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Abstract: Understanding SARS-CoV-2 evolution is a fundamental effort in coping with the COVID-19
pandemic. The virus genomes have been broadly evolving due to the high number of infected hosts
world-wide. Mutagenesis and selection are two inter-dependent mechanisms of virus diversification.
However, which mechanisms contribute to the mutation profiles of SARS-CoV-2 remain under-
explored. Here, we delineate the contribution of mutagenesis and selection to the genome diversity of
SARS-CoV-2 isolates. We generated a comprehensive phylogenetic tree with representative genomes.
Instead of counting mutations relative to the reference genome, we identified each mutation event
at the nodes of the phylogenetic tree. With this approach, we obtained the mutation events that
are independent of each other and generated the mutation profile of SARS-CoV-2 genomes. The
results suggest that the heterogeneous mutation patterns are mainly reflections of host (i) antiviral
mechanisms that are achieved through APOBEC, ADAR, and ZAP proteins, and (ii) probable
adaptation against reactive oxygen species.
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1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread world-
wide since its emergence in December 2019 [1], reportedly infecting more than 83 million
people, with a death toll of 2,455,131 as of 22 February 2021, according to World Health
Organization (WHO) (https://covid19.who.int/). Studies have been focused on effective
treatment of the disease, mostly by the drug re-purposing approach due to the urgency [2]
and by finding a vaccine that will stop the spread of the virus. Though there are dozens of
vaccine candidates in clinical development, the evolutionary potential of the virus might
affect the efficacy of the immunizations and treatments. Therefore, understanding the
genomic features and mutation dynamics of the virus is crucial to interpret its evolutionary
patterns and its response to the available treatments and potential vaccines.

Analyzing virus sequence context and mutations has revealed essential characteristics
of SARS-CoV-2. For example, the origin of SARS-CoV-2 was linked to bats and pangolins
using phylogenetic analyses [3–6]. Through mutational analyses, some genomic variants of
the virus were associated with increased transmissibility [7,8]. In addition, we and others
studied the spread of the virus in a variety of countries by tracking the mutation events of
sequences over time [8–10].

Mutation profile analysis of SARS-CoV-2 can lead to the identification of mechanisms
that drive the SARS-CoV-2 evolution; however, care should be taken when counting
mutations to create a mutation profile. Considering that virus genomes are evolutionarily
linked to each other, counting all the mutations in the sequences with respect to a reference
genome creates a mutation bias towards the most abundant or frequently sequenced
isolates. In other words, if a mutation occurs in an ancestral genome, it will also be seen in
all of its descendants unless it reverts. When the mutations are called relative to a reference
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genome, variants of a common origin will be counted multiple times, even though they are
linked to a single mutation event. To overcome this issue, we created a phylogenetic tree
and assigned only nucleotides that differ from the parent node as a mutation.

In this study, we retrieved SARS-CoV-2 genome sequences from the GISAID (Global
Initiative on Sharing All Influenza Data) database [11] and analyzed the mutation profiles
and sequence diversity of SARS-CoV-2.

2. Methods
2.1. Data Retrieval and Mutation Assignment

495,159 SARS-CoV-2 genomes, their pre-computed multiple sequence alignment,
and metadata in the GISAID database, which was dated until 9 February 2021, were
retrieved [11]. Initially, the pre-computed multiple sequence alignment was used for
filtering undesired genomes. The low-quality sequences (5% NNNNs) and duplicates
were removed by providers of pre-computed multiple sequence alignment; we filtered
out the genomes with more than (i) 30 single point substitutions; or (ii) 200 inserted
nucleotides; or (iii) 200 deleted nucleotides (relative to the reference genome). Next, the
remaining genomes (381,048) were obtained from the unaligned genome sequences for
further analyses. Because alignment and tree construction with more than 380,000 genomes
was computationally intense, the genomes were randomly subsampled to 30,000 with a
custom bash script and all the sequences with incomplete information (proper date or
location of sample collection) in the metadata file were filtered out with a custom python
script. Then, we used cd-hit to cluster sequences and choose representatives (-c 0.9999
-M 0 -T 80) [12]. 18,050 clusters were created, of which 16,122 contained only a single
sequence. Then, the first sequence of each cluster was assigned as the representative of that
cluster. Representative sequences were aligned with the MAFFT algorithm using Augur
toolkit [13,14]. Wuhan-Hu-1 genome (GenBank: NC_045512.2) was chosen as the reference
genome for the alignment. Then, a phylogenetic tree was constructed using IQ-TREE (-fast
-n AUTO -m GTR).

The tree was then reconstructed into a time-resolved tree using the treetime option
of Augur [13]. The sample with the earliest collection date among the representative
sequences was chosen as the root, and marginal maximum likelihood estimation was used
for date inference. The clock rate was applied across the genome to estimate the evolution
rate and set to 0.0008, with a standard deviation of 0.0004 and using the date confidence
flag to take the uncertainty of divergence time estimates into account. A constant coalescent
model was chosen, and the “covariance-aware” mode of Augur was turned off with no
covariance flag.

To assign the mutations to the nodes of the time-resolved tree, the ancestral option
of Augur, which infers the ancestral sequences, was used by giving the time-resolved tree
and the multiple sequence alignment of representative sequences as input (inference joint).

2.2. Mutation Profile Analysis

Mutation list was obtained from the phylogenetic tree and includes the mutations
observed in each step of the tree. Then, this mutation list was divided into 192 groups
based on their 12 mutation types (i.e., A > U, G > C) and 16 different trinucleotide contents
where the mutating position is centered (i.e., A > U:UAA, G > C:AGU). Each of the
192 mutation groups were normalized with their corresponding trinucleotide count in the
reference genome. Finally, these normalized mutation count values were plotted within
the ggplot2 package [15] using R language, colored by their corresponding mutation type
and trinucleotide content.

Observed mutations are first grouped by their position, mutation type, and trinu-
cleotide, and frequently observed mutations (more than 8 times) at the same position in
the same trinucleotide content are recorded. The observed mutations are grouped by their
mutation type and trinucleotide, which resulted in 192 groups as indicated in the mutation
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profile. The contribution of each mutation to its profile is calculated, and the ones which
contributed more than 10% are reported.

2.3. Measuring Codon Changes and Codon Usage

By using ancestral mutations from the time-resolved tree, the mutated codons (labelled
as deformed) were counted, while the number of the forming codons were referred to as
formed codons. For each codon type, the ratio between formed and deformed count was
taken and plotted in log2 scale by using the ggplot2 package [15].

Human codon usage table was retrieved [16], SARS-CoV-2 codon usage table was
calculated with a custom R script. Number of occurrences in the reference genome was
retrieved for each codon, then, they were grouped by their corresponding amino acids. The
ratio of use per codon was calculated by dividing the occurrence of that codon to the sum
of itself and its synonymous codons occurrence. Afterwards, the relative ratio of codon
usage between Homo sapiens and SARS-CoV-2 was calculated by dividing the ratio of a
codon in one genome to the sum of ratios in genomes.

2.4. Dinucleotide Changes

Observed mutations in the time-resolved tree were used to calculate the number
of deformations observed for each dinucleotide. Dinucleotides were formed by these
mutations, which were also calculated and recorded as the number of formations. Then,
observed counts in the reference genome per codon were retrieved. The deformation
counts were normalized by their division with their observation counts in the reference
genome and plotted with their formation counts by ggplot2 in R studio [15].

3. Results

We reconstructed a phylogenetic tree and inferred the ancestral sequences of the viral
genomes [17]. After constructing the tree, mutations were assigned based on the differences
between the sequences and their parent node (Figure 1). This method enabled us to capture
all the mutation events without recounting ancestral mutations. Moreover, we could also
identify mutations that occurred repeatedly in different lineages, which would not be
possible if the mutations were assigned relative to a reference genome.
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3.1. Mutation Profile of SARS-CoV-2 and Potentially Related Mechanisms

To generate the mutation profile of SARS-CoV-2, we performed mutational signature
analysis for all 192 trinucleotide changes using 54,353 mutations from the 33,540 represen-
tative sequences and nodes (Figure 2A). We normalized all the trinucleotide changes by
the occurrence of the corresponding trinucleotide in the reference genome to eliminate any
sequence context bias. In general, the most abundant mutational patterns are C > U, G > U,
U > C, and A > G substitutions, that are 46%, 18.2%, 9.4%, and 8.8% of total substitutions,
respectively (Figure 2A).

An enzyme family known for causing C > U substitution is called apolipoprotein B
mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family. Enzymes of APOBEC
family have an antiviral activity against some RNA viruses including coronaviruses [18–20].
Briefly, they can deaminate cytosine to thymine (uracil in the RNA genome), which can
either result in C > U substitution on single-stranded viral RNA (plus strand) or G > A
reflection if the C > U substitution occurs on a complementary strand (minus strand).
In agreement with previous studies, the impact of APOBEC is highly visible at C > U
substitutions, while it is relatively low at G > A substitutions (7.2% of total substitu-
tions) [21–23]. This result suggests an asymmetric activity for APOBEC enzymes in favor of
single-stranded viral RNA. Because virus RNA is frequently present as the plus strand, we
see the effect of the APOBEC activity majorly in the form of C > U substitution relative to G
> A, which reflects APOBEC activity on the negative strand during RNA replication. More-
over, APOBEC proteins show target inclination towards 5′-[T/U]C-3′ and 5′–CC–3′ motifs
while deamination of cytosine [24]. Target sequence preferences of APOBEC proteins are
observed in our mutational profile, where 5 out of 7 highest normalized mutational counts
on C > U distributes along 5′-UC-3′ and 5′–CC–3′ motifs (Figure 2A). It is also experimen-
tally found that A1CF RNA editing cofactor, which is APOBEC1 complementation factor,
is among the SARS-CoV-2 RNA binders [25] that strengthens the hypothesis of APOBEC
proteins’ activity on the C > U substitutions.

The second most prevalent substitution is G > U, which might be associated with
reactive oxygen species (ROS) in APOBEC-related manner. A recent study revealed that
DNA damage response mediated by APOBEC3A (a member of APOBEC family) results
in ROS production [26]. ROS can induce oxidative DNA damage, usually transforming
guanine into 7,8-dihydro-8-oxo-20-deoxyguanine (oxoguanine), which can pair with ade-
nine and lead to G > U substitution [27,28]. However, to date, there is no direct evidence of
ROS-caused damage in the SARS-CoV-2 genome.

Another mechanism that can mutate the viral genome is adenosine deaminase acting
on RNA (ADAR), which is an enzyme that mediates deamination of adenine to inosine
(A > I) and later changes to guanine (A > G) [21]. A > G (plus strand) and U > C (minus
strand) substitutions are observed at similar levels (8.8%, and 9.4% of total substitutions,
respectively) (Figure 2A). ADAR targets dsRNA, and therefore, equivalent levels of ADAR
activity are expected to be present at both strands [21]. The symmetric mutation profile for
this pattern strongly suggests that ADAR working on replication RNA is effective in A > G
and U > C substitutions.

In the context of trinucleotides, mutations dominantly occurred in U(C > U)G, C(C
> U)G, A(C > U)G, U(C > U)U, and A(C > U)U (Figure 2A). Notably, 3 out of the 5 most
frequently changed trinucleotides contain CG at their second and third positions. To
examine whether these mutations were predominantly located at a single position in the
viral genome or are distributed throughout the genome, we identified dynamic positions,
where more than 8 recurring mutations were observed. Afterwards, we investigated
the contribution of these trinucleotide positions to the mutation profile (Figure 2B,C).
With some exceptions, most mutations in dynamic positions do not dominate the overall
mutation profile. One of the exceptions is G(G > C)G mutations occurred at position
28,883, which correspond to the 66.6% of all mutations occurring on GGG. Although the
percentage is high, the number of mutations occurring on GGG trinucleotides is only 9.
Similarly G(A > U)C mutations at position 29,869 correspond to the 29.4% of all mutations
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occurring on GAC trinucleotide, but the number of mutations of GAC is as low as 17.
However, when trinucleotides with a total mutation number exceeding 500 are considered,
the position with the highest mutation becomes position 11,083 with U(G > U)U mutations,
composing 16.5% of total mutations of UGU. In conclusion, the mutation profile is not
dominated by the switching positions; a position bias on mutation distribution is only
observable when the total number of mutations of a trinucleotide is low. Several mutations
labeled as impactful on signatures (Figure 2B) have been investigated for their possible
effect on the severity and transmissibility of the virus by various studies. The highest
mutational position, 11,083, has been associated with the severity of the virus [29]. Together
with 11,083, mutations at 23,403, 21,575, 28,881, and 28,883 positions [30–33] have been
associated with significant indication towards selection. In particular, the D614G mutation
on Spike protein is associated with the fitness of the virus by both computational and
clinical studies [32–34].
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Figure 2. Mutation profile of SARS-CoV-2 genomes. Mutation counts are normalized by the trinucleotide content for each
trinucleotide generated from 33,540 (representative sequences and nodes) sequences (A). From unstable positions where
more than 8 mutations of the same type at the same position, highly occurred mutations are retrieved. The occurrences of
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position (C). Mutations which have a significant contribution to their signature visualized in part B are marked according
to the mutation count they represent at the position. Marked mutations are colored and reshaped with respect to their
mutation type and impact range on their signatures.

3.2. Codon Usage of SARS-CoV-2 Differentiates in Favor of A and U Containing Codons

We investigated the impact of a potential contribution of codon bias selection on the
mutation profile. First, we counted all the formed and altered codons, which we referred
to as “form” and “deform”, respectively. We calculated the relative difference between
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form and deform values for each codon to test potential convergence of virus genome to
host codon usage through mutations (Figure 3A). While UUU, AUA, AUU, and UAU are
the intensively formed codons, CCA, UGG, GCU, and ACA are the most diminished ones.
These results indicate a dominant forming of A and U containing trinucleotides, whereas
G and C containing trinucleotides tend to reduce in number. In addition, all the codons
that are translated into alanine (A) and proline (P) tend to diminish, resulting in lower
translation of these amino acids in viral proteins. Considering that all the codons of A and
P contain GC and CC in the first and second position, respectively, the reduction in these
amino acids is probably related to selection against G and C presence (Figure 3A).

Human coronaviruses are known to have low GC content (GC%), and SARS-CoV-2
is not an exception with ~38 GC% [35,36]. Moreover, it was suggested that the reduction
in GC% is an adaptation strategy of SARS-CoV-2, particularly towards the codon usage
of the genes expressed in the human lung [37]. To determine whether the mutations of
SARS-CoV-2 is an adaptation strategy to increase its viability inside the host or just the
byproduct of host immune response to the viral RNA, we obtained the human codon usage
values [16] and calculated the codon usage of SARS-CoV-2 (see methods). We calculated
the relative ratio of these values and grouped codons that are translating the same amino
acid (Figure 3B). If the viral genome is to adapt to the host genome, one can hypothesize
that the codons that are used dominantly in the host relative to the virus should be formed
in the viral genome to increase the similarity, while the percentage of codons that are used
dominantly in the virus should decrease. GCU, GAA, GGU, and CGU codons that are
used relatively high in SARS-CoV-2, have the tendency to deform, in agreement with the
hypothesis. However, UGU, AUA, UUA, and GUU codons that are also used relatively
high in SARS-CoV-2 have the tendency to be formed. A similar contradiction is also
observed in the codons that are highly used in the human genome. In general, adaptation
to the host codon usage does not explain the formation tendency of the codons. The main
driver of the formation tendency is likely to be selection pressure against GC%, and thus,
A and U increase.
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3.3. CG Nucleotide Deforms, While UU Nucleotide Forms

After observing excessive mutations in trinucleotides that contain CG at their second
and third positions, and higher deformation in G and C containing codons, we examined
the deformation (Figure 4A) and formation (Figure 4B) of dinucleotides. Because defor-
mation of a dinucleotide is dependent on its occurrence in the genome, we normalized
the deformed value of each dinucleotide with respect to its occurrence in the reference
genome. As suggested by others [36,38], CG dinucleotide is the most deformed among
all (Figure 4A). Xia et al. attributed the reduction in CG dinucleotide to a protein called
zinc finger antiviral protein (ZAP), which binds and mediates the degradation of the viral
genome [36]. This study indicates that SARS-CoV-2 is the most CG deficient betacoron-
avirus [36]. Thus, high CG deformation might be an adaptation of SARS-CoV-2 to escape
ZAP under high purifying selection. In addition, UU dinucleotide is formed more than all
other dinucleotides. In general, A and U containing dinucleotides are formed, meanwhile
C and G containing dinucleotides are deformed.
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Figure 4. Comparison of dinucleotide formations and deformations retrieved from phylogenetic
trees. Deformation ratio of dinucleotides is represented as the ratio of deformation count in the tree
over dinucleotide’s abundance in the reference genome (A). As a result of the mutations, the relative
dinucleotides are formed (B).

4. Discussion

The COVID-19 pandemic has been spreading aggressively, killing thousands of people
and affecting the daily lives of many more. Moreover, the evolutionary behavior of SARS-
CoV-2 might potentially weaken the efficiency of the current treatments and vaccines. Here,
we performed a phylogenetic tree-based mutational analysis to assess the contribution of
mutagenesis and selection mechanism to SARS-CoV-2 mutation profiles.

The mutation profile of SARS-CoV-2 revealed that C > U, G > U, U > C, and A > G
are the predominant substitutions. Based on these mutational patterns, we compiled some
potential mechanisms that might be influencing the SARS-CoV-2 viral genome (Figure 5),
which are namely APOBEC, ADAR, and ZAP. These mechanisms were linked to SARS-
CoV-2 mutagenesis in previous studies as well [22,36,39,40]. In addition, we suspect that
ROS might be a driver of G > U substitutions, however, more studies should be conducted
to link ROS to SARS-CoV-2.
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Figure 5. Mechanisms that can alter the sequence context of SARS-CoV-2. (i) APOBEC-caused
mutations correlated with the enzyme signature dominantly on the plus RNA strand; (ii) ADAR-
caused mutations equivalently affecting both RNA strands due to its mechanism of action; (iii) drop
of CG dinucleotide targeted by ZAP through selection; (iv) ROS effect shown on the plus RNA strand.

Another aim of this study was to examine the main driver of the mutational patterns
of SARS-CoV-2; whether the viral genome is inclined to converge into the host genome or
the mechanisms we have discussed are the only contributors to the mutational patterns.
Analyses on formed and deformed codons exhibit an increase of A and U and a decrease
of G and C containing codons. Furthermore, the comparison between human and SARS-
CoV-2 codon usage does not reveal a strong correlation between codon usage percentages
and SARS-CoV-2 formation tendency. These results combined suggest that SARS-CoV-2
genome diverges through RNA editing mechanisms of the host, independently of any
adaptive mechanism to increase its genomic similarity to the host genome, which was
suggested in another study as well [37]. Then, we examined the formation tendency of
dinucleotides. In general, we observed a decrease of G and C, and an increase of A and U
containing dinucleotides. Strikingly, the deform rate of CG dinucleotides and formation
of UU dinucleotides are extremely high. This phenomenon, which was observed in most
human viruses [41], was previously associated with the reduction of the hydrogen bonds
between strands to achieve more efficient gene expression [38].

In conclusion, the mutational profile we generated supported the potential biolog-
ical mechanisms contributing to the genome diversity of SARS-CoV-2 genomes. Strand
asymmetry of some mutation signatures suggested the mechanism acting on the plus
RNA strand only. Strand-wise equivalent mutation signature attributed to ADAR is in
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agreement with its mechanism of action where RNA is affected in the double-strand form.
Antiviral responses and selection cannot be distinguished from each other. Host responses
against the virus cause mutations in one hand, and the reduced targets in the virus genome
make it less susceptible to the same antiviral attacks. Although we don’t suggest a direct
antiviral mechanism to reduce CG content, the reduced CG content can be explained by
an adaptation to the host antiviral mechanism by ZAP. So far, the virus has been affected
by the host antiviral mechanisms. Although there are several Spike protein amino acid
substitutions that are likely to provide a selection advantage [8,42], selection hasn’t been
the major driving force of the genome-wide mutagenesis until the date of data collection.
In the coming months, with a wide administration of the vaccines, it might be possible to
see the effect of the vaccination and selection pressure by observing amino acid changes
providing an advantage in escaping from immunized hosts.
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