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Abstract: The advent of the miniaturization approach has influenced the research trends in almost all
disciplines. Bioengineering is one of the fields benefiting from the new possibilities of microfabrication
techniques, especially in cell and tissue culture, disease modeling, and drug discovery. The limitations
of existing 2D cell culture techniques, the high time and cost requirements, and the considerable
failure rates have led to the idea of 3D cell culture environments capable of providing physiologically
relevant tissue functions in vitro. Organ-on-chips are microfluidic devices used in this context as a
potential alternative to in vivo animal testing to reduce the cost and time required for drug evaluation.
This emerging technology contributes significantly to the development of various research areas,
including, but not limited to, tissue engineering and drug discovery. However, it also brings
many challenges. Further development of the technology requires interdisciplinary studies as some
problems are associated with the materials and their manufacturing techniques. Therefore, in this
paper, organ-on-chip technologies are presented, focusing on the design and fabrication requirements.
Then, state-of-the-art materials and microfabrication techniques are described in detail to show their
advantages and also their limitations. A comparison and identification of gaps for current use and
further studies are therefore the subject of the final discussion.

Keywords: organ-on-chips; microfabrication; microfluidics; 3D organ models

1. Introduction

Tracing the history of in vitro research back to its beginnings in the early twentieth
century, it was started by Ross G. Harrison when he worked on living nerve fibers [1].
Thereafter, numerous valuable attempts were made to develop techniques to grow cells
and observe their differentiation outside of a living organism [2]. Since the 1930s and the
discovery of collagen as a component of connective tissue, a number of experiments have
made scientific breakthroughs by creating environments for cell growth. This has been
accompanied by other interdisciplinary research, including biomechanics and mechatronics,
to develop the technology [3,4]. The latest approaches are divided into 2D and 3D culture
techniques (Figure 1). In 2D cultures, cells are grown as monolayers on flat surfaces, which
are usually glass/polystyrene petri dishes [5]. As there is no mechanical support for the
cells other than the flat plate, the shape is not controlled. To improve the shape factors
that affect biofunction in vivo, microstructured substrates, such as cell adhesive islands
and micro pillars, have been introduced [6]. This shape enhancement helps improve cell
function in vitro, which has led researchers to incorporate more advanced environments
into cell culture systems to create 3D models and develop techniques, such as sandwich
culturing, microstructuring, and substrate stiffness modification [7]. Unlike 2D culture
environments, 3D culture allows cells to grow and interact in all dimensions. Scaffold and
free-scaffold approaches to control shape are presented [8]. Although 2D cultures allow low-
cost assays, they cannot fully recapitulate the overall structure and physiological functions.
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Several reasons have been suggested for this failure, notably the uncontrolled access to
oxygen and other ingredients in monolayer cultures and the lack of cell–cell and cell–matrix
interactions [9]. There has been a significant incentive to move from semi-controlled flat
environments to controlled 3D forms to fully ensure in vivo physiological properties.

Figure 1. In vitro studying technologies.

The “spheroid culture” (Spheroid culture: Multicellular, spherical structures composed
of aggregated cells that do not adhere to a substrate but adhere to each other [10]) system
is one of the first 3D methods used for studying tumor models, biology, tissue engineering,
and transplantation therapies [11–13]. There are several techniques for this culturing
system, such as hanging drops, pellet culture, and magnetic levitation [14]. Despite the
good agreement in capturing cell interactions and the physiochemical environment, there
are still some drawbacks related to the dependence on the size of the spheroids [15].

Further attempts to find alternative 3D culturing methods that better represent in vivo
physiology led to “organoids” (Organoids: A self-organizing 3D cell structure that repre-
sents an organ with in vivo-like functions and physiology [16]). To allow easy comparison
with spheroids, organoids produce more complex tissues and facilitate the study of tissue-
specific functions. They are widely used for various applications, such as disease pathology,
drug toxicity, and personalized treatment. On the other hand, the variability and the lack
of a uniform protocol for the use of organoids remain one of the challenges of this ap-
proach [17,18]. In addition, organoids are not suitable for the study of stromal, vascular,
neural, and immune cells because it is not possible to apply mechanobiological stimuli,
such as the flow and the “shear stress” (Shear stress: The ratio of the tangential force to
the surface area in a channel which is related to the velocity gradient and the viscosity of
the fluid [19]), as well as the cyclic strain [20]. Furthermore, it is impossible to model and
study the vasculature and apply various shear stresses [21].

With the advent and development of tissue engineering, another approach became
interesting, namely the use of “printed tissues” (Printed tissues: Accurate 3D printed
tissues/organs through controlled localization of cells and materials [22]). The layer-
by-layer deposition of 3D scaffolds with high accuracy at the microscale improves cell
response and provides a multifunctional environment for highly efficient cell culturing [23].
However, there are some limitations, such as the lack of precise cell placement and the
inability to grow cells at high cell density. Although the production of a vascular network
using 3D printing techniques is challenging, emerging technologies and improvements in
research have been used to overcome these limitations [24].

Looking at the cell-culturing technologies presented and assessing the arguments for
and against, it is clear that there is a need for a more thorough technology. Microfluidics is
considered to be the complementary discipline that can make up for any shortcomings and
improve upon existing standards.

Microfluidics can be defined as the study of fluid-flow phenomena in microscale [25].
Originally introduced by the microelectronic industry, the concept was later integrated
into other fields ranging from material science to biology [26,27]. Today, more and more
applications can be found in the fields of biology, chemistry, the environment, energy,
and biomedicine [28,29]. Therefore, microfluidic devices can be considered as one of
the rapidly developing fields of science and technology and are increasingly used in
many research areas [30]. The precise functioning of microfluidic devices is a significant
driver of the observed development in recent decades, especially for the performance of
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physiologically relevant biological cultures and the development of functional organ tissues
in vitro. Recently, pharmaceutical technologies have become proponents of microfluidic
applications as microphysiological systems enable faster drug development and better
cost management, provide effective drug selection with low risk, and enable effective
drug production in human models [31]. To be precise, “Organ-on-chip” (Organ-on-a-
chip: Microfluidic devices consisting of multi channels compatible with cell culturing
which resembles the physical and physiological functions of a specific organ [32]) (OOC)
technology, which generates fully functional in vivo-like organ units in physiologically
relevant mechanobiological environments, overcomes the limited resources available for
preclinical testing for drug screening and delivery and thus reflects a great inclination
towards the use of microfluidic devices [33–36].

OOCs are biocompatible microfluidic devices based on human cells to create human-
like test systems [37]. Three-dimensional microfluidic chip models are cultured with cells
accompanied by controlled external mechanical parameters to simulate an accurate physio-
logical environment for studying the interactions between cells, tissues, and drugs. This
interdisciplinary technology not only recapitulates the basic cellular structure of organs, but
also mimics the function of a given organ in vitro [38]. OOCs are widely used to study vari-
ous organs and tissues, including lung [39–41], liver [42,43], intestine [44–46], brain [47,48],
and blood-brain barrier (BBB) [49–52], as well as multiple organs together [53,54], enabling
many major breakthroughs for the understanding of human cell biology, disease physiol-
ogy, and drug development, while providing superior alternatives to animal models that
often fail to predict clinical trial outcomes [32,55].

Beyond academia and into global health, OOC technologies provide promising results
for overcoming the shortcomings of drug development models that are highly dependent
on costs and timing. Current preclinical testing mainly uses laboratory animals and faces
two main problems; (i) the ethical prohibition and (ii) the different responses to the drugs
compared to those of human cells [56]. Many preclinical animal tests lead to failures at
the final stage of in vivo testing, resulting in a loss of resources and time [57]. Clearly,
microfluidic OOC technologies can be one of the key players in solving this problem, as
they can serve as platforms for the precise screening of drugs in in vitro models based on
human cells, leading to more effective results in both the treatment and the reduction in
side effects [58,59].

Parallel with the growing number of research ideas on integrating organ-on-chips,
there are attempts to review the existing literature from diverse perspectives in order to
assess, collect, and identify the necessary research goals that are currently lacking in the
field. Bo et al. have presented one of the earliest reviews of microfluidic chips that can
recapitulate tissue functions [60]. In this review, they discuss how microfluidic systems can
be effectively used in cell biology and present some OOC models and their future challenges.
Zhang et al. wrote a review about OOC technologies and introduced this technology, with
its future prospects, as a solution to clinical translational problems, offering an alternative
to traditional preclinical models for drug screening [61]. Eduardo et al. presented an
overview of the concepts, fabrication, and recent advances in OOCs [62]. In another study,
Wu et al. presented OOCs along with the applications to physiological models, drugs, and
toxicology studies for different organs [63]. There are some other reviews that specifically
address OOCs for drug evaluation [55], radiology [64], and toxicity [65]. However, there is
no comprehensive review that addresses the design, material, and fabrication of OOCs for
the perspective of different organs.

In this review, the design and fabrication requirements of OOCs are presented and
evaluated individually. First, the design considerations are explained in detail, including
the flow control of OOCs, the prevention of “clogging” (Clogging: Interruption of flow due
to the aggregation of particles [66]), and the monitoring of the cells inside the chips. The
fabrication material and methods were evaluated with their advantages and disadvantages.
Different types of available OOCs are then presented to give a general insight into the
concept and to assess how the combination of design, material, and fabrication affects
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their performance. Finally, a thorough discussion was held on the existing knowledge and
challenges in order to draw conclusions about the best design and fabrication methods.

2. Conceptual Design of OOC

The following provides detailed information on the design considerations for OOC
models, including their geometric design and flow control and the design considerations
for avoiding clogging in the OOC microfluidic channels, as well as the integration of
real-time monitoring systems into the OOC models.

2.1. Geometry and Dimensions

There are various chip designs for the study of organs, which differ in size, diameter,
number of channels, shape of channels, and other geometrical features. Hence, the design
is organ-oriented, and the corresponding features are specified accordingly [67]. Although
there is no uniform geometry for all OOC models, OOCs can typically be classified based
on the number of their compartments/channels numbers and the organization of these
channels: (i) single-channel chips, (ii) double-channel chips, which include parallel designs
and sandwich designs, and (iii) multichannel chips, as shown in Figure 2.

Figure 2. Schematic of an organ-on-chip with one, two, and multi channels. Usually there are three
different layers of an OOC: bottom channel, porous membrane, and top channel.
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Double-channel OOC designs are among the most commonly used designs, in which
a centimeter-sized chip OOC consisting of two separate channels connected by a porous
membrane or compartmentalization can be achieved by hydrogels to study the interphase
between different cells in the same tissue [68]. Often, in the design of the OOCs, one
compartment was used to mimic the blood vessels and the other compartment(s) for the
actual tissue cells [69]. Blood-brain barrier, intestine, and lung are some of the organs that
can be mimicked with this type of chip [49,50,63]. There are two inlets and outlets on the
chip to control the entry and exit of the working fluid and also the introduction of the
biological materials, such as basal laminal proteins, cells, and therapeutic drugs into the
system [70].

Porous membranes are usually polymeric, flat microstructures used to recapitulate
the permeability between two environments in order to have cell adhesion and separation
as well as make communication in between the two compartments. There are some con-
siderations for membrane properties, including stiffness (to follow morphology), porosity,
hydrophilicity, and surface roughness [71].

The shapes of channels vary extensively and include circular and rectangular types [72].
The size is commonly in microscale and must be consistent with the research objective [33].
In the study of microvasculature, the size varies from millimeters to submicrometers
(Figure 3). The dimensions are also related to the working fluid and clogging problems,
which will also be discussed below.

Figure 3. Blood vessel dimensions [73]; approaching real-size OOCs with dimensions less than 20 µm is demanding and
impossible without considering other properties as well as flexibility.

2.2. Flow Control in OOCs

The control of flow in OOCs is essential to obtaining accurate results. The flow
rate affects stresses (shear), polarity, concentration gradients (oxygen and nutrients), and
many other dominant parameters [74]. There are two types of flow in a functioning OOC:
(i) steady and (ii) pulsatile. The flow is laminar (low Reynolds values) and the value of
the flow rate changes depending on the research objective (2 nL/min–5 mL/min) [75].
For instance, the studies conducted on lung-on-chips show the flow rate of 60 µL/h
(vasculature side), which resulted in a shear stress of 0.00017 Pa [76,77]. Table 1 shows
the flow rates in different experiments conducted on OOCs. Furthermore, for rectangular
microchannels working with laminar Newtonian fluids under steady condition, shear
stress can be calculated as per the following equation:

τ =
6µQ
wh2 (1)
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where µ is fluid dynamic viscosity (Pa·s), Q is the volumetric flow rate (m3/s), w is the
width of the channel (m) which is the surface interacting with the cultured cells, and h is
the height of the microchannel (m).

Table 1. Applied flow rates in different OOCs.

Studied Organ Flow Rate Refs.

Blood-Brain Barrier

100 µL/h [49]

10 µL/min [78]

16 µL/min [79]

2.5 mL/h [80]

Lung 30 µL/h [81]

60 µL/h [82,83]

Gut
30 µL/h [84,85]

60 µL/h [44]

Heart 40 µL/h [86]

Flow in OOCs is controlled by several approaches, including pressure-driven, elec-
troosmotic (electrokinetic flow), surface tension, shear flow, gravity, buoyancy, squeeze film,
laser-induced, and biological flow (Table 2). Pressure-controlled flow and electroosmotic
flow are the most commonly used in practice [87]. While syringe pumps remain one of the
most common devices for controlling flow by pressure, there are other mechanical pumps
used to precisely control flow in the microfluidic channels of OOCs, including reciprocating
and peristaltic pumps [88].

Table 2. Different types of micropumps.

Ref. Type Available Flow Rate Range (mL/min)

[89] Peristaltic micropump 1.66 × 10−4–3600
[90] Syringe pumps 1 × 10−6–0.127
[91] Electrokinetic pump 1.8 × 10−3–0.01
[92] Capillary pump 5.05 × 10−4–210

Microvalves are another important component in maintaining the flow in an OOC.
They provide control in multiple unit operation as well as fluid transport, mixing, and
separation. Various materials (metals and silicon-based compositions) are used to fab-
ricate them [93]. There are many mechanisms to design a microvalve, including the
capillary, check, siphon, and hydrophobic valves, which are categorized as passive ap-
proaches [94,95]. Additionally, different types of the active microvalves are applicable,
including the pneumatic, piezoelectric, electrostatic, and others [96]. Recent experiments
have led to novel methods such as optically controlled valves [97] and the use of digital
and automated systems [98].

2.3. Clog Avoidance in OOCs

The concurrence of working with micro scales and soft materials presents an obstacle
called clogging. Clogging is defined as the interruption of flow due to the aggregation of
particles [99]. Although the definition may convey a negative situation, it can be beneficial
in some cases, such as in the amplification of porous substrates or in the detection of
biological cells [100,101]. However, in general, clogging the flow in OOC culturing systems
needs to be solved with various troubleshooting approaches as it usually interrupts the cell
growth and negatively effects the functionality of the organ chip model.

In general, there are three mechanisms for clogging in a microchannel: (i) sieving,
(ii) bridging, and (iii) aggregation (Figure 4). Sieving occurs when the size of the particles
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is larger than the dimensions of the channel, although there are exceptions in soft materials
such as cells [102]. In contrast to sieving, particles in bridging clogging are smaller than the
channel and form an arch-shape along the width of the channel due to the steric effects [103].
Clogging by aggregation results from a continuous deposition of particles. The aggregated
layer grows as a result of competition between hydrodynamic, diffusive, and colloidal
effects [104,105].

Figure 4. Clogging mechanisms: (A) sieving, (B) bridging, and (C) aggregation.

There are experimental and computational approaches to preventing clogging in
microfluidic channels for both single-pored and porous materials [106]. Many parameters
must be considered when investigating clogging phenomena, including the pressure and
forces between the particles themselves and between the particles and the walls of the
microchannels [99]. Microfiltration is a common approach to addressing particle clogging,
but in the case of the OOCs that require a long operating time, it is not a suitable solution
because it leads to filter malfunction after a certain time [107]. To avoid this drawback,
which is significant in long-term culture studies, in some cases, a bidirectional micropump
is used to wash the filters (porous membranes) to extend the operating time [108]. In
addition, in many cases, bubbles are the main reason for clogging; so, the flow dynamics in
the microchannels needs to be studied to avoid the bubble formation [109]. Maintaining
the right pressure and temperature and controlling roughness, as well as using the bubble
traps, are the available methods to reduce and/or remove the bubbles in the organ chip
devices [110].

2.4. Monitoring and Detection

When designing a microfluidic device that mimics the flow and the microphysiological
conditions of a desired organ, the packaging and fabrication method must also be con-
sidered carefully [111]. Packaging consists of the measurement/detection and protection
considerations necessary to conduct the particular research. For example, the validation of
a chip after fabrication and the checking for leaks and other malfunctions are conducted
through benchmarking data that must be recorded during testing. In addition, a validated
chip requires tools to measure and monitor the intended parameters during the experimen-
tal process and for the final reporting of the results. Therefore, detection tools are inevitable
components of OOCs, which also need to be protected because they are very sensitive.
This protection can be achieved if the sensors are part of the chip (integrated) or externally
mounted (in the packaging) [112].

The parameters being studied in an OOC experiment can be sensed in various ways,
including mechanically, thermally, chemically, and magnetically. Sensors are detecting
tools which transduce these stimulations to electrical and sometimes optical signals that
can be read and measured [113]. Basically, there are two branches of sensors that can be
incorporated with the OOC systems: (i) physical sensors for monitoring variables, such as
pressure, force, and flow rate and (ii) chemical/biological sensors for measuring variables,
such as concentration, pH, and protein interactions [114]. The sensors available in OOCs
are employed to monitor culture environment, cell behavior, stimulations, mechanical
stimulations, chemical gradients, electrical stimulations, hydrogen-peroxide, glucose, and
lactate and a myriad of other types [115–118].

Not all conventional sensing mechanisms are suitable for use in OOCs as many of the
low-volume devices are required for online monitoring. This has been explored in the rele-
vant literature, particularly for pH and O2 sensors, which are critical for studies of cellular
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metabolisms [119,120]. An electro-optical sensor system has been introduced as a low-cost
module in microfluidic devices [121]. This compact system controls optical transducers
and signal acquisition from photodiodes (light intensity). Other approaches also exist, and
attempts have been made to improve the sensing systems in OOCs significantly, such as
with the measurements of pH and O2 values with ruthenium oxide (RuOx) electrodes, the
outputs of which were promising [122].

Trans-epithelial electrical resistance (“TEER” (TEER: transendothelial/epithelial elec-
trical resistance which demonstrates the permeability of the cellular barriers [123])) mea-
surements are one of the most commonly incorporated sensing systems with OOC de-
vices [124]. TEER impedance sensors are usually transparent electrodes patterned by
microfabrication techniques and embedded in chips [125]. They operate by applying a con-
tinuous current through transcellular (resistance through the apical and basolateral plasma
membrane) and paracellular (resistance through the cell substrate) pathways and analyzing
the electrical impedances. TEER values demonstrate the high expression of “tight junction”
(Tight Junction: the areas where the membranes of the cells are in contact together and have
features such as impermeability to form functional barriers [126]) and adherence junction”
(Adherence junction: complex proteins forming a cell–cell and cell–matrix junction that is
more basal than tight junctions [127]) proteins of epithelial/endothelial cells [128,129].

OOCs also require an accurate record of the assay procedure, which includes biological
properties (protein and concentration gradients) and morphological parameters (barriers
and interaction) as well as physical parameters (O2 and osmolarity), which it is possible to
monitor not only by incorporating the sensing systems in the chip devices but also by using
fluorescence and confocal microscopy technologies for imaging the chips when transparent
chip materials are used [121,130]. Therefore, selecting an optically clear material for
designing the OOC devices is a must to improve the monitoring capability of the chips.

3. Fabrication Materials

Choosing a suitable material is an important parameter for an efficient OOC. It effects
many aspects, including the performance, the monitoring, and even the results of the
experiments studied on the chips. In this context, there are some important considerations
for choosing materials for the fabrication of the chips, such as optical transparency (imaging
capability), gas permeability, non-toxicity to cells, cost, and the manufacturing process
(Figure 5). Below are some common materials used in practice for OOC fabrication.

Figure 5. Common materials used for OOCs. The most important features for selecting the materials
for the structure are biocompatibility, transparency, and the cost.
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3.1. Materials Used in Chip Production

To date, there are just some specific materials that can be used for the structure of
OOCs, which are discussed in the following. Mechanical properties and optical trans-
parency are important criteria for this purpose [131].

3.1.1. Polydimethylsiloxane (PDMS)

PDMS is the most common material used for the fabrication of microfluidic devices,
and OOCs in particular [132]. It is a silicon-based elastomer and has extremely advanta-
geous properties, namely economic feasibility, transparency, flexibility, oxygen permeability,
and biocompatibility. It also shows good compliance with various microfabrication tech-
niques, such as soft lithography or molding [133]. On the other hand, there are some
properties that limit the use of PDMS and motivate the search for alternatives. The absorp-
tion of hydrophobic molecules is a drawback that negatively affects the results of toxicity,
efficacy, and also PK/PD (pharmacokinetics/pharmacodynamics) predictions [134]. It is
also fluorescent to some degree (with a refractive index of 1.41 to 1.428 in the wavelength
range of 403–633 nm [135]) and unsuitable for working with organic solvents [136]. There
are increasing attempts to improve the properties of PDMS-made chips by surface modifica-
tions using plasma treatment, UV treatment, and coating [137]. There are various coatings
that can reduce the surface energy of PDMS; those include some metals/metal oxides
(such as titanium oxide and gold) [138] or sol-gel coating [139] and surface silanization
techniques (creation of Si-O-Si bonds by amine, carboxyl, thiol, etc.) [140].

3.1.2. Glass

One of the oldest materials in the development of microfluidic devices is glass. In
general, there are three types of glass used in this field: (i) soda lime, (ii) quartz, and
(iii) borosilicate. They are a mixture of silicon dioxide (SiO2), the base material of glass,
with other oxides, such as CaO and MgO [141]. Many advantages have been reported
on the use of glass in microfabrication, and OOCs in particular, such as transparency,
resistance to mechanical stress, hydrophilicity, and biocompatibility. In addition, glass has
been reported to have lower drug absorptivity compared to PDMS [142]. On the other hand,
one major problem that can lead to channel plugging is the low gas permeability of glass.
Therefore, special care must be taken in the design and fabrication, e.g., by the use of bubble
traps/removers [143]. Nevertheless, the low-gas permeability feature of the glass can be
advantageous in anaerobic studies [144]. Moreover, many microfabrication techniques
are applicable to glass, including photolithography, wet etching, and laser cutting [145].
The main reason for preferring polymeric materials (PDMS) over glass is the high cost
of fabrication as, unlike polymers, it cannot be easily molded and requires clean room
facilities for each step, which also makes the fabrication processes more time-consuming. In
addition, the techniques available (anodic or thermal bonding) for bonding the substrates
are more demanding [146]. However, there are certain topics for which the use of glass
microfluidics is highly recommended, such as the prediction of PK and PD for drug testing
and cell-based assays as PDMS absorbs small hydrophobic molecules [147]. Moreover, for
the chips in which the integration of electrodes is needed, glass would generally be a better
option as polymers (e.g., PDMS) have low stiffness, or a scaffold is required [148].

3.1.3. Thermoplastics

Recently, thermoplastics have been increasingly proposed for the fabrication of mi-
crofluidic devices due to the limitations of PDMS and glass-based chips in terms of surface
treatment instability, processing techniques, and the absorption of molecules (PDMS) [149].
There are interesting properties that make thermoplastic polymers attractive for OOCs,
including low cost, low density, biocompatibility, and easy fabrication [150]. As they have
linear and branched molecules, they are more resistant to pressure and temperature fluctu-
ations, which also makes them chemically stable and suitable for biomedical/biochemical
studies [151]. Therefore, microfluidic devices based on polymers such as polymethyl
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methacrylate (PMMA) or copolymers (COC) have been developed and new microfabri-
cation techniques, such as injection molding, casting, and laser cutting have been intro-
duced [152]. On the other hand, there are some limitations in the use of thermoplastic
polymers: (i) not all manufactured polymers are transparent (e.g., polyether ether ketone
(PEEK) and polypropylene (PP)), which makes microscopic observation or imaging im-
possible [153,154]; (ii) some have strong autofluorescence properties and are not suitable
for detection purposes [155]; (iii) they have poor gas permeability, which has a negative
impact on long-term cell culture (such as OOCs) [156]. For example, Trinh et al. designed
and fabricated a lab-on-chip for human cell cultures (Mesenchymal Stem Cells (MSCs))
using PMMA, which has the advantage that it can be bonded quickly with acetic acid
followed by UV treatment and low pressure, which is suitable for protecting the metal
films (electrodes) in chips [157]. This ease of bonding also makes it preferable to PDMS for
integrating hydrogels such as 3D ECM gel to maintain organ permeability [158].

3.2. Other Materials Used in OOC Technology

There are several other materials in the literature that are used in the process or within
OOCs. We present here only the most important ones that are most widely used in the
OOC designs.

3.2.1. Hydrogels

Hydrogels are another new material in the field of OOCs [159]. They are mainly used
as bio-scaffolds for cell culturing which is close to the extracellular matrix (ECM) [160]. In
2011, Sung et al. used the first 3D hydrogel scaffold to study the gastrointestinal tract [161].
These are compact hydrophilic polymer chains that are constructed like a network and
connected with a high volume of water to form a gel [162]. They were originally used for
tissue engineering; they were then applied in other fields such as the food industry and
pharmaceutical biosensors [160,163]. These 3D polymers are able to absorb a high level
of water while being insoluble. Basically, there are two types of hydrogels: natural (e.g.,
gelatin, silk, collagen) and synthetic (e.g., PVA (polyvinyl alcohol), PEG (polyethylene
glycol)) [164]. Natural hydrogels have advantageous properties, such as biocompatibility,
biodegradability, and low cytotoxicity, but they lack controllable mechanical properties,
which is why they are often combined with synthetic hydrogels [165]. Recently, hydrogels
have become more attractive because of their high permeability and biocompatibility. In
addition, the mechanical properties are very similar to some tissue components (such
as the extracellular matrix) and are suitable for long-term studies because they protect
biological entities. Various microfabrication techniques can be chosen for hydrogel-based
devices, including lithography, 3D printing, and molding [159]. Despite their attractive
properties, hydrogels are not widely used in microfluidic devices and especially OOCs
because their low stiffness is a major problem in microfabrication processes and also
limits their long-term use in research [166]. Nevertheless, there are some examples in
the literature of the use of hydrogels in OOCs. Sung et al. used collagen to model a 3D
intestine with the real size and density of human intestinal villi [161]. They combined laser
ablation and molding techniques (sacrificial methods) to produce microstructure collagen.
They claim that their method can be further developed for other in vitro organ models to
recapitulate realistic geometries. Skin is another organ that researchers are interested in
modeling with hydrogels due to their similar mechanical behavior [167,168]. Additionally,
to study the liver, Tsang et al. used PEG hydrogel to model hepatic tissues [169]. PEG can
be modified in its mechanical properties and is therefore also suitable for studying the
microvasculature [170].

3.2.2. Silicon

One of the oldest and most common materials, used since time immemorial in the
development of Micro-Electromechanical Systems (MEMS) and later in the microfluidic
devices (lab-on-chip), is silicon [171]. It is used in this technology both as a substrate and
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in the process of microfabrication (sacrificial layers) in various forms as well as single-
crystal silicon (SCS), polycrystalline silicon, silicon dioxide, and silicon nitride. It is also
widely used in sensors and actuators (especially SCS) [172]. Silicon is well suited for
different microfabrication processes, such as etching (wet etching or plasma etching), laser
processing, and various bonding methods because it has favorable mechanical properties,
and the result is comparatively inexpensive [173].

3.2.3. Metals

Another group of materials that is integrated into OOCs consists of metals. As
explained in section two, some parameters need to be measured and monitored in OOC
experiments. There are some well-designed OOCs that are able to provide real-time data
thanks to the sensor systems integrated into their design. Often these sensor systems
consist of the metal deposition/integration of metals such as gold and titanium [124]. For
example, Henry et al. have developed an OOC with gold electrodes integrated on the
substrate (using metal deposition) to measure TEER. The TEER chip has been used for both
lung and gut and allows real-time measurements without disrupting the experiment [174].
Titanium is also used to integrate a strain gauge sensor in a heart-on-chip [175].

3.2.4. Membranes

As OOCs recapitulate the cellular interactions in between different compartmental
units of the tissue, a boundary is required to separate the cells. This separation is usually
achieved by using a porous membrane. This synthetic, permeable, porous membrane
helps connect different cells in the tissue and allows material transfer within the compart-
ments of the chips [176]. There are some important properties that need to be considered
when designing and fabricating these membranes for integration into OOCs, such as the
elasticity (flexibility), transparency, biocompatibility, and cytocompatibility [177]. PDMS,
poly(carbonate) (PC), and poly(ethylene terephthalate) (PET) are the most common ma-
terials in this regard [178]. Additionally, when designing OOCs, the membrane must
be selected in coordination with the substrate materials as there are considerations and
protocols for bonding different materials such as PDMS-PET and PDMS-PC [179–181].

4. Fabrication Methods

Microfabrication is the art of miniaturizing devices, which is completely different
from conventional machining and manufacturing. Various techniques are used to add or
remove materials, pattern the substrate to create the desired geometry, and perform other
modification steps. In this section, the common approaches for microfabrication of OOCs
are presented. In general, there are two approaches for fabrication of OOCs: (i) bottom-up
and (ii) top-down. In the bottom-up methods, the microstructures need to be considered
and the cells are seeded into a microenvironment (usually hydrogels) to develop their
vascular networks [182]. In the top-down approaches, the microstructure (microvessels) is
created and then the cells are seeded. Sometimes a hybrid approach is taken that includes
both the bottom-up and the top-down approaches [183]. Below are the techniques used to
create the desired microstructures in the device or substrate.

4.1. Soft Lithography

Soft lithography is a technique that basically goes back to the well-known method
of photolithography, and is applied to a wider range of materials, especially elastomers
(such as PDMS) (Figure 6) [184]. The method was offered due to certain limitations of
photolithography that were encountered when working with biological systems. The
relatively high cost (both for the process and for facilities such as clean rooms), the incom-
patibility with curved substrates and the lack of surface control are cited as the limitations
of photolithography [185]. There is no clear-cut approach to soft lithography, and many
methods have been introduced for patterning mechanically soft materials, such as replica
molding [185], solvent-assisted micromolding [186], capillary molding [187], phase-shifting
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edge lithography [188], microcontact printing [189], and micro-transfer molding [190]. Fast
prototyping and low cost are the two key advantages of the method, although it is depen-
dent on other lithographic processes such as photolithography to produce the “master”
(Master: the main pattern of which is going to be applied on the substrates [191]).

Figure 6. Soft lithography steps for “negative photoresist”: (A) photoresist coating, (B) exposure to UV
light through photomask, (C) applying developer, (D) PDMS molding, and (E) bonding.

There are many cases where soft lithography has been employed to fabricate a chip
for recapitulating an organ, such as the kidney-on-chip [192], brain-on-chip [193], and
gut-and-liver-on-chip [194].

4.2. Hot Embossing

It is known as a very suitable and flexible method for the microfabrication of polymer-
based chips, such as with the most standard thermoplastic materials such as PMMA [195].
First, a master must be designed and fabricated, which is usually produced by photolithog-
raphy. Then, in the embossing machine, where the master is mounted, the process is carried
out by applying force and heating (either isothermal heating or cooling). The method
has many advantages, such as low cost and the possibility of producing a polymeric
microstructure with a high aspect ratio and micro-pin lamellae. However, to obtain a high-
quality surface, the precise control of the temperature and other influencing parameters is
required [196,197].

4.3. Injection Molding

Further attempts to the reduce microfabrication processes led to casting and, especially,
to injection molding techniques. Injection molding is also applicable for polymers [198]. The
first notable advantage is that, as with the photolithography or deposition techniques, the
cost of high-precision microfabrication is limited to the fabrication of the master. Many mi-
crodevices (e.g., sampling cells, micro-heat exchangers, and some lab-on-a-chip packages)
are mass produced using this method. The fabrication is very complex as the temperature,
pressure, and injection rate must be controlled to ensure high production quality [199,200].
Lee et al. have used an injected 3D culture scaffold to study angiogenesis by patterning
human umbilical endothelial cells (HUVEC) and lung fibroblasts (LF) [201]. They believe
the device provides high throughput for vascularized microphysiological environments.
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4.4. 3D Printing

The advent of new technologies has created high-resolution, yet low-cost, fabrication
capabilities. Three-dimensional material printing is an emerging method for manufac-
turing 3D templates, components, and devices at the microscale [202]. Interestingly, they
are also capable of printing biomedical parts and tissues using cells, matrices, and bioma-
terials [203]. Three-dimensional printing refers to a set of manufacturing techniques for
fabrication, that is, a “layer-by-layer approach” (Layer-by-Layer approach: laying materials
from the bottom layers to the top in additive manufacturing [204]). Known techniques
include stereolithography, multi-jet modeling, and focused-deposition modeling [205]. It
can also be a combination of additive and subtractive manufacturing. In microfabrication,
rapid prototyping is a major advantage of this approach as it can replace the master molds
made by photolithography and also allows direct fabrication of various other microstruc-
tures [206]. In the bioprinting of artificial living organs, there are usually six steps, including
imaging, design, material selection, cell selection, bioprinting, and application [207]. The
advantages of 3D printing include the precise control and application of the desired cell
arrangement. However, there are still limitations in the smallest dimensions that can be
achieved (now about a 350 micron channel), and it is also not compatible with all mate-
rials [208]. Nonetheless, the use of 3D printing technologies for the fabrication of OOC
devices is increasing. For example, Chang et al. modeled a 3D liver by biofabrication
for drug testing [209]. They used a PDMS platform fabricated by soft lithography and
Hep G2 cells for 3D bioprinting. Additionally, Johnson et al. studied the pseudorabies
virus in the nervous system using an organ-level bioprinting platform fabricated by 3D
extrusion printing technology [210]. Varone et al. used a 3D printed mold to develop a
new design called the open-top spiral chip. The design consists of microchannels and a
hydrogel chamber that gives the chip flexibility [211].

5. Creative Methods

Apart from the usual microfabrication methods that require high-technology facili-
ties, there are many innovative and low-cost approaches that have been introduced for
microfabrication, and many studies have also been carried out with them. The main idea
is to make the OOC studies accessible to all laboratories as the OOC is a superior alterna-
tive to the usual cell culture systems. However, their fabrication methods today require
expensive facilities and clean rooms (Figure 7). Therefore, to compete the available tech-
nologies, novel and easy-to-implement methods are being tested that have many positive
aspects, such as that of attracting more researchers to the field and reducing costs. To
investigate the BBB-on-chip, Sooriyaarachchi proposed a method in which microfluidic
devices are fabricated by polycaprolactone-coated sugar microfibers. After dissolving the
sugar, the channel remains in the substrate [212]. Additionally, Winkler et al. investigated
the feasibility of a tape-based barrier-on-a-chip for small intestine modeling [134]. They
presented two adhesive tapes and two fabrication methods with biocompatibility. They
concluded that double-sided pressure-sensitive adhesive tapes are both functionally and
economically feasible. Moreover, Salman et al. used an acupuncture needle to fabricate
an artificial microvessel as a scaffold for a collagen matrix injection [213]. On the other
hand, there are some problems that are cited as disadvantages of the approach, such as
the large uncertainty in geometry and the limited number of materials that can be used
(Table 3) [214].
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Figure 7. OOC microfabrication methods, including rapid prototyping (3D printing) and batch
production (injection molding) methods.

Table 3. Comparison of different microfabrication techniques [116,117].
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3D printing Additive, Removal, and Patterning
Soft lithography One step patterning and removal and molding
Hot Embossing One step patterning and removal and molding

Injection molding One step patterning and removal and molding
Miscellaneous —

Positive; Moderate; Negative.

6. Applications of OOCs

Microphysiological systems were invented to create accurate physiological conditions
in experiments, which is of the utmost importance for human health and life. Drug devel-
opment studies play a crucial role in the health-improvement system, and pharmaceutical
research is always striving to improve drug efficacy through more accurate preclinical data
collected using in vitro and in vivo approaches [215]. The OOCs are potential alternatives
to animal models in this chain as they provide highly efficient and economically feasible
microphysiological environments for culturing cells from various organisms [216]. Drug
delivery, drug screening, disease modeling, and toxicity studies are part of the direct ap-
plication of OOCs [217,218]. In this context, various organs, ranging from lung to brain,
have been modeled and studied using OOCs. The design requirements of each model vary
according to the physiological factors and include single or multiple organs, as discussed in
the previous sections. Although it is not practical to describe and list all the OOC models in
this review, some examples of different chip designs are given when describing a particular
organ model.
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6.1. OOC Technologies

This section presents the available OOC technologies and highlights the important
features to consider in their design and fabrication. They go beyond the general specifica-
tions that are important for almost all OOC types, such as the transparency of the material
and the gas permeability.

6.1.1. Single Organ Models

Brain-on-Chip: The brain is a part of the Central Nervous System (CNS) and is
responsible for regulating the body’s activities through signals. It is a rather complex
organ that includes many cell types, such as astrocytes, pericytes, and microglia, but
most importantly, it is composed of more than 100 billion nerve cells, which are also
called neurons [219,220]. Neurons communicate with each other through synapses and
also with other cell types to transmit information and signals to organize body functions.
Occasionally, there are disruptions in the function of this system, which can occur both
naturally (aging) and randomly, by accident. Disorders of the nervous system, categorized
as Neurodegenerative Diseases (NDDs), are increasing worldwide, and the World Health
Organization (WHO) predicts a mortality rate of 12.22% in 2030 (it was 11.84% in 2015) [221].
NDDs include a number of diseases, such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), migraine, and Spinal Muscular Atrophy (SMA) [222]. Unfortunately, there are no
effective treatments for many of these diseases [223]. The development of in vitro models
is a promising approach to overcome the limited efficacy of available drugs as they provide
the opportunity to test therapeutic agents and study disease progression at the cellular
and molecular level [224]. In this context, Microphysiological Neural Systems (MPNS) are
proposed as one of the promising 3D culture techniques to overcome the limitations of
conventional 2D cultures and animal tests [225].

Recent studies show that neurons from different parts of the brain do not share
the same characteristics, including cell composition, protein, metabolism, and electrical
activity [226]. To address this, the multiregional brain-on-chip was introduced as a new
approach [227]. They cultured neurons, isolated from the prefrontal cortex, hippocampus,
and amygdala of a rat on a single chip and analyzed the cell composition, protein levels,
and electrical activities. The results showed good agreement with in vivo tests conducted
on rats [228].

Furthermore, various forms of brain disease have been recapitulated using OOC
technologies in an in vitro setting. Epilepsy is a CNS disorder related to the electrical
activity of neurons [229]. Current antiepileptic drugs are used to suppress or reduce the
intensity of the seizures, and there is no clinical therapy [230]. Epilepsy-on-chip systems,
in which tissue slices from the hippocampi of Sprague-Dawley rats are placed on metal
electrodes, provide a platform for the screening of antiepileptic drugs while measuring
neuronal signals [231]. The chip resulted in the finding of promising compounds by
providing chronic electrical and optical records. AD is another brain disease for which
different approaches are being attempted to understand the main causes. Park et al.
developed a 3D brain-on-chip with dynamic conditions and interstitial flows to recapitulate
AD conditions and perform more controlled experiments in order to understand the
disease mechanisms [232]. A controlled environment to mimic self-organized neuronal
differentiation is another issue that is being miniaturized on a chip, and the proposed
model by Kilic et al. provides a greater speed in differentiation and improves responses to
chemotactic gradients [193]. The ability to image the alive cells under flow conditions and
the ability to use electrodes to simultaneously monitor electrophysiological functions are
part of the aforementioned benefits of the OOCs and must be achieved during design and
fabrication [233].

- BBB-on-Chip: Drugs are not effective in the CNS unless they pass through the highly
selective brain microvascular endothelial cells [234]. The blood-brain barrier (BBB)
is a combination of Brain Microvascular Endothelial Cells (BMECs) in the capillaries
and the surrounding cells in the CNS, which consists of pericytes and astrocytes [235].
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Although the BBB blocks numerous drug compounds from entering the brain, it pro-
tects the CNS and brain from pathogens [236]. It is expected that BBB-on-chip models
based on human cells will be increasingly used in drug-discovery and drug-delivery
research on the brain [237–239] as the in vivo expression of many solute carriers and
efflux transporters varies widely between human and animal systems due to dif-
ferences between species [59,240]. In the development of BBB-on-chip models for
drug screening, the following aspects are crucial: (i) two compartments recapitulating
blood and brain parts separated by a porous membrane provide the possibility to
sample both brain and blood channels for permeability assays and to directly control
and manipulate both the brain and the blood compartments simultaneously [49,50];
(ii) brain endothelial cells mimicking physiological functions, forming a high barrier
integrity and expressing efflux pumps, which requires precise control of shear walls
(viscosity and flow) to maintain polarity [241]. The literature provides some good
examples of BBB-on-chip models that meet both of these criteria [49,50,242]. For
example, Park et al. used a sandwiched double channel separated with a porous
microfluidic chip to model the BBB within [49]. They used a unique, developmentally
inspired iPS differentiation protocol to obtain brain endothelial cells seeded into the
bottom channel of the chip to mimic the brain vasculature. Primary astrocytes and
pericytes were seeded in the upper channel to mimic brain parenchyma. They demon-
strated effective levels of barrier function for up to two weeks and the validation of
delivery systems that transport drugs and therapeutic antibodies through the human
BBB. Recently, Liang and Yoon used a well-based design of the BBB-on-chip with
integrated sensors for sensing TEER, which was shown to be more effective compared
to previous designs [242].

- Lung-on-Chip: The interaction between the flow of air during inhalation and exhala-
tion and the blood capillaries of the lungs is an important phenomenon to observe.
One tangible reason for its importance is pandemic diseases, such as COVID-19 and
influenza, as this is where viral or bacterial infections begin; therefore, physiologically
relevant lung models can be used to develop effective drugs and treatments to protect
the entire body [243,244]. Transparent, flexible, and low-cost OOCs are one of the
best options to perform this type of research and investigate lung issues such as
disease etiology and drug screening [40]. In most lung-on-chip designs, there are
two channels separated by a porous membrane to recapitulate the microphysiological
environment of the lung [76]. 1. Air channel: Lung epithelial cells are cultured in
air without flowing media; they are nourished via the adjacent channel. 2. Blood
channel: Lung endothelial cells are cultured here under flow conditions to recapitulate
blood capillaries. Cyclic respiratory motion is another factor that must be considered
when developing a physiologically relevant lung-on-a-chip model to recapitulate
breathing motions at an exact rhythm, rate, and magnitude, which has been shown
to have drastic effects on tissue function [34]. Vacuum chambers are the solution
presented to exert a cyclic suction when combined with an elastic material to mimic
this biomechanical motion [36]. Huang et al. presented a new design of a lung-on-chip,
integrating gelatin hydrogel into a PDMS structure that can be subjected to cyclic
stress to recapitulate the breathing motions [245]. This improves the similarity to the
real organ as the mechanical properties as well as the stiffness are close to that of the
human lung, and the results also better match the in vivo environment. In addition,
Si et al. recently investigated the use of the lung-on-chip to model viral infections and
rapidly screen therapeutic candidates [83]. They proposed a human lung bronchial
airway modeled on-chip with lung epithelial cells and pulmonary endothelium. The
chips were tested with a virus (coronavirus 2 (SARS-CoV-2)), and the best therapeutic
was introduced accordingly.

- Liver-on-Chip: Drug-induced toxicity is a critical factor in drug development models,
and the liver is the organ most vulnerable to potential hazards. Regardless of the
research conducted to treat liver disease, studying this organ reduces the number of
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drug failures. OOCs are considered the best approach for studying the liver because
animal studies are expensive, time-consuming, and in some cases inaccurate [246].
Cellular components and biomechanical factors are some of the critical parameters for
proper functioning of liver chips. There are several cell types in the liver that maintain
the physiological functions, including Kupffer, stellate, and endothelial cells; thus, co-
culturing approaches are recommended. Geometry and flow are the most important
biomechanical aspects in developing a liver-on-chip. Moreover, liver microvessels
are sinusoidal and have mainly rectangular cross-sections [247]. Therefore, when
designing vascular sinusoids, aspect ratios and velocities must be accurately calculated
to maintain a laminar flow regime (Re <1), which directly affects the compensation
of the concentration gradients [43,248]. In this regard, Deng et al. performed a study
on liver-on-chips to evaluate hepatoprotective activity [249]. They used a sinusoidal,
single microchannel (PDMS-glass) chip seeded with four different hepatic cell lines
and perfused with laminar flow. Their observations were promising as they recorded
different mechanisms of hepatoprotectants. Kim et al. also used a PDMS-glass chip
with straight microchannels and a porous membrane to study liver-on-chips in order
to study the metastasis of breast-cancer-derived extracellular vesicles to the liver [246].

- Kidney-on-Chip: The kidney is an organ that balances the body’s fluid and filters the
blood. The process of waste removal is an important feature that is closely related to
drug composition and toxicity and needs to be monitored accurately [250]. Apart from
drugs, there are other conditions that affect the filtration process such as urinary stone
disease leading to inflammation, which needs to be thoroughly investigated [251].
Nephrons are small functional units in the kidney that are responsible for purifying the
blood [252]. The kidney is composed of various parts, including the glomerulus [253],
the proximal [254], and the distal tubule [255], which have been studied individually
on a chip. A typical kidney-on-chip has two channels where the urinary lumens are
in contact with the interstitial flow. Ultra-filtering is a key consideration in the design
of the chip and is tightly controlled by the shear stresses exerted on the cells, which
are low (~0.2 dyn/cm2) compared to other organs [256].

- Gut-on-Chip: The gut is a multifunctional organ where orally ingested drugs and
nutrients are digested, transported, and absorbed. Therefore, it is an important factor
in drug efficacy which must be in concert with the barrier function that blocks certain
compounds to protect the body [257]. However, the gut is quite a complex physio-
logical environment as other microbial symbionts also work to promote intestinal
health [258]. Studying the gut is a step forward in improving the body’s immune
function, and OOCs are providing a superior alternative to other approaches such
as in vivo animal studies, which have often failed in the transition of the data to the
clinic [259]. The relevant literature distinguishes between two types of gut-on-chips:
intestine-on-chip [43,260,261] and colon-on-chip [262,263]. The most commonly used
gut-on-chip models have typically two channels connected with a porous media; one
is intestinal epithelial and the other is vascular endothelial. Accurate barrier function
should be achieved for better results in the stage of designing and fabrication. Further
cyclic strains and anaerobic environments are sometimes applied in the corresponding
research [264].

- Heart-on-Chip: Heart disease ranks first among potentially fatal diseases world-
wide [265]. For this reason, effective and inexpensive drugs for its treatment are espe-
cially important to save the lives of many people. Three-dimensional, bioengineered
OOCs of the heart are used effectively for drug testing because they can recapitulate
the physiological mechanisms and cell interactions associated with the biomechanical
factors [266]. “Cardiac motion” (Cardiac motion: the heart’s cyclic motion with a
0.6–2 Hz frequency as a result of the heart beating (40–120 beats per minute) [267]) is
due to highly polarized and contractile cells called cardiomyocytes, and their function
is directly related to flow rate, calcium ion concentration, and electrical stimuli [268].
Thus, providing cardiac physiology on a chip requires precise design to perform the
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mechanical, electrical, and chemical functions [269]. In addition, the design of cardiac
chip models must take into account the ability of the chip to perform contractility
techniques such as muscular thin films and to acquire electrophysiological and mor-
phological data [270]. For example, Liu et al. used a double-channel microfluidic
device made of PDMS to model a human heart-on-chip [86]. Their heart-on-chip was
lined with vein endothelial cells, induced pluripotent stem cells, and fibroblasts (gin-
gival fibroblasts). The model is expected to be a functional tool for pharmacological
studies and personalized medicine.

- Bone-on-Chip: Bones are living tissues that both serve as the structure of the body and
produce the major blood cells [271]. It has three main tissues (compact, cancellous,
and subchondral), in which different types of bone cells (osteoblasts, osteoclasts,
osteocytes, and hematopoietic cells) maintain bone metabolism and blood cell pro-
duction [272]. Cancellous bone tissue consists of a spongy substance called marrow,
which is responsible for blood production in the middle of the bone. Chou et al. have
introduced an in vitro model of “bone marrow” (Bone marrow: a sponge-like tissue in-
side the bone which produces diverse materials, including stem and blood cells [273])
using microfluidics to study toxicities and dysfunction caused by factors such as drugs
and radiation. Their chip consists of two channels representing the vasculature and
hematopoietic system separated by a porous membrane. They obtained promising
results for studying responses to drugs and also to radiation [274]. In another study,
Bahmaee et al. presented a new study consisting of a microfluidic device (bioreactor)
and a scaffold chamber with a hexagonal pillar pattern to study osteogenesis-on-
chip [275]. They claimed that their device is a new and effective platform for testing
bone drugs compared to the usual approaches in this field. Additionally, there are
related research trends using bone-on-chips to study bone metastasis and metastasis
colonization for the purpose of cancer treatment and prevention [276].

- Other Organs: The developing OOC models include different parts and bring revolu-
tionary breakthroughs compared to the previous trend. The skin is the first external
organ that protects the body and is very likely to be affected by chemical substances,
pollutants, and Ultraviolet Light (UV); thus, conducting research to protect, prevent,
or cure corresponding diseases is very important. Previously, optically visible skin lay-
ers were studied on chips to mimic the interactions between layers and to investigate
the biology behind them [277]. Wufuer et al. designed a three-layer chip representing
epidermal, dermal, and endothelial cells to recapitulate the dense skin barrier [278].
They were able to study the drugs and concluded that the chips were suitable for
modeling inflammatory skin diseases. In recent studies, skin-on-chip modelers have
been looking for new approaches to add hair follicles, sweat glands, and pigmentation
for more advanced research [279].

OOC technology has been used to create numerous organ models, and the number
of these models is increasing daily [280,281]. The vagina-on-chip (VOG) [282], to model
the female reproductive system, and the eye-on-chip (EOC) [283] for drug trials in eye
diseases are some of the most interesting new OOC models [284]. VOGs investigate
changes in cells due to metabolic activities and also make observations of hormonal and
chemical treatments on fertility [285]. Different types of chips have been introduced
in this regard, including the placenta-on-chip [286], the uterus-on-chip [287], and the
endometrium-on-chip [288]. Moreover, EOCs have successfully tested for mimicking
Choroidal neovascularization (CNV) which is counted as an important threat and a reason
for visual loss [284]. A recent breakthrough in this field is the cornea-on-chip with a blinking
eye for an accurate evaluation of the drugs [289]. The immune-on-chip is also a new
emerging topic in this field, on which Polini et al. presented a comprehensive review [290].
The design of a lymph node chip requires several considerations, including the provision of
a biomimetic scaffold on which the immune cells can be located, a microenvironment with
the appropriate ECM components, and dynamic flow [291]. Furthermore, lymph-node-on-
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chips have been studied by Shanti et al., who describe their design and implications for
drug discovery and delivery [292].

6.1.2. Multi Organ Models

Given the extensive interactions between organs in the body, an independent organ-
on-a-chip cannot fully recapitulate the entire complexity of an organism [293]. In recent
years, an unprecedented attempt has been made to integrate OOC technology for other
organs through the human-on-chip projects (Figure 8) [294]. Several attempts were made
to recapitulate this complexity by connecting multiple organ chip models via their vascular
channels as in the in vivo systems. In drug development studies in particular, it is especially
important to examine how the body handles the drug; thus, the duration and intensity of
the drug’s effect must be also monitored. This is known as pharmacokinetics (PK) and is
accompanied by pharmacodynamics (PD) to capture the biochemical and physiological
aspects of the drugs [295]. As human PK and PD values are difficult to predict with other
in vivo systems based on different organisms, linked microfluidic devices are proposed as
an effective alternative [296]. Novak et al. succeeded in the chronic monitoring of eight
vascularized, double-channeled OOCs comprising heart, liver, kidney, intestine, skin, BBB,
lung, and brain. It was facilitated by a liquid-handling robot to achieve an automated
culture system [297]. Choe et al. fabricated a connected gut and liver chip model (gut-liver-
on-a-chip) and studied the first-pass metabolism to improve drug efficacy [194]. Another
achievement in this field, made by Schimek et al., is that of the co-culturing of lung and
liver cells on the same chip environment, which was studied for access to inhaled toxic
substances [298]. Skardal et al. studied three different tissues on a chip, including the lung,
liver, and heart to monitor drug response [53]. Gradually, major organs and other tissues
are being incorporated into this approach. Increased accuracy of the results and predictions
of drug efficacy, as well as cost and time savings, are reported as the main incentives for
developing multi-organ-on-chip technologies [299].

Figure 8. Organ(s)-on-chip; chips recapitulating diverse organs applicable for a wide range of research, including drug
efficiency, disease, and ADMET (Adsorption, Distribution, Metabolism, Excretion, and Toxicity) modeling.
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7. Discussion

Organ-on-chips provide a novel and unique platform for research on various diseases
by contributing to both diagnosis and treatment approaches, which are important research
areas for improving global health. The time and cost savings in drug development is a
strong motivation for this technology, as is the elimination of in vivo animal testing. There
are specific features that make it a potential alternative and breakthrough tool in the field.
These include 3D culture and cell–cell interactions, the ability to apply mechanobiological
stimuli, online monitoring of testing, and low testing cost.

On the other hand, critics of OOCs have pointed out how accurately the technology
can recapitulate microphysiological environments and ask whether the existing uncer-
tainties affect the final results. In addition, concerns were raised that the examination of
a single organ represented by a chip is not crucial for drug testing, even if the outcome
is effective [300]. Debates have been held on the effectiveness of OOCs, and many prac-
tical solutions have been proposed to overcome the shortcomings, but development is
still ongoing. To overcome the challenges and also to mention the promising features of
OOCs, a thorough evaluation is needed from the first step of the design process to the
microfabrication of the chips, as shown in Figure 9.

Figure 9. Design and fabrication flowchart of OOCs.

The design of a chip is a combination of physiological and mechanical concepts
governed by material and fabrication concepts. An organ-on-chip cannot fully recapitulate
all the features of an organ, but only the most important functions that are crucial in terms
of the physiological concepts and based on the scientific question being asked. Thus, the
design is closely related to the goal of the research and simplifications are required to
develop a viable design.

A fundamental issue that needs to be addressed is whether a simple microchannel
can meet the requirements of an OOC. To answer this question, it is important to mention
that microchannels are scaffold-like structures that are best suited for the study of vessels
when accompanied by appropriate cell culture procedures. Flow is an important element
of an OOC. Flow maintains several biomechanical factors, including shear stress and
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interstitial flow, while regularly providing nutrients and oxygen to cells and stimulating
the organ to live longer and maintain its properties for testing. In addition, layered
structures provide the opportunity to study permeability, which is important in the field
of drug delivery. Porous membranes are the common element to help in recapitulating
this property of organs The use of flexible materials also makes it possible to mimic the
mechanical movements of organs, such as during breathing. Although a microchannel can
help to mimic an organ and bring with it the requirement to culture and stimulate it, it
cannot function on its own without suitable packaging for monitoring.

The physiochemical properties of the flow, such as pH and dissolved oxygen, can
change during testing and have a large effect on the biological performance, so that
deviations exhibit erratic behavior. The use of online monitoring techniques is a prerequisite
for improving the accuracy. Conventional or innovative microelectromechanical on-chip
systems can be selected or designed for packaging [301].

The materials are another crucial factor affecting the whole process of design and
fabrication. The materials should not interfere with the experiments; so, they must be
compatible with the culture environment and test compositions. The selection of materials
according to the desired criteria make microfabrication more complex and also more
expensive. Therefore, a number of common materials which have some basic properties,
such as gas permeability, optical clarity, and rapid prototyping, are usually of interest [302].
One possible solution in this regard is surface modification approaches that alter the
material to have little impact on the test compositions, even if some of them are temporary
and do not cover the entire time of the experiments.

A standout piece in this flowchart is microfabrication. It infringes the liberty of OOC
research by prohibitively expensive facilities. Soft lithography is a widely used, fast, and
economically feasible technique that also requires one step photolithography and clean
room facilities. However, as mentioned earlier, it only provides the microchannel, and
other techniques are required for on-chip measurement devices, which make it expensive.
Furthermore, it has been shown that for bonding the substrates, again certain materials and
techniques work perfectly [303], which proves how much the microfabrication techniques
and materials influence the OOC design. The utilization of sophisticated fabrication meth-
ods comes at the price of low throughput and the expensiveness of the chips. Therefore,
in parallel to sophisticated fabrication methods for OOCs, simple approaches have been
proposed to develop the OOC in less equipped laboratories that have shown acceptable
results [134]. However, in reality these approaches have even more limited materials to use,
along with increased geometrical uncertainties resulting from simple fabrication. It can be
stated that they can be used for preliminary studies, but currently advanced chip designs
are inevitable for more accurate results. Both academic laboratories and startup companies
have made significant progress in mass-producing chips. Although a single commercial
chip can currently cost as much as several conventional 2D/3D culture systems, new and
cost-effective chip designs are being introduced onto the market every day.

The aforementioned benefits suggest that OOC technology is a promising tool to rely
on and that ongoing interdisciplinary research will lead it to play a key role in the future.
Although the results are already considerable, there are limited opportunities to design and
fabricate different chips, which shows the gap for finding compatible materials and micro-
fabrication techniques. In addition, online monitoring and on-chip measurement devices
are another area to move into for more reliable results. To further study the dynamics of
the vasculature, as research is being conducted in this regard, such as ultrasound exposure,
an ordinary PDMS-based OOC has defined microchannels surrounded by materials, so
that the walls are fixed, and it is not possible to study the dynamic motion on them. Other
techniques and materials are needed, such as hydrogels-based chips or a combination
thereof. Moreover, other mechanical stimuli may be of interest, including temperature and
pressure, which are always considered in flow control.
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8. Conclusions

Organ-on-chips are expected to become an influential technology by providing phys-
iologically relevant mechanobiological environments suitable for disease research and
drug development. A significant advantage of OOCs is the control over geometry that
supports the vascular study in OOCs, which was nearly impossible with the previous
technologies. Moreover, the control of flow properties along with biomechanical factors
improves in vitro test results and makes it a preferred approach [63]. The chips have shown
promising results, although they are a new approach that comes with a variety of challenges.
The concerns expressed relate to the reliability of the chips, which needs to be improved
through better design and fabrication techniques. There is always a trade-off between the
concepts involved in the design process as well as the biological aspects and materials; so,
these cannot be fully addressed due to the limitations imposed by microfabrication. Hence,
there is a great need for the development of interdisciplinary investigations to expand the
possibilities for design while reducing the costs. Data monitoring is another issue in this
context that requires the development of innovative on-chip devices to control the input
and output and consequently to improve the reliability of the results. Moreover, different
designs and the use of new materials could add further stimuli to establish simplification
hypotheses that will be used to develop a viable chip.
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