
MOLECULAR LEVEL UNDERSTANDING OF THE FUNCTIONALITY OF PDZ3 

VARIANTS VIA ADVANCED ALL-ATOM SIMULATIONS AND DYNAMIC 

RESIDUE NETWORK ANALYSES 

by 

TANDAÇ FÜRKAN GÜÇLÜ 

Submitted to the Graduate School of Engineering and Natural Sciences 

in partial fulfillment of 

the requirements for the degree of 

Doctor of Philosophy 

Sabancı University 

May 2021 



MOLECULAR LEVEL UNDERSTANDING OF THE FUNCTIONALITY 

OF PDZ3 VARIANTS VIA ADVANCED ALL-ATOM SIMULATIONS 

AND DYNAMIC RESIDUE NETWORK ANALYSES 

 

APPROVED BY: 

 

     

  

    

  

     

 

    

 

    

 

     

 

 

DATE OF APPROVAL:   17/05/2021 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Tandaç Fürkan Güçlü 2021 

ALL RIGHTS RESERVED 

  



iv 

 

ABSTRACT 

 

MOLECULAR LEVEL UNDERSTANDING OF THE FUNCTIONALITY OF PDZ3 

VARIANTS VIA ADVANCED ALL-ATOM SIMULATIONS AND DYNAMIC 

RESIDUE NETWORK ANALYSES 

Tandaç Fürkan Güçlü 

Molecular Biology, Genetics and Bioengineering, Ph.D. Thesis, 2021 

Thesis Supervisor: Canan Atılgan 

Thesis Co-supervisor: Ali Rana Atılgan 

Keywords: PDZ3 domain, Molecular Dynamics, Free Energy Perturbation, Graph Theory 

Girvan-Newman Algorithm.  

The third PDZ domain of PSD-95 (PDZ3) constitutes a common model to study single 

domain allostery without significant structural changes. In PDZ3, H372 directly connected 

to the binding site and G330 holding an off-binding-site position, were designated to assess 

the effect of mutations on binding selectivity. It has been observed that the H372A and 

G330T-H372A mutations change ligand preferences from class I (T/S amino acid at position 

-2 of the ligand) to class II (hydrophobic amino acid at the same position). Alternatively, the 

G330T single mutation leads to the recognition of both ligand classes. We have performed a 

series of molecular dynamics (MD) simulations for previously mentioned PDZ3 variants in 

the absence and presence of both types of ligands. With the combination of free energy 

difference calculations and a detailed analysis of MD trajectories, binding behavior of PDZ3 

mutants, as well as their effects on ligand selection and binding affinities are explained. To 

scrutinize the residue-by-residue interaction we employ graph theory, and we assess 

dynamical community composition by using Girvan-Newman algorithm. We find that the 

highly charged and distal N-terminus share the same community with the ligand in the 

functional complexes. N- and C-termini of PDZ3 share communities, and α3 acts as a hub 

for the whole protein by sustaining the communication with all structural segments. Thus, 

ligand binding fate in PDZ3 is traced to the population of community compositions extracted 

from dynamics despite the lack of significant conformational changes.  
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ÖZET 

 

ATOMİK ÇÖZÜNÜRLÜKTE BENZETİMLER VE DİNAMİK AMİNO ASİT ÇİZGE 

ANALİZLERİ KULLANILARAK PDZ3 VARYANTLARININ FONKSİYONUN 

MOLEKÜLER SEVİYEDE ARAŞTIRILMASI 

Tandaç Fürkan Güçlü 

Moleküler Biyoloji, Genetik ve Biyomühendislik, Doktora Tezi, 2021 

Tez Danışmanı: Canan Atılgan 

Tez İkinci Danışmanı: Ali Rana Atılgan 

Anahtar kelimeler: PDZ3 proteini, Moleküler Dinamik, Serbest Energy Sarsımı, Çizge 

Kuramı, Girvan-Newman Algoritması 

PSD-95 yapısının üçüncü PDZ proteini (PDZ3), önemli yapısal değişiklik göstermeden 

sergilediği alosterik özelliğinden ötürü sık kullanılan bir model proteindir. PDZ3 proteininde 

H372 ligand bağlanma bölgesiyle direkt ilişkili, G330 ise bu bölgeden uzakta yer alır; her iki 

amino-asit bölgesi de mutasyona uğradığında, ligand seçimini etkiler. Literatüre göre, 

H372A ve G330T-H372A mutasyonları sınıf I’den (ligandın -2 pozisyonundaki T/S 

rezidülerine karşı gelen) sınıf II’ye (aynı pozisyonda hidrofobik rezidü) dönüşen ligand 

bağlanmasına sebep olurken, G330T tekli mutastonu her iki liganda da bağlanmayla 

sonuçlanır. Bu olguyu araştımak için, ligandsız ve iki liganda bağlı her yapı için moleküler 

dinamik (MD) benzetimleri yürüttük. MD yörüngelerinin detaylı analizleri ve serbest enerji 

farkı hesaplamalarıyla birlikte PDZ3 mutant yapılarının ligand bağlanma davranışı ve seçimi 

açıklandı. Rezidüler arası etkileşimi araştırmak amacıyla, çizge kuramını kullandık ve 

çizgelerdeki komünite yapılarını ve içeriğini Girvan-Newman algoritmasıyla inceledik. 

Yüklü yapısıyla N-ucunun, fonksiyonel PDZ3 komplekslerinde, ligand ile aynı komünitede 

daha çok zaman geçirdiğini tespit ettik. N ve C uçları yüksek oranda aynı komünitede 

bulunmakta ve α3 de bir merkez gibi davranarak tüm iç iletişimi sağlamaktadır. Sonuç olarak, 

PDZ3 proteninin ligand seçimi, büyük yapısal değişiklikler göstermemesine rağmen, 

komünite yapılarıyla açıklandı. 
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1. INTRODUCTION 

 

 

1.1 The third PDZ domain of PSD-95 Complex 

 

PDZ domains are abundant in various complexes, and the well-studied PSD-95 is from the 

MAGUK family with a PDZ-SH3-GK pattern. The third PDZ (PDZ3) domain of this 

complex is important for the formation of this supramodule and its binding to C-terminal 

ligands.1-6  Most of the PDZ domains have two -helices and six -strands. However, PDZ3 

is unique with an extra -helix (α3) located at its C-terminus. α3 has been shown to be 

important in the folding of PDZ3 as well as its interactions with SH3 and ligands.1, 5, 7-11 

The structure of wild-type (WT) PDZ3 has been solved with its cognate ligand CRIPT;12, 13 

it has been demonstrated that PDZ3 binds specific motifs of ligands.14 The ligands are 

classified by amino acid type at the second position from the C-terminus (-2 position), with 

those having Thr/Ser defined as Class-I; this class contains CRIPT.13 Class-II has 

hydrophobic, and Class-III has Asp/Glu amino acids at this position.14 

In this thesis, we focus on the WT, G330T, H372A and G330T-H372A (double mutant, DM) 

variants in complex with the ligand CRIPT (L1) and its T-2F form (L2).
15-17 These theoretical 

variants of PDZ3 have been investigated by using mutational scans, their functionality have 

been assessed by experimental binding constants, and their crystal structures have been 

deposited.16-19 In an elegant work on PDZ, Raman et al. have shown that the adaptive 

evolutionary pathway for switching ligand binding from Class I to Class II utilizes a class 

bridging mutation such as G330T while the H372A mutation may only be gained at a second 

step.17 Hence, the binding experiments display that the WT forms a functional complex only 

with L1 (Figure 1.1a). On the other hand, the G330T single mutant prefers binding to both L1 

and L2 (Figure 1.1b); however, H372A single mutant and DM proteins favor only L2-binding 

(Figure 1.1c, d).16 Thus, of the eight possible complexes, WTL1, G330TL1, G330TL2, 

H372AL2 and DML2 are functional, while WTL2, H372AL1 and DML1 forms are unfavorable.  



18 

 

 

Figure 1.1 PDZ domain complexes for WT, G330T, H372A and DM cases are visualized 

with the mutations and the ligands. On the protein structure, G330 and H372 sites are shown 

in black for the wild-type form, and the mutated residues are shown in red. CRIPT (L1) and 

N-terminus region (residues between 299 and 310) are shown as black ribbons, while T-2F 

(L2) is illustrated in blue. The shorthand cartoons are used to differentiate each case: Circle 

represents the body of the protein; ticks, whiskers and violin shapes correspond to the 

mutation sites, the N-terminus regions and the ligands, respectively. The color code for each 

component in cartoons is the same as the protein structure. Residue 330 is not directly located 

at the binding site, whereas 372 directly interacts with the ligand.  a WT structure binds 

strongly to the L1. b G330T mutant is the class bridging mutant; thus, it binds both L1 and L2 

with similar free energy difference. c, d H372A and DM structures prefer to bind L2 with a 

lower energy value; therefore, H372A mutation is defined as the class switching mutant. 

 

 

1.2 Synopsis of the Thesis 

 

Mutation-Minimization (MuMi)20 method is applied on a protein ensemble consisting of 

forty non-homologous PDB structures (see Materials and Methods). Alanine scanning is used 

to investigate the mutational perturbations for each protein, and emergent structures are 

analyzed as residue networks (RNs) by assessing degree (k), clustering coefficient (C), 

average shortest path length (<L>) and betweenness centrality (BC) (Figure 1.2a). After the 
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insight of the ensemble view of static RNs, we focus on PDZ3 to examine the molecular basis 

of biological function by employing more detailed methods and dynamic RNs. 

 

 

Figure 1.2 Scope of the thesis. a MuMi scheme is visualized: 40 PDB structures are 

downloaded, mutated, and minimized; then each is coarse-grained to a RN. b The detailed 

investigation of PDZ3: MD and FEP simulations are performed, and binding/mutation is 

assessed by using thermodynamic integration. A simple model is constructed to explain the 

binding energies by using solvent accessible area, hydrogen bonds between protein-ligand 

and solvent interaction of charged residues in N-terminus as the main contributing factors. c 

Community composition study of PDZ3; following the MD simulations, the graphs are 

constructed for one ns apart snapshots. Then, communities are detected by the Girvan-

Newman algorithm, and their composition is investigated and visualized by RGB color-

codes. 

 

 

Hence, to investigate in detail, we perform molecular dynamics (MD) simulations for the apo 

and L1/L2-bound form of the WT, G330T, H372A and DM PDZ3 structures (Figure 1.1). By 
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using the conformations obtained from the MD trajectories, we conduct free energy 

perturbation (FEP) simulations21, 22 to investigate the energy cost of the mutations. 

Integrating the binding and mutation energies into thermodynamic cycles allows us to relate 

the computational results to the experimental binding energies from a previous study.16 

Further, our detailed analyses of the MD trajectories reveal that the charged N-terminus 

region of PDZ3 has a significant impact on the ligand specificity in addition to the direct 

interactions occurring at the binding site. To test this hypothesis, we replicate the simulations 

on the N-terminus truncated complexes. We show that the free energy differences leading to 

the class bridging/switching behavior are nullified in the absence of the N-terminus. Thus, 

we demonstrate the electrostatic contributions due to the dynamics of the N-terminus region 

is essential for the formation of the functional PDZ complexes (Figure 1.2b, see ref23). 

 

To understand the molecular basis of binding, we investigate the previously studied structural 

segments, which are the C terminus, α2 helix and the aforementioned α3 helix (Figure 1.3),5, 

9-11, 23-25 along with the N-terminus. The dynamics of the highly charged N-terminus region 

is shown to be important in the binding mechanism, especially due to its electrostatic 

contributions to the total free energy.23 The effect of the N-terminus might be partnered with 

that of the C-terminus.24 The α2 helix lines up the ligand, and its effect has been investigated 

by deep mutational scanning.25 Mutants of H372, residing on the α2 helix, have been shown 

to cause significant binding constant shifts when coupled with other point mutations, and this 

effect is conserved in other PDZ domains.16, 25 In PDZ3, H372 is in direct contact with the 

T-2 residue of L1 implying an essential role for ligand binding.12, 16, 25, 26 
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Figure 1.3 a Structure and sequence of WTL1 complex (PDB code 5HEB). N-terminus 

(residues 299-310), α2 (residues 372-380), α3 (residues 393-400), C-terminus (residues 401-

415) and ligand (residues 2-9) are illustrated in red, green, purple, blue and magenta, 

respectively. b PDZ sequence and details of the structural elements. Charges of residues are 

marked in circles above amino acid symbols. Yellow shapes indicate secondary structures, 

arrow for  -strands and zigzag for  -helices. Squared-residues display the mutation 

positions, which are G330, H372 in the protein and T-2 in the ligand. 

 

To further our understanding on the role of structural segments on ligand specificity, we 

employ graph theory to investigate the communication between these functionally important 

structural segments.20, 27-29 Coarse-graining the protein structure and projecting it to a RN 

reduces that structure to nodes (vertices) and edges (links).30-32 In an RN, centrality of nodes 

reveals the residues that manipulate information flow, and identifying residues with  high 

centrality provides a profile of biological function and evolutionarily conservation.20, 33-36 On 

the other hand, focusing on edge centrality in order to detect ‘communities’ has been put 
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forth as an approach to distinguish modular units with interdependent functions for any 

network,37-39 and these ideas have been applied to residue networks to shed light on 

communication patterns between structural segments.37-39 Here, we analyze MD simulations 

to gather a range of conformations sampled by PDZ3 with a novel approach. We first apply 

network analysis on extracted MD snapshots;40 then, we relate the dynamical changes of 

community members to their structural and functional origins. Community analysis reveals 

hidden allostery in protein structures by assessing the communication scenarios between the 

structural segments.38, 39 We propose that this method may be used to cluster the 

conformational dynamics of protein structures, and to infer information flow underlying 

functional mechanisms (Figure 1.2c, see ref41). 

 

 

2. MATERIALS AND METHODS 

 

 

2.1 MD and FEP Simulations 

 

 

2.1.1 PDB Files and MD Simulations 

 

Protein structures are downloaded from PDB (Table 2.1, 2.2).42 For PDZ3 complexes, 

sequences of protein and ligand are arranged to be between 299-415 and 2-9 using SWISS-

MODEL43 server. MD simulations are performed by using NAMD44, 45 software, and 

CHARMM3646 force-field is used for topologies and parameters. VMD47 is utilized for 

preprocessing of structures, such as structure specific topology file (PSF file) generation, 

solvation (constructing water-box), ionization and visualization of MD trajectories. By using 

the solvent plug-in VMD 1.9.3, protein structures are solvated in a rectangular water box 

with a minimum distance of 10 Å between the protein and the nearest edge of the water box. 
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Charge of the system is neutralized, and the ionic strength is tuned to 150 mM by adding a 

sufficient number of potassium chloride ions (KCl). The particle mesh Ewald method48 is 

utilized for long-range electrostatics with a cut-off distance of 12 Å. Temperature control is 

maintained by Langevin dynamics. The system is simulated in the NPT ensemble achieving 

constant 1 atm and 310 K. The time step is 2 fs; hence, 10,000 steps of minimization and 

100,000,000 steps of equilibration are conducted for PDZ3 systems. PDZ3 complexes of 

WT, G330T, H372A and DM for apo, L1 and L2 forms (Table 2.2) are simulated for 200 ns, 

the runs are duplicated to enhance sampling. Nevertheless, the N-termini-truncated versions 

of the ligand-bound forms are run for 50 ns each.  

 

 

2.1.2 Trajectory Analyses 

 

The equilibrated last 120 ns of each MD simulations is divided into three equal 40 ns chunks, 

and a total of six chunks for each PDZ3 complex are utilized for RMSF (root-mean-square 

fluctuation), cross-correlation, hydrogen-bond occupancy and SASA (solvent-accessible-

surface area) calculations. The first frame of each trajectory is used as a reference for RMSD 

(root-mean-square deviation) and RMSF calculations. N×N cross-correlation matrix is 

calculated by taking the trace of each 3×3 element of the covariance matrix to observe the 

correlated motions between residues.49 Heatmaps of cross-correlation matrices are 

normalized between -1 and 1 for visualization purposes. Radial distribution function (g(r)), 

hydrogen bond and SASA analyses are performed in VMD with the default settings.47 

Additionally, manipulation of trajectory files and basic analyses are done by using ProDy50 

package of python programming language.  

 

 

 



24 

 

2.1.3  FEP Simulations 

 

Free energy changes of the system space between reference (A) and target (B) states is 

sampled in forward/backward directions through the coupling parameter, λ (0→1).51  The 

free energy difference is calculated by,52  

 

           ∆𝐹(𝐀 → 𝐁) = −𝑘𝐵𝑇 〈𝑒𝑥𝑝 (−
𝐸𝐁−𝐸𝐀

𝑘𝐵𝑇
)〉𝐀             (2.1) 

where the energy difference between states A and B is denoted with ∆𝐹, and kB and T are the 

Boltzmann constant and temperature, and the energy of state A is 𝐸𝐀. The angular brackets 

indicate ensemble average over a trajectory for state A. While each 200 ps long windows 

consist of 50 ps equilibration and 150 ps data generation, through 32 window, λ varies 

between WT (λ = 0) and mutated (λ = 1) states to maintain overlaps of probability 

distributions.53 The average energy change is calculated by using Bennet acceptance ratio 

algorithm54 to minimize the error. 

 

To produce a large variety of energy data, the starting structures for FEP simulations are 

selected from the 50, 100, 150 and 200 ns time points of the two duplicate MD simulations. 

Thus, the FEP calculation are conducted for 8 times for each PDZ3 complex. For N-terminus 

removed PDZ3 complexes, only the last snapshots of the 50 ns-long MD simulation 

belonging to the L1/L2 bound forms of WT
 complexes are used for the single mutations 

(WT → G330T and WT → H372A), and these FEP simulations are replicated for four 

times. Exponential averaging is used to obtain the reported G values, and error values are 

calculated by taking the square root of squared sums. Lastly, ∆𝐺 = −𝑘𝐵𝑇 ln(𝐾𝑑) equation is 

employed to calculate binding energies by using the dissociation constant (𝐾𝑑) values 

obtained from the binding affinity experiments.16, 17 
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2.1.4 MuMi Scheme 

 

WT PDB structures (Table 2.1) are minimized for 50,000 steps, and after the insertion of 

mutation, in-silico mutated structures are minimized for another 50,000 steps to equilibrate 

the protein structures. Each residue of the WT structure is mutated to alanine, then minimized 

with the same process.   
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Table 2.1 PDB ID of 40 proteins. 

PDB ID Residues PDB ID Residues 

5rxn 54 1lis 131 

1dtx 58 1kuh 132 

1tfs 60 1irl 133 

1tgx 60 1jac 133 

1pi2 61 2tbd 134 

1cse 63 1cof 135 

1ptx 64 1pms 135 

2bbi 71 1gen 200 

1hrz 73 1iae 200 

1hcp 75 1nox 200 

1iml 76 2gsq 202 

1cdq 77 1cfb 205 

1kve 77 1dyr 205 

1vcc 77 1thv 207 

1cyu 98 2abk 211 

1be9 115 1ctm 250 

1slt 129 1mml 251 

1sei 130 1vin 252 

1hmt 131 1plq 258 

1htp 131 1lxa 262 
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Table 2.2 PDZ complexes and their PDB IDs. 
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2.2 Construction of Networks from Proteins and Measures on a Toy Graph 

 

 

2.2.1 Construction of Residue Networks (RNs) 

 

Cβ of each residue (Cα for glycine) is taken as a node to preserve side-chain sensitivity in 

calculations to construct a graph of the protein structure. Nodes within a 6.7 Å distance are 

taken as interacting, and an edge is assigned between them. The cut-off distance of 6.7 Å is 

chosen for linking the first coordination shell of Cβ atoms in RDF which belongs to adjoint 

residues and other residues that locate close to the central residue.20, 29, 55 RNs are unweighted, 

undirected, and they do not have self-loops or parallel edges. 

 

 

2.2.2 Graph Measures on a Toy Network 

 

A graph consists of nodes (vertices) and links (vertices), and there is a variety of measures 

that focuses on nodes/edges that are informative about features of networks. Degree (number 

of neighbors, k) is local measure which indicates the number of links, thus nodes that are 

connected to a certain node. In G0 (Figure 2.1), Node 7 and 10 have the highest number of 

neighbors, while Node 2 and 7 have the lowest degree.  

 

Clustering coefficient (C) indicates number of triangles that goes through a node, which is 

interpreted as the fraction of neighbors becoming a neighbor of each other. Clustering 

coefficient of a certain node is calculated by, 
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𝐶 =
2𝑇(𝑢)

k⁡(𝑢)(k(𝑢)−1)
⁡      (2.2) 

 

where T is triangles through the node u, and k(𝑢) is the number of neighbors of u. 

Although, C is informative about local structure, it is impartial to the number of adjacent 

nodes. For example, distal nodes of G0, such as nodes 2, 5, 8 and 9 have the highest C, even 

though they have lower connection overall, considering k values (Figure 2.1b).  

 

Average shortest path length (<L>) of nodes displays the spatial accessibility in units of edges 

in a network. The <L> of a node is calculated by, 

 

< 𝐿𝑖 >=
1

𝑛−1
∑ 𝐿𝑖𝑗
𝑛
𝑖       (2.3) 

 

where i is an arbitrary node which is targeted to calculate L, j is any other node, and n is the 

number of nodes in a graph. Nodes 2 and 5 have lowest number of neighbors and high <L> 

values, which indicates their low connectivity in G0 graph. 

 

Betweenness centrality (BC) is a general term to calculate a node’s impact on information 

flow, by assessing communication of all unique node pairs that traverse through a certain 

node; here, we focus on shortest path BC,56 current flow/random walk BC57 and 

communicability BC.58, 59 To distinguish current flow and communicability BC measures 

from shortest path BC, we refer them by using their path/walk calculation methods; on the 

other hand, the term ‘BC’ always corresponds to shortest path BC, in this thesis.  

 

Assuming that information exchange happens through the shortest paths on a network; the 

BC of an arbitrary element (node or edge) is calculated by,56, 60 
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⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐵𝐶(𝑋) = ∑(
𝑃(𝑎,𝑏|𝑋)

𝑃(𝑎,𝑏)
)     (2.4) 

where 𝑃(𝑎, 𝑏|𝑋) is the number of the shortest paths travelled through this element, and 

𝑃(𝑎, 𝑏) is the number of all shortest path between the nodes a and b. BC is normalized by 

(𝑛 − 1)(𝑛 − 2) 2⁄  for nodes and 𝑛(𝑛 − 1) 2⁄  for edges, where n is the number of nodes in 

the network. The range of BC is [0, 1]; if all the shortest paths traverse through the certain 

element (X), it is 1. Hence, BC gives both local and global information about a graph. In G0, 

Node 1, 3, 4, 6, 7, 10 demonstrate high BC values and are located at connection between 

highly connected node groups, independent from the number of neighbors. Further, 

information flow may be assessed as number of walks58, 59  and current flow57. The centrality 

measures based on these computations are displayed in Figure 2.1b, and the results indicate 

that three types of centrality measures show similar pattern, thus shortest path BC is chosen 

for further analyses. 

 

Nonetheless, edge BC (Equation 2.4) is used to detect close-knit node groups which are 

defined as ‘communities’ in Girvan-Newman algorithm.37 Girvan-Newman algorithm 

calculates edge BC and removes the edge with the highest BC in a loop, hence leading two 

and more connected components to emerge in a graph. These connected components 

correspond to ‘communities’ and denoted by Ω. In Figure 2.1a, c, the detection of 

communities is illustrated for G0; where Ω is 1 for first edge removal. After the removal of 3 

highest BC edges, three communities separate (Ω = 3) in G3. The community separation of 

G0 also exemplifies that the edges with high BC have propensity to connect nodes with high 

node BC. Nodes 1, 3, 4, 6, 7 and 10 are connected with the highest BC edges, as a result, 

they are removed as per Girvan-Newman algorithm. The computation of the graphs are done 

by using NetworkX61 package of python programming language, in this thesis. 
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Figure 2.1 Toy network that consists of 10 nodes and 15 edges. a, b G0 graph and k, C, <L> 

and centrality measures are illustrated. Edge BC values are written on top of the concerning 

edges. c Community detection of G0 by using Girvan-Newman and changing edge BC values 

are displayed for each edge cut.  

 

 

3. RESULTS 

 

 

3.1 MuMi Results 

 

MuMi20 scheme is employed to investigate structural impact of mutational perturbations by 

assessing the changes in graph measures after insertion of mutation (Figure 1.2a). 40 PDB 
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structures (Table 2.1) are fetched, and each residue is mutated to alanine. To investigate the 

overall change upon mutations we calculate, 

 

 

∆𝐴 = 𝐴𝑊𝑇 − 𝐴𝑀𝑢𝑡      (3.1) 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑⁡𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒⁡𝑜𝑓⁡𝐴 =
〈∆𝐴2〉

1
2⁄

𝐴𝑊𝑇
    (3.2) 

 

where A is a graph parameter, and the change is averaged over all possible single alanine 

mutations of protein structures. The effect of alanine mutations is quantified as a function of 

conservation whereby the conservation scores are computed by the ConSurf server.62 

 

k, C, BC and <L> are calculated for protein structures. k infers the local connectivity of the 

protein, and mean k for the ensemble is ~6. Residues with high k tend to have high 

conservation scores indicating that residues with high connectivities oppose changes during 

evolutionary processes. Interestingly, the number of neighbors of an amino acid do not alter 

significantly upon mutations (Figure 3.1a). Further, mean values of C and <L> for the 

ensemble are 0.4 and 5, respectively. With the elevating conservation values, C and <L> have 

propensity to get lower. The change of C is lower in evolutionarily conserved residues, while 

results are insignificant for <L>, after the alanine scanning (Figure 3.1b, c). BC, with an 

ensemble mean of 0.03, demonstrates significant results; hence, conserved residues have a 

higher BC, and BC is sensitive and indicative for mutational perturbations (Figure 3.1d). 

Nevertheless, BC is employed in various studies to understand protein function.20, 34, 35, 40  
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Additionally, average displacement of Cβ (Cα for glycine) after the alanine scanning is 

computed (Figure 3.1e). Based on this computation, we show that conserved residues tend to 

deviate less upon mutational perturbations. 

 

To understand the BC results further, WT BC and the change of BC of each protein structure 

is compared with conservation scores and DEPTH63 values. DEPTH calculates distance of a 

buried residue to a closest solvent accessible surface. In Figure 3.1f, Pearson R values 

between BC/change of BC and DEPTH (~0.6-0.5) are higher than correlation of BC and 

conservation scores (~0.3). Thus, central residues are partial towards being in core and 

buried; however, BC is not an indicative of evolutionary conservation. Additionally, after the 

alanine scan, BC does not display distinguishable results compared to the WT calculations. 

 

Overall, this general approach is not efficient to investigate structure and function of proteins. 

The reasons are several; first, minimization is not a suitable process for emergence of variant 

behaviors. Second, averaging of mutational responses lead cancellation of slight changes, 

which may be important for protein function. Lastly, without a specific biological hypothesis 

on each protein, batch analysis of a pool of structures is not comprehensible and illuminating. 

Therefore, to tackle these problems, we focus on mutation and/or binding of PDZ3 proteins 

and assess their functionality by calculating relative binding energies. Then, we revisit the 

graph theoretical computations through the lens of molecular basis of functionality and 

temporality.  
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Figure 3.1 a-e k, C, <L>, BC and Displacement values are computed and visualized as per 

protein structure, classified by conservation value and their changes based on conservation 

value. f Correlation between BC/change of BC and DEPTH/conservation scores for each 

protein structure are displayed. PDB IDs on x-axis are sorted by increasing residue number.  
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3.2 Investigation of PDZ3 Function: Relative Binding Energies and All-Atom MD 

Simulations 

 

After the assessment of the protein ensemble by using MuMi, now we focus on PDZ3, where 

we study its biological functionality by employing mutation and binding energies in 

thermodynamic cycles. Apo and L1/L2 bound forms of WT, G330T, H372A and DM 

complexes are taken for MD and FEP simulations as it was explained in Methods section. 

After the investigation of relative binding energies, MD simulations are analyzed to 

understand the molecular basis of these occurring energies. Then, a simple model is 

constructed to approximate the experimental binding energies (Figure 1.2b).23 

 

 

3.2.1 Construction of Thermodynamic Cycles and MM/GBSA calculation 

 

FEP calculations are compared to the experimental findings as schematically displayed in 

Figure 3.2a. 𝐾𝑑 values obtained from binding affinity experiments16, 17 are employed to 

calculate standard binding free energies through ∆𝐺 = −𝑘𝐵𝑇 ln(𝐾𝑑). 

 

By utilizing the G results from the experimental data from Cycle A in Figure 3.2a, 

 

ΔG𝑀−𝐿1
 𝐵𝑖𝑛𝑑 −⁡ΔG𝑊−𝐿1

 𝐵𝑖𝑛𝑑 =⁡ΔΔ𝐺𝐴      (3.3) 

 

with the FEP results, 

 

ΔG𝐿1
 𝑀𝑢𝑡 − ΔG0

 𝑀𝑢𝑡 =⁡ΔΔ𝐺𝐴    (3.4) 
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Equations 3.3 and 3.4 are arranged as, 

 

ΔG𝑀−𝐿1
 𝐵𝑖𝑛𝑑 −⁡ΔG𝑊−𝐿1

 𝐵𝑖𝑛𝑑 =⁡ΔG𝐿1
 𝑀𝑢𝑡 − ΔG0

 𝑀𝑢𝑡    (3.5) 

 

All variables are illustrated in Figure 3.2a, and the same calculations are conducted for Cycle 

B. ΔΔΔ𝐺 is utilized for the validation of the FEP results. 

 

  ΔΔ𝐺𝐵 −⁡ΔΔ𝐺𝐴 = ⁡ΔΔΔ𝐺     (3.6) 

 

Thermodynamic cycles are constructed to compute various relative free energy changes of 

mutations or ligand binding (Figure 3.2a). For each cycle connected by solid arrows, the 

difference between two vertical (binding) free energy changes (Figure 3.2a, red) signifies the 

more stable bound form; hence, for a negative ΔΔGA (Equation 3.3) the mutated complex 

with L1 is more favorable than the WT complex. Since each of the cycles completed by the 

solid arrows should sum to 0, the ΔΔG calculated from experimental binding constants may 

also be obtained by computational means which is the difference between the two horizontal 

free energy changes (Equations 3.4, 3.5). Nonetheless, ΔΔΔG is calculated to investigate the 

favorable ligand, after the mutation of the protein (Equation 3.6). A negative ΔΔΔG indicates 

that after the mutation, the protein tends to form a favorable complex with L1 (Figure 3.2a). 

 

Further, MM-GBSA takes into account the sum of (i) the protein self-energy, (ii) a non-

electrostatic solvation energy proportional to the SASA of the whole protein, and (iii) the 

electrostatic component of solvation expressed by the generalized Born model. In particular, 

the first term is exact, in that it computes all the bonded and non-bonded interactions between 

the atoms of the protein. MM/GBSA calculations were performed by the MolAICal tool.64 
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MM/GBSA calculated energies are much lower than the experimental energies; as such, they 

are scores rather than estimates of binding energies.65 

 

 

Figure 3.2 a Cartoon illustration for mutation and ligand binding thermodynamic cycles of 

the PDZ domain. Violin shapes in black and blue represent L1 and L2, respectively. GMut 

values (in black) show the FEP simulation derived free energy differences between the WT 

and mutated PDZ3. GBind values (in red) are the standard binding free energy differences 

calculated from experimentally reported Kd. Dashed arrows indicate the ligand switching 

process (not directly calculated). b, c Mutational cost (black) and ligand binding free energies 

(in red) for G330T, H372A and DM; all values in kcal/mol. G may be calculated by 

using either GMut  or GBind values. d Plot of FEP calculated vs. experimental G 

(Pearson R = 0.84, p-value < 0.01) attest to the precision of FEP calculations; MM-GBSA 

vs. GBind is displayed in the inset whereby the approximate approach falls short of 

distinguishing the binding propensities of the complexes (color of symbol is green for 

experimentally functional ligand, red otherwise; outline color of symbol indicates how it 

would be classified by MM-GBSA; region between dashed lines is for uncertain 

classification.) e Close-up views of side chain positioning and residue 330 solvent 

accessibility affected by the mutations (WT gray, G330T pink, H372A blue). L1 bound forms 

are displayed large, L2 bound forms are small. G330T mutation (left) does not affect 

interactions between H372 and position -2 in either ligand but leads to a conformation shift 

in the loop carrying position 330, increasing its solvent accessibility. H372A mutation (right) 

in L1 bound form leads to loss of polar-polar interactions in the binding pocket; in L2 bound 

form, the kink in the loop containing G330 due to rotation of H372 side chain to 

accommodate the large F-2 is relieved upon mutation. Solvent accessibility of G330 remains 

the same in both cases. 
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3.2.2 Mutation Pathways and Relative Binding Energies of PDZ3 

 

The binding constants from a previous study17 are employed to calculate the standard binding 

free energies of WT, G330T, H372A and DM PDZ3 to L1 and L2 (shown in red in Figure 3.2 

b-c). PDZ domains were shown to operate at the 1-15 M dissociation constant range,19 by 

following previous work, we have used -7.0 kcal/mol as a standard binding free energy 

threshold (~10 M at physiological temperatures) to classify the PDZ complexes. Therefore, 

WTL1, G330TL1, G330TL2, H372AL2 and DML2 are the functional PDZ complexes based on 

their binding free energies, which are -8.7, -8.0, -8.2, -8.1 and -8.9 kcal/mol, respectively. 

The binding free energies of non-functional complexes are -6.3, -6.5 and -6.6 kcal/mol for 

WTL2, H372AL1 and DML1, respectively. The FEP calculated free energy costs of the 

mutations are also displayed in the same figures in black (Figure 3.2).  

 

Additionally, the tautomeric states of key residues, such as H372, may change upon ligand 

binding and that they may have significant populations in multiple states in bound or apo 

forms.66, 67 Since each cycle should sum to zero, we find from the deviations in cycles , , 

 and   that the apo form G330T mutation has an additional cost of ~1.8 kcal/mol, and 

from those in cycles ,  ,  and  that the H372A mutation in the apo form has an 

additional ~3.2 kcal/mol cost due to such population shifts.  

 

Although each leg of the cycles in Figure 3.2b-c may be obtained computationally, such 

calculations are subject to various errors inherent in the employed methodology. In Figure 

3.2a, ΔΔΔG, the difference between the dashed arrows, is equal to ΔΔGB – ΔΔGA (horizontal, 

mutation energies) as well as that between the vertical binding free energies (Equation 3.6). 

Thus, we employ ΔΔΔG to validate our simulations against the experimental binding 

energies (Figure 3.2d), and we find that within the 1 kcal/mol accuracy limit provided by 

FEP calculations,68 the energy differences obtained by using conformations sampled 

throughout the MD trajectories are consistent with the experimental binding energies. Note 
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in particular that this approach eliminates the use of mutational cost calculations in the apo 

forms, in particular the above-mentioned energy cost due to shifts in dynamic tautomeric 

populations. We also note that the MM-GBSA method widely used for efficient scoring of 

ligand binding does not have the precision necessary to distinguish the binding selectivity of 

PDZ3 to ligands (inset to Figure 3.2d). 

 

Since we do not calculate binding free energies, we are not positioned to directly comment 

on which mutants will be functional. However, we are now able to discuss the mechanisms 

by which these mutations operate. First off, the general effect of ligand type on free energetic 

cost of the mutations is clear from the calculations where changes in the L2 bound form is 

always less costly than those in the L1 bound form, hence the negative ΔΔΔG values 

displayed in Figure 3.2d. 

 

As discussed in a previous study on the mutational pathways of PDZ,17 G330T is the most 

abundant variant owing to its class bridging behavior (Figure 3.2e, left). This phenomenon 

is explained by the low free energy cost of this mutation, irrespective of the presence of the 

ligand in the binding pocket and of the prior H372A mutation (in the range of up to 4 

kcal/mol; Figure 3.2, cycles , ,  and ; numbers in black). Considering that the G330T 

mutation requires relatively low number of atom additions and that residue 330 is located on 

a flexible loop (Figure 3.2e, left) where the newly created polar side chain may easily be 

repositioned to get in contact with water, the low cost is plausible. Nevertheless, the L2 bound 

form is able to accommodate this mutation with ~2 kcal/mol less cost than either the ligand 

free or the L1 bound forms, leading to the ligand bridging behavior (compare cycles  and 

). Similarly, the H372A mutant is also able to contain the additional G330T mutant with 

~1.5 kcal/mol less cost in the presence of L2 (compare cycles  and ), retaining the ligand 

switching behavior brought on by this first mutation. 

 

In contrast to G330T, the H372A mutation is rather costly (on the order of 10 kcal/mol) under 

all circumstances due to the large change of the side chain volume, as well as the shift this 
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position makes from polar to hydrophobic (Figure 3.2e, right). Moreover, this residue is in 

the binding pocket in direct contact with the ligand in the liganded cases, which makes the 

free energetic cost highly dependent on the rearrangements of local contacts. Especially in 

L1-bound cases, the bond between H372 and the threonine residue at the -2 position of L1 is 

pertinent to the formation of the WTL1  complex.12 Note that H372 was also shown via deep 

mutagenesis to be the most sensitive residue to mutations.16 Nevertheless, the cost of the 

H372A mutation is significantly lower when L2 is bound to the protein, by 4.7 kcal/mol 

(compare cycles  and ), helping bring the binding free energy of this mutant in the 

functional range, and thus leading to ligand switching. When H372A mutation follows 

G330T, the cost is again lower in the presence of L2, but more importantly, it is enough to 

compensate for the effect of the mutation in the apo form and to retain a physiologically 

significant degree of specificity. 

 

 

3.2.3 N-Terminus Fluctuation Patterns are Distinct for Each PDZ3 Complex 

 

The ligand-bound trajectories we have generated reliably represent the equilibrium properties 

of the bound complexes, as validated in the previous subsection since the FEP calculations 

are based on the conformations generated in these simulations. We now focus on the 

dynamics of the complexes to delineate the allosteric behavior observed in these systems. 

We thus compute the RMSD, RMSF and the cross-correlations of the trajectories. 

 

RMSD for each MD trajectory is shown in Figure 3.4. We find an unusual property for these 

trajectories whereby there are stretches of times having plateaus with small fluctuations, 

separated by regions of relatively large fluctuations. RMSF results show that the most mobile 

site of PDZ3 is the N-terminus region (Figure 3.3). Hence, we determine that the overall 

mobility of the protein is dominated by the fluctuation of the N-terminal region. 
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Figure 3.3 The RMSF results of WT, G330T, H372A and DM for apo and L1/L2 bound cases. 

40 ns-long chunks from duplicate trajectories are averaged; error bars indicate the standard 

error of these eight chunks. a, b WT and G330T show similar patterns and a highly mobile 

N-terminus region in all cases. c, d H372A and DM display similar regimes with a mobile 

whisker and peak around residue 408. Interestingly, DM0 has a significantly high mobility 

compared to the ligand-bound complexes. 

 

All apo complexes have highly mobile and disorganized N-termini, while those of the ligand-

bound complexes have clusters around preferred conformational states (Figure 3.4). The 

ligand-bound forms of WT and G330T have similar cluster shapes for the N-terminus 

residues (Figure 3.4a-b). H372AL1 and DML1 exhibit nearly identical conformational 

preferences of the N-terminus (Figure 3.4c-d). The N-terminus of H372AL2 adopts an 

extended conformation, while that of DML2 displays a collapsed form (Figure 3.4c-d). 

 

To scrutinize the dynamical behavior of the PDZ structures further, the cross-correlation 

matrices of the protein complexes are calculated (Figure 3.5). The correlations of residue 

displacements are very similar, with the inner product between WT0 and each of the other 

systems varying in the range 0.80-0.97 when the 12 residue-long N-terminus spanning 

residues 299-310 is omitted in the calculations. However, there are no other dominant 

motions that directly manifest themselves in the cross correlations between the regions of the 

protein body that are unique to the variant studied. 
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Figure 3.4 (a-d) RMSD and N-terminus conformers observed in the MD simulations for apo 

and L1/L2 bound cases. In RMSD plots, duplicate simulations are displayed separately by 

black and gray curves. In protein structure visualizations, evenly separated 500 snapshots of 

only the N terminus region (shown in black) from duplicate trajectories for each complex are 

illustrated; the rest of the protein (in white) is displayed by its average structure with side 

chains of residues 330 and 372 displayed in ball and stick (red if mutated, black if native). 

L1 and L2 are shown in black and blue, respectively. (e) Regression between 𝑁H-bonds (Table 

3.1) and SASA of N-terminus residues (Figure 3.6); Pearson R = -0.86, p-value < 0.01). The 

functional complexes are shown in green, while unfavorable ones are displayed in red. 

 

 

Figure 3.5 Cross-correlation maps of WT, G330T, H372A and DM for apo and L1/L2 bound 

cases. 40 ns-long chunks from duplicate trajectories are averaged for each complex. Graphs 

are built for the whole protein. Numbers display the similarity to WT0, 1 being for identical 

correlation maps; bold values are computed omitting the N-terminus in the correlation map 

calculations. DML1 and DML2 display the largest departure in fluctuation patterns compared 

to the apo WT complex. 
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3.2.4 N-terminus is an allosteric partner essential in determining binding ligand. 

 

The N-terminus has the NH2-PEFLGEEDIPRE sequence; half of its 12 residues are charged, 

and the rest are hydrophobic (Figure 1.3b). It also renders the -4 net charge of the protein. 

This sequence possibly contributes to the long-range control over binding affinities. To 

quantify the various degrees of flexibility observed in the conformations discussed in the 

previous section (Figure 3.3-3.5), we plot the SASA distributions of the N-terminus residues 

(Figure 3.6). The disordered flexibility of the region in the apo forms is characterized by their 

broad distributions (with variance ~60 Å2), while SASA also delineates the two-state nature 

of the conformations of the WTL1, G330TL2 and even distinguishes minor conformations 

such as that observed for G330TL1; DML2 is particularly characterized by a peakish single 

conformation. SASA distributions of only the charged N-terminus residues, on the other 

hand, display starkly different features (Figure 3.7).  

 

 

Figure 3.6 Probability distribution of SASA for the full-length N-terminus; vertical dashed 

lines indicate average SASA; side bars display the average hydrogen bond count between the 

PDZ domain and the ligand in the MD simulations in ligand-bound cases. Complexes with 

favorable binding to the ligands are labelled in green, and complexes with unfavorable 

binding are in red. 
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Table 3.1 Average number of hydrogen bonds (𝑁H-bonds) between the protein and the ligand 

for the full and N-terminus truncated protein structures 

  Full length protein Truncated () protein 

WTL1 3.2 ± 1.4 3.4 ± 1.6 

WTL2 3.1 ± 1.6 3.4 ± 1.7 

G330TL1 3.2 ± 1.6 3.7 ± 1.7 

G330TL2 3.9 ± 1.7 4.3 ± 1.7 

H372AL1 3.5 ± 1.7 3.0 ± 1.4 

H372AL2 3.1 ± 1.5 3.5 ± 1.7 

DML1 4.0 ± 1.7 4.4 ± 1.9 

DML2 3.9 ± 1.7 4.3 ± 2.0 

 

 

We emphasize that it is not possible to determine the binding fate of the ligands by focusing 

on this property of the N-terminus alone. In fact, investigating the main interactions at the 

binding site is in order. We find that the average number of hydrogen bonds established 

between PDZ3 and the ligands (varying between 3 and 4) also differs between the various 

complexes (displayed in Figure 3.7 sidebars and listed in Table 3.1). Although, the difference 

is small, hydrogen bonds established between protein and ligand have a significant impact 

on ligand binding.69 Moreover, there is a meaningful negative correlation between the 

average SASA of the N-terminus and the number of hydrogen bonds (Pearson R = -0.86; 

Figure 3.4e) implying allosteric communication between binding site and the charged tail. 

The inverse relationship between the overall SASA of the N-terminus and the number of 

hydrogen bonds at the binding site has mechanical origins. The fraction of time the N-

terminus having a net charge of +4 is solvated or shielded depends on the differential 

modulation of electrostatic interactions in the variant studied. However, an increased 

shielding from the solvent means it interacts with the main body of PDZ3, particularly the 

nearby C-terminus, as depicted in the cartoons of Figure 3.4. When stabilized by the N-

terminus, these regions mechanically support the binding site from below, sandwiching it 

with the well-known 2 helix,25 thus increasing the lifetime of hydrogen bonds at the binding 

site. 
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Figure 3.7 Probability distribution of SASA for the N-terminus charged residues; side bars 

display the average hydrogen bond count between the PDZ domain and the ligand in the MD 

simulations in ligand-bound cases. The complexes with favorable binding to the ligands are 

labelled in green, while the complexes with unfavorable binding are in red. a Regarding the 

WT complexes, solvent accessibility of the charged residues has a dominant effect on ligand-

binding. WT0 and WTL2 have similar broad distributions while WTL1 is peakish leading to 

favorable binding. Average hydrogen bond counts are indifferent in both cases. b SASA 

profiles of G330T complex do not differ drastically after binding. The L1 bound complex has 

a slightly sharper peak and a lower hydrogen bond count. However, the L2 bound form has a 

wider SASA distribution and a higher hydrogen bond count. Additional hydrogen bonds and 

sharper SASA distributions compensate one another to induce the favorable binding in the 

alternate cases. c, d In H372A and DM cases, the favorable binding to L2 is mainly due to the 

sharp SASA distribution of the charged residues on the N-terminus. 

 

To explain the observed binding preferences of PDZ, we have identified two main 

contributions: (i) The direct effect at the binding site quantified by the average number of 

hydrogen bonds between the protein and the ligand; and (ii) the allosteric effect due to 

conformational multiplicity of the N-terminus and its resulting dynamic interactions. The 

latter is related to the electrostatic free energy change of the system through the generalized 

Born (GB) model,70, 71  
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While not defined uniquely, several simple but effective forms were used for the function 

𝑓𝐺𝐵(𝑟𝑖𝑗) including inverse relation to charge-charge distances 𝑟𝑖𝑗 ⁡and screening effects. Here, 

we assume ∑ ∑ 𝑓𝐺𝐵(𝑟𝑖𝑗)
−1𝑀

𝑗=1
𝑀
𝑖=1 ∝ 𝜎−

1

2, where 𝜎 is the variance of the SASA of the charged 

residues. Moreover, the two contributions also determine the overall conformations adopted 

by the protein. 

 

Thus, our simplified model to predict binding free energies from MD trajectories is given by 

the sum of three effects: 

 

⁡⁡⁡⁡⁡ΔG𝐿
 − ΔG0

 =⁡ΔΔ𝐺𝐴 = ΔΔ𝐺solvation⁡ + ΔΔ𝐺H-bonds⁡ + ΔΔ𝐺electrostatics⁡⁡  

                               = 𝛼⁡(𝑆𝐿 − 𝑆0) + 𝛽𝑁H-bonds +
𝑞𝑖𝑞𝑗

8𝜋𝜀0
(
1

𝜖𝑤
−

1

𝜖𝑚
) 𝛾 (

1

√𝜎𝐿
−

1

√𝜎0
)  (3.8) 

 

The first is the usual term accounting for the change in the solvation free energy of the 

protein,72-76  proportional to the difference in the average SASA of the whole protein in the 

ligand-bound and ligand-free forms, 𝑆𝐿 and 𝑆0, respectively ( 

Table 3.2). The second term accounts for the interaction energy between the ligand and the 

binding site, dominated by the number of hydrogen bonds formed at the binding cavity for 

each ligand-bound trajectory, 𝑁𝐻−𝑏𝑜𝑛𝑑𝑠. The last term approximates the electrostatic free 

energy change, with 𝜖𝑤 and 𝜖𝑚 being the dielectric constants of water and the buried medium, 

respectively, and 𝜎𝐿 and 𝜎0 representing the variance in the SASA of the charged residues of 

the N-terminus for the liganded and ligand free forms, respectively ( 

Table 3.2). Equation 3.8 regresses the experimental free energy of binding data with 𝛼 = 2 

cal/mol/Å2, 𝛽 = -1.6 kcal/mol, and 𝛾 = 0.75 for 𝜖𝑤 = 80 and 𝜖𝑚 = 2 (Pearson R = 0.94; Figure 

3.8). These pre-factors are physiologically relevant: Previously reported data for 𝛼 is in the 
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range of a few to tens of cal/mol/Å2,73, 77-79 and for 𝛽, the rupture of each hydrogen bond may 

cost the total energy of a protein ~1.6 kcal/mol in aqueous environment.80-82  

 

Figure 3.8 Regression between modelled (Equation 2.8) and measured binding free energies 

(Table 3.1); Pearson R = 0.94, p-value < 0.001). The functional complexes are shown in 

green, while unfavorable ones are displayed in red.  

 

We emphasize that while being similar to MM-GBSA that is a computationally efficient 

approach to score ligand binding, our approximate form in equation 2 attempts to model the 

features that best distinguish binding fates in PDZ3. We thus find that the minimal model 

that optimizes the experimentally measured energies is comprised of (i) the hydrogen bonds 

at the binding site which is only a very small proportion of all the terms contained in the 

protein self-energy of MM-GBSA, (ii) the non-electrostatic solvation energy, modeled the 

same way as in MM-GBSA, and (iii) the electrostatic solvation energy due to the charged N-

terminal residue fluctuations which is different from the GB model which takes into account 

the sum of the inverse distances between all charges amino acids in the protein-ligand system.  
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The contribution of each term to the binding free energy is listed in Table 3.3. Note that the 

largest contribution is due to the hydrogen bonds established in the binding pocket in each 

case. Nevertheless, the overall conformational change of the protein as well as the specific 

conformations adopted by the N-terminus charged residues determine the binding fate. 

 

Table 3.2 Average SASA of the whole protein (S) and SASA variances of N-terminus 

region for charged residues (σ) used in Equation 2.8. 

  S σ 

WT0 7128 60 

WTL1 6746 32 

WTL2 6736 51 

G330T0 7171 58 

G330TL1 6875 40 

G330TL2 6818 47 

H372A0 7105 66 

H372AL1 6734 50 

H372AL2 6937 31 

DM0 7300 62 

DML1 6533 81 

DML2 6506 44 

 

Thus, the L1 preference of the WT protein is reinforced by the fixed conformations adopted 

by the N-terminus charged residues, despite similar hydrogen bonding interactions it has with 

both ligands (Table 3.3 and Figure 3.7). The G330T single mutation is a special case which 

prefers to bind both L1 and L2. However, the preference to L1 is reinforced by the electrostatic 

contributions of the complex, while that to L2 is due to the increased number of hydrogen 

bonds established at the binding cavity. Accordingly, the ligand-bridging behavior of the 

G330T mutation is conducted by the compensation between the conformational dynamics of 

the N-terminus region and the protein-ligand hydrogen bonding. The H372A single mutation 

prefers to bind L2 due to significant contributions from the N-terminus electrostatics, a factor 

that is nearly absent for the L1 bound complex. In the presence of both mutations, we find 

that there is significant increase in binding pocket interactions as well as the overall solvation 
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free energy of both DML1 and DML2 complexes. However, the N-terminus charged residue 

fluctuations in DML1, which uniquely exceed those in the unbound form (with a positive 

ΔΔ𝐺electrostatics⁡) offsets this advantage for L1. 

 

 

Table 3.3 Modeled vs. measured binding free energies and individual contributions from 

equation 2.8 (kcal/mol).*   

Complex ΔΔ𝐺solvation⁡ ΔΔ𝐺H-bonds⁡ ΔΔ𝐺electrostatics⁡ Modelled

⁡Δ𝐺𝐵𝑖𝑛𝑑 

Measured

⁡Δ𝐺𝐵𝑖𝑛𝑑 

WTL1 -0.76 -5.05 -3.00 -8.81 -8.65 

WTL2 -0.78 -4.99 -0.71 -6.49 -6.30 

G330TL1 -0.59 -5.13 -1.82 -7.54 -8.02 

G330TL2 -0.71 -6.18 -1.10 -7.99 -8.15 

H372AL1 -0.74 -5.65 -0.82 -7.21 -6.48 

H372AL2 -0.34 -4.94 -3.19 -8.47 -8.11 

DML1 -1.53 -6.31 0.97 -6.88 -6.60 

DML2 -1.59 -6.25 -1.44 -9.28 -8.94 

* functional complexes are displayed in green; interactions dominating the binding fate are shown in bold. 

 

 

3.2.5 Removal of the charged N-terminus exposes its key role in ligand binding. 

 

We design a knock-out computer experiment by removing residues 299-310 constituting the 

N-terminus to test its role on binding affinities; in what follows, these systems are referred 

by the superscript . We run 50 ns-long MD simulations for the N-terminus deleted forms of 

all eight ligand bound systems. Additionally, we perform FEP calculations for the single 

mutations (G330T and H372A). 

 

In Figure 3.9 a, we display the free energetic cost of removal the N-terminus from the two 

single mutations. In the full-length PDZ, the N-terminus appears to have the largest favorable 
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impact on WTL1, G330TL1 and H372AL2 (Table 3.3). Thus, we expect cycle  to be the least 

affected by its absence as is the case, with the G→T transition in the presence of L2 costing 

2.0 ± 0.5 to 1.9 ± 0.3 kcal/mol, for G330T and G330T, respectively. In cycles ,  and  

at least one of the constituents of the full-length proteins is highly dependent on N-terminus 

dynamics, and it is therefore not straightforward to judge which will cost the most. We do 

find through FEP calculations, however, that cycle  which has both WTL1, G330TL1 

involved is the most affected, with the cost of the G →T transition in the presence of L1 

costing 3.3 kcal/mol more when the charged N-terminus is removed. This is followed by 

cycle  where the binding pocket H→A transition in the presence of L2 has an additional 

cost of 2.6 kcal/mol. 

 

The loss of the N-terminus translates into modified binding pocket interactions where we 

may trace the origin of the differing free energy differences. Removal of N-terminus 

increases 𝑁𝐻−𝑏𝑜𝑛𝑑𝑠 in all cases by an average of 0.2-0.5, except in H372A
L1 where it 

decreases by 0.5 (Table 3.1). For the G330T transition, L2 binding is more favorable, mainly 

because the deletion of the N-terminus leads to a net gain of nearly one full hydrogen bond 

(from 3.4 to 4.3) while it is a mere 0.3 gain (from 3.4 to 3.7) in its L1 bound form, also 

corroborated by ΔΔΔ𝐺1
Δ = -5.0 ± 0.4 kcal/mol (Figure 3.9 b). For the H372A transition, L2 

binding is again more favorable, but with a lower propensity (ΔΔΔ𝐺2
Δ = -2.7 ± 0.4 kcal/mol), 

as the L1 and L2 binding cost -0.4, and +0.1 hydrogen bonds, respectively. Finally, we expect 

the DM systems to favor binding both L1 and L2 due to the gain of a full hydrogen bond in 

the binding pocket in the absence of the N-terminus. We thus expect that if the total binding 

free energy is in the functional range, then the ligand bridging behavior of the G330T 

mutation will change to ligand switching while the reverse is expected to happen for DM. 
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Figure 3.9 a Thermodynamic cycle depicting the role of N-terminus removal on the single 

mutations. Vertical arrows indicate the mutation process, and the horizontal arrows display 

the deletion operation on complexes denoted by the superscript Δ. The difference between 

the horizontal changes is equivalent to that of the vertical ones in each cycle. ΔΔG values of 

the cycles ① and ④ indicate that the G330TL1 and H372AL2 forms are highly unfavorable 

after the operation, while those for ② and ③ have low or no cost. b Thermodynamic cycles 

depicting mutation and ligand binding of the truncated complexes; ΔΔΔG represent the grand 

difference between the binding affinities of the WT versus mutant towards either ligand as 

ΔG of the apo complexes cancel out. ΔΔΔG1
Δ

 and ΔΔΔG2
Δ

 are -5.0 ± 0.4 and -2.7 ± 0.4 

kcal/mol, respectively.  
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3.3 Intramolecular Residue Interaction of PDZ3 explained by Dynamic Community 

Composition 

 

After investigating the functionality of PDZ3 by FEP simulations and thermodynamic 

integration, we scrutinize the residue interaction to explain the biophysics of binding 

selectivity of PDZ3, by employing graph theoretical approach. Hence, RNs are constructed 

through MD trajectories of PDZ3 complexes; then, by assessing BC of nodes and edges, we 

detect close-knit residue group (communities) and survey the structural origins of the 

community members (Figure 1.2c).41 

 

 

3.3.1 Construction of Dynamic RNs  

 

To construct a graph of the protein structure, Cβ of each residue (Cα for glycine) is taken as 

a node to preserve side-chain sensitivity in calculations. Nodes within a 6.7 Å distance are 

taken as interacting, and an edge is assigned between them. The cut-off distance of 6.7 Å is 

chosen for linking the first coordination shell of Cβ atoms in radial distribution function 

(RDF) which belongs to adjoint residues and other residues that locate close to the central 

residue;20, 29 for a detailed account of the choice of cutoffs in residue networks, see ref55. This 

cut-off is validated by the RDF analysis of our MD simulations, which shows that the 

dynamics and sampled system do not affect the overall coordination shell location (Figure 

3.10). The first 80 ns portion of all MD trajectories are discarded for equilibration, and the 

last 120 ns portions are used in all analyses; therefore, snapshots of 240 ns long MD 

simulation for WT, G330T, H372A and DM in complex with L1 and L2 are utilized for further 

analyses. Additionally, MD simulations for truncated (Δ) complexes are performed for 50 

ns, and the whole trajectory is utilized for calculations in these systems with minimal amounts 

of fluctuations. 
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Figure 3.10 Radial distribution function, g(r), between residue centers, results from the 16 

simulations belonging to all full length PDZ3 complexes are superimposed. The calculations 

are done for different structural segments, such as only ligand, α2, α3 and N/C termini. 

Additionally, g(r) between each structural segment and every other residue that does not 

belong to that segment is computed. The cut-off distance of 6.7 Å signified by dashed line 

marks the completion location of the first coordination shell of non-bonded Cβ atoms; this 

cut-off is utilized for all network analyses in this study. Note that selection of Cβ atoms as 

coarse-graining centers is essential to capture dynamical communication between residue 

side chains. 
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3.3.2 Node BC, Detection of Communities and Structural Origins of Members 

 

Node BC gives both local and global information about a graph, and it has been effectively 

used for structural and functional assessment of proteins, and slight differences of node BC 

lead significant changes in a network.20, 34-36, 38, 39  

 

Further, Girvan-Newman algorithm is employed to detect communities.37, 83  A community 

is a group of nodes that are connected to each other without having an edge to the nodes out 

of this group. Hence, members of same community are in cooperation, which, in the context 

of proteins, translates to function. The algorithm searches for communities by breaking the 

most central (highest BC) edge in each iteration, and the occurring communities (Ω) are 

utilized for further analyses. Along with the total edge count, number of removed edges until 

community separation is achieved proves informative about the state of the whole system. 

To scrutinize the structural origins of community members, we devise a simple algorithm. 

For an RN belonging to an MD snapshot, each community in Ω is checked whether at least 

one member from desired two different structural segments is located in the same 

community; if they are, the score for that Ω is 1, otherwise it is 0. The sum of scores is 

normalized by the total number of MD snapshots for average results. 

 

Accordingly, 240 snapshots from MD simulations (extracted from the equilibrated portions 

of the trajectories at 1 ns intervals) of each complex are utilized for the average results, and 

24 snapshots (extracted at 10 ns intervals) are used for the detailed investigation of the 

conformations. 
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3.3.3 Visualization of Community Dynamics on Three-Dimensional Protein 

Structure 

 

To visualize the dynamical shifts in shared communities, we apply the following procedure: 

Our aim is to color each residue according to its persistence in a given community. Thus, we 

first select three residues that predominantly remain in separate communities and are in rigid 

structural elements. Here we have selected I316 in 1, A375 in α2 and F400 in 3. These 

residues are attributed the colors red (R), green (G) and blue (B), respectively. After 

performing community detection at each snapshot for a given Ω, we assign an attribute of R, 

G, B or null to each residue at every time point t in vector ci(t) such that if the residue is in 

the same community with I316, ci(t) = [1 0 0], if it is with A375, ci(t) = [0 1 0], if it is with 

F400, ci(t) = [0 0 1]; ci(t) = [0 0 0] otherwise. The color of the protein is accumulated in the 

color matrix C of dimensions n  3 with each row holding the RGB color code of the residue, 

𝐂𝑖 = ∑ 𝐜𝑖(𝑡)𝑡 × 255/𝑇, where T is the total number of time points so that the normalization 

by 255/𝑇 allows the use of decimal RGB code. The protein three-dimensional structure is 

then colored according to these values. As a result, residues always co-inhabiting a 

community with I316, A375 or F400 will have a pure R, G or B color, but those switching 

between regions will have blended colors, e.g., a residue spending half of its time in the same 

community with I316 and the other with A375 will appear yellow. Finally, those residues 

that are never clustered with any of the three will be colored black. In this study, this 

visualization has been applied to community sizes of Ω = 4. 

 

 

3.3.4 Betweenness Centrality Unveils Hinge Residues Affecting Function of the 

Complex 

 

We first investigate if the BC of residues calculated as an average over the snapshots obtained 

through MD provide information additional to their mean-squared fluctuations (MSF). 

Selected case of H372AL2 is displayed in Figure 3.11a, and data for all cases are provided in 
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Figure 3.12. It is well known that high MSF residues are in mobile regions, mostly on solvent 

exposed loops, while residues in secondary structural elements have low MSF. Meanwhile, 

BC works at the resolution of single residues and reveals that even in flexible loops there are 

residues with high BC, undertaking hinge roles in PDZ binding mechanics (Figure 3.11a). 

We note that for the same mutant, binding different ligands may significantly shift the 

centrality of resides, best displayed by the ΔBC curves as exemplified for H372A in Figure 

3.11b wherein the N-terminus residues G303 and E304 as well as the turn residue S409 have 

much increased centrality in the functional H372AL2 compared to the low binding affinity 

complex H372AL1 (Figure 3.11b).  

 

In fact, these residues arise frequently amongst those with the largest ΔBC in all variants, 

whose locations and interactions are displayed in Figure 3.11c indicating the high centrality 

of N and C termini. We find G303/E304/I307 in the N-terminus, Y392 at the beginning of 

the α3 helix, and S409/G410 in the C-terminus to significantly shift their centrality depending 

on the variant. Moreover, in truncation simulation series, PDZ3, whereby the N-terminus 

has been deleted, the BC of C-terminus region drops in all cases, indicating that N and C 

termini interaction is substantial for the formation of the PDZ complexes. In these truncation 

variants, Y392, Y397 and S409 commonly lose centrality. Note that Y397 resides in the 

middle of the α3 helix and does not directly interact with the N-terminus in full length proteins 

providing an example of how the lost interactions lead to a domino effect that reflect into the 

bulk of the protein in the communication. Finally, note how for all complexes, BC of Y392 

shifts, emphasizing the function of this residue on information flow. Y392 is located at the 

beginning of α3, and it is central in all complexes; along with the high centrality of N/C 

termini, this residue appears to hold a mediator function for PDZ3 without conferring ligand 

specificity.  

 

Additionally, we compute aforementioned current flow and communicability BC analyses57, 

58 for every PDZ3 complex with a dynamical approach; however, we find that three BC 

measures have a similarity of higher than ~0.9 Pearson R. Hence, we employed only ‘shortest 

path’ BC to investigate PDZ3. 
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While residues with high BC changes in the different complexes may indicate regions to 

target to alter the function of a protein, they alone cannot pinpoint how function is 

dynamically orchestrated. For this purpose, we turn to analyze how communities of residues 

are structured.   

 

 

Figure 3.11 a Sample MSF and BC for H372AL2. Structural segments are labeled at the top 

of the graph, and segments of interest are highlighted in purple. MSF results are averages 

over six chunks of 40 ns each obtained from the equilibrated duplicate MD trajectories. b 

ΔBC between L1 and L2 bound forms of H372A. Along with α3, N and C termini are more 

central in H372AL2. c Residues with |ΔBC| > 0.04 emerging in any of the studies complexes 

are mapped on the three-dimensional PDZ structure; residues with large changes in full 

length proteins are shown in cyan; Y397 (magenta) is highlighted only in truncation mutants 

along with Y392 and S409 that appear in both types of systems. All these residues reside on 

the N-terminus, C-terminus or the 3 helix; their locations and interactions shown in detail 

below. 
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Figure 3.12 BC and MSF of each PDZ3 complex. Structural segments are labeled at the top 

of the graph, and segments of interest are highlighted. Favorable and unfavorable 

complexes are labelled by green and red, respectively. MSF results are computed by using 

Cβ atoms of 40-ns long chunks of MD trajectories in the 120-200 ns time window; thus, six 

chunks are averaged, and error bars are displayed.  
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3.3.5 Number of Broken Edges and Size of the Communities Illustrate Diverse 

Organizations of PDZ3 

 

Rather than individual residues, we now focus on the edges of the PDZ3-RNs, i.e., the 

interactions between residue pairs. In particular, an analysis of groups of residues working 

together is deciphered by studying the composition of communities formed by structural 

segments during the course of the time in the trajectories. To detect the communities, the 

edges are removed one-by-one hierarchically, starting from the most central, until a group of 

residues separate out into a disconnected community. The total number of edges in the range 

of 360-380 show that RNs of PDZ3 are very sparse (Table 3.4), compared to the maximum 

number of possible edges, which is 𝑛(𝑛 − 1) 2 = 7750⁄  where 𝑛 = 125 is the number of 

nodes. Considering the sparse character of the networks and the prior assessment of the 

communities, a community window of Ω = 3-6 is selected for detailed study. At Ω = 2, the 

flexible N-terminus and protein body are grouped separately as a trivial result; for Ω > 6 

single residue communities start to dominate. 

 

Table 3.4 Averages for total number of edges, and number of broken edges to achieve a 

community of size Ω.   

System 

label 
Total number 

of edges 

 Average number of broken edges  

 Ω = 3 Ω = 4 Ω = 5 Ω = 6 

WTL1 365 ± 1 31 ± 1 51 ± 1 63 ± 1 72 ± 1 

WTL2 364 ± 1 29 ± 1 50 ± 1 63 ± 1 73 ± 1 

G330TL1 363 ± 1 26 ± 1 47 ± 1 60 ± 1 70 ± 1 

G330TL2 364 ± 1 30 ± 1 49 ± 1 62 ± 1 71 ± 1 

H372AL1 366 ± 1 36 ± 1 54 ± 1 64 ± 1 71 ± 1 

H372AL2 367 ± 1 27 ± 1 48 ± 1 60 ± 1 71 ± 1 

DML1 376 ± 1 38 ± 1 57 ± 1 68 ± 1 77 ± 1 

DML2 374 ± 1 40 ± 1 56 ± 1 67 ± 1 75 ± 1 
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To provide an insight on how the community sharing and BC data lead to complementary 

information, in Figure 3.13 we display as heatmaps the BC value at each instant of the 

trajectories, accompanied below them with the fraction of time the N-terminus and the ligand 

share a community for the range of Ω = 3-6. The ligand has low BC in all cases (black stripes 

in the topmost part of the figures), and several residues of the N-terminus has high BC (light 

colored instants in the lowest part of the figures). Nevertheless, these two regions frequently 

share a community for Ω = 3, but their communities may further separate out depending on 

the system studied for larger Ω values (checkerboxes in Figure 3.13).  

 

The total number of edges averaged over the trajectory snapshots as well as the number of 

edges needed to be broken to reach a given community size are listed in Table 3.4. They are 

~365 in WT and the single mutants, while DM forms have ~375 edges. This is a result of the 

close-knit character of DM complexes, having more hydrogen bonds at the binding pocket 

and low overall solvent accessibility, as quantified in detail in previous section.23 Although 

the averages are similar, the number of broken edges fluctuate over the course of the 

trajectories (Figure 3.14). These changes indicate that the configurations for information flow 

are modified throughout the MD trajectories. When we focus on the size of the communities, 

we find that at Ω = 3 there is one large community having 60-100 residues accompanied by 

two smaller ones (compare the green curves to red and blue curves in Figure 3.15 for Ω = 3). 

As more edges are removed, the variations at different time points smooth out and the size 

of the communities gets more similar, with the largest community having 20-60 members 

and the smallest one having a few members (see Figure 3.15 for Ω = 6).   
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Figure 3.13 Heatmap of Node BC (colored; labelled by structural segments instead of residue 

indices) paired to the fraction of community sharing of N-terminus and ligand for Ω = 3-6 

(grayscale cells, each cell average of 10 snapshots) throughout the MD trajectories. The 

results for two replica trajectories are concatenated, with time points covering 80-200 ns for 

each as shown in x-axis labels.   
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Figure 3.14 Time evolution of the number of broken edges for emergence of Ω =3-6 

communities. 
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Figure 3.15 Time evolution of number of community members for Ω =3-6 communities. 

Smallest community is shown in blue, while the largest in green.  
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The composition of the communities is investigated by assessing the structural origins of its 

members. The fraction of being a member of the same community is calculated for all 

available pairs between five structural segments that have been determined in the BC analysis 

to be essential for PDZ3; namely the N/C termini, α2/α3 helices and ligand (refer to Figure 

1.3 for residue indices). Note that two segments are classified to be members of the same 

community if at least one residue is shared; therefore, the fractions do not sum to 1. The 

results for N-terminus and ligand and community sharing for the range of Ω = 3-6 are listed 

in Table 3.5 and that for all pairs of structural segments is in Table 3.6. 

 

Table 3.5 Fraction of instances that N-terminus and ligand co-inhabit a community.*  

System label Ω = 3 Ω = 4 Ω = 5 Ω = 6 

WTL1 0.93 ± 0.02 0.84 ± 0.02 0.66 ± 0.03 0.56 ± 0.03 

WTL2 0.84 ± 0.02 0.63 ± 0.03 0.32 ± 0.03 0.14 ± 0.02 

G330TL1 0.90 ± 0.02 0.80 ± 0.03 0.44 ± 0.03 0.26 ± 0.03 

G330TL2 0.93 ± 0.02 0.79 ± 0.03 0.55 ± 0.03 0.48 ± 0.03 

H372AL1 0.88 ± 0.02 0.31 ± 0.03 0.14 ± 0.02 0.09 ± 0.02 

H372AL2 0.88 ± 0.02 0.70 ± 0.03 0.35 ± 0.03 0.15 ± 0.02 

DML1 0.97 ± 0.01 0.56 ± 0.03 0.36 ± 0.03 0.33 ± 0.03 

DML2 0.90 ± 0.02 0.50 ± 0.03 0.32 ± 0.03 0.21 ± 0.03 
*values greater than 0.7 shown in bold; those less than 0.5 are colored blue. 
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Table 3.6 Fraction of instances pairs of structural segments co-inhabit a community.*  

 N-term and C-term N-term and α3 N-term and α2 
System label Ω = 3 Ω = 4 Ω = 5 Ω = 6 Ω = 3 Ω = 4 Ω = 5 Ω = 6 Ω = 3 Ω = 4 Ω = 5 Ω = 6 

WTL1 1.00 ± 0.01 1.00 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 0.99 ± 0.01 0.96 ± 0.01 0.88 ± 0.02 0.78 ± 0.03 0.85 ± 0.02 0.60 ± 0.03 0.33 ± 0.03 0.16 ± 0.02 

WTL2 0.80 ± 0.03 0.79 ± 0.03 0.75 ± 0.03 0.70 ± 0.03 0.89 ± 0.02 0.84 ± 0.02 0.73 ± 0.03 0.67 ± 0.03 0.81 ± 0.03 0.61 ± 0.03 0.33 ± 0.03 0.12 ± 0.02 

G330TL1 0.97 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.90 ± 0.02 0.85 ± 0.02 0.83 ± 0.02 0.87 ± 0.02 0.68 ± 0.03 0.31 ± 0.03 0.11 ± 0.02 

G330TL2 0.92 ± 0.02 0.91 ± 0.02 0.88 ± 0.02 0.85 ± 0.02 0.97 ± 0.01 0.93 ± 0.02 0.86 ± 0.02 0.79 ± 0.03 0.86 ± 0.02 0.62 ± 0.03 0.35 ± 0.03 0.17 ± 0.02 

H372AL1 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.96 ± 0.01 0.91 ± 0.02 0.83 ± 0.02 0.85 ± 0.02 0.43 ± 0.03 0.28 ± 0.03 0.15 ± 0.02 

H372AL2 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.94 ± 0.02 0.90 ± 0.02 0.86 ± 0.02 0.68 ± 0.03 0.38 ± 0.03 0.17 ± 0.02 

DML1 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.94 ± 0.02 0.82 ± 0.02 0.72 ± 0.03 0.92 ± 0.02 0.46 ± 0.03 0.19 ± 0.03 0.10 ± 0.02 

DML2 0.99 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.95 ± 0.01 0.94 ± 0.02 0.86 ± 0.02 0.41 ± 0.03 0.21 ± 0.03 0.13 ± 0.02 

 C-term and ligand C-term and α3 C-term and α2 
System label Ω = 3 Ω = 4 Ω = 5 Ω = 6 Ω = 3 Ω = 4 Ω = 5 Ω = 6 Ω = 3 Ω = 4 Ω = 5 Ω = 6 

WTL1 0.38 ± 0.03 0.35 ± 0.03 0.32 ± 0.03 0.31 ± 0.03 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.17 ± 0.02 0.07 ± 0.02 0.03 ± 0.01 0.01 ± 0.01 

WTL2 0.35 ± 0.03 0.31 ± 0.03 0.28 ± 0.03 0.26 ± 0.03 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.28 ± 0.03 0.17 ± 0.02 0.12 ± 0.02 0.11 ± 0.02 

G330TL1 0.42 ± 0.03 0.39 ± 0.03 0.37 ± 0.03 0.35 ± 0.03 0.97 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.18 ± 0.03 0.07 ± 0.02 0.03 ± 0.01 0.01 ± 0.01 

G330TL2 0.31 ± 0.03 0.24 ± 0.03 0.23 ± 0.03 0.21 ± 0.03 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.26 ± 0.03 0.10 ± 0.02 0.06 ± 0.02 0.04 ± 0.01 

H372AL1 0.26 ± 0.03 0.15 ± 0.02 0.11 ± 0.02 0.09 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.22 ± 0.03 0.10 ± 0.02 0.04 ± 0.01 0.01 ± 0.01 

H372AL2 0.27 ± 0.03 0.22 ± 0.03 0.19 ± 0.03 0.17 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.15 ± 0.02 0.08 ± 0.02 0.04 ± 0.01 0.02 ± 0.01 

DML1 0.48 ± 0.03 0.25 ± 0.03 0.17 ± 0.02 0.15 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.46 ± 0.03 0.20 ± 0.03 0.10 ± 0.02 0.08 ± 0.02 

DML2 0.23 ± 0.03 0.17 ± 0.02 0.16 ± 0.02 0.14 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.19 ± 0.03 0.10 ± 0.02 0.07 ± 0.02 0.05 ± 0.01 

 α3 and ligand α3 and α2 α2 and ligand 
System label Ω = 3 Ω = 4 Ω = 5 Ω = 6 Ω = 3 Ω = 4 Ω = 5 Ω = 6 Ω = 3 Ω = 4 Ω = 5 Ω = 6 

WTL1 0.84 ± 0.02 0.80 ± 0.03 0.73 ± 0.03 0.69 ± 0.03 0.74 ± 0.03 0.58 ± 0.03 0.41 ± 0.03 0.28 ± 0.03 0.99 ± 0.01 0.92 ± 0.02 0.86 ± 0.02 0.80 ± 0.03 

WTL2 0.97 ± 0.01 0.94 ± 0.02 0.88 ± 0.02 0.85 ± 0.02 0.96 ± 0.01 0.83 ± 0.02 0.76 ± 0.03 0.64 ± 0.03 1.00 ± 0.01 0.95 ± 0.01 0.94 ± 0.02 0.89 ± 0.02 

G330TL1 0.86 ± 0.02 0.80 ± 0.03 0.68 ± 0.03 0.63 ± 0.03 0.77 ± 0.03 0.55 ± 0.03 0.35 ± 0.03 0.23 ± 0.03 0.99 ± 0.01 0.93 ± 0.02 0.85 ± 0.02 0.78 ± 0.03 

G330TL2 0.80 ± 0.03 0.72 ± 0.03 0.66 ± 0.03 0.63 ± 0.03 0.75 ± 0.03 0.54 ± 0.03 0.44 ± 0.03 0.34 ± 0.03 0.98 ± 0.01 0.91 ± 0.02 0.86 ± 0.02 0.82 ± 0.03 

H372AL1 0.89 ± 0.02 0.62 ± 0.03 0.57 ± 0.03 0.56 ± 0.03 0.87 ± 0.02 0.65 ± 0.03 0.58 ± 0.03 0.51 ± 0.03 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 

H372AL2 0.91 ± 0.02 0.80 ± 0.03 0.68 ± 0.03 0.62 ± 0.03 0.88 ± 0.02 0.75 ± 0.03 0.64 ± 0.03 0.54 ± 0.03 1.00 ± 0.01 1.00 ± 0.01 0.98 ± 0.01 0.96 ± 0.01 

DML1 0.97 ± 0.01 0.73 ± 0.03 0.68 ± 0.03 0.66 ± 0.03 0.95 ± 0.01 0.67 ± 0.03 0.58 ± 0.03 0.54 ± 0.03 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 

DML2 0.90 ± 0.02 0.77 ± 0.03 0.70 ± 0.03 0.66 ± 0.03 0.85 ± 0.02 0.67 ± 0.03 0.57 ± 0.03 0.50 ± 0.03 1.00 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 

*values greater than 0.7 shown in bold; those less than 0.5 are colored blue.  
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First and foremost, N-terminus – C-terminus – α3 are located in the same community even 

for the largest value considered of Ω = 6 with fraction of time they spend together in pairs 

exceeding values 0.7 throughout and nearly equal to 1 in most cases (Table 3.6). In addition 

to the previously mentioned node BC results, the high fraction of N/C termini co-inhabiting 

the same community along with α3 emphasizes the interaction between the two segments is 

critical for all complexes. The two termini exert a clamping effect that facilitates the overall 

dynamics.24 Considered with the high node BC (Figure 3.11, 3.12), α3 acts as a hub between 

structural segments, jointly with its neighboring Y392. Similarly, α2 that hosts H372 and the 

ligand reside in the same community throughout the trajectories (Table 3.6), an expected 

result since α2 lines the ligand (Figure 1.3). A series of manuscripts discuss the allosteric 

communication between the ligand binding site and the α3 helix.5, 7-11 Our analyses show that 

the two regions share a community with a fraction higher than ~0.6 in all PDZ complexes 

even at Ω = 6. However, community sharing between α3 and α2 is relatively low, particularly 

for WTL1 and G330T single mutation systems.  

 

The fraction of community sharing between N-terminus and ligand is a measure of the extent 

to which the distal mobile region affects ligand binding (Table 3.5). We find that this couple 

tends to be in the same community in favorable complexes up to Ω = 5, except for DML2. 

Also, the analyses between N/C termini, α2 and α3 do not indicate this specificity, which 

means that N-terminus communicates directly with the ligand. The effect is due to the long-

range electrostatic interactions between the N-terminus having -4 net charge and the ligand 

with +2 charge. It is filtered through the protein core, and its range is manipulated by point 

mutations at positions 330 and 372. As a result, the flexible N-terminus interacts with the 

ligand and affects binding specificity, significantly for WT and single mutations. We have 

shown previously23 that the strong ligand binding preference of DM is dominated by the tight 

structure attained by this variant upon ligand binding that affects the overall solvation free 

energy change due to the reduction in solvent accessible surface area and additional hydrogen 

bonds counts at the binding site. The preference of L2 binding over L1 in this case is explained 

by the enhanced BC of the α3 hub that manifests itself as the tendency of the N-terminus, C-
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terminus and α3 to coinhabit the same community even at Ω = 6 (fraction of finding all three 

together is 0.88 for DML2 vs. only 0.47 for DML1.) 

 

The analyses of the remaining segments do not provide information on binding specificity of 

PDZ3. For example, the C-terminus does not communicate with structural segments other 

than the N-terminus. Although, PDZ3-specific α3 has a higher fraction of communication 

with ligand and α2, the values do not differentiate functional complexes implying that α3 does 

not directly affect ligand selectivity. We therefore find that the N-terminus is the main region 

affected by the single residue changes that lead to ligand selectivity in PDZ3.  

 

Figure 3.16 Average community co-occupancy fraction for, () N-terminus, 3 and ligand 

triplet; (⚫) 3 and ligand pair in full length PDZ3 systems; (∆) 3 and ligand in PDZ3 

systems. 

 

In fact, removal of the N-terminus significantly alters the community structure of PDZ3. In 

Table 3.7 we display the community sharing fractions for all pairs of the remaining regions 

in PDZ3 simulation series where the values that differ from the full length PDZ3 variant 

(Table 3.6) by more than the error margins are colored in red. We find that the already low 

community sharing between C-terminus and α2/ligand in the full length PDZ3 is nearly 

completely lost even for Ω = 3 in all variants except H372AL2 where there is slight increase 

in communication between these regions. Moreover, focusing on the central role attributed 
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to α3 to ligand binding (Figure 3.16), their community structure is also significantly altered, 

especially for WTL2 whose communication with the ligand is substantially disrupted for 

WTL2, but reinforced for H372AL1, and H372AL2. The N-terminus is almost always grouped 

together with α3 and ligand for Ω = 3 but is the first region to separate out for Ω > 3 (Figure 

3.16, empty squares). If this region were not to affect the community dynamics of α3 and 

ligand, one would expect α3 and ligand to have the same occupancy fractions in PDZ3 and 

PDZ3 simulations (Figure 3.16 circles and triangles). Indeed, we have discussed how the 

binding affinity of the DM variants is mainly governed by the tight overall structure, unlike 

the rest of the systems. Therefore, as expected, the absence of the N-terminus has no effect 

on the community structure of α3 and ligand in the DM systems. 
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Table 3.7 Fraction of instances pairs of structural segments co-inhabit a community in truncated (Δ) PDZ3.*  

 C-term and ligand C-term and α3 C-term and α2 

System label Ω = 3 Ω = 4 Ω = 5 Ω = 6 Ω = 3 Ω = 4 Ω = 5 Ω = 6 Ω = 3 Ω = 4 Ω = 5 Ω = 6 

𝐖𝐓𝐋𝟏
Δ  0.20 ± 0.06 0.18 ± 0.05 0.18 ± 0.05 0.16 ± 0.05 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.08 ± 0.03 0.06 ± 0.03 0.04 ± 0.03 0.02 ± 0.02 

𝐖𝐓𝐋𝟐
Δ  0.02 ± 0.02 0.02 ± 0.02 0.02 ± 0.02 0.02 ± 0.02 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0 0 0 0 

𝐆𝟑𝟑𝟎𝐓𝐋𝟏
Δ  0.22 ± 0.06 0.22 ± 0.06 0.20 ± 0.06 0.18 ± 0.05 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.16 ± 0.05 0.06 ± 0.03 0.06 ± 0.03 0.04 ± 0.03 

𝐆𝟑𝟑𝟎𝐓𝐋𝟐
Δ  0.26 ± 0.06 0.22 ± 0.06 0.22 ± 0.06 0.16 ± 0.05 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.02 ± 0.02 0 0 0 

𝐇𝟑𝟕𝟐𝐀𝐋𝟏
Δ  0.16 ± 0.05 0.16 ± 0.05 0.10 ± 0.04 0.06 ± 0.03 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.06 ± 0.03 0.04 ± 0.03 0.02 ± 0.02 0.02 ± 0.02 

𝐇𝟑𝟕𝟐𝐀𝐋𝟐
Δ  0.54 ± 0.07 0.52 ± 0.07 0.38 ± 0.07 0.36 ± 0.07 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.32 ± 0.07 0.26 ± 0.06 0.22 ± 0.06 0.18 ± 0.05 

𝐃𝐌𝐋𝟏
Δ  0.16 ± 0.05 0.16 ± 0.05 0.14 ± 0.05 0.10 ± 0.04 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.10 ± 0.04 0.08 ± 0.04 0.06 ± 0.03 0.02 ± 0.02 

𝐃𝐌𝐋𝟐
Δ  0.16 ± 0.05 0.14 ± 0.05 0.08 ± 0.04 0.06 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.14 ± 0.05 0.10 ± 0.02 0.02 ± 0.02 0.02 ± 0.02 

 
α3 and ligand α3 and α2 α2 and ligand 

System label Ω = 3 Ω = 4 Ω = 5 Ω = 6 Ω = 3 Ω = 4 Ω = 5 Ω = 6 Ω = 3 Ω = 4 Ω = 5 Ω = 6 

𝐖𝐓𝐋𝟏
Δ  0.96 ± 0.03 0.86 ± 0.05 0.84 ± 0.05 0.82 ± 0.05 0.82 ± 0.05 0.62 ± 0.07 0.44 ± 0.07 0.24 ± 0.06 0.92 ± 0.04 0.76 ± 0.06 0.68 ± 0.07 0.60 ± 0.07 

𝐖𝐓𝐋𝟐
Δ  0.72 ± 0.06 0.46 ± 0.07 0.40 ± 0.07 0.36 ± 0.07 0.66 ± 0.07 0.44 ± 0.07 0.30 ± 0.07 0.22 ± 0.06 0.98 ± 0.02 0.94 ± 0.03 0.90 ± 0.04 0.86 ± 0.05 

𝐆𝟑𝟑𝟎𝐓𝐋𝟏
Δ  0.92 ± 0.04 0.82 ± 0.05 0.74 ± 0.06 0.68 ± 0.07 0.86 ± 0.05 0.46 ± 0.07 0.18 ± 0.05 0.12 ± 0.05 1.00 ± 0.01 0.80 ± 0.06 0.70 ± 0.07 0.66 ± 0.07 

𝐆𝟑𝟑𝟎𝐓𝐋𝟐
Δ  0.98 ± 0.02 0.82 ± 0.05 0.80 ± 0.06 0.78 ± 0.06 0.90 ± 0.04 0.72 ± 0.06 0.52 ± 0.07 0.38 ± 0.07 0.98 ± 0.02 0.94 ± 0.03 0.92 ± 0.04 0.92 ± 0.04 

𝐇𝟑𝟕𝟐𝐀𝐋𝟏
Δ  0.96 ± 0.03 0.94 ± 0.03 0.90 ± 0.04 0.86 ± 0.05 0.90 ± 0.04 0.80 ± 0.06 0.64 ± 0.07 0.56 ± 0.07 1.00 ± 0.01 0.92 ± 0.04 0.90 ± 0.04 0.88 ± 0.05 

𝐇𝟑𝟕𝟐𝐀𝐋𝟐
Δ  1.00 ± 0.01 0.94 ± 0.03 0.92 ± 0.04 0.90 ± 0.04 0.96 ± 0.03 0.86 ± 0.05 0.78 ± 0.06 0.66 ± 0.07 1.00 ± 0.01 0.94 ± 0.03 0.90 ± 0.04 0.86 ± 0.05 

𝐃𝐌𝐋𝟏
Δ  0.88 ± 0.05 0.78 ± 0.06 0.74 ± 0.06 0.72 ± 0.06 0.84 ± 0.05 0.80 ± 0.06 0.64 ± 0.07 0.50 ± 0.07 1.00 ± 0.01 0.98 ± 0.02 0.96 ± 0.03 0.96 ± 0.03 

𝐃𝐌𝐋𝟐
Δ  0.88 ± 0.05 0.68 ± 0.07 0.56 ± 0.07 0.52 ± 0.07 0.84 ± 0.05 0.68 ± 0.07 0.46 ± 0.07 0.38 ± 0.07 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.98 ± 0.02 

*values greater than 0.7 shown in bold; those differing from the full-length variant value (Table 3.6) by more than the sum of the error bars colored red. 
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3.3.6 Major Communities, Dedicated Membership and Ubiquitous Residues 

 

Our discussion so far has utilized community sharing of structural units whereby if at least 

one residue from each element appears in the same community, they are listed in the co-

occupancy fractions. To better explain the dynamical shifts in shared communities, we have 

superposed the separation into communities as a visualization on the protein structures as 

explained under methods. In Figure 3.17 we observe that all the complexes have split into 

three main regions. One major community organizes around the binding site, including most 

of the ligand and the α2 helix; this community is predominantly green. A second one is 

dominated by the α3 helix colored blue. A third community, colored red, includes the 1 

strand and the surrounding loops as well as the residue at position 0 of the ligand (residue 9 

in Figure 1.3). There are stark differences in the behavior of some other regions, however.  

 

For example, in the functional complexes WTL1 and G330TL1, the regions are well separated 

from each other, consisting of “pure” RGB colors except for the ligand and some parts in the 

central  sheet. In addition, the first few residues of the N-terminus are always separated out 

from the rest of the protein, indicated by their black color. In these complexes most of the N-

terminus communicates with the α3
 helix throughout the trajectory, together forming the blue 

region which dominates the dynamics in this variant. The shades residues take indicate they 

share communities with the red, green, and blue regions proportionately. In particular, except 

at position 0 which is red, the ligand has the shade of teal with green:blue ratio of 2, i.e., it 

co-inhabits the blue region a third of the time. Note that the ligand forming an ingroup with 

the blue region is a must for favorable complexes; e.g., in the unfavorable H372AL1, the 

ligand is pure green hence lacking a dynamical unification with the whole protein, although 

all other features of this complex is similar to WTL1 and G330TL1. 

 

In G330TL2 and H372AL2, though node BC is stable throughout the MD trajectory, 

community compositions show that the underlying interactions change over time. In 

particular, the groups containing the α2/α3
 helices are blended, the teal color of the former 
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signifying 1:1 green:blue ratio, including the ligand. In this case, the whole N-terminus 

groups with the C-terminus and the α3
 helix. However, the α3

 helix itself is not a separate 

group but blends with the ligand/α2. This high grouping of the core with the N/C termini and 

the α3
 helix is proposed to reinforce the high binding affinity of these variants. 

 

The DML2 complex, which is the one with the highest binding affinity to its ligand,17 displays 

a further property of community sharing. While the average number of hydrogen bonds 

between the ligand and PDZ3 increased from ~3.2 to 3.9 in the double mutants23 due to the 

decreased overall size of these variants, the central (green) region still communicates a great 

deal with the blue part. Unique to this variant is the behavior of the N-terminus which shares 

its time partnering with the green and red regions reinforcing the binding by interacting with 

the 1 strand with some of its (orange colored) residues in addition to its α3 interactions. 

 

Finally, it is clear from the coloring of the unfavorable WTL2 and DML1 complexes, when the 

majority of the N-terminus does not co-inhabit communities with the body of the protein, 

favorable binding does not take place. 
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Figure 3.17 Visuals of dynamical community composition for selected variants, 

superimposed on the average structure for each variant. Community composition for each 

residue at Ω = 4 is accumulated throughout the trajectories. Residues predominantly sharing 

the same community with I316, A375 and F400 (as ball representation) are in red, green and 

blue (RGB), respectively. Dynamically changing community neighbors relative to these 

reference residues are displayed as a mixture of RGB colors. The red community is separated 

out from the rest in all variants. The blue community carrying the α3 helix dominates the 

green community carrying α2 and the ligand since even A375 residing at the center of the 

latter has blue components in H372A and DM variants (hence the tinted green color). Black 

residues never share a community with the main selections, always separating out into a 

separate community.  

 

 

3.3.7 Evolution of PDZ3 Is Investigated by Node BC and Conservation Scores 

 

Node BC and community composition analyses are applied on 240 ns long MD trajectory of 

WTL1. First, conservation score of each residue is calculated by using Consurf.62 Inside the 

Consurf pipeline, multiple sequence alignments (MSA) of 150 sequence homologs of PDZ3 

are recorded for further analyses. Consurf scores show that N-terminus, α3 and C-terminus 

have lower conservation, compared to the protein core [313-392] (Figure 3.18a). Positions 
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containing a large number of gaps in PDZ3 MSA leading to an insufficient sample size are 

signified as low confidence values in Consurf pipeline. Hence, the confidence interval (0.75) 

indicates that MSA has inadequate data for these terminal structural segments.  

 

Further, by using the recorded MSA, statistical coupling analysis (SCA) is conducted by 

utilizing the pipeline in a previous study.84 First, to eliminate the sequences with gaps for 

more precision, pipeline reduces the MSA to 126 sequences, then the SCA calculation 

converges on the 80 residue-long protein region [313-392] for further calculation of amino 

acid positions (Di) (Figure 3.18a). This reduction of MSA sequences and amino-acid 

positions to fine-tune the conservation calculation stems from a higher confidence bound 

(0.95) belonging to the SCA scheme. These findings are also in agreement with the 

Mclaughlin’s study,16 where sectors are defined only for the 83 residue long core. Overall, 

the results display that the evolutionary information is insufficient in terms of MSA for 

PDZ3. Hence, the Pearson’s R for Consurf and Di (SCA) scores for the protein core is 0.88 

indicating the high similarity between the two measures; on the other hand, correlation of 

each of these scores for node BC is the same with a value of 0.57 meaning that node BC does 

not approximate the evolutionary conservation of residues. This is an expected outcome since 

the evolution of a sequence cannot be constrained to only binding.85  

 

Residue by residue investigation of the average community composition (Ω = 4) is compared 

with the SCA weighted correlation matrix for the protein core (Figure 3.18b, c). In Figure 

3.18b, there are 7-8 observable communities with different sizes indicating that, even in the 

immobile protein core, a modular structure occurs. On the other hand, SCA which indicates 

coevolving regions shows the effect of residues between 320-340 (Figure 3.18c). Although, 

there is no similarity in terms of modularity between community sharing and coevolving 

residues (Figure 3.18b, c); the results in SCA weighted matrix (Figure 3.18c) are in 

agreement with Lockless’ findings.15 
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An insufficient amount of evolutionary information precludes inferring conclusions for the 

regions of interest for us in the current study. One strength of using network-based measures 

is that they work on a single structure and using them on a series of plausible conformations 

obtained from sufficiently long MD simulations adds to the wealth of information one can 

obtain from coarse grained designations of proteins. 

 

Figure 3.18 a Node BC (in black), Consurf (in red) and Di (SCA, in green) results are 

calculated for WTL1. The values normalized so that maxima are equal to 1 for better 

comparison. Structural segments are signified by purple coloring and labelled on top of 

corresponding residue range. b Residue by residue average community composition for Ω = 

4 in WT-PDZ3. Residue index range is arranged according to sectors calculation. c SCA 

weighted correlation matrix. Red lines signify the residue range of α2. 

 

 

4. CONCLUSIONS 

 

The biological function of PDZ3 is measured by binding affinity experiments,16, 17 and 

functional complexes such as WTL1, G330TL1, G330TL2, H372AL2 and DML2 are revealed 
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pointing to the allosteric character of this domain. However, the underlying mechanism 

deciding the binding fate cannot be clarified by the thermodynamic measurements alone. 

Since the conformational differences between these forms are minimal, a dynamical 

assessment is needed to further interpret the allosteric mechanism involved in 

communication. In a recent study on PDZ2, it was discussed that the mean structures do not 

necessarily differ between favorable and unfavorable complexes, whereby having different 

fraction of substates leads to ligand binding.86 Similarly, studies on PDZ3 have shown that 

while the conformational change is not essential for allostery,87, 88 N/C termini and α3 play 

an important role on its function;5, 7-10, 23, 24 e.g., α3 exhibits significantly different impact on 

ligand-binding within the temperature limits of 10 - 40º C.11 The affinity experiments 

demonstrate that the binding free energy difference between the functional and dysfunctional 

PDZ3 complexes is around ~2.5 kcal/mol,16 whereby overall energy contribution of a non-

bonded interaction, including hydrogen bonds, is  ~1.0 kcal/mol.80, 89-91 Therefore, assessing 

conformational changes resulting from these energy differences is challenging.  

 

We perform MD and FEP simulations to show the energetic, conformational and dynamical 

bases for the ligand specificity of the mutations in PDZ domains. One novelty of this study 

is that we suggest a reverse approach to use FEP calculations to validate the adequacy of 

ensembles collected in classical MD simulations (Figure 3.2). Then, we propose a simple 

model to predict binding free energies to distinguish the ligand selected by various PDZ3 

mutants from classical MD simulations of affordable length (Figure 3.8). 

 

Another useful feature of using FEP calculations has been to discuss properties of the system 

that could not have been deduced otherwise. These are, (i) changes in the tautomeric states 

of key residues in apo forms; (ii) the cost of the individual mutations in the ligand free and 

ligand bound forms. We find the computational ΔΔG values are in agreement with the 

experimentally determined adaptive pathway, and the in silico ΔΔΔG results corroborate the 

experiments.16, 23 Moreover, the multiple MD simulations uncover intriguing fluctuation 

patterns of the glutamic acid rich N-terminus region (Figure 3.4) which provide the -4 net 

charge of the protein. Accordingly, to predict binding free energies from MD trajectories, the 
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proposed model accounts for this electrostatic effect along with the change in the hydrogen 

bond contributions due to different mutations (Table 3.1). Our model fits well the results of 

binding experiments; furthermore, its regression parameters are in the biophysically relevant 

range (Equation 3.8).  

 

Our simple model demonstrates that the charged residues of the N-terminus have a decisive 

role in mutation – binding partner matches for functional activity, even though the main 

contributions to binding free energy come from the hydrogen bonds formed in the binding 

pocket (Table 3.3). Namely, (i) the H372A mutant prefers L2 because of the Born solvation 

energy of the N-terminus, which is negligible for the L1 bound complex; and (ii) while the 

G330T prefers to bind both L1 and L2, the preference to L1 is strengthened by the electrostatic 

contributions of the complex, similar to the choice of L1 in lieu of L2 for the wild type. 

 

These observations lead to the following fundamental question: Would mutations select the 

same ligands functionally, if we were to intervene with the proposed communication between 

the N-terminus and the rest of the protein? To answer, we simply remove the 12 N-terminus 

residues from all of the ligand-bound proteins, repeat the calculations (Figure 3.9), and 

monitor the changes in the binding energies. We find that the costs of the G→T transition in 

the presence of L1 in cycle  and the binding pocket H→A transition in the presence of L2 

in cycle  are 3.3 and 2.6 kcal/mol larger, respectively. This finding clearly summarizes the 

moderating role of the N-terminus for selecting the functional ligand for the PDZ3 domain. 

Our further analysis via the proposed simple binding free energy model indicates that the 

FEP differences in the truncated PDZ3 are mainly due to modified hydrogen bond 

interactions in the binding pocket (Table 3.1). 

 

Nevertheless, we develop a methodology to decipher the hidden states governing favorable 

binding and specificity. We set out to show that the slight variations occurring during the 

dynamical motions provide information on the functionality of PDZ3 complexes, and the 

community composition of underlying states dictates the allosteric communication without 



78 

 

undertaking significant conformational changes.87, 88 For this purpose, MD-simulated 

trajectories of PDZ3 complexes are investigated by using community detection tools from 

graph theory.38, 39 To understand the modularity of PDZ3, the communication between the 

N/C termini, α2, α3 and the ligand is assessed.7, 9, 23, 25 Although, node centrality measures are 

informative to the extent of pinpointing residues whose centrality are shifted depending on 

the variant studied (Figure 3.11), our community composition analysis is more sensitive. We 

find that PDZ3 complex variants have diverse community configurations, and the fraction of 

these changes modulates binding preferences. 

 

For a successful binding event, the following conditions must be met: (i) The N-terminus 

must share a community with the C-terminus and α3 (blue communities in Figure 3.17); (ii) 

ligand must not only be a part of the binding site community (green communities in Figure 

3.17), but it must also share communities with the N/C termini and α3 in (i). Moreover, if the 

N-terminus co-inhabits community with the 1 helix, the ligand specificity is further 

reinforced (orange region in Figure 3.17, DML2). To the best of our knowledge, while there 

are several studies that use communities in proteins to determine a collection of residues that 

act in concert,92-96 this is the first study where the dynamical exchanges between communities 

have been woven into a narrative for protein functionality. 

 

In sum, while the N-terminus confers the specificity, C-terminus and α3 are the essential 

vehicles for the formation of the PDZ complex. In fact, α3 acts as a hub for the whole protein 

by sustaining the communication with all structural segments. We propose the method 

developed in this work as a general methodology to study protein structures where the 

mechanism of action is not readily disclosed by conformational changes. For the particular 

case of PDZ domains, the behavior of communities put forth in this study is due to residue 

network members having a high number of redundant edges and common neighbors. These 

redundancies translate into highly sensitive shifts in allosteric networks depending on the 

external conditions imposed, leading to the measured binding affinity differences. It is 

apparent that point mutations perturb a plethora of interactions that have entropic97, 98 and 

electrostatic9, 26 origins. Our coarse-grained approach in this work along with our previous 
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all-atom approach23 paves the way for further analysis of entropy-enthalpy compensation. 

Moreover, the supertertiary structures of PDZ domains have recently gained closer attention, 

e.g., via the experimental studies on PDZ1-PDZ2 tandem2  and PDZ3-SH3-GK tandem.3 In 

particular, it was shown that the binding affinities to peptides differ substantially depending 

on PDZ3 being isolated or as part of a supertertiary structure and the shifts in the allosteric 

network of PDZ3 was identified as the reason for the differences.3 Our results indicate that 

the arrangement of the allosteric network will be sensitive to the external conditions imposed, 

which might include the packing arrangements assumed by the supertertiary structure. PDZ3 

domain operates as a bridge with its N-terminus bound to PDZ tandem, while the C-terminus 

is attached to SH3-GK. The ~50 residue-long linker that precedes the N-terminus of PDZ3 

may be presumed not to constrain the mobility of this highly charged region while it may be 

a tool to communicate signals. It is possible that the supertertiary structure controlled through 

the termini of PDZ3 might play a role in function, a hypothesis which may be tested in future 

studies, with the emergence of new PDB structures for the supramolecular assembly.  

 

Finally, we note that owing to their centrality in protein-protein interaction pathways,99-101 

PDZ domains may be interesting drug targets against resistance conferring mutants in cancer. 

Our results about the terminal regions, such as N/C termini and α3 might act as basis for more 

specific targets, considering the inadequate information belonging to PDZ3 in the literature.  

 

 

5. EPILOGUE AND FUTURE WORK 

 

The community composition analysis display that there are underlying states of 

conformational dynamics belonging to a protein, and the composition changes, even though 

size of the communities stays same through the MD trajectory. However, a physics-based 

interpretation of this behavior is yet to be provided. To this end, we compute common 

neighbors between the structural segments, and results show that N-terminus and ligand do 

not share neighbors. We further focus on shortest path lengths and find that N-
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terminus/ligand have at least three edges-long paths in between, taking nodes of two 

segments as sources and targets. Similar to the shortest path length scrutiny, 

communicability59 analyses, where we assess ‘walks’, do not lead to any differentiating 

results. On the other hand, number of different shortest paths between the protein segments 

might be informative about the occurrence of community structures, since it is possible to 

detect the nature of redundancies that makes communities close-knit by assessing this 

measure. 

 

There are different ways to construct graphs from protein structures/trajectories. First, 

Laplacian matrix (Г)102 is computed by using the inverse of cross-correlation matrix from the 

MD trajectories. Also, it is possible to compute the pairwise distance of all residues and 

construct one graph per MD simulation.39 However, sampled conformations may be 

misleading in cross-correlation matrices,49 and an average graph loses the information about 

the underlying slight changes. In this thesis, we study time evolution of graphs by using a 

physical cut-off stemming from the radial distribution function, so that these graphs could be 

assessed by employing ‘temporal network’ theory and measures103 in a future study. 

Additionally, deep learning pipelines are available to construct networks from correlated 

motions (such as skeletal motions and Kuramoto oscillators)104, 105 which might be feasible 

to use for future studies. 

 

Deep mutational scan or deep mutagenesis (DMS) is a method to investigate change of 

binding affinity for single and double mutations of a protein, and this method explains 

biological function of a protein experimentally. There are studies about inferring the three 

dimensional structures of proteins by using DMS,106, 107 in addition to other investigations 

about high-order mutations18 and analyses/perspectives about DMS results.108-111 

Nonetheless, DMS data of PDZ3 that uses a well-known experimental pipeline16, 17, 25 (Rama 

Ranganathan scheme) has been published recently.112 In the light of these studies, double 

mutation matrix of a protein might be utilized to construct a graph, since it is possible to 

decipher a correlation like ‘coupling’ information from the DMS matrix. Further, single and 

double mutations matrices may be employed as weights for nodes and/or edges. In sum, it is 
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essential to understand the underlying biophysics of binding affinity changes that are 

manifested by mutations for future work. 

 

In this thesis, analyses of MD simulations are based on both external (RMSD, RMSF and 

cross-correlation) and internal (SASA, hydrogen-bonds and network analyses) degrees of 

freedom, where a caveat of the former is ‘superposition’ of a dynamic protein trajectory. In 

the process of superposition, slight changes that lead functional shifts diminish, especially 

for a highly mobile protein like PDZ3. To tackle this sampling problem, analysis pipelines 

have been established by using collective variables, machine/deep learning and reaction 

coordinates in the literature,113-120 and these methods may be used for future studies. 

Additionally, the problem of timescale, where we investigate phenomena on the order of 

milliseconds121 by using nanoseconds-long simulations might be solved by using deep 

learning-based simulation methods.122-124  
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