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Abstract
In the process of developing a university’s weekly course timetable, changes in the data, such as the available time periods
of professors or rooms, render the timetable infeasible, requiring the administrators to repair or update the timetable. Since
such changes almost always occur, it would be a sensible approach to identify a robust initial timetable, that is, one that can
be repaired by making a limited number of changes, while still maintaining a high solution quality. This article formulates
the problem as a bi-criteria optimization one, in which robustness is a stochastic objective, and the goal is to identify a good
approximation to the Pareto frontier. It is assumed that multiple data changes, or disruptions, of multiple types can occur.
The solution approach is a multi-objective simulated annealing (MOSA) algorithm, where a surrogate measure is used to
approximate the robustness objective. Inspired by the concept of slack in machine and project scheduling, ten alternative
measures of slack and a total of thirty surrogate measures are defined. Preliminary computational experiments are used to
narrow the list of promising ones first to eight and then to two measures, which are then tested within a MOSA algorithm.
Computational experiments show that one of thesemeasures,when implemented in amulti-startMOSAalgorithm, consistently
provides the best Pareto frontier.

Keywords Course timetabling · Simulated annealing · Robustness · Fitness approximation

1 Introduction

As in most scheduling problems, the process of course
timetabling has a dynamic characteristic. In a university
where pre-enrollment timetabling is used, first, an initial
timetable, S0, is prepared based on a set of constraints,
which is then announced to the university staff, giving them
some time to submit requirement changes, due to new con-
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straints or data corrections. We refer to such changes in
constraints as disruptions. The timetable is then re-optimized
taking these disruptions into account, while ensuring that
the changes to S0 are kept to a minimum. The resultant
timetable is announced, and the students enroll in courses
based on this timetable. Several types of disruptions are dis-
cussed in the literature (McCollum 2007; Müller et al. 2005;
Kingston 2013; Phillips et al. 2017; Lindahl et al. 2019;
Yasari et al. 2019; Lemos et al. 2020). Some disruptions
could simply change feasibility of certain periods for some
lectures, whereas others may affect either the availability or
the capacity sufficiency of rooms for some lectures. In some
cases, some new courses could be added, some others could
be removed or canceled, some new faculty may arrive and
others may leave, and some courses that are already in one
curriculum (say economics) could be added to another one
(say business).

Problems in which constraints change over time are
known as dynamic optimization problems, which fall into the
category of optimization in uncertain environments. Meta-
heuristics are often used for solving these problems (e.g., see
Jin andBranke 2005 for a survey of evolutionary algorithms).
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Recently, there has been increasing interest in modeling and
solving dynamic combinatorial optimization problems. One
such problem closely related to timetabling is the graph
coloring problem. Hardy et al. (2018) develop heuristics
for the dynamic graph coloring problem where edges are
added/removed over time, randomly. They look into how
information about the likelihood of future edge changes can
be used to produce more robust colorings.

We say a timetable is robust if, when disrupted, its feasibil-
ity can be restored without significantly lowering its quality
in terms of the objective function while keeping it relatively
stable. Stability is measured by the number of events whose
assigned periods are different in the disrupted and repaired
solutions, i.e., the Hamming distance between the arrays
storing these period assignments. In obtaining the repaired
solution, we assume an upper limit, which is a function of
the size of the disruption, is placed on this distance between
the solutions.

It is important to distinguish the robustness to changes in
data and constraints as described above, from robust opti-
mization research in which uncertainty is defined by a range
(or radius) around the value(s) taken by the decision vari-
able(s). This is quite a sensible approach for engineering
design optimization because the optimized characteristics of
the product (i.e., the decision variables) could take values
within a margin of these optimized values due to the inher-
ent variability of the production processes. For instance, the
thickness of the side walls of a car tire could deviate from the
optimum design specifications and therefore, up to a certain
level of this deviation, the performance of the tire should
still be close to the optimum. Thus, for such problems, it
is common to define robustness as the worst-case perfor-
mance or standard deviation of the performance when the
decision variables vary within a radius of their intended val-
ues. Often, meta-heuristics and algorithms that automatically
designmeta-heuristics are being used to solve such problems.
A recent example of the latter is Hughes et al. (2021) for
robust optimization of production plans in batch production,
where the uncertainty is in the implementation of a given
plan, which takes place within a radius around the intended
plan. Again dealingwith a problemwhere disturbances affect
the values of the decision variables, Fei et al. (2019) use the
archive sample approximation method which reuses previ-
ous function evaluations stored in an archive. They use the
Wasserstein distancemetric to approximate the possible ben-
efit of a potential sample location on the estimation error and
propose new sampling strategies based on this metric. Both
Hughes et al. (2021) and Fei et al. (2019) test their algorithms
on a set of artificial benchmark problems, which are contin-
uous functions of one or more decision variables. Fei et al.
(2019) also test their algorithm on a real-world, but simple,
air foil design optimization problem.

We formulate the problemof identifying a robust timetable
as a bi-criteria optimization problem where one objective
is the quality of the solution measured as a function of the
violated soft constraints (i.e., the penalty function), denoted
by P , and the second one is a function that measures the
robustness of the timetable, denoted by R. We express
the robustness objective as minimizing E(R(S,YS)), the
expected value of a disruption measure R(S,YS), where S
is a given solution and YS is the random variable represent-
ing the disruptions. We assume multiple number and types
of disruptions can affect a given timetable, and there is no
prior knowledge of the probability of any specific disruption
occurring. (Thus, any disruption is equally likely.)

Recently, in the context of production planning, a benefit
of formulating the optimization problem as a bi-criteria one
(with one of the objectives measuring robustness) has been
identified by Diaz et al. (2017). They looked into the inter-
actions between the number of objectives, choices of sample
size and robustness measure within the context of evolution-
ary robust optimization in production planning (formulated
as a version of multi-dimensional knapsack problem). They
report that including a robustness objective along with the
primary objective of the problem (profit of the production
plan) and finding a Pareto frontier yielded, on the average,
better primary objective values than those found by a single
objective approach.

Since there is no closed-form expression for E(R(S, YS)),
one may consider using the sample average approximation
(SAA) approach (Kleywegt et al. 2002) of E(R(S,YS)) to
turn the stochastic optimization problem into a determinis-
tic one by minimizing the sample average of R(S, y) for
y ∈ Y , where Y is a random sample of disruptions. Gülcü
and Akkan (2020) use this approach, where a sample of
20 disruptions are used within a multi-objective simulated
annealing (MOSA) algorithm. However, for the version of
the problem addressed here SAA is not practical. Unlike in
Gülcü and Akkan (2020) where existence of multiple disrup-
tions of a single type is assumed for each disruption scenario,
here four different disruption types are assumed that would
require a much larger sample of disruption scenarios for it to
be representative enough. Their algorithm is a hybridMOSA
algorithm complemented with local search that is used to
find good solutions for each disruption scenario in the sam-
ple. These solutions are maintained in a solution network
through the MOSA algorithm. Thus, any significant increase
in the size of the sample of disruption scenarios significantly
increases the running time and the memory requirement of
the hybrid MOSA.

Many practical robust optimization problems have a simi-
lar challenge: requirement of significant computational effort
to evaluate the quality of a given solution. In their survey,
Jin and Branke (2005) state that when the fitness function is
very expensive to evaluate, or an analytical fitness function is

123



Journal of Scheduling

not available, fitness functions are often approximated. They
emphasize that the error made by this approximation could
be systematic (i.e., with nonzero mean), and still it would
perform well, as long as the relative ranking of the solutions
is accurate. These approximate fitness functions, also known
as meta-models or surrogates, are trained using a set of solu-
tions with known (true) fitness values. The training may be
off-line (i.e., before the search algorithm is run), online (i.e.,
during the search algorithm) or both. Algorithms with surro-
gate models mostly work with a budget limit on the number
of (or CPU time used by) true fitness evaluations.

Most of the work on surrogate models, such as kriging,
radial basis functions and polynomial regression, are for con-
tinuous unconstrained optimization problems (Jin 2011). A
recent example using surrogate models for constrained com-
binatorial optimization is provided by Wang and Jin (2020),
where authors use random forest (RF) models. An important
characteristic of the problems they address is that both fitness
and constraint satisfaction of the solutions require estima-
tion. They determine that the performance of the RF models
degenerates onhigh-dimensional combinatorial optimization
problems. They argue that this weakness can be mitigated
by dimension reduction techniques. Bartz-Beielstein and
Zaefferer (2017) provide a discussion of strategies for deal-
ing fitness estimation for discrete optimization problems.
They argue that for permutation decision variables similarity-
based methods, rather than surrogate models, can be used.
For instance, in k-nearest neighbor (k-NN) models similar-
ity measures are used to determine the “distance” between
solutions and the fitness of a solution is estimated by using
the fitness values of these neighbors (e.g., see Brownlee and
Wright 2015).

An alternative to using surrogate models, which is taken
here, is to define a domain-specific approximate fitness mea-
sure that can be calculated very quickly within a search
heuristic and use it to evaluate all solutions throughout the
search algorithm, as opposed to a fraction of these solutions.

In the work reported here, we first develop and test some
robustness measures based on certain characteristics of slack
in a given timetable and then implement the most promising
ones in a MOSA algorithm. Figure 1 depicts a small exam-
ple to provide some intuition regarding how slack could be
related to robustness.We assume there are 3 courses (the first
one with two events and the other with one) to be sched-
uled over four time periods with two rooms (r1 and r2).
The time and room assignments of these events are marked
with an “X.” As an input to the timetabling problem, some
periods are unavailable for some courses (typically due to
teacher unavailability). Once a timetable is created, the avail-
able periods could have different characteristics. Some of the
available periods can be fully committed (i.e., all rooms are
busy at that period). If one wants to reschedule an event to
an uncommitted period, the move may not be feasible due to

some hard-constraint violations, often referred to as conflicts
(e.g., the event’s teacher may already be teaching another
course at that period). Uncommitted and conflict-free peri-
ods are examples of slack, and clearly their numbers and
distribution should have an effect on the ease of repairing
the timetable. In timetable 1, only course 3 has a conflict-
free period to which its event can be rescheduled, whereas
in timetable 2, course 2 and course 3 have one conflict-free
period each. In timetable 1, if we move the event of course 2
to period 4, we would have to reschedule the event of course
3 at period 4 to avoid the hard-constraint violation.

To the best of our knowledge, this is the first attempt to
measure slack in a course timetable and use it as a surrogate
measure of robustness or flexibility of the timetable. The
specific timetabling problem we address is the curriculum-
based university course timetabling problem (CB-CTP) of
International Timetabling Competition, 2007 (ITC-2007).

The rest of the paper is organized as follows: In the
next section, a formal definition of the problem is provided,
including the ITC-2007 timetabling problem, the definitions
of the types of data changes (so-called disruptions) and the
robustness measure. Then, in Sect. 3 the measures of slack
in the timetable are presented. Section 4 presents the multi-
objective simulated annealing (MOSA) algorithm designed
to work with a slack measure that is used as a surrogate
measure of robustness. Section 5 presents the computational
experiments done to identify the most promising slack mea-
sures among the ones explained in the previous section, and
the results of the computational experiments run for testing
the performance of the MOSA algorithm using the two most
promising slack measures. Finally, in Sect. 6 some conclud-
ing remarks are shared. An appendix section presenting the
IP model that is used in calculating the robustness measure
is provided in the end.

2 Problem definition

2.1 The curriculum-based course timetabling
problem

Among the variants of the university course timetabling
problem, two main variants, namely the curriculum-based
(CB-CTP) and post-enrolment (PE-CTP) course timetabling
problems, have been widely studied (see Chen et al. 2021 for
a recent survey). We have chosen to use the CB-CTP defini-
tion and instances developed for ITC-2007 (see McCollum
et al. 2010), as these instances have become widely used
benchmarking instances. In course timetabling, a solution is
an assignment of a period (day and time slot) and a room to
all weekly lectures of each course which satisfies all of the
hard constraints, to arrive at a schedule which is repeated
every week.
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Fig. 1 Example depicting how
characteristics of slack measures
can be related to robustness

The hard constraints of the CB-CTP of ITC-2007 are Lec-
tures (all lectures of a course must be scheduled to distinct
periods), Conflicts (lectures of courses in the same curricu-
lum or taught by the same teacher must be scheduled in
different periods), Availabilities (if the teacher of the course
is not available to teach that course at a given period, then
no lectures of the course can be scheduled at that period) and
RoomOccupancy. (Two lectures cannot take place in the same
room in the same period.) There are also soft constraints,
which can be violated. The soft constraints of CB-CTP of
ITC-2007 are RoomCapacity (for each lecture, the number
of students taking the course must be less than or equal to
the number of seats of all the rooms that host its lectures),
MinimumWorkingDays (the lectures of each course must be
spread into the given minimum number of days), Curricu-
lumCompactness (lectures belonging to a curriculum should
be in consecutive periods) and RoomStability. (All lectures
of a course should be given in the same room.)

The objective function, referred to as the penalty and
denoted by P , is computed as the weighted sum of the
violation of the soft constraints. Specifically, for the Room-
Capacity constraint, each student above the capacity counts
as 1 point of penalty. For the MinimumWorkingDays con-
straint, each day below the minimum counts as 5 points
of penalty. For the CurriculumCompactness constraint, each
isolated lecture in a curriculum counts as 2 points of penalty.
Finally, for the RoomStability constraint, each distinct room
used for the lectures of a course, but the first, counts as 1
point of penalty.

2.2 Disruption scenarios

In a typical pre-enrollment timetabling process, before the
timetable is announced to the students for them to register
to their course, it goes through two stages of optimization.
First, an initial timetable is prepared based on a set of con-
straints provided by the professors and administrators. This
timetable is announced to the staff, giving them some time

to submit changes in constraints. The timetable is then re-
optimized, and the students enroll in courses based on this
timetable. As discussed in Phillips et al. (2017), many dif-
ferent types of changes in constraints are possible before
enrollment, such as new courses being added, others being
canceled; some faculty arriving or leaving; certain periods
ceasing to be feasible for some professors; or capacity of
some rooms becoming insufficient for some lectures due to
an increase in the number of students.

Here, we use the disruption scenarios that have been first
defined byAkkan et al. (2020). The disruptions affect the fea-
sibility of the periods for lectures and availability or capacity
sufficiency of the rooms. By assuming disruptions that affect
the two main limited resources in timetabling, we believe we
introduce sufficient variety and complexity. It is assumed that
four types of disruptions make up a scenario, namely IP, CP,
CS and RP disruptions.

The purpose of IP disruptions is to represent a situation
when an instructor i learns she cannot teach at a period p to
which one of her lectures is scheduled. Hence, this disruption
type is specified by the tuple 〈i, p〉. For each disruption 〈i, p〉,
unavailability constraints for all courses of instructor i at
period p are added.

The purpose of CP disruptions is to represent a situation
when an instructor learns he cannot teach during a consec-
utive set of periods and, to make up for this unavailability,
offers a set of consecutive periods which he designated as
unavailable for the initial timetabling. This disruption is spec-
ified by a tuple 〈c,P−,P+〉 for course c. Given the set of
available periods for course c, P(c), P− ⊆ P(c) is a set of
consecutive periods on the same day that become unavail-
able for course c and at least one of these periods is used by
course c in the initial timetable, S0.P+ ⊆ P \P(c) is a set of
consecutive periods that become available for course c such
that |P+| ≤ |P−|.

In some universities, before students’ official registration,
trial registrations or surveys are carried out to judge demand
for courses. CS disruption is introduced to represent a sit-
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uation in which the initially planned capacity of a course
is increased due to an estimated increase in demand. It is
assumed that the planned number of students for a course
is increased beyond the capacity of the room assigned to at
least one lecture of that course. (Recall that room capacity
is a soft constraint.) This disruption is specified by a tuple
〈c, s〉, where s is the new number of students for course c.
All events of this course are included in the set of room-
disrupted events, since, due to room stability constraints, it
is quite likely to have most, if not all, events of the course to
be scheduled at the same room. Even if some events of the
course are currently assigned to a different roomwith enough
capacity, adding all events of the course in this set results in
a looser distance constraint on the repaired solution. Having
a looser distance constraint leads to a larger solution space
for the repaired solution. This is important because violation
of the RoomCapacity constraint costs 1 point of penalty for
each student above the capacity.

Classrooms are often used for purposes other than classes,
such as seminars and faculty meetings. The purpose of an
RP disruption is to represent such a situation in which a
classroom becomes unavailable for scheduling classes for
the duration of the semester. It is assumed that the availabil-
ity of the room is lost for one or two consecutive periods on
the same day. This disruption is specified by 〈r , p, d〉, where
p is the first period that room r becomes unavailable, and d
is the number of periods that become unavailable.

A set of disruptions of these types is referred to as a disrup-
tion scenario. All disruptions in a given disruption scenario
are aggregated in two sets of disrupted lectures. Lectures e
whose assigned periods in S0 become infeasible due to IP and
CP disruptions are denoted as E P (the set of disrupted-period
lectures) with size δ p. Lectures e whose assigned rooms in
S0 become either infeasible due to RP disruptions or have
insufficient capacity due to CS disruptions are denoted by
E R (the set of disrupted-room lectures) with size δr . Then,
the set of disrupted lectures, ED , equals E P ∪ E R and the
number disrupted lectures, δ, equals |ED|.

2.3 Robustness measure

As discussed in Sect. 1, the robustness objective is expressed
as minimizing E(R(S,YS)), the expected value of a disrup-
tion measure R(S,YS), where S is a given solution and YS is
the random variable representing the disruptions. Since there
is no closed-form expression for E(R(S,YS)), we estimate
it by the sample average of R(S, yn) for yn ∈ Y , where Y is
a random sample of disruption scenarios.

Let F(yn) be the set of all solutions that are feasible with
respect to a disruption scenario yn and D(S0, S1) be theHam-
mingdistance between the arrays storing the assigned periods
for all events of these two solutions. (Hence, D(S0, S1) is
equal to the number of lectures that are assigned to different

periods in these two solutions.) Then, we define the follow-
ing neighborhood set for a given solution S0 and disruption
scenario yn with δ

p
n disrupted-period and δrn disrupted-room

lectures:

N (S0, yn) = {S : D(S0, S) ≤ f (δ pn , δrn); S ∈ F(yn)} (1)

Thus, if solution S0 is disrupted by scenario yn , then switch-
ing to any solution inN (S0, yn) would restore feasibility by
rescheduling at most f (δ pn , δrn) lectures to a different period,
where f : (N,N) → N. If there had been only period-
disruptions, the radius f (δ pn , δrn) could be a multiple of δ p,
since every period-disrupted lecture must be moved to a dif-
ferent period. However, we also assume room-disruptions
can occur, which may be repaired by moving a lecture to
a different room without changing its period. Furthermore,
the number of lectures affected by room-disruptions could
be relatively large, as in the case of CS disruptions that
may lead to the need for rescheduling all lectures of the
corresponding course, some of which might be forced to a
different period. So, given δ p and δr , we define f (δ p, δr ) =
f pδ p + f rδr , f p > 1, f r > 0. For the computational
results reported in Sect. 5, we set f p = 2, f r = 0.25. Then,
we define the robustness measure R(S0, yn) as:

R(S0, yn) = min
S∈N (S0,yn)

Φi (S, S0), where (2)

Φn(S, S0) = Pave · 1D(S,S0)>δ
p
n

+ (P(S) − P(S0))
+ (3)

where x+:=max(0, x) and Pave is the average per lecture
penalty for a randomly generated sample of solutions, and
calculated for each problem instance separately. The solution
sample, denoted by S, is the union of the initial popula-
tions (each comprised of 40 solutions) of 30 runs of the
MOGA algorithm of Akkan and Gülcü (2018). Thus, Pave =
(1/(|S||L|)∑

S∈S P(S), where L is the set of lectures (see
Table 1). Pave should be seen as a penalty term added so that
solutions which only reschedule period-disrupted events to
different periods are favored. Therefore, in addition to qual-
ity robustness measured by (P(S) − P(S0))+, R(S0, yn)
also incorporates a measure of solution robustness. Solution
robustness is further ensured by the constraint D(S0, S) ≤
f (δ pn , δrn) in defining N (S0, yn). If N (S0, yn) = ∅, then
R(S0, yn) is set to a large value, B.

Finally, the sample average R(S, y)=(1/N )
∑N

n=1R(S,yn)
is calculated as an estimate of E(R(S,YS)), given a set of
randomly generated sample of disruption scenarios, y =
{y1, y2, . . . , yN }, using a reasonably large N . For the compu-
tational results, N was set to 100 (after a convergence test).
The following example depicts how R(S, yn) is calculated.
Example 1 We will assume a small timetabling problem in
which we need to schedule 3 courses, over a two-day long
“week,” each day having 2 periods. For each course c, we are
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Table 1 Pave values used for
each instance

ITC Pave ITC Pave ITC Pave ITC Pave Inst Pave

1 3.295 6 3.018 11 1.822 16 2.097 21 1.644

2 2.803 7 2.906 12 5.291 17 2.102

3 1.783 8 1.570 13 2.049 18 2.105

4 1.588 9 1.458 14 1.756 19 1.831

5 9.614 10 1.969 15 1.806 20 4.738

Table 2 Example 1: The timetabling instance

c E(c) P(c) NS(c) T (c) CU(c) MW(c) r K (r)

1 1, 2 1,2,3 25 tA cA 2 r1 20

2 3 2,4 15 tB cA 1 r2 40

3 4 1,4 30 tB cB 1

given the set of events E(c), the set of available periodsP(c),
the number of students NS(c), the teacher of the course T (c),
the curriculum it belongs toCU(c) and theminimumworking
days the course has to be scheduled in, MW(c) (see Table 2).
This problem has a total of 80 feasible solutions. Each solu-
tion i is represented by the array storing the assigned period
for event e, Ai (e), for e = 1, . . . , 4, and the room each event
is assigned, Ri (e).

The robustness of solution S9, A9(e) = {1, 3, 2, 4}
R9(e) = {r1, r1, r2, r2}, with penalty P9 = 26, is defined
by the sets of disruptions of each disruption type. The set of IP
disruptions for S9 is {〈1, 1〉, 〈1, 3〉, 〈2, 2〉, 〈3, 4〉}. The set of
CP disruptions is {〈1, {1}, {4}〉, 〈1, {1, 2}, {4}〉, 〈1, {3}, {4}〉,
〈2, {2}, {1}〉, 〈2, {2}, {3}〉, 〈3, {4}, {1}〉}. The set ofRP disrup-
tions is {〈r1, 1, 1〉, 〈r1, 2, 1〉, 〈r1, 1, 2〉, 〈r1, 3, 1〉, 〈r1, 4, 1〉,
〈r1, 3, 2〉, 〈r2, 1, 1〉, 〈r2, 2, 1〉, 〈r2, 1, 2〉, 〈r2, 3, 1〉,
〈r2, 4, 1〉, 〈r2, 3, 2〉}. Finally, the set of CS disruptions is
{〈1, 21〉, 〈1, 22〉, . . ., 〈1, 40〉}, since courses whose first lec-
ture is not assigned to the largest capacity room are exposed
to this disruption (see Sect. 5.1). Disruption scenarios are
formed by combinations of these disruptions that result in at
least 3 disruptions such that at most 1 disruption of type RP
and at most 2 disruptions of each of the other types occur.

Of course, even for this small example there would be
a very large number of possible disruption scenarios, so
here we demonstrate the robustness calculation for a single
scenario, say y1, comprised of IP disruption 〈3, 4〉, CS dis-
ruption 〈1, 33〉, and RP disruption 〈r1, 2, 1〉. Thus, δ

p
1 = 1

and δr1 = 2, and assuming f p = 2 and f r = 0.5, we get
f (δ pi , δri ) to be 2. Of the 80 feasible solutions for the prob-
lem at hand,N (S0, y1) has the 16 solutions listed in Table 3,
where K+(e) denotes the room capacity violation of event
e, W (c) is the number of work days for course c. For this
example, we set Pave = (1/80)

∑
i P(Si ) = 19.5, using

all 80 solutions, rather than a sample of solutions. Then,

Φ1(Si , S0) are calculated as shown in Table 3, which results
in R(S9, y1) = 0.

For the computational experiments, the calculation of
R(S, yn) is done by solving the integer programming (IP)
model presented in Appendix. Gurobi is used as the solver,
and if it fails to find a feasible solution, R(S, yn) is set to B,
as discussed above, and computational experiments revealed
that for the problem instances solved here B = 1200 is a
sufficiently large penalty.

3 Slack-based surrogatemeasures

The idea of using some form of slack as a surrogate measure
of robustness of schedules is not new.Someof the early exam-
ples of research done in this vein are Leon et al. (1994) for job
shop scheduling with disruptions in the form ofmachine fail-
ures; Lambrechts et al. (2008) for the resource-constrained
project scheduling problem where resource breakdown dis-
ruptions occur and one measure of slack is resource slack
and the other is inserted time buffers; Hazır et al. (2010) for
the discrete time–cost trade-off problem in project schedul-
ing; and Vansteenwegen and Oudheusden (2006) for train
scheduling with the goal of minimizing the propagation of
delays. In all of these problems, there is a well-established
concept of resource slack which can be created by the plan-
ner, such as unused time on a machine or a limited resource
(such as man-hours or budget) available in a given period
that is in excess of the requirement.

To the best of our knowledge, the idea of slack has not
been studied for course timetables in the context of creat-
ing robust timetables. The two limited resources of a course
timetable are available time periods and classrooms available
at each period.Wefirst define differentmeasures of slack and,
then given a slack measure, use a summary statistic of that
measure as an estimator of robustness of the given timetable.
The notation that is used to define the underlying timetabling
problem, the disruptions and a given solution are summarized
in Table 4. The example instance whose data are provided in
Tables 5 and 6 is used to demonstrate the calculations of the
robustness measures.

The defined slack measures can be classified into three
groups. The first group provides measures of slack for each
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Table 3 Example 1: Calculation
of R for a disruption scenario

(Ai (e), Ri (e)) K+(e) W (1) P(Si ) D(Si , S9) Φ1(Si , S9)

(1, r1) (3, r1) (2, r2) (1, r1) 13 13 0 10 2 36 1 10

(1, r1) (3, r2) (2, r2) (1, r1) 13 0 0 10 2 24 1 0

(1, r1) (3, r1) (2, r1) (1, r1) 13 13 0 10 2 36 1 10

(1, r1) (3, r2) (2, r1) (1, r1) 13 0 0 10 2 24 1 0

(1, r1) (3, r1) (2, r2) (1, r2) 13 13 0 0 2 26 1 0

(1, r1) (3, r2) (2, r2) (1, r2) 13 0 0 0 2 14 1 0

(1, r1) (3, r1) (2, r1) (1, r2) 13 13 0 0 2 26 1 0

(1, r1) (3, r2) (2, r1) (1, r2) 13 0 0 0 2 14 1 0

(1, r1) (3, r1) (4, r2) (1, r1) 13 13 0 10 2 36 2 29.5

(1, r1) (3, r2) (4, r2) (1, r1) 13 0 0 10 2 24 2 19.5

(1, r1) (3, r1) (4, r1) (1, r1) 13 13 0 10 2 36 2 29.5

(1, r1) (3, r2) (4, r1) (1, r1) 13 0 0 10 2 24 2 19.5

(1, r1) (3, r1) (4, r2) (1, r2) 13 13 0 0 2 26 2 19.5

(1, r1) (3, r2) (4, r2) (1, r2) 13 0 0 0 2 14 2 19.5

(1, r1) (3, r1) (4, r1) (1, r2) 13 13 0 0 2 26 2 19.5

(1, r1) (3, r2) (4, r1) (1, r2) 13 0 0 0 2 14 2 19.5

period. Let X(p, r) be equal to 1 if room r is used at period p
by some lecture, 0 otherwise. Then, assuming the rooms are
indexed in increasing capacity, define RSA[p], room-based
slack at period p, as

RSA[p]

=

⎧
⎪⎨

⎪⎩

1
Rm−ρ(p)

∑
r

∑
q>r 1(X(p,r)=1,X(p,q)=0) if Rm > ρ(p)

Rm − 1 if Rm = ρ(p)

(4)

Let’s denote the term
∑

q>r 1([X(p,r)=1,X(p,q)=0) in Eqn. 4
as ρ(p, r). ρ(p, r) gives for every room used at a period
the number of unused larger capacity rooms in the same
period. If ρ(p) = Rm, we set RSA[p] = Rm − 1 because
that is the largest possible value for RSA[p] if Rm >

ρ(p). It is quite reasonable to have decreasing marginal
benefit in increasing ρ(p, r), so an alternative slack mea-
sure could make use of an exponential utility function as
RSU[p] = 1

Rm−ρ(p)

∑
r
∑ρ(p,r)

j=1 e− j for a given period p.
Alternatively, we can assume there is utility in having at
least one larger capacity room for a lecture scheduled at
a given period, say at (p, r). In that case, we would have
ρ(p, r) > 0. Then, another slack measure can be defined as
RSB[p] = 1

Rm−ρ(p)

∑
r 1ρ(p,r)>0 for a given period p.

The second group of estimators make use of slack mea-
sured for each room. For room r , lettingπ(r) = ∑

t 1X [t,r ]=0

denote the number of unused periods in the same room,
we define PSU[r ] = ∑π(r)

j=1 e
− j as a slack measure for a

given room r . The next measure is a more finely grained ver-
sion of PSU[r ], where the periods are subdivided into daily

sets. Let the day of a given period p be denoted by D(p).
Then, ξ(d, r) = ∑

p:D(p)=d 1X [p,r ]=0 represents the num-
ber of unused periods on day d at room r , and we define
DSU[d, r ] = ∑ξ(d,r)

j=1 e− j as a slack measure for a given
room r on day d. Then, DSU[r ] is simply obtained by con-
catenating the arraysDSU[d, r ] for all d. Table 7 summarizes
the calculation of these room-indexed slack measures.

The third group of measures use course-specific availabil-
ity of periods. We first let,

Y(p) = the set of courses scheduled at period p.

Kmax(p) = max
r∈FR(p)

{K (r)}
C(c) = the set of conflicting courses for course c

Note that courses in the same curriculum or taught by the
same teacher are referred to as conflicting courses. We then
define the following sets,

UP(c) = {p : p ∈ P(c), ρ(p) > 0}
UP+(c) = {p : p ∈ UP(c), Kmax(p) > NS(c)}
CP(c) = {p : p ∈ UP(c),Y(p) ∩ {C(c) ∪ c} = ∅}

CP+(c) = {p : p ∈ UP+(c),Y(p) ∩ {C(c) ∪ c} = ∅}

Thus, UP(c) is the set of uncommitted periods, which is
the set of available periods with free rooms for course c, and
UP+(c) gives the set of uncommitted periods for course c,
having at least one free room with sufficient capacity. On
the other hand, CP(c) gives the set of conflict-free periods
among uncommitted periods for course c and CP+(c) gives
the set of conflict-free and uncommitted periods for course
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Table 4 Notation for problems,
disruptions and solutions E(c) : the set of events for course c

E(c) = |E(c)|
P(c) : the set of available periods for course c

P : the set of all available periods

NS(c) : number of students for course c

T (c) : teacher of course c

CU(c) : the curriculum course c belongs to

MW(c) : the minimum working days course c has to be scheduled in

K (r) : capacity of room r

Kmax : maximum room capacity

D(p) : day of period p

D : the number of days

Rm : the number of rooms

E P : The set of disrupted-period lectures; caused by IP and CP disruptions

E R : The set of disrupted-room lectures; caused by RP and CS disruptions

ED = E P ∪ E R , the set of disrupted lectures

δ p = |E P |
δr = |E R |
δ = |ED |
P(S) : penalty of solution S

Ai : array of periods to which each event of solution Si is assigned

Ri : array of rooms to which each event of solution Si is assigned

D(Si , S j ) : Hamming distance between arrays Ai and A j

f (δ p, δr ) : maximum allowed distance between a disrupted and a repaired solution

R(S, yn) : robustness of solution S for a disruption scenario yn

R(S, y) = (1/N )
∑N

n=1 R(S, yn), estimated robustness of solution S

X(p, r) : 1 if room r is used at period p by some event, 0 otherwise.

FR(p) : the set of unused (free) rooms in period p

ρ(p) : the number of unused rooms in period p, |FR(p)|
ρ(p, r) : for room r used at period p, the number of unused larger capacity rooms in period p.

π(r) : the number of unused periods in room, r

ξ(d, r) : the number of unused periods on day d at room r

c, having at least one free room with sufficient capacity.
Given these sets, we can define two arrays, C[c] = |CP(c)|
and R[c] = |CP+(c)|. Rather than simply counting the
number of periods in these sets, an alternative is to cal-
culate an exponential utility function that gives decreasing
marginal utility with increasing number of periods in these
sets. These two arrays are defined asUC[c] = ∑|CP(c)|

j=1 e− j ,

and UR[c] = ∑|CP+(c)|
j=1 e− j . Furthermore, one can argue

that the value of C[c] depends on the number of events of
course c, E(c), so we defined an additional array CL[c],
as CL[c] = C[c]/E(c). Table 8 depicts the calculation of
the measures that use the course-specific availability of peri-
ods.

Given these ten slack measuring arrays, whose definitions
are summarized inTable 9,we calculate the average, standard
deviation and the coefficient of variation (standard deviation

divided by average) of each array as surrogate measures of
the robustness of the given timetable. These three summary
statistics for a given slack measure L are denoted as L , SDL ,
CVL , respectively. Variability or the distribution of any slack
measure across time, rooms or courses could potentially have
a significant impact on the robustness of the timetable. For
instance, if only a small number of courses have most of
the conflict-free periods, the standard deviation of the values
in array C[c] would be large. In that case, the likelihood of
repairing the timetable with minimum increase in penalty
would be low, since the disruption is more likely to affect
a course with no or few conflict-free periods, which could
require a costly repair. On the other hand, if the conflict-
free periods are evenly distributed, a domino effect due to
rescheduling events is less likely to happen, and furthermore,
it is easier to find a low penalty repair due to having a larger
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Table 5 Example 2:
Course-related data

c |E(c)| P(c) NS(c) CU(c) T (c)

1 3 {1, 2, 4, 6, 7, 8, 9} 26 A tA

2 3 {3, 4, 5, 6, 10, 11, 12} 30 A tC

3 2 {1, 2, 4, 7, 8, 9, 11, 12} 28 B tF

4 3 {1, 4, 5, 6, 8, 9} 25 E tB

5 3 {2, 3, 4, 5, 6, 7, 9, 11, 12} 30 B tD

6 4 {1, 2, 3, 6, 7, 10} 46 E tB

7 4 {2, 3, 9, 12} 70 H tA

8 3 {1, 2, 9, 10} 20 G tC

9 4 {1, 4, 5, 6, 7, 8, 9, 10, 11, 12} 32 F tD

10 2 {1, 2, 4, 5, 6, 7, 8, 9} 70 E tB

11 4 {1, 2, 3, 4, 5, 6, 8, 9, 10, 11} 45 C tE

12 3 {2, 3, 6, 8, 11, 12} 20 F tD

13 4 {3, 5, 6, 7, 9, 10} 28 G tF

14 4 {1, 4, 5, 6, 11, 12} 35 D tG

15 3 {1, 3, 4, 9, 11} 40 C tE

16 2 {1, 6, 7, 8, 9, 10, 12} 70 H tC

17 3 {3, 4, 8, 9, 11} 40 B tF

18 3 {2, 3, 5, 6, 7, 8, 9} 45 D tG

Table 6 Example 2: Room capacity data

r 1 2 3 4 5 6 7 8

K (r) 30 30 30 50 50 50 80 100

number of alternative periods to move the effected event(s).
CV could prove to be a good measure since, in addition to
low variability of slack, high slack quantities are likely to
produce robust timetables. Thus, robust timetables are likely
to have a small CV for slack. Using CV of slack as a measure
of robustness is also investigated in Hazır et al. (2010) for
robust project scheduling.

4 Multi-objective simulated annealing
(MOSA) algorithm

The main characteristic feature of the SA algorithms is the
probabilistic acceptance rule which is designed to occasion-
ally accept solutions with inferior objective value, and as
the iterations increase, this probability of accepting inferior
moves declines exponentially using a parameter referred to
as the temperature. (For a survey of MOSA and SA algo-
rithms, see Suman and Kumar 2006.) This design is built on
the premise that the objective function value is a determinis-
tic function of the decision variables with no noise or error.
Since in our implementation ofMOSA the two objectives are
penalty P and a surrogate measure of the robustness measure
R, it is necessary to take into account the approximate nature

of the second objective. Before we go into how this chal-
lenge is addressed, we provide a brief overview of the design
of the acceptance rule and the maintenance of an archive of
solutions that yield an approximation to the optimal Pareto
frontier in MOSA algorithms.

In one of the earliest studies ofMOSAalgorithms, Serafini
(1994) presents nine alternative rules for the computation of
the probability of accepting a new solution based on scalar
ordering, Pareto ordering and cone ordering approaches.
Using a scalarizing function (the weighted sum of objec-
tives) that aggregates the multi-criteria information into a
single criterion is quite common (e.g., Ulungu et al. 1999
and Czyzk and Jaszkiewicz 1997).

Suppapitnarmet al. (2000) present aMOSAalgorithm that
introduces a new acceptance probability formulation based
on an annealing schedule with multiple temperatures (one
for each objective). The algorithm also periodically executes
a “return-to-base” option which restarts the search using one
of the non-dominated solutions selected randomly from the
archive.

Suman (2003) proposes aPareto domination-basedMOSA
(PDMOSA) algorithm which uses the strength Pareto fitness
assignment procedure described in Zitzler and Thiele (1999)
to compute the acceptance probability. In this approach, a
given solution has better fitness if it is dominated by fewer
solutions in a set of potentially Pareto optimal solutions. An
improved version of PDMOSA in which a self-stopping cri-
terion has been introduced can be found in Suman (2005).
The idea of a dominance-based approach is also used in
Smith et al. (2008). Bandyopadhyay et al. (2008) propose
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another MOSA algorithm that uses an archive of solu-
tions and dominance-based acceptance probabilities, which
they call Archive-based Multi-objective Simulated Anneal-
ing (AMOSA). They take into account the domination status
of the new solution with the current solution, as well as those
in the archive and also use a measure of the amount of dom-
ination between two solutions. The algorithm has a novel
archivemanagement approach,where the archive size isman-
aged with two limits, HL and SL, and when the archive size
reaches SL, a clustering algorithm reduces it down to HL.
The final Pareto frontier produced by the algorithm has at
most HL solutions.

All the MOSA literature discussed above assumes the
objective functions can be evaluated quickly, which is clearly
not the case for the robustness objective here. In a survey
of fitness approximation in evolutionary computation, Jin
(2005) discusses four different levels of fitness approxima-
tion, one of which is the functional approximation, where

an explicit alternative objective function is used. Authors
point out that it is quite difficult to design an approximate
model that converges to the true optimum. One possible
solution to alleviate this weakness is to use both models,
the approximate function and the original function. Authors
state that since the surrogate measures in general have biased
error, their accuracy cannot be improved by resampling the
approximate fitness function. They suggest addressing the
issue of error by using the true fitness function instead of
the approximation for some of the solutions. In that case, the
critical decision is finding the right balance between cheap
but erroneous approximate fitness evaluations and expensive
but accurate true fitness evaluations.

Since it is computationally very expensive to calculate
R̄(S, y) using a reasonably large sample of disruption sce-
narios,we opted for calculating R̄(S, y) only for the solutions
in the final archive and using a surrogate measure throughout
the MOSA algorithm. All surrogate measures proposed here

Table 7 Example 2:
Room-indexed slack measures

r π(r) PSU(r) ξ(., r) DSU(1, r) DSU(2, r) DSU(3, r)

1 3 0.553 [1, 0, 2]T 0.368 0 0.503

2 5 0.578 [0, 1, 4]T 0 0.368 0.571

3 4 0.571 [0, 1, 3]T 0 0.368 0.553

4 6 0.580 [0, 3, 3]T 0 0.553 0.553

5 4 0.571 [0, 1, 3]T 0 0.368 0.553

6 5 0.578 [1, 0, 4]T 0.368 0 0.571

7 5 0.578 [1, 1, 3]T 0.368 0.368 0.553

8 7 0.581 [2, 3, 2]T 0.503 0.553 0.503

Table 8 Example 2:
Course-indexed slack measures

c UP(c) CP(c) CP+(c) C[c] R[c] CU[c] RU[c]
1 {1, 2, 4, 6, 7, 8, 9} {6} {6} 1 1 0.368 0.368

2 {3, 4, 5, 6, 10, 11, 12} {11, 12} {11, 12} 2 2 0.503 0.503

3 {1, 2, 4, 7, 8, 9, 11, 12} {11, 12} {11, 12} 2 2 0.503 0.503

4 {1, 4, 5, 6, 8, 9} {} {} 0 0 0 0

5 {2, 3, 4, 5, 6, 7, 9, 11, 12} {12} {12} 1 1 0.368 0.368

6 {1, 2, 3, 6, 7, 10} {10} {10} 1 1 0.368 0.368

7 {2, 3, 9, 12} {} {} 0 0 0 0

8 {1, 2, 9, 10} {} {} 0 0 0 0

9 {1, 4, 5, 6, 7, 8, 9, 10, 11, 12} {10, 12} {10, 12} 2 2 0.503 0.503

10 {1, 2, 4, 5, 6, 7, 8, 9} {} {} 0 0 0 0

11 {1, 2, 3, 4, 5, 6, 8, 9, 10, 11} {8, 10, 11} {8, 10, 11} 3 3 0.553 0.553

12 {2, 3, 6, 8, 11, 12} {12} {12} 1 1 0.368 0.368

13 {3, 5, 6, 7, 9, 10} {} {} 0 0 0 0

14 {1, 4, 5, 6, 11, 12} {11, 12} {11, 12} 2 2 0.503 0.503

15 {1, 3, 4, 9, 11} {11} {11} 1 1 0.368 0.368

16 {1, 6, 7, 8, 9, 10, 12} {7} {7} 1 1 0.368 0.368

17 {3, 4, 8, 9, 11} {11} {11} 1 1 0.368 0.368

18 {2, 3, 5, 6, 7, 8, 9} {8, 9} {8, 9} 2 2 0.503 0.503
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Table 9 Definitions of slack
measuring arrays

RSA[p] :

{
1

Rm−ρ(p)

∑
r
∑

q>r 1(X(p,r)=1,X(p,q)=0) if Rm > ρ(p)

Rm − 1 if Rm = ρ(p)

RSU[p] = 1
Rm−ρ(p)

∑
r
∑ρ(p,r)

j=1 e− j

RSB[p] = 1
Rm−ρ(p)

∑
r 1ρ(p,r)>0

PSU[r ] = ∑π(r)
j=1 e

− j

DSU[r ] = [DSU[1, r ] . . . DSU[d, r ] . . . DSU[D, r ]] where DSU[d, r ] = ∑ξ(d,r)
j=1 e− j

C[c] = |CP(c)|
R[c] = |CP+(c)|
UC[c] = ∑|CP(c)|

j=1 e− j

UR[c] = ∑|CP+(c)|
j=1 e− j

CL[c] = C[c]/E(c)

are approximate measures rather than unbiased estimators
with random noise, and this should work fine since what is
needed is to obtain a relative rank of the solutions, as dis-
cussed next.

At each iteration of MOSA algorithm, a new solution S′
is compared to the current solution S taking into account
both the penalty and the given surrogate measure, M , as the
robustness objective. For computing the acceptance proba-
bility, we use Smith’s Pareto dominance rule (Smith et al.
2008), which works as follows. Let A denote the current
potentially Pareto optimal set, or archive. Then, we set
Ã = A ∪ S ∪ S′. Let rM (S) be the domination count of
solution S in Ã (i.e., the number of solutions in Ã dom-
inating solution S plus 1) when surrogate measure M is
used. So, if S is not dominated by any solution in Ã,
rM (S) equals 1. Smith’s Pareto dominance rule calculates
the acceptance probability as min{1, exp (−Δ/Tcur )}, where
Δ = (|rM (S

′
)| − |rM (S)|)/|Ã|. Due to the approximate

nature of M , a solution S with rM (S) = 1 based on (P, M)

could have a larger r(S) based on (P, R). Thus, our MOSA
algorithm uses a cutoff K on rM (S) in making the accep-
tance and archiving decisions for the generated solutions. As
stated above, at the end of the MOSA algorithm, R(S, y)
is calculated for all S ∈ A to obtain a good approximation
to the Pareto frontier defined by objectives (P, R) and the
performance comparison of the surrogate measures is done
based on the Pareto frontier defined by (P, R̄).

The pseudo-code of theMOSAalgorithm is given inAlgo-
rithm 1, where acceptance and archiving decisions are made
in ChooseNextandUpdate(). Algorithm 2 provides the
pseudo-code of ChooseNextandUpdate() function. Note
that since a given surrogate measure is used in the imple-
mentation of MOSA, previously used notation, rM (S) is
simplified as r(S). There are two checks carried out for
the new solution S′: First, r(S′) is compared with r(S), and
then, r(S′) is compared with the cutoff K , resulting in four
possible cases. When r(S′) ≤ K , archive A is updated by

Algorithm 1: MOSA Algorithm

1 {T f , cr , nbr_i ter , pacc} ← set_params()
2 {T0, nbr_out, nbr_inn} ←

compute_params(T f , cr , nbr_i ter , pacc)
3 ini tiali ze(S)

4 A ← {S} , Tcur ← T0
5 for o_counter ← 0 to nbr_out do
6 for i_counter ← 0 to nbr_inn do
7 S′ ← RandomFeasMove(S)

8 S ← ChooseNextandUpdate(S, S′,A, Tcur )
9 end

10 Tcur ← Tcur ∗ cr
11 end

inserting S′ (cases 1 and 3); otherwise, the archive remains
unchanged. The solution from which the next local move
(RandomFeasMove()) is made, is determined differently
for each of the four cases. In case 3, S′ becomes that solution
because its rank is better than r(S) and it is good enough
to enter the archive. In case 4, since r(S′) > K , a solution,
a∗, is selected randomly from the archive and the choice is
made between a∗ and S′. When r(S) is better than r(S′),
the choice is made between S and S′ (cases 1 and 2). When
inserting a new solution into the archive, domination count
of all solutions in the archive is updated, and any solution, S,
with r(S) > K is removed from the archive.

Table 10 summarizes the first 10 iterations of MOSA for
a simple example, where it is assumed that smaller M val-
ues are associated with more robust solutions. Solutions are
represented with their (P, M) values. Figure 2 shows the
archive for the iterations in which the archive is updated. It is
assumed that (1, 7) is the initial randomly generated solution.
In iteration 6, when solution (7, 6) is generated and inserted
into the archive, r(s) for solution (8, 8) exceeds the cutoff
K = 5 and it leaves the archive. In iteration 7, S′ is (9, 10)
with r(s) equal to 6, and thus, case 2 applies. Let’s assume
(9, 10) is selected to be the next iteration’s S. Then, S′ of iter-
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Algorithm 2: ChooseNextandUpdate
Input: S (current solution), S′ (new solution), A

1 if r(S) < r(S′) then
2 if r(S′) ≤ K then

// Case 1: worse domination count of
new but still within cutoff

3 updateArchive(S′,A)
4 pacc ←−computeAcceptPr(S, S′)
5 if rnd01 < pacc then S ←− S′
6 end
7 else

// Case 2: worse domination count of
new and above cutoff

8 pacc ←−computeAcceptPr(S, S′ )
9 if rnd01 < pacc then S ←− S′

10 end
11 end
12 else
13 if r(S′) ≤ K then

// Case 3: same or better domination
count of new and within cutoff

14 updateArchive(S′,A)
15 S ←− S′
16 end
17 else

// Case 4: same or better domination
count of new but above cutoff

18 a∗ ←− selectRandomArchiveSol(A)

19 pacc ←−computeAcceptPr(a∗, S′
)

20 if rnd01 < pacc then S ←− S
′

21 else S ←− a∗
22 end
23 end
24 return S

ation 8 is (8, 9) with rank 6, and case 4 applies. We assume
a∗ selected from the archive is (4, 3), and it is the one chosen
to be S for the next iteration. In iteration 9, solution (3, 4)
is generated and is added to the archive, since case 3 applies
in that iteration. Finally, in iteration 10, S′ is generated to
have (5, 6), which results in case 1 to be applied with (5, 6)
moving to the archive.

5 Computational experiments

For the computational experiments, we selected five ITC-
2007 instances that are the most constrained (thus potentially
difficult) instances in terms of conflict intensity, teacher
availability and roomoccupancy (Bonutti et al. 2012). Specif-
ically, ITC5 and ITC12 are the timetabling instances with the
highest conflict intensity; ITC2 and ITC5 are the top two in
terms of lowest teacher availability; and finally, ITC1 and
ITC7 have the highest room occupancy.

The experiments were done in two stages in which the
results of thefirst stagewere used to narrowdown the large set
of surrogate measures to a short list of promising ones. Then,

in the second stage, two of the most promising surrogate
measures were implemented in the MOSA algorithm and
their performances were evaluated.

As discussed in Sect. 2.3, the calculation of R(S, y)
requires a randomly generated sample of disruption scenar-
ios, y = {y1, y2, . . . , yN } for each solution S. Hence, below,
we first discuss how the disruption scenarios were gener-
ated. Then, in Sect. 5.2 we discuss how the solutions that
were used in stage one of the analysis were selected. Stage
one comprised of a correlation analysis between the surro-
gate measures and R (Sect. 5.3) and an accuracy analysis for
the archiving rule based on r(s) and K (Sect. 5.4), which
assesses the likelihood of an archived solution being on the
Pareto frontier defined by (P, R). Finally, the results of the
second stage are reported in Sect. 5.5, assessing the quality of
the approximation frontiers found by the MOSA algorithm
using two of the most promising surrogate measures.

5.1 Generating the disruption scenarios

Recall that a disruption scenario is comprised of a combi-
nation of four types of disruptions: IP, CP, RP, and CS. For
a disruption scenario, let Nip, Ncp, Nrp and Ncs denote the
number of IP, CP, RP and CS disruptions, respectively. In
creating a scenario, Nrp is drawn from DU (0, 1), while the
others are each drawn from DU (0, 2) so that the total number
of disruptions in the disruption scenario is at least 3.

For each IP disruption (〈i, p〉), first an instructor i is cho-
sen randomly. Given i , first a course of that instructor is
chosen randomly, and then, a lecture of the selected course is
chosen randomly. The period p at which the selected lecture
is scheduled in the timetable is designated as unavailable for
instructor i . Period p becomes unavailable for all courses of
instructor i . It is assumed that there can be at most one IP
disruption for any instructor i .

For generating a CP disruption (〈c,P−,P+〉), again first
an instructor is selected randomly, and then, a course c of
that instructor is chosen randomly. Let p denote the period
of the first lecture of course c. A random length of consec-
utive available periods for course c on the same day as p
and including p is determined. These periods form the set
P−. Then, the number of unavailable periods for course c at
each day is calculated. If none of the days has at least |P−|
unavailable periods, the day with the maximum number of
unavailable periods is selected. Otherwise, if there is at least
one day with |P−| or more unavailable periods, one such day
is randomly selected. Given the chosen day, a set of consec-
utive unavailable periods starting with the first unavailable
period of that day are assigned toP+, such that |P+| ≤ |P−|.
It is assumed that there can be at most one CP disruption for
any course c.

An RP disruption (〈r , p, d〉) is generated by first selecting
a room r randomly. Duration d is generated from DU (1, 2),
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Table 10 Example 3: Iterations i S S′ Case Archived i S S′ Case Archived

1 (1, 7) (4, 3) 3 (4, 3) 6 (6, 5) (7, 6) 1 (7, 6)

2 (4, 3) (5, 9) 1 (5, 9) 7 (7, 6) (9, 10) 2 −
3 (4, 3) (8, 1) 3 (8, 1) 8 (9, 10) (8, 8) 4 −
4 (8, 1) (6, 5) 1 (6, 5) 9 (4, 3) (3, 4) 3 (3, 4)

5 (6, 5) (8, 8) 1 (8, 8) 10 (3, 4) (5, 6) 1 (5, 6)

Fig. 2 Example 3: Maintaining
the archive using rM (S) with
K = 5 (numbers next to
markers are rM (S))
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where DU (a, b) denotes the discrete uniform probability
distribution with parameters a and b. Given d, period p is
randomly chosen so that if d = 2, periods p and p + 1 are
both on the same day. Since in the ITC-2007 instances all
rooms are available for all periods, there are no prior room
availability data to keep track of. It is assumed that there can
be at most one RP disruption for any room r .

Finally, to generate a CS disruption (〈c, s〉) first, a course
c is randomly chosen, so that its first event, ec, is not assigned
to the room with the largest capacity, Kmax. (This could
have been any event of the course, but for the sake of
convenience we choose its first event.) Then, the new num-
ber of students, s, is randomly drawn from DU (lowlim +

1, lowlim+gap), where lowlim = max(NS(c), K (R(ec)))
and gap = min(Kmax − lowlim, NS(c)). It is assumed that
there can be at most one CS disruption for any course c.

5.2 Test solutions for identifying a surrogate
measure short list

For each instance ITCi , a set of 60 solutions, denoted by
Si , were selected with the goal of having a diverse set of
solutions. These solutions were selected from those that are
accepted by a simulated annealing algorithm that minimizes
the penalty associated with a solution. Selection was done
from among nc collected solutions (nc = 50,000 or 100,000)
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that were accepted by the SA algorithm in its final itera-
tions. Two criteria were used in making the selections: the
penalty, P(v), of the solution and the degree, d(v), of the
solution in a solution network created from the collected
solutions. A solution network is designed so that an edge
exists between two solutions i and j , if the Hamming dis-
tance between assigned period arrays for the events, Av and
Aw, is less than or equal to a cutoff value. The statistical
analysis presented in Akkan et al. (2020) suggests that the
degree of a node in these networks is weakly correlated with
the robustness of that solution.

For each instance ITCi , four networks were generated
(two with 50,000 and two with 100,000 collected solutions)
and 15 solutions were selected from each network to be
included in Si . Given a network, a joint frequency table
was formed of all solutions of the network based on inter-
vals of d(v) and P(v). Then, a solution was selected from
those that fall into a selected joint interval. The selections
were made from among the solutions with penalties that
are close to the minimum penalty value, Pmin, found by
the SA algorithm. For example, the Pmin value for ITC7
was 39, so the P(v) intervals used were [39, 40], [41, 42],
[43, 44], [45, 46], [47, 48] and [49, 50]. Given a P(v) inter-
val, solutions were selected from the subsets that belonged
to the smallest and largest d(v) intervals, and in some cases
from the intermediate ones. For example, given one of the
networks for ITC7 with 50,000 solutions, among the solu-
tions with P(v) ∈ [39, 40] one solution was selected from
each of the following intervals for d(v): [4, 53], [54, 103],
[104, 153] and [154, 203]. On the other hand, for those with
P(v) ∈ [43, 44] the degree intervals used were [4, 53] and
[104, 153]. The details of how the networks were generated
and how the solutions were selected from these networks are
discussed in Akkan et al. (2020).

5.3 Correlation analysis

For each instance I TCi , Pearson correlation coefficients,
ρm
i , were calculated between each surrogate measure, m,

and the robustness measure R, using the set of 60 solu-
tions Si . Then, the absolute values of these correlations were
ranked among those for each instance, in decreasing order
so that the largest one is ranked first. Letting �m

i denote
the rank of |ρm

i |, the average rank of m was calculated as,
�m = 1/5

∑
i∈{1,2,5,7,12} �m

i . The nine best-ranking sur-
rogate measures, their correlation coefficients and average
ranks, �m , are reported in Table 11. For each of these corre-
lation coefficients, a test of hypothesis was done where the
null hypothesis states the correlation is equal to zero.

The statistics presented in Table 11 reveal that three of
the surrogate measures stand out, namely UC , CVC and
CVCL. Correlation betweenUC and R is negative for all five
instances, although for three of them we have sufficiently

low p-values to reject the null hypothesis of 0 correlation.
Both CVC and CVCL, on the other hand, are positively cor-
related with R. For two of the instances, the correlations
associated with CVC and, for three of the instances, the cor-
relations associated with CVCL are different from zero at a
statistically significant level. Recall that C[c] array contains
the number of conflict-free available periods for each course.
Thus, the positive correlation associated with CVC suggests
the smaller CVC is, the more robust the solution would be
(with smaller R). A similar interpretation applies to CVCL,
as well. The scatter plots of these three surrogate measures
with R are depicted in Figs. 3, 4, 5, 6 and 7.

5.4 Performance of the surrogate measures in
identifying the Pareto frontier

The correlation analysis presented in the previous section has
shown that UC , CVC and CVCL are the three most promis-
ing surrogate measures based on their correlation with R.
However, considering the intended use of these measures
within theMOSA algorithm, a second, complementary, anal-
ysis would shed more light into their potential performance.

Recall that the MOSA algorithm is designed to include
solutions s with rM (s) ≤ K in the MOSA archive, where
K ∈ Z

+. With the right choice of M and K , one would
like to obtain the final archive at the end of the MOSA algo-
rithm’s run, AM (K ), to be a short list of solutions that are
highly likely to contain the solutions forming the Pareto fron-
tier based on (P, R), which we denote byF . In other words,
the task at hand is a binary classification of the solutions
(on or not on the Pareto frontier). Evaluation of binary pre-
diction performance is a very important issue in machine
learning and data mining. Prati et al. (2011) provide a survey
on graphical methods for predictive performance evaluation
of classification rules/algorithms. They point out that when
prior probabilities are very different, especially when neg-
ative cases heavily outnumber the positive ones and when
positive class is of more interest than the negative one, it
is better to use the so-called precision–recall curves. In the
Pareto frontier classification problem addressed here, we
have exactly the same situation: Only a couple or handful
of solutions are on the Pareto frontier (i.e., positive cases)
in a set of 60 solutions, and the solutions on the frontier are
of more interest. Therefore, we have decided to follow their
recommendation. Letting X be the true label of an instance
(the “ground truth”) and Y the prediction made by a predic-
tive model, precision is defined as P(X = True|Y = True)
and recall is P(Y = True|X = True) (which is also known
as the true positive rate, tpr ). Thus, for a surrogate measure
M , and the associated archiving rule (M, K ), precision is
P(s ∈ F |s ∈ AM (K )) and recall is P(s ∈ AM (K )|s ∈ F).

To estimate these probabilities, we have done the follow-
ing experimental analysis. Since we cannot determine the
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Table 11 Pearson correlation coefficients with R and average ranks �m

�m UC CVC CVCL CVUC RSU RSA CVRSA SDUC SDDSU
8 8.8 9.2 10 10.2 10.4 11.8 12.4 13.8

ITC1 −0.220∗ 0.136 −0.120 0.179 0.115 0.106 −0.123 −0.170 0.144

ITC2 −0.329	 0.256
 0.255
 0.363	 0.358	 0.256
 −0.363	 0.369	 0.047

ITC5 −0.141 0.222∗ 0.248∗ 0.114 −0.195 −0.169 0.139 0.092 −0.133

ITC7 −0.122 0.166 0.158 0.073 −0.169 −0.248
 0.065 0.064 0.187

ITC12 −0.286
 0.204 0.230∗ 0.236∗ 0.175 0.193 −0.224∗ 0.222∗ −0.150

	 p < .01, 
 p < .05, ∗ p < .10

Fig. 3 ITC1: scatter plots of R
versus selected surrogate
measures
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Fig. 4 ITC2: scatter plots of R
versus selected surrogate
measures
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Fig. 5 ITC5: scatter plots of R
versus selected surrogate
measures
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Fig. 6 ITC7: scatter plots of R
versus selected surrogate
measures
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Fig. 7 ITC12: scatter plots of R
versus selected surrogate
measures
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true (optimal) frontier, for instance, ITCi , Fi , we obtained
an approximation frontier, F̃i . For each s ∈ Si , we calculated
R(s, y) and determined the corresponding approximation
frontier F̃i . For each surrogate measure M , we calculated
rM (s) of each solution based on objectives (P, M) and deter-
mined the solutions that fall into the archive AM (K )i for
each (M, K ). Then, the estimates of P(s ∈ AM (K )|s ∈ F)

and P(s ∈ F |s ∈ AM (K )) , denoted by f +(M, K ) and
g+(M, K ), respectively, are calculated as:

f +(M, K ) =
∑

i |
{
s : s ∈ AM (K )i , s ∈ F̃i

} |
∑

i |F̃i |
(5)

g+(M, K ) =
∑

i |
{
s : s ∈ AM (K )i , s ∈ F̃i

} |
∑

i |AM (K )i | (6)

Two additional surrogate measures were defined to serve
as benchmarks. The first one, MinR, includes solution
s in the archive A(K ) if r B(s) ≤ K , where r B(s) =
minM rM (s). The second one is RAND, which includes
solution s in the archive if u ≤ K , where u is a random
variate sampled from the U (0, 1) probability distribution.
Clearly, any reasonable surrogate measure should perform
better than RAND.

Table 12 presents f +(M, K ) forUC , CVC and CVCL, as
well as RAND and MinR, for K = 1, . . . , 12. The results
for RAND are sample averages obtained with Monte Carlo
simulation using a sample size of n = 1000. We can see
that f +(CVC, K ) is greater than or equal to that of the other
surrogate measures for all K . Table 13 presents g+(M, K )

results for the same measures, and, again, CVC dominates
other measures for all K . It is also worth noting that for
K > 5 MinR is worse than RAND, since it includes too
many solutions in A(K ) that are not in F̃ .

Figure 8 depicts the precision–recall curve as a function
of the K values, for comparing the best performing surro-
gate measure CVC with RAND. CVC is clearly better than
RAND, especially for small K values. Precision values are
relatively low due to the extremely small prior probability of
a solution being on the Pareto frontier.

Table 14 presents some statistics on the sizes of the fronts
for K = 3 and 5. One can see that the sizes of F̃i are quite
small for all instances, so correctly identifying the solutions
in F̃i is difficult. Comparing |F̃i | and |AM (K )i ∩ F̃i |, we
observe that MinR is the only rule that managed to find at
least one Pareto optimal solution for all ITC instances. On
the other hand, this has led to roughly doubling the size of the
solution archive, |AMinR(K )i |, which is why we have seen a
significant decline in precision as discussed above. Figure 9
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Table 12 f +(K ): Recall in identifying the solutions on the Pareto
frontier

K UC CVC CVCL RAND MinR

1 0.182 0.273 0.182 0.073 0.273

2 0.273 0.364 0.273 0.135 0.364

3 0.364 0.364 0.364 0.209 0.545

4 0.455 0.455 0.455 0.275 0.545

5 0.455 0.545 0.455 0.348 0.545

6 0.545 0.545 0.455 0.418 0.545

7 0.545 0.545 0.455 0.466 0.545

8 0.545 0.636 0.455 0.515 0.636

9 0.636 0.636 0.455 0.542 0.727

10 0.636 0.636 0.545 0.581 0.727

11 0.727 0.727 0.636 0.628 0.909

12 0.727 0.818 0.636 0.668 0.909

Table 13 g+(K ): Precision in identifying the solutions on the Pareto
frontier

K UC CVC CVCL RAND MinR

1 0.125 0.25 0.154 0.068 0.143

2 0.1 0.148 0.125 0.065 0.087

3 0.083 0.108 0.108 0.065 0.086

4 0.083 0.102 0.1 0.065 0.07

5 0.07 0.109 0.089 0.066 0.063

6 0.076 0.091 0.074 0.066 0.054

7 0.064 0.081 0.064 0.064 0.048

8 0.058 0.081 0.056 0.062 0.051

9 0.064 0.071 0.048 0.059 0.054

10 0.059 0.065 0.054 0.058 0.051

11 0.061 0.066 0.058 0.058 0.058

12 0.057 0.066 0.052 0.058 0.053

depicts all solutions as well as those that are predicted to be
on the frontier using M = CVC with K = 5, and those on
the frontier (i.e., in F̃i ).

Onemight askwhether better performance canbe achieved
by a combination of the slack measures by the so-called
meta-models or surrogate models. Jin (2005) gives a com-
prehensive review of fitness approximation methods in evo-
lutionary computation. They list, among others, polynomial
(response surface methodologies), kriging models, neural
networks, support vectormachines as someof the approaches
used. They state that the literature provides no clear-cut con-
clusions on the advantages and disadvantages of different
methods. Recently, Tong et al. (2021) provide a taxonomy
of surrogate models with two major categories: absolute fit-
ness models, which directly approximate the fitness function
values of candidate solutions, and relative fitness models,
which estimates the relative rank or preference of candidates
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Fig. 8 Precision–recall curve for CVC and RAND (with K next to each
marker)

rather than their fitness values. The work in the latter cate-
gory has developed after the review of Jin (2005), the first
one being Runarsson (2006). To the best of our knowledge,
most of this literature uses problem data and the values of
the decision variables as input to the approximation mod-
els. Using slack measures as input would be a promising
approach for the problem addressed here. Due to the large
variety of approaches one should test, we believe investigat-
ing meta-models should be a follow-up study.

5.5 Performance of the surrogate measures within
theMOSA algorithm

Given the results discussed in the previous section, the
MOSA algorithm was run using surrogate measures CVC

and CVCL, with K = 5. First, using CVCL MOSA was run
20 times for each ITC instance. The final solution archives
in these runs contained a total of 6083 solutions. Since for
the calculation of R for a given solution we used a random
sample of 100 disruption scenarios, calculating it for all solu-
tions would be practically impossible. Hence, we decided to
choose around 60 solutions for each ITC instance. With this
computational budget for a given instance, it made sense to
have these solutions with P values within an interval starting
with Pmin, the best penalty obtained for that instance. It is
sensible to focus on a segment of the Pareto frontier corre-
sponding to a range of the lowest penalty values, where the
performance of the algorithmmatters the most. Furthermore,
by making this a sufficiently narrow interval one can hope to
obtain a good approximation of the Pareto frontier, F̃ .

Say the chosen penalty interval is [Pmin, Pul ]. Using the
same Pul for runs using both CVC and CVCL would give
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Table 14 Frontier size statistics
(sample averages reported for
RAND, n = 1000)

i |F̃i | |AM (K )i ∩ F̃i |/|AM (K )i |
K = 3 K = 5
UC CVC CVCL RAND MinR UC CVC CVCL RAND MinR

1 1 1/3 1/3 0/3 0.06/3.0 1/8 1/5 1/5 0/5 0.07/5.0 1/14

2 4 1/11 1/9 1/9 0.50/7.2 2/15 2/16 2/15 2/15 0.78/11.7 2/19

5 2 1/8 1/14 1/12 0.61/8.7 1/15 1/13 1/17 1/15 0.98/14.5 1/18

7 2 1/12 1/4 1/5 0.31/7.1 1/15 1/18 1/7 1/8 0.57/11.9 1/22

12 3 0/14 0/7 1/8 0.81/9.1 1/17 0/19 1/11 1/13 1.39/15.2 1/23

Ave. |AM (K )i | 9.6 7.4 7.4 7.0 14 14.2 11 11.2 11.7 19.2

Fig. 9 Solutions with
M = CVC, K = 5 and the
(P, R) Pareto frontier
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Table 15 Statistics on solution
archives and selected
solutions—MOSA using CVCL

ITC1 ITC2 ITC5 ITC7 ITC12

No. runs used 20 20 20 20 18

No. runs with a selected soln. 20 10 15 16 18

Archive size per run Min.–Max. 18–47 28–77 43–364 15–50 51–135

Ave. 30.2 52.95 104.5 33.25 83.39

Selected solutions:

No. 58 60 63 60 62

Pmin – Pul 5–7 65–89 318–394 37–58 347–392

No. per run (excl. runs Min.–Max. 1–6 3–11 2–8 2–8 2–9

with 0 selected soln.) Ave. 2.9 6 4.2 3.75 4.13

With same P Min.–Max. 8–36 1–6 1–6 1–6 2–5

Ave. 19.33 2.73 2.33 3.16 2.19

Table 16 Statistics on solution
archives and selected
solutions—MOSA using CVC

ITC1 ITC2 ITC5 ITC7 ITC12

No. runs used 20 30 20 17 30

No. runs with a selected soln. 20 13 12 12 18

Archive size per run Min.–Max. 22–48 19–76 56–350 18–78 35–251

Ave. 30.45 44.2 95.35 34.06 83.9

Selected solutions:

No. 64 59 59 64 60

Pmin – Pul Min.–Max. 5–7 75–89 345–394 40–58 357–392

No. per run (excl. run Min.–Max. 1–6 2–9 2–8 2–10 2–6

with 0 selected soln.) Ave. 3.2 4.54 4.92 5.33 3.53

With same P Min.–Max. 15–28 1–8 1–5 1–9 1–6

Ave. 21.33 3.93 2.15 3.76 2.61

Table 17 Summary statistics on
the generated frontiers

ITC1 ITC2 ITC5 ITC7 ITC12

Number of frontiers

CVC 20 13 12 12 18

CVCL 20 10 15 16 17

Frontier size (ave., median)

CVC 3.20; 3 4.54; 5 4.69; 5 5.33; 5 3.33; 3

CVCL 1.15; 1 2.7; 2.5 1.33; 1 1.25; 1 1.41; 1

Hypervolume (ave., median)—larger the better

CVC 0.081; 0.075 0.044; 0.04 0.029; 0.02 0.053; 0.060 0.023; 0.015

CVCL 0.098; 0.080 0.096; 0.08 0.031; 0.02 0.069; 0.075 0.047; 0.050

Generational Distance (ave., median)—smaller the better

CVC 0.226; 0.216 0.150; 0.103 0.155; 0.144 0.149; 0.155 0.165; 0.144

CVCL 0.473; 0.518 0.146; 0.134 0.300; 0.310 0.254; 0.203 0.125; 0.099
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Fig. 10 FCVCL
r (5) and FCVC

r (5)
for runs that gave the lowest GD
for CDC GD(CV_C) =  0.024
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us around 120 solutions to obtain F̃ . Since P values are by
definition integer, we tried to ensure the average number of
solutions for each P in [Pmin, Pul ] was 2 or more, for each
surrogate measure. In other words, by ensuring [Pmin, Pul ]
to be narrow enough, we can calculate R for multiple solu-
tions with the same P and obtain a better estimate of Pareto
frontier. Table 15 presents some summary statistics for the
solutions selected from the runs that used CVCL. The number
of solutions selected for each ITC instance ranges between
58 and 63. The average number of solutions with the same
P was at least 2.19.

Then, using the same Pul values for each instance, solu-
tions were selected from the MOSA archives that were
obtained when the surrogate measure CVC was used. In this
case, obtaining around 60 solutions with P ≤ Pul required
up to 30 MOSA runs. Table 16 summarizes the statistics for
these solutions. The data files of these solutions and the corre-
sponding disruption scenarios for each solution are available
for download at figshare data repository (Akkan and Gülcü
2020).

To evaluate how good the approximation frontiers are, two
widely used metrics, hypervolume (HV ) and generational
distance (GD), were used (Zitzler and Thiele 1999). GD was
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Fig. 11 Comparison of the best
aggregate frontiers, FCV∗

CL (i)
and FCV∗
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developed to measure the distance between two frontiers.
Ideally, one of these would be the optimal Pareto frontier,
however, when, as often the case, one does not know the opti-
mal Pareto frontier, one would need to develop a benchmark
or best frontier that can be constructed.Weused the following
approach to construct the best frontier: For a given instance
ITCi , letFM

r (i) denote frontier obtained in the r th run of the
MOSA algorithm using surrogate measure M . Combining
the frontiers from all runs of CVCL and CVC, an aggregate
frontier is obtained, which is denoted by F∗(i). For each
FM
r (i), GD calculation is done with respect to F∗(i).
Table 17 provides some summary statistics on the frontiers

and their HV and GD values. The number of frontiers reveal
that the aggregate fronts are constructed by making use of
between 23 frontiers (for ITC2) and 40 frontiers (for ITC1).

Furthermore, we see that FCVC
r (i) have significantly more

solutions than FCVCL
r (i) for all ITCi . Summary statistics on

HV reveal that for all ITCi , on the average, CVCL yields
better frontiers than CVC. On the other hand, GD statistics
provide mixed results that favor CVC. For ITC1, ITC5, and
ITC3, average and median GD for CVC is clearly better than
that of CVCL, whereas for ITC12 CVCL is better and for
ITC2 the two surrogatemeasures perform equallywell. As an
example of how the individual frontiers could differ, Fig. 10
depicts the frontiers obtained in six runs where CVC gave
the smallest GD for ITC5. Different Pareto frontier quality
metrics yielding different results are unfortunately common
in multi-criteria optimization (see Zitzler and Thiele 1999),
and it is widely acknowledged that there is no single metric
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that can be used to evaluate the quality of an approximation
frontier.

In order to gain better insight into the performance differ-
ence between CVCL and CVC, the aggregate fronts FM∗

(i)
were constructed separately for each surrogate measure M .
In other words, given M , the solutions in FM

r (i) were com-
bined for all r in order to obtain a good approximation front.
This is how one would obtain the approximation frontier
when one uses a multi-start MOSA algorithm, where MOSA
would be run with a new random initial solution in each
run. Figure 11 depicts, for each ITCi , these aggregate fron-
tiers, FM∗

(i). For all ITCi , FCV∗
CL(i) is clearly the better

approximation frontier. Considering this finding along with
results provided in Table 17 suggests that using CVCL yields
small frontiers (overall average frontier size was 1.63, com-
pared to 4.3 for CVC), but these are good solutions, andwhen
the solutions from multiple runs are combined, one obtains
quite good approximation frontiers. Relatively poor perfor-
mance of CVCL in terms of GD reported in Table 17 can
partly be explained by having 1 or 2 solutions on FCVCL

r (i),
which results in large average distance to the larger and more
widely spread F∗(i). Taking into account these results, one
can conclude that a multi-start MOSA using CVCL would be
an effective approach at constructing a good Pareto frontier
for this timetabling problem.

6 Concluding remarks

In this article, we have addressed the problem of construct-
ing an approximation to the Pareto frontier defined by two
criteria, solution quality and solution robustness, for the
curriculum-based university course timetabling problem of
the International Timetabling Competition 2007 (ITC-2007).
The need for the robustness objective comes from four types
of input data changes/corrections, so-called disruptions, that
can render a given solution infeasible and deteriorate its solu-
tion quality. Since disruptions are assumed to be random, the
robustness objective is a stochastic one, but one without a
closed-form formula.

To solve this problem, amulti-objective simulated anneal-
ing (MOSA) algorithm was developed. To find a good
surrogate measure for robustness that can be used within
MOSA, a large set of measures that attempted to quantify the
availability of slack in the timetable (in rooms/periods) were
developed. Analysis of the results of computational experi-
ments helped reduce these to a short list of eight, and then to
two. These two surrogate measures were then implemented
in aMOSAalgorithm.Computational experiments of the two
versions of the MOSA algorithm revealed that a single run
of CVC is likelier to provide a better frontier with an average
of around 4 solutions; however, if the MOSA is run multiple
times with a different initial random solution using CVCL,

and the resultant frontiers are combined into one aggregate
frontier, this should yield a significantly better frontier than
onewould get using the samemulti-start approachwith CVC.

An interested avenue for future research could be devel-
oping a larger set of domain-specific features and testing the
use of these with surrogate models (such as random forests),
which, to the best of our knowledge, have not been tested on
large-scale timetabling problems.

Appendix: The IPmodel for robustness calcu-
lation

As discussed in Sect. 2.1, the objective function of the
CB-CTP of ITC-2007 is a weighted sum of soft constraint
violations, which is referred to as the penalty. The robustness
measure for a given initial solution and a disruption scenario
was given in Equation 3 as

R(S0, yn) = min
S∈N (S0,yn)

Φn(S, S0), where

Φn(S, S0) = Pave · 1D(S,S0)>δ
p
n

+ (P(S) − P(S0))
+

Given the set of all events, E , the feasible solution space
N (S0, yn) is defined by the updated set of available periods
Te(yn), for each event e ∈ E and the set of available rooms,
Rp(yn), available for each period p ∈ Te(yn) for all e ∈ E .
(Thus, rooms in Rp can be used by any event.) To simplify
the notation, in what follows, we drop the notation for the
disruption scenario, yn , and simply denote the set of available
periods and rooms as Te and Rp, respectively. The notation
used for the input data of the IP model is listed in Table 18.

The formulation of the IP model is an event-based one
using the following decision variables:

Xepr = 1 if event e is scheduled at period

p in room r , 0 otherwise;

∀e ∈ E, p ∈ Te, r ∈ Rp

Ycr = 1 if course c is scheduled in room r , 0 otherwise;

∀c ∈ C, r ∈ R
Z pm = 1 if curriculum m has an isolated course in period

p, 0 otherwise;

∀p ∈ P,m ∈ M.

Wcd = 1 if at least one event of course

c is scheduled on day d,

0 otherwise; ∀c ∈ C,∀d ∈ Δ

VC = 1 if minimum work day constraint is violated

for course c,

0 otherwise; ∀c ∈ C
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Table 18 Notation for the data

K (r) : Capacity of room r

MW(c) : Minimum working days required for course c

NS(c) : The number of students for course c

C(e) : The course to which event e belongs to

M(e) : The curriculum of event e

FD(p) =

⎧
⎪⎨

⎪⎩

−1, if period p is the first period of a day

0, if period p is neither last nor first period of a day

1, if period p is the last period of a day.

π(e) : the period to which event is assigned in the initial schedule S0
E : Set of events

C : Set of courses

I : Set of instructors

R : Set of rooms

T : Set of periods

Te : Available periods for event e

T N
e,d : Available periods on day d for event e

Rp : Available rooms for period p

Ec : Events of course c

Ep,r ,m,i : Events taught by teacher i , of curriculum m, and can be assigned to period p, room r , {e : e ∈ E, p ∈ Te, r ∈ Rp, M(e) = m, I (e) = i}

Spr = number of students assigned to room

r in period p, in excess of

the room capacity; ∀p ∈ P, r ∈ R.

Mpm = 1 if there exists an event belonging to curriculum

m scheduled in

period p; ∀p ∈ P,m ∈ M.

Q = 1 if distance to the initial solution,

S0 exceeds δ
p
i , 0 otherwise;

The objective function to be minimized is then R =
PaveQ + U , where U = max{P − P0, 0}, P is the penalty
function value of the solution that minimizes R, and P0 is the
penalty of the initial (disrupted) solution. The constraints of
the model are as follows:

∑

e∈Ep,·,·,·
Xepr ≤ 1, p ∈ T , r ∈ Rp (7)

∑

e∈Ep,·,m,·

∑

r∈Rp

Xepr ≤ 1, p ∈ T ,m ∈ M (8)

∑

e∈Ep,·,·,i

∑

r∈Rp

Xepr ≤ 1, p ∈ T , i ∈ I (9)

∑

p∈Te

∑

r∈Rp

Xepr = 1, e ∈ E (10)

∑

e∈E

∑

p∈Te\π(e)

∑

r∈Rp

Xepr ≤ δ
p
i + ( f (δ pi , δri ) − δ

p
i )Q (11)

∑

e∈Ec

∑

p∈Pe

Xepr ≤ |EC
c |Ycr , c ∈ C, r ∈ R (12)

∑

e∈Ep,·,m,·

∑

r∈Rp

Xepr = Mpm, p ∈ P,m ∈ M (13)

Mpm − M(p+1)m ≤ Z pm, p ∈ P,

FD(p) = −1,m ∈ M (14)

−M(p−1)m + Mpm − M(p+1)m ≤ Z pm,

p ∈ P, FD(p) = 0,m ∈ M (15)

−M(p−1)m + Mpm ≤ Z pm, p ∈ P,

FD(p) = 1,m ∈ M (16)
∑

e∈Ec

∑

p∈Te,d

∑

r∈Rp

Xepr ≤ EmaxWcd , c ∈ C, d ∈ D (17)

∑

e∈Ec

∑

p∈Te,d

∑

r∈Rp

Xepr ≥ Wcd , c ∈ C, d ∈ D (18)

∑

d∈D
Wcd + Vc ≥ MW (c), c ∈ C (19)

∑

d∈D
Wcd ≤ |Ec|, c ∈ C (20)

∑

e∈E
NS(C(e))Xepr ≤ K (r) + Spr , p ∈ T , r ∈ R (21)

∑

p∈T

∑

r∈R
Spr = RC (22)
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∑

c∈C
Vc = MW (23)

∑

m∈M

∑

p∈P
Z pm = CC (24)

∑

c∈C

(
∑

r∈R
Ycr − 1

)

= RS (25)

(RC + 5MW + 2CC + RS) − P0 ≤ U (26)

Xepr ∈ {0, 1} e ∈ E, p ∈ Te, r ∈ Ret (27)

Wcd ∈ {0, 1} c ∈ C, d ∈ D (28)

Mpm ∈ {0, 1} p ∈ P,m ∈ M (29)

Vc ∈ {0, 1} ∀c ∈ C (30)

Ycr ∈ {0, 1} ∀c ∈ C, r ∈ R (31)

Z pm ∈ {0, 1} ∀p ∈ P,m ∈ M (32)

Spr ≥ 0 ∀p ∈ P, r ∈ R (33)

U ≥ 0 (34)

Q ∈ {0, 1} (35)

Constraint (7) ensures at most one event can be assigned
to each available room at each period. Constraint (8) ensures
a period can have at most one event of a curriculum. Con-
straint (9) ensures a period can have at most one event of a
teacher. Constraint (10) ensures every event is assigned to
exactly one room in one period. Constraint (11) ensures the
number of events that are not assigned to their pre-disruption
period does not exceed f (δ pi , δri ) and sets the indicator deci-
sion variable Q to 1 if it exceeds δ

p
i . Constraint (12) is needed

for the room stability soft constraints. They ensure that if at
least one event of a given course c ∈ C uses a room r ,
the corresponding decision variable Ycr takes the value of
1. Constraint (13) ensures that if curriculum m has an event
at period p, the decision variable Mmp takes a value of 1.
Constraints (14), (15) and (16) ensure that if curriculum m
has an isolated event at period p, the decision variable Z pm

takes a value of 1. Constraint (17) ensures that Wcd takes
the value 1 if a rescheduled event of course c uses day d,
where Emax is the maximum number of events per day per
course. Constraint (18) forces the decision variable Wcd to 0
if no event of course c is scheduled on day d. Constraint (19)
ensures that Vc gives the violation of the minimum working
day requirement for each course. Constraint (20) ensures that
for each course c the number of Wcd variables that are equal
to 1 does not exceed the number of events for that course,
|EC

c |. Constraint (21) ensures that Spr provides the room
capacity violation at each period and in each room. Finally,
Constraint (26) calculates the penalty of the solution, where
the calculations of individual soft constraint violations are
depicted separately in Constraints (22), (23), (24) and (25).
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