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Abstract

Series Elastic Actuation (SEA) is a widely-used approach for interaction control as
it enables high fidelity and robust force control, improving the safety of physical
human-robot interaction (pHRI). Safety is an imperative design criterion for pHRI
that limits the interaction performance since there exists a fundamental trade-off
between stability robustness and rendering performance. The safety of interaction
necessitates the closed-loop stability of a pHRI system when coupled to a wide
range of unknown operators and environments. The frequency-domain passivity
framework provides powerful analysis tools to study the coupled stability of linear
time-invariant systems. In the literature, coupled stability of one-port models of
SEA has been studied for various controllers while rendering basic environments,
and the necessary and sufficient conditions for such passive terminations have been
derived.

In this study, we advocate the addition of physical damping in parallel to the
compliant element in SEA and provide sufficient conditions for the passivity of series
damped elastic actuation (SDEA) under velocity-sourced impedance control (VSIC)
while rendering virtual environments with null space, linear spring, or Kelvin-Voigt
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(KV) models. We show the necessity of a physical dissipative element parallel to
the series elastic component to render KV models and discuss the effect of an in-
tegral controller while rendering virtual environments modeled by a linear spring.
Furthermore, we rigorously prove that SDEA can extend the range of impedances
that can be passively rendered with SEA and improve the control performance of
the system thanks to the physical damping in parallel to the compliant element.

We further extend our results to study the two-port passivity of SDEA under
VSIC. We cascade a virtual coupler between the virtual environment and the con-
trolled SDEA and study the coupled stability of SDEA under VSIC for all passive
terminations. In particular, we introduce an analysis method based on Sturm’s The-
orem and provide the necessary and sufficient conditions for the two-port passivity
of SDEA under VSIC within the frequency-domain passivity framework. We prove
the necessity of additional dissipative elements in the physical filter and the virtual
coupler for the two-port passivity of the system. Based on the newly established
conditions, we derive non-conservative passivity bounds for the virtual coupler ele-
ments. We also show that these dissipative elements enable SDEA to display stiffer
virtual environments than those can be passively rendered with an SEA. Finally, we
validate our results through a set of physical experiments and systematic numerical
simulations.
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(")zetge

Seri elastik eyleme (SEE), yiiksek performansh ve giirbiiz kontrol sagladig: ve fiziksel
insan-robot etkilegimini (fIRE) daha giivenli hale getirdigi i¢in yaygimn kullanilan
bir etkilesim kontrolii yaklasimidir. Giivenlik fIRE igin vazgecilmez bir tasarim
olcuitidiir; ancak glirbiiz kararlilik ve bagarim arasinda temel bir 6diinlesim oldugun-
dan etkilesimin bagarimim kisitlar. Giivenli etkilesimin gergeklesmesi icin bir fIRE
sisteminin, genig bir yelpazede bilinmeyen ¢evresel etmenlerle etkilegimleri sirasinda,
kapali ¢evriminin kararl kalabilmesi—baglasik kararli olmasi—gerekir. Dogrusal ve
zamanla degismeyen sistemlerin baglagik kararliligini incelemek igin frekans bolgesi
pasifligi giiclii ¢oziimleme araclar1 saglar. Literatiirde, SEEnin tek kapili ag mo-
dellerinin baglagik kararliligi cesitli kontrolciiler altinda temel sanal modeller igin
caligilmig ve pasif dokunsal geri bildirim i¢in gerekli ve yeterli kogullar bulunmustur.

Bu calismada SEEnin elastik elemanina paralel yerlestirilen fiziksel sontimle-
yicinin etkileri incelenmistir. Empedans kontrolii altindaki seri viskoelastik eyleyici
(SVE) ile sanal bog uzay, dogrusal yay ve Kelvin-Voigt (KV) modellerinin baglagik
kararli dokunsal geri bildirimi i¢in sistemin tek kapili pasiflik analizi yapilmig ve
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sistemin pasifligi i¢in yeterli kogullar tiiretilmistir. Fiziksel soniimleyicinin KV mo-
delinin pasif dokunsal benzetimi icin gerekli oldugu ve hiz ¢evrimindeki integral
kontroliin dokunsal benzetimde segilebilecek yay sertligine etkileri gosterilmigtir. Ek
olarak, SVE'nin, SEE’nin pasif olarak gergekleyebildigi empedans araligini genislet-
tigi ve kontrolcti performansimi arttirdigi ispatlanmigtir. Ayrica, tek kapili pasiflik
sonugclar: genigletilerek empedans kontroli altindaki SVE'nin iki kapili ag modelinin
pasifligi incelenmistir. Sanal ortam ile kontrolciiler arasina sanal bir baglant1 modeli
tanimlanarak sistemin iki kapil pasifligini saglayacak gerekli ve yeterli kosullar bu-
lunmustur. Dogrusal ve zamanla degigmeyen sistemlerin pasifligini frekans bolgesinde
analitik olarak incelemek i¢in Sturm teorisini temel alan bir yontem sunulmustur.
SVE'nin iki kapili pasifligi i¢in fiziksel soniimleyiciye ek olarak sanal ara baglanti
modelinde de soniimleyici bir unsurun gerekliligi gosterilmigtir. Bu sontimleyiciler
sayesinde pasif olarak gerceklenebilecek sanal yayin sertliginin arttirilabilecegi kanit-
lanmigtir.  Son olarak, teorik sonuclar sayisal benzetimler ve fiziksel deneylerle
dogrulanmigtir.
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Chapter 1

Introduction

With robots rapidly being introduced in applications that require manipulation of
objects [19, 65] and interaction with unpredictable environments [24,51] and hu-
mans [8, 10, 21, 37, 45, 53, 56, 61, 62], safety has become an indispensable design
requirement. Possessing inherent compliance and masking the inertia of the ac-
tuator from the interaction port, series elastic actuation (SEA) features favorable
output impedance characteristics that are safe for physical interaction at all fre-
quencies [32, 50, 51, 54, 55]. Due to these advantages, the coupled stability and
performance characteristics of SEA have been widely studied under different control
architectures [7,47,59,60].

However, the control bandwidth of SEA within which it can achieve an acceptable
force-rendering fidelity is reduced since large actuator forces/velocities are required
to cancel out the compliant dynamics of SEA at high frequencies [50]. Moreover,
the frequency-domain passivity analyses of SEA have established that the maximum
virtual stiffness that can be rendered is bounded by the stiffness of the physical
compliant element of SEA [59] while the Kelvin-Voigt (KV) model, i.e., parallel
spring damper, cannot be passively rendered using causal controllers [7,57]. In
particular, KV models are commonly used to render virtual constraints by rigid
haptic devices, but SEA has to sacrifice the stable rendering of this model for better

interaction behavior.
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Several studies have proposed using a physical damping parallel to the spring
of SEA to improve its characteristics [20,24, 36, 38,39,46,47]. While these studies
present advantages of SDEA over SEA, in terms of energy efficiency, reduction of
the oscillations, and lack of need for D-control in joint-torque control, they have
not addressed the coupled stability of interaction with SDEA during impedance
rendering. Moreover, the two-port passivity of SDEA has not yet been investigated
to enable stable interaction with all passive environments, unlike in rigid haptic
devices [1,58] or bilateral teleoperation of robotic systems [29,40].

In this thesis, we first address the passive rendering of KV models using SDEA
under velocity-sourced impedance control, a commonly used control structure for
SEA [32,51,64]. Then, we seek to extend the range of impedance rendering to all
possible passive terminations with unbounded magnitudes, ensuring the two-port

passivity of the controlled SDEA.
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1.1 Contributions

In this thesis, we present one-port and two-port frequency-domain passivity analyses
of series damped elastic actuators (SDEA) under velocity-sourced impedance control
(VSIC).

The contributions of this thesis can be listed as follows:

e We formulate an analytical method based on Sturm’s theorem for analyzing the
positiveness of polynomials encountered when assessing the positive realness of
transfer functions. The proposed approach does not require the determination
of roots of high degree polynomials but relies on systematic construction of

tabular conditions and logical inference from these tables.

e We prove that a physical dissipative element parallel to the series elastic com-
ponent is necessary to passively render KV models, regardless of the presence

of a virtual coupler.

e We derive a set of sufficient conditions for SDEA under VSIC to passively
render virtual environments modeled as parallel spring-dampers, as in the
KV model, linear springs obeying Hooke’s law, and the null impedance. We
prove that SDEA can improve Z-width (the range of impedances that can
be passively rendered) and the control performance of the system compared
to SEA, thanks to the addition of the physical damping in parallel to the

compliant element.

e We demonstrate that the integrator of the motion controller is necessary to
render a virtual spring if there is an integrator in the force controller. More-
over, we also show that the bound on the maximum virtual stiffness can be

increased significantly if both integrators are removed.

e We conduct two-port stability and transparency analyses of SEA /SDEA under
VSIC. We rigorously prove the necessity of a virtual coupler with dissipation

in addition to the physical damping for the two-port passivity of the system.
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The additional dissipative elements enable the system to render virtual stiff-
ness values higher than that can be rendered using a pure SEA. Our results
extend earlier studies on coupled stability of SEA/SDEA by presenting the
necessary and sufficient conditions for all passive terminations. We validate
our theoretical results through numerical simulations and by reproducing one-

port passivity results as special cases under appropriate terminations.

e Since the virtual coupler practically decreases the impedance transmitted to
the operator, we propose simple formulae for selecting proper values of the

virtual environment to compensate for the expected decrease.

e Our conditions assert that the integral action in the motion controller is neces-

sary to insert a virtual coupler if there is an integrator in the force controller.

e We show that compensating for the disturbance due to the measured interac-
tion force acting on SDEA may deteriorate the coupled stability of the sys-
tem. Our results show that selection of an optimal cancellation ratio, which
is strictly less than 1, can help maximize the virtual coupler stiffness while

preserving the two-port passivity of the system.
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1.2 Outline

The rest of the thesis is organized as follows:

Chapter 2 presents a comprehensive review of the related work on coupled stabil-
ity of series elastic actuation and positions the contributions of this study concerning
the state-of-the-art.

Chapter 3 overviews the concepts related to coupled stability and performance
of interaction control. In particular, the frequency-domain passivity theorems for
one-port and two-port networks are reviewed.

Chapter 4 presents a one-port passivity analysis of series damped elastic actua-
tion under velocity-sourced impedance control.

Chapter 5 presents a two-port passivity analysis of series damped elastic ac-
tuation under velocity-sourced impedance control when augmented with a virtual
coupled.

Chapter 6 details the experimental setup and provides experimental verification
of one-port and two-port passivity results.

Chapter 7 concludes the thesis and provides a discussion of future research di-
rections.

Technical details of certain proofs are provided in the Appendix.



Chapter 2

Related Work

The performance of SEA depends synergistically on its mechatronic design and con-
troller [34,35]. The high-performance controller design for SEA to be used in pHRI
is challenging since ensuring the safety of interactions is an imperative design re-
quirement that constrains the design process. Safety of interaction requires coupled
stability of the controlled SEA together with a human operator; however, the pres-
ence of a human operator in the control loop significantly complicates the stability
analysis. In particular, a comprehensive model for human dynamics is not avail-
able, as human dynamics is highly nonlinear and time and configuration dependent.
Contact interactions with the environment also pose similar challenges, since the
impedance of the contact environment is, in general, uncertain.

The coupled stability analysis of robotic systems in the absence of human and
environment models is commonly conducted using the frequency-domain passivity
framework [15]. In this approach, even if the human operator behaves actively,
coupled stability can still be concluded through the passivity analysis, as long as
the human behavior is assumed to be non-malicious. Furthermore, non-animated
environments are passive. Therefore, coupled stability of the overall system can be
concluded, if the closed-loop SEA with its controller can be designed to be passive.

While the frequency-domain passivity paradigm provides robust stability for a
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broad range of human and environment models, results derived from such analy-
sis may be conservative. Less conservative paradigms, such as time-domain pas-
sivity [28,52], complementary stability [4, 6], bounded-impedance absolute stabil-
ity [26,42,63], may be utilized to achieve better performance while still ensuring
coupled stability of interaction. Although these techniques are highly valuable, they
are limited in that they rely on numerical computations/optimizations; hence, they
cannot provide closed-form analytical solutions and general insights. The frequency-
domain passivity analyses are highly valuable as they provide a fundamental un-
derstanding of the underlying trade-offs governing the dynamics of the closed-loop

system.

2.1 Coupled Stability of SEA

Coupled stability of SEA, modeled as an LTI system, has been investigated exten-
sively using one-port passivity analysis, under several control architectures. Among
these SEA control architectures, velocity-sourced impedance control (VSIC) [64] has
been favored in the literature, due to its robustness, high performance, and ease of
parameter tuning [10,32,49,51,59,64].

Vallery et al. [60] have analyzed the passivity of VSIC architecture, without
the motor damping in SEA model, for the case of zero reference torque. They
have suggested conservative sufficient conditions for passivity based on the actuator
inertia and a ratio between the controller gains. Later, they have extended this
result for stiffness rendering with VSIC and proved that the passively renderable
virtual stiffness is bounded by the stiffness of physical spring in the SEA [61].

Tagliamonte et al. [57] have shown that less conservative sufficient conditions for
passivity can be derived for null impedance and pure stiffness rendering with VSIC
architecture when the motor damping is included in the SEA model. In particular,
it has been proven that the maximum achievable stiffness is not only related to the

physical stiffness of the SEA, but also the physical damping in the system. They have
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demonstrated that the Kelvin-Voigt model, which is a linear spring-damper pair in
parallel, cannot be passively rendered using VSIC architecture. Later, they have also
shown that the Maxwell model, which is a linear spring-damper pair in series, can
be passively rendered using VSIC architecture [57], and derived sufficient conditions
to characterize the range of environment parameters that preserve passivity.
Calanca et al. [7] have derived sufficient conditions for the passivity of SEA under
several control architectures: basic impedance control, VSIC, collocated admittance
control, and collocated impedance control. They have shown that the limitation
on maximum achievable stiffness to render a pure stiffness, as derived in [61], also
holds for these controllers. These theoretical analyses rely on the use of non-causal
differentiator terms for the force controller and neglect the effect of motor damping
in the system model. It is also stated in [7] that the KV model cannot be passively
rendered with VSIC architecture and an impedance controller with ideal accelera-
tion feedback has been suggested. Theoretically, ideal acceleration feedback can be
used to cancel out the influence of load dynamics; however, noise and bandwidth re-
strictions of acceleration signals and potential overestimation of feed-forward signals
resulting in feedback inversion are important practical challenges that have limited
the adaptation of the acceleration-based control, since initially proposed in [50,51].
Tosun and Patoglu [59] have derived the necessary and sufficient conditions for
the passivity of VSIC architecture of SEA, relaxing the earlier established sufficiency
bounds and extending the range of impedances that can be passively rendered. They
have shown the necessity of integral gain of the motion controller to render pure
stiffness. Furthermore, they have proven the necessity of a bound on the integral
gains due to the inevitable physical damping in the system. This counter-intuitive
bound indicates that the motor damping reduces the dynamic range of passively

renderable impedances.
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2.2 Physically Damped SEA

The main disadvantage of SEA is significantly decreased large force bandwidth
caused by the increase of the sensor compliance under actuator saturation [50].
The selection of appropriate stiffness of the compliant element is essential in SEA
designs, where a compromise solution needs to be reached between force control
fidelity and large force bandwidth. Possible high-frequency oscillations of the end-
effector, especially when the SEA is not in contact and the potential energy storage
by the elastic element may pose as other challenges of SEA designs.

To address these issues, Newman has proposed a mechanical filter in the form of
a parallel spring-damper [46]. He has also shown that the insertion of the damper
can relax the passivity bounds of the system at frequencies greater than the nat-
ural frequency of the filter, and proposed a controller, called Natural Admittance
Controller, guaranteeing the passivity of the system. Later, Dohring and Newman
have further investigated the improvements of this filter on the system performance,
especially at high frequencies [20].

The use of a physical damper instead of the series elastic element has been
proposed in [14] to achieve similar improvements over SEA. It has been argued
that series damper actuator (SDA) is favorable for force control, as it features an
adequate level of force fidelity, low output impedance, and a large force range.
Furthermore, it is shown through a theoretical analysis that SDA may increase the
control bandwidth of the system, as it possesses a lower relative order in its transfer
function compared to that of SEA.

Physically damped SEA concept has been studied in several other works in the
literature (24,33, 36, 38,39,47]. It is argued in [33] that impact forces may cause
instability and chatter in SEA since the rapid accelerations cannot be achieved
due to the rotor inertia and the motor torque limits. It has been shown through
numerical simulations that series damped elastic actuator (SDEA) can increase the
force control bandwidth.

To improve efficiency by avoiding continual energy dissipation due to constant
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damping, SDEA with semi-active and variable damping have also been proposed.
For instance, in [24], SDEA has been implemented for a legged robot using a
magneto-rheological brake, where SDEA is controlled with a cascaded control archi-
tecture that has an inner force control loop and outer position control loop. Through
physical experiments, it has been shown that adding parallel damping reduces os-
cillations and improves energy consumption.

In [39], the importance of damping to reduce oscillations has been highlighted, in
the context of variable stiffness actuation. Within an admittance control scheme, it
is stated that the introduction of damping acts as a phase lead after the resonance,
resulting in improvements in the stability of the system. In [38], it has been shown
that admittance controlled SDEA can achieve the same dynamic control performance
of a conventional SEA, but with less effort, particularly for systems with a low
natural frequency. It is also stated that although stability and control performance
are enhanced, the level of actuator safety is compromised due to the increase of the
transmitted force with the addition of damping.

In [23], numerical stability maps have been used to determine the viable range of
stiffness and damping values for SDEA under a cascaded impedance controller with
an inner torque loop acting on a velocity-compensated plant and load dynamics.
Velocity compensation is implemented using a positive velocity feedback loop that
aims to increase the bandwidth of the torque loop under passivity constraints.

In [36], conventional SEA and physical damped SEA structures have been com-
pared from a control design perspective. The role of natural velocity feedback effect
on force control performance is discussed, and the addition of physical damping to
reduce the relative order of force dynamics is advocated. It is shown that through
the addition of damping into SEA structure, derivative (D-control) terms become
no longer necessary for the force control; therefore, acceleration feedback can be
avoided. This study also suggests that robustness of SEA against impacts can be
recovered by SDEA, if the transmitted damper force is mechanically limited, for

instance, through a slip clutch.
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While these studies present advantages of SDEA over SEA, in terms of energy
efficiency, reduction of the oscillations and lack of need for D-control terms, they
have not addressed the coupled stability of interaction with SDEA during impedance
rendering. In [47], one-port passivity analysis for SDEA under basic impedance con-
trol has been presented. The control architecture utilized in this study is somewhat
unconventional; in addition to the series damped elastic element, another force sen-
sor is utilized after the end-effector inertia for measuring the human force, and this
interaction force is fed back to the controller. In this study, Oblak and Matjaci¢ [47]
have shown that adequate level of mechanical damping in the compliant element
is needed to ensure the passivity of pure stiffness rendering. Moreover, sufficient
conditions for passivity and the lower bound on the required physical damping have
been derived, in terms of the controller gains, motor-side damping, end-effector
inertia, and motor-side inertia. While passivity of SEA/SDEA is independent of
the end-effector inertia under conventional controllers, in this work, the use of the
second force sensor after the end-effector introduces an additional bound on the
proportional force controller gain that depends on the ratio of the actuator to the

end-effector inertia.

2.3 Two-Port Analyses of Physically Damped SEA

In the literature, several works have conducted the coupled stability analysis of
SEA/SDEA using a one-port passivity analysis, where the environments have a
certain form. On the other hand, Tognetti [58] has studied a general haptic device
with various virtual coupler forms considering two-port absolute stability. He has
attempted to improve stability by inserting additional damping on the motor side.
However, his analysis is numerical and does not provide general insights. In this
study, we propose an analytical two-port passivity analysis of SDEA under VSIC
with a virtual coupler. Two-port modeling provides an analysis framework that is

advantageous in several ways:



CHAPTER 2. RELATED WORK 12

(i)

(i)

(iii)

Two-port passivity analysis ensures that the controller of SEA/SDEA can
be designed independent of the environment to be rendered, as the coupled
stability of the system can be ensured for any passive terminating environment.
This may be especially useful if the environment characteristics are unknown
to the device/controller designer, as commonly the case in haptic rendering [1],

where the dynamics of the virtual environment rely on some external simulator.

Using two-port analysis provides direct correspondence with the bilateral tele-
operation literature and enables the passivity /transparency of the system to
be analyzed analogously. For instance, the two-port representation of a hap-
tic device provides an elegant way to observe the velocity /force transmission

between the operator and the (virtual) environment.

Two-port analyzes provide more general solutions, from which one-port results
may be derived by properly terminating two-port element with an appropriate

passive one-port [31].



Chapter 3

Background

This chapter reviews some fundamental concepts related to the modeling of in-
teracting systems and the analytical tools commonly utilized in the literature and
this study. There are several metrics defined to ensure the coupled stability and
to evaluate the performance of interaction. We briefly provide some of the most

acknowledged theories in the context of haptics and teleoperation.

3.1 Network Modeling of Interaction Systems

A network is a collection of interconnected elements and sources; however, a single
lumped element (e.g., mass, spring, damper, etc.) can also be considered a network.
Since networks may inherit some properties (e.g., [non|linearity, time-[in]variance,
passivity, etc.) of the components comprising them, analyses of complex systems
may be significantly simplified by abstracting these details away and dividing the
problem into manageable parts.

The place where two networks exchange physical quantities or measured infor-
mation is called a port. Regardless of the form of the interaction (e.g., mechanical,
electrical, heat, digital signals, etc.), the systems exchanges their energies through
the ports. Therefore, it is customary to model the ports using generalized power-

conjugate quantities, called effort and flow. In electromechanical systems, it is

13
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Figure 3.1: Network representations of a haptic rendering

common to represent voltages or forces as effort variables and currents or velocities
as flow variables. Figure 3.1 shows a network that considers a physical interaction
between a human operator and a haptic device and a digital interaction through the
measured and calculated signals between a computer-generated virtual environment
and the haptic device.

The following subsections describe general preliminary modeling details of one-
port and two-port networks and discuss their advantages and disadvantages in an-

alyzing interaction systems.

3.1.1 One-Port Networks

One-port networks have only one interaction point to exchange energy with its
environment. The behavior of these systems can be expressed uniquely by the effort
on and flow through the port. For the one-port haptic rendering device shown in
Figure 3.1,

Fing 1 Up

Z(s) = o Y(s) = 70) = (3.1)

where Z(s) and Y (s) are called the driving point impedance and the driving point
admittance of the interaction port based on the choice of the independent variable
(i.e., the input to the system), Fi,; represents the interaction force (the effort) be-
tween the operator and the end-effector of the device, and v;, denotes their mutual

velocity (the flow).
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3.1.2 Two-Port Networks

Two-port models have been adopted by the robotics to analyze the coupled stabil-
ity [3] and performance [29] of haptic and bilateral teleoperation systems through
the energy exchange analogy to the circuit theory. A two-port element can be repre-
sented by an immittance matriz that captures the relation between the effort (F, F3)
and the flow variables (v, vg).

Six distinct immittance matrices can be expressed based on the selection of the
independent variables of the ports [31]. It is favorable to use the hybrid matrix
(or h-matrix) when the input velocity and the output force are available via mea-
surements [29]. By selecting these two as the independent variables, the following

matrix relation describes the two-port element.

Fy _ hir hio U1 ‘ (3.2)
Vg hotr  hoo Fy

In this form, h;; and hoy terms reveal important stability characteristics of the
input and output ports. On the other hand, hyy (reverse force-transfer ratio) and
ho1 (forward velocity-transfer ratio) provide insights about the performance of the

network.

3.2 Coupled Stability

The coupling of two stable systems does not necessarily result in a stable overall
system since the dynamics of interaction is also important for stability. pHRI often
demands robust stability while interacting with a wide range of environment and
operator dynamics whose models are not available. Colgate and Hogan [15] have
proposed the frequency-domain passivity to address the stability of interconnected
systems.

Systems that do not produce energy are passive; hence, they are inherently stable.

A useful property of passivity is that parallel and negative feedback interconnections
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of two passive systems also result in a passive system. This property can be used to
ensure the stability of an interconnected system. Along these lines, coupled stability

is defined as follows:

Definition 1 (Coupled Stability [16,22]). A system has coupled stability property
if:

i) The system is stable when isolated.

ii) The system remains stable when coupled to any passive environment that is

also stable when isolated.

In frequency-domain passivity analysis, in general, the human operator is not
assumed to be passive but is required to be non-malicious, i.e., does not aim to
destabilize the system deliberately. For such interaction, human-applied inputs can
be modeled to have a passive component and an intentionally applied active com-
ponent that can be assumed to be independent of the system states. Given that
state-independent active terms do not violate the coupled stability conclusions of
the frequency-domain passivity, coupled stability can be concluded as if the human

operator is passive when the state-independent active terms are neglected [15].

3.2.1 One-Port Passivity

Given a one-port, LTI, stable plant coupled to a passive environment, a necessary
and sufficient condition for the coupled stability (see Definition 1) of the system is
that the one-port is passive [16]. The driving point impedance Z(s) of a one-port
LTT network is passive if and only if it is positive real [16,31].

Theorem 3.1 (Positive Realness [31]). An impedance function Z(s) is positive real

if and only if:
1. Z(s) has no poles in the right half plane.

2. Any poles of Z(s) on the imaginary azis are simple with positive and real

residues.
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5. Re[Z(jw)] > 0 for all w.

During haptic rendering, a human operator interacts with a virtual environment
(VE) through the controlled device, as shown in Figure 3.1. In this figure, the
operator and the VE can be considered as one-port elements, while the controlled
device (excluding the VE dynamics) can be considered as a two-port network.

When the model of the VE to be rendered is known, then the two-port controlled
device model can be terminated with this specific environment to form the one-port
rendering model, as depicted by the dashed lines in Figure 3.1. Ensuring passivity
of the driving point impedance Z(s) ensures coupled stability of interactions with a

non-malicious human operator.

3.2.2 Two-Port Passivity

Two-port passivity analysis considers the controlled device, excluding the VE and
human operator dynamics. Both the VE and human operator are assumed to be
passive (with any active components being state independent). A sufficient condition
of coupled stability of the overall system is the passivity of the two-port element.
Note that two-port passivity is a conservative means of ensuring coupled stability.
The necessary and sufficient conditions for the passivity of an LTI two-port element

characterized by an immittance matrix H are given as follows:

Theorem 3.2 (Two-Port Passivity [31]). A linear time-invariant (LTI) two-port

network is passive if and only if:

(a) The h-parameters have no poles in the right half plane.

(b) Any poles of the h-parameters on the imaginary axis are simple, and the

restdues are real and positive.
(¢) The h-parameters satisfy the following conditions for all w.

(Z) Re<h11> 2 0 and R,e(hgg) Z 0,

his + ha
2

2
> 0.

(ZZ) Re(hn) Re(h22) — ‘
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3.2.3 Absolute Stability

When a two-port network remains stable under all possible passive terminations,
it is said to be absolutely or unconditionally stable [31]. Absolute stability is less
conservative condition compared to two-port passivity. The necessary and sufficient
conditions for absolute stability of an LTI two-port element characterized with an

immittance matrix H can be expressed as follows:

Theorem 3.3 (Llewellyn’s Absolute Stability [31]). A linear time-invariant (LTI)

two-port network is absolutely stable if and only if:
(a) The h-parameters have no poles in the right half plane.

(b) Any poles of the h-parameters on the imaginary axis are simple, and the

restdues are real and positive.
(c) h-parameters satisfy the following conditions for all w.

(Z) Re(hn) Z 0,

(ZZ) QRe(hH) Re(hgg) - Re(hlghgl) - |h12h21| Z 0.

3.3 Performance Metrics of Haptic Systems

In addition to analysing coupled stability, two-port representation is also useful
to study the performance of pHRI systems. A commonly used concept in haptic
rendering and bilateral teleoperation literature is transparency, which quantifies the
match between the mechanical impedance of the VE and that felt by the human
operator, with the requirement of identical force/velocity responses. For a two-port
system represented by its hybrid immittance matrix, ideal transparency is defined
as [29,30]:
F 0 1| (v

— . (3.3)
—Vs -1 0] |[Fy
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If Z. characterize the impedance of the VE, the impedance transmitted to the
operator Zi, can be computed in terms of the parameters of the hybrid matrix

as (30, 31]
hii + ApZ,
= —F 3.4
1+ haoZ, (34)
where Ah = h11h22 — hlghgl.
The difference between the minimum and the maximum achievable impedances

of Zy, defines the range of passively renderable impedances, called Zyqn [17]. In

terms of hybrid matrix parameters, Z,;, and Zyiqn can be computed as:

Zmin = h/lla (35)
h12h21
h22 ‘

Zwidth = — (3.6)

For the perfect transparency, Z.;, and Zyiqn g0 to zero and infinity, respectively.

3.4 Series Elastic Actuation

In this section, we present the dynamic modeling of SEA/SDEA under velocity-

sourced impedance control (VSIC).

About the units and physical terms in this thesis: Although the physical en-
tities in equations, figures, and tables represent rotational elements and correspond-
ing units, linear counterparts of any entity may be used interchangeably throughout
this thesis. Due to its more general usage, forces are preferred over torques without

loss of generality.
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3.4.1 Uncontrolled S[D]EA Plant

The dynamic model of the S[D]JEA! consists of the reflected inertia J and viscous
friction B of the actuator, which include effects of transmission and electrical dy-
namics, respectively. The actuator and the end-effector are connected by a spring
with stiffness Ky that obeys the linear Hooke’s law [and a viscous damper By, ar-
ranged in parallel]. Let the actuator and end-effector velocities be denoted by wy,
and wy,, respectively. The forces applied by the human operator are modelled to have
two distinct components: T}, representing the passive component and 7} denoting
the intentionally applied active component that is assumed to be independent of the
system states. The end-effector inertia is denoted by .J,. The interaction force Ti,
represents the sum of the forces induced on the linear spring [and the viscous damper
arranged in parallel].

SDEA is similar to the SEA structure because both of them introduce a deliberate
compliant element between the end-effector and the actuator. SEA estimates force
by Tine = K;Af where Af is the measured deflection between the two bodies,
and K is the spring constant. In SDEA, the estimated interaction force is Ty, =
K A0 + BfAé where A is the rate of change of the deflection, and By denotes
the damping coefficient of the physical filter. The rate of deflection is estimated by
differentiating the output of a sensor directly measuring the deflection between the

actuator and the end-effector/human.

3.4.2 Velocity-Sourced Impedance Control of S[D]EA

Figure 3.2 depicts the block diagram of SDEA under VSIC, where the physical
interaction forces are denoted by thick lines. In particular, the cascaded controller
comprises an inner velocity and an outer force control loops. While the inner loop
renders the system into an ideal motion source, the outer loop generates references

for the velocity controller such that the spring-damper deflections are at the desired

!Due to the common components in a SEA and SDEA, we use brackets to denote any additional
information belonging to SDEA.
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Figure 3.2: Block diagram of SDEA under velocity-sourced impedance con-
trol (VSIC) coupled to a human operator

level to match the reference force. To counteract steady-state errors, both velocity
and force control loops employ PI controllers with gains denoted by P,,—I,, and P,—
1;, respectively. The controllers do not include derivative action. Given that ideal
differentiation is non-causal, filters that regulate the high-frequency phase response
of the controller need to be considered for the soundness of the theoretical analysis.
Besides, noise in force signals is known to significantly limit the practical use of
derivative terms. Optionally, a feed-forward signal appends to the control signal to
compensate for a portion (set by 1 — a for 0 < o < 1) of the interaction force. The
outermost loop implements an impedance controller to generate references to the
force controller to display the desired impedance Z. around the equilibrium v, of

the VE.

3.4.3 Simplifying Assumptions

Following simplifying assumptions are considered in theoretical discussions:

e Nonlinear effects, such as stiction, backlash, and motor saturation are ne-
glected to develop a linear time-invariant (LTI) model. In the literature, it
has been demonstrated that the cascaded force-velocity control scheme can ef-
fectively compensate for stiction and backlash [54,64]. If the motor is operated
within its linear range, then the other nonlinear effects, like motor saturation,

also vanish.

e The electrical dynamics of the system is approximated based on the commonly

employed assumption that electrical time constant of the system is orders of
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magnitude faster than the mechanical time constant.

e The motor velocity signal and the rate of change of deflections on the physical
filter are available with a negligible delay. For motors furnished with high-
resolution encoders, differentiation filters running at high sampling frequencies
(commonly on hardware) can be employed to result in velocity estimations

with minimum delays, within the bandwidth of interest.

e Human interactions are non-malicious and do not aim to destabilize the sys-
tem deliberately. In particular, human applied inputs are modelled to have
a passive component and an intentionally applied active component that is
assumed to be independent of the system states [15]. This is a commonly

employed assumption in the frequency-domain passivity analysis.

e For simplicity of analysis and without loss of generality, the VE is assumed to

be grounded.
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Sturm’s Theorem for Testing

Positive Realness

Positive realness of an impedance function, as required in Condition (¢) of Theo-
rems 3.1-3.3 (passivity and absolute stability theorems), is commonly reduced to
an equivalent problem of the positiveness of a polynomial by invoking the following

Lemma.
Lemma 4.1. Let H(s) be any real-rational function such that

N(s)
D(s)

H(s) =

Positive realness of H(s) can be inferred from the positiveness of the following real

polynomial.

Re[(N(jw)D(—jw))] = > cw' >0, Vw,c € R.

i=0
Proof. The proof is trivial and has been presented in several earlier works, includ-

ing [59]. O

Analytical solutions to establish positiveness of a polynomial are well-established

23
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for polynomials of up to degree three [13]. However, such analytical solutions be-
comes difficult for higher-order polynomials. Sturm, and later Vincent, have pro-
posed simplified solutions to this problem by decomposing polynomials of degree n
into the evaluation of lower degree sequences [2]. While Vincent’s theorem is more
efficient for numerical evaluations, we favor Sturm’s theorem as it can also provide
analytical bounds of positiveness of a polynomial. Below, we provide the definition

of the Sturm sequence and Sturm’s theorem [2].

Definition 2 (Sturm’s Sequence or Chain [2]). Let f(z) = 0 be a polynomial
equation of degree n, with rational coefficients and without multiple roots. The

Sturm sequence is

Sseq(x) = {f(l‘), f/(ZL‘), T1<x)7r2(x)7 - ,Tk(l‘)}, (41)

where f'(x) is the first derivative of f(x) and the polynomials r;(x),1 < i < k <
n—1, are the negatives of the remainders obtained by applying the Euclidean greater

common divisor algorithm on f(x) and f'(x), such that

f(x) = fl@)a(z) — ()
f(x) = ri(x)q(x) — o)

Tk—2 = Tk—1(l‘)%($) - Tk(@

Theorem 4.1 (Sturm’s Theorem of 1829 for real roots [2]). Let f(x) = 0 be a
polynomial equation of degree n, with rational coefficients and without multiple roots.
Then, the number p of its real roots in the open interval (a,b) satisfies the equality
p = Vg — Uy, where vy, 1, are the number of sign variations in the Sturm sequence

Sseq(@), Sseq(b), respectively.

Utilizing Sturm’s theorem, the positiveness of the polynomial f(z) can be found

by setting the a and b to cover the entire frequency range, i.e., w € (—00, 00).
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One-Port Analysis of SDEA under
VSIC

5.1 One-Port Passivity Analysis

Given an LTI, stable plant coupled to a passive environment, the passivity of the one-
port plant provides the necessary and sufficient conditions for the coupled stability of
the overall system [16]. The frequency-domain passivity of a one-port LTT network
is equivalent to the positive realness of the impedance Z(s) of the system at the
interaction port [16]. The following analysis employs Theorem 3.1 to assess the
positive realness of the one-port system.

This section derives a set of sufficient conditions for the frequency-domain passiv-
ity of SDEA under VSIC while rendering some commonly used virtual environment
models: Kelvin-Voigt (KV), linear spring, and null space. Derivations are provided
for rendering the KV model, and linear spring and null-space rendering are presented
as special cases of this model when virtual damper and/or spring parameters are set
to zero.

Following Theorem 3.1, the driving-point impedance at the human interaction
port, shown in Figure 3.2, must be stable. For all virtual environments considered

in this study, the stability requires the analysis of the same Routh array.

25
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Lemma 5.1 imposes a stronger version of Condition (1) such that simple complex
poles on the imaginary axis are not allowed. Furthermore, when a simple pole at
the origin exists, it can be shown that its residue is non-negative for our analysis;
thus, Condition (2) is always satisfied.

Therefore, the next subsection applies to all virtual environments considered,
while the remaining subsections investigate Condition (3) of Theorem 3.1 for each

environment.

5.1.1 Stability of SDEA under VSIC

The characteristic equation of the SDEA rendering the null-space has the form of
a fourth-order polynomial with non-zero coefficients. The presence of a spring or a
KV model in the virtual environment adds a simple pole at the origin, whose residue
is non-negative. Since all cases correspond to the same Routh array, the following

lemma will be utilized to ensure their stability.

Lemma 5.1 ([13,59]). Let fi(s) = ass* + azs® + aas® + a1 + ag or fa(s) = sfi(s)
for a; > 0 be the characteristic equations of a fourth-order or fifth-order system,
respectively. Then, fi(s) has no roots in the closed right half plane if and only if

ai(asas — ajayg) — agai > 0.
Proof. The proof has been presented in [59]. ]

The driving-point impedance of SDEA under VSIC at the human port as shown

in Figure 3.2 can be expressed as follows:

By Js® + (KyJ + By(B+ Py,) + by) s*

T — +(Kp(B+ Pyp) + Byl + bs) 83 + (KyLy, 4 by)s? 4 bys + by (5.1)
—w, s(Js* + azs® + ags? + ays + ap) ’ ’
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where

by = ByB; PP,

bs = Fn Py [KaBy + By (Ky + By (1 +v))]
by = Buyay + K4P,, P, (K + By (n +v))

by = Kqa1 + Baag

by = Kaa9

a3 = B + Py + B;(1+ Py P,)

as = I, + K¢(1+ P P) + B P P+ v)

a1 = K¢ P, P,(u+v)+ Bl I

ap = Kyl 1,
I I
W= D, and v = Ftt

Given the system in Eqn. (5.1), the following stability condition can be derived

using Lemma 5.1.

0 < ag [KiPnP(pu+v)(1+ PuP) + Ln(Kyky + Bplydy) [ 4ara3 By P Py(p+v)—ai J.
(5.2)

Remark 5.1. Note that the coefficients a; of the characteristic equation are positive
for positive proportional and non-negative integral gains. For passivity of null space
and spring rendering, it is necessary that «, = I,, P, — BI; is positive, as discussed
in Remarks 5.5 and 5.6. Hence, all terms except for the last one are positive in
Eqn. (5.2). A high spring stiffness and high integral terms may destabilize the
system, since ag is generally limited by the capacity of the actuator. Note that the
addition of the physical damping to SEA increases the stability margin allowing

higher controller gains.
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5.1.2 Passivity of Rendering the Kelvin-Voigt Model

Haptic interactions with virtual constraints are commonly implemented with a KV
model of the form Z, = K;/s + By for penalty-based approaches. It has been
established in the literature that SEA under VSIC cannot passively render KV
models [57,59]. In this section, we prove the necessity of physical damping parallel
to the compliant element, and present a set of sufficient conditions to passively
render KV models with SDEA under VSIC.

Invoking Lemma 4.1 on Eqn. (5.1), it is necessary to ensure the positiveness of

the polynomial below for all w € (—o0, 00).
(ByJ*)w' + csw® + cow® + caw® + (BK G I )w? > 0, (5.3)
where

¢s =By(Byks + kg — KqJ P Py) + BaPo P [BF(1+ Py Py) + Byro — KpJ] - (5.4)
¢ =Ky Py PisAK + K7(B + Py,) + BiLyk1 + Byl

— K4By [Py PA(By + B)(u+v) + L(P;, — J1,)]

+ BaK; [P P{K;(1 4+ PyP)—B(p+v)}—L(PL—J1,)]

+ ByBy [B{ PP (1 + v*) — LI} + Lk | (5.5)
cs =K [ AK — KK Py Py(p+ v)| — KyByIL I

+ BoKy[K{P2P}(p* +v*) — I L} — I, 1] + ByB}I I} (5.6)
with AK = Kf — Kd and

k1 = I,,P, — BI,, ko= (B+ P,)— J(u+v),

k3 = (B + Pp) + PpnPkis, ko= (B+ Pp)? = 21,J.

A sufficient condition to satisfy Eqn. (5.3) is to ensure all coefficients in Eqn.s. (5.4)—

(5.6) are non-negative. Then, these conditions together with the stability condition
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in Eqn. (5.2) constitute a set of sufficient conditions for the passivity of SDEA under
VSIC while rendering KV models.

Remark 5.2. For positive realness, it is necessary to ensure the positiveness of the
highest and the lowest-order terms of any polynomial formed by utilizing Lemma 4.1.
Since setting By = 0 makes Eqn. (5.4) negative, the introduction of a damping term
in parallel to the physical compliant element is necessary to render KV models

passively using VSIC.

Remark 5.3. The sufficient conditions given by Eqn.s. (5.4)—(5.6) result in three
linear inequalities in terms of K, and B,;. Increasing K, negatively affects these
conditions, while the effect of By depends on the selection of the system parameters.
By solving these inequalities simultaneously, the most restrictive sufficient condition

that ensures the passivity of the system can be obtained.

5.1.3 Special Cases: Passivity of Linear Spring and Null
Space Rendering

Following the same procedure in the previous subsection, sufficient conditions for
passively rendering pure spring and null-space models can be derived. These con-
ditions are equivalent to the sufficient conditions for KV model rendering when By

and/or K, parameters are set to zero.

Linear Spring Rendering

For By = 0, Eqn. (5.3) is reduced to Eqn. (5.7).

(B J?)w'® + ciw® + ciw® + cw > 0, (5.7)

where
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¢y =B (Bsks + ka — K4J P, P,) (5.8)
¢§ =K PnPiraAK + K;(B + Py,) + Bi L,k + Byl

— K4B¢[PnPi(By + B)(u+v) + (P2 — J1,)] (5.9)
¢ =K L1 AK — KqK P P(p+ v)| — KyByIL L. (5.10)

As in KV model case, for positive realness, it is sufficient to assure Eqn.s. (5.8)—
(5.10) are non-negative. Then, these conditions together with Eqn. (5.2) comprise

a set of sufficient conditions for passively rendering springs under VSIC.

Remark 5.4. Setting a positive integral gain I, in the motion controller is necessary
to passively render any virtual spring K if the integral gain I; of the torque controller
is non-zero. This result is in good agreement with and extends the stiffness rendering
analysis of SEA under VSIC [59]. However, when both integral gains are zero, it is

possible to render a virtual spring and increase the bound on it.

Remark 5.5. As discussed in Remark 5.2, Eqn. (5.10) is a necessary condition to
satisfy Eqn. (5.7) and requires k1 > 0. Therefore, by setting By = 0, it is possible
to derive necessary conditions for the passivity of SEA under VSIC while rendering
a linear spring, as given in [59].

On the other hand, according to Eqn.s. (5.8)—(5.9), SDEA may allow significantly
higher controller gains (i.e., I,, and I;) than those possible with SEA, especially
as the desired spring rate decreases, i.e., AK increases. Furthermore, the upper
bound for pure stiffness rendering remains very close for SDEA and SEA when By
is relatively low. These observations indicate that while SDEA can passively render
a larger range of impedance than that of SEA, it can improve robustness by allowing
higher controller gains. For instance, a higher I,,, gain can significantly improve the
tracking performance and disturbance rejection of the inner motion control loop,
while a proper level of I; may attenuate steady-state errors caused by constant

torque disturbances.
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Null Space Rendering

In this case, setting By = 0 and K; = 0, Eqn. (5.3) becomes as follows.

(B JH)w' + cjw® + cpw® + cjw? > 0, (5.11)
where
cg =B¢(Byks + Ka) (5.12)
cp =K3k3 + BiLuk1 + Byl (5.13)
T (5.14)

Sufficient conditions to render null-space can be claimed if Eqn. (5.2) holds and

Eqn.s. (5.12)—(5.14) are non-negative.

Remark 5.6. While ko > 0 is a sufficient condition for the stability of SEA under
VSIC as presented in [57], this condition has been relaxed in [59] by providing the
necessary condition as k3 = (B + P,,) + P,,Pika > 0. Moreover, in [59], it has
been proven that x; > 0 is a necessary condition, which can also be concluded from

Eqn. (5.14).

Remark 5.7. As noted in Remark 5.6, k3 > 0 and x; > 0 are the necessary and
sufficient conditions for SEA under VSIC to passively render the null space. There-
fore, Eqn. (5.12) extends the SEA condition x3 > 0 if k4 = (B + P,,)? — 2I,,J > 0.

Rearranging this term, one can derive

( m)2
22 = (B+ Bn)” 1
Cl 2]mJ > )

which suggests that if ¢, > v/2 /2, i.e., the inner control loop is overdamped, SDEA
allows for higher controller gains while passively rendering null space. Since all
terms in Eqn. (5.13) are positive, cg is redundant for an underdamped inner loop.

Although an underdamped system makes Eqn. (5.12) of SDEA stricter than the
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necessary and sufficient conditions of SEA, a numerical analysis of necessity reveals
that the sufficiency conditions can be significantly relaxed to provide a larger set of

feasible controller gains compared to the necessary and sufficient conditions of SEA.

5.2 Analysis of Rendering Performance

While the coupled stability of pHRI systems constitutes an imperative design cri-
terion, the performance of these systems are also significant for high-fidelity inter-
actions. Although the analytical sufficient conditions derived in Section 5.1 are
conservative, they provide a guidance in selecting a set of controller parameters that
ensure the passivity. In this section, we enforce the passivity bounds through nu-
merical evaluations and discuss the limits on the integral gains I,,, and I; for SDEA
and SEA. Table 5.1 presents the nominal parameters employed for the numerical

simulations.

5.2.1 Kelvin-Voigt Model

In this subsection, we study KV model rendering with Z, = K;/s + By. Figure 5.2
presents the KV model rendering performance of SDEA for different virtual envi-
ronment parameters. The dashed lines in Figure 5.2 depict the desired impedances,
while the solid lines indicate the output impedances rendered by SDEA under VSIC.

From this figure, it can be observed that, unlike SEA, SDEA can passively render a

Table 5.1: Nominal System Parameters

Param. Description Nominal Value Unit

Ky Stiffness of SDEA 362 N.m/rad
By Damping of SDEA 0.05 N.m.s/rad
J Inertia of the actuator 0.640 1073 kg.m?

B Damping of the actuator 0.169 N.m.s/rad
P, Proportional gain of the motion controller 0.28 N.m.s/rad
I, Integral gain of the motion controller 100 N.m/rad
P, Proportional gain of the torque controller 40 rad/N.m.s
I, Integral gain of the torque controller 70 rad/ N.m.s?
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range of KV models thanks to the parallel physical damping.

5.2.2 Pure Linear Spring

In this subsection, we study the spring rendering with Z, = K;/s. Figure 5.1a
compares the performance of SDEA with SEA under identical parameters.

The phase plots in Figure 5.1a with the same controller parameters show an
improvement in the phase margin of SDEA due to the physical damping, which
allows increased bounds on the controller gains. These plots also indicate that
integral gains [, and I; can be significantly increased for SDEA without violating
the passivity bounds. Higher [,,, control gains improve the tracking performance
and disturbance rejection of the inner motion control loop. Furthermore, the added

physical damping smooths the resonance peaks displayed by SEA.

5.2.3 Null Impedance

In this subsection, we study null impedance rendering with Z, = 0. Figure 5.1b
compares the rendering performance of SDEA with SEA under identical system
parameters. As in the spring rendering case, the physical damper allows signifi-

cantly higher controller gains to be utilized by SDEA without violating passivity.

50 F 20 F T T T
SDEA with Im =300 I| =157
o o 0 SDEAwith | =213 | =70
-~ 0 E m t
= L ° o SEAWIth 1 =2131 =70
3 T 20 n
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(a) Pure stiffness rendering (b) Null impedance rendering

Figure 5.1: Performance comparison of SDEA and SEA under VSIC.
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Figure 5.2: Kelvin-Voigt model rendering of SDEA (solid lines) with the desired
stiffness and damping values (dashed lines).

Furthermore, the physical damping smooths the resonance peaks displayed by SEA.

5.3 Discussion and Conclusion

In this study, we have provided sufficient conditions for the passivity of SDEA under
VSIC while rendering the most commonly utilized linear virtual environment models.
We discussed the effects of the physical damping, plant parameters, and controller
gains within these passivity limitations on the performance of haptic rendering.

It has been well-established in the literature that SEA under VSIC cannot pas-
sively render KV environments [57], while we have shown that the inclusion of
physical damping allows SDEA to passively render KV models. Remark 5.2 proves
the necessity of a physical damping term in parallel to the series elastic element for
the passivity of the device when coupled to a KV model.

Remark 5.4 presents the necessity of the integral gain I,,, of the motion controller
(when I; > 0) to ensure passivity of SDEA under VSIC to render a pure spring.

This result is consistent with and generalizes a similar observation stated for the
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passivity of SEA while rendering a pure spring [59].

We have also shown that the physical damping element By helps improve the
control performance of the system by adding phase lead that can be allocated to
increase controller gains, resulting in a more robust and responsive system.

While SDEA improves Z-width and control performance, it sacrifices ideal de-
coupling of the actuator dynamics under impacts and high-frequency disturbances
at the interaction port. In particular, at the high-frequencies SDEA behaves like
a damper, as can be observed in Figures 5.1a, 5.1b, and 5.2. Therefore, in terms
of safety, low By levels may be preferred to limit the magnitude of impact forces.
Alternatively, the robustness of SEA against impacts may be recovered by SDEA if
the transmitted damping force is mechanically limited, for instance, through a slip
clutch [36].

The frequency-domain passivity analyses are highly valuable as they provide a
fundamental understanding of the underlying trade-offs governing the dynamics of
the closed-loop system. For numerical implementations, less conservative paradigms,
such as time-domain passivity [43]|, complementary stability [4,5], and mixed pas-
sivity and small-gain analyses [27], may be utilized to achieve better performance
while still ensuring coupled stability of interaction.

Our ongoing works include investigating the effect of time delay and discretiza-

tion on our passivity results.



Chapter 6

Two-Port Analysis of SDEA under
VSIC

6.1 Two-Port Model of the System

In this section, we present the two-port dynamic modeling of SDEA under velocity-
sourced impedance control (VSIC). To analyze the coupled stability of SDEA under
VSIC, we model the closed-loop system as a two-port element that is terminated by
a human operator at the input port and a passive (virtual) environment at the load
port.

Selecting the input/output relationship to correspond to that of a hybrid immit-

tance matrix, the two-port model can be expressed as:

Fint hir  hig —Uh
Ve -1 0 F,

where

36
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Virtual Haptic : Human
Environment | Device ,  Operator
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1 1
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Figure 6.1: Re-arranged block diagram of SDEA under VSIC that explicitly depicts
the underlying two-port model

(BfS -+ Kf)(l + Cmp)
(14 CpP)s+ P(Bfs+ Ky)(a+ C,,Cy)
CmeP(BfS + Kf)
(1+ C,P)s+ P(Bss+ K¢)(a+ C,Cy)

hll =

h12 =

In this representation, P denotes the actuator dynamics, C,, and Cy denote
generic motion and force controllers, respectively.

Figure 6.1 presents a re-arrangement of the block diagram in Figure 3.2, such
that the underlying two-port model becomes explicit. For one to one correspondence
Cop = Py + 1= and Cf = Py + L.

with Figure 3.2, one can set P = ﬁw,

6.1.1 Coupled Stability of the Two-Port Network

The two-port model of controlled SDEA, as given in Eqn. (6.1), is neither two-port
passive nor absolutely stable. Rigorous proofs of these facts are presented later in
the manuscript, in Remark 6.1 and Lemma 6.5.

It is well-established in the literature that SEA under VSIC is not one-port
passive while rendering pure springs with spring constants larger than the physical

stiffness of SEA. Furthermore, it has also been shown that SEA under VSIC with
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Virtual Virtual Human

Environment Coupling Operator

(a) Two-port network representation of SDEA under VSIC with a virtual coupler
1

Virtual Virtual Haptic ' Human
Environment, Coupling Device . Operator
0 { J 1
+ 1 d 1
‘T 'Gzz ) + 1 ]
[ + 1
1 1 v,
1 1
1 h ! End-
z, : G, G, 0 1 : Effector
1 | A
1 1
1 1
l 4+ at ot Y E o+
1 Gl2 N hzz C 1 znt)
F ! F, ! A+
ey | F
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(b) Block diagram in Figure 6.1 with a generic virtual coupler

Figure 6.2: The network diagram and the corresponding block diagram of SDEA
under VSIC with a virtual coupler

integral controllers cannot passively render any VE having a KV model [57,59].
Since two-port passive system can stably couple with any passive terminations,
these results serve as counter-examples proving that the SEA under VSIC cannot
be two-port passive.

SDEA under VSIC inherits a version of the physical stiffness upper-bound as
in the SEA under VSIC while rendering pure stiffness. Furthermore, while SDEA
under VSIC can passively render KV models thanks to the addition of damping
element to its physical filter, passivity can be ensured for only a limited range of
KV model parameters. Along these lines, SDEA under VSIC is also not two-port

passive.
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6.1.2 Insertion of the Virtual Coupler

Since the two-port model of SDEA under VSIC is not two-port passive, a virtual
coupler (VC) is introduced before the VE, as suggested in the haptics literature [1,
18]. Figure 6.2 presents the network diagram and the corresponding block diagram
of the system with a VC. The hybrid matrix for the SDEA with a generic virtual

coupler reads as:

Fint hir hio —Up,
Ve Ga1 G F,

where

(BfS + Kf)(l + Cmp(l + GllOf))
(1+CyP)s+ P(Bys+ Kf)(a+ C,,Cy)
G12CC P(Bys + Ky)

(14 CnP)s+ P(Bys+ Ky)(a+ C,Ch)

h12 =

Transfer functions G; represent the two-port model of a generic VC. The trans-
fer function Ggg, virtual environment, and the device are in series, as shown in
Figure 6.3. On the other hand, G1; is parallel to this structure, coupling the ground
of the VE and the device. Transfer functions G5 and Gg; represent the scaling
factors between the forces and velocities, respectively.

Figure 6.3 presents a virtual coupler form that is commonly used in the lit-
erature [1,18,25]. In this model, a physical equivalent for Gas corresponds to a
spring-damper pair (kgo and beg, respectively) in parallel. Since haptic applications
necessitate transferring the mechanical impedance of the VE transparently within
stability regions, a natural selection for Gay would be a stiff coupling. At low fre-
quencies, a stiff koy achieves this goal while, at high frequencies, bys compensates for
the impedance drop of koy. Later, in Section 6.2, we justify this selection in terms
of the coupled stability of the system.

Formally, the mathematical model of this VC used in our analysis is as follows:
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Figure 6.3: Physical equivalent of the presented virtual coupler attached to a virtual
environment (VE is depicted as a spring)

S

Gi=0, Gu=-Gy=1 Gop=—""
11 12 21 22 6228 + kgg

(6.3)

6.2 Two-Port Passivity Analysis

In this section, we present the necessary and sufficient conditions for two-port pas-
sivity for SDEA under VSIC. To improve the readability of the section, we focus on
the main results and present the proofs in the Appendix.

The hybrid matrix for the resulting two-port system can be expressed as:

Fing _ hii hio —Un 7 (6.4)
Ve —1 h22 Fe
where
[ BfM84 + (Bf(B+Pm) + KfM) 53 + (Bf[m +Kf(B+ Pm)) 52 + KfImS
= as8* + as3s® + ag8% + a1s + ag
(6.5)
By Pys® + Bn Py (Ky + By(p+v))s* + ars + a
a48* + azs® + as8* + a1 + ag
S
ha2a (6.7)

- baos + koo



CHAPTER 6. TWO-PORT ANALYSIS OF SDEA UNDER VSIC 41

with
ay = M
as = B+ P,, + By(a+ P, Py)
ay = I;m + K¢(oo + B Py) + By B Pr(p 4 v))
aq :Bf]m]f+KmePf([L+V)
ap = Kf]mlf,
and
L, Iy
= P—m; V= Ff

where hy; and hqs represent the system dynamics, and hgs contains the terms of VC.
Following lemmas are instrumental in the derivation of the necessary and suffi-

cient conditions for two-port passivity for SDEA under VSIC.

Lemma 6.1 ( [13,59]). Let f(s) = ass* + azs® + ass> + a1s + ag for a; > 0 be
the characteristic equation of a fourth-order system. Then, f(s) has no roots in the
open right half plane if and only if a;(asas — ajas) — agaz > 0.

Proof. The proof has been presented in [59]. O

Lemma 6.2. Given a real-rational function

3 2
Z(S) _ S (b3$ + ng + b18 + b()) (68)

ays* + assd + ass? + a1s + ag’

where a; > 0 and b; > 0, Z(s) has a simple, conjugate pair of poles on the imaginary

azis if and only if ai(asaz — ajas) = aga?.
Proof. The proof is presented in Appendix A. n

Lemma 6.3. Consider the system in Eqn. (6.8), where a; > 0, b; > 0, and a;(azaz—
aray) = apai. The residues of the pair of poles on the imaginary azis are positive

and real if and only if both of the following conditions hold.



CHAPTER 6. TWO-PORT ANALYSIS OF SDEA UNDER VSIC 42

(a) a1b3 — a3b1 = (a3b0 — a1b2>a§/(a2a3 — 2@1&4)
(b) Cl1b3 — a3b1 <0
Proof. The proof is presented in Appendix A. m

Lemma 6.4. Let p(x) = psz® + pax® + prx + po be any real polynomial. Then,
p(z) > 0 for all x > 0 if and only if p3 > 0 and py > 0 and one of the following

conditions holds:

(a) pr > 0 and py > —+/3p1ps

(b) o = p3 — 3p1p3 > 0 and pips — Ipop3 < 0 and
(p1p2 — 9170]03)2
o

4pa(p1p2 — Ipops) < 4p1o + 3ps

Proof. Our proof is based on an application of Strum’s theorem and is presented in

Appendix A. An alternative geometric proof can be found in [13]. O

Utilizing Lemmas 6.1-6.4, Theorem 6.1 presents the necessary and sufficient

conditions for two-port passivity for SDEA under VSIC.

Theorem 6.1. Consider SDEA under VSIC as in Eqn. (6.4), where K¢, M, B, P,,, Py, koo
are taken as positive, while By, Iy, I¢,ba are assumed to be non-negative. Then, this

system is two-port passive if and only if Conditions (a)-(c) hold:
(a) The h-parameters have no poles in the right half plane

0 <a3[K;PnPy(pn+ v)(a+PnPy) + Ln(Kyr1+ Byl Iy))

+ ayag By P, Pp(p + v) — ajM.

(b) If hy1, given in Eqn. (6.5), has a pair of poles on the imaginary azis, their
residues are real and positive
(Z) 0< ﬁ = ag(Kf(B + Pm) + Bf[m) — al(BfM) and

(ZZ) B((Igag — 2@1&4) = ((Ig(Kf[m) — (Bf(B + Pm) + KfM))CL%
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(c) The system parameters simultaneously satisfy the Conditions (i) and (ii):

(1) Condition (i1) or (i2) holds:

(i1) 0<ry=Kjks+ Byl + Bk
and
0 < By((B+ Py)* + Bykg — 21,,M) + M\/3B;r,
(12) 0 <p1= B3((B+ Pn)?+ Byrz — 21, M)* — 3B M?r,
and
0 > po= 1By ((B+ Pn)?+ Bprg — 21, M) — 9B 1, M* K}k

and
3BfM2p§

4p2 By ((B + Pp)? 4 Byrg — 21, M) < 4ripy + ;
1

.. K 2
(ii) k3o < 4booly (1, Py — Bly) (Ln—l——észjr) and

0 < bgy < 4By and Condition (iil) or (ii2) holds:
(i) 0 <ty = 4byary + kioma — by (Im + k)
and
0 < dbggry + b2y — k2, M? + M+/3byy
(112) 0 <75 = (4byory + blymo — k2 M?)* — 3M2byymity
and
0 > 7y = t1(dboory + b3yTo — k3 M?) — OM?byoitok:

and

3M2b227'17'42

73

47’4(4()227‘2 + bg27'2 — kIEQMQ) < 4:t1’7'3 +
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where
KR1 = Pf]m - B[f
Ky =B+ P, —M(u+v)
k3 = a(B + Py,) + Py, Prka
T = 4Bf — bzg
7y = 2M (I, + aKy) — (B + P, + aBy)?
ro = By((B+ Py)* + Byrs — 21, M).
Proof. The proof is presented in Appendix A. m

Remark 6.1. Two-port passivity necessitates SDEA, instead of SEA, and a damping
element in the VC. In particular, according to Condition (c-ii) of Theorem 6.1, two-
port passivity of SDEA under VSIC cannot be satisfied if By = 0 (i.e., there exist no
physical damping as in the case of SEA) or byy = 0 (i.e., VC does not incorporate a
virtual damping). In this case, the highest-degree term of Eqn. (A.12) in the proof

of Theorem 6.1 is reduced to
Bf =0 = py = —b§2M2 < 0,

violating two-port passivity. For the second case, the fifth-degree term drops leaving
the highest term as

b22 =0 = —kf;QMQ < O,

resulting in a similar violation.

Remark 6.2. Note that, we made use of Lemmas 4.1 and 6.4 in the derivation of the
necessary and sufficient conditions of two-port passivity of the system. However,
it is possible to obtain simpler, but only sufficient conditions to ensure passivity.
In particular, if the system parameters are selected such that all coefficients of the

polynomial given in Lemma 6.4 are positive, then the polynomial is positive for all
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x. Then, Condition (c¢-i) of Theorem 6.1 is simplified to the following conditions.

I,P

ogro:lf_Tf (6.9)
0<r1:0<Kjrs+ Bpl} + Bk (6.10)
0<ry:0< Byrg+ (B+P,)*—2I,M. (6.11)

Similar considerations simplify Condition (c-ii) to

2
0 < to:kdy < 4byol,,(I,,P; — Bly) (LRJFLZJQ) (6.12)
0 <t :0 < dbyory + kg7 — b3y (L + aKf)? (6.13)
0 < ty:0 < dbyyry + b2gmy — k3, M? (6.14)
0<t3:0< by <4By. (6.15)

Then, sufficient conditions to ensure two-port passivity of the system given by
Eqn. (6.4) can be stated as Conditions (a) and (b) of Theorem 6.1, and Eqn.s. (6.9)
and (6.12). These equations form a set of explicit solutions of the virtual coupler

elements (i.e., koo and byy), which is not available in Theorem 6.1.

Remark 6.3. The integral gain I,,, of the motion controller is necessary so that the
virtual coupler may have a non-zero stiffness koo when the integral gain Iy of the
force controller is non-zero. In particular, it follows from the first condition on koo,
Condition (c-i1) of Theorem 6.1, that if I, = 0, then kg = 0, leaving the virtual
coupler with only a pure damping term bgs. Note that result is in good agreement
with the one-port stiffness rendering analysis [59]. However, when both integral
gains are zero, it is both possible to render a virtual spring and increase the bound

on it.

Remark 6.4. In the analysis of the full-order system, (1 — o) modulates the state-
dependent feed-forward action. In the first condition on kg, in Condition (c-ii)
of Theorem 6.1, if a = 0, then k33 is increased. However, the other equations in

Condition (c-ii) have inverse behavior with this result. Overall, completely canceling
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the physical interaction force affects passivity adversely. Although it is hard to follow
this result through the analytical expressions of Theorem 6.1, a numerical analysis

reveals that there is an optimal value for «, as discussed in Section 6.4.1.

Remark 6.5. In general, Conditions (a)-(c-i) of Theorem 3.2 (excluding the condi-
tions on hgys) are equivalent to those of Theorem 3.1, and lead to one-port passivity
of a system described by hy; coupled to a null environment. Therefore, Conditions
(a)—(c-i) presented in Theorem 6.1 generalize one-port passivity results presented
in [59] for SEA under VSIC. In this equation, if By = 0, one can recover the neces-
sary and sufficient conditions for passively rendering null impedance using the SEA

under VSIC [59].

Remark 6.6. The necessary and sufficient conditions for two-port passivity presented
in Theorem 6.1 can be relaxed by studying absolute stability® given in Theorem 3.3.
Although the equations are hard to interpret, they are useful for numerical imple-
mentation. Numerical comparisons between two-port passivity and absolute stabil-

ity are presented in Section 6.4.

Lemma 6.5. Consider SDEA under VSIC as in Eqn. (6.4), where K¢, M, B, Py, Py, kas
are taken as positive, while I,,, I+ are assumed to be non-negative. Let By be positive
and let Conditions (a)—(c-1) of Theorem 6.1 are satisfied®. Then the two-port model
of the system can not be absolutely stable unless it incorporates a virtual coupler

with some damping (i.e., byy > 0).

Proof. Note that the Conditions (a)-(c-i) of Theorem 6.1 are equivalent to those
of Theorem 3.3, since hoy is already passive. Following Theorem 3.3 for byy = 0,

Condition (c¢-77) can be rewritten as follows.

—Re(hi2ha1) — |highai| > 0.

!The MATLAB code is available in  the  public GitHub  repository
https://github.com/ugurmengilli/SEA-2port-analysis.

2Note that, Conditions (a)—(c-i) of two-port passivity (i.e., Theorem 3.2) and absolute stability
(i.e., Theorem 3.3) are identical in this case.
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We can further simplify this equation by setting hoy = —1:

Re(hlg) Z |h12| = \/Re(h12)2 + Im(hlg)g,

where the only possibility is that the system dynamics comprise pure damping. For
any realistic design, it is not possible to manufacture the system without any mass
or compliance in the system. Hence, in the virtual coupler, the damping element is

required for satisfying absolute stability. m

Lemma 6.6. Consider SDEA under VSIC as in Eqn. (6.4), where Ky, M, B, P,,,, Py, ka2
are taken as positive, while I,,, ¢ are assumed to be non-negative. Let byy be pos-
itive and let Conditions (a)—(c-i) of Theorem 6.1 are already satisfied®. Then, the
two-port model of the system can not be absolutely stable unless it incorporates a

physical coupler with a parallel a damping (i.e., By > 0).

Proof. Note that, the absence of By leads to SEA. Therefore, Conditions (a)-(c-1)
of Theorem 6.1 correspond to the necessary and sufficient conditions for one-port
passivity of SEA rendering null space (see Remark 6.5), as presented in [59]. When
By =0, Condition (c-i-2) of Theorem 6.1 becomes invalid and Condition (c-i-1) is
reduced to

0<7r =(a+PsP,)(B+P,) — MP,P;(n+v). (6.16)

Following Condition (c-ii) of Theorem 3.3 and Lemma 4.1 lead to a polynomial
inequality of the form 0 < 22(psz® + psz* + p3a® + pox® + p1a + po). To ensure the
positiveness of this high-degree polynomial, it is necessary that ps > 0 and py > 0.

However, we can deduce that ps < 0 under the condition given by inequality (6.16):
0> ps = —bsa P Py (P + B) — M(u+v))* — 41 MK, (6.17)

which concludes the proof. O]

To summarize, in this section the necessary and sufficiency conditions are derived

for two-port passivity of SDEA under VSIC. The need for the damping element By in
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SDEA is proven. Furthermore, it is shown that positive bys is necessary for two-port

passivity and stiffness cannot be rendered if I,,, = 0.

6.3 Performance Analysis

While the coupled stability of pHRI systems constitutes an imperative design cri-
terion, the performance of the system is also significant for better behavior upon
interactions. Thus, we determine the analytical equations for the evaluation of
the system performance via transparency and Zy;q, concepts, as described in Sec-

tion 3.3.

6.3.1 Transparency of the Two-Port Network

The two-port analysis enables investigation of the performance for all passive termi-
nations through the use of the transparency concept. One can compare the h-matrix
of the system to ideal transparency (given in Eqn. (3.3)) to assess the frequency-
dependent characteristics of transparency. We have plotted each h-parameter for all
frequencies in Section 6.4 in an attempt to observe the behavior. Furthermore, it is
also possible to investigate it analytically at low and high frequencies.

Using the Eqn (6.4), the h-matrix converges to the following form at high fre-

quencies.

Fn B 0 | |-v
lim |* " = |77 ", (6.18)
57700 Ve —1 1/[)22 Fe

It is desirable to minimize B and maximize by to achieve better transparency at
high frequencies. However, two-port passivity conditions impose an upper bound on
bye that depends on By which cannot be set to zero. Furthermore, ideal transparency
is not achievable at high frequencies, as indicated by hyy = 0.

Note that transparency may not be crucial for frequencies that are over the
force-control bandwidth of the system, while safety is a concern for these frequency

ranges. This transparency analysis indicates that for a safe design, minimizing By
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may help to decrease the magnitude of force transmitted to the operator at high
frequencies. Note that if this is not feasible, the damper force may be mechanically
limited, as proposed in [36].

At low frequencies, h-matrix of the system converge to ideal transparency as:

. Fint O 1 —Up,
lim = . (6.19)
=0, -1 0| | E.

Thanks to the integral gain I of the force controller, ideal transparency is achiev-
able at low frequencies. As the frequency increases, the effect of I; diminishes, and
the proportional gain Py prevails, as shown in Figure 6.5a. Also, virtual stiffness

koo dominates the virtual coupler behavior at low and medium frequencies.

6.3.2 Z-Width of the Two-Port Network

Passively achievable impedance range, Zyiqtn, of the system, together with the mini-
mum transmitted impedance, Z,,;,, are also investigated. The minimum impedance

Zmin for SDEA under VSIC can be computed as

_ ByMs*+[By(B+ P,) + K;M|s* + [Bsl,, + K;(B+ P,,)|s* + K;I,s

Zrnin -
a8t + a3sd + ass? + ays + ag
(6.20)
where ay = M and ag = K;I,,I;. At low and high frequencies,
Hm Zyin = 0 (6.21)
s—0
Slgglo Zmin = DBy (6.22)

These limits recommend low physical damping, By, and high integral gain, I, of
the force controller to achieve low Z,,;, values.

The VC in Figure 6.3 does not affect the Z,,;, of the system. However, if a parallel
compliance G; is employed, then this term increases the minimum impedance Z,,;,.

Achievable impedance range Zyiq for SDEA under VSIC can be computed as
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(bngmePf)S4 + {bgszPf[Bf(,u + I/) + Kf] + k‘gngPmPf}Sg
+ {sz[KmePf(lU/ + V) + Bf]m[f] + bggKf[m[f}S =+ kQQKf[m[f

Zwi -
dih a48° + azs* + a983 + a152 + ags
(6.23)
where ay = M and ay = K¢I,, 1.
Evaluating Eqn. (6.23) at low and high frequencies,

£1_I>I(l) Zwidth — 00 (624)
lim SZWidth = kQQ (625)

s—0
lim Zwidth = 0. (626)

§—00

Eqn. (6.25) indicates that the stiffness transmitted to the operator is bounded at low
frequencies by the stiffness of the VC. Consistent with the transparency analysis,
these results indicate that SDEA cannot render impedances at high frequencies.

In conclusion, poor rendering performance is expected at high frequencies since
SDEA assumes the dynamics of its physical filter for frequencies that are over the

force control bandwidth of the device.

6.4 Numerical Evaluations

In this section, we investigate the effect of VC parameters on the two-port passivity,
transparency, and transmitted impedance of the system. In particular, passivity
bounds derived in Section 6.2 are studied through numerical simulations, considering
the VC in Figure 6.3. VC parameters koy and byy are studied, systematically, to
analyze their individual effects on the system behavior.

Table 6.1 presents the parameter values employed for the numerical simulations.
The system parameters J, B, By, and Ky are determined by system identification.

The control parameters P, and Py are selected based on the physical actuator limits,
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and the integral gains are tuned such that the system exhibits a decent tracking
performance. We ensured that given these nominal parameters, the isolated system
(i.e., hqp) is stable (according to Conditions (a)-(b) of Theorem 6.1), and positive
real (according to Condition (c¢-i) of Theorem 6.1). In the next subsections, any

improved parameter is selected within the constraints of Theorem 6.1.

Table 6.1: System parameters used for the numerical analysis

Param. Description Nominal Value Unit

Ky Stiffness of SDEA 362 N.m/rad
By Damping of SDEA 0.05 N.m.s/rad
J Inertia of the actuator 6.399 10~* kg.m?

B Damping of the actuator 0.169 N.m.s/rad
P, Proportional gain of the motion controller 0.28 N.m.s/rad
I, Integral gain of the motion controller 100 N.m/rad
Py Proportional gain of the force controller 40 rad/N.m.s
Iy Integral gain of the force controller 70 rad/ N.m.s”

6.4.1 Passivity Analysis

Figure 6.4 presents the effect of VC stiffness, koo, and damping, bys, on the system
performance. In these plots, passivity criterion corresponds to the evaluation of
Condition (c-ii) of Theorem 3.2 (given as Eqn. (A.12) in the Appendix) according

to the nominal values in Table 6.1. Since parameters in the table already satisfy
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Figure 6.4: Numerical evaluations of Condition (c-ii) of Theorem 3.2
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Conditions (a)—-(c-i), each line in the plots must remain above zero for the two-port
passivity.

Figure 6.4a reveals that a stiff virtual coupler adversely affects two-port passivity,
causing the passivity criterion becomes negative. The upper bound on ks, as derived
in Section 6.2, can also be observed in this plot. For kg = 408.5 N.m/rad, the system
becomes two-port active. We also note that this value is greater than the physical
stiffness of the SDEA in particular (kg ~ 1.17K), which any known SEA cannot
passively render (see Section 6.4.2 for a detailed discussion).

As presented in Section 6.2, VC damping by, is bounded by 4B;. Figure 6.4b
verifies that the absence or even slightly overuse of bss makes the system two-port
active.

Recall from Section 6.1.2 that kqs is a concave function of by when all other
parameters are held constant (see Conditions (c-i-1) and (c¢-ii-2) of Theorem 6.1).
Therefore, it is possible to compute the bys value that maximizes koy for a given set
of system parameters. Table 6.2 lists the results of several numeric optimizations
conducted for achieving the maximum koo.

In the analysis of the system, (1 — «) regulates the state-dependent feed-forward
term. Counter-intuitively, full cancellation of the physical interaction force adversely
affects passivity, as observed in Table 6.2. Moreover, Conditions (c-ii-1) and (c-ii-
2) of Theorem 6.1 include quadratic terms in « implying a concave behavior in «
similar to the byy case. Therefore, it is possible to maximize koo by selecting both

bao and « optimally. For instance a partial cancellation with o = 0.9, k9o can reach
Table 6.2: Maximum kqy values for the full-order (FO) system with different feed-

forward cancellation ratios compared to that of the FO system analyzed under ab-
solute stability

Optimal b22 Max k’gg

System Configuration [N.om.s/rad] [N.m/rad]
With full feed-forward (a = 0) 0.14 367.0
Without feed-forward (a = 1) 0.17 408.5
With optimal feed-forward (a = 0.9) 0.15 415.5

Without feed-forward (abs. stability) 0.13 432.0
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a maximum stiffness of 415.5 N.m/rad.

For completeness, Table 6.2 provides the maximum achievable kyy value accord-
ing to Condition (c¢-ii) of Theorem 2. Absolute stability analysis can relax the
passivity bounds on ko by 5% compared to the two-port passivity of the system
without the feed-forward cancellation.

In summary, the maximum achievable k5 can be optimized via by and «, subject

to the conditions of Theorem 6.1.

6.4.2 Performance Analysis

In Section 6.3.1, we have analytically studied the transparency of the system at
the limit frequencies. To observe the system behavior at intermediate frequencies,
Figure 6.5a plots the parameters of the h-matrix. Among these, hy; and hoy are
the parasitic terms, and it can be observed that the transparency decreases as the
frequency increases.

Increasing Iy and kg improve the performance at low frequencies by decreasing
parasitic effects due to hy; and hgy, respectively. However, Iy possesses an upper
bound due to Condition (c-i) of Theorem 6.1. On the other hand, I,,, slightly reduces
the mid-frequency magnitudes of h;; while considerably enhancing k53**. In general,
all proportional gains and damping terms (i.e., By and B) smooth out and push the
peaks of the plots to higher frequencies. However, By dominates the high-frequency
response, distorting the transparency.

On the other hand, « affects neither magnitude nor phase of hy; and his. How-

ever, the optimal selection of «v increases the k5™, which improves the overall trans-

parency of the system.

Null Impedance Rendering

In this subsection, we study null impedance rendering, i.e., Z, = 0. In this case,
Zto in Eqn. (3.4) reduces to hy;. Therefore, the following analysis appends to the

comments on hj; in the transparency analysis.
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Figure 6.5: Performance of the two-port passive SDEA under VSIC

Figure 6.5b compares the null impedance rendering performance of the inves-
tigated SDEA and the SEA in [59] under nominal system parameters. The phase
plot of the figure exposes the improvement in the phase margin of the system due
to the added parallel damping, which, in turn, grants increased bounds on the con-

troller gains. In particular, higher [, values can significantly improve the tracking
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performance and disturbance rejection of the inner motion control loop, such that
the inner motion controller can act as an ideal motion source within the control
bandwidth. Furthermore, physical damping smooths the resonance peak that exists
with SEA.

On the other hand, SDEA acts as a damper at high frequencies while SEA acts
as a spring. For the safety of interaction, it may be necessary to mechanically limit

the interaction forces while utilizing SDEA.

Spring Rendering

In this subsection, we study the case of pure spring rendering, i.e., Z, = K./s. The
impedance functions transmitted to the user under different virtual stiffness values
are depicted in Figure 6.5¢ for the virtual coupler with ks = 415 N.m/rad and
by = 0.15 N.m.s/rad.
Recall from Figure 6.3 that the virtual environment comprises the desired impedance
and the VC. Therefore, for a virtual spring and an ideally transparent device, the
Koz Ke

operator would feel an equivalent spring of stiffness K., = 225, Then, it is pos-

sible to calculate the stiffness of the reference environment corresponding to the

desired stiffness by solving the following equation for K..

koo K
K- _eelid

_ fmfa 6.27
= o — K (6.27)

where K is the stiffness of the reference environment to render the desired stiffness,
K4. However, since the environment is passive, Ky < kg9, noting that:

lim K] — oc. (6.28)

Kd*)kQQ

Although two-port passivity allows all possible passive environments (even with
unbounded parameters), Eqn. (6.27) reveals that the VC practically limits the ren-
dering performance. Figure 6.5¢ verifies that, due to Eqn. (6.27), the SDEA can

deliver the desired stiffness values below that of kes and saturates at koo for higher
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Figure 6.6: Kelvin-Voigt model rendering of the SDEA (solid lines) with the desired
stiffness and damping values (dashed lines).

K7 values (green dashed line in Figure 6.5c¢).
Figure 6.5d compares the performance of the SDEA with the SEA under identical
system parameters. Thanks to the physical damper, SDEA can passively render a

virtual spring five times stiffer than that of SEA can passively render.

Kelvin-Voigt Model Rendering

In this subsection, we study KV model rendering, i.e., Z. = K./s + B.. Figure 6.6
presents the KV model rendering performance of SDEA, given different environment
parameter selections.

Note that the equivalent stiffness model introduced in the previous subsection is

also valid in this model.
B = M, (6.29)
bas — Ba
where B! is the reference environment damping to render the desired damping, By.
As in the case of pure stiffness rendering, the maximum virtual damping is also

limited by the damping of the VC. Similarly, the operator would feel the equivalent
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damping of the environment at high frequencies.

6.5 Discussion

In this section, we review the results of the two-port passivity of SDEA under
VSIC with VC and present general design guidelines. We discuss the effects of the
physical damping, virtual coupler, plant parameters, and controller gains in terms
of the performance of haptic rendering within the two-port passivity limitations.
Independent of the application, it is generally a good practice to select high
proportional gains that would not saturate the actuators within a reasonable range
of frequencies [57], improving both stability and performance. The following remarks

present the trade-offs in the design procedure.

6.5.1 The Necessity of Physical Damping

It has been well-established in the literature that SEA under VSIC cannot render the
KV environment passively [57]. The inclusion of physical damping is crucial in that it
enables SDEA to achieve KV model rendering while preserving one-port passivity.
Remark 6.1 in Section 6.2 highlights that physical damping is also necessary to
realize the two-port passivity of the device together with a VC.

The choice of the magnitude of By affects the high-frequency response, as pre-
sented in Figures 6.5b, 6.5d, and 6.6. In particular, the safety of interactions requires
low By to limit the magnitude of impact forces. However, this also reduces the max-
imum byy that the VC can employ, which limits the maximum ko5 and the rendering
performance. Therefore, one possible design strategy would be to select the max-
imum By that is acceptably safe for the application and iteratively trade-off the

safety until the rendering performance becomes satisfactory.
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6.5.2 The Necessity of Integral Gain of the Motion Con-

troller

Section 6.2 proves that the integral gain I,,, of the motion controller is necessary for
the virtual coupler of SDEA under VSIC to have a non-zero stiffness. As discussed
in Remark 6.3, this result is in good agreement with the one-port passivity analysis
in [59] concluding that SEA cannot render a virtual spring when I,,, = 0.

Note that the spring of the VC is not necessary for the passivity of the system
while its magnitude sets an upper bound on the stiffness range that the device can
display at low and intermediate frequencies. Moreover, the first term in Condition
in (c-i1) of Theorem 6.1 implies that I; < I,,P¢/B, requiring high values of I, for
high ;.

6.5.3 The Effect of Virtual Coupler and System Dynamics

on Two-Port Passivity and Transparency

We have shown in Section 6.2 that the damping bss of the VC must be positive for
the two-port passivity of the system and has an optimal value for maximizing the
stiffness koo of the VC, as captured by Conditions (¢-i7) of Theorem 6.1. Such an
optimization is valuable if the controller gains and system parameters do not display
large changes.

Transparency and Z;qin analyses indicate that koy should be selected as stiff as
possible, as the maximum achievable impedance transferred from the environment
to the operator is dominantly limited by kss. Especially, large K¢ and I,,, enhance
k3. Furthermore, null impedance rendering performance determines the minimum
impedance Zy,, of the system. In particular, increasing /; and I, improve Z;, at
low and intermediate-frequencies, respectively, as shown in Figure 6.5a. However,
increasing I decreases kyy™.

As the state-dependent feed-forward compensation increases (i.e., as « decreases),

the overall damping of the system deteriorates because « almost always acts as a
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booster of by in Condition (c-ii) of Theorem 6.1. Therefore, the maximum value of
koo also decreases. In particular, VC stiffness, koo, is a concave function of o when
all other parameters are kept constant, as discussed in Section 6.4. As in the case
of by, optimization of this parameter while keeping all other parameters constant

may improve the rendering performance, as evidenced in Table 6.2.

6.6 Conclusion

We have provided the necessary and sufficient conditions for two-port passivity of
SDEA under VSIC. Based on the newly established conditions, we have derived
non-conservative passivity bounds for a virtual coupler. We have also proved the
necessity of a physical damping term in parallel to the series elastic element to
ensure two-port passivity (and absolute stability), even when a virtual coupler with
a damping element is present. The physical damping element helps improve the
control performance of the system, increasing the limits on the controller gains and
the maximum stiffness of the virtual coupler. Furthermore, we have proved that,
unlike SEA, SDEA can passively render virtual springs that are stiffer than the
physical elastic element employed.

We have shown that feed-forward cancellation of the interaction force may dete-
riorate the upper limit on the stiffness of the virtual coupler.

Future works include an extension of these results to other control architectures

and more general virtual coupler models.



Chapter 7

Experimental Evaluations

This chapter presents the experimental verification of the passivity bounds of SDEA
under VSIC and a comparative study with SEA when convenient. The following
section describes the physical setup and hardware properties. Since the analytic
results derived in previous chapters require a good knowledge of the system, we first
identify the physical properties of the setup, then provide an experimental procedure

to validate the one-port and two-port passivity of the interaction system.

7.1 Experimental Setup

The test setup is designed [8] as a typical force-sensing SEA (the spring location is
after the transmission, as categorized in [41]) and extended to an SDEA, as shown in
Figure 7.1. A high-torque brushless DC motor (1) actuates the system through a se-
ries of transmission elements. The capstan drive (3, 4) allows passive back-drivability
with minimum friction but requires more space for higher reduction. Inserting the
low-reduction gearbox (2) preserves the back-drivability at an acceptable level and
increases the torque capacity with a more compact design. Four cross-flexure leaf
springs (5) connects the load-side capstan drum (4) and the end-effector (7). We
implemented the Eddy-current method to create a contactless linear damping par-

allel to the spring. An aluminum plate (8) and magnet holder (9) are attached to

60
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the end-effector (7) and the load-side drum (4), respectively, so that the relative
motion between the plate and the magnets produces damping. In general, the user
is expected to interact with the device through the end-effector. We also placed an

extra F/T sensor (10) and a rotary encoder (11) on the end-effector to identify the

spring rate and the damping ratio and validate the passivity of the interaction port.

(a) The electromechanical and hardware (b) Removing the magnet plate (9) from the
components of the series damped elastic ac- load-side drum (4), the system becomes a
tuator used in the experiments series elastic actuator.

Figure 7.1: Components of the experimental setup: Brushless DC motor (1), gear-
box (2), motor-side capstan drum (3), load-side capstan drum (4), cross-flexure
leaf springs (5), linear encoder measuring the spring deflection (6), end-effector (7),
aluminum plate of eddy-current damper (8), permanent magnets and the holder
plate (9), force/torque sensor for parameter estimation (10), rotary encoder measur-
ing the end-effector angle for validations (11), motor driver (12), industrial PC (13).
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The actuator is torque controlled using a high-speed MAXPOS Positioning Con-
troller and can be commanded at a 10 kHz sampling rate. Therefore, all sensors
read data at 10 kHz. The impedance, force, and velocity control loops run and
update the actuator command 1 kHz unless specified otherwise. Due to the higher
sensor rate, the noisy velocity measurements can be filtered with a high cutoff fil-
ter as investigated in [11]. Chawda, Celik, and O’Malley have reported in their
study that the Z-width performance of a haptic device can peak using the finite
difference method (FDM) cascaded with a seconder-order Butterworth filter with a
cutoff frequency around 1.5 kHz. Therefore, we also filter all velocity signals in our
controllers using FDM + filter at 1 kHz, which has performed decently compared
to other sophisticated algorithms in [12].

7.1.1 System Identification

The passivity conditions presented in previous chapters require estimations of the
reflected inertia and damping of the actuator and spring and damper of the physical
filter. In series elastic actuation, it is possible to reduce the number of unknowns
by isolating a component or a unit from the others without disassembling the sys-
tem. However, we will present a procedure during the assembly. Therefore, the
identification of the system in this work is twofold: parameter estimation of the
actuation unit (i.e., the DC motor and the transmission elements) and that of the
elastic coupling (i.e., the spring and eddy-current damping). Table 7.1 presents the

results obtained in the following subsections.

Table 7.1: Estimated system parameters. All values are reflected to load-side.

Param. Description Estimated Value Unit

Ky Stiffness of SDEA 409 N.m/rad
By Damping of SDEA 0.08 N.m.s/rad
J Inertia of the actuator 0.8110 kg.m?

B Damping of the actuator 1.2605 N.m.s/rad
r Gear ratio 38.91 —
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Reflected Inertia and Damping of the Actuator

A common approach for the parameter identification of linear actuators is to measure
the system response to sinusoidal inputs at the frequencies of interest [9] or a chirp
signal swiping a frequency range continuously [59] and fit a transfer function model
to the collected data given the number of poles and zeros. This procedure has
become more convenient as third-party software is available with powerful preset
algorithms.

If the workspace of the actuator is sufficiently large and the motor torque mea-
surements are available, it is also possible to estimate the damping and inertia of the
system separately. Knowing that the inertial effects diminish at constant velocities,
the following relation holds.

(7.1)

where T; is the actual motor torque and v; is the actual motor velocity, both mea-
sured at the i*® sample time and B; is the estimated motor damping at the same
sample time. The motor target speed was set between 5 — 170 rad/s with 5 rad/s
increments, covering the whole speed range of Maxon EC90. The procedure was con-
ducted twice in the forward direction and twice in the backward direction. A Weibull
function of form B (v) = abv®~ exp(—av®) has been fit on each experiment (ad-
justed R? > 0.9020, RMSE < 0.0013) using MATLAB Curve Fitting Toolbox, as
shown in Figure 7.2. Although model parameters were slightly different in the for-
ward and backward directions, we used the average of four experiments. In the pas-
sivity analysis, however, we selected the minimum damping value around the maxi-
mum velocity that our system can reach under load: B, = (8.3260)10~* N.m.s/rad
at 150 rad/s. For varying damping, further underestimation can provide additional
robustness against parameter uncertainties [46].

To estimate the inertia, we provided a ramp input and employed the following



CHAPTER 7. EXPERIMENTAL EVALUATIONS 64

0.03

Estimated damping
Weibull fit

o
o
N
3

0.02

o
o
—_—
w

0.01

Estimated motor damping [Nms/rad]

o
o
o
o

0 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

Velocity [rad/s]

Figure 7.2: The cumulative damping in the actuator and the gearbox depends on
the velocity. Among the curve models in MATLAB Curve Fitting Toolbox, Weibull
model fits the best (Adjusted R? = 0.9112, RMSE = 0.0012).

relation using the Weibull function of the damping.

J; = al (T; — B™(vf)vf) (7.2)
i

where T; is the actual motor torque and v is the actual velocity filtered at 1 kHz in
the new ramp experiments. Bfit(v%) is the estimated Weibull function and evaluated
at the actual filtered velocity of the i*" sample time and a; is the offline differen-
tiation of the actual filtered velocity at the same sample time. The motor target
speed was set between 0 — 170 rad/s increasing and decreasing at a constant rate
of 2 and 4 rad/s?. The procedure was conducted four times for each ramp input.

A straight line of form Ji(¢) = pit + po has been fit on each experiment (adjusted
R?* =1, RMSE < 0.064) with bisquare weights for robustness against the noise and
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Figure 7.3: The cumulative inertia in the actuator and the gearbox is constant. The
negative values were considered outliers. A first-order polynomial were used where
the slope of the lines were always approximately zero (Adjusted R?* = 1, RMSE
= 0.0092).

outliers. Figure 7.3 shows one of the experimental data and the resulting fit. In all
experiments, the parameter p; was at least three orders of magnitude less than pg
such that the fit is almost constant, as expected. We used the average values of py in
all eight experiments as the estimated motor-side inertia: J,,, = (3.7498)10~* kg.m?
which is 72% of the expected inertia given the manufacturing and CAD data. Since
overestimation of the inertia is suggested for robustness against parameter uncer-
tainties [46], we used the manufacturing data as the motor-side reflected inertia:

T = (5.3569)10~* kg.m?.

Stiffness and Damping of the Physical Filter

Identification of the stiffness and damping is relatively more straightforward than

that of actuator parameters. The stiffness is estimated by applying known forces at
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Figure 7.4: Validation of the torque estimation measuring the spring deflection.

the end-effector and measuring the deflection. We applied several constant forces on
the force/torque sensor and estimated a joint torque constant of X = 409 N.m/rad.
Figure 7.4 shows a validation data under slightly changing torque inputs.

The eddy-current damping depends on the distance between the aluminum plate
and the magnets. Therefore, we prepared a test setup where the magnet plate is
grounded at a chosen distance, as shown in Figure 7.5a. The aluminum plate is
rotated by manually manipulating the end-effector, and its velocity is measured by
the rotary encoder attached to the shaft of the end-effector, as shown by (11) in
Figure 7.1. The force/torque sensor measures the reaction force due to the torque
generated by the damping. Figure 7.5b shows the estimated damping for a distance
of 15.3 mm between the plates (not from the aluminum plate to the magnets). The
spikes in the figure correspond to the instants where the estimated velocity is close
to zero, or other discretization effects prevail.

Table 7.2 lists all estimated values including the values corresponding to the
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Figure 7.5: Estimation of the filter damping of SDEA. For this dataset, it is safer
to underestimate the damping value as B = 0.08 N.m.s/rad.

other distances. Given these values, we select a plate distance of 15.3 mm and a

damping value of 0.08 N.m.s/rad.

7.2 Verification of the Passivity Bounds

This section is not completed due to the pandemic conditions. However, the reader
is referred to the online version of our studies [44], which will be updated upon

completion of the experiments.

Table 7.2: Estimated damper values. The distances are measured between the two
plates. Magnet tips are approximately 12.5 mm closer to the aluminum plate.

Distance [mm] Value [N.m.s/rad] Adj. R? value RMSE
14.5 0.09859 0.3772 0.008559
15.3 (Test 1) 0.08493 0.3055 0.010640
15.3 (Test 2) 0.08681 0.4256 0.007813
16.1 0.07262 0.3625 0.010210




Chapter 8

Conclusion and Future Work

In this study, we have provided sufficient conditions for the one-port passivity of
SDEA under VSIC while rendering the most commonly utilized linear virtual envi-
ronment models. We discussed the effects of the physical damping, plant parameters,
and controller gains within these passivity limitations on the performance of haptic
rendering. We have also shown that the physical damping element helps improve
the control performance of the system by adding phase lead that can be allocated
to increase controller gains, resulting in more robust and responsive control.

We have also provided the necessary and sufficient conditions for the two-port
passivity of SDEA under VSIC. Based on the newly established conditions, we
have derived non-conservative passivity bounds for a virtual coupler. We have also
proved the necessity of physical damping parallel to the series elastic element to
ensure two-port passivity (and absolute stability), even when a virtual coupler with
a damping element is present. The physical damping element helps improve the
control performance of the system, increasing the limits on the controller gains and
the maximum stiffness of the virtual coupler. Furthermore, we have proved that, un-
like SEA, SDEA can passively render virtual springs stiffer than the physical elastic
element employed. We have shown that feed-forward cancellation of the interaction
force may deteriorate the upper limit on the stiffness of the virtual coupler.

The frequency-domain passivity analyses are highly valuable as they provide a

68
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fundamental understanding of the underlying trade-offs governing the dynamics of
the closed-loop system. For numerical implementations, less conservative paradigms,
such as time-domain passivity [43], complementary stability [4,5], and mixed pas-
sivity and small-gain analyses [27] may be utilized to achieve better performance
while still ensuring coupled stability of interaction.

Our ongoing works include investigating the effect of time delay and discretiza-
tion on our passivity results. Future works include an extension of these results to

other control architectures and more general virtual coupler models.



Appendix A

Proofs of the Two-Port Analysis

Proof of Lemma 6.2. If all the terms in any row of a Routh array are zero, then the
characteristic equation has a pair of roots on the imaginary axis, and this special

case may only occur at the odd-degree polynomial rows [48].

S ay a2 Qg
83 as aq

2
s (agasz — ayayq)/as agp

st [ai(agas — araq) — apa?] /(asas — ajayq)

S ag

Since a; > 0, the s*>-row cannot become zero. The only possibility is to have a; (azaz—

aiay) — apa2 = 0 in the s'-row, which completes the proof. O

Proof of Lemma 6.5. Since a1 (agas—ajaq) = aga?, the impedance function Z(s) has
a pair of poles as given by Lemma 6.2. Solving the auxiliary polynomial such that

G203 — A1Q4 o

fa(s): S +CLO:0,

as

the roots are found to be at s = 4+jp where
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Qpas
P=\
G203 — A104

For the residue, r, to be positive and real,

2(bsa; — b
Im(r) = 0: boa3 + baai — byarag = a15(bgs = b1dg)

(A.1)

o203 — 2@1@4
b1a3 - bgCLl

Re(r) >0: ———— > 0. (A.2)

o0z — 2a1Qy4
3

We notice that Eqn. (A.2) appears at the right-hand side of Eqn. (A.1). Then, we
can conclude the conditions given by Lemma 6.3.

Similar analysis shows the same results for s = —jp. O

Proof of Lemma 6.4. Application of the Sturm’s theorem results in the sign table

below.
Ny Ny Ny N3
£ =0 | sign(po) | sign(pr) | sign(as) | sign(cy)
x — 00 | sign(ps) | sign(ps) | sign(oz) | sign(o1)

where

o1 = —4p105 — 3p3o; + Ap20309
09 = p% — 3psp1

03 = p1p2 — Ipops.

Non-negativeness of the polynomial p(z) allows roots of even multiplicity on
the x-axis. However, proving positiveness of the polynomial provides the non-
negativeness at the limits of the derived conditions. Therefore, without loss of
generality, the following proof ensures p(x) does not have real roots.

Non-negativeness of p(z) at the boundaries of x € [0, 00) requires that py > 0.
Given p3 > 0, all possible conditions that will result in an equal number of sign

changes in the Sturm’s sequence may be summarized as follows.
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(1) if pp > 0 and o9 < 0 and (o3 <0V oy <0),
(2) if po > 0 and o9 > 0 and one of the following holds

(1) p1>0A03 >0,

(11) (p1>0\/0'3<0)/\0'1<0.

In Condition (1), rearranging oo < 0 as 0 < p3 < 3pyps implies p; > 0 and
—/3p1p3 < pa < /3pips. To simplify the analysis, we can consider positive and
negative cases of py separately. If po < 0 then o3 = pips — Ipops < 0, which is
sufficient for Condition (1) to hold. On the other hand, if p, > 0 then we can
rewrite o7 < 0 as o3 > (4p105 + 3p303)/(4pa0s). Note that, the right hand side
of the inequality is always negative since p; > 0, po > 0 and o, < 0. Therefore,
Condition (1) and positive realness are satisfied regardless of the signs of oy and o3

if

—/3p1ps < p2 < /3pips. (A.3)

In Condition (2), rearranging oo > 0 as p3 > 3pips implies py < —+/3pips or

p2 > /3p1ps if p1 > 0; otherwise, py € R.
Condition (2-i) requires ps > 9pops/p1. However, Condition (2) and Eqn. (A.3)

may be merged as follows

p1 = 0N —+/3p1p3 < po,

which is sufficient to satisfy the requirement in Condition (2-i). Condition (2-ii) is
equal to 03 < 0 Aoy < 0, since p; > 0 does not introduce any additional restriction.

This completes the proof. O

Proof of Theorem 6.1. Condition (a) of Theorem 3.2 requires the Routh-Hurwitz

test on the diagonal elements of h-matrix. hgs is selected as passive; therefore, it is
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stable. The characteristic equation of hq; is of the form considered in Lemma 6.1.

Then, the system is stable if and only if the following condition holds.

0 <as [K;PnPr(p+v)(a+ PuPy) + Ln(Kpk1 + Byl y)]

+ araz By P Py(pu + v) — ai M. (A.4)

In the case of Eqn. (A.4) is satisfied as equality, h1; has a pair of conjugate poles
at the imaginary axis. For Condition (b), the following conditions ensure positive

and real residues at those poles.

0<p :[Kf(B+Pm) +ijm][B+Pm +Bf(Oé+PmPf)}

— ByM[Bylnly + Ky Py Py(p +v)] (A.5)

B{as(Ln + Kpo+ PPy [Ky + Bp(p+ v)]) — 2M Byl Iy + KPPy 4 v)]}.
(A.6)

For Condition (c-i), positive realness of hgy is already assured by selection. On
the other hand, Re(hq1) is reduced to the inequality below by Lemma 4.1, followed
by the substitution of w? by .

0 < ByM?z" + Bf[Byrs + (B + Py,)* — 21, M]2®

+ (K}ks + Byl + Bilnky) @* + I, Kk x, (A7)

where
K1 = Pf]m - BIf (A8)
ky =B+ P, — M(p+v) (A.9)

k3 = (B + Py,) + Py, Prks. (A.10)
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Eqn. (A.7) is of the form r(z) = x (r32® + rox® + riz + o) for z > 0. Then,
Lemma 6.4 ensures 7(x) > 0 for z > 0 providing the necessary and sufficient condi-

tions for rsa® + rex® + 11z + 9. Lemma 6.4 requires that o > 0, which implies

etk )

Immediately following Lemma 6.4, we find the inequalities given in Condition
(c-1) of Theorem 6.1.
Following the same steps as presented above, Condition (¢-ii) leads to the poly-

nomial below.

0 §T1b22M2$5 + (4b22’l”2 + b%QTg — k’§2M2).CE4

+ [Abaory + k3972 — b3y (I + aKf)?] @ + [Abga K7 iy — kiy (I + K f)?] 22,

(A.12)

where
1 = 4B — by (A.13)
7y = 2M (I, + aKf) — (B + P, 4+ aBy)*. (A.14)

Eqn. (A.12) is of the form t(z) = 22 (t32° + to2® + t1x + 1) for z > 0. Since

Lemma 6.4 assumes t3 > 0 and requires tg > 0 we have

0 Sto = 4b22KJ%ImKJ1 - k;g(Im + OéKf)2. <A16>

Although the condition t3 > 0 allows negative byy values, ty > 0 eliminates the
non-positive region. Note that, in Eqn. (A.16), the first monomial should compen-
sate for the negative effect of the second. Then, x; must be greater than some

positive constant, dictating more strict condition than Eqn. (A.11).



APPENDIX A. PROOFS OF THE TWO-PORT ANALYSIS 75

Immediately following the other conditions of Lemma 6.4, we find the inequalities

given in Condition (c-ii) of Theorem 6.1. This completes the proof. O
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