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ABSTRACT 

 

In this paper, nonlinear forced vibrations of uniform and functionally graded Euler-Bernoulli Beams with large 

deformation are studied. Spectral and temporal boundary value problems of beam vibrations do not always have closed-form 

analytical solutions. As a result, many approximate methods are used to obtain the solution by discretizing the spatial problem. 

Spectral Chebyshev Technique (SCT) utilizes the Chebyshev Polynomials for spatial discretization and applies Galerkin’s 

method to obtain boundary conditions and spatially discretized equations of motions. Boundary conditions are imposed using 

basis recombination into the problem and as a result of this, the solution can be obtained to any linear boundary condition 

without the need for re-derivation. System matrices are generated with the SCT, and natural frequencies and mode shapes are 

obtained by eigenvalue problem solution. Harmonic Balance Method (HBM) is used to solve nonlinear equation of motion in 

frequency domain, with large deformation nonlinearity. As a result, a generic method is constructed to solve nonlinear 

vibrations of uniform and functionally graded beams in frequency domain, subjected to different boundary conditions. 
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INTRODUCTION 

 

Nonlinear vibration analysis of beams plays an important role in the design of many engineering structures, especially 

those experience dynamic loads such as airplane wings, wind turbines and jet engine blades, electronic boards, etc. Many 

failures in these structures can be predicted through nonlinear vibration analysis of beams. To prevent failures, without 

constructing costly analysis models, it is possible to change the design of the structure (e.g., geometry, material property, etc.). 

Nonetheless, the complexity of the nonlinear problem and the deficiency in the literature increases the need for research in 

nonlinear beam vibrations.  

In large deformation nonlinearity, the deformations higher than the thickness of the beam results in stretching force which 

induces nonlinear behavior. This nonlinearity is reflected in the differential equations of motion. The resulting nonlinear 

differential equations can be solved by time domain or frequency domain methods. For instance, Chakrapani et al. [1] and 

Swain et al. [2] studied the force vibration of composite beams in time domain. Similarly, Liao-Liang Ke et al. [3] worked on 

free vibration of geometrically nonlinear composite beams. However, frequency domain methods are computationally very 

efficient compared to time domain methods to obtain the steady state response. Harmonic Balance Method (HBM) and 



Describing Function Method (DFM) are the most common frequency domain methods used to obtain the steady state response 

of nonlinear systems. For example, H. Youzera et al. [4] implemented HBM in the solution of forced vibration of symmetric 

laminated composite beams.  

 

In this paper, HBM is employed to convert the nonlinear differential equations of motion into nonlinear algebraic equations. 

The resulting set of nonlinear algebraic equations are solved by using Newton’s method with arc-length continuation. Several 

case studies are performed on uniform and functionally graded beams. Simply supported, fixed-fixed and fixed-pinned 

boundary conditions are considered in the case studies. Deflections at the middle point of the beam are presented as a function 

of frequency for different mechanical properties and different external excitations. 

 

THEORY 

 

In the SCT, Chebyshev polynomials are used to spatially discretize the beam. Transverse displacement function of a beam 

can be expressed by Chebyshev series expansion as  

 

𝑦(𝑥) = ∑ 𝛼𝑘𝑇𝑘(𝑥)∞
𝑘=0 .                                                               (1) 

 

Where 𝑇𝑘(𝑥) is Chebyshev polynomials of the first kind which can be given as follows [5] 

 

      𝑇𝑘(𝑥) = cos(𝑘 cos−1(𝑥))   𝑓𝑜𝑟  𝑘 = 0, 1, 2 ⋯.                                           (2)                            
 

The displacement function of the beam can be represented by sampled points at certain increments for numerical calculations. 

If the sampling point number is selected the same as the number of Chebyshev polynomials, there occurs a one-to-one mapping 

between the sampled points and Chebyshev coefficients 𝛼𝑘 [5]. For N number of Chebyshev polynomials, N number of Gauss-

Lobatto points are used for sampling spatial domain, which are defined as 

 

𝑝𝑘 = cos (
(𝑘−1)𝜋

𝑁−1
).                                                               (3) 

 

The relation between sampled displacement function of the beam and the Chebyshev expansion coefficients can be written as 

 

   𝐚 = 𝚪𝐹𝐲                                                                        (4) 
 

where 𝚪𝐹 is an N x N forward transformation matrix. Additionally, backward transformation matrix is defined which is the 

inverse of forward transformation matrix. 

 

Derivative and integral of the any function and vector constructed by Chebyshev polynomials can be obtained as  

 

𝐲(𝑛) = 𝐐𝑛𝐲                                                                     (5) 

 

∫ 𝑦(𝑥)𝑑𝑥 =  𝐯𝑇𝐚
𝑙2

𝑙1
.                                                                (6) 

 

Here 𝐐𝑛 is the derivative matrix with respect to order n. 𝐯 is the definite integral vector. Derivation of the  𝐐𝑛  and  𝐯 according 

to Spectral Chebyshev Method, are given in reference [6]. 
              

Equation of motion of a Bernoulli beam is written as  

 
 𝜕2

𝜕𝑥2 [𝐸(𝑥)𝐼
 𝜕2𝑦(𝑥,𝑡)

𝜕𝑥2 ] +  𝜌𝐴
 𝜕2𝑦(𝑥,𝑡)

𝜕𝑡2 = 𝑓(𝑥, 𝑡).                                                        (7) 

 

 

 

 



Boundary conditions for this equation can be written in a generic way such as 

 

β
𝑖𝑗3

y''''+β
𝑖𝑗2

 y'''+β
𝑖𝑗1

y''+β
𝑖𝑗0

y =α
𝑖𝑗

(t)                                                              (8) 

  

Here β’s are the constants of the spatial part of the boundary condition, whereas α’s are the constants of the temporal part. Both 

can be written in vector form. The i and j indices corresponds to the boundary location (0 and L, i=1,2) and the number of the 

boundary condition (j=1,2).  When boundary conditions change, the derivation of equation does not change, only these matrices 

change. An important step in imposing boundary conditions is expressing y by using projection matrices [6] as 

 

𝐲 = 𝐏𝐳 + 𝐑𝛂                                                                                               (9)    

                

This technique makes the problem solvable for z which only satisfies homogenous boundary conditions, where y satisfies all 

the boundary conditions [6]. Calculation of P and R matrices are given in reference [6]. In order to obtain the approximate 

solution, Galerkin’s Method is applied. Imposing projection matrices into Eq.8, the residual from approximation is written as 

 
𝛟 = m(Pz

..
+ Rα

..
 ) − 𝐐𝟒(Pz + Rα) − f                                                                (10)   

 

Where m = (
𝜌𝐴

𝐸𝐼
) and f is normalized by dividing it with 𝐸𝐼.  To minimize this residual, the inner product of weighted residuals 

must vanish, i.e.  

 

∫ 𝜃(𝑥)𝜙(𝑥)𝑑𝑥 =  𝛉𝑇𝐕𝛟 = 0
𝑙2

𝑙1
                                                      (11) 

 

The inner product of any two functions 𝜃(𝑥) and 𝜙(𝑥) can be constructed by Chebyshev polynomials by using the inner product 

matrix (V) which is described in Appendix. 

 

 

Including derivative matrices, boundary projection matrices and applying Galerkin’s Method, Eq. (7) can be written as 

 

(
𝜌𝐴

𝐸𝐼
) 𝐏T𝐕𝐏z

..
+ 𝐏T𝐕𝐐𝟒𝐏 = 𝐏T𝐕𝐟 − (

𝜌𝐴

𝐸𝐼
) 𝐏T𝐕𝐑𝛂

..
− 𝐏T𝐕𝐐𝟒𝐑𝛂                                   (12) 

 
In Eq. (12), mass and stiffness matrices, and the forcing vector can be obtained as follows  

 

                                                   M=(
𝜌𝐴

𝐸𝐼
) 𝐏T𝐕𝐏,       K=𝐏T𝐕𝐐𝟒𝐏 ,       𝐟∗ = 𝐏T𝐕𝐟                                       (13)                                                    

              
Since for basic boundary conditions 𝛼, 𝛼

.
 𝑎𝑛𝑑 𝛼

..
 are 0, f term is simplified to the form given in Eq. (13).  

 

 

When a mechanical property varies along the beam’s longitudinal direction, the related inner product matrix changes. As a 

study, Young’s modulus is considered to be varying along the beam’s length such as 

 

E(x) = (𝐸2 − 𝐸1)x/L + 𝐸1.                                                       (14) 
 

With respect to this variation, the E value in the equation of motion is not a scalar anymore but a function. By using chain rule, 

applying Galerkin’s method and imposing boundary projection matrices to the equation of motion, the following equation is 

obtained: 

  

𝐼[𝐏𝑇[𝐕𝐸𝐐𝟒 + 2𝐐𝟏𝐕𝐸𝐐𝟑 + 𝐐𝟐𝐕𝐸𝐐𝟐] 𝐏𝐳] + (𝜌𝐴)𝐏𝑇𝐕𝐏𝐳
..

= 𝐏𝑇𝐕𝐟                              (15) 

 
Here, VE is the inner product matrix with respect to varying Young’s Modulus. Calculation of 𝐕𝐸 , 𝐕𝐄 

′ and 𝐕𝐄 
′′ is given in 

Appendix. 

 

 

 



With respect to Eq. (15),  new mass and stiffness matrices and the forcing vector of the system becomes as follows 

 

𝐌 = (
𝜌𝐴

𝐼
) 𝐏𝑇𝐕𝐏, 𝐾 = 𝐏𝑇[𝐕𝐸𝐐𝟒 + 2𝐐𝟏𝐕𝐸𝐐𝟑 + 𝐐𝟐𝐕𝐸𝐐𝟐]𝐏, 𝐟∗ = (

1

𝐼
) 𝐏𝑇𝐕𝐟                            (16) 

                              

 
Application of Harmonic Balance Method 
The equation of motion of a Euler-Bernoulli Beam with geometric nonlinearity is given as 

 

𝐸𝐼
 𝜕4𝑦

𝜕𝑥4 +  𝜌𝐴
 𝜕2𝑦

𝜕𝑡2 = [
𝐸𝐴

2𝐿
∫ (

𝜕𝑦

𝜕𝑥
)

2

𝑑𝑥
𝑙2

𝑙1

]
 𝜕2𝑦

𝜕𝑥2 + 𝑓(𝑥, 𝑡).                                             (17) 

Here the term [
𝐸𝐴

2𝐿
∫ (

𝜕𝑦

𝜕𝑥
)

2

𝑑𝑥
𝑙2

𝑙1

]
 𝜕2𝑦

𝜕𝑥2  comes due to the stretching effect occurring along the beam. This nonlinear phenomenon 

is studied by many researchers with different solution techniques [7,8,9,10]. 

 

 

The nonlinear term in Eq. (17) can be written by using Chebyshev Technique as follows 

 

[
𝐸𝐴

2𝐿
∫ (

𝜕𝑦

𝜕𝑥
)

2

𝑑𝑥
𝑙2

𝑙1

]
 𝜕2𝑦

𝜕𝑥2 =
𝐸𝐴

2𝐿
𝐯𝑇Г𝑭(𝐐𝟏𝐏𝐳)2𝐐𝟐𝐏𝐳                                                  (18) 

For the beam with variation of its Young Modulus along length, nonlinear term can be defined as below, with respect to the 

system parameters defined at Eq. (16) 

 

  [
𝐸𝐴

2𝐿
∫ (

𝜕𝑦

𝜕𝑥
)

2𝑙2

𝑙1

𝑑𝑥]
 𝜕2𝑦

𝜕𝑥2 =
𝐕E𝐴

2𝐿
𝐯𝑇Г𝑭(𝐐𝟏𝐏𝐳)2𝐐𝟐𝐏𝐳                                                (19) 

 
Eq. (17) can be written in the following form 

  

(
𝜌𝐴

𝐸𝐼
) 𝐏𝑇𝐕𝐏𝐳

..
+ 𝐏𝑇𝐕𝐐𝟒𝐏 =

𝐴

2𝐼𝐿
𝐯𝑇Г𝑭(𝐐𝟏𝐏𝐳)2𝐐𝟐𝐏𝐳 + 𝐏𝑇𝐕𝐟.                              (20) 

 

A single harmonic solution is assumed as follows 

 

𝐳 = {

𝑧𝑠1sin𝜃 + 𝑧𝑐1cos𝜃
.
.

𝑧𝑠𝑛sin𝜃 + 𝑧𝑐𝑛cos𝜃

}.                                                     (21) 

 

The z vector is placed into the Eq. (20) and coefficients of the similar terms are balanced to determine the unknowns.  The 

nonlinear term in the equation can be concluded to form given below with the help of trigonometric relations. 

 

(
𝐴

2𝐼𝐿
𝐯𝑇Г𝑭(𝐐1𝐏𝐳)2𝐐2𝐏𝐳)(𝐳) = [𝐕𝐿] [

𝜓𝑠1
 𝑠𝑖𝑛𝜃 + 𝜓𝑐1

 𝑐𝑜𝑠𝜃 
.
.

𝜓𝑠𝑛
𝑠𝑖𝑛𝜃 + 𝜓𝑐𝑛

 𝑐𝑜𝑠𝜃 

]                                        (22) 

 

Where [𝐕𝐿] = 𝐐𝟐𝐏𝐳 and 𝜓𝑠1
 , 𝜓𝑐1

 are the numerical expressions arising from Harmonic Balance Method. 

 

With the addition of the Eq. (21), nonlinear equation of motion of can be converted into a set of nonlinear algebraic equations 

in frequency domain for sine cosine terms of the displacement as the unknowns. These nonlinear algebraic equations can be 

solved by using Newton’s method with arc-length continuation [11].  

 



CASE STUDY  

 

Solving the eigenvalue problem with the system matrices defined in Eq.13, the first 5 natural frequencies of a Euler-Bernoulli 

Beam subjected to pinned-pinned, fixed-fixed and fixed-pinned boundary conditions are given in Table 1. Additionally, exact 

solutions are calculated for the problem and given in the Table. In these results, material of the beam is aluminum with the 

following properties E=71 GPa, ρ=2770 kg/m3, w=0.03 m (width), L=1 m and, h=0.01 m (thickness). 

                                
 Natural Frequencies (rad/s) 

Pinned - Pinned Fixed - Fixed Fixed - Pinned  
Exact 

Solution 

SCT  

with 9 

polynomials 

SCT  

with 13 

polynomials 

Exact 

Solution 

SCT  

with 9 

polynomials 

SCT  

with 13 

polynomials 

Exact 

Solution 

SCT  

with 9 

polynomials 

SCT  

with 13 

polynomials 

1st 144.244 144.244 144.244 326.98 326.985 326.985 225.336 225.337 225.337 

2nd 576.9769 576.994 576.977 901.347 901.647 901.348 730.239 730.309 730.236 

3rd 1298.197 1298.677 1298.198 1767 1770.323 1767.003 1523.586 1525.876 1523.58 

4th 2307.907 2452.392 2307.957 2920.96 3242.881 2921.322 2605.423 2811.163 2605.539 

5th 3606.105 4012.955 3606.596 4363.407 5165.42 4365.938 3975.749 4601.434 3977.551 

 
Table 1: First 5 Natural Frequencies of Uniform Beam Subjected to Different Boundary Conditions 

 

The first five natural frequencies of the functionally graded beam are obtained with the previous parameters that are given, 

except E1 and E2,  which are taken as 85.2 GPa and 28.4 GPa. 

  
 Natural Frequencies (rad/s) 

Pinned - Pinned Fixed - Fixed Fixed - Pinned  
SCT  

with 9 

polynomials 

SCT  

with 13 

polynomials 

SCT  

with 9 

polynomials 

SCT  

with 13 

polynomials 

SCT  

with 9 

polynomials 

SCT  

with 13 

polynomials 

1st 126.63 126.63 282.558 282.557 203.332 203.332 

2nd 503.519 503.158 781.206 781.171 641.88 641.876 

3rd 1133.394 1130.656 1543.647 1533.353 1339.53 1331.586 

4th 2070.412 2008.442 2682.509 2536.243 2341.85 2272.009 

5th 3672.316 3139.349 4767.871 3799.932 4423.264 3468.51 

 
Table 2: First 5 Natural Frequencies of a Beam with Varying Young Modulus 

 Subjected to Different Boundary Conditions 

 
As expected, the natural frequencies of the beam decreased, since overall stiffness of the beam is reduced due to the new 

variation of Young Modulus. 

 

Frequency response of the beams defined above (uniform and functionally graded) is solved with geometric nonlinearity. A 

sinusoidal force is applied at the mid-point of the beam and the transverse deflection at the mid-point is obtained for different 

excitation forcing amplitudes. A viscous damping coefficient of 0.03 is considered for the whole system by assuming 

proportional damping. The response was given as normalized amplitude which is displacement divided by force. 



 
 

Figure 1: Mid-Point Normalized Deflection of the Uniform Beam with Pinned-Pinned Boundary Conditions 

 

 
 

 
Figure 2: Mid-Point Normalized Deflection of the Uniform Beam with Fixed-Fixed Boundary Conditions 

 

 

 

 



 
 

Figure 3: Mid-Point Normalized Deflection of the Uniform Beam with Fixed-Pinned Boundary Conditions 

 

 
Frequency response plot for functionally graded beam (𝐸1 = 85.2 GPa,,𝐸2 =28.4 GPa.) with fixed-pinned boundary conditions 

is given below. 
        

 
Figure 4: Mid-Point Deflection of the Functionally Graded Beam with Fixed-Pinned Boundary Conditions 

 

 

 

 

 

 



Additionally, a frequency response plot for a varying Young Modulus beam with different scenarios is given in Fig. 5 (with 

6N force applied).  

 
 

Figure 5: Mid-Point Deflection of the Functionally Graded Beam with Fixed-Pinned Boundary Conditions and Different Cases  

 

As expected, if Young Modulus at the end of the beam decreases, the overall stiffness of the beam also decreases. Hence, the 

natural frequency of the beam becomes lower and the deflection of the beam increases. 

               

 

CONCLUSION 

 

In this paper a generic method is proposed to solve nonlinear vibrations of uniform and functionally graded beams. The 

method generates a fast solution for the problem in the frequency domain. If one is after the frequency response of any point 

along the nonlinear beam subjected to different boundary conditions, the method yields efficient solutions that are not 

computationally expensive. As case studies, the frequency response of the mid-point deflections of uniform and functionally 

graded beams subjected to different basic boundary conditions are presented. 

 

APPENDIX  

 

Calculation of Inner Product Matrix 

Values of any two functions f(x) and g(x) at N Gauss-Lobatto points are written as fN and gN. Product of interpolated functions 

has order of 2N. 

f2𝑁=S2f𝑁                                                                                           (A-1) 

S2 is constructed as: 

S2N= ΓB2N
[IN ; ON] ΓFN

                                                                          (𝐴 − 2) 



Here ΓB2N
 𝑖s the 2N x 2N backward transformation matrix. IN and ON are the N x N dimensional identity and zero matrices. 

The inner product of f(x) and g(x) can be written as 

∫ f(𝑥)g(𝑥)𝑑𝑥 = f
𝑇
V g =f

2𝑁
𝑻

v𝑑,2𝑁 𝒈2𝑁

𝑙2

𝑙1

                                                               (𝐴 − 3) 

Here v𝑑,2𝑁is a matrix whose diagonal has the elements of multiplication v2N
𝑻 ΓF2N

. Then the inner product matrix is written as: 

𝐕 = 𝐒2𝑁
𝑻 𝒗𝑑,2𝑁 𝐒2                                                                                      (𝐴 − 4) 

When the differential equation has variable coefficients, a weighted inner product is defined with respect to a weighting function 

γ(x). In the problem given in case study, γ(x) is variation of the Young Modulus distribution, E(x). Since there is a weighting 

function, the inner product has order of 3N. Consequently, the inner product and inner product matrix can be described as  

 

∫ 𝑓(𝑥)g(𝑥)𝐸(𝑥)𝑑𝑥 = f3𝑁
𝑻 𝐕𝐄 𝐠𝑵                                                                       (𝐴 − 5)

𝑙2

𝑙1

 

 
𝐕𝐄 = 𝐒3𝑁

𝑻 𝐯𝑑,3𝑁 𝐄𝑑,3𝑁𝐒3                                                                              (𝐴 − 6) 

Where vd,3n and Ed,3N are 3N x 3N matrices whose diagonals have the values of f3N and E3N 

The first and second derivative (with respect to x) of the E(x) are E՛(x) and E՛՛(x). While finding the inner product matrix as 

described above, if E՛(x) is used then VE՛(x) is obtained. Similarly, if E՛՛(x) is used then VE՛՛(x) is obtained.  
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