CHEMICAL BIOMARKER PROFILES EXTRACTION FOR HONEYBEE PATHOGENS USING MACHINE LEARNING

By

MUHAMMED MOYASAR ALAYOUBI

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University

December 2021

CHEMICAL BIOMARKER PROFILES EXTRACTION FOR HONEYBEE PATHOGENS USING MACHINE LEARNING

APPROVED BY:

DATE OF APPROVAL: 17/12/2021

Muhammed Moyasar Alayoubi 2021© All Rights Reserved

ABSTRACT

CHEMICAL BIOMARKER PROFILES EXTRACTION FOR HONEYBEE PATHOGENS USING MACHINE LEARNING

MUHAMMED MOYASAR ALAYOUBI

Computer Science, MSc Thesis, 2021

Thesis Supervisor: Asst. Prof. Christopher Mayack

Keywords: Biomarkers, chemical biomarkers, honeybee, Machine learning, pathogens,

Metabolomics, varroa mite

In recent years, we have increased on our reliance upon honey bee pollination services yet bee health has been declining on a global scale. The decline in bee health is a complex multifactorial problem and it is caused by a number of interacting stressors. The stressors are mainly stemming from pesticide exposure, parasitic infections, poor nutrition, and loss of foraging habitat. However, how these stressors exactly interact to produce a synergistic decline in bee health remains elusive because previous studies have mainly focused on one or two stressors at a time using traditional experimental testing in the laboratory.

Here we utilize a systems biology approach that is a non-hypothesis data driven analysis. We integrate the exposome profile of 87 honey bee hives, sampled from rural to urban areas, with the abundance datasets of the 20 most common bee diseases to determine the specific interactions responsible for a decline in bee health. From this analysis, we have developed chemical biomarker libraries for 13 of the bee diseases that are able to predict whether a hive is infected or not. The biomarker libraries were validated using five different machine learning techniques that consistently demonstrated our chemical biomarker libraries can predict whether a hive is infected with a particular disease or not with roughly 85% accuracy, precision, sensitivity, selectivity, and recall. In addition, using a network analysis across the integrated datasets, we found that across the bee diseases there are five metabolite hubs that are suspected to be potential targets that are responsible for an increase in susceptibility of the honey bee to multiple infections or can explain how multiple infections lead to a synergistic decline in bee health mechanistically. Moreover, we identified a number of environmental pollutants that are highly toxic to humans, which are also associated with bee diseases and are linked to detoxification and oxidative stress response genes. Our findings suggest that not only can bees be used a bioindicators or sentinels for monitoring environmental quality for human health, but the exposures themselves to the honey bees are likely to be a detriment to their health as well. These environmental exposures from polluted environments are likely another stressor that is negatively impacting bee health and their implications have yet to be fully recognized in the most recent decline in bee health.

From the systems biology analysis we provide chemical biomarkers that can be used as a possible rapid diagnostic tool such that beekeepers can change management practices to improve honey bee health before the colony collapses from parasitic infections. Novel stressors have been identified that are likely negatively impacting bee health and these are interacting with a multitude of exposures that are linked to an increase in disease prevalence in the honey bee hive. Collectively, our findings support the notion that the One Health paradigm is likely to be the most effective strategy for addressing the complexity of declining bee health and for improving it moving forward.

ÖZET

MAKİNE ÖĞRENİMİNİ KULLANARAK BAL ARISI PATOJENLERİ İÇİN KİMYASAL BİYOMARKER PROFİLLERİNİN ÇIKARILMASI

MUHAMMED MOYASAR ALAYOUBI

Bilgisayar Bilimi, Yüksek Lisans Tezi, Haziran 2021

Tez Danışmanı: Dr.Öğr. Üyesi Christopher Mayack

Anahtar kelimeler: Biyobelirteçler, kimyasal biyobelirteçler, bal arısı, Makine öğrenimi,

patojenler, Metabolomik, varroa akarı

Son yıllarda bal arısı tozlaşma hizmetlerine olan bağımlılığımız arttı, ancak arı sağlığı küresel ölçekte düşüyor. Arı sağlığındaki düşüş, karmaşık çok faktörlü bir sorundur ve bir dizi etkileşimli stres etkeninden kaynaklanır. Stresörler temel olarak pestisit maruziyetinden, paraziter enfeksiyonlardan, yetersiz beslenmeden ve yiyecek arama habitatının kaybından kaynaklanmaktadır. Bununla birlikte, bu stres etkenlerinin arı sağlığında sinerjik bir düşüş meydana getirmek için tam olarak nasıl etkileşime girdiği belirsizliğini koruyor çünkü önceki çalışmalar, laboratuvarda geleneksel deneysel testler kullanılarak aynı anda bir veya iki stres etkenine odaklanmıştı.

Burada, hipotez dışı veri odaklı bir analiz olan bir sistem biyolojisi yaklaşımı kullanıyoruz. Arı sağlığındaki düşüşten sorumlu spesifik etkileşimleri belirlemek için kırsal alanlardan kentsel alanlara örneklenen 87 bal arısı kovanının açıklayıcı profilini en yaygın 20 arı hastalığının bolluk veri setleriyle bütünleştiriyoruz. Bu analizden, bir kovanın enfekte olup olmadığını tahmin edebilen arı hastalıklarının 13'ü için kimyasal biyobelirteç kütüphaneleri geliştirdik. Biyobelirteç kitaplıkları, kimyasal biyobelirteç kitaplıklarımızın bir kovana belirli bir hastalık bulaşıp bulaşmadığını kabaca %85 doğruluk, kesinlik, duyarlılık, seçicilik ve geri çağırma ile tahmin edebildiğini tutarlı bir şekilde gösteren beş farklı makine öğrenme tekniği kullanılarak doğrulandı. Ek olarak, entegre veri setleri arasında bir ağ analizi kullanarak, arı hastalıkları boyunca, bal arısının birden fazla enfeksiyona duyarlılığının artmasından sorumlu olan veya nasıl olduğunu açıklayabilen potansiyel hedefler olduğundan şüphelenilen beş metabolit merkezi olduğunu bulduk. çoklu enfeksiyonlar, mekanik olarak arı sağlığında sinerjik bir düşüşe yol açar. Ayrıca, arı hastalıkları ile ilişkili ve detoksifikasyon ve oksidatif stres tepki genleriyle bağlantılı, insanlar için oldukça toksik olan bir dizi çevresel kirletici belirledik. Bulgularımız, arıların sadece insan sağlığı için çevre kalitesini izlemek için bir biyoindikatör veya gözcü olarak kullanılabileceğini değil, aynı zamanda bal arılarına maruz kalmanın da onların sağlığına zarar verme olasılığının yüksek olduğunu göstermektedir. Kirli ortamlardan kaynaklanan bu çevresel maruziyetler, muhtemelen arı sağlığını olumsuz etkileyen başka bir stres faktörüdür ve bunların etkileri, arı sağlığındaki en son düşüşte henüz tam olarak anlaşılmamıştır.

Sistem biyolojisi analizinden, olası bir hızlı teşhis aracı olarak kullanılabilecek kimyasal biyobelirteçler sağlıyoruz, öyle ki arıcılar, koloni parazit enfeksiyonlarından çökmeden

önce bal arısı sağlığını iyileştirmek için yönetim uygulamalarını değiştirebilirler. Arı sağlığını muhtemelen olumsuz yönde etkileyen yeni stres faktörleri tanımlanmıştır ve bunlar, bal arısı kovanındaki hastalık prevalansındaki artışla bağlantılı çok sayıda maruziyetle etkileşime girer. Toplu olarak, bulgularımız, Tek Sağlık paradigmasının, azalan arı sağlığının karmaşıklığını ele almak ve ilerlemeyi iyileştirmek için muhtemelen en etkili strateji olduğu fikrini desteklemektedir.

ACKNOWLEDGEMENTS

First and foremost, I would want to praise and thank God, the Almighty, for his immeasurable gifts. , and who granted me the opportunity and the ability to learn, write and contribute to this work, truly my prayers, my sacrifice, my life, and my death, are all for Allah the Lord of all that Exists.

Apart from my contribution, the success of this thesis depends largely on the encouragement and guidance of many others.

I would like to show my greatest appreciation to Asst.Prof. Christopher Mayack as the thesis supervisor. Words absolutely betray me to express how truly grateful I am. Thank you does not begin to express my gratitude for his unwavering support and assistance. Every time I attend one of his meetings, I feel energized and inspired. The enormous kindness and patience that he showed me, reflects nothing but his great wisdom and pure heart. Without his encouragement and guidance this thesis would not have materialized.

Furthermore, I would like to extend a very special thanks to Asst.Prof. Berin Karaman Mayack her constant support and help not only helped to complete this work but also encouraged me to be better in other aspects of my personal life, she is a great teacher and a role model to me, this and any future success that I achieve will always carry her influence. I'm forever grateful to her.

I am also very grateful to my beloved family. They are the main reason and motivation that I was able to achieve anything in life. They always supported me in every decision I have ever made. Without their unique love, support, and efforts I wouldn't have achieved anything in life, Special thanks to my mother. Who unfortunately, lost her life during the completion of this work she had the biggest influence on any good aspects of myself. I pray that her soul is in heaven.

It would be impossible to list all their names, but several people also deserve my sincere and special thanks, all my professor and friends through the entirety of my academic journey have contributed into the completion of this work in their own special way from my professors and friends in Kadir Has to my professors and friends in Sabanci university. To all of them I say thank you from the bottom of my heart.

In memory of my beloved Mother...

TABLE OF CONTENTS

LIST OF TABLES	
LIST OF FIGURES	9
LIST OF ABBREVIATIONS	
1. INTRODUCTION	11
1.1 Bee Importance, Global Bee Health, and Its Current State	11
1.2 A systems biology approach to improve bee health	
1.3 The use of biomarkers for rapid bee health diagnostics	13
1.4 Machine learning for biomarker validation	16
1.5 Aim of the study	
2. MATERIALS AND METHODS	
2.1 Overview of workflow	
2.2 Sample collection	
2.3 Disease screening methods	
2.4 Exposome methods	
2.4.1 Sample preparation	
2.4.2 LC-QTOF analysis	
2.5 Chemical biomarker analyses	
2.6 Validation of biomarkers using machine learning	
2.7 Pathway analysis	
2.8 Human health environmental monitoring analysis	
3. RESULTS	
4. DISCUSSION	
5. BIBLIOGRAPHY	
6. APPENDIX	51

LIST OF TABLES

Table 1. The machine learning validation results for each bee disease	45
Table 2. List of chemicals from the biomarkers suits that were found to be on the samepathway alongside their associated diseases.	47
Table 3. A list of the genes that are interacting with the chemical biomarkers with their associated biological functions. The data were extracted from the PubChem database	50
Table 1A. List of chemical biomarkers associated with bee diseases and their relationship with human diseases. The data were extracted from the PubChem database.	57

LIST OF FIGURES

Figure 1. An overview of the analysis workflow	33
Figure 2. The output of the PLS analysis on the exposome data for the bee diseases	43
Figure 3. The distribution of the chemical biomarker overlaps	45
Figure 4. Shows the network representation of the results of PubChem pathways search	46
Figure 5. A digraph that shows the chemical biomarkers (blue nodes) that affect the expression of honey bee genes (orange nodes) as indicated by the edges in the network	49

LIST OF ABBREVIATIONS

ABPV	Acute Bee Paralysis Virus
ALPV Virus	Aphid Lethal Paralysis
BSRV	Big Sioux River Virus
BQCV	Black Queen Cell Virus
CBPV	Chronic Bee Paralysis Virus
DT	Decision Tree
DWV	Deformed Wing Virus
FAO Organization	Food and Agriculture
IAPV Virus	Israeli Acute Paralysis
KV	Kakugo Virus
KBV	Kashmir Bee Virus
LSV	Lake Sinai Virus
LV	Latent variable
LR	Logistic regression
ML	Machine Learning
NB	Naive Bayes
PLS	Partial least square
PCA analysis	Principal component
PCR Regression	Principal Component
SB	Sacbrood Virus
SMO Optimization	Sequential Minimal
SBPV	Slow Bee Paralysis Virus
SVM	Support vector machine
VDV	Varroa Destructor Virus

1. INTRODUCTION

1.1 Bee importance, global bee health, and its current state

Bee pollinators, including honey bees, play a major role in global food production and sustaining biodiversity due to their pollination services and are now an integral part of sustaining domesticated crops and wild plants (Patel, 2021). They directly contribute to our wellbeing through the production of honey and other bee-related products such as: pollen, wax, propolis and royal jelly (Borycka et al, 2015).

Pollination services can be provided either by wild bee pollinators, or managed bee species, but modernized western agriculture has been heavily dependent on honey bees for their pollination services. With the world adoption of these current agricultural practices, their health is inextricably tied to our well-being, as we rely on them to feed an ever-increasing global population. Their pollination is linked to plant reproduction and biodiversity, which provides the foundation of many different ecosystems around the world, hence they serve as keystone species in many ecosystems (Breeze et al, 2011). Roughly 71 out of the 100 crops species that provide 90% of the global food supply are pollinated by bees. In the European Union, more than 80% of the crops are either partially or fully dependent on invertebrates for pollination, including many vegetables, fruits, and biofuel crops. Consequently, honey bee pollination services have an estimated global monetary value of 3.7 billion EUR (Kluser et al, 2010).

Despite their importance, over the last few years, honey bee populations have continued to decline due to a variety of complex factors, including those caused by human activity (Goulson et al, 2015). The bee health decline continues at an unsustainable rate, and we still have yet to identify the exact causes for the most recent decline in bee health. The major factors identified include global warming, pesticide exposure, habitat destruction, parasitic infections, and poor nutrition (Goulson et al, 2015). We now know that these stressors are likely to interact and cause a synergistic decline in global bee health (Collison et al 2016). However, we have yet to identify how different parasites are interacting with one another and how these interplays with interactions from other environmental stressors such as pesticide exposure. For example, parasites may change the level of susceptibility and mortality risk to environmental pollutants and pesticides, while pesticide exposure may also increase the susceptibility to disease infections and mortality.

1.2 A systems biology approach to improve bee health

A systems biology approach differs from traditional hypothesis testing as it aims to understand the key interactions from multiple factors that are central to driving the entire system. This is in contrast to the traditional reductionist experimental approach where one variable at a time is isolated and tested. The advantages of using a systems biology approach is that it is a data driven approach in which inherently biased hypothesis testing can be avoided and it is best suited for complex multifactorial problems that have many variables involved in producing an effect or condition such as bee health (Siviter et al 2021). For an integrated systems biology approach, typically omic datasets are relied upon to characterize both known and previously unknown factors that could be driving the system and these are then integrated with other datasets that aim to measure the phenotype of interest (Hasin et al 2017). In our case, we aim to determine the significant predictors of bee health decline and to better characterize the key interacting factors that produce a synergistic decline in bee health. The typical outputs from a systems biology approach include a better understanding of the pathogenesis and etiology of the disease, characterizing biological pathways that are associated with the disease, biomarkers for rapid diagnoses of the disease and potential new drug targets for the treatment of the disease.

The relatively recent exposome paradigm aims to simplify the complexity of the environment factors that result in disease. Capturing the exposome is a holistic approach that allows for all documentation of known and previously unknown exposures, which is a tool that can be used to investigate additional environmental exposures that were not previously considered and could be leading to be health decline (Rappaport et al 2010; Collison et al 2016). Under this framework, pathogen infections serve as an end point in which environmental exposures serve as predictors as well as a separate health factor that affects bees' overall morbidity and mortality.

Each non-genetic health factor can be thought of as an exposure event that can influence the phenotype of interest, in this case infection status of a bee disease. As a

result, the exposome is one of the most robust instruments for identifying the environmental factors that influence bee well-being. This is relevant now more than ever because environmental stressors are the main drivers in the global bee health decline, and learning how they affect bee health is critical to findings ways to improve honey bee health (Goulson et al, 2015).

Quantitative genetics theories in the biomedical community consider the role of both genetic and environmental influences in predicting continuous complex characteristics or phenotypes (such as cancer). However, these environmental factors are often overlooked and are underrepresented in many health studies (S. Dagnino, 2019). Recently, there has been an increased recognition to measure and calculate the many potential environmental causes that could be leading to health declines, as well as to forecast future declines of health (Wild, 2005); (A. Al-Chalabi, 2015); (Wild 2013).

A major challenge for beekeepers is having rapid diagnostic tools to assess the health of the bee such that they can change management practices to improve bee health before the colony collapses (Grozinger, 2020). Recently, it has also been highlighted that biomarkers are essential for improving bee health because they are objective indicators of bee health that can be applied across a variety of environments and across multiple bee species (M. M. Lopez-Uribe, 2020). What is used in today's market for diagnostic bee health tools are not enough to be considered an effective solution for this urgent problem (Moritz, 2010). Simultaneously, there is an increasing trend in medical and bioinformatics research for the extraction, discovery, and validation of biomarkers from high-dimensional omics data (Wang, 2019). Biomarkers are used in various fields of biology and medicine like personalized clinical treatment and early detection and treatment of illness. Unfortunately, the discovery of biomarkers is still a relatively new area of research in regards to bee health, and few studies in the literature have explored the possibility of using biomarkers for the detection of early disease in honeybees (Badiou-Bénéteau, 2012)

1.3 The use of biomarkers for rapid bee health diagnostics

While there is no single definition for a biomarker it is often defined as a biological measurement that acts as a stand-in for and, in the best-case scenario, acts as a predictor for a therapeutically meaningful endpoint or intermediate result that is more

difficult to detect. Although the terms "biomarker" and its equivalents, such as "surrogate marker" and "surrogate endpoint," have been around for decades, they are now much more extensively utilized. A search of publications indexed in PubMed for these terms reveals that interest in biomarkers skyrocketed in 2005 (Baker, 2005). Since 2010, there has been a significant surge in interest; over half of all articles published on the subject have appeared since 2014. Clinical biomarkers offer many advantages one of them is being easier to measure and less expensive than final clinical endpoints, as well as being able to be studied more often and for a shorter length of time. For example, it is far easier to monitor a patient's blood pressure than it is to evaluate left ventricular function with echocardiography (Devereux, 1983).

Biomarkers also enable clinical studies to be conducted with fewer participants than would otherwise be possible. For example, determining the impact of a medicine on blood pressure involves a small number of patients, perhaps 100 to 200, especially in a crossover design, and the trial can be finished in a year or two. To investigate the prevention of stroke mortality, a significantly bigger patient group would be required, crossover would be impossible, and the study would take many years (Kraus, 2018). Biomarkers can also help to circumvent the ethical issues that come with measuring clinical outcomes. Other advantages include, disease screening, diseases characterization, rule out, diagnose, stage, and monitor diseases, inform prognosis, individualize therapeutic interventions by monitoring responses to therapies or predicting outcomes in response to them, predict adverse drug reactions, predict and guide treatment of drug toxicity, and to identify cell types (Kraus, 2018); (Barbosa Jr, 2005).

Biomarkers are sometimes categorized according to the chain of causal mechanisms that may be linked to a number of susceptibility variables that activate a pathophysiological process. There may be more than one causal mechanism, more than one susceptibility factor, and more than one pathophysiological process for each ailment (P. Glasziou, 2008). This is especially true for complex disorders such as the decline in bee health (Liu et al 2014). The sickness or illness can occur as a direct outcome, or because of cumulative effects, or because of a final common pathway. Therefore, each fundamental pathophysiological process is thought to start with a molecular effect, which then leads to a chain of events at the cellular, tissue, and organ levels, resulting in the disease's signs and symptoms, each of the processes in the chain of pathophysiological events is matched by a biomarker or biomarkers that might be used

to track disease progression or changes in response to therapeutic intervention, as in the case of asthma (Szefler, 2012). The pharmacological level at which biomarkers arise can be used to classify them. The closer a biomarker is to the therapeutic or harmful impact, the better it is as a clinical endpoint indicator. A biomarker can be extrinsic to the individual, such as cigarette smoking as a lung cancer biomarker, or inherent to the individual, such as physical (symptoms and signs), psychological, or laboratory-based biomarkers (P. Glasziou, 2008).

The use of biomarkers for diagnosing, staging, or monitoring illness, as well as identifying the response to a treatment intervention, might be used to further classify them. They can also be classified based on the level of occurrence (molecular, cellular, tissue, organ) and whether they are related to susceptibility factors, main or secondary pathology, or illness consequences. The ultimate test of a biomarker is whether it accurately predicts the intended result under real-world situations. This is best investigated in well-designed randomized controlled clinical studies, and there have been instances where such trials have revealed that a hypothesized biomarker isn't valid.

The chain of events that leads from a disease's etiology to its clinical symptoms has several interconnections. A biomarker can be found at any stage along the chain that leads from the pathogenesis to clinical manifestations, including the molecular, cellular, tissue, organ, and whole-organ level. Similarly, a therapeutic intervention that alters such a biomarker might be positive therapy. A biomarker might be any observation that isn't the actual outcome.

Identifying biomarkers starts with understanding the pathophysiology of the disease and the factors associated with it; for example, biomarkers connected to pathways involved in the pathogenesis of heart failure appeared to be most suited for predicting and diagnosing the illness.

Next, biomarkers are identified by the mechanism by which the intervention affects the pathophysiology of the condition. Finally, the process should be correlated with the proposed biomarker. When looking for appropriate biomarkers of ageing, for example, it has been proposed that the following criteria be met: there should be a significant cross-sectional association between the biomarker and age, there should be a significant longitudinal shift in the same direction as the cross-sectional correlation, the individual differences should have a substantial level of consistency across time, and The rate of change in an aging biomarker should predict lifetime. (Ingram, 2001).

To understand complete effectiveness of a biomarker it is important to know which type of model best fits the disease condition. The Austin Bradford Hill guidelines (Phillips et al 2004) are a set of guidelines that may be utilized to determine if a biomarker and a clinical illness have a causal relationship. Biomarkers that follow these principles have a higher chance of being beneficial than those that don't. These recommendations include the following:

- strength: A strong link exists between a marker and an outcome, or between the treatment's effects on each, consistency: the link exists in various samples, in different places, in different situations, and at different periods,
- specificity: the marker is linked to a particular illness,
- temporality: changes in the marker and the outcome occur at the same time,
- gradient in biology: when you increase your exposure to an intervention, you get more results,
- plausibility: credible pathways link the marker, the disease's pathophysiology, and the intervention's mode of action,
- coherence: the link is consistent with the disease's and marker's natural histories,
- experimental evidence: an intervention produces effects that are consistent with the connection,
- analogy: we can infer a connection based on a comparable outcome.

When the appropriate data is available most of these guidelines can be verified *in silico* using mathematical models and tests, particularly using methods and approaches of machine learning can be useful. Concepts like strength, consistency, specificity, temporality are permeated and can be consistently validated *in silico* using machine learning tools.

1.4 Machine learning for biomarker validation:

Data mining is one of the most important applications for Machine Learning (ML). People are prone to making errors during studies or while attempting to build links between different variables, this makes it harder for them to solve these challenges. Machine learning may frequently be used to solve these issues with

effectiveness, enhancing system efficiency and machine design (Valletta 2017,). Machine learning methods employ the same set of characteristics to describe every occurrence across every dataset. The characteristics might be continuous, categorical, or binary in nature. In contrast to unsupervised learning, where examples are provided with unknown labels (the corresponding correct outputs) (Jain et al 1999), supervised learning occurs when instances are given with known labels (Kotsiantis et al 2007). The process of learning a set of rules from cases, or more broadly, generating a classifier that can be used to generalize from new instances, is known as machine learning. Therefore, by partitioning the dataset into a training dataset and a test dataset, the biomarker features that are selected from statistical multivariate analysis can be tested (validated) *in silico*.

To employ machine learning, the dataset must first be gathered. If a qualified specialist is available, he or she can advise on which fields (attributes, characteristics) are the most useful. If not, the most basic strategy is "brute-force," which involves measuring everything accessible in the hopes of isolating the proper (informative, relevant) traits. A dataset gathered via the "brute-force" approach, on the other hand, is not immediately suited for induction. It contains noise and missing feature values in most situations, necessitating extensive pre-processing (Zhang et al 2002). Data preparation and preprocessing is the second phase. Researchers have a variety of options for dealing with missing data, depending on the circumstances. (Batista et al 2003)

One of the strategies employed to address these issues is feature selection. Feature selection is the process of identifying and eliminating as many unwanted and redundant qualities as possible. Feature selection is used not only to address problems that comes with noise, but also to deal with the difficulties of learning from excessively large datasets. In these datasets, feature selection is an optimization issue that aims to keep the mining quality, while reducing the data dimensions (Liu et al 2001). It decreases the amount of data in a dataset and allows a data mining algorithm to operate and perform successfully with very huge datasets. There are several methods for selecting samples from a huge dataset (Reinartz et al 2002). Decreasing the data's dimensionality, allows data mining algorithms to operate more quickly and effectively. The interdependence of various features has a negative impact on the accuracy of supervised machine learning classification models. This issue may be solved by creating new features from the existing feature set (Markovitch S, 2002). Feature

construction/transformation is the term for this approach. These newly discovered characteristics might contribute to the development of more succinct and accurate classifiers. Furthermore, the finding of significant characteristics leads to the created classifier's comprehensibility as well as a better grasp of the studied idea.

Another important step is deciding the exact learning algorithm to utilize. The classifier (which maps unlabeled cases to classes) becomes ready for typical usage once preliminary testing has deemed it adequate. Prediction accuracy (the proportion of right predictions divided by the total number of predictions) is frequently used metric to evaluate the classifier. There are at least three methods for calculating the accuracy of a classifier. One method is to divide the training set to several parts and devote two-thirds for training and the remaining third for performance estimation.

If the error rate evaluation is inadequate, an earlier step of the supervised ML process must be reexamined . In such cases, a number of reasons for the outcome must be considered: the use of features that are possibly not significant or not sufficiently related, or do not adequately describe the response for the problem, a larger training set is required, the disparity between the problem's dimensionality is too high (the curse of dimensionality), the method used is ineffective, or parameter adjustment is required. Data imbalance is also another issue that might affect the performance of the classifier (Japkowicz N., 2002).

On certain datasets, statistical comparisons of the accuracies of trained classifiers are frequently used for comparing supervised ML methods. In cases where we have a substantial amount of data we may sample several training sets of size N, run several different learning algorithms on each of them, then assess the difference in accuracy for each of the classifiers on a large test set. These differences' average is an estimate of the predicted difference in generalization error across all potential training sets of size N, and their variance is an estimate of the classifier's variance in the entire set. Next step is to test the null hypothesis, which is that the mean difference between the classifiers is zero using a paired t-test. A t-test analyses the t-statistic, t-distribution values, and degrees of freedom to determine statistical significance. An analysis of variance test could be used as an alternative to the t-test when comparing three or more means.

There are two sorts of failures that can occur throughout this test. The likelihood that the test would reject the null hypothesis incorrectly which is known as type I error. The other type of failure is that the null hypothesis is not rejected (i.e., there is a

"significant" difference, even though there is none). The type II mistake should be the most common of the two. However, in reality, we frequently have just one dataset of size N from which all estimations must be derived. Therefore, subsampling is used to create different sub-sets for training and testing, and the instances that were not sampled for training are utilized for testing. Regrettably, this contradicts the independence assumption that is required for adequate significance testing. This is problematic because the researcher must be able to manage Type I errors and know the likelihood of rejecting the null hypothesis mistakenly. To address this issue, several heuristic variations of the t-test have been devised (Dietterich, 1998).

The test result should be independent of the precise partitioning that comes from the randomization procedure because it would make it much easier to duplicate published experimental results. However, there is always some sensitivity to the partitioning employed in practice. To determine replicability, we must run the same test on the same data numerous times with various random partitioning — generally 10 times — and count the number of times that the results are the same. One of the most typical tasks that the so-called Machine learning systems is supervised classification. To verify the independence of the extracted biomarkers from the model that was used to extract them we need to test the quality of association between the biomarkers and the disease using a variety of machine learning algorithms that verify this association is valid and robust. For this purpose, a vast variety of Artificial Intelligence-based approaches have been used. These include logical techniques (Decision trees), perceptron-based techniques, and statistics-based techniques (naïve-Bayesian, and logistic regression).

1.4.1 Decision trees

Decision trees are classification trees that categorize instances based on the value of a feature Each node in a decision tree represents a feature in an instance to be classified, and each branch provides a value that the node could accept . Starting at the root node, instances are categorized and arranged depending on their feature values (Murthy, 1998). Because the difficulty of generating optimum binary decision trees, these decision problems are classified as NP (nondeterministic polynomial time). NP is a set of choice problems in which the problem instances contain proofs that can be

verified by a deterministic a Turing machine if the answer is "yes." In polynomial time . The feature that best separates the training data is the root node of the tree. Two methodologies for selecting which feature separates the training data the best are information gain and gini index. (Hunt E. 1966; Breiman L. 1984). The relief F method is another popular strategy for splitting the training data, which assesses each variable in the context of other variables, whereas measures such as information gain and gini index estimates each attribute separately (Kononenko, 1994). The multitude of options may sound promising. However, most of the research has found that there is no "onesize-fits-all" solution for the problem of accurately splitting data and much like other aspects of machine learning it is problem dependent (Murthy, 1998).

When determining which measurement to utilize, a comparison of specific methodologies may still be necessary to determine which method to use for a certain dataset. The method is then done once more for each partition of the divided data, building several sub-trees from the data until the training data is split into groups where the individuals are more similar within group than across groups. A decision tree, or any learned hypothesis h, is said to overfit training data if another hypothesis h' exists that has a bigger error than h when tested on the training data but a smaller error when tested on the entire dataset. To avoid overfitting on the training data, decision tree algorithms can adopt one of two approaches: they can either halt the training procedure before the training data is fully fitted or they can trim the induced decision tree early. (Galathiya, 2012).

If two trees use the same tests and have the same prediction accuracy, the one with the fewer branches is typically selected. Pre-pruning the decision tree by not allowing it to grow to its full size is the simplest technique to avoid overfitting. Establishing a non-trivial termination condition for the feature quality measure, such as a threshold test, can help.

In decision tree classifiers, post-pruning methods are widely used to evaluate the performance of decision trees after they have been pruned using a validation set. Any node can be destroyed, and the most common training instance class sorted to it will be assigned to it. A comparison of well-known pruning strategies revealed that there is no one ideal pruning approach. Decision trees algorithm use the divide-and-conquer approach to achieve desired results. In computer science, divide-and-conquer is an algorithm design paradigm in which a problem is recursively broken down into two or

more sub-problems of the same or type, until these sub-problems become simple enough to be solved directly.

Even if the divide-and-conquer method is fast, in projects with hundreds of thousands of instances, efficiency is crucial. Sorting the instances on a numeric characteristic to get the optimal threshold, is the most time-consuming part. This can be sped up by determining potential numeric feature thresholds just once, thus turning the feature to discrete intervals, or by determining the threshold from a subset of the occurrences. Because they employ splits based on a single attribute at each internal node, decision trees are generally univariate. When it comes to issues that need diagonal partitioning of the instance space, most decision tree methods fall short. The instance space is divided orthogonally to one variable's axis and parallel to the other axes. As a result, following partitioning, the resultant areas are all hyperrectangles. However, there are a few techniques that may be used to avoid this (C. T. Yildiz, 2001).

1.4.2 Single layered perceptron

As stated before to verify the independence of the biomarkers from the model we tested the quality of association between the biomarkers and the disease using multiple algorithms, aside from decision trees we also used Single layered perceptron. The following is a basic description of a single layered perceptron: Perceptron computes the sum of weighted inputs, $\sum_i x_i w_i$ where x₁ through x_i are input feature values and w₁ through w_i are connection weights/prediction vector (usually real integers in the interval [-1, 1]), and the output goes through an adjustable threshold. If the sum is above the threshold, the output is 1 or else it is 0. The most typical technique to learn from a batch of training samples with the perceptron algorithm is to run it repeatedly over the training set until it finds the optimal prediction vector that can correctly predict all the training cases. The labels on the test set are then predicted using this prediction rule. The weights of the perceptron concept are updated as follows. If the weights are too low, the predicted value will be y' = 0 while the actual value y = 1, then each feature x_i = 1, $w_i = w_i * \alpha$, where α is a number larger than 1, that is termed the promotion parameter. If the weights were excessively high, the predicted value will be y' = 1 and the actual value y = 0; as a result, it reduces the associated weight for each characteristic $x_i = 1$ by setting $w_i = w_i^*\beta$, where β is a value between 0 and 1 termed the demotion

parameter. An exponential updating technique is where a relevant feature weight increases exponentially, while irrelevant feature weights decrease exponentially. As a result, it has been demonstrated experimentally that this updating mechanism can respond quickly to changes in the target function. The desired function (such as user preferences) does not remain constant over time. It is required to identify which previous training instances might be eliminated in order for a decision tree algorithm, for example, to adapt to these changes.

There are many algorithms created that are comparable to this one, such as the voted perceptron, which is a newer technique that accumulates more information during training and then uses this detailed knowledge to make better predictions about test data. The list of all prediction vectors that were created after each error is the information it tracks throughout training. The method counts the number of iterations it "survives" until the next error is made for each such vector and this count is referred to as the "weight" of the prediction vector. Afterwards the binary prediction of each of the prediction vectors is calculated and then all these predictions are aggregated using a weighted majority vote constituting a forecast. To summarize, perceptron-like linear algorithms excel at dealing with irrelevant information because of their greater time complexity. Single layer perceptron can be a highly advantageous algorithm when dealing with problems where there are numerous attributes, but only a handful of them are useful (Freund, 1999).

1.4.3 Naive Bayes classifiers

Naive Bayesian networks (NB) are very basic Bayesian networks made up of directed acyclic graphs with just one parent (representing the unseen node) and multiple children (corresponding to observed nodes) with a strong assumption of child nodes being independent of their parent. As a result, the independence model (Naive Bayes) is based on calculating the posterior probability of an instance being from a certain class given the set of features:

$$P(i|X) = \frac{P(X|i)P(i)}{P(X)}$$
(1.4.3-1)

where:

P(i|X): The posterior probability of class (i, target) given predictor (x, features).

P(i|X): The prior probability of the class i.

P(X|i): The probability of predictor given class.

P(X): The prior probability of predictor.

When these probabilities for different classes are compared, the higher probability

suggests that the class label value is more likely to be of that actual label (if R > 1: predict I, otherwise, predict j where $R = \frac{P(i|X)}{P(j|X)}$). The Bayes classification process computes the probabilities P(i|X) via a product operation, so it is especially vulnerable to being influenced by probabilities of 0. This may be avoided by using the Laplace estimator or m-estimate, which involves adding one to all numerators and multiplying the number of added ones by the number of added ones in the denominator (Cestnik, 1987).

Due to the strict child node independence assumption, Naive-Bayesian algorithms are sometimes considered to be largely inaccurate. However, on standard benchmark datasets,

The naive Bayes classifier has been compared against state-of-the-art algorithms for decision tree induction, instance-based learning, and rule induction. The findings revealed that this method outperforms other learning systems in several cases, even on datasets with significant feature dependencies (Domingos, 1997). Furthermore, the naive Bayes classifier is efficient in terms of training time because the model is in the form of a product, it may be transformed to a sum using logarithms, resulting in lower computing times. If a feature is numerical, it is usually discretized during data pre-processing, however if needed, the feature probabilities can be computed using the normal distribution.

1.4.4 Support vector machines

Support SVMs (Support Vector Machines) are the most recent out of all the supervised machine learning approaches. The concept of a "margin" on either side of a

hyperplane that separates two data classes is central to the SVM algorithm. It has been demonstrated that increasing the margin and therefore generating the biggest possible space between the separating hyperplane reduces the expected generalization error (Burges, 1998). For problems where data classes can be separated linearly, data points that lie on the edges of the optimum separating hyperplane are known as support vector points, and the solution is represented as a linear combination of only these points. Other data points are not considered. As a result, the number of features in the training data has no bearing on the SVM model complexity (the number of support vectors selected by the SVM learning method is usually modest). Consequently, SVMs are ideally adapted to learning problems involving a large number of features compared to the number of training cases.

Even though the greatest margin allows the SVM to choose among numerous candidate hyperplanes, because many datasets contain misclassified instances, the SVM may not be able to detect any separating hyperplane at all. This can be addressed by introducing positive slack variables on the constraints. Nonetheless, the majority of situations encountered with real-world training datasets, contain data that isn't separable and for which there isn't a hyperplane that successfully separates the positive and negative samples. In such cases, the data can be mapped onto higher-dimensional space and a defined separating hyperplane there may be a solution to the inseparability problem. A non-linear separation in the original input space will correlates to a linear separation in transformed feature space. Kernels are a sort of function that allows inner products to be computed directly in feature space without requiring the previously specified mapping. Once a hyperplane has been created, the kernel function is used to map new points into the feature space for classification (Genton, 2001). The kernel function defines the altered feature space in which the training set instances will be classified, hence choosing a proper kernel function is crucial for a proper analysis.

Estimating a range of alternative parameters and using cross-validation over the training set to identify the best one is a standard procedure. As a result, one of SVMs' drawbacks is their slow training speed. A SVM will work correctly if the kernel function is valid, even if the designer has no idea which training data features are employed in the kernel-induced transformed feature space . The Nth dimensional QP issue is used to train the SVM, where N is the number of samples in the training dataset. Solving this problem with normal QP methods necessitates huge matrix operations and

time-consuming numerical computations and is typically slow and inefficient for large datasets.

SMO (Sequential Minimal Optimization) is a simple technique that can address the SVM QP problem without needing any extra matrix storage or numerical QP optimization stages. The overall QP problem is decomposed into QP sub-problems via SMO. In most instances, two modified variants of SMO have been suggested as alternatives that are much faster than the original SMO (Keerthi, 2002). Finally, the SVM's training optimization problem must approach a global minimum, avoiding the local minimum that can occur with other search methods such as neural networks. However, because SVM approaches are binary, they must be reduced to a set of several binary classification problems in the event of a multi-class problem. While problematic, discrete data can still be analyzed, but proper rescaling is required using this approach.

1.4 Aim of the study

Here, we combine the relatively new exposome paradigm with a powerful nonhypothesis driven, unbiased, systems biology approach to address the complex multifactorial problem of honey bee health decline to unravel how environmental exposures interact with the 20 most common honey bee diseases responsible for the most recent decline in bee health. We used state-of-the-art LC-QTOF analysis to generate the exposome and identify 4631 exposures from 29 hives, across 10 different locations, spanning from rural to urban apiaries, sampled once per month, for three months. The exposome data was then integrated with the presence and abundance of the 20 most common diseases from molecular screening to identify the most significant exposure profile that is associated with the presence of a bee disease. We then validated the exposure profile comprised of chemical biomarkers using five different machine learning techniques to demonstrate that we can predict whether a hive is infected with a particular disease with roughly 80-90% accuracy, selectivity and sensitivity, recall, and precision.

2. MATERIALS AND METHODS

2.1 Overview of workflow

Across the three time points 29 hives were sampled and pooled together yielding 87 sampled hives total. The bee diseases of the sampled hives were screened using molecular techniques and the exposome of the beehives were generated using LC-QTOF analysis. This data was imported and combined into Excel (Microsoft) yielding 87 (Hives/rows/samples) by 4631 (compounds/columns/features) for each of the 11 diseases, where each row represents a hive, and each column represents an exposomic compound. We aimed to extract a set of diagnostic biomarkers (features/compounds). From a statistical perspective, a biomarkers suite is a subset of features, which if trained with a predictive model such as partial least square (PLS) and can discriminate between healthy and unhealthy hives for each disease with relatively high accuracy. The biomarker profiles selected were then validated using a 3-fold cross validation, twice, across five different machine learning models (Figure 1).

2.2 Sample collection

Roughly 300 in-hive bees were sampled once a month for a total of 3 months, starting in June, from brood combs using an insect vacuum, from 30 hives, in 10 different geographical locations, in the Philadelphia, Pennsylvania, region. Apiaries were sampled across an urbanization gradient. The collected bees were placed in a sterile 50 mL Falcon tube that was immediately placed on dry ice. At the time of bee sampling the number of Varroa mites were quantified per 300 bees using the powdered sugar roll method (Macedo 2002). The collected bees were homogenized with 20 mL of RNase free water using a 50 mL tissue grinder (Fisher, Waltham, Massachusetts, USA). Two sub-samples of the bee homogenate were created, one was used for molecular disease screening and the other for LC-QTOF analysis. All samples were stored at -80 °C until further analysis.

2.3 Disease screening methods

The disease screening methods were followed from (Mayack, 2022). All screening methods started with 150 µl of bee homogenate. Briefly, RNA was extracted using a Qiagen RNA mini kit (Qiagen, Hilden, Germany) following the manufacturer's instructions and the 14 most common honey bee viruses (Chronic Bee Paralysis Virus (CBPV), the Deformed Wing Virus (DWV), *Varroa* Destructor Virus (VDV), and Kakugo Virus (KV) complex, Black Queen Cell Virus (BQCV), Acute Bee Paralysis Virus (ABPV), Israeli Acute Paralysis Virus (IAPV), and Kashmir Bee Virus (KBV) complex, Slow Bee Paralysis Virus (SBPV), Sacbrood Virus (SB), Aphid Lethal Paralysis Virus (ALPV), Lake Sinai Virus (LSV), and Big Sioux River Virus (BSRV)) were screened using the MLPA BeeDoctor Kit (MRC-Holland, Amsterdam, the Netherlands) (Smet., 2012). The MLPA product was visualized using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA). Technical duplicates were run for each sample and then averaged. The 2100 Bioanalyzer Expert Software (Agilent Technologies, Santa Clara, USA) was used to carry out the semi-quantification of each virus relative to the *RPL8* reference gene.

American and European Foulbrood were screened for, following the manufacturer's instructions, using the respective BactoReal qPCR assay kit (InGenetix, Vienna, Austria). The extracted DNA was measured with a nanodrop and standardized to a concentration of 5 ng/ μ L for qPCR assays. Technical duplicates were run and averaged for each sample. Relative quantification was accomplished by using a fit-point analysis, Cp values were used to determine the relative abundance of foulbrood present in each sample. DNA extraction methods for American Foulbrood were followed from (Graaf, et al. 2013). DNA extraction methods for European Foulbrood were followed from (Forsgren et al. 2013).

Nosema quantification was based on methods adapted from the HBRC phenol chloroform method (Hamiduzzaman, 2010). DNA from each sample was standardized to 5 ng/µl for the PCR assay. Technical triplicates were run and averaged. Methods for stonebrood screening were adopted from Nasri et al., (2015) and for chalkbrood (*Ascosphaera apis*) screening was adopted from Jensen et al., (2013) (Nasri, 2015). All samples were standardized to 5 ng/µL for template DNA and 25 µL duplex PCR reactions were carried out with *Rps5* reference gene for semi-quantification. The Beta-tubulin gene target was used for both *Aspergillus fumigatus* and *Aspergillus flavus* screening. All PCR products were visualized on a 1% agarose gel electrophoresis run at 100 v for 45 min (New England BioLabs, Ipswich, MA). Technical duplicates were run for all stone and chalkbrood samples. The semi-quantitative analysis for each screening method was carried out using ImageJ (Abramoff 2004).

2.4 Exposome methods

2.4.1 Sample preparation

Bees were transferred to a 50-mL plastic tube and further extracted according to a previously described modified QuEChERS procedure (Mullin, 2010). To each sample a 27-mL portion of extraction solution (55 % acetonitrile, 44 % Milli-Q water, 1 % glacial acetic acid) was added before high-speed homogenization for 1 min in a Magic Bullet blender. To each sample was then added 6 g anhydrous magnesium sulfate (MgSO₄) and 1.5 g anhydrous sodium acetate (NaAc). After 1 min of agitation, tubes were centrifuged for 5 min at 1600 rpm. A 1-mL portion of the supernatant was transferred to a 2-mL plastic centrifuge tube containing 0.05 g of primary secondary amine (PSA), 0.05 g C18, and 0.15 g MgSO₄. Tubes were vortexed for 1 min and centrifuged for 5 min at 1600 rpm. Half of the resulting supernatant was gently heated in a sand bath, reconstituted in 50 μ L of acetonitrile, and transferred to an autosampler vial containing an insert for analysis via Q-TOF LC/MS.

2.4.2 LC-QTOF analysis

Analysis via Q-TOF LC/MS was performed using an Agilent ZORBAX Eclipse Plus C18 column (2.1 x 50 mm, 1.8 μ m, P.N. 959757-902) and an Agilent Technologies 6545 Q-TOF LC/MS. Mobile phases were 0.1 % formic acid in water v/v (mobile phase A) and 0.1% formic acid in acetonitrile v/v (mobile phase B). The injection volume was 1 μ L. The linear gradient

was set to change from 95% mobile phase A to 5% mobile phase A over 50 min with a flow rate of 0.300 mL/min. Samples were run in electrospray ionization positive and negative modes. Additional parameters were as follows: nebulizer gas 15 psi, capillary voltage 3500 V, acquisition range 100-1700 m/z, acquisition speed of 1 spectrum per second. A solvent blank was run after every 15 samples.

2.5 Chemical biomarker analyses

For each disease, the hive was classified as healthy or unhealthy based on the relative pathogen load measured. For *Varroa* mites a threshold of 9 mites or above per 300 bees was considered as an unhealthy infested hive as this is the first threshold established that is used to determine if beehives need to be treated with miticides (Macedo 2002). For DWV anything lower than 1 on the relative quantification scale was healthy because it is known that many hives have low levels of DWV that are asymptomatic around the world (Wilfert 2016). For *N. ceranae* and the rest of the viruses if the hives contained no infection, then they were a healthy hive. LSV, BSRV, American Foulbrood, *Nosema apis*, Stonebrood, and Chalkbrood were screened for, but due to lack of prevalence were excluded from the final analysis. We did not find a high level of multicollinearity across time points (r = 0.47, 0.46, and 0.45, respectively) and

so to increase statistical power we pooled hive data across the time points. However, across the three time points, one hive collapsed at the second time point, so this hive was removed from the analysis to maintain a balanced design across time points, yielding a total of 87 sampled hives for the final analysis.

The exposome data was not normal so it was log₂ transformed and exported to an Excel sheet with 87 rows representing the sampled hives and 4631 columns representing the different compounds from the exposome LC-QTOF analysis. For dimensionality reduction we used a Partial Least Squares (PLS) regression across each disease. We then used a 3-fold cross validation, two times, for assessing the quality of the PLS regression model. Then, the best model's regression coefficients were extracted. These regression coefficients indicated the amount of association between each exposome compound to the respective disease. A low absolute value of the regression coefficient indicated a low association between the exposome compound and the disease of interest. We discarded the exposome compounds with the lowest association indicated by the regression coefficients. The optimal PLS regression model selected was the one that had the lowest means square error (MSE).

A Principal Component Regression (PCR) regression model was also used as an analysis method. PLS and PCR both use multiple linear regression, which means they create a linear model with the formula Y=XB+E. In statistical terms, the predictors are X, and the response is Y. X is the collection of compounds in our research, and Y is the amount of viral load we wish to predict. E represents the amount of error around the predictions from the model. If the matrix X contains highly correlated data, then this may obfuscate the variation we wish to detect, namely disease load variations. In PCR, a linear transformation W transforms a set of measurements of X into an equivalent set X' = XW, resulting in linear independence for all new compounds (which are the principal components). X' represents the factor scores. In PCR, the linear transformation reduces the covariance between the rows of X' to a minimum. That is, just the features from the data are used in this procedure, not the response values.

The main distinction between PCR and PLS regression is this that PLS works by maximizing the covariance between Y and X' and this is based on obtaining a suitable linear transformation. In other words, PLS considers both spectra and response values, overcoming some of the limitations of PCR in the process. As a result, the PLS analysis method has become a gold standard in current bioinformatic analyses.

Cross validation with the coefficient of determination R^2 and the mean squared error are used to assess the quality of the model's calibration (MSE). The most common cross-validation method is to divide the data into a few groups, leave one out, then fit a PLS model to the remaining groups (Refaeilzadeh, 2009). After that, the model is used to forecast the values of the group that was left out. This fundamental procedure is repeated until all samples have been predicted. Cross-validation scores are then calculated by averaging the measures.

The variable selection of the PLS analysis was performed using the following steps: 1. Quantify the quality of the PLS regression using the entire dataset, such as with cross-validation or prediction data.

2. Take the regression coefficients from the best model. Each regression coefficient links each variable to the response in a unique way. A low absolute value of the regression coefficient indicates a low correlation between a certain variable and the response of interest.

3. Discard the variable with the lowest correlation. These are the variables that often degrade the model's quality, thus by basically rejecting them, we anticipate enhancing the metrics associated with our prediction or cross-validation.

Setting a threshold and removing any variables whose regression coefficients (absolute value) fall below that threshold is one technique to exclude the lowest correlation variables. However, this strategy is very dependent on the threshold chosen, which is set subjectively or necessitates a trial-and-error approach. Another less subjective technique is to remove one variable at a time (the one with the lowest absolute value of the related regression coefficient) and rebuild the prediction model. The technique is iterated until the MSE (means square error) of the prediction or crossvalidation falls below a certain threshold. The halting condition for the optimization process is that eliminating more variables will result in a worse prediction at some point.

Alternatively, one might iteratively delete a predetermined number of variables, then verify for which number of variables the MSE is minimized. The procedure is independent of the threshold's subjective selection and can be used to any data set without modification. One disadvantage of this strategy is that the processing time can be slow for large datasets. In our research the quality of the PLS regression model was assessed using two rounds of 3-fold cross validation. We split the data into thirds and then trained the model with two thirds of the dataset and tested it on the last third, this

operation was repeated three times for each round, during each repeat, a different third of the data was chosen for testing and training the model. The regression coefficients of the best model were then retrieved. The extent of correlation between each exposome chemical and the bee disease was revealed by the regression coefficients. The exposome chemicals having the weakest correlation, as shown by the regression coefficients, were eliminated. Consequently, the PLS regression model with the lowest mean square error (MSE) was chosen as the best prediction model.

2.6 Validation of biomarkers using machine learning

Five different machine learning techniques were used to evaluate the biomarker profiles (predictive models) found from the PLS regression analysis having the strongest relationship with each bee disease. We assessed the accuracy and predictability of the biomarker profiles to see if they could properly distinguish a healthy and unhealthy hive. Logistic Regression (LR), Support Vector Machine (SVM), Random Forest classifier (RF), Multi Layered Perceptron (MLP) and Naive Bayes classifier (NB) were implemented using sklearn (Pedregosa, 2011). Because of the high sparsity and large disparity between our dataset dimensions, I relied on the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve, precision, the F-1 score, and recall as measures of the biomarker libraries' performance.

Across all bee diseases, there was a total of 1018 unique chemical biomarker compounds identified. Using a python script¹, I automated a search to collect additional information about the chemical biomarkers from the PubChem database, out of the 1018 biomarkers we found more detailed information for 626 biomarkers. For the 626 biomarkers, I retrieved classification information about the chemical itself, its role, if any, in metabolic pathways, the honey bee genes that they interact with and the biological functions these are associated with, and lastly the human diseases that are related to these chemical biomarkers, that are coming from the local environment, as honey bees can serve as sentinels for surveying environmental quality.

¹ https://github.com/MHDalayoubi/Biomarkers_extraction_code.git

2.7 Pathway analysis

Out of the 626 chemical biomarkers, only 72 of them contained information about the honey bee metabolic pathways that they are involved in. A network analysis was conducted across the honey bee diseases to display which metabolic pathways are related to one another that are associated with one or more diseases. From this analysis we aim to understand possible interactions from multiple stressors that might lead to a synergistic decline in bee health. In addition, using the PubChem database (Kim S, 2021) chemical biomarkers identified to have relationships with genes of the honey bee ontology with *Drosophila* were identified and a network analysis was conducted. The function of the interacting genes was identified using a PANTHER GO analysis (Huaiyu Mi, 2021).

2.8 Human health environmental monitoring analysis

Furthermore, we noticed that many of the compounds that were found to be related to the diseases under study were also related to diseases found in humans and other organisms which could be an indication that bees can be used for monitoring environmental pollution. All chemicals with various human disease and disorders were identified and presented in a table. This classification procedure also included whether the chemical biomarker can be classified as a pesticide, pollutant, or pharmaceutical drug, or a derivative from these.

3. RESULTS

The PLS analysis reveals distinct and tight clustering for healthy and unhealthy hives based on infection load for each of the bee diseases (Figure 2).

С

Ε

34

G

Н

Figure 2. The output of the PLS analysis on the exposome data for the following bee diseases: (A) Black Queen Cell Virus (BQCV), (B) Chronic Bee Paralysis Virus (CBPV), (C) the Deformed Wing Virus, Varroa Destructor Virus and the Kakugo Virus complex (DWV_VDV_KV), (D) European Foulbrood, (E) *N. ceranae*, (F) *Varroa destructor*, (G) Slow Bee Paralysis Virus (SBPV), (H) Sac Brood Virus (SBV) and the (I) Acute Bee Paralysis Virus, Isralei Acust Bee Paralysis Virus, and the Kashmir Bee Virus complex (ABPV_IAPV_KBV). Tight clustering indicates that the latent variables contain chemical biomarkers that are uniquely associated with each state of the honey bee hive health status, either healthy or unhealthy.

From this analysis a total number of 36, 308, 203, 454, 285, 398, 342, 148, and 390 biomarkers constituted a biomarker profile as predictors for ABPV_IAPV_KBV, BQCV, CBPV, DWV_VDV_KV, SBPV, SBV, European Foulbrood, *N. ceranae*, and *Varroa* mites, respectively. The average of the two 3-fold cross validations of each biomarker profile across the 5 different machine learning models demonstrate a range of sensitivity and selectivity (AUC), accuracy (F1-score), recall, and precision from 0.77 to 0.93. The highest performing model across all of the diseases was SVM with 0.94 AUC and the lowest was RF with a 0.72 accuracy score (Table 1).

Table 1. The machine learning validation results for each bee disease. A total of 5 different machine learning models, LR, SVM, RF, MLP, and NB, were used for the training and testing of the biomarker profiles, which is shown in the column on the right. Averages within and across the machine learning models are presented and when averaged for all diseases is about an 80 - 90% level of selectivity, sensitivity, accuracy, recall, and precision as indicated by the AUC, F1-score, recall, and precision score, respectively, in predicting the respective bee disease. AUC is comprised of sensitivity and selectivity performance of the model. The precision is the ratio of tp / (tp + fp) where tp is the number of true positives and fp is the number of false positives. Recall is the ratio of tp / (tp + fn) where tp is the number of true positives and fn the number of false negatives. The F1-score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-1 score reaches its best value at 1 and worst score at 0.

	ABPV_IAPV_KBV	BQCV	CBPV	DWV_VDV_KV	SBPV	SBV	European Foulbrood	N. ceranae	Varroa destructor	AVG
AUC	0.89	0.9	0.91	0.83	0.85	0.8	0.83	0.87	0.92	0.87
Precision	0.86	0.82	0.84	0.75	0.82	0.73	0.77	0.80	0.86	0.81
Recall	0.88	0.80	0.83	0.74	0.80	0.72	0.76	0.80	0.84	0.80
F1-score	0.87	0.80	0.83	0.74	0.80	0.71	0.75	0.80	0.84	0.79
AUC	0.89	0.95	0.96	0.96	0.95	0.95	0.93	0.87	0.98	0.94
Precision	0.87	0.89	0.89	0.89	0.91	0.91	0.85	0.81	0.93	0.89
Recall	0.87	0.87	0.88	0.89	0.91	0.90	0.85	0.80	0.93	0.88
F1-score	0.86	0.87	0.88	0.89	0.91	0.89	0.85	0.80	0.92	0.87
AUC	0.93	0.78	0.85	0.84	0.77	0.69	0.79	0.85	0.89	0.82
Precision	0.84	0.71	0.83	0.76	0.71	0.65	0.77	0.83	0.81	0.77
Recall	0.87	0.68	0.80	0.75	0.68	0.65	0.71	0.82	0.78	0.75
F1-score	0.83	0.68	0.79	0.75	0.64	0.62	0.64	0.81	0.75	0.72
AUC	0.81	0.93	0.92	0.97	0.92	0.87	0.88	0.93	0.94	0.91
Precision	0.84	0.87	0.85	0.92	0.84	0.81	0.82	0.86	0.90	0.86
Recall	0.86	0.84	0.84	0.91	0.833	0.79	0.81	0.86	0.89	0.85
F1-score	0.84	0.84	0.84	0.91	0.83	0.79	0.80	0.85	0.89	0.84
AUC	0.91	0.92	0.96	0.96	0.93	0.85	0.92	0.96	0.94	0.93
Precision	0.92	0.90	0.95	0.91	0.87	0.84	0.87	0.92	0.89	0.90
Recall	0.91	0.89	0.95	0.90	0.85	0.81	0.86	0.91	0.89	0.89
F1-score	0.91	0.89	0.95	0.90	0.85	0.81	0.86	0.91	0.88	0.88
AVG AUC	0.89	0.90	0.92	0.91	0.88	0.83	0.87	0.90	0.93	
AVG Precision	0.87	0.84	0.87	0.85	0.83	0.79	0.82	0.84	0.88	
AVG Recall	0.88	0.82	0.86	0.84	0.81	0.77	0.80	0.84	0.87	
AVG F1-score	0.86	0.82	0.86	0.84	0.80	0.77	0.78	0.83	0.86	
Number of biomarkers	36	308	203	454	285	398	342	148	390	
	AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC AVG Precision AVG Precision AVG Precision AVG Precision AVG Precision AVG Precision AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall AVG Recall	ABPV_IAPV_KBV AUC 0.89 Precision 0.86 Recall 0.88 F1-score 0.87 AUC 0.89 Precision 0.87 Recall 0.87 Recall 0.87 F1-score 0.86 AUC 0.93 Precision 0.84 Recall 0.87 F1-score 0.83 AUC 0.81 Precision 0.84 Recall 0.86 F1-score 0.84 Recall 0.86 F1-score 0.84 AUC 0.91 Precision 0.92 Recall 0.91 Precision 0.92 Recall 0.91 Precision 0.87 AVG AUC 0.89 AVG Precision 0.87 AVG Recall 0.88 AVG Fl-score 0.86 Number of biomarkers 36 <th>ABPV_IAPV_KBV BQCV AUC 0.89 0.9 Precision 0.86 0.82 Recall 0.88 0.80 F1-score 0.87 0.89 Precision 0.87 0.89 Precision 0.87 0.89 Recall 0.87 0.87 Precision 0.87 0.87 AUC 0.93 0.78 Precision 0.84 0.71 Recall 0.87 0.68 F1-score 0.83 0.68 F1-score 0.84 0.71 Recall 0.87 0.68 F1-score 0.83 0.68 AUC 0.84 0.87 Precision 0.84 0.87 Recall 0.86 0.84 AUC 0.91 0.92 Precision 0.92 0.90 Recall 0.91 0.89 F1-score 0.91 0.89 AVG AUC</th> <th>ABPV_IAPV_KBV BQCV CBPV AUC 0.89 0.9 0.91 Precision 0.86 0.82 0.84 Recall 0.88 0.80 0.83 F1-score 0.87 0.80 0.83 AUC 0.89 0.95 0.96 Precision 0.87 0.89 0.93 Recall 0.87 0.87 0.88 AUC 0.93 0.78 0.85 Precision 0.844 0.71 0.83 AUC 0.93 0.78 0.85 Precision 0.844 0.71 0.83 Recall 0.87 0.68 0.80 F1-score 0.83 0.68 0.79 AUC 0.81 0.93 0.92 Precision 0.844 0.84 0.84 F1-score 0.84 0.84 0.84 AUC 0.91 0.92 0.96 Precision 0.92 0.90</th> <th>ABPV_IAPV_KBV BQCV CBPV DWV_VDV_KV AUC 0.89 0.9 0.91 0.83 Precision 0.86 0.82 0.84 0.75 Recall 0.88 0.80 0.83 0.74 F1-score 0.87 0.80 0.83 0.74 AUC 0.89 0.95 0.96 0.96 Precision 0.87 0.89 0.89 0.89 Recall 0.87 0.89 0.89 0.89 Recall 0.87 0.87 0.88 0.89 AUC 0.93 0.78 0.85 0.84 Precision 0.84 0.71 0.83 0.76 Recall 0.87 0.68 0.80 0.75 F1-score 0.83 0.68 0.79 0.75 AUC 0.81 0.93 0.92 0.97 Precision 0.84 0.87 0.85 0.92 Recall 0.86 0.84</th> <th>ABPV_IAPV_KBV BQCV CBPV DWV_VDV_KV SBPV AUC 0.89 0.9 0.91 0.83 0.85 Precision 0.86 0.82 0.84 0.75 0.82 Recall 0.88 0.80 0.83 0.74 0.80 F1-score 0.87 0.80 0.83 0.74 0.80 AUC 0.89 0.95 0.96 0.96 0.95 Precision 0.87 0.89 0.89 0.91 0.80 0.83 0.74 0.80 Recall 0.87 0.89 0.95 0.96 0.95 0.96 0.95 Precision 0.87 0.87 0.88 0.89 0.91 AUC 0.93 0.78 0.85 0.84 0.77 Precision 0.84 0.71 0.83 0.76 0.71 Recall 0.87 0.88 0.80 0.75 0.68 F1-score 0.84 0.81 0.92</th> <th>ABPV_IAPV_KBV BQCV CBPV DWV_VDV_KV SBPV SBV AUC 0.89 0.9 0.91 0.83 0.85 0.8 Precision 0.86 0.82 0.84 0.75 0.82 0.73 Recall 0.88 0.80 0.83 0.74 0.80 0.71 F1-score 0.87 0.80 0.83 0.74 0.80 0.71 AUC 0.89 0.95 0.96 0.96 0.95 0.95 Precision 0.87 0.89 0.89 0.91 0.91 9.91 Recall 0.87 0.87 0.88 0.89 0.91 0.90 F1-score 0.86 0.87 0.88 0.89 0.91 0.90 AUC 0.93 0.78 0.85 0.84 0.77 0.69 Precision 0.844 0.71 0.83 0.76 0.71 0.65 Recall 0.87 0.68 0.80 0.75</th> <th>ABPV_IAPV_KBV BQCV CBPV DWV_VDV_KV SBPV SBV European Foulbrood AUC 0.89 0.9 0.91 0.83 0.85 0.8 0.83 Precision 0.86 0.82 0.84 0.75 0.82 0.73 0.77 Recall 0.88 0.80 0.83 0.74 0.80 0.72 0.76 F1-score 0.87 0.80 0.83 0.74 0.80 0.71 0.75 AUC 0.89 0.95 0.96 0.96 0.95 0.95 0.93 Precision 0.87 0.89 0.89 0.91 0.91 0.85 Recall 0.87 0.88 0.89 0.91 0.90 0.85 Precision 0.84 0.71 0.83 0.76 0.71 0.65 0.77 Recall 0.87 0.88 0.89 0.91 0.90 0.85 AUC 0.93 0.78 0.85 0.84 0.7</th> <th>ABPV_IAPV_KBV BQCV CBPV DWV_VDV_KV SBPV SBV European Foulbrood N. ceranae AUC 0.89 0.9 0.91 0.83 0.85 0.8 0.83 0.87 Precision 0.86 0.82 0.74 0.80 0.73 0.77 0.80 Recall 0.88 0.80 0.83 0.74 0.80 0.72 0.76 0.80 AUC 0.89 0.95 0.96 0.96 0.95 0.95 0.93 0.87 AUC 0.89 0.95 0.96 0.96 0.95 0.95 0.93 0.87 AUC 0.89 0.89 0.89 0.91 0.91 0.85 0.80 F1-score 0.86 0.87 0.88 0.89 0.91 0.90 0.85 0.80 F1-score 0.86 0.87 0.88 0.89 0.91 0.90 0.73 0.85 Precision 0.84 0.71 0.85</th> <th>ABPV_IAPV_KBV BQCV CBPV DWV_VDV_KV SBV European Foulbrood N. ceranae Varroa destructor AUC 0.83 0.9 0.91 0.83 0.82 0.83 0.83 0.87 0.92 Precision 0.866 0.82 0.84 0.75 0.620 0.73 0.77 0.80 0.86 Recall 0.88 0.80 0.83 0.74 0.80 0.71 0.76 0.80 0.84 F1-score 0.87 0.80 0.83 0.74 0.80 0.71 0.75 0.80 0.84 AUC 0.89 0.99 0.99 0.91 0.91 0.85 0.81 0.93 Precision 0.87 0.88 0.89 0.91 0.90 0.85 0.80 0.93 Precision 0.86 0.87 0.88 0.89 0.91 0.90 0.85 0.80 0.92 AUC 0.93 0.78 0.88 0.89 0.91 0</th>	ABPV_IAPV_KBV BQCV AUC 0.89 0.9 Precision 0.86 0.82 Recall 0.88 0.80 F1-score 0.87 0.89 Precision 0.87 0.89 Precision 0.87 0.89 Recall 0.87 0.87 Precision 0.87 0.87 AUC 0.93 0.78 Precision 0.84 0.71 Recall 0.87 0.68 F1-score 0.83 0.68 F1-score 0.84 0.71 Recall 0.87 0.68 F1-score 0.83 0.68 AUC 0.84 0.87 Precision 0.84 0.87 Recall 0.86 0.84 AUC 0.91 0.92 Precision 0.92 0.90 Recall 0.91 0.89 F1-score 0.91 0.89 AVG AUC	ABPV_IAPV_KBV BQCV CBPV AUC 0.89 0.9 0.91 Precision 0.86 0.82 0.84 Recall 0.88 0.80 0.83 F1-score 0.87 0.80 0.83 AUC 0.89 0.95 0.96 Precision 0.87 0.89 0.93 Recall 0.87 0.87 0.88 AUC 0.93 0.78 0.85 Precision 0.844 0.71 0.83 AUC 0.93 0.78 0.85 Precision 0.844 0.71 0.83 Recall 0.87 0.68 0.80 F1-score 0.83 0.68 0.79 AUC 0.81 0.93 0.92 Precision 0.844 0.84 0.84 F1-score 0.84 0.84 0.84 AUC 0.91 0.92 0.96 Precision 0.92 0.90	ABPV_IAPV_KBV BQCV CBPV DWV_VDV_KV AUC 0.89 0.9 0.91 0.83 Precision 0.86 0.82 0.84 0.75 Recall 0.88 0.80 0.83 0.74 F1-score 0.87 0.80 0.83 0.74 AUC 0.89 0.95 0.96 0.96 Precision 0.87 0.89 0.89 0.89 Recall 0.87 0.89 0.89 0.89 Recall 0.87 0.87 0.88 0.89 AUC 0.93 0.78 0.85 0.84 Precision 0.84 0.71 0.83 0.76 Recall 0.87 0.68 0.80 0.75 F1-score 0.83 0.68 0.79 0.75 AUC 0.81 0.93 0.92 0.97 Precision 0.84 0.87 0.85 0.92 Recall 0.86 0.84	ABPV_IAPV_KBV BQCV CBPV DWV_VDV_KV SBPV AUC 0.89 0.9 0.91 0.83 0.85 Precision 0.86 0.82 0.84 0.75 0.82 Recall 0.88 0.80 0.83 0.74 0.80 F1-score 0.87 0.80 0.83 0.74 0.80 AUC 0.89 0.95 0.96 0.96 0.95 Precision 0.87 0.89 0.89 0.91 0.80 0.83 0.74 0.80 Recall 0.87 0.89 0.95 0.96 0.95 0.96 0.95 Precision 0.87 0.87 0.88 0.89 0.91 AUC 0.93 0.78 0.85 0.84 0.77 Precision 0.84 0.71 0.83 0.76 0.71 Recall 0.87 0.88 0.80 0.75 0.68 F1-score 0.84 0.81 0.92	ABPV_IAPV_KBV BQCV CBPV DWV_VDV_KV SBPV SBV AUC 0.89 0.9 0.91 0.83 0.85 0.8 Precision 0.86 0.82 0.84 0.75 0.82 0.73 Recall 0.88 0.80 0.83 0.74 0.80 0.71 F1-score 0.87 0.80 0.83 0.74 0.80 0.71 AUC 0.89 0.95 0.96 0.96 0.95 0.95 Precision 0.87 0.89 0.89 0.91 0.91 9.91 Recall 0.87 0.87 0.88 0.89 0.91 0.90 F1-score 0.86 0.87 0.88 0.89 0.91 0.90 AUC 0.93 0.78 0.85 0.84 0.77 0.69 Precision 0.844 0.71 0.83 0.76 0.71 0.65 Recall 0.87 0.68 0.80 0.75	ABPV_IAPV_KBV BQCV CBPV DWV_VDV_KV SBPV SBV European Foulbrood AUC 0.89 0.9 0.91 0.83 0.85 0.8 0.83 Precision 0.86 0.82 0.84 0.75 0.82 0.73 0.77 Recall 0.88 0.80 0.83 0.74 0.80 0.72 0.76 F1-score 0.87 0.80 0.83 0.74 0.80 0.71 0.75 AUC 0.89 0.95 0.96 0.96 0.95 0.95 0.93 Precision 0.87 0.89 0.89 0.91 0.91 0.85 Recall 0.87 0.88 0.89 0.91 0.90 0.85 Precision 0.84 0.71 0.83 0.76 0.71 0.65 0.77 Recall 0.87 0.88 0.89 0.91 0.90 0.85 AUC 0.93 0.78 0.85 0.84 0.7	ABPV_IAPV_KBV BQCV CBPV DWV_VDV_KV SBPV SBV European Foulbrood N. ceranae AUC 0.89 0.9 0.91 0.83 0.85 0.8 0.83 0.87 Precision 0.86 0.82 0.74 0.80 0.73 0.77 0.80 Recall 0.88 0.80 0.83 0.74 0.80 0.72 0.76 0.80 AUC 0.89 0.95 0.96 0.96 0.95 0.95 0.93 0.87 AUC 0.89 0.95 0.96 0.96 0.95 0.95 0.93 0.87 AUC 0.89 0.89 0.89 0.91 0.91 0.85 0.80 F1-score 0.86 0.87 0.88 0.89 0.91 0.90 0.85 0.80 F1-score 0.86 0.87 0.88 0.89 0.91 0.90 0.73 0.85 Precision 0.84 0.71 0.85	ABPV_IAPV_KBV BQCV CBPV DWV_VDV_KV SBV European Foulbrood N. ceranae Varroa destructor AUC 0.83 0.9 0.91 0.83 0.82 0.83 0.83 0.87 0.92 Precision 0.866 0.82 0.84 0.75 0.620 0.73 0.77 0.80 0.86 Recall 0.88 0.80 0.83 0.74 0.80 0.71 0.76 0.80 0.84 F1-score 0.87 0.80 0.83 0.74 0.80 0.71 0.75 0.80 0.84 AUC 0.89 0.99 0.99 0.91 0.91 0.85 0.81 0.93 Precision 0.87 0.88 0.89 0.91 0.90 0.85 0.80 0.93 Precision 0.86 0.87 0.88 0.89 0.91 0.90 0.85 0.80 0.92 AUC 0.93 0.78 0.88 0.89 0.91 0

The F1-score weights recall more than precision by a factor of beta.

The majority of chemical biomarkers are unique to a given honey bee diseases

while others are in common with two or more diseases. A total of 11 chemical biomarkers are shared by all bee diseases (Figure 3).

Figure 3. The distribution of the chemical biomarker overlap is displayed with each bar color corresponding to a bee disease or a combination of them. The amount of overlap and with which disease is indicated by the lines that connect the black dots. If there is no line and only a black dot, then these chemical biomarkers are unique to this disease which is indicated by the panel to the left. The number of chemical biomarkers within each library, for each disease, is indicated by the horizontal bars to the left of the bee disease label. For clarity, only chemical biomarkers with overlap with three or fewer diseases are displayed.

Furthermore, from the metabolic pathway analysis we identified 43 chemical biomarkers that are significantly associated with a bee disease and have an interaction with one or more other metabolic pathways. From this analysis, Ethanolamine was the top hub metabolite, which was associated with a SBPV and SBV infection and this metabolite was connected to almost all other metabolites in the network that are significantly associated with the other diseases measured. Therefore, it has the highest centrality and connectedness within the network. Other notably hub metabolites include Lithocholic acid, Formic acid, Oleic acid, Guanidineacetic acid, Eicosapentaenoic acid (EPA), and Cortisone, which are mostly associated with *Varroa* mites and multiple viral infections (Figure 4, Table 2).

Figure 4. Each node represents a chemical biomarker that is a metabolite and part of a known metabolic pathway. An edge indicates that the chemical biomarkers consists of two metabolic pathways that interact with one another. The color of the node indicates the disease or diseases that the chemical biomarker is significantly associated with. If chemical names were unknown in the Pubchem database, then the CAS number of the metabolite is used instead as the identifying information.

Table 2. List of chemicals from the biomarker libraries that were found to be affecting the same biological pathway. The compound name or unique identifying code is presented along with the diseases that it is associated with in terms of abundance.

Compound Name	Disease
445638	DWV_VDV_KV, Varroa
443212	N. ceranae
Oleic Acid	SBPV, Foulbrood, BQCV, CBPV, SBV
5283564	<i>Varroa,</i> Foulbrood
5283560	Varroa
5283583	SBV, CBPV

5283584	BQCV
53478001	DWV_VDV_KV, N. ceranae
Ethanolamine	DWV_VDV_KV, SBV, CBPV
52921878	DWV_VDV_KV, CBPV, BQCV
5283137	DWV_VDV_KV, CBPV
22298936	SBPV, SBV, CBPV, BQCV
167817	Varroa
53480990	Varroa, CBPV
53480982	DWV_VDV_KV, BQCV, Foulbrood
3084463	DWV_VDV_KV, Varroa, SBV, N. ceranae
79075	DWV_VDV_KV, SBV, SBPV, BQCV
12178130	DWV_VDV_KV, Varroa, SBPV, Foulbrood, BQCV, SBV
53480981	Varroa
Eicosatrienoic acid	DWV_VDV_KV, SBV
EPA	DWV_VDV_KV, Foulbrood
5280793	DWV_VDV_KV, SBV
Guanidineacetic	
52479267	
53478207	SPDV Varrag CPDV SPV
Lithocholic acid	
52022204	
52922294	DW/V VDV KV Varroa
52478100	Foulbrood
53/78137	
53478137	
5292///55	SBV, BOCV
52924433	Varroa
53478221	DWV VDV KV Foulbrood
52924788	Foulbrood
53478431	
53478486	N cerange SBV
53478513	Varroa
53479469	SBPV SBV
53478570	Varroa N ceranae
53478591	Foulbrood
53480039	Foulbrood
Cortisone	Varroa

In addition, according to PubChem database there were 23 chemical biomarkers associated with bee diseases that interacted with 40 genes that have a known biological function. Diethylinitrosamine had the most interactions, but whether this chemical biomarker is associated with an upregulation or downregulation of these genes remains unknown. Formic acid, Oleic acid, EPA, and Lithocholic acid are not only connected to multiple metabolic pathways demonstrated from the metabolite pathway analysis, but they also are affecting or upregulating a number of genes as well. Styrenes and polystyrenes are known to be associated with toxic microplastics and they are connected with the downregulation with three different genes, while Polychlorinated Biphenyls, the second largest hub chemical biomarker is known to be a toxic pollutant that remains stable in the environment for a long time. The Polychlorinated Biphenyls are associated with an upregulation of a number of detoxification, oxidative stress, autophagy regulation genes. In general, the genes listed are involved with cellular aerobic respiration, oxidative stress, aging, translation, and autophagy regulation (Figure 5, Table 3).

Figure 5. A digraph that shows the chemical biomakers (blue nodes) that affect the expression of honey bee genes (orange nodes) as indicated by the edges in the network. Grey edges indicate that the effect is unknown. Green edges indicate that there is an upregulation of gene expression while the red edges indicate there is a downregulation in gene expression. Full gene names can be found in the GO analysis enrichment table 3.

Table 3. A list of the genes that are interacting with the chemical biomarkers with their associated biological functions. The biological functions were determined based on a

Gene abbreviation	Gene Name	PANTHER GO-slim Molecular Function		GOID
CAD	CarbamovI-Phosphate Synthetase 2	DNA-binding transcription factor activity		GO:0003700
Grib	Carbamoyl-Phosphate Synthetase 3	RNA polymerase II transcription regulatory region sequence-specific DNA binding	a	GO:0000977
CAT	Catalace	avidere ductere estivity esting on perovide as assenter	5	CO:0016684
CAT	Catalase	oxidoreductase activity, acting on peroxide as acceptor		GO.0010084
	Catalase	neme binding		GO:0020037
Cbs	Cystathionine beta-synthase	anion binding		GO:0043168
	Cystathionine beta-synthase	heterocyclic compound binding		GO:1901363
	Cystathionine beta-synthase	organic cyclic compound binding		GO:0097159
	Cystathionine beta-synthase	small molecule binding		GO:0036094
CDC37	Hsp90 co-chaperone Cdc37	heat shock protein binding		GO:0031072
	Hsp90 co-chaperone Cdc38	unfolded protein binding		GO:0051082
	Hispso to chaperone Cdc30	changerong binding		60:0051082
COV4	Catacherene e suidese subusit 1			60.0011087
COXI		proton transmembrane transporter activity		GO:0015078
	Cytochrome c oxidase subunit 1	electron transfer activity		GO:0009055
COX2	Cytochrome c oxidase subunit 2	proton transmembrane transporter activity		GO:0015078
	Cytochrome c oxidase subunit 2	electron transfer activity		GO:0009055
COX3	Cytochrome c oxidase subunit 3	electron transfer activity		GO:0009055
	Cytochrome c oxidase subunit 3	active transmembrane transporter activity		GO:0022804
ECR	Ecdysone receptor	RNA polymerase II cis-regulatory region sequence-specific DNA binding		GO:0000978
	Ecdysone receptor	DNA-binding transcription factor activity. BNA polymerase II-specific		GO:0000981
EIEDH	Eukanyatis translation initiation faster 3 subunit H	translation initiation factor activity		GO:0000381
EIF3H	Eukaryotic translation initiation factor 3 subunit H	translation initiation factor activity		GU:0003743
	Eukaryotic translation initiation factor 3 subunit H	metallopeptidase activity		GO:0008237
MRPL16	39S ribosomal protein L16, mitochondrial	structural constituent of ribosome		GO:0003735
	39S ribosomal protein L16, mitochondrial	rRNA binding		GO:0019843
MSRA	Peptide methionine sulfoxide reductase	oxidoreductase activity, acting on a sulfur group of donors		GO:0016667
PDHB	Pyruvate dehydrogenase E1 component subunit beta	oxidoreductase activity		GO:0016491
PTEN	IP16020n	nhosphatase activity		GO:0016791
RECK	FI21605.01	protose binding		60.0002020
NLCK	F121000P1	protease uniding		60.0002020
	F121605p2	endopeptidase inhibitor activity		GU:0004866
	FI21605p3	endopeptidase activity		GO:0004175
RPL35	60S ribosomal protein L35	structural constituent of ribosome		GO:0003735
	60S ribosomal protein L36	mRNA binding		GO:0003729
RPS8	40S ribosomal protein S8	structural constituent of ribosome		GO:0003735
SOD1	Superoxide dismutase [Cu-7n]	oxidoreductase activity		GO:0005507
	Superovide dismutase [Cu-Zn]	copper ion binding		GO:0005507
6003	Superovide dismutase [Ma] mitashandrial	exidereductors activity		CO:0016401
5002	Superoxide dismutase [ivin], mitochondrial	oxidoreductase activity		GO:0016491
	Superoxide dismutase [Mn], mitochondrial	transition metal ion binding		GO:0046914
TG	TGc domain-containing protein	catalytic activity, acting on a protein		GO:0140096
	TGc domain-containing protein	transferase activity, transferring acyl groups		GO:0016746
Gene abbreviation	Gene Name	PANTHER GO-slim Biological Process:	GO ID	
ATP6	ATP synthase membrane subunit 6	ATP synthesis coupled proton transport	GO:00159	186
CAD	CarbamovI-Phosphate Synthetase 2	embryo development	GO:00097	'90
CAD	Carbamoyl-Phosphate Synthetase 2	embryo development transcription by RNA polymerase II	GO:00097	90
CAD	Carbamoyl-Phosphate Synthetase 2 Carbamoyl-Phosphate Synthetase 3	embryo development transcription by RNA polymerase II requiring of transporting by DNA columence II	GO:00097 GO:00063	190 166
CAD	Carbamoyl-Phosphate Synthetase 2 Carbamoyl-Phosphate Synthetase 3 Carbamoyl-Phosphate Synthetase 4 Carbamoyl-Phosphate Synthetase 4	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II	GO:00097 GO:00063 GO:00063	90 666 666
CAD	Carbamoyl-Phosphate Synthetase 2 Carbamoyl-Phosphate Synthetase 3 Carbamoyl-Phosphate Synthetase 4 Carbamoyl-Phosphate Synthetase 5	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification	GO:00097 GO:00063 GO:00063 GO:00099	990 666 666 52
CAD	Carbamoyl-Phosphate Synthetase 2 Carbamoyl-Phosphate Synthetase 3 Carbamoyl-Phosphate Synthetase 4 Carbamoyl-Phosphate Synthetase 5 Carbamoyl-Phosphate Synthetase 6	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation	GO:00097 GO:00063 GO:00063 GO:00099 GO:00301	990 666 152 54
CAD	Carbamoyl-Phosphate Synthetase 2 Carbamoyl-Phosphate Synthetase 3 Carbamoyl-Phosphate Synthetase 4 Carbamoyl-Phosphate Synthetase 5 Carbamoyl-Phosphate Synthetase 6 Carbamoyl-Phosphate Synthetase 7	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis	GO:00097 GO:00063 GO:00063 GO:00099 GO:00301 GO:00301	990 666 552 554
CAD	Carbamoyl-Phosphate Synthetase 2 Carbamoyl-Phosphate Synthetase 3 Carbamoyl-Phosphate Synthetase 4 Carbamoyl-Phosphate Synthetase 5 Carbamoyl-Phosphate Synthetase 6 Carbamoyl-Phosphate Synthetase 7 Catalase	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound	GO:00097 GO:00063 GO:00063 GO:00099 GO:00301 GO:00301 GO:19017	90 66 65 55 54 700
CAD	Carbamoyl-Phosphate Synthetase 2 Carbamoyl-Phosphate Synthetase 3 Carbamoyl-Phosphate Synthetase 4 Carbamoyl-Phosphate Synthetase 5 Carbamoyl-Phosphate Synthetase 6 Carbamoyl-Phosphate Synthetase 7 Catalase Catalase	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process	GO:00097 GO:00063 GO:00063 GO:00099 GO:00301 GO:00301 GO:19017 GO:00442	90 66 66 552 554 700 448
CAD	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 6 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/postern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to inorganic substance	G0:00097 G0:00063 G0:00063 G0:00099 G0:00301 G0:00301 G0:19017 G0:00442 G0:00100	90 66 65 55 55 55 700 848 835
CAD	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 6 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress	G0:00097 G0:00063 G0:00099 G0:00301 G0:00301 G0:19017 G0:00442 G0:00100 G0:00069	90 166 152 154 154 100 148 135 179
CAD	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 6 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Cystathionine beta-synthese	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to inorganic substance response to oxidative stress sulfur compound metabolic process	G0:00097 G0:00063 G0:00063 G0:00099 G0:00301 G0:00301 G0:19017 G0:00442 G0:00100 G0:00069 G0:00069	90 666 552 554 754 700 779 90
CAD	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catadase Cat	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to inorganic substance response to oxidative stress sulfur compound metabolic process alpha paine acid metabolic process	G0:00097 G0:00063 G0:00063 G0:00099 G0:00301 G0:00301 G0:0017 G0:00442 G0:00100 G0:00067 G0:00067	90 666 552 554 554 700 835 779 90 005
CAD	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process (ellular biourbatile process	G0:00097 G0:00063 G0:00063 G0:00099 G0:00301 G0:00301 G0:00301 G0:00422 G0:00100 G0:00069 G0:00069 G0:00069	90 666 652 554 554 700 779 90 005 005
CAD CAT Cbs	Carbamoyl-Phosphate Synthetase 2 Carbamoyl-Phosphate Synthetase 3 Carbamoyl-Phosphate Synthetase 4 Carbamoyl-Phosphate Synthetase 4 Carbamoyl-Phosphate Synthetase 6 Carbamoyl-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Cystathionine beta-synthase Cystathionine beta-synthase Union a chearum contra	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to inorganic substance response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process	G0:00097 G0:00063 G0:00093 G0:00099 G0:00301 G0:00301 G0:00422 G0:00100 G0:00422 G0:00069 G0:0069 G0:00462 G0:00462 G0:00462 G0:00462 G0:00067	90 666 552 554 554 754 754 759 79 900 900 900
CAD CAT CAT Cbs CDC37	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Hsp90co-chaperone Cdc37	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process protein folding	GO:00097 GO:00063 GO:00063 GO:00099 GO:00301 GO:00301 GO:00301 GO:00422 GO:00069 GO:00069 GO:00069 GO:00067 GO:19016 GO:000642 GO:00067	90 666 652 554 554 648 835 779 90 90 90 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT Cbs CDC37	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 6 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cystathionine beta-synthase Cystathionine beta-synthase Hsp90 co-chaperone Cdc37 Hsp90 co-chaperone Cdc38	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process protein folding protein folding	G0:00097 G0:00063 G0:00063 G0:00099 G0:00301 G0:00301 G0:00442 G0:00100 G0:00067 G0:00067 G0:00067 G0:000642 G0:00064 G0:00064 G0:00064 G0:00064	90 666 667 52 54 54 54 00 488 835 779 900 900 900 557 57 521
CAD CAT CAT Cbs CDC37 COX1	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase 7 Catalase 2 Catalase 2 Catalase 2 Catalase 2 Catalase 2 Catalase 2 Cystathionine beta-synthase 2 Cystathionine beta-synthase 3 Cystathionine beta-syntha	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to inorganic substance response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport chain	G0:00097 G0:00063 G0:00063 G0:00099 G0:00301 G0:00301 G0:00422 G0:00042 G0:00064 G0:00064 G0:00422 G0:00064 G0:00508 G0:00529 G0:00229	90 90 90 90 952 54 954 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT Cbs CDC37 CDC37	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Cystathionine beta-syntha	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to norganic substance response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process protein folding protein folding protein stabilization respiratory electron transport chain proton transmembrane transport	G0:00097 G0:00063 G0:00063 G0:00099 G0:00391 G0:00391 G0:00422 G0:00422 G0:00067 G0:00422 G0:00064 G0:000642 G0:000642 G0:000642 G0:000642 G0:000642 G0:000642 G0:000642 G0:000642 G0:000642 G0:000642 G0:00064 G0:00066 G0:00066 G0:00066 G0:00066 G0:00066 G0:00066 G0:00066 G0:00066 G0:00066 G0:00066 G0:00066 G0:00066 G0:00066 G0:00066 G0	90 666 652 554 554 700 835 779 900 605 557 557 521 104 600
CAD CAT CAT Cbs CDC37 CDC37	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Kyp90 co-chaperone Cdc37 Hsp90 co-chaperone Cdc37 Kyp0 co-chaperone Cdc38 Cytochrome c oxidase subunit 2 Cytochrome c oxidase subunit 3	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization resporatory electron transport chain proton transmembrane transport	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:00301 GC:00301 GC:00424 GC:00069 GC:00069 GC:00069 GC:000642 GC:000642 GC:00508 G	90 90 90 90 52 54 55 54 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CDS CDC37 CDC37 COX1 COX1	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Kip90 co-chaperone Cdc33 Kip00 co-chaperone Cdc33 Cytochrome c oxidase subunit 1 Cytochrome c oxidase subunit 2	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to inorganic substance response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport aerobic respiration ATP synthesis coupled proton transport	GC:00097 GC:00063 GC:00063 GC:00030 GC:00301 GC:00301 GC:00301 GC:00442 GC:00100 GC:00069 GC:00064 GC:000442 GC:00064 GC:00064 GC:000064 GC:00066 GC:00066 GC:00066 GC:00066 GC:00066 GC:00066 GC:00066 GC:00066 GC:00066 GC	90 666 655 554 554 554 554 554 557 759 90 005 557 557 557 521 204 000 660 660
CAD CAT CAT CDS CDC37 CDC37 COX1 COX2	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine beta-synthase	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to inorganic substance response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport aerobic respirator ATP synthesis coupled electron transport	GC:00097 GC:00063 GC:00063 GC:00063 GC:00099 GC:00301 GC:00301 GC:00424 GC:00067 GC:00442 GC:00067 GC:00442 GC:00067 GC:00042 GC:000508 GC:00508 GC:00508 GC:00509 GC:00509 GC:00509 GC:0059	90 666 6752 554 554 564 575 779 900 779 900 757 757 757 757 757 750 753
CAD CAT CAT CAT Cbs Cbs CDC37 CDC37 COX1 COX2 COX2	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Kip90 co-chaperone Cdc37 Kip90 co-chaperone Cdc37 Kip90 co-chaperone Cdc33 Cytochrome c oxidase subunit 1 Cytochrome c oxidase subunit 2 Cytochrome c oxidase subunit 3 Cytochrome c oxidase subunit 3	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization resportatory electron transport aerobic respiration ATP synthesis coupled electron transport ATP synthesis coupled electron transport	GC:00097 GC:00063 GC:00063 GC:00030 GC:00301 GC:00301 GC:00301 GC:00442 GC:00100 GC:00042 GC:000442 GC:000442 GC:000442 GC:000508 GC:00229 GC:0029 GC	90 90 90 90 95 54 54 54 54 54 54 54 54 54 5
CAD CAT CAT CAT Cbs Cbs CDC37 CDC37 COX1 COX1 COX2 COX2 COX3 FCR	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Cytathionine beta-synthase 7 Cytathionine beta-synthase 7 Cytathionine beta-synthase 7 Hsp90 co-chaperone Cdc38 Cytochrome c oxidase subunit 1 Cytochrome c oxidase subunit 2 Cytochrome c oxidase subunit 2 Cytochrome c oxidase subunit 2 Cytochrome c oxidase subunit 3 Cytochrome c oxidase subunit 3	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport aerobic respiration ATP synthesis coupled proton transport ATP synthesis coupled proton transport aerobic respiration by RNA polymerase II	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:00301 GC:00301 GC:00422 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00508 GC:	90 90 90 90 90 95 54 54 54 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CDS CDC37 CDC37 COX1 COX2 COX2 COX3 ECR	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 6 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytochrome coxidase subunit 1 Cytochrome c oxidase subunit 2 Cytochrome c oxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to inorganic substance response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization protein stabilization ATP synthesis coupled electron transport ATP synthesis coupled proton transport aerobic respiration negative regulation of transcription by RNA polymerase II protein folding by RNA polymerase II protein folding by RNA polymerase II protein folding by RNA polymerase II protein folding by RNA polymerase II	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:00301 GC:00301 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00042 GC:000508 GC:00508 GC	90 90 90 90 90 95 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CDC37 CDC37 COX1 COX2 COX2 COX3 ECR	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Cytathionine beta-synthase 7 Cytathionine beta-synthase 7 Cytathionine beta-synthase 7 Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 3 Cytochrome coxidase sub	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to inorganic substance response to inorganic substance response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport chain proton transmembrane transport aerobic respiration ATP synthesis coupled electron transport ATP synthesis coupled electron transport aerobic respiration negative regulation of transcription by RNA polymerase II proclim sequent "bit enditienter "	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:00301 GC:00301 GC:00422 GC:00422 GC:00422 GC:00422 GC:00422 GC:00422 GC:00422 GC:00427 GC:000427 GC:00427 GC:00427 GC:00427 GC:00427 GC:00427 GC:00427 GC:00427 GC:00442 GC	90 90 90 90 95 54 95 93 93 93 93 93 93 93 93 93 93
CAD CAT CAT CAT CDC37 CDC37 COX1 COX2 COX3 ECR COX3 COX3 COX3 COX3 COX3 COX3 COX3 COX3	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathione beta-synthase Cystath	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport aerobic respiration ATP synthesis coupled proton transport ATP synthesis coupled proton transport aerobic respiration protein folding protein folding proton transmembrane transport aerobic respiration ATP synthesis coupled proton transport ATP synthesis coupled proton transport protein folding protein folding protein folding proton transport ATP synthesis coupled proton transport protein folding protein folding protein folding protein folding protein folding proton transport ATP synthesis coupled proton transport protein folding protein 0097 GC:00063 GC:00063 GC:00099 GC:00301 GC:00301 GC:00301 GC:00422 GC:00042 GC:00042 GC:00042 GC:000422 GC:000422 GC:00508 G	90 90 90 90 90 54 54 54 54 90 90 90 90 90 90 90 90 90 90	
CAD CAT CAT CAT CDS CDC37 CCC37 CCC37 CCC37 CCC32 CCC32 CCC32 CCC33 ECCR CCC33	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytochrome coxidase subunit 1 Cytochrome c oxidase subunit 2 Cytochrome c oxidase subunit 3 Cytochrome c oxidase subunit	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process sulfur compound metabolic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization proton transport aerobic respiration ATP synthesis coupled electron transport ATP synthesis coupled electron transport aerobic respiration taps device protein folding protein folding proton transport aerobic respiration ATP synthesis coupled electron transport aerobic respiration protein folding protein folding positive regulation of transcription by RNA polymerase II cell differentiation cell differentiation cell differentiation	GC:00097 GC:00063 GC:00063 GC:000301 GC:00301 GC:00301 GC:00301 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:000508 GC:00508 G	90 90 90 90 90 52 54 54 54 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CDS CDS CDC37 CDC37 COX1 COX1 COX2 COX3 ECR COX3 ECR	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to ionrganic substance response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process protein folding protein folding protein ransport chain respiratory electron transport aerobic respiration ATP synthesis coupled proton transport ATP synthesis coupled electron transport protein respiration cellular biosynthetic process cupied proton transport aerobic respiration ATP synthesis coupled electron transport aerobic respiration protein respiration by RNA polymerase II transcription by RNA polymerase II positive regulation of transcription by RNA polymerase II cellular response to oxidative stress	GC:00097 GC:00063 GC:00063 GC:00099 GC:0031 GC:019017 GC:00442 GC:00442 GC:00046 GC:000464 GC:000464 GC:000464 GC:000464 GC:000508 GC:000472 GC:00090 GC:00047 GC:00040 GC:000427 GC:00040 GC:000459 GC:00057	90 90 90 90 90 95 448 935 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT Cbs Cbs Cbs CDC37 CDC37 COX1 COX1 COX1 COX2 COX3 COX3 COX3 COX3 COX3 COX3 COX3 COX3	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystochrome coxidase subunit 1 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Eddysone receptor Eddysone receptor Peptide methionine sulfoxide reductase Pyruvate dehydrogenase E1 component subunit beta	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process sulfur compound metabolic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport aerobic respiration ATP synthesis coupled proton transport ATP synthesis coupled proton transport aerobic respiration negative regulation of transcription by RNA polymerase II transcription by RNA polymerase II cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:019017 GC:00442 GC:00100 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:000508 GC:00508 GC:00508 GC:00508 GC:00508 GC:00508 GC:00508 GC:00	90 90 90 90 90 54 54 54 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CAT CDS CDC37 CDC37 COX1 COX2 COX2 COX3 ECR COX3 ECR	Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cystathionine beta-synthase Cystathionine beta-sy	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process sulfur compound metabolic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport aerobic respiration ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport aerobic respiration negative regulation of transcription by RNA polymerase II positive regulation of transcription by RNA polymerase II cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation	GC:00097 GC:00063 GC:00063 GC:000301 GC:00301 GC:00301 GC:00442 GC:00142 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00508 GC:0029 GC:0029 GC:0029 GC:0029 GC:000508 GC:0029 GC:000508 GC:0029 GC:000508 GC:00508 GC:00508 GC:0	90 90 90 90 55 54 54 54 54 54 54 54 54 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CDS CDC37 CDC37 CDC37 COX1 COX1 COX2 COX3 ECR COX3 ECR MSRA PDHB	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytothrome coxidase subunit 1 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 4 Pyruvate dehydrogenase E1 component subunit beta Pyruvate dehydrogenase E1 component subunit beta	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxgen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport darbic respiration megative regulation of transcription by RNA polymerase II transcription by RNA polymerase II prostive regulation of transcription by RNA polymerase II cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation prostive regulation of transcription by RNA polymerase II cell differentiation cell differentiation cell differentiation protein stobilic process monocarboxylic acid metabolic process purine ribonucleotide biosynthetic process	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:00301 GC:00420 GC:00420 GC:00042 GC:	90 90 90 90 90 95 54 95 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CAT CDC37 CDC37 CC0X1 CC0X2 CC0X2 CC0X3 ECR CC0X3 ECR MSRA PDHB N	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Cystathionine beta-synthase Cystathionine idase subunit 1 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Eddysone receptor Eddysone receptor Eddysone receptor Peptide methionine sulfoxide reductase Pyruvate dehydrogenase E1 component subunit beta Pyruvate dehydrogenase E1 component subunit beta Pyruvate dehydrogenase E1 component subunit beta	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process protein folding protein folding protein stabilization respiratory electron transport aerobic respiration ATP synthesis coupled proton transport ATP synthesis coupled proton transport aerobic respiration negative regulation of transcription by RNA polymerase II transcription by RNA polymerase II cellular biosynthetic process acid ifferentiation cellular transcription by RNA polymerase II cellular transcription by RNA polymerase II cellular tresponse to xidative stress acyl-CoA metabolic process purine ribonucleotide biosynthetic process purine ribonucleotide biosynthetic process	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:019017 GC:00442 GC:00040 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00058 GC:00058 GC:00058 GC:00058 GC:00058 GC:00059 GC:00059 GC:00059 GC:00059 GC:00059 GC:00059 GC:00059 GC:00059 GC:00059 GC:00051 GC:0051 GC:0051 GC:0051 GC:0051 GC:005	90 90 90 90 90 54 54 54 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT Cbs Cbs CDC37 COX1 COX1 COX2 COX2 COX3 ECR ECR MSRA PDHB	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 4 Pyruvate dehydrogenase E1 component subunit beta Pyruvate dehydrogenase E1 component subunit beta	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to inorganic substance response to oxidative stress sulfur compound metabolic process alpha-amino aid metabolic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process alpha-amino aid metabolic process cellular biosynthetic process cellular biosynthetic process arespiratory electron transport chain protein folding protein stabilization respiratory electron transport chain protein stabilization ATP synthesis coupled proton transport ATP synthesis coupled electron transport ATP synthesis coupled electron transport aerobic respiration negative regulation of transcription by RNA polymerase II transcription by RNA polymerase II cell differentiation cellular response to oxidative stress acyl-CoA metabolic process purine ribonucleotide biosynthetic process anide biosynthetic process	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:00301 GC:00422 GC:00422 GC:00067 GC:00067 GC:00067 GC:000422 GC:000422 GC:00090 GC:000427 GC:000427 GC:000427 GC:000459 GC:000459 GC:000459 GC:000459 GC:000459 GC:000459 GC:000459 GC:000459 GC:000459 GC:000459 GC:000459 GC:000459 GC:000459 GC:000459 GC:000456 GC:00057 GC:0057 GC	90 90 90 90 90 52 54 95 93 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT Cbs Cbs CDC37 CDC37 COX1 COX1 COX2 COX2 COX3 ECR COX3 ECR MSRA PDHB	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cytochrome coxidase subunit 1 Cytochrome c oxidase subunit 2 Cytochrome c oxidase subunit 2 Cytochrome c oxidase subunit 3 Cytochrome c oxidase subunit 4 Cytochrome c 0 Cytochrome c 0	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxgen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport aerobic respiration negative regulation of transcription by RNA polymerase II transcription by RNA polymerase II prostive regulation of transcription by RNA polymerase II cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation proten to oxidative stress acyl-CoA metabolic process purine ribouncedotide biosynthetic process amide biosynthetic process amide biosynthetic process	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:019017 GC:00442 GC:00042 GC:00067 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:000508 GC:00508 GC:00508 GC:00508 GC:00508 GC:00508 GC:00508 GC:00	90 90 90 90 90 95 54 55 54 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CAT CAT COX CDC37 CDC37 COX1 COX1 COX2 COX2 COX3 ECR MSRA PDHB PDHB PTEN RECK	Carbamoyl-Phosphate Synthetase 2 Carbamoyl-Phosphate Synthetase 3 Carbamoyl-Phosphate Synthetase 4 Carbamoyl-Phosphate Synthetase 5 Carbamoyl-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytochrome coxidase subunit 1 Cytochrome c oxidase subunit 2 Cytochrome c oxidase subunit 3 Cytochrome c oxidase subunit 3 Cytochrome c oxidase subunit 3 Cytochrome c oxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 4 Cytochrome coxidase subunit 4 Cytochrome coxidase subunit 5 Cytochrome coxidase subunit 4 Pytuvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta Pytruvate dehydrogenase E1 component subunit beta	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to suidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process dipha-amino acid metabolic process cellular biosynthetic process protein folding protein stabilization protein stabilization ATP synthesis coupled electron transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled electron transport aerobic respiration negative regulation of transcription by RNA polymerase II transcription by RNA polymerase II cellular response to oxidative stress acyl-CoA metabolic process monocarboxylic acid metabolic process dephosphorylation extracellular matrix organization protein franscription by RNA polymerase II cellular response to oxidative stress acyl-CoA metabolic process monocarboxylic acid metabolic process	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:019017 GC:00442 GC:00142 GC:00042 GC:00067 GC:00067 GC:00067 GC:00067 GC:000508 GC:00050	90 90 90 90 55 54 54 54 54 54 54 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CAT CDS CDC37 CDC37 COX1 COX1 COX2 COX2 COX3 ECR COX3 ECR MSRA PDHB PTEN RECK	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine sulfoxide reductase Pyruvate dehydrogenase E1 component subunit beta Pyruvate	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to inorganic substance response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process protein folding protein folding protein ransport chain respiratory electron transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport transcription by RNA polymerase II transcription by RNA polymerase II transcription by RNA polymerase II cell differentiation cel	GC:00097 GC:00063 GC:00063 GC:00099 GC:0031 GC:01917 GC:00442 GC:00042 GC:0	90 90 90 90 90 95 54 95 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CAT CAT CDC37 CDC37 CCC37 CCC37 CCC37 CCC37 CCC32 CCC33	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathione beta-synthase Cytochrome coxidase subunit 1 Cytochrome c coxidase subunit 2 Cytochrome c coxidase subunit 3 Cytochrome c coxidase subunit 4 Pytuvate dehydrogenase E1 component subunit beta Pyruvate dehydrogenase E1 component subunit beta	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport chain proton transmembrane transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport aerobic respiratory cell differentiation regulation of transcription by RNA polymerase II transcription by RNA polymerase II cell differentiation cell differentiat	GC:00097 GC:00063 GC:00063 GC:00063 GC:00099 GC:00301 GC:019017 GC:00442 GC:00100 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:000508 G	90 90 90 90 90 54 54 54 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CDS CDC37 COX1 COX2 COX2 COX2 COX3 ECR COX3 ECR COX3 ECR PDHB PDHB	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 4 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 4 Pyruvate dehydrogenase E1 component subunit beta Pyruvate dehydrogenase E1 component subunit beta	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to inorganic substance response to oxidative stress sulfur compound metabolic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport Chain proton transmembrane transport aerobic respiration ATP synthesis coupled electron transport ATP synthesis coupled electron transport ATP synthesis coupled electron transport aerobic respiration negative regulation of transcription by RNA polymerase II transcription by RNA polymerase II positive regulation of transcription by RNA polymerase II cellular response to oxidative stress acyl-CoA metabolic process purine ribonucleotide biosynthetic process dephosphorylation retracellular matrix organization proteolysis negative regulation of endopeptidase activity cellular protein metabolic process	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:00301 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00442 GC:00459 GC:00459 GC:00459 GC:00459 GC:00459 GC:00451 GC:0051 G	90 90 90 90 90 54 54 54 95 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CAT CDC37 CDC37 CDC37 CDC37 COX1 COX1 COX2 COX2 COX3 ECR COX3 ECR COX3 COX3 COX3 COX2 COX3 COX3 COX2 COX3 COX3 COX2 COX3 COX3 COX3 COX2 COX3 COX2 COX3 COX3 COX3 COX2 COX3 COX3 COX2 COX3 COX3 COX3 COX2 COX3 COX3 COX2 COX3 COX3 COX3 COX3 COX3 COX3 COX2 COX3 COX3 COX3 COX3 COX3 COX3 COX3 COX3	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystochrome coxidase subunit 1 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 4 Pyruvate dehydrogenase E1 component subunit beta Pyruvate	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxgen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport chain proton transmembrane transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport aerobic respiration negative regulation of transcription by RNA polymerase II transcription by RNA polymerase II positive regulation of transcription by RNA polymerase II cell differentiation cellular response to oxidative stress anide biosynthetic process monocarboxylic acid metabolic process amide biosynthetic process anide biosynthetic process cellular response to exidative stress component of LSU-rRNA frame tricitoric rRNA transcript (SSU-rRNA, SSU-rRNA, LSU-rRNA)	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:00142 GC:0042 GC:00044 GC:00042 GC:0	90 90 90 90 90 95 54 95 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CAT CAT CAT CCAT CCAT CC	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 4 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 4 Pyruvate dehydrogenase E1 component subunit beta Pyruvate	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process alpha-amino acid metabolic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport chain proton transmembrane transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport aerobic respiration negative regulation of transcription by RNA polymerase II transcription by RNA polymerase II positive regulation of transcription by RNA polymerase II cellular tesponse to oxidative stress acyl-CoA metabolic process purine ribonucleotide biosynthetic process acyl-CoA metabolic process dephosphorylation extracellular matrix organization protopolic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process meturation of ESU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.85 rRNA, ISU-rRNA) maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.85 rRNA, ISU-rRNA)	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:019017 GC:00442 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:000508 GC:00508 G	90 90 90 90 55 54 54 54 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CAT CDS CDS CDS CDC37 COX1 COX1 COX2 COX2 COX2 COX3 ECR MSRA PDHB PDHB PDHB PTEN RECK RPL35 RPS8 SOD1	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Catalase 7 Cytathionine beta-synthase 7 Cytathionine beta-synthase 7 Cytathionine beta-synthase 7 Cytathionine beta-synthase 7 Cytathionine beta-synthase 7 Cytathionine beta-synthase 7 Cytathionine beta-synthase 7 Cytathionine beta-synthase 7 Cytathionine beta-synthase 7 Cytathionine beta-synthase 7 Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 4 Cytochrome hydrogenase E1 component subunit beta 7 Pyruvate dehydrogenase E1 compo	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process alpha-amino acid metabolic process cellular biosynthetic process alpha-amino acid metabolic process cellular biosynthetic process alpha-amino acid metabolic process cellular biosynthetic process aresponse to ransport chain protein folding protein frasmembrane transport aerobic respiration ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport transcription by RNA polymerase II positive regulation of transcription by RNA polymerase II transcription by RNA polymerase II positive regulation of transcription by RNA polymerase II cell differentiation cellular response to oxidative stress acyl-CoA metabolic process monocarboxylic adid metabolic process monocarboxylic adid metabolic process monocarboxylic adid metabolic process anide biosynthetic process anide biosynthetic process meturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, SSS rRNA, LSU-rRNA) maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, SS rRNA, LSU-rRNA) maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, SS rRNA, LSU-rRNA)	GC:00097 GC:00063 GC:00063 GC:00099 GC:0031 GC:0031 GC:0042 GC:0042 GC:00069 GC:00067 GC:00067 GC:00067 GC:00067 GC:00067 GC:00029 GC:00029 GC:00029 GC:00029 GC:00090 GC:000427 GC:00090 GC:000427 GC:00090 GC:000427 GC:00090 GC:000427 GC:00090 GC:000427 GC:00090 GC:00043 GC:000445 GC:00045 GC	90 90 90 90 90 95 54 95 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CAT CDC37 CDC37 CDC37 COX1 COX2 COX2 COX3 ECR COX3 ECR MSRA PDHB PTEN RECK RPLS RPS8 SOL	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 4 Cytochrome coxidase subunit 4 Pyruvate dehydrogenase E1 component subunit beta Pyruvate	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport chain proton transmembrane transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled deterton transport aerobic respiration ellular biosynthetic process cellular biosynthetic process aerobic respiration cellular esponse to oxidative stress aerobic respiration cellular esponse to didative stress acyl-CoA metabolic process protein folding protein folding protein folding proton transport ATP synthesis coupled deterton transport ATP synthesis coupled deterton transport cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cellular response to oxidative stress acyl-CoA metabolic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process maturation of ISU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.85 rRNA, ISU-rRNA) maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.85 rRNA, ISU-rRNA) cellular response to oxidative stress	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:00100 GC:00424 GC:00100 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:000508 GC:00508 GC:00508 GC:00508 GC:00508 GC:00508 GC:00	90 90 90 90 90 90 95 54 55 54 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CAT CAT CAT CAT COX CDC37 COX3 COX3 COX2 COX2 COX3 ECR COX3 ECR COX3 ECR COX2 COX3 ECR COX3 COX2 COX3 COX2 COX3 COX2 COX3 COX2 COX3 COX2 COX3 COX2 COX3 COX3 COX2 COX3	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 4 Pyruvate dehydrogenase E1 component subunit beta Pyruvate dehydrogenase E1 component subun	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process cellular biosynthetic process cellular subolic process protein folding protein folding protein folding protein folding protein folding protein folding transport chain ATP synthesis coupled electron transport ATP synthesis coupled electron transport ATP synthesis coupled electron transport ATP synthesis coupled electron transport ATP synthesis coupled electron transport ATP synthesis coupled electron transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport aerobic respiration negative regulation of transcription by RNA polymerase II cellular response to oxidative stress acyl-CoA metabolic process moncarboxylic acid metabolic process purine ribonucleotide biosynthetic process amide biosynthetic process maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.85 rRNA, LSU-rRNA) cellular response to oxidative stress cellular response to oxidative stress	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:00301 GC:00422 GC:00069 GC:00067 GC:00067 GC:00067 GC:00067 GC:000427 GC:000427 GC:00090 GC:001907 GC:00090 GC:001907 GC:00090	90 90 90 90 90 55 54 54 54 95 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CAT CDS CDC37 CDC37 COX1 COX1 COX2 COX3 ECR COX3 ECR COX3 ECR COX3 ECR COX3 ECR COX3 ECR COX3 ECR COX3 COX	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytothrome coxidase subunit 1 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 4 Pyruvate dehydrogenase E1 component subunit beta Pyruvate dehydrogenase	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process I response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process protein stabilization respiratory electron transport chain proton transmembrane transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport derobic respiration negative regulation of transcription by RNA polymerase II transcription by RNA polymerase II prostive regulation of transcription by RNA polymerase II cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cell differentiation cellular response to oxidative stress anide biosynthetic process monocarboxylic acid metabolic process monocarboxylic acid metabolic process maturation of SU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.85 rRNA, LSU-rRNA) maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.85 rRNA, LSU-rRNA) cellular response to oxidative stress cellular response to oxidative stress	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:00301 GC:00422 GC:00042 GC:00067 GC:00042 GC:00067 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00031 GC:00042 GC:00031 GC:00042 GC:00031 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00042 GC:00044 GC:00044 GC:000442 GC:00044	90 90 90 90 90 90 91 92 94 93 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CAT CAT CAT CCAT CCAT CC	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 3 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathionine beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cystathione beta-synthase Cytochrome c oxidase subunit 1 Cytochrome c oxidase subunit 2 Cytochrome c oxidase subunit 3 Cytochrome c oxidase subunit 4 Pyruvate dehydrogenase E1 component subunit beta Pyruvate dehydrogenase E1 co	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation animal organ morphogenesis response to oxygen-containing compound cellular catabolic process response to oxidative stress sulfur compound metabolic process alpha-amino acid metabolic process cellular biosynthetic process cellular biosynthetic process protein folding protein stabilization respiratory electron transport chain proton transmembrane transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport ATP synthesis coupled proton transport negative regulation of transcription by RNA polymerase II transcription by RNA polymerase II protive regulation of transcription by RNA polymerase II cell differentiation cell differentiation cell differentiation differentiation cell differentiation cell lar response to oxidative stress acyl-CoA metabolic process purine ribonucleotide biosynthetic process purine ribonucleotide biosynthetic process monocarboxylic acid metabolic process maturation of SU-rRNA from tricistonic rRNA transcript (SSU-rRNA, 5.85 rRNA, LSU-rRNA) maturation of SSU-rRNA from tricistonic rRNA transcript (SSU-rRNA, 5.85 rRNA, LSU-rRNA) maturation of SSU-rRNA from tricistonic rRNA transcript (SSU-rRNA, 5.85 rRNA, LSU-rRNA) cellular response to oxidative stress cellular metabolic process	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:01917 GC:00442 GC:00042 GC:00067 GC:00422 GC:00067 GC:00422 GC:00067 GC:00422 GC:000508 GC:00508 GC	90 90 90 90 95 54 54 54 55 54 55 54 90 90 90 90 90 90 90 90 90 90
CAD CAT CAT CAT CAT CAT COS CDC37 CDC37 COS COS COS COS COS COS COS COS	Carbamoyi-Phosphate Synthetase 2 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 4 Carbamoyi-Phosphate Synthetase 5 Carbamoyi-Phosphate Synthetase 7 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytathionine beta-synthase Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 1 Cytochrome coxidase subunit 2 Cytochrome coxidase subunit 3 Cytochrome coxidase subunit 4 Pyruvate dehydrogenase E1 component subunit beta Pyruvate dehydrogenase E1 compo	embryo development transcription by RNA polymerase II regulation of transcription by RNA polymerase II anterior/posterior pattern specification cell differentiation cell differe	GC:00097 GC:00063 GC:00063 GC:00099 GC:00301 GC:00301 GC:00301 GC:00422 GC:00069 GC:00069 GC:00069 GC:000422 GC:000422 GC:000422 GC:00090 GC:001902 GC:000427 GC:000427 GC:000427 GC:000427 GC:000427 GC:000427 GC:000427 GC:000431 GC:000435 GC:000459 GC:000459 GC:000459 GC:000459 GC:000450 GC:000459 GC:000450 GC:00045	90 90 90 90 90 90 95 95 90 90 90 90 90 90 90 90 90 90

gene ontology enrichment analysis using the PANTHER database.

Gene abbreviation	Gene Name	PANTHER GO-slim Cellular Component:	GO ID
ATP6	ATP synthase membrane subunit 6	proton-transporting ATP synthase complex	GO:0045259
CAD	Carbamoyl-Phosphate Synthetase 2	nucleus	GO:0005634
CAT	Catalase	cytoplasm	GO:0005737
CBS	GRIP domain-containing protein	vacuole	GO:0005773
	GRIP domain-containing protein	Golgi apparatus	GO:0005794
	GRIP domain-containing protein	plasma membrane	GO:0005886
Cbs	Cystathionine beta-synthase	cytoplasm	GO:0005737
CDC37	Hsp90 co-chaperone Cdc37	cytoplasm	GO:0005737
СҮТВ	Cytochrome b	intrinsic component of membrane	GO:0031224
EIF3H	Eukaryotic translation initiation factor 3 subunit H	polysome	GO:0005844
	Eukaryotic translation initiation factor 3 subunit H	cytosolic small ribosomal subunit	GO:0022627
	Eukaryotic translation initiation factor 3 subunit H	eukaryotic translation initiation factor 3 complex	GO:0005852
GSTCD	Glutathione S-transferase C-terminal domain-containing protein homolog	cytoplasm	GO:0005737
MSRA	Peptide methionine sulfoxide reductase	cytoplasm	GO:0005737
ND6	NADH-ubiquinone oxidoreductase chain 6	mitochondrion	GO:0005739
PTEN	IP16020p	cytosol	GO:0005829
RECK	FI21605p1	plasma membrane	GO:0005886
RPL32	60S ribosomal protein L32	cytosolic large ribosomal subunit	GO:0022625
RPL35	60S ribosomal protein L35	cytosolic large ribosomal subunit	GO:0022625
RPS8	40S ribosomal protein S8	cytosolic small ribosomal subunit	GO:0022627
SOD1	Superoxide dismutase [Cu-Zn]	extracellular space	GO:0005615

The 62 chemical biomarkers identified are associated with many different human health disorders as well. These associations include both mental and physical health disorders. For example, some of the disorders listed include: neurological disorders, pain, drug overdoses, fever, seizures, influenza, pneumonia, cancer, cardiovascular diseases, genetic disorders and infertility (Table A1).

4. DISCUSSION

Using a systems biology approach that integrated the exposome of beehives with disease abundance and prevalence we are able to identify a custom chemical biomarker library that is able to predict common bee diseases with around 85% accuracy, sensitivity, selectivity, precision, and recall that is derived from the exposome of the bee hive. The number of chemical biomarkers within a library of a disease range from 36 to 454, which suggests that more biomarkers do not necessarily increase the library's performance in predicting whether the hive is infected or uninfected with a particular bee disease. The relative consistency in performance across the five different machine learning algorithms highlights the fact that these chemical biomarkers are making relatively robust predictions. In summary, the performance of the chemical biomarkers is comparable to previous study derived from lab experiments focusing on predicting nutritional stress in bumble bees (Wang et al 2019). The majority bee health studies that propose potential biomarkers do not study their strength of association across varying levels of the phenotype sampled from the natural environment (Wild et al 2005). Although the performance of these chemical biomarker libraries is promising based on

the machine learning validation, especially given that these significant associations are drawn from bee samples collected from the field, these chemical biomarkers could be further validated empirically to determine if there is a cause-and-effect relationship between the bee disease and the chemical biomarker. From this study, we are unable to disentangle whether the change in the relative abundance of the chemical biomarker is due to the bee disease infection or whether chemical biomarker itself is causing the honey bee to be more prone to a particular bee disease. The majority of these appear to be an environmental exposure as opposed to an endogenous change in the honey bee's metabolite profile, which is also captured with an exposomic analysis (Mayack, 2022). Most of the chemical biomarkers identified have not been previously associated with a decline in bee health or bee diseases previously revealing novel connections and underlying mechanisms that are likely driving the most recent decline in bee health.

We could develop chemical biomarker libraries for only 13 out of the 20 common bee diseases, but the low prevalence of the other diseases is the reason that they could not be included in the analysis. Therefore, we assume that these other bee diseases are not playing a major role in the most recent decline in bee health. This assumption is substantiated by previous findings as well, based on the relative prevalence of these bee diseases in honey bees around the world (Genersch, 2010). In general, Varroa mites and Deformed Wing Virus are known to be globally distributed with a high level of prevalence (Wilfert et al 2016), this is also the case for *N. ceranae*, but this is in contrast to *N. apis*, which has largely been replaced by *N. ceranae* (Chen, 2012). In recent years Israeli Acute Paralysis virus was once thought to be a major driver in bee colony collapses, but it is now rarely detected in unhealthy bee hives (Molineri, 2017).

Most chemical biomarkers are unique to each disease, while others have overlap with two or more bee diseases. This suggests that certain general biomarkers may be selected that might indicate that a bee hive is sick in general with many diseases. On the other hand, most chemical biomarkers are specific for one disease only increasing their utility in diagnosing a particular bee disease and reducing the chances of producing false positives. For example, *Varroa* mites are known to vector Deformed Wing Virus and therefore many times they co-occur in the bee hive environment (Adler et al. 2021), despite this over 100 chemical biomarkers are unique to a Varroa mite infestation and do not overlap with Deformed Wing Virus chemical biomarkers. The overlap between different bee diseases could signify that the change in the relative abundance of this

43

chemical may play a critical role in the increased susceptibility to multiple infections. However, further research is needed to determine the connection between the biological effect of the chemical and its relation to increased susceptibility to multiple infections.

How the chemical exposures are specifically interacting with bee diseases were previously unknown even though we know multiple stressors have been key in causing a decline in bee health (Botías et al 2021). Based on our metabolic pathway network analysis Ethanolamine was clearly the top hub metabolite suggesting that the regulation of this chemical could be key in maintaining bee health in general. Sac Brood Virus and Slow Bee Paralysis Virus, which are significantly associated with the dysregulation of this chemical abundance, may therefore act as a catalyst for other bee infections and consequently result in a synergistic decline in bee health. In the honey bee ethanolamine is involved in amino acid metabolism and glycan biosynthesis. Ethanolamine is a metabolite of the amino acid serine and can be produced from the breakdown of the phospholipid membrane, which in turn can act as a nitrogen source for bacteria living in the honey bee gut. Ethanolamine can increase in the gut due to the high turnover of bacteria and host cells (Ellegaard 2019) and this is interesting to note because Nosema infected honey bees had higher levels of serine in comparison to uninfected bees (Wang 1970). Pathogenic bacteria have been shown to utilize ethanolamine in the mammalian gut (Tsoy et al 2009), but the exact function in the honey bee remains unknown. Nonetheless, taken together it is plausible that ethanolamine production may serve as a reliable biomarker for when the honey bee is in infected state. Ethanolamine is also known to vary based on pollen diet that is fed to bee larvae (Singh and Singh 1996), so the amount of it is likely to vary in time and CDPethanolamine which is responsible for the *de novo* synthesis of phosphatidylethanolamine, is found in lower levels in the bee brain of bees infected with Varroa mites (Wu et al 2017).

A number of acids were also considered to be hub metabolites that are linked to other metabolic pathways. Fatty acids such as oleic acid and formic acid are used to treat *Varroa* and tracheal mites in honey bees (Vilarem et al 2021). Therefore, the higher abundance of this chemical could be due to the beekeepers using these treatments as a management strategy once *Varroa* is detected visually in the hive. These are also known as plant derived acids and as a result are used as organic beekeeping treatment for these mites (Genath, 2021). Oleic acid levels also increase from dead honey bees and this acts as a pheromone triggering bees to perform hygienic behavior and remove

44

dead and dying bees from the hive (McAfee et al 2018). Eicosapentaenoic acid is an omega fatty acid and an omega 6:3 ratio of 5 is known to be detrimental to honey bee associative learning (Arien et al. 2018). Therefore, multiple infections such as with European Foulbrood and DWV, which is what EPA is associated with, may disrupt this omega fatty acid balance and also have an effect of the cognitive functioning of the honey bee.

Lithocholic acid on the other hand is a toxic bile acid and is a known carcinogen (Sivcev et al 2020). Guanidine acetic acid is be added to animal feed for fattening before slaughter (Khakran et al 2018) and it also the pre-cursor to creatine, which aids in muscle energy recovery and the buildup of muscle mass (Antonio et al 2021). Cortisone is a well-known anti-inflammatory steroid hormone (Martínez-Urbistondo et al 2021), but connections of these metabolites to bee health are currently unknown.

Diethylnitrosamine (DEN) is a toxic material to mammals that can cause liver necrosis and carcinomas (Singh et al 2021). Here we show that it has a number of effects on honey bee genes, which many are involved in detoxification and oxidative stress pathways. Diethylnitrosamine is extensively found in milk products, meat products, soft drinks, alcoholic beverages, and tobacco smoke (Owumi et al 2021). Although not previously recognized, this pollutant may have severe health impacts for honey bees as well increasing its susceptibility to bee diseases and increased mortality from multiple stressors. Polychlorinated Biphenyls (PCBs) are another toxic pollutant that is a known carcinogen and has a multitude of detrimental human health effects (Christensen et al 2021), it is an extremely stable compound and is therefore pervasive throughout the natural environment (Gabryszewska et al 2020). PCBs are commonly used as dielectric and refrigerant fluids in electrical appliances, paints, and plasticizers (Sari et al 2021). Previous studies show that PCB exposure is regularly detected in honey bee hives and the workers have higher concentrations than the bee products within the hives. However, previously honey bees were only considered as bioindicators of the environment for human health purposes (Cirić et al 2021). Our results suggest that they are having a negative impact on bee health as well as PCBs relate to 4 different upregulated genes associated with detoxification and oxidative stress. These toxic pollutants are having a relatively higher impact on gene regulation in comparison to the other chemical biomarkers identified, which suggests that it would be interesting to investigate their effects on bee health in more detail in the future. With this said, honey bees in this context are also valuable sentinels or bioindicators of environmental quality

45

as well. This is reflected by the vast number of associations of human health diseases that were made from the Pubchem database with the different chemical biomarkers we identified to be associated with bee diseases. If these biomarkers were to be screened in the future to assess bee health at the same time it could be used to monitor environmental quality for human health as well.

In summary, using a systems biology analysis in which the exposome data was integrated with disease abundance and prevalence datasets to look for significant interactions among them we were able to identify chemical biomarker libraries that are significantly associated with common bee diseases, which are known to play a role in the most recent decline in bee health. We identified potential metabolic pathway interactions across the bee diseases in which putative targets could be investigated further to determine if they result in a synergistic decline in bee health. Furthermore, we identified new environmental exposures and metabolic pathways that are associated with honey bee diseases that have not been previously linked with one another. Toxic environmental pollutants to humans appear to also have a potential damaging effect on bee health and as we consider these exposures in terms of environmental quality this supports the notion that a holistic and optimal framework to be applied is a One Health approach which is creating and executing programs, policies, laws, and research in which diverse sectors communicate and work together to improve bee health. (M. M. Lopez-Uribe, 2020).

5. BIBLIOGRAPHY

- A. Al-Chalabi, N. P. (2015). Mapping the Human Exposome Without It, How Can We Find Environmental Risk Factors for ALS? *Epidemiology 26*, 821-823.
- A.J. McMenamin, E. G. (2008). Bee colony losses and associated viruses . *Curr.Opin.Insect.sci 8*, 121-129.
- Adler, L. S. (2021). Floral traits affecting the transmission of beneficial and pathogenic pollinator-associated microbes. *Current Opinion in Insect Science* 44, 1-7.
- Antonio, J. D. (2021). Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show?. *Journal of the International Society of Sports Nutrition 18, no. 1*, 1-17.
- Aronson, J. K. (2005). British Journal of Clinical Pharmacology, 59, 491-494.

- Badiou-Bénéteau, A. S.-L. (2012). Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam. *Ecotoxicology and environmental safety 82*, 22-31.
- Baker, M. (2005). In biomarkers we trust? Nat Biotechnol 23, 297–304.
- Barbosa Jr, F. J.-S. (2005). A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. *Environmental health perspectives 113*, 1669-1674.
- Batista, G. &. (2003). An Analysis of Four Missing Data Treatment Methods for Supervised Learning. *Applied Artificial Intelligence vol.* 17, 519-533.
- Borycka et al, D. G.-L. (2015). Antioxidant and antibacterial properties of commercial bee pollen products. *Journal of Apicultural Research*, 491-502.
- Botías, C. J. (2021). Multiple stressors interact to impair the performance of bumblebee Bombus terrestris colonies. *Journal of Animal Ecology 90, no. 2*, 415-431.
- Bouckaert, R. (2003). Choosing between two learning algorithms based on calibrated tests. *Proc 20th Int Conf on Machine Learning*, 51-58.
- Breeze et al, T. D. (2011). Pollination services in the UK: How important are honeybees? Agriculture, Ecosystems & Environment, 137-143.
- Breiman L., F. J. (1984). Classification and Regression Trees. Wadsforth International Group.
- Burges, C. (1998). A tutorial on support vector machines for pattern recognition. *Data Mining and Knowledge Discovery 2(2)*, 1-47.
- C. P. Wild, A. S. (2013). Measuring the exposome: A powerful basis for evaluating environmental exposures and cancer risk. *Environ. Mol. Mutagen.* 54, 480-499.
- C. T. Yildiz, E. A. (2001). Omnivariate decision trees. *IEEE Transactions on Neural Networks vol. 12, no. 6,* 1539-1546.
- Cestnik, B. K. (1987). Assistant 86: A knowledge elicitation tool for sophisticated users. Proceedings of the Second European Working Session on Learning, 31-45.
- Chen, Y.-W. W.-P.-H.-F. (2012). Nosema ceranae infection intensity highly correlates with temperature. *Journal of invertebrate pathology 111, no. 3,* 264-267.
- Christensen, K. L. (2021). The role of epidemiology studies in human health risk assessment of polychlorinated biphenyls. *Environmental Research 194*.
- Ćirić, J. D. (2021). Honey bees and their products as indicators of environmental element deposition. *Biological Trace Element Research 199, no. 6*, 2312-2319.
- Devereux, R. B. (1983). Left ventricular hypertrophy in patients with hypertension: importance of blood pressure response to regularly recurring stress. *Circulation 68, no. 3*, 470-476.
- Dietterich, T. G. (1998). Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. *Neural Computation 10(7)*, 1895–1924.
- Domingos, P. &. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. *Machine Learning 29*, 103-130.

- E. Collison, H. H. (2016). Interactive effects of pesticide exposure and pathogen infection on bee health a critical analysis. *Biol. Rev. 91*, 1006-1019.
- Freund, Y. S. (1999). Large Margin Classification Using the Perceptron Algorithm. *Machine Learning 37*, 277-296.
- Gabryszewska, M. B. (2020). Impact of municipal and industrial waste incinerators on PCBs content in the environment. *PloS one 15, no. 11*.
- Galathiya, A. G. (2012). Improved decision tree induction algorithm with feature selection, cross validation, model complexity and reduced error pruning. *International Journal of Computer Science and Information Technologies, 3(2),* 3427-3431.
- Genath, A. H. (2021). Influence of formic acid treatment on the proteome of the ectoparasite Varroa destructor. *PloS one 16, no. 10*.
- Genersch. (2010). Honey bee pathology: current threats to honey bees and beekeeping. Applied microbiology and biotechnology 87(1), 87-97.
- Genton, M. (2001). Classes of Kernels for Machine Learning: A Statistics Perspective. *Journal of Machine Learning Research 2*, 299-312.
- Goulson et al, D. N. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. *Science 347 (6229)*.
- Grozinger, C. M. (2020). Improving bee health through genomics. *Nature Reviews Genetics 21, no. 5*, 277-291.
- Hamiduzzaman, M. G.-N. (2010). A multiplex PCR assay to diagnose and quantify Nosema infections in honey bees (Apis mellifera). *Journal of Invertebrate Pathology 105*, 151-155.
- Hasin, Y. S. (2017). Multi-omics approaches to disease. Genome biology 18(1), 1-15.
- Huaiyu Mi, D. E.-P. (2021). PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive AP. *Nucleic Acids Research, Volume 49, Issue D1*, D394–D403.
- Hunt E., M. J. (1966). Experiments in Induction. New York, Academic Press.
- Ingram, D. K. (2001). Experimental Gerontology, 36.
- Jain, A. M. (1999). Data clustering: A review,. ACM Computing Surveys, 264-232.
- Japkowicz N., S. S. (2002). he Class Imbalance Problem: A Systematic Study. Intelligent Data Analysis Volume 6, Number 5.
- John Joseph Valletta, C. T. (2017,). Applications of machine learning in animal behaviour studies,. *Animal Behaviour, Volume 124*,, 203-220.
- Keerthi, S. ,. (2002). Convergence of a Generalized SMO Algorithm for SVM Classifier Design. *Machine Learning* 46, 351-360.
- Kim S, C. J. (2021). PubChem in 2021: new data content and improved web interfaces. *Nucleic Acids Res.* 49(D1), D1388–D1395.

- Kluser et al, S. P.-P. (2010). Global honey bee colony disorders and other threats to insect pollinators.
- Kononenko, I. L. (1994). Estimating attributes: analysis and extensions of Relief. *Machine Learning: ECML-94*, 171–182.
- Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering 160, no. 1, 3-24.
- Kraus, V. B. (2018). Biomarkers as drug development tools: discovery, validation, qualification and use. *Nature Reviews Rheumatology 14, no. 6*, 354-362.
- Liu, H. a. (2001). Instance Selection and Constructive Data Mining. *Data Mining and Knowledge Discovery 4*, 315–344.
- Liu, R. X. (2014). Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. *Medicinal research reviews 34, no. 3,* 455-478.
- Lopez-Uribe, M. R.-F. (2020). Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors. *Lewin, H.A., Roberts, R.M. (Eds.). Annual Review of Animal Biosciences, Vol 8, 2020. Annual Reviews, Palo Alto*, 269-294.
- M. D. Abramoff, P. J. (2004). Image processing with ImageJ. *Biophotonics International* 11, 36-42.
- M. M. Lopez-Uribe, V. A.-F. (2020). in Annual Review of Animal Biosciences. (Annual Reviews, Palo Alto, 2020), vol. 8, 269-294.
- Markovitch S, R. D. (2002). Feature Generation Using General Construction Functions. *Machine Learning* 49, 59-98.
- Martínez-Urbistondo, D. R. (2021). Early combination of tocilizumab and corticosteroids: An upgrade in anti-inflammatory Therapy for severe coronavirus disease (COVID). *Clinical Infectious Diseases 72, no. 9,* 1682-1683.
- Mayack, C. (2022). Environmental exposures associated with honey bee health. *Chemosphere* 131948.
- Molineri, A. P.-C. (2017). Prevalence of honey bee (Apis mellifera) viruses in temperate and subtropical regions from Argentina. *Revista Argentina de Microbiología 49*, 166-173.
- Moritz, R. F. (2010). Research strategies to improve honeybee health in Europe. *Apidologie 41, no. 3*, 227-242.
- Mullin, e. a. (2010). High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health. *Plos One 5, 19*.
- Murthy. (1998). Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. *Data Mining and Knowledge Discovery 2*, 345–389.
- Nasri, T. e. (2015). PCR-RFLP on β-Tubulin gene for rapid identification of the most clinically important species of Aspergillus. *Journal of microbiological methods 117*.

- Owumi, S. E. (2021). Leaf paste of Telfairia occidentalis favourably modulates deleterious effects associated with exposure to diethylnitrosamine in male Wistar rats. *Journal of Complementary and Integrative Medicine*.
- P. A. Macedo, J. W. (2002). Using inert dusts to detect and assess varroa infestations in honey bee colonies. *Journal of Apicultural Research* 41, 3-7.
- P. Glasziou, L. I. (2008). Evidence-based medical monitoring:From principles to practice. *Oxford:Blackwell Publishing.*, 48-62.
- Patel, V. P. (2021). Why bees are critical for achieving sustainable development. *Ambio 50*, 49–59.
- Pedregosa, F. a. (2011). Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research*, 2825-2830.
- Phillips, C. V. (2004). The missed lessons of sir Austin Bradford Hill. *Epidemiologic Perspectives* & Innovations 1, no. 1, 1-5.
- Refaeilzadeh, P. L. (2009). "Cross-validation.". Encyclopedia of database systems 5, 532-538.
- S. Dagnino, A. M. (2019). Unraveling the Exposome: A Practical View. *Springer International Publishing, ed.* 1, 447.
- S. M. Rappaport, M. T. (2010). Environment and Disease Risks. Science 330.
- Sari, M. F. (2021). Levels of polychlorinated biphenyls (PCBs) in honeybees and bee products and their evaluation with ambient air concentrations. *Atmospheric Environment 244*.
- Singh, D. D. (2021). Amelioration of diethylnitrosamine (DEN) induced renal oxidative stress and inflammation by Carissa carandas embedded silver nanoparticles in rodents. *Toxicology Reports 8*, 636-645.
- Sivcev, S. B. (2020). Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. *The Journal of steroid biochemistry and molecular biology 202*.
- Siviter, H. B. (2021). Agrochemicals interact synergistically to increase bee mortality. *Nature*, 596(7872), 389-392.
- Smet., L. D. (2012). BeeDoctor, a Versatile MLPA-Based Diagnostic Tool for Screening Bee Viruses. *PLoS ONE 7, e47953*.
- Szefler, S. J. (2012). Asthma outcomes: biomarkers. *Journal of Allergy and Clinical Immunology 129, no. 3,* S9-S23.
- T.Reinartz. (2002). A Unifying View on Instance Selection, *Data Mining and Knowledge Discovery 6*, 191–210.
- Vilarem, C. V. (2021). Varroa destructor from the Laboratory to the Field: Control, Biocontrol and IPM Perspectives—A Review. *Insects 12, no. 9*, 800.
- Wang, L. M. (2019). Metabolomics-based biomarker discovery for bee health monitoring: A proof of concept study concerning nutritional stress in Bombus terrestris. . *Scientific reports*, *9*(1), 1-11.

- Wild, C. P. (2005). Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology. *Cancer Epidemiology Biomarkers & Prevention 14, 1847.*
- Wilfert, e. a. (2016). Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. *Science 351*, 594-597.
- Wilfert, L. G.-H. (2016). Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. *Science 351, no. 6273*, 594-597.
- Zhang, S. Z. (2002). Data Preparation for Data Mining. *Applied Artificial Intelligence Volume* 17, 375 381.

6. APPENDIX

Table 1A. List of chemical biomarkers associated with bee diseases and their relationship with human diseases. The data were extracted from the PubChem database. The CID refers to the chemical identification number, while the compound full name is presented to the right. If more than one human disease or disorder corresponds to a chemical compound then it is listed multiple times. The direct evidence refers to how the association was identified, if the chemical is a biomarker for the disease, involved in an underlying mechanism of the disease or is a known therapeutic drug for treating the disease.

CID	Compound	Disease	Direct Evidence
	acetylleucyl-leucyl-		
443118	norleucinal	Seizures	marker/mechanism
65028	Oseltamivir	Influenza, Human	therapeutic
65028	Oseltamivir	Neurologic Manifestations	marker/mechanism
65028	Oseltamivir	Orthomyxoviridae Infections	therapeutic
65028	Oseltamivir	Stevens-Johnson Syndrome	marker/mechanism
45789647	methylone	Chemical and Drug Induced Liver Injury	marker/mechanism
45789647	methylone	Fever	marker/mechanism
45789647	methylone	Substance-Related Disorders	marker/mechanism
14707	Phenazocine	Dizziness	marker/mechanism
14707	Phenazocine	Headache	marker/mechanism
14707	Phenazocine	Nausea	marker/mechanism
14707	Phenazocine	Pain, Postoperative	therapeutic
14707	Phenazocine	Vertigo	marker/mechanism
14707	Phenazocine	Vomiting	marker/mechanism
14707	Phenazocine	Xerostomia	marker/mechanism
5283137	Thromboxane B2	Brain Injuries	marker/mechanism
5283137	Thromboxane B2	Diabetes Mellitus, Experimental	marker/mechanism

5283137	Thromboxane B2	Hypertension	marker/mechanism
5283137	Thromboxane B2	Hypertension, Pulmonary	marker/mechanism
		Mucocutaneous Lymph Node	
5283137	Thromboxane B2	Syndrome	marker/mechanism
5283137	Thromboxane B2	Nephrosis	marker/mechanism
7501	Latex	Anaphylaxis	marker/mechanism
7501	Latex	Dermatitis, Allergic Contact	marker/mechanism
7501	Latex	Pneumonia	marker/mechanism
7501	Styrene	Acute Disease	marker/mechanism
7501	Styrene	Breast Neoplasms	marker/mechanism
7501	Styrene	Chemical and Drug Induced Liver Injury	marker/mechanism
		Extravasation of Diagnostic and	
7501	Styrene	Therapeutic Materials	marker/mechanism
7501	Styrene	Eye Diseases	marker/mechanism
7501	Styrene	Gastrointestinal Diseases	marker/mechanism
7501	Styrene	Hearing Loss	marker/mechanism
7501	Styrene	Hyperplasia	marker/mechanism
7501	Styrene	Lung Injury	marker/mechanism
7501	Styrene	Lung Neoplasms	marker/mechanism
7501	Styrene	Lymphoma, Non-Hodgkin	marker/mechanism
7501	Styrene	Mammary Neoplasms, Animal	marker/mechanism
7501	Styrene	Neuroectodermal Tumors, Primitive	marker/mechanism
7501	Styrene	Pneumonia	marker/mechanism
7501	Styrene	Poisoning	marker/mechanism
7501	Styrene	Respiratory Tract Diseases	marker/mechanism
7501	Styrene	Skin Diseases	marker/mechanism
7501	styrofoam	Hemolysis	marker/mechanism
20299	tridihexethyl	Colonic Diseases, Functional	therapeutic
20299	tridihexethyl	Color Vision Defects	marker/mechanism
4201	Minoxidil	Acromegaly	marker/mechanism
4201	Minoxidil	Acute Kidney Injury	marker/mechanism
4201	Minoxidil	Ageusia	marker/mechanism
4201	Minoxidil	Alopecia	therapeutic
4201	Minoxidil	Alopecia Areata	therapeutic
4201	Minoxidil	Anorexia	marker/mechanism
4201	Minoxidil	Autonomic Nervous System Diseases	marker/mechanism
4201	Minoxidil	Cardiac Tamponade	marker/mechanism
4201	Minoxidil	Cardiomegaly	marker/mechanism
4201	Minoxidil	Cardiomyopathies	marker/mechanism
4201	Minoxidil	Cardiovascular Diseases	marker/mechanism
4201	Minoxidil	Chest Pain	marker/mechanism
4201	Minoxidil	Color Vision Defects	marker/mechanism
4201	Minoxidil	Dizziness	marker/mechanism
4201	Minoxidil	Edema	marker/mechanism
4201	Minoxidil	Erectile Dysfunction	therapeutic

4201	Minoxidil	Fatigue	marker/mechanism
4201	Minoxidil	Fever	marker/mechanism
4201	Minoxidil	Headache	marker/mechanism
4201	Minoxidil	Hearing Loss, Bilateral	marker/mechanism
4201	Minoxidil	Heart Diseases	marker/mechanism
4201	Minoxidil	Heart Failure	marker/mechanism
4201	Minoxidil	Heart Failure	therapeutic
4201	Minoxidil	Hemorrhage	marker/mechanism
4201	Minoxidil	Hirsutism	marker/mechanism
4201	Minoxidil	Hypertension	therapeutic
4201	Minoxidil	Hypertension, Malignant	therapeutic
4201	Minoxidil	Hypertension, Pulmonary	therapeutic
4201	Minoxidil	Hypertension, Renal	therapeutic
4201	Minoxidil	Hypertrichosis	marker/mechanism
4201	Minoxidil	Hypertrophy, Left Ventricular	marker/mechanism
4201	Minoxidil	Hypotension	marker/mechanism
4201	Minoxidil	Hypotension, Orthostatic	marker/mechanism
4201	Minoxidil	Inflammation	marker/mechanism
4201	Minoxidil	Ischemia	therapeutic
4201	Minoxidil	Myocardial Infarction	marker/mechanism
4201	Minoxidil	Necrosis	marker/mechanism
4201	Minoxidil	Necrosis	therapeutic
4201	Minoxidil	Optic Neuritis	marker/mechanism
4201	Minoxidil	Otitis Externa	marker/mechanism
4201	Minoxidil	Pain	marker/mechanism
4201	Minoxidil	Pericardial Effusion	marker/mechanism
4201	Minoxidil	Pericarditis	marker/mechanism
4201	Minoxidil	Pleural Effusion	marker/mechanism
4201	Minoxidil	Polymyalgia Rheumatica	marker/mechanism
4201	Minoxidil	Proteinuria	marker/mechanism
4201	Minoxidil	Pruritus	marker/mechanism
4201	Minoxidil	Renal Insufficiency	marker/mechanism
4201	Minoxidil	Renal Insufficiency	therapeutic
4201	Minoxidil	Retinitis	marker/mechanism
4201	Minoxidil	Tachycardia	marker/mechanism
4201	Minoxidil	Weight Loss	marker/mechanism
73402	eburicoic acid	Glioblastoma	therapeutic
5359272	Levorphanol	Catalepsy	marker/mechanism
5359272	Levorphanol	Hyperalgesia	therapeutic
5359272	Levorphanol	Pain	therapeutic
5359272	Levorphanol	Substance-Related Disorders	marker/mechanism
5359272	Levorphanol	Substance Withdrawal Syndrome	therapeutic
68712	Rilmenidine	Arrhythmias, Cardiac	therapeutic
68712	Rilmenidine	Bradycardia	marker/mechanism
68712	Rilmenidine	Hypertension	therapeutic

68712	Rilmenidine	Hypotension	marker/mechanism
5639	urapidil	Bronchial Spasm	therapeutic
5639	urapidil	Dyspnea	therapeutic
5639	urapidil	Hypertension	therapeutic
5639	urapidil	Hypotension	marker/mechanism
5639	urapidil	Postoperative Complications	therapeutic
5639	urapidil	Pre-Eclampsia	therapeutic
5639	urapidil	Tachycardia	therapeutic
5280793	Ergocalciferols	Arteriosclerosis	marker/mechanism
5280793	Ergocalciferols	Atherosclerosis	marker/mechanism
5280793	Ergocalciferols	Azotemia	marker/mechanism
5280793	Ergocalciferols	Familial Hypophosphatemic Rickets	therapeutic
5280793	Ergocalciferols	Gastrointestinal Hemorrhage	marker/mechanism
5280793	Ergocalciferols	Hepatitis C	therapeutic
5280793	Ergocalciferols	Hypercalcemia	marker/mechanism
5280793	Ergocalciferols	Hypercalciuria	marker/mechanism
5280793	Ergocalciferols	Hypoparathyroidism	therapeutic
5280793	Ergocalciferols	Juvenile osteoporosis	therapeutic
5280793	Ergocalciferols	Muscular Diseases	therapeutic
5280793	Ergocalciferols	Nephrocalcinosis	marker/mechanism
5280793	Ergocalciferols	Osteomalacia	therapeutic
5280793	Ergocalciferols	Osteonecrosis	therapeutic
5280793	Ergocalciferols	Ulcer	marker/mechanism
5921	Diethylnitrosamine	Adenoma	marker/mechanism
5921	Diethylnitrosamine	Adenoma, Bile Duct	marker/mechanism
5921	Diethylnitrosamine	Adenoma, Liver Cell	marker/mechanism
5921	Diethylnitrosamine	Aneuploidy	marker/mechanism
5921	Diethylnitrosamine	Bile Duct Diseases	marker/mechanism
5921	Diethylnitrosamine	Body Weight Changes	marker/mechanism
5921	Diethylnitrosamine	Breast Neoplasms	marker/mechanism
5921	Diethylnitrosamine	Carcinogenesis	marker/mechanism
5921	Diethylnitrosamine	Carcinoma	marker/mechanism
5921	Diethylnitrosamine	Carcinoma, Hepatocellular	marker/mechanism
5921	Diethylnitrosamine	Carcinoma, Renal Cell	marker/mechanism
5921	Diethylnitrosamine	Carcinoma, Squamous Cell	marker/mechanism
5921	Diethylnitrosamine	Cardiomyopathies	marker/mechanism
5921	Diethylnitrosamine	Cell Transformation, Neoplastic	marker/mechanism
5921	Diethylnitrosamine	Chemical and Drug Induced Liver Injury	marker/mechanism
5921	Diethylnitrosamine	Chemical and Drug Induced Liver Injury	therapeutic
5921	Diethylnitrosamine	Cholangiocarcinoma	marker/mechanism
5921	Diethylnitrosamine	Chromosome Breakage	marker/mechanism
5921	Diethylnitrosamine	Colonic Neoplasms	marker/mechanism
5921	Diethylnitrosamine	Cystadenoma	marker/mechanism
5921	Diethylnitrosamine	Diabetes Mellitus, Type 2	marker/mechanism
5921	Diethylnitrosamine	Esophageal Achalasia	marker/mechanism

5921	Diethylnitrosamine	Esophageal Neoplasms	marker/mechanism
5921	Diethylnitrosamine	Fatty Liver	marker/mechanism
5921	Diethylnitrosamine	Fibrosis	marker/mechanism
5921	Diethylnitrosamine	Flushing	marker/mechanism
5921	Diethylnitrosamine	Gastritis	marker/mechanism
5921	Diethylnitrosamine	Gastrointestinal Diseases	marker/mechanism
5921	Diethylnitrosamine	Genomic Instability	marker/mechanism
5921	Diethylnitrosamine	Glucose Intolerance	marker/mechanism
5921	Diethylnitrosamine	Hemangioma	marker/mechanism
5921	Diethylnitrosamine	Hepatic Insufficiency	marker/mechanism
5921	Diethylnitrosamine	Hepatitis	marker/mechanism
5921	Diethylnitrosamine	Hepatoblastoma	marker/mechanism
5921	Diethylnitrosamine	Hepatomegaly	marker/mechanism
5921	Diethylnitrosamine	Hyperplasia	marker/mechanism
5921	Diethylnitrosamine	Inflammation	marker/mechanism
5921	Diethylnitrosamine	Kidney Diseases	marker/mechanism
5921	Diethylnitrosamine	Kidney Neoplasms	marker/mechanism
5921	Diethylnitrosamine	Liver Cirrhosis	marker/mechanism
5921	Diethylnitrosamine	Liver Cirrhosis, Experimental	marker/mechanism
5921	Diethylnitrosamine	Liver Diseases	marker/mechanism
5921	Diethylnitrosamine	Liver Neoplasms	marker/mechanism
5921	Diethylnitrosamine	Liver Neoplasms, Experimental	marker/mechanism
5921	Diethylnitrosamine	Lung Neoplasms	marker/mechanism
5921	Diethylnitrosamine	Metaplasia	marker/mechanism
5921	Diethylnitrosamine	Micronuclei, Chromosome-Defective	marker/mechanism
5921	Diethylnitrosamine	Necrosis	marker/mechanism
5921	Diethylnitrosamine	Neoplasm Metastasis	marker/mechanism
5921	Diethylnitrosamine	Neoplasms, Experimental	marker/mechanism
5921	Diethylnitrosamine	Nephrosis	marker/mechanism
5921	Diethylnitrosamine	Neurodegenerative Diseases	marker/mechanism
5921	Diethylnitrosamine	Neurologic Manifestations	marker/mechanism
5921	Diethylnitrosamine	Non-alcoholic Fatty Liver Disease	marker/mechanism
5921	Diethylnitrosamine	Nose Neoplasms	marker/mechanism
5921	Diethylnitrosamine	Obesity	marker/mechanism
5921	Diethylnitrosamine	Ovarian Neoplasms	marker/mechanism
5921	Diethylnitrosamine	Pancreatic Neoplasms	marker/mechanism
5921	Diethylnitrosamine	Papilloma	marker/mechanism
5921	Diethylnitrosamine	Precancerous Conditions	marker/mechanism
5921	Diethylnitrosamine	Renal Insufficiency	marker/mechanism
5921	Diethylnitrosamine	Stomach Neoplasms	marker/mechanism
5921	Diethylnitrosamine	Thyroid Neoplasms	marker/mechanism
5921	Diethylnitrosamine	Tongue Neoplasms	marker/mechanism
5921	Diethylnitrosamine	Urinary Bladder Neoplasms	marker/mechanism
5921	Diethylnitrosamine	Weight Loss	marker/mechanism
5283349	2,4-decadienal	Adenocarcinoma	marker/mechanism

5283349	2,4-decadienal	Congenital Abnormalities	marker/mechanism
5283349	2,4-decadienal	Lung Neoplasms	marker/mechanism
7047	quinoline	Carcinoma, Hepatocellular	marker/mechanism
7047	quinoline	Hemangioendothelioma	marker/mechanism
7047	quinoline	Hemangiosarcoma	marker/mechanism
7047	quinoline	Liver Neoplasms	marker/mechanism
7047	quinoline	Neoplasm Metastasis	marker/mechanism
		Drug-Related Side Effects and Adverse	
4342	Acecainide	Reactions	marker/mechanism
4342	Acecainide	Tachycardia, Paroxysmal	therapeutic
4342	Acecainide	Tachycardia, Ventricular	marker/mechanism
4342	Acecainide	Torsades de Pointes	marker/mechanism
4342	Acecainide	Ventricular Fibrillation	marker/mechanism
4342	Acecainide	Ventricular Premature Complexes	therapeutic
10436839	NH 125	Mammary Neoplasms, Experimental	therapeutic
65015	plerixafor	Glioblastoma	therapeutic
65015	plerixafor	Reflex, Abnormal	therapeutic
442972	cyclopamine	Abnormalities, Drug-Induced	marker/mechanism
442972	cyclopamine	Cleft Lip	marker/mechanism
442972	cyclopamine	Cleft Palate	marker/mechanism
442972	cyclopamine	Craniofacial Abnormalities	marker/mechanism
442972	cyclopamine	Edema	marker/mechanism
442972	cyclopamine	Holoprosencephaly	marker/mechanism
442972	cyclopamine	Jaw Abnormalities	marker/mechanism
442972	cyclopamine	Lung Neoplasms	therapeutic
442972	cyclopamine	Prenatal Injuries	marker/mechanism
3219	emedastine	Bacterial Infections	therapeutic
3219	emedastine	Chorea	marker/mechanism
3219	emedastine	Hypothermia	therapeutic
129695	1-naphthylacetylspermine	Anhedonia	therapeutic
129695	1-naphthylacetylspermine	Cocaine-Related Disorders	therapeutic
129695	1-naphthylacetylspermine	Depressive Disorder	therapeutic
129695	1-naphthylacetylspermine	Nerve Degeneration	therapeutic
4456	Neostigmine	Abdominal Pain	marker/mechanism
4456	Neostigmine	Airway Obstruction	marker/mechanism
4456	Neostigmine	Amnesia	therapeutic
4456	Neostigmine	Apnea	marker/mechanism
4456	Neostigmine	Apnea	therapeutic
4456	Neostigmine	Blepharoptosis	therapeutic
4456	Neostigmine	Blister	therapeutic
4456	Neostigmine	Bradycardia	marker/mechanism
4456	Neostigmine	Cardiomegaly	therapeutic
4456	Neostigmine	Constipation	therapeutic
4456	Neostigmine	Dermatitis, Irritant	therapeutic
4456	Neostigmine	Diarrhea	marker/mechanism

4456	Neostigmine	Dizziness	marker/mechanism
4456	Neostigmine	Heart Block	marker/mechanism
4456	Neostigmine	Hyperalgesia	therapeutic
4456	Neostigmine	Hyperglycemia	marker/mechanism
4456	Neostigmine	Hypertension	marker/mechanism
4456	Neostigmine	Hypotension	marker/mechanism
4456	Neostigmine	Hypotension	therapeutic
4456	Neostigmine	Hypotension, Orthostatic	therapeutic
4456	Neostigmine	Hypothermia	marker/mechanism
4456	Neostigmine	Labor Pain	therapeutic
4456	Neostigmine	Long QT Syndrome	marker/mechanism
4456	Neostigmine	Muscle Weakness	therapeutic
4456	Neostigmine	Muscular Diseases	therapeutic
4456	Neostigmine	Myasthenia Gravis	therapeutic
4456	Neostigmine	Nausea	marker/mechanism
4456	Neostigmine	Pain	marker/mechanism
4456	Neostigmine	Pain	therapeutic
4456	Neostigmine	Pain, Postoperative	therapeutic
4456	Neostigmine	Paralysis	marker/mechanism
4456	Neostigmine	Paralysis	therapeutic
4456	Neostigmine	Postoperative Complications	marker/mechanism
4456	Neostigmine	Respiratory Paralysis	marker/mechanism
4456	Neostigmine	Seizures	marker/mechanism
4456	Neostigmine	Spasm	marker/mechanism
4456	Neostigmine	Sphincter of Oddi Dysfunction	marker/mechanism
4456	Neostigmine	Tachycardia	therapeutic
4456	Neostigmine	Tremor	marker/mechanism
4456	Neostigmine	Trismus	therapeutic
4456	Neostigmine	Urinary Retention	therapeutic
446284	Eicosapentaenoic Acid	Adenomatous Polyposis Coli	therapeutic
446284	Eicosapentaenoic Acid	Anemia, Hemolytic	marker/mechanism
446284	Eicosapentaenoic Acid	Arrhythmias, Cardiac	therapeutic
446284	Eicosapentaenoic Acid	Calcinosis	therapeutic
446284	Eicosapentaenoic Acid	Cardiovascular Diseases	therapeutic
446284	Eicosapentaenoic Acid	Coronary Disease	therapeutic
446284	Eicosapentaenoic Acid	Depressive Disorder	therapeutic
446284	Eicosapentaenoic Acid	Dyslipidemias	therapeutic
446284	Eicosapentaenoic Acid	Glucose Intolerance	therapeutic
446284	Eicosapentaenoic Acid	Hypertension	therapeutic
446284	Eicosapentaenoic Acid	Hypertriglyceridemia	therapeutic
446284	Eicosapentaenoic Acid	Insulin Resistance	therapeutic
446284	Eicosapentaenoic Acid	Intestinal Neoplasms	therapeutic
446284	Eicosapentaenoic Acid	Micronuclei, Chromosome-Defective	therapeutic
446284	Eicosapentaenoic Acid	Pain	therapeutic
446284	Eicosapentaenoic Acid	Parkinson Disease	therapeutic

446284	Eicosapentaenoic Acid	Poisoning	marker/mechanism
446284	Eicosapentaenoic Acid	Raynaud Disease	therapeutic
446284	Eicosapentaenoic Acid	Schizophrenia	therapeutic
446284	Eicosapentaenoic Acid	Stomach Neoplasms	therapeutic
446284	Eicosapentaenoic Acid	Thrombosis	therapeutic
700	Ethanolamine	Airway Obstruction	marker/mechanism
700	Ethanolamine	Eye Injuries	marker/mechanism
4642	oxyphencyclimine	Lipidoses	marker/mechanism
4642	oxyphencyclimine	Lysosomal Storage Diseases	marker/mechanism
8814	4-tert-octylphenol	Embryo Loss	marker/mechanism
8814	4-tert-octylphenol	Fatty Liver	marker/mechanism
8814	4-tert-octylphenol	Feminization	marker/mechanism
8814	4-tert-octylphenol	Infertility, Male	marker/mechanism
8814	4-tert-octylphenol	Testicular Diseases	marker/mechanism
8814	4-tert-octylphenol	Weight Gain	marker/mechanism
8814	4-tert-octylphenol	Weight Loss	marker/mechanism
12433	dibromoacetic acid	Immune System Diseases	marker/mechanism
24066	Zalcitabine	Acquired Immunodeficiency Syndrome	therapeutic
24066	Zalcitabine	AIDS-Related Complex	therapeutic
24066	Zalcitabine	Anemia	marker/mechanism
24066	Zalcitabine	Cardiomyopathies	marker/mechanism
24066	Zalcitabine	Chemical and Drug Induced Liver Injury	marker/mechanism
24066	Zalcitabine	Demyelinating Diseases	marker/mechanism
24066	Zalcitabine	Diarrhea	marker/mechanism
24066	Zalcitabine	Disease Models, Animal	marker/mechanism
		Drug-Related Side Effects and Adverse	
24066	Zalcitabine	Reactions	marker/mechanism
24066	Zalcitabine	Fatty Liver	marker/mechanism
24066	Zalcitabine	Hearing Loss, Bilateral	marker/mechanism
24066	Zalcitabine	Hearing Loss, Sensorineural	marker/mechanism
24066	Zalcitabine	HIV Infections	therapeutic
24066	Zalcitabine	Hyperalgesia	marker/mechanism
24066	Zalcitabine	Lymphoma	marker/mechanism
24066	Zalcitabine	Lymphoma, AIDS-Related	therapeutic
24066	Zalcitabine	Mitochondrial Diseases	marker/mechanism
24066	Zalcitabine	Mitochondrial encephalopathy	marker/mechanism
24066	Zalcitabine	Neoplasms, Experimental	marker/mechanism
24066	Zalcitabine	Nerve Degeneration	marker/mechanism
24066	Zalcitabine	Neuralgia	marker/mechanism
24066	Zalcitabine	Neurotoxicity Syndromes	marker/mechanism
24066	Zalcitabine	Pain	marker/mechanism
24066	Zalcitabine	Pancytopenia	marker/mechanism
24066	Zalcitabine	Paresis	marker/mechanism
24066	Zalcitabine	Paresthesia	marker/mechanism
24066	Zalcitabine	Peripheral Nervous System Diseases	marker/mechanism

24066	Zalcitabine	Thymus Neoplasms	marker/mechanism
24066	Zalcitabine	Tinnitus	marker/mechanism
24066	Zalcitabine	Vertigo	marker/mechanism
5283560	sphingosine 1-phosphate	Neoplasm Invasiveness	marker/mechanism
5283560	sphingosine 1-phosphate	Scleroderma, Systemic	marker/mechanism
5283560	sphingosine 1-phosphate	Wounds and Injuries	marker/mechanism
8078	Cyclohexane	Cardiovascular Diseases	marker/mechanism
8078	Cyclohexane	Coronary Disease	marker/mechanism
8078	Cyclohexane	Myocardial Infarction	marker/mechanism
8078	Cyclohexane	Poisoning	marker/mechanism
		Pulmonary Disease, Chronic	
8078	Cyclohexane	Obstructive	marker/mechanism
55473	loxtidine	Stomach Neoplasms	therapeutic
5732	Zolpidem	Amnesia	marker/mechanism
5732	Zolpidem	Anxiety Disorders	therapeutic
5732	Zolpidem	Arrhythmias, Cardiac	marker/mechanism
5732	Zolpidem	Ataxia	marker/mechanism
5732	Zolpidem	Brain Injuries	therapeutic
5732	Zolpidem	Cognition Disorders	marker/mechanism
5732	Zolpidem	Coma	marker/mechanism
5732	Zolpidem	Delirium	marker/mechanism
5732	Zolpidem	Depressive Disorder	therapeutic
5732	Zolpidem	Disorders of Excessive Somnolence	marker/mechanism
5732	Zolpidem	Drug Overdose	marker/mechanism
5732	Zolpidem	Hallucinations	marker/mechanism
5732	Zolpidem	Hepatic Encephalopathy	marker/mechanism
5732	Zolpidem	Hepatomegaly	marker/mechanism
5732	Zolpidem	Hypokalemia	marker/mechanism
5732	Zolpidem	Hypoxia, Brain	therapeutic
5732	Zolpidem	Learning Disabilities	marker/mechanism
5732	Zolpidem	Lethargy	therapeutic
5732	Zolpidem	Long QT Syndrome	marker/mechanism
5732	Zolpidem	Movement Disorders	marker/mechanism
5732	Zolpidem	Movement Disorders	therapeutic
5732	Zolpidem	Parasomnias	marker/mechanism
5732	Zolpidem	Persistent Vegetative State	therapeutic
5732	Zolpidem	Psychomotor Disorders	marker/mechanism
5732	Zolpidem	Psychoses, Substance-Induced	marker/mechanism
5732	Zolpidem	REM Sleep Behavior Disorder	marker/mechanism
5732	Zolpidem	Seizures	marker/mechanism
5732	Zolpidem	Seizures	therapeutic
		Sleep Initiation and Maintenance	
5732	Zolpidem	Disorders	therapeutic
5732	Zolpidem	Sleep Wake Disorders	therapeutic
5732	Zolpidem	Somnambulism	marker/mechanism

5732	Zolpidem	Substance-Related Disorders	marker/mechanism
5732	Zolpidem	Substance Withdrawal Syndrome	marker/mechanism
5732	Zolpidem	Torsades de Pointes	marker/mechanism
60149	sertindole	Basal Ganglia Diseases	marker/mechanism
60149	sertindole	Catalepsy	marker/mechanism
60149	sertindole	Hyperkinesis	therapeutic
60149	sertindole	Long QT Syndrome	marker/mechanism
60149	sertindole	Schizophrenia	therapeutic
601.10		Sleep Initiation and Maintenance	
60149	sertindole	Disorders	therapeutic
6378383	N-desmethyltamoxifen	Vision Disorders	marker/mechanism
8956	20-aipna- Dihydronrogesterone	Diabetic Neuropathies	theraneutic
0550	20-alpha-		inclupedite
8956	Dihydroprogesterone	Peripheral Nervous System Diseases	therapeutic
	20-alpha-		
8956	Dihydroprogesterone	Weight Loss	therapeutic
8117	diethylene glycol	Acidosis	marker/mechanism
8117	diethylene glycol	Chemical and Drug Induced Liver Injury	marker/mechanism
8117	diethylene glycol	Kidney Diseases	marker/mechanism
8117	diethylene glycol	Kidney Tubular Necrosis, Acute	marker/mechanism
8117	diethylene glycol	Poisoning	marker/mechanism
6557	isoprene	Breast Neoplasms	marker/mechanism
6557	isoprene	Kidney Neoplasms	marker/mechanism
6557	isoprene	Liver Neoplasms, Experimental	marker/mechanism
6557	isoprene	Lung Neoplasms	marker/mechanism
6557	isoprene	Mammary Neoplasms, Animal	marker/mechanism
6557	isoprene	Mammary Neoplasms, Experimental	marker/mechanism
6557	isoprene	Neoplasm Invasiveness	marker/mechanism
6557	isoprene	Sleep Apnea, Obstructive	marker/mechanism
6557	isoprene	Stomach Neoplasms	marker/mechanism
6557	isoprene	Testicular Neoplasms	marker/mechanism
54739	imazaquin	Respiratory Sounds	marker/mechanism
12130	N-nitroso(di-n-propyl)amine	Carcinogenesis	marker/mechanism
12130	N-nitroso(di-n-propyl)amine	Neoplasms, Experimental	marker/mechanism
688009	oxilofrine	Hypotension, Orthostatic	therapeutic
9403	estradiol 17 beta-cypionate	Anemia, Aplastic	marker/mechanism
9403	estradiol 17 beta-cypionate	Anorexia	marker/mechanism
9403	estradiol 17 beta-cypionate	Lethargy	marker/mechanism
5283387	oleylamide	Amnesia	therapeutic
5283387	oleylamide	Seizures	therapeutic
	alpha-ethyl, alpha-methyl-		
128423	thiobutyrolactone	Seizures	therapeutic
409805	NSC 23766	Acute Lung Injury	therapeutic
409805	NSC 23766	Cardiotoxicity	therapeutic
409805	NSC 23766	Ventricular Dysfunction, Left	therapeutic

4908	Primaquine	Acute Kidney Injury	marker/mechanism
4908	Primaquine	Anemia	marker/mechanism
4908	Primaquine	Anemia, Hemolytic	marker/mechanism
4908	Primaquine	Angioedema	marker/mechanism
4908	Primaquine	Confusion	marker/mechanism
4908	Primaquine	Depressive Disorder	marker/mechanism
4908	Primaquine	Drug Eruptions	marker/mechanism
		Drug-Related Side Effects and Adverse	
4908	Primaquine	Reactions	marker/mechanism
4908	Primaquine	Headache	marker/mechanism
4908	Primaquine	Hematologic Diseases	marker/mechanism
4908	Primaquine	Hemolysis	marker/mechanism
4908	Primaquine	Long QT Syndrome	marker/mechanism
4908	Primaquine	Malaria	therapeutic
4908	Primaquine	Malaria, Vivax	therapeutic
4908	Primaquine	Methemoglobinemia	marker/mechanism
4908	Primaquine	Pruritus	marker/mechanism
4908	Primaquine	Urination Disorders	marker/mechanism
5281149	falcarinol	Brain Ischemia	therapeutic
5281149	falcarinol	Hyperglycemia	therapeutic
5281149	falcarinol	Reperfusion Injury	therapeutic
	9-hydroxy-10,12-		
5282944	octadecadienoic acid	Hyperalgesia	marker/mechanism
13591	N-Nitrosopyrrolidine	Carcinogenesis	marker/mechanism
13591	N-Nitrosopyrrolidine	Neoplasms, Experimental	marker/mechanism
5283314	4-hydroxy-2-hexenal	Necrosis	marker/mechanism
6636	Polychlorinated Biphenyls	Adenocarcinoma	marker/mechanism
6636	Polychlorinated Biphenyls	Adenoma	marker/mechanism
6636	Polychlorinated Biphenyls	Amyotrophic Lateral Sclerosis	marker/mechanism
6636	Polychlorinated Biphenyls	Aneuploidy	marker/mechanism
6636	Polychlorinated Biphenyls	Asthma	marker/mechanism
6636	Polychlorinated Biphenyls	Autism Spectrum Disorder	marker/mechanism
6636	Polychlorinated Biphenyls	Birth Weight	marker/mechanism
6636	Polychlorinated Biphenyls	Breast Neoplasms	marker/mechanism
6636	Polychlorinated Biphenyls	Cardiovascular Diseases	marker/mechanism
6636	Polychlorinated Biphenyls	Chemical and Drug Induced Liver Injury	marker/mechanism
6636	Polychlorinated Biphenyls	Cognition Disorders	marker/mechanism
6636	Polychlorinated Biphenyls	Colorectal Neoplasms	marker/mechanism
6636	Polychlorinated Biphenyls	Death	marker/mechanism
6636	Polychlorinated Biphenyls	Dementia	marker/mechanism
6636	Polychlorinated Biphenyls	Depressive Disorder	marker/mechanism
6636	Polychlorinated Biphenyls	Developmental Disabilities	marker/mechanism
6636	Polychlorinated Biphenyls	Diabetes Mellitus	marker/mechanism
6636	Polychlorinated Biphenyls	Diabetes Mellitus, Type 2	marker/mechanism
6636	Polychlorinated Biphenyls	Endometriosis	marker/mechanism

6636	Polychlorinated Biphenyls	Epilepsy, Reflex	marker/mechanism
6636	Polychlorinated Biphenyls	Eye Diseases	marker/mechanism
6636	Polychlorinated Biphenyls	Fatty Liver	marker/mechanism
6636	Polychlorinated Biphenyls	Fetal Growth Retardation	marker/mechanism
6636	Polychlorinated Biphenyls	Focal Nodular Hyperplasia	marker/mechanism
6636	Polychlorinated Biphenyls	Glucose Metabolism Disorders	marker/mechanism
6636	Polychlorinated Biphenyls	Hearing Loss	marker/mechanism
6636	Polychlorinated Biphenyls	Hyperplasia	marker/mechanism
6636	Polychlorinated Biphenyls	Hypertension	marker/mechanism
6636	Polychlorinated Biphenyls	Hypertriglyceridemia	marker/mechanism
6636	Polychlorinated Biphenyls	Infertility, Female	marker/mechanism
6636	Polychlorinated Biphenyls	Infertility, Male	marker/mechanism
6636	Polychlorinated Biphenyls	Inflammation	marker/mechanism
6636	Polychlorinated Biphenyls	Intellectual Disability	marker/mechanism
6636	Polychlorinated Biphenyls	Ischemic Stroke	marker/mechanism
6636	Polychlorinated Biphenyls	Learning Disabilities	marker/mechanism
6636	Polychlorinated Biphenyls	Liver Neoplasms	marker/mechanism
6636	Polychlorinated Biphenyls	Liver Neoplasms, Experimental	marker/mechanism
6636	Polychlorinated Biphenyls	Lymphoma, Follicular	marker/mechanism
6636	Polychlorinated Biphenyls	Lymphoma, Large B-Cell, Diffuse	marker/mechanism
6636	Polychlorinated Biphenyls	Lymphoma, Non-Hodgkin	marker/mechanism
6636	Polychlorinated Biphenyls	Memory Disorders	marker/mechanism
6636	Polychlorinated Biphenyls	Metabolic Syndrome	marker/mechanism
6636	Polychlorinated Biphenyls	Motor Disorders	marker/mechanism
6636	Polychlorinated Biphenyls	Motor Skills Disorders	marker/mechanism
6636	Polychlorinated Biphenyls	Nervous System Diseases	marker/mechanism
6636	Polychlorinated Biphenyls	Obesity	marker/mechanism
6636	Polychlorinated Biphenyls	Overweight	marker/mechanism
6636	Polychlorinated Biphenyls	Parkinson Disease	marker/mechanism
6636	Polychlorinated Biphenyls	Poisoning	marker/mechanism
6636	Polychlorinated Biphenyls	Precancerous Conditions	marker/mechanism
		Precursor Cell Lymphoblastic Leukemia-	
6636	Polychlorinated Biphenyls	Lymphoma	marker/mechanism
6636	Polychlorinated Biphenyls	Pregnancy Complications	marker/mechanism
6636	Polychlorinated Biphenyls	Prenatal Exposure Delayed Effects	marker/mechanism
6636	Polychlorinated Biphenyls	Prostatic Neoplasms	marker/mechanism
6636	Polychlorinated Biphenyls	Sex Chromosome Aberrations	marker/mechanism
6636	Polychlorinated Biphenyls	Stroke	marker/mechanism
6636	Polychlorinated Biphenyls	Testicular Neoplasms	marker/mechanism
6636	Polychlorinated Biphenyls	Thyroid Diseases	marker/mechanism
6636	Polychlorinated Biphenyls	Uterine Neoplasms	marker/mechanism
6636	Polychlorinated Biphenyls	Vascular Diseases	marker/mechanism
6636	Polychlorinated Biphenyls	Weight Loss	marker/mechanism
6636	Polychlorinated Biphenyls	Wilms Tumor	marker/mechanism
284	Carboxylic Acids	Abnormalities, Drug-Induced	marker/mechanism

284 formic acid Death marker/mechanism 4-methoxy-3- phenylenediamine Adenoma marker/mechanism 11976 phenylenediamine Breast Neoplasms marker/mechanism 11976 phenylenediamine Breast Neoplasms marker/mechanism 4-methoxy-3- trist(2-butoxyethyl) Carcinoma marker/mechanism 540 phosphate Bradycardia marker/mechanism tris(2-butoxyethyl) Bradycardia marker/mechanism ftris(2-butoxyethyl) Edema marker/mechanism ftris(2-butoxyethyl) Edema marker/mechanism ftris(2-butoxyethyl) Edema marker/mechanism ftris(2-butoxyethyl) Fetal Death marker/mechanism ftris(2-butoxyethyl) Fetal Death marker/mechanism ftris(2-butoxyethyl) Growth Disorders marker/mechanism ftris(2-butoxyethyl) Growth Disorders marker/mechanism ftris(2-butoxyethyl) Growth Disorders marker/mechanism ftris Photoxyethanol Coronary Thrombosis marker/mechanism st	284	Carboxylic Acids	Hyperalgesia	therapeutic
4-methoxy-3- phenylenediamine Adenoma marker/mechanism 11976 phenylenediamine Breast Neoplasms marker/mechanism 11976 phenylenediamine Breast Neoplasms marker/mechanism 11976 phenylenediamine Carcinoma marker/mechanism 4-methoxy-3- phenylenediamine Thyroid Neoplasms marker/mechanism 11976 phenylenediamine Thyroid Neoplasms marker/mechanism 11976 phenylenediamine Thyroid Neoplasms marker/mechanism 11976 phosphate Bradycardia marker/mechanism 11976 phosphate Congenital Abnormalities marker/mechanism 11976 phosphate Edema marker/mechanism 11976 phosphate Edema marker/mechanism 11976 phosphate Edema marker/mechanism 11976 phosphate Edema marker/mechanism 11976 phosphate Growth Disorders marker/mechanism 1133 n-butoxyethanol Acidosis marker/mechanism	284	formic acid	Death	marker/mechanism
11976 phenylenediamine Adenoma marker/mechanism 11976 phenylenediamine Breast Neoplasms marker/mechanism 11976 phenylenediamine Carcinoma marker/mechanism 11976 phenylenediamine Thyroid Neoplasms marker/mechanism 6 4-methoxy-3- marker/mechanism 11976 phenylenediamine Thyroid Neoplasms marker/mechanism 6540 phosphate Bradycardia marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Embryo Loss marker/mechanism 6540 phosphate Fetal Death marker/mechanism 8133 n-butoxyethyl) Marker/mechanism marker/mechanism 8133 n-butoxyethanol Acidosis marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxye		4-methoxy-3-		
4-methoxy-3- Breast Neoplasms marker/mechanism 11976 phenylenediamine Carcinoma marker/mechanism 11976 phenylenediamine Carcinoma marker/mechanism 11976 phenylenediamine Thyroid Neoplasms marker/mechanism 11976 phenylenediamine Thyroid Neoplasms marker/mechanism 11976 phenylenediamine Thyroid Neoplasms marker/mechanism 6540 phosphate Bradycardia marker/mechanism tris(2-butoxyethyl) Desphate Edema marker/mechanism 6540 phosphate Embryo Loss marker/mechanism tris(2-butoxyethyl) Fetal Death marker/mechanism 6540 phosphate Growth Disorders marker/mechanism 1133 n-butoxyethanol Acidosis marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism <	11976	phenylenediamine	Adenoma	marker/mechanism
11976 phenylenediamine Breast Neoplasms marker/mechanism 11976 phenylenediamine Carcinoma marker/mechanism 4-methoxy-3- marker/mechanism marker/mechanism 11976 phenylenediamine Thyroid Neoplasms marker/mechanism 11976 phenylenediamine Thyroid Neoplasms marker/mechanism 11976 phosphate Bradycardia marker/mechanism 6540 phosphate Congenital Abnormalities marker/mechanism 6540 phosphate Edema marker/mechanism 1tris(2-butoxyethyl) Embryo Loss marker/mechanism 6540 phosphate Fetal Death marker/mechanism 6540 phosphate Growth Disorders marker/mechanism 6540 phosphate Growth Disorders marker/mechanism 8133 n-butoxyethyl) Edema marker/mechanism 8133 n-butoxyethanol Coronary Thrombosis marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism		4-methoxy-3-		
11976 4-methoxy-3- phenylenediamine Carcinoma marker/mechanism 11976 phenylenediamine Thyroid Neoplasms marker/mechanism 11976 phenylenediamine Thyroid Neoplasms marker/mechanism 11976 phosphate Bradycardia marker/mechanism 11976 phosphate Bradycardia marker/mechanism 11976 phosphate Congenital Abnormalities marker/mechanism 11976 phosphate Edema marker/mechanism 11976 phosphate Edema marker/mechanism 11976 phosphate Edema marker/mechanism 11976 phosphate Edema marker/mechanism 11976 phosphate Embryo Loss marker/mechanism 11976 phosphate Fetal Death marker/mechanism 11976 phosphate Growth Disorders marker/mechanism 11933 n-butoxyethanol Coronary Thrombosis marker/mechanism 1133 n-butoxyethanol Hemangiosarcoma marker/mechanism 1133 n-butoxyethanol Hemaloysis marker/mechanism 1133 n-butoxyethanol Inflammation marker/mechanism 1133 n-butoxyethanol Inflamm	11976	phenylenediamine	Breast Neoplasms	marker/mechanism
11976 phenylenediamine Carcinoma marker/mechanism 11976 phenylenediamine Thyroid Neoplasms marker/mechanism 11976 phenylenediamine Thyroid Neoplasms marker/mechanism 6540 phosphate Bradycardia marker/mechanism 6540 phosphate Congenital Abnormalities marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Embryo Loss marker/mechanism 6540 phosphate Fetal Death marker/mechanism 6540 phosphate Fetal Death marker/mechanism 6540 phosphate Growth Disorders marker/mechanism 8133 n-butoxyethanol Acidosis marker/mechanism 8133 n-butoxyethanol Hemolysis marker/mechanism 8133 n-butoxyethanol Hemolysis marker/mechanism 8133 n-butoxyethanol Inflammation marker/mechanism	11070	4-methoxy-3-		
11976 Henvitenediamine Thyroid Neoplasms marker/mechanism 11976 phenvitenediamine Thyroid Neoplasms marker/mechanism 6540 phosphate Bradycardia marker/mechanism 6540 phosphate Congenital Abnormalities marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Embryo Loss marker/mechanism 6540 phosphate Embryo Loss marker/mechanism 6540 phosphate Fetal Death marker/mechanism 6540 phosphate Growth Disorders marker/mechanism 8133 n-butoxyethanol Acidosis marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemolysis marker/mechanism 8133 n-butoxyethanol Hemolysis marker/mechanism 8133 n-butoxyethanol Inflammation marker/mechanism	11976	phenylenediamine	Carcinoma	marker/mechanism
11970 pilentyleneualimite Thyroid recipiants marker/mechanism 6540 phosphate Bradycardia marker/mechanism tris(2-butoxyethyl) Congenital Abnormalities marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Fetal Death marker/mechanism 1tris(2-butoxyethyl) Growth Disorders marker/mechanism 8133 n-butoxyethanol Acidosis marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mecha	11076	4-metnoxy-3-	Thursid Noonlasms	markar/machanism
6540 phosphate Bradycardia marker/mechanism 6540 phosphate Congenital Abnormalities marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Embryo Loss marker/mechanism 6540 phosphate Fetal Death marker/mechanism 6540 phosphate Growth Disorders marker/mechanism 6540 phosphate Growth Disorders marker/mechanism 8133 n-butoxyethanol Acidosis marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Inflammation marker/mechanism 813	11970	tris(2-butoxyetbyl)		Indi Ker/Inechanisin
Brodynamic Drodynamic Matery metadation 6540 phosphate Congenital Abnormalities marker/mechanism tris(2-butoxyethyl) Edema marker/mechanism 6540 phosphate Edema marker/mechanism tris(2-butoxyethyl) Edema marker/mechanism 6540 phosphate Embryo Loss marker/mechanism tris(2-butoxyethyl) Fetal Death marker/mechanism 6540 phosphate Fetal Death marker/mechanism 8133 n-butoxyethanol Acidosis marker/mechanism 8133 n-butoxyethanol Coronary Thrombosis marker/mechanism 8133 n-butoxyethanol Hemalgiosarcoma marker/mechanism 8133 n-butoxyethanol Hemolysis marker/mechanism 8133 n-butoxyethanol Hemolysis marker/mechanism 8133 n-butoxyethanol Inflammation marker/mechanism 8133 n-butoxyethanol Inflammation marker/mechanism 8133 n-butoxyethanol Teratogenesis <td>6540</td> <td>phosphate</td> <td>Bradycardia</td> <td>marker/mechanism</td>	6540	phosphate	Bradycardia	marker/mechanism
6540 phosphate Congenital Abnormalities marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Embryo Loss marker/mechanism 6540 phosphate Embryo Loss marker/mechanism 6540 phosphate Fetal Death marker/mechanism 6540 phosphate Growth Disorders marker/mechanism 8133 n-butoxyethanol Acidosis marker/mechanism 8133 n-butoxyethanol Hemalgiosarcoma marker/mechanism 8133 n-butoxyethanol Hemalgiosarcoma marker/mechanism 8133 n-butoxyethanol Hemolysis marker/mechanism 8133 n-butoxyethanol Hemolysis marker/mechanism 8133 n-butoxyethanol Inflammation marker/mechanism 8133 n-butoxyethanol Teratogenesis marker/mechanism 3202 Edrophonium Blepharoptosis therapeutic 3202		tris(2-butoxyethyl)		
tris(2-butoxyethyl) Edema marker/mechanism 6540 phosphate Edema marker/mechanism 6540 phosphate Embryo Loss marker/mechanism 6540 phosphate Fetal Death marker/mechanism 6540 phosphate Fetal Death marker/mechanism 6540 phosphate Growth Disorders marker/mechanism 8133 n-butoxyethanol Acidosis marker/mechanism 8133 n-butoxyethanol Coronary Thrombosis marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemolysis marker/mechanism 8133 n-butoxyethanol Hemolysis marker/mechanism 8133 n-butoxyethanol Inflammation marker/mechanism 8133 n-butoxyethanol Teratogenesis marker/mechanism 3202 Edrophonium Blepharoptosis therapeutic 3202 Edrophonium Chest Pain marker/mechanism 3202 Edro	6540	phosphate	Congenital Abnormalities	marker/mechanism
6540phosphateEdemamarker/mechanismtris(2-butoxyethyl)Embryo Lossmarker/mechanismtris(2-butoxyethyl)Fetal Deathmarker/mechanismtris(2-butoxyethyl)Fetal Deathmarker/mechanismtris(2-butoxyethyl)Growth Disordersmarker/mechanism8133n-butoxyethanolAcidosismarker/mechanism8133n-butoxyethanolCoronary Thrombosismarker/mechanism8133n-butoxyethanolHemagiosarcomamarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic </td <td></td> <td>tris(2-butoxyethyl)</td> <td></td> <td></td>		tris(2-butoxyethyl)		
6540tris(2-butoxyethyl) phosphateEmbryo Lossmarker/mechanism0tris(2-butoxyethyl) phosphateFetal Deathmarker/mechanism6540phosphateGrowth Disordersmarker/mechanism8133n-butoxyethanolAcidosismarker/mechanism8133n-butoxyethanolCoronary Thrombosismarker/mechanism8133n-butoxyethanolHemangiosarcomamarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumBradycardiamarker/mechanism3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumNuscle Weaknesstherapeutic3202 <td>6540</td> <td>phosphate</td> <td>Edema</td> <td>marker/mechanism</td>	6540	phosphate	Edema	marker/mechanism
6540 phosphate Embryo Loss marker/mechanism tris(2-butoxyethyl) Fetal Death marker/mechanism 6540 phosphate Growth Disorders marker/mechanism 8133 n-butoxyethyl) Growth Disorders marker/mechanism 8133 n-butoxyethanol Acidosis marker/mechanism 8133 n-butoxyethanol Coronary Thrombosis marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Hemangiosarcoma marker/mechanism 8133 n-butoxyethanol Inflammation marker/mechanism 8133 n-butoxyethanol Teratogenesis marker/mechanism 3202 Edrophonium Blepharoptosis therapeutic 3202 Edrophonium Chest Pain marker/mechanism 3202 Edrophonium Esophageal Motility Disorders marker/mechanis		tris(2-butoxyethyl)		
tris(2-butoxyethyl)6540phosphateFetal Deathmarker/mechanism6540phosphateGrowth Disordersmarker/mechanism8133n-butoxyethanolAcidosismarker/mechanism8133n-butoxyethanolCoronary Thrombosismarker/mechanism8133n-butoxyethanolHemangiosarcomamarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolIreratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumChest Painmarker/mechanism3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic <td>6540</td> <td>phosphate</td> <td>Embryo Loss</td> <td>marker/mechanism</td>	6540	phosphate	Embryo Loss	marker/mechanism
6540phosphateFetal Deathmarker/mechanismtris(2-butoxyethyl)Growth Disordersmarker/mechanism6540phosphateGrowth Disordersmarker/mechanism8133n-butoxyethanolAcidosismarker/mechanism8133n-butoxyethanolCoronary Thrombosismarker/mechanism8133n-butoxyethanolHemangiosarcomamarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHypoxiamarker/mechanism8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumChest Painmarker/mechanism3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumNeur		tris(2-butoxyethyl)		
tris(2-butoxyethyl)Growth Disordersmarker/mechanism8133n-butoxyethanolAcidosismarker/mechanism8133n-butoxyethanolCoronary Thrombosismarker/mechanism8133n-butoxyethanolHemangiosarcomamarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumChest Painmarker/mechanism3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeat Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumNeuromuscular Arrestmarker/mechanism3202 <td< td=""><td>6540</td><td>phosphate</td><td>Fetal Death</td><td>marker/mechanism</td></td<>	6540	phosphate	Fetal Death	marker/mechanism
6340phosphateGrowth Disordersmarker/mechanism8133n-butoxyethanolCoronary Thrombosismarker/mechanism8133n-butoxyethanolHemangiosarcomamarker/mechanism8133n-butoxyethanolHemangiosarcomamarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHypoxiamarker/mechanism8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumDrug-Related Side Effects and Adverse3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202Edrophonium <td>6540</td> <td>tris(2-butoxyethyl)</td> <td>Crowth Disordors</td> <td>markar/machanism</td>	6540	tris(2-butoxyethyl)	Crowth Disordors	markar/machanism
8133n-butoxyethanolActidosismarker/mechanism8133n-butoxyethanolCoronary Thrombosismarker/mechanism8133n-butoxyethanolHemangiosarcomamarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHypoxiamarker/mechanism8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumChest Painmarker/mechanism3202EdrophoniumChest Painmarker/mechanism3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumT	0540	phosphate	Growth Disorders	marker/mechanism
8133n-butoxyetnanolCoronary Inrombosismarker/mechanism8133n-butoxyethanolHemangiosarcomamarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHypoxiamarker/mechanism8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumDrug-Related Side Effects and Adversetherapeutic3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202Ed	8133	n-butoxyetnanoi	Acidosis	marker/mechanism
8133n-butoxyethanolHemangiosarcomamarker/mechanism8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHypoxiamarker/mechanism8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumBradycardiamarker/mechanism3202EdrophoniumDrug-Related Side Effects and Adverse3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Neurowysmaltherapeutic3202EdrophoniumTachycardia, Neurowysmaltherapeutic3202EdrophoniumT	8133	n-butoxyetnanoi		marker/mechanism
8133n-butoxyethanolHemolysismarker/mechanism8133n-butoxyethanolHypoxiamarker/mechanism8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumBradycardiamarker/mechanism3202EdrophoniumDrug-Related Side Effects and Adverse3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic	8133	n-butoxyetnanol	Hemanglosarcoma	marker/mechanism
8133n-butoxyethanolHypoxiamarker/mechanism8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumBradycardiamarker/mechanism3202EdrophoniumDrug-Related Side Effects and Adverse3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic	8133	n-butoxyethanol	Hemolysis	marker/mechanism
8133n-butoxyethanolInflammationmarker/mechanism8133n-butoxyethanolTeratogenesismarker/mechanism3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumBradycardiamarker/mechanism3202EdrophoniumChest Painmarker/mechanism3202EdrophoniumChest Painmarker/mechanism3202EdrophoniumChest Painmarker/mechanism3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic	8133	n-butoxyethanol	Нурохіа	marker/mechanism
8133n-butoxyethanolTeratogenesismarker/mechanism3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumBradycardiamarker/mechanism3202EdrophoniumChest Painmarker/mechanism3202EdrophoniumChest Painmarker/mechanism3202EdrophoniumReactionstherapeutic3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic	8133	n-butoxyethanol	Inflammation	marker/mechanism
3202EdrophoniumBlepharoptosistherapeutic3202EdrophoniumBradycardiamarker/mechanism3202EdrophoniumChest Painmarker/mechanism3202EdrophoniumDrug-Related Side Effects and Adverse Reactionstherapeutic3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic	8133	n-butoxyethanol	Teratogenesis	marker/mechanism
3202EdrophoniumBradycardiamarker/mechanism3202EdrophoniumChest Painmarker/mechanism3202EdrophoniumDrug-Related Side Effects and Adverse3202EdrophoniumReactionstherapeutic3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMyasthenia Gravistherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumParalysistherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic	3202	Edrophonium	Blepharoptosis	therapeutic
3202EdrophoniumChest Painmarker/mechanism3202EdrophoniumDrug-Related Side Effects and Adverse Reactionstherapeutic3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHypotensiontherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMyasthenia Gravistherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic	3202	Edrophonium	Bradycardia	marker/mechanism
3202EdrophoniumDrug-Related Side Effects and Adverse Reactions3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHypotensiontherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMyasthenia Gravistherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic	3202	Edrophonium	Chest Pain	marker/mechanism
3202EdrophoniumReactionstherapeutic3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHypotensiontherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMyasthenia Gravistherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumParalysistherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic			Drug-Related Side Effects and Adverse	
3202EdrophoniumEsophageal Motility Disordersmarker/mechanism3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHypotensiontherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMyasthenia Gravistherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumParalysistherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic	3202	Edrophonium	Reactions	therapeutic
3202EdrophoniumEsophageal Spasm, Diffusemarker/mechanism3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHypotensiontherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMyasthenia Gravistherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumParalysistherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic3203EdrophoniumTachycardia, Supraventriculartherapeutic	3202	Edrophonium	Esophageal Motility Disorders	marker/mechanism
3202EdrophoniumHeart Arrestmarker/mechanism3202EdrophoniumHypotensiontherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMyasthenia Gravistherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumParalysistherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic3203EdrophoniumTachycardia, Supraventriculartherapeutic	3202	Edrophonium	Esophageal Spasm, Diffuse	marker/mechanism
3202EdrophoniumHypotensiontherapeutic3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMyasthenia Gravistherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumParalysistherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic	3202	Edrophonium	Heart Arrest	marker/mechanism
3202EdrophoniumMuscle Weaknesstherapeutic3202EdrophoniumMyasthenia Gravistherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumParalysistherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic	3202	Edrophonium	Hypotension	therapeutic
3202EdrophoniumMyasthenia Gravistherapeutic3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumParalysistherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic	3202	Edrophonium	Muscle Weakness	therapeutic
3202EdrophoniumNeuromuscular Diseasestherapeutic3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumParalysistherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic	3202	Edrophonium	Myasthenia Gravis	therapeutic
3202EdrophoniumOcular Motility Disordersmarker/mechanism3202EdrophoniumParalysistherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic3203EdrophoniumTachycardia, Supraventriculartherapeutic	3202	Edrophonium	Neuromuscular Diseases	therapeutic
3202EdrophoniumParalysistherapeutic3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic3203EdrophoniumTachycardia, Ventriculartherapeutic	3202	Edrophonium	Ocular Motility Disorders	marker/mechanism
3202EdrophoniumTachycardia, Paroxysmaltherapeutic3202EdrophoniumTachycardia, Supraventriculartherapeutic3203EdrophoniumTachycardia Ventriculartherapeutic	3202	Edrophonium	Paralysis	therapeutic
3202 Edrophonium Tachycardia, Supraventricular therapeutic	3202	Edrophonium	Tachycardia, Paroxysmal	therapeutic
	3202	Edrophonium	Tachycardia, Supraventricular	therapeutic
1 3202 Europhonium Tachycardia, ventricular Marker/Mechanism	3202	Edrophonium	Tachycardia, Ventricular	marker/mechanism
4158 Methylphenidate Abdominal Pain marker/mechanism	4158	Methylphenidate	Abdominal Pain	marker/mechanism

4158	Methylphenidate	Akinetic Mutism	marker/mechanism
4158	Methylphenidate	Amnesia	marker/mechanism
4158	Methylphenidate	Amphetamine-Related Disorders	therapeutic
4158	Methylphenidate	Anemia	marker/mechanism
4158	Methylphenidate	Anorexia	marker/mechanism
4158	Methylphenidate	Anxiety Disorders	marker/mechanism
4158	Methylphenidate	Arrhythmias, Cardiac	marker/mechanism
4158	Methylphenidate	Arteritis	marker/mechanism
4158	Methylphenidate	Ataxia	marker/mechanism
4158	Methylphenidate	Athetosis	marker/mechanism
4158	Methylphenidate	Athetosis	therapeutic
		Attention Deficit and Disruptive	
4158	Methylphenidate	Behavior Disorders	therapeutic
4450	Mathuluh anidata	Attention Deficit Disorder with	
4158	wietnyiphenidate	Hyperactivity Attention Deficit Disorder with	marker/mechanism
4158	Methylphenidate	Hyperactivity	therapeutic
4158	Methylphenidate	Autistic Disorder	therapeutic
4158	Methylphenidate	Basal Ganglia Diseases	marker/mechanism
4158	Methylphenidate	Bipolar Disorder	marker/mechanism
4158	Methylphenidate	Bipolar Disorder	therapeutic
4158	Methylphenidate	Bradycardia	marker/mechanism
4158	Methylphenidate	Brain Infarction	marker/mechanism
4158	Methylphenidate	Brain Injuries	therapeutic
4158	Methylphenidate	Cardiomyopathies	marker/mechanism
4158	Methylphenidate	Cardiomyopathy, Dilated	marker/mechanism
4158	Methylphenidate	Cataplexy	therapeutic
4158	Methylphenidate	Catatonia	marker/mechanism
4158	Methylphenidate	Cerebral Arterial Diseases	marker/mechanism
4158	Methylphenidate	Cerebral Infarction	marker/mechanism
4158	Methylphenidate	Chemical and Drug Induced Liver Injury	marker/mechanism
4158	Methylphenidate	Child Behavior Disorders	therapeutic
		Child Development Disorders,	
4158	Methylphenidate	Pervasive	therapeutic
4158	Methylphenidate	Chorea	marker/mechanism
4158	Methylphenidate	Chorea	therapeutic
4158	Methylphenidate	Cocaine-Related Disorders	marker/mechanism
4158	Methylphenidate	Cocaine-Related Disorders	therapeutic
4158	Methylphenidate	Cognition Disorders	marker/mechanism
4158	Methylphenidate	Cognition Disorders	therapeutic
4158	Methylphenidate	Conduct Disorder	therapeutic
4158	Methylphenidate	Confusion	marker/mechanism
4158	Methylphenidate	Consciousness Disorders	therapeutic
4158	Methylphenidate	Conversion Disorder	marker/mechanism
4158	Methylphenidate	Coronary Vasospasm	marker/mechanism
4158	Methylphenidate	Depressive Disorder	marker/mechanism

4158	Methylphenidate	Depressive Disorder	therapeutic
4158	Methylphenidate	Disorders of Excessive Somnolence	marker/mechanism
4158	Methylphenidate	Disorders of Excessive Somnolence	therapeutic
		Disruptive, Impulse Control, and	
4158	Methylphenidate	Conduct Disorders	marker/mechanism
4158	Methylphenidate	Dizziness	marker/mechanism
		Drug-Related Side Effects and Adverse	
4158	Methylphenidate	Reactions	marker/mechanism
4158	Methylphenidate	Dyskinesia, Drug-Induced	marker/mechanism
4158	Methylphenidate	Dystonia	marker/mechanism
4158	Methylphenidate	Echolalia	marker/mechanism
4158	Methylphenidate	Enuresis	marker/mechanism
4158	Methylphenidate	Eosinophilia	marker/mechanism
4158	Methylphenidate	Epilepsy, Tonic-Clonic	marker/mechanism
4158	Methylphenidate	Erectile Dysfunction	therapeutic
4158	Methylphenidate	Fatigue	marker/mechanism
4158	Methylphenidate	Fatigue	therapeutic
4158	Methylphenidate	Feeding and Eating Disorders	marker/mechanism
4158	Methylphenidate	Hallucinations	marker/mechanism
4158	Methylphenidate	Headache	marker/mechanism
4158	Methylphenidate	Heart Arrest	marker/mechanism
4158	Methylphenidate	Hemiplegia	marker/mechanism
4158	Methylphenidate	Hepatitis, Autoimmune	marker/mechanism
4158	Methylphenidate	Hepatoblastoma	marker/mechanism
4158	Methylphenidate	Huntington Disease	marker/mechanism
4158	Methylphenidate	Hyperkinesis	marker/mechanism
4158	Methylphenidate	Hyperkinesis	therapeutic
4158	Methylphenidate	Hypertension	marker/mechanism
4158	Methylphenidate	Hypertension, Pulmonary	marker/mechanism
4158	Methylphenidate	Hypotension, Orthostatic	marker/mechanism
4158	Methylphenidate	Jaundice	marker/mechanism
4158	Methylphenidate	Leukopenia	marker/mechanism
4158	Methylphenidate	Livedo Reticularis	marker/mechanism
4158	Methylphenidate	Liver Neoplasms	marker/mechanism
4158	Methylphenidate	Memory Disorders	marker/mechanism
4158	Methylphenidate	Motor Skills Disorders	therapeutic
4158	Methylphenidate	Movement Disorders	marker/mechanism
4158	Methylphenidate	Muscle Rigidity	marker/mechanism
4158	Methylphenidate	Muscular Diseases	therapeutic
4158	Methylphenidate	Myocardial Infarction	marker/mechanism
4158	Methylphenidate	Mvoclonus	marker/mechanism
4158	Methylphenidate	Narcolensy	marker/mechanism
4158	Methylnhenidate	Narcolepsy	theraneutic
Δ15 ²	Methylnhenidate	Nausea	marker/mechanism
4158	Methylphenidate	Neurobehavioral Manifestations	theraneutic
-110	incligiplicituate		incrupeutie

4158	Methylphenidate	Neuroleptic Malignant Syndrome	marker/mechanism
4158	Methylphenidate	Obsessive-Compulsive Disorder	marker/mechanism
4158	Methylphenidate	Ocular Motility Disorders	marker/mechanism
4158	Methylphenidate	Pain	therapeutic
4158	Methylphenidate	Pericarditis	marker/mechanism
4158	Methylphenidate	Peripheral Vascular Diseases	marker/mechanism
4158	Methylphenidate	Pica	marker/mechanism
4158	Methylphenidate	Prenatal Exposure Delayed Effects	marker/mechanism
4158	Methylphenidate	Psychomotor Agitation	marker/mechanism
4158	Methylphenidate	Psychomotor Agitation	therapeutic
4158	Methylphenidate	Psychomotor Disorders	therapeutic
4158	Methylphenidate	Psychoses, Substance-Induced	marker/mechanism
4158	Methylphenidate	Psychotic Disorders	therapeutic
4158	Methylphenidate	Raynaud Disease	marker/mechanism
4158	Methylphenidate	Reflex, Abnormal	marker/mechanism
4158	Methylphenidate	Seizures	marker/mechanism
4158	Methylphenidate	Serotonin Syndrome	marker/mechanism
4158	Methylphenidate	Sexual Dysfunctions, Psychological	marker/mechanism
4158	Methylphenidate	Sleep Bruxism	marker/mechanism
		Sleep Initiation and Maintenance	
4158	Methylphenidate	Disorders	marker/mechanism
4158	Methylphenidate	Sleep Wake Disorders	marker/mechanism
4158	Methylphenidate	Somatoform Disorders	marker/mechanism
4158	Methylphenidate	Somatoform Disorders	therapeutic
4158	Methylphenidate	Somnambulism	marker/mechanism
4158	Methylphenidate	Speech Disorders	marker/mechanism
4158	Methylphenidate	Stereotypic Movement Disorder	marker/mechanism
4158	Methylphenidate	Stuttering	marker/mechanism
4158	Methylphenidate	Substance Abuse, Intravenous	marker/mechanism
4158	Methylphenidate	Substance-Related Disorders	marker/mechanism
4158	Methylphenidate	Substance Withdrawal Syndrome	marker/mechanism
4158	Methylphenidate	Substance Withdrawal Syndrome	therapeutic
4158	Methylphenidate	Tachycardia	marker/mechanism
4158	Methylphenidate	Tachycardia, Ventricular	marker/mechanism
4158	Methylphenidate	Thrombocytosis	marker/mechanism
4158	Methylphenidate	Tic Disorders	marker/mechanism
4158	Methylphenidate	Tic Disorders	therapeutic
4158	Methylphenidate	Tics	marker/mechanism
4158	Methylphenidate	Torticollis	marker/mechanism
4158	Methylphenidate	Tourette Syndrome	marker/mechanism
4158	Methylphenidate	Tremor	marker/mechanism
4158	Methylphenidate	Trichotillomania	marker/mechanism
4158	Methylphenidate	Vasculitis, Central Nervous System	marker/mechanism
4158	Methylphenidate	Ventricular Dysfunction, Left	marker/mechanism
4158	Methylphenidate	Ventricular Fibrillation	marker/mechanism

4158	Methylphenidate	Vertigo	marker/mechanism
4158	Methylphenidate	Vomiting	marker/mechanism
4158	Methylphenidate	Xerostomia	marker/mechanism
445639	Oleic Acid	Acute Lung Injury	marker/mechanism
445639	Oleic Acid	Breast Neoplasms	therapeutic
445639	Oleic Acid	Cognition Disorders	marker/mechanism
445639	Oleic Acid	Fatty Liver	marker/mechanism
445639	Oleic Acid	Hepatitis, Animal	marker/mechanism
445639	Oleic Acid	Нурохіа	marker/mechanism
445639	Oleic Acid	Insulin Resistance	marker/mechanism
445639	Oleic Acid	Lung Injury	marker/mechanism
445639	Oleic Acid	Non-alcoholic Fatty Liver Disease	marker/mechanism
445639	Oleic Acid	Pulmonary Edema	marker/mechanism
445639	Oleic Acid	Respiratory Distress Syndrome	marker/mechanism
9903	Lithocholic Acid	Birth Weight	marker/mechanism
9903	Lithocholic Acid	Chemical and Drug Induced Liver Injury	marker/mechanism
9903	Lithocholic Acid	Cholangitis	marker/mechanism
9903	Lithocholic Acid	Cholestasis	marker/mechanism
9903	Lithocholic Acid	Cholestasis, Intrahepatic	marker/mechanism
9903	Lithocholic Acid	Colonic Neoplasms	marker/mechanism
9903	Lithocholic Acid	Diabetes Mellitus, Experimental	therapeutic
9903	Lithocholic Acid	Diabetes Mellitus, Type 2	therapeutic
9903	Lithocholic Acid	Fatty Liver	marker/mechanism
9903	Lithocholic Acid	Fetal Weight	marker/mechanism
9903	Lithocholic Acid	Glucose Intolerance	therapeutic
9903	Lithocholic Acid	Hyperplasia	marker/mechanism
9903	Lithocholic Acid	Liver Cirrhosis	marker/mechanism
9903	Lithocholic Acid	Necrosis	marker/mechanism
9903	Lithocholic Acid	Neoplasm Metastasis	therapeutic
9903	Lithocholic Acid	Precancerous Conditions	marker/mechanism
9903	Lithocholic Acid	Prenatal Exposure Delayed Effects	marker/mechanism
3341	Fenoldopam	Acute Kidney Injury	therapeutic
3341	Fenoldopam	Arteritis	marker/mechanism
3341	Fenoldopam	Bradycardia	marker/mechanism
3341	Fenoldopam	Cardiac Output, High	marker/mechanism
3341	Fenoldopam	Hemorrhage	marker/mechanism
3341	Fenoldopam	Hypertension	therapeutic
3341	Fenoldopam	Hypotension	marker/mechanism
3341	Fenoldopam	Necrosis	marker/mechanism
3341	Fenoldopam	Peripheral Arterial Disease	marker/mechanism
3341	Fenoldopam	Polyarteritis Nodosa	marker/mechanism
5283324	2-octenal	Neurotoxicity Syndromes	marker/mechanism
3114	Disopyramide	Acute Kidney Injury	marker/mechanism
3114	Disopyramide	Arrhythmias, Cardiac	marker/mechanism
3114	Disopyramide	Arrhythmias, Cardiac	therapeutic

3114	Disopyramide	Arthralgia	marker/mechanism
3114	Disopyramide	Atrial Fibrillation	therapeutic
3114	Disopyramide	Atrial Flutter	therapeutic
3114	Disopyramide	Atrial Premature Complexes	therapeutic
3114	Disopyramide	Atrioventricular Block	marker/mechanism
3114	Disopyramide	Bradycardia	marker/mechanism
3114	Disopyramide	Bundle-Branch Block	marker/mechanism
3114	Disopyramide	Cardiac Complexes, Premature	therapeutic
3114	Disopyramide	Cardiomegaly	marker/mechanism
3114	Disopyramide	Cardiomyopathy, Hypertrophic	therapeutic
3114	Disopyramide	Chemical and Drug Induced Liver Injury	marker/mechanism
3114	Disopyramide	Cholestasis	marker/mechanism
3114	Disopyramide	Cholestasis, Intrahepatic	marker/mechanism
3114	Disopyramide	Coma	marker/mechanism
3114	Disopyramide	Death, Sudden	marker/mechanism
3114	Disopyramide	Disseminated Intravascular Coagulation	marker/mechanism
3114	Disopyramide	Dizziness	marker/mechanism
		Drug-Related Side Effects and Adverse	
3114	Disopyramide	Reactions	marker/mechanism
3114	Disopyramide	Erectile Dysfunction	marker/mechanism
3114	Disopyramide	Erythema Nodosum	marker/mechanism
3114	Disopyramide	Eye Diseases	marker/mechanism
3114	Disopyramide	Fatigue	marker/mechanism
3114	Disopyramide	Fetal Diseases	therapeutic
3114	Disopyramide	Heart Arrest	marker/mechanism
3114	Disopyramide	Heart Block	marker/mechanism
3114	Disopyramide	Heart Block	therapeutic
3114	Disopyramide	Heart Diseases	marker/mechanism
3114	Disopyramide	Heart Failure	marker/mechanism
3114	Disopyramide	Hypertension	marker/mechanism
3114	Disopyramide	Hypoglycemia	marker/mechanism
3114	Disopyramide	Hypotension	marker/mechanism
3114	Disopyramide	Jaundice, Obstructive	marker/mechanism
3114	Disopyramide	Liver Diseases	marker/mechanism
3114	Disopyramide	Long QT Syndrome	marker/mechanism
3114	Disopyramide	Muscle Cramp	marker/mechanism
3114	Disopyramide	Myocardial Infarction	therapeutic
3114	Disopyramide	Neuromuscular Diseases	marker/mechanism
3114	Disopyramide	Pain	marker/mechanism
3114	Disopyramide	Paresthesia	marker/mechanism
3114	Disopyramide	Peripheral Nervous System Diseases	marker/mechanism
3114	Disopyramide	Pulmonary Edema	marker/mechanism
3114	Disopyramide	Pyelonephritis	marker/mechanism
3114	Disopyramide	Renal Insufficiency	marker/mechanism
3114	Disopyramide	Respiration Disorders	marker/mechanism

3114	Disopyramide	Seizures	marker/mechanism
3114	Disopyramide	Shock, Cardiogenic	marker/mechanism
3114	Disopyramide	Sinoatrial Block	marker/mechanism
3114	Disopyramide	Sinus Arrest, Cardiac	marker/mechanism
3114	Disopyramide	Syncope	marker/mechanism
3114	Disopyramide	Tachycardia	therapeutic
		Tachycardia, Atrioventricular Nodal	
3114	Disopyramide	Reentry	therapeutic
3114	Disopyramide	Tachycardia, Paroxysmal	therapeutic
3114	Disopyramide	Tachycardia, Sinus	marker/mechanism
3114	Disopyramide	Tachycardia, Supraventricular	therapeutic
3114	Disopyramide	Tachycardia, Ventricular	marker/mechanism
3114	Disopyramide	Tachycardia, Ventricular	therapeutic
3114	Disopyramide	Takotsubo Cardiomyopathy	marker/mechanism
3114	Disopyramide	Torsades de Pointes	marker/mechanism
3114	Disopyramide	Urinary Retention	marker/mechanism
3114	Disopyramide	Ventricular Dysfunction	marker/mechanism
3114	Disopyramide	Ventricular Dysfunction, Left	marker/mechanism
3114	Disopyramide	Ventricular Dysfunction, Left	therapeutic
3114	Disopyramide	Ventricular Fibrillation	marker/mechanism
3114	Disopyramide	Ventricular Fibrillation	therapeutic
3114	Disopyramide	Ventricular Flutter	marker/mechanism
3114	Disopyramide	Ventricular Premature Complexes	marker/mechanism
3114	Disopyramide	Ventricular Premature Complexes	therapeutic
3114	Disopyramide	Vision Disorders	marker/mechanism
3114	Disopyramide	Xerostomia	marker/mechanism
6437074	SQ 29548	Bradycardia	therapeutic
6437074	SQ 29548	Hypertension	therapeutic