2.4 Time Complexity

The algorithm compares the last element of the windows to the second last element.
This strategy is chosen in order to evade the redundant comparisons that emerged
from the intersection of the windows. A handicap of this strategy is, the first w-1
elements are not inspected. Another for loop has been constructed (the first for
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loop) solely for the purpose of including the first w-1 elements in our classifications.

First for loop consists of w − 2 comparisons, which does not depend on n (assume
the size of the inputs is denoted by n). The second for loop performs n − (w − 1)
comparisons. When these two for loops complexities merged together, we get w−2+
n − (w − 1) = n − 1. So our algorithm’s complexity is O(n − 1), which is equivalent
to O(n), allowing us to achieve linear complexity.

Taking the mean of the window in a trivial way is O(w), which would make the total
complexity O(nw). If we keep in mind that the window is iterating through the list,
the iterations of the window would include w-1 common elements in between. By
subtracting the first element of the previous window from the last element of the
current window, dividing this result to w, and updating the mean via adding this
value, we can reduce the calculation of the mean to O(1).

4.2.5 Space Complexity

We need an extra list to store the assigned labels, which should have the same size
as the inputs. Along with that, we also need to store another list consisting of w
elements. Our total space requirement is O(2n+w).
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5. RESULTS

In this section, WinPen’s accuracy results and speed performance will be explained
in detail and compared to kmeans1d.

5.1 Accuracy

5.1.1 Effect of Hyper-Parameter w on Accuracy

The driving motivation for the creation of this algorithm, was to replicate, or even
better the humans’ decision-making process for 1-dimensional lists. When an average
human tries to classify elements in a list, he/she can keep 5 to 9 items in his memory.
This is the short-term memory limit for the average human being (Miller, 1956).
Replicating a human, thus using the values 5, 7, and 9 for w was a good starting
point. Then we have incremented the value of w up to 300 (since we have 345
payloads per dataset). A small value for w resulting in higher sensitivity for spike
detection; a bigger value for w meaning higher tolerance for spike detection. As can
be seen in the Table 5.1, being too tolerant (for example, w = 300) can lead to an
increase in erroneous labels, similarly, too much sensitivity (where w is small) will
also result in many erroneous labels. We have found the sweet spot in between the
range 9-20, and chose 12 as our hyper-parameter for generic purposes.

With the chosen hyper-parameter value, we have tested the algorithm with 6 dif-
ferent CTF(Capture The Flag) challenges from 3 different domains overthewire,
hacker101, hackthissite. In 5 of these test datasets, our algorithm’s accuracy score
came out as a perfect 1; in only one of them (H2) there were 3 errors amongst 345.
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Table 5.1 WinPen error amounts for different w values on 6 different datasets (out
of total 345 payloads)

w N14 N15 H2 H8 PHT CMS
5 0 0 22 0 0 1
7 0 0 3 0 0 1
9 0 0 3 0 0 0
12 0 0 3 0 0 0
15 0 0 3 0 0 0
20 0 0 0 0 0 81
25 0 0 0 0 0 81
30 0 0 0 3 0 81
50 0 0 0 4 0 81
100 0 11 0 4 0 81
200 0 11 0 51 0 81
300 0 11 2 51 0 100

In total, our accuracy turned out to be 99.85%. This accuracy score might seem
too good to be true. But it should be kept in mind that, the datasets we are deal-
ing with in penetration testing, are not comparable to the usual datasets that are
used in the Machine Learning area for general purpose (i.e. iris dataset, real-estate
prices dataset). In our dataset, there were clear distinctions between the results of
the payloads that are creating different behavior (probable successful injection) and
those that are not. Thus, it was easy for our algorithm to distinguish between these
different response lengths. Although we do not possess a vast amount of datasets
at the moment, the accuracy score of perfect 1 is unlikely to change for most of the
datasets, since different behaviors are usually tractable from the response lengths.

5.1.2 Effect of The Dataset on Accuracy

From Table 5.1, it can be seen that Datasets can affect the accuracy. For example,
our algorithm made no errors for the dataset N14, but made various errors for H2
dataset. N14 generated 3 very distinctive responses for the payloads we sent, each
of them representing a different behavior. And for all the responses belonging to the
same behavior group, their character amount was equal to each other. Thus, our
algorithm could easily label the responses. However, for H2 the server was including
some random text (a quote related to Cyber-Security) in the response. On top of
that, for some payloads that were creating errors in the database, the error text
was including the payload itself in the response as plain text (recall the length of
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Table 5.2 WinPen’s Confusion Matrix on H2

Predicted
Labels

0 2 0 0 0 0
1 0 237 0 0 0
2 0 0 80 0 0
3 0 0 0 23 0
4 0 0 0 3 0

0 1 2 3 4
True Labels

payloads vary greatly). Hence, H2 server complicated the process of determining
the label for each response depending on the character amount.

There is no guarantee that servers will handle the requests identically. On the con-
trary, it is most probable that each server will treat requests dramatically different
than the others. To inspect this, we can further examine the 3 faulty labels in H2,
and dive into its details. The Table 5.2, presents the confusion matrix of WinPen
(with w=12) on the dataset H2.

Label 0 corresponds to the server not responding to our request. This could be
due to a timeout, or a fake error message to mask some different behavior. Label 1
corresponds to an error message about invalid credentials. Label 2 corresponds to
another error message about invalid credentials, but this time, with an additional
message indicating an SQL error has occurred. Label 3 corresponds to a successful
injection.

Our algorithm decided to label the last three responses with 4, although they did
not show any different behavior than the 23 other responses previous to them. Our
algorithm should have labeled these last three responses as 3 instead of 4. The
reason our algorithm made the erroneous decision is simple: on the successful in-
jection, the server also displays a random famous quote related to cyber-security.
For example, a quote from one of the responses labeled as 3 was as follows: "Be-
ing able to break security doesn’t make you a hacker any more than being able to
hotwire cars makes you an automotive engineer." -Eric Raymond; a quote from a
response labeled as 4 was on the other hand: "I think the very concept of an elite
commission deciding for the American people who deserve to be heard is profoundly
wrong." –former Congressman Newt Gingrich on the "Commission on Presidential
Debates". Since the first quote is significantly shorter than the latter one (according
to our algorithm), they were labeled differently.

However, when our hyper-parameter w is set to 20, our algorithm makes no mistake.
Since our primary goal was to be able to skip hyper-parameter tuning, achieving a
perfect score for H2 where w = 20 did not hold importance. The value 20 for our
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Table 5.3 kmeans1d’s Confusion Matrix on H2

Predicted
Labels

0 2 0 0 0 0
1 0 237 80 0 0
2 0 0 0 4 0
3 0 0 0 19 0
4 0 0 0 3 0

0 1 2 3 4
True Labels

hyper-parameter w did not provide optimal results in other datasets, and 3 mistakes
for the value 12 for hyper-parameter w are tolerable for the sake of greater good.

5.1.3 Comparison with Kmeans1d

The predictions of kmeans1d with k = 5 have been displayed in the Table 5.3. It
can be seen that, 237 payloads (true label 1) and the 80 payloads after them (true
label 2) are grouped into the same cluster by kmeans1d, although they should have
been put into different ones (since the behavior they are creating is different). In this
dataset, the 80 payloads should have been discriminated from the 237 payloads, so,
80 payloads have been labeled erroneously. We should not say 237 of them should be
separated from the 80 ones, and label them as wrong. As next, kmeans1d placed
the 26 payloads into 3 different groups (4 ones into label 2, 19 ones into 3, and
the last 3 into 4). Our evaluation criteria are the same: we are not comparing the
predicted labels to the correct labels, we are comparing the distinctions to the correct
ones. In this specific case, 26 of them should have been put into the same group,
but 2 extra labels were created. Because of these very reasons, confusion matrices
do not trivially allow us to calculate the accuracy for clustering purposes. Hence, we
have selected AMI (Adjusted Mutual Information) as our performance evaluation
metric. AMI is a variation of mutual information, and can be used in clustering,
fitting our needs (Nguyen, Epps & Bailey, 2009). Other evaluation metrics such as
Adjusted Rand Index(ARI) and Normalized Mutual Information (NMI) have also
been tried, however, AMI gave us the most reasonable and fair results among all.

Table 5.4, demonstrates the effect of misinterpreting the confusion matrices. If
we are to simply check the correct and predicted labels, the accuracy score of
kmeans1d with k = 5 would be 0 on the dataset N15. Yet, it’s crystal clear that the
algorithm managed to differentiate the necessary 3 different behaviors, and relate
them to their corresponding payloads with 100% accuracy. AMI, on the other hand,
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Table 5.4 kmeans1d’s Confusion Matrix on N15

Pr
ed

la
be

ls 0 0 0 0 0
1 41 0 0 0
2 0 11 0 0
3 0 0 293 0

0 1 2 3
True Labels

Table 5.5 AMI Scores of WinPen’s and kmeans1d’s

Algorithm Hyper
Parameter

AMI Score
N14 N15 H2 H8 PHT CMS

WinPen w=12 1.00 1.00 0.98 1.00 1.00 1.00

kmeans1d

k=2 0.84 0.91 0.48 0.23 0.40 0.79
k=3 1.00 1.00 0.53 0.75 1.00 0.87
k=4 1.00 1.00 0.51 0.85 1.00 0.78
k=5 1.00 1.00 0.50 0.86 1.00 0.77
k=6 1.00 1.00 0.96 0.99 1.00 0.74
k=7 1.00 1.00 0.94 1.00 1.00 0.73

can interpret these results correctly, and find the perfect score 1 for kmeans1d on
N15 as it should be. This is the reason, we are using AMI as our performance
metric.

In Table 5.5, WinPen’s AMI scores for all datasets are presented (using the opti-
mal hyper-parameter w = 12). Average AMI score for WinPen is 0.99. Similarly,
kmeans1d’s AMI scores are shown for every hyper-parameter value k. Since our
datasets included 7 different behaviors at a maximum per dataset, the upper limit
of k is set to 7 (this is in favor of kmeans1d). And since it would be the most
basic approach to assume there will be 2 different behaviors (i.e., malicious, non-
malicious), lower-bound is set to 2. Average AMI score for kmeans1d is 0.84,
whereas WinPen’s score is 0.99.

In the Figures 5.1,5.2,5.3,5.4,5.5,5.6, the accuracy scores of WinPen and
kmeans1d are given for every dataset.

5.2 Runtime Complexity
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Figure 5.1 Kmeans1d vs WinPen’s Accuracy Scores on N14

Figure 5.2 Kmeans1d vs WinPen’s Accuracy Scores on N15
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Figure 5.3 Kmeans1d vs WinPen’s Accuracy Scores on H2

Figure 5.4 Kmeans1d vs WinPen’s Accuracy Scores on H8
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Figure 5.5 Kmeans1d vs WinPen’s Accuracy Scores on CMS

Figure 5.6 Kmeans1d vs WinPen’s Accuracy Scores on PHT
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The complexity of our algorithm is O(n+nlog(n)), whereas the complexity of orig-
inal k-means algorithm is O(n2). kmeans1d, the most appropriate candidate to
compare with, has the time complexity O(kn + nlog(n)). Pakhira(Pakhira, 2014)
has proposed an alternative k-means version with linear time complexity. Unfortu-
nately, it requires an additional hyper-parameter α to tune other than k, making it
unsuitable for automation purposes (requires even more human intervention).

Table 5.6 WinPen’s vs. kmeans1d’s execution times

Algorithm
Hyper

Parameter
Time (ms)

n=345 n=78
WinPen w=12 0.023 0.005

kmeans1d

k=2 0.249 0.067
k=3 0.378 0.102
k=4 0.496 0.132
k=5 0.604 0.163
k=6 0.712 0.202
k=7 0.862 0.230

n denotes the element amount in the dataset
timings are taken using Intel i7 4770k - 16GB Memory(average of 10k runs)

The speed comparison between kmeans1d and WinPen is given in the Table 5.6.

It must be highlighted that, WinPen’s hyper-parameter w and Kmeans1d’s hyper-
parameter k are representing different things, and it’s not meaningful to relate them
(as it would made no sense to relate KNN’s k with Kmeans’s k).
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6. DISCUSSION

6 different test datasets have been tried. Our algorithm accurately clustered which
payloads were responsible for malicious behaviors in all of them. Since the same
principles are applicable for other types of injections as well (i.e. code injection,
OS command injection), the same results (99.85% accuracy) can be expected in
every aspect of black-box pentesting, and maybe even in different areas (other than
cyber-security) which can utilize 1-dimensional array clustering. As mentioned in
the introduction, this algorithm may further automate the black-box penetration
testing methodologies.

One weakness of our algorithm is, it relies solely on the response length to distinguish
different behaviors. If the different behaviors do not express themselves on the
length of the response text, our algorithm will surely not be able to differentiate
this behavior. An example can be blind SQL injections. In these scenarios, it is
not possible to see the output of the payload, but a sleep command can be put in
the injection, and the load time of the web page can be checked in order to see if
sleep command has worked or not. This time difference can also be added to the
algorithm to inspect. A caveat would be, if the payloads do not cover the injection,
our algorithm’s result will be nearly useless, since there will be only one behavior,
and nothing to cluster. Thus, the importance of the payload list should not be
underestimated. These lists can be found online, or can be generated manually for
specific purposes.

The biggest advantage compared to the similar clustering algorithms is that Win-
Pen provides us an option to skip the process of the hyper-parameter tuning. Hyper-
parameter tuning for black-box testing can be more ambiguous than other ML ap-
plications, since the tester does not know how many different behaviors will the
system provide. For example, if the black-box pen testing is performed on a login
form of a web page, the tester might expect two different behaviors only: an er-
ror message (indicating a successful injection), and a normal output / no output
(indicating an unsuccessful injection). In the examples of natas14 and natas15
however, we have encountered three different behaviors: an error message (indicat-
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ing a semi-successful injection), no output (indicating an unsuccessful injection),
and an output (indicating a fully successful injection). These results also surprised
us, since we were expecting only two different behavior. If we had used kmeans1d
as the first algorithm, we would have tuned k=2 for two different clusters, which
will yield incorrect results, and significantly reduce the accuracy. We also want to
emphasize that, H8 yielded 7 different behaviors, which was not predictable.

On the next page, one can see a detailed comparison between WinPen’s and
kmeans1d’s accuracy scores as it is represented in a graph for 6 different cases
for different k values. It can be clearly seen that WinPen (with the parameter
w=12) provides the best scores in terms of accuracy.

Aside from payload variety, data generation is also a critical step for this algorithm.
If some errors occur during the dataset generation process (i.e. busy traffic, unre-
liable network connection, server maintenance), these errors will be there to stay.
Our algorithm’s sole aim is to cluster, not to correct errors. For the best results,
the tester should check if the platform to be tested and his own connection to the
platform are both reliable during the test.

Having the luxury of not worrying about the hyper-parameter tuning also benefits
the accuracy score. Our algorithm distinguishes between different behaviors by
detecting the spikes, so it can deduce the number of different behaviors, in other
words, how many clusters should be there by itself, without the need for a hyper-
parameter. Recall that, WinPen’s hyper-parameter has no correspondance with the
cluster amount. Other alternatives like kmeans1d on the other hand, require the
correct hyper-parameter (how many clusters are there) to be able to get close to
our accuracy score. This is problematic, since the tester himself does not know in
advance, how many different behaviors will the system produce. Leaving the tester
with the only option of brute-forcing the possible values for hyper-parameter, and
then interpreting all the results by himself to decide on the correct hyper-parameter.
This is even more time-consuming than interpreting the results manually without
kmeans1d. Because in order to find the best hyper-parameter, one does have to
know in advance what are the correct results are (so that results can be compared
to each other and the best hyper-parameter can be selected). And for clustering
algorithms that require hyper-parameter tuning, selecting the best hyper-parameter
for each case corresponds to:

• Identify the correct results (the tester needs to do the clustering process man-
ually)

• Run the algorithm that requires hyper-parameter tuning for each possible
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Figure 6.1 WinPen’s default vs kmeans1d’s best accuracy scores

hyper-parameter

• Compare the results with the manual clustering, and select the best hyper-
parameter

This is contradicting to our goal of automation of penetration testing, since it now
requires even more work for humans: human interpretation of the results, brute-
forcing the values for hyper-parameter, then selecting the correct hyper-parameter.
This counter-example shows why clustering algorithms are not heavily used in black-
box penetration testing, and signifies why having the option to not tune the hyper-
parameter (and still getting the optimal results) can hold crucial importance.

Additionally, our algorithm outperforms its competitors in both speed and accuracy.
In the Figure 6.1, the accuracy scores of WinPen with the optimal hyper-parameter
w = 12, and kmeans1d with it’s best performing hyper-parameter k = 7 (w.r.t.
accuracy) are given. This comparison is actually in favor of kmeans1d, since every
possible value for its hyper-parameter has been tried, and the best-performing one
is selected. If new datasets were to behave like CMS, kmeans1d with k = 7 may
get worse accuracy scores. In other words, tuning the hyper-parameter k = 7 might
be specific to these 6 datasets, and might perform poorly for other datasets. As it
is for original k-means, the best strategy would be tuning the hyper-parameter for
each dataset specifically. It is unfortunately not possible to claim that k = 7 is a
general-purpose tuning, and would produce nearly optimal results for each dataset.

Contrarily, WinPen does not require its hyper-parameter to be tuned. The default
value (w = 12) would produce nearly optimal results for every dataset.

Thereby, we are actually comparing a general purpose algorithm WinPen (w = 12)
with a specifically tuned kmeans1d (k = 7). Yet, kmeans1d never bests WinPen
in any dataset.
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Figure 6.2 WinPen’s default vs kmeans1d’s average accuracy scores

A more fair comparison between WinPen and kmeans1d would be taking the
mean of all the results kmeans1d produced, since we would not know which hyper-
parameter would perform the best. It can be seen in Fig. 6.2 that, the gap between
WinPen and kmeans1d is becoming wider when the scenario is realistic.
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7. CONCLUSION

For 6 different datasets generated from popular CTF challenges, our proposed algo-
rithm WinPen was able to classify 99.85% of the payloads correctly, and identify
different behaviors. It’s execution time was 10x to 46x faster than the kmeans1d
(with k=2 and k=7 respectively). Its accuracy was 8.63% better than kmeans1d’s
mean scores on average, and 1.1% better than kmeans1d’s maximum scores in
total.

Considering WinPen also allows the user to skip the hyper-parameter tuning pro-
cess, its convenience and speed can be utilized in many different areas (especially
Cyber-Security), helping to the transition into automation by eliminating the need
for human intervention in the clustering step.

7.1 Future Work

Coverage for other types of behavior (other than response length), for example, time
(blind-SQL) might be implemented into the algorithm. This can be done by utilizing
an extra array, that stores the response time. The script that generates the inputs
needs to be changed accordingly as well in this case. The steps should be:

• craft requests from the payloads (no change needed here)

• send the requests to the system under test (no change needed here)

• start a timer for each request sent to the system under test

• when a response arrives, the script should also store the time it took for the
server to reply back

• store the response’s string length (no change needed here)
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Then, the decision can be done with respect to two criteria instead of one. Or simply,
the penetration tester can be prompted on whether s/he wants to categorize the
payloads based on time or string length. Or, both of the results can be independently
computed, and then can be displayed to the penetration tester. These options are
more of a design choice of the developer.
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APPENDIX A

A realistic scenario for crafting and injecting SQL payloads to retrieve
passwords in the table using Python

1 import string
2 import requests
3

4 url = "" # this string to be initialized with the web applications
handle

5 users = [] # this list to be initialized with all known user names
from Table 1

6 chars = string . printable
7 passwords = {}
8 for userName in users:
9 cracked_password = []

10 no_new_letter_found = True
11 password_found = False
12

13 while ( no_new_letter_found and not password_found ): # we don ’t
know the length of the password

14

15 for char in chars: # trying for every possible char from
our printable characters list

16

17 response = requests .post(url , data = { " password " : "
abc ’ or name=’" + userName + "’ AND BINARY password LIKE ’" + ’’
.join( cracked_password ) + char + "%’ # " })

18 # " BINARY password LIKE ’x%’" will match every password
starts with "x"

19 # "#" will comment out the rest of the statement
20

21 webPage = response .text
22 if ( ’user exists ’ in webPage ): # user exist means ,

our query has evaluated to true
23 cracked_password . append (char) # so we know that

our current trial was successful
24 no_new_letter_found = False
25 break # break the loop for this digit , we already

figured it out
26 passwords [ userName ] = cracked_password
27

28 password_found = True # means we tried every possibility ,
and there were no further match

29
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30 for k,v in passwords :
31 print(f" Username : {k}, and the corresponding password : {v}")
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