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ABSTRACT

VIBRATION ANALYSIS OF COMPOSITE LAMINATED SHELLS USING 2D
SPECTRAL CHEBYSHEV METHOD AND LAMINATION PARAMETERS

PEIMAN KHANDAR SHAHABAD

Mechatronics Engineering
M.S. THESIS, July 2021

Thesis Supervisor: Assist. Prof. Bekir Bediz

Keywords: Vibration analysis, laminated composites, sandwich plates, conical
shells, lamination parameters, spectral Chebyshev, optimization; layup

optimization

This study presents a modeling approach to accurately and efficiently predict the
dynamics of laminated composite structures. The governing equations are derived
based on the first order shear deformation theory kinematic equations following the
Hamilton’s principle. To express the strain energy of the shells, in-plane and bend-
ing lamination parameters are used. A two-dimensional spectral approach based
on Chebyshev polynomials is implemented to solve the governing equations. The
developed framework including the spectral Chebyshev approach and lamination
parameters results in an accurate and computationally efficient solution method.
To demonstrate the performance of the presented solution approach, various case
studies including straight panels, curved shells, truncated conical shells, and sand-
wich panels are investigated. The benchmarks indicate that the calculated non-
dimensional natural frequencies and critical buckling loads excellently match the
results found using finite element method and the simulation duration can be de-
creased by 100 folds. To leverage the computational performance of the presented
approach, a stacking sequence optimization is performed to maximize the fundamen-
tal frequency of a shell geometry, and the corresponding fiber angles are retrieved
from the optimized lamination parameters. Furthermore, a parametric analysis is
performed to investigate the effect of geometry on the optimized lamination param-
eters (and fiber angles) based on fundamental natural frequency maximization.
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ÖZET

2B SPEKTRAL CHEBYSHEV YÖNTEMI VE LAMINASYON
PARAMETRELERI KULLANILARAK KOMPOZIT KABUKLARIN TITREŞIM

ANALIZI

PEIMAN KHANDAR SHAHABAD

Mekatronik mühendisliği
YÜKSEK LİSANS TEZİ, Temmuz 2021

Tez Danışmanı: Assist. Prof. Bekir Bediz

Anahtar Kelimeler: titreşim analizi, Katmanlı kompozitler, sandviç plakalar, konik
kabuklar, laminasyon parameterleri, spektral-Chebyshev, eniyileme, yerleştirme

optimizasyonu

Bu çalışma, katmanlı kompozit yapıların dinamiklerini doğru ve verimli bir şekilde
tahmin etmek için bir modelleme yöntemi sunmaktadır. Hareket denklemleri, bir-
inci dereceden kayma deformasyon teorisi kinematik denklemleri ve Hamilton ilkesi
kullanılarak elde edilmiştir. Enerji tabanlı bu yöntemde, yapının gerinim enerjisini
ifade etmek için düzlem içi ve eğilme laminasyon parametrelerinden faydalanılmıştır.
Hareket denklemini çözmek için Chebyshev polinomlarına dayalı iki boyutlu bir
spektral yaklaşım geliştirilmiştir. Geliştirilen yöntemin performans analizi için düz
paneller, kavisli kabuklar, kesik konik kabuklar ve sandviç paneller dahil olmak üzere
çeşitli çalışmaları incelenmiştir. Yöntemin doğruluğunun tespiti için doğal frekans ve
kritik burkulma yükleri sonlu elemanlar yöntemi ile bulunanlarla karşılaştırılmıştır.
Karşılaştırmalar sonucu aynı hassasiyetteki sonuçların en az 100 kat daha hızlı elde
edilebildiği gözlemlenmiştir. Sunulan çözüm yönteminin hesaplama performansın-
dan yararlanmak için, bir kabuk geometrisinin temel frekansını en üst düzeye çıkar-
mak için bir istifleme dizisi eniyilemesi (optimizasyonu) gerçekleştirilmiştir. Bulu-
nun optimum konfigürasyona (optimize edilmiş laminasyon parametrelerine) karşılık
gelen fiber açıları bulunmuştur. Ayrıca, temel doğal frekans maksimizasyonuna day-
alı olarak optimize edilmiş laminasyon parametreleri (ve fiber açıları) üzerinde ge-
ometrinin etkisini araştırmak için bir parametrik analiz yapılmıştır.
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1. Introduction

Materials and structures always play an essential role in human beings and civiliza-
tion. In recent years, material science has achieved rapid developments, mainly due
to the increased interdisciplinary research. The main motivation is that new ma-
terial developments lead to novel advanced materials and applications. Composite
materials represent nothing but a giant step in terms of the efficient use and innova-
tion of materials [1,2]. By significant developments in composite materials and their
manufacturing process, it has drawn quite a lot of attention. Recently, conventional
composites have been shifting towards advanced composite materials [3, 4].

Composite materials are mainly designed and fabricated in the form of beams, shells,
and plates. Due to the high number of applications in various fields of engineering
(such as aerospace, automotive, and energy fields), there is a growing demand to
understand the static/dynamic behavior of (laminated) plate/shell composite struc-
tures.

This chapter presents an overview of composite materials, mainly modeling the
dynamic behavior of laminated composite structures. Therefore, initially a brief
definition and classification of composite structures are presented. Next, different
modeling approaches to approximate the kinematics and numerical methods to an-
alyze the governing equation of the composite plates have been discussed. Then,
a detailed literature review about layup optimization of laminated composite shells
and plates is presented. Later, the aim of this study is highlighted.

1.1 Composite Materials

Composite materials are made up of two or more materials on a macroscopic scale
that provides desirable properties. These superior properties cannot be attained by
any of the constituents alone. The combination of components results in two phases:

1



(i) reinforcement and (ii) matrix (see Fig. 1.1). Reinforcement is a discontinuous
phase and generally strong. In addition, due to high stiffness properties, reinforce-
ment is a bearing phase when an external load is applied to the structure. On the
other hand, the matrix is a continuous phase that holds the reinforcements together.
The most outstanding advantages that enhance the use of composite materials are
low density, high stiffness and strength, long fatigue life, remarkable life cycle cost,
and low thermal expansion. In addition, due to the variety of combinations of re-
inforcement and matrix materials, designers have great opportunities to tailor the
design to achieve better performance in terms of application and resources [5–8].

Figure 1.1 Schematic of a composite material.

1.1.1 Classification of composite materials

Generally, composite materials are classified based on the matrix material and the
shape and size of the reinforcement. According to the type of matrix materials, they
can be categorized into three sections:

• metal matrix composite

• resin matrix composite

• ceramic matrix composite

According to the shape and size of reinforcement, composites can be divided into
five main groups:

• Particulate composites

• Flake composites

• Fiber-reinforced composites

• Functionally graded composites

2



• Layered composites

Particulate composites consist of dispersed stiff constituents in a softer matrix ma-
terial (see Fig. 1.2a) [7, 9]. The material used in reinforcement of particulate com-
posites can be either metallic or non-metallic. One of the well-known particulate
composites is concrete, in which gravel and cement are reinforcement and matrix,
respectively.

Flake composite, as its name signifies, is made up of thin flakes in a matrix (see
Fig. 1.2b) [7,10]. Flake composite formed a more orderly configuration/distribution
than particulate composites, and therefore, the material properties can be more
uniform in a plane. Common examples of flake materials are glass, metals, carbon,
and mica. However, the size and shape of the utilized flake depend on the type of
application. Matrix material for such structures can be either plastic, metal, or
epoxy resin.

Figure 1.2 Schematic of particulate and flake composites

Fiber-reinforced composites are the most commonly used composite structures and
are made up of reinforcing agents such as glass fiber, carbon fiber, or boron fiber.
The matrix part can be considered as resin, plastic, rubber, or metal. Since fibers
in such structures are generally stiff and strong, they play a crucial role as a load-
carrying constituent. In addition, the matrix part holds the fibers together and
distributes the applied load. Furthermore, fiber-induced composites can be tailored
easily by changing the orientation of fibers.

As shown in Fig. 1.3, fiber-reinforced composites can be categorized based on the
dimension and distribution of fibers. For example, according to the length of fibers
they can be considered as short or continuous fibers while due to distribution they
can be randomly dispersed, oriented, or in the weave form. Among the mentioned
groups, continuous fibers are the most common type. Continuous fiber is geometri-
cally characterized as having a very high length to diameter ratio. In addition, it’s

3



high strength and modulus features make them more valuable. Uni-directional, bi-
directional and randomly distributed fiber-reinforced composites can be considered
as common configuration of continuous fiber composites.

Figure 1.3 Fiber arrangement patterns in a composite layer

Functionally graded materials (FGM) are characterized by the compositional gradi-
ent of one material into another across the volume (along one or more directions)
which is illustrated in Fig 1.4. The overall properties of FGM are unique and differ-
ent from their homogeneous counterparts. The main advantage of FGM is combining
the best properties of both materials and provides a smooth transition of material
properties. For example, in metal-ceramic reinforced-based FGMs, the ceramic part
can resist against high temperature. At the same time, the metallic material can
provide mechanical properties of structure in order to support ceramic parts. As
it seen from Fig 1.4, gradual variation of material properties eliminates the sharp
interface between the constituent materials. Therefore, the stress concentration and
delamination will be decreased.

Commonly, FGMs can be divided into three main categories: chemical composition
gradient, porosity gradient, and microstructure gradient. FGMs have the potential
to be used in a wide range of fields such such as aerospace, biomaterials, biomedical,
etc. [11–14].
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Figure 1.4 (a) A traditional composite- (b) functionally graded material

The last type of composite structures is the layered composite materials which con-
sist of well-bonded several thin layers together. In that case, the material properties
of each layer can be identical or different with each other based on the type of com-
posite. According to that, they can be divided into two main categories as laminated
composite structures and sandwich composite structures [5, 7, 9, 11].

1.1.1.1 Laminated composite structures

A lamina or ply is referred to as a typical sheet of composite material which involves
fibers with the same orientation. A laminated structure is a collection of stacked
laminae to achieve desired stiffness and strength. For instance, unidirectional fiber-
reinforced lamina can be stacked so that the fibers in each lamina are oriented in
the same or different orientations. The sequence of various directions of a fiber-
reinforced composite layer in a laminate is termed the stacking sequence.

Laminated composite structures, which are generally in the shape of beams, shells,
or plates, are widely adopted in various engineering applications such as aerospace
and automobile industries. The mechanical properties of these structures predomi-
nantly depend on stacking sequences, fiber orientations, and ply thicknesses. Thus,
proper tailoring of laminate configuration can improve strength and stiffness-to-
weight ratios effectively [8, 9].
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1.1.1.2 Sandwich composite structures

Sandwich composite structures are a particular type of layered composites charac-
terized by a combination of different materials bonded together to cooperate with
their single properties to the global structure’s performance. The sandwich struc-
ture is divided into three main parts: two external thin and stiff face sheets, and
a thick and soft core. The materials in face sheets and core can be fiber-reinforced
and/or FGM [4,15–19].

The primary motivation behind sandwich structures and replacing them with con-
ventional composites is hybridization. Hybridization is an effective method in
which a high-stiffness and more expensive material (e.g., Graphite/epoxy) is used
in the outer layers and inexpensive low-stiffness material in the inner layers (e.g.,
Glass/epoxy) [20]. This concept provides a suitable structural rigidity and a signif-
icant cost reduction [20–22]. Despite the advantages of sandwich structures, their
analysis and design become challenging due to the considerable variation of ma-
terial properties between the core and the face sheets. Hence, proper optimiza-
tion procedure in such structures plays a crucial role as well as laminated compos-
ites [20, 23–25].

1.1.2 Applications of composite materials

The use of composite materials traced back thousands of years ago. In 4000 B.C.,
papyrus plants were used as fibrous composite materials to make laminated writing
materials. In addition, ancient civilizations used straw as reinforcement for making
mud bricks [2, 7]. Also, the potential of forming glass fibers was considered by
scientists in the 18th century [2]. Although man-made composites have existed for
many years, composite technology has evolved in the last fifty years.

The developments in materials science and manufacturing processes lead to out-
standing improvements in applications of composite structures, particularly in
aerospace structures and athletic equipment. Furthermore, applications in the
infrastructure and automobile industry, which used all-composite structures, can
be considered as other examples of composite usage. As the technology grows,
new/novel composites and technologies are being developed and adapted, such as
composites with structure–function integration, functional and multifunctional com-
posites, intelligent composites and nanocomposites [4].

Due to the anisotropic nature and various applications of layered composite mate-
6



rials, studies involving the stability behaviors and natural vibrations of those struc-
tures to predict their structural responses become a significant issue. Therefore,
achieving the best possible structural performance requires accurate modeling of
the physical properties and optimization of the design parameters. However, due
to the high number of design parameters, an accurate and computationally efficient
modeling approach is direly required to achieve an optimized and reliable design for
the desired application.

1.2 Modeling of Composite Structures

The fiber-reinforced laminated composite structures, unlike their isotropic counter-
parts, lead to significant challenges in the modeling process due to the interfaces
between layers and mismatch of material properties [9]. Moreover, to define the
deformation of laminated composite structures, complex couplings between exten-
sion, bending, and shear modes must be included. Furthermore, shear deformations
can occur easily due to characteristically low transverse shear stiffness of such struc-
tures at lower thickness-to-length ratios [26,27]. Therefore, it is crucial to accurately
determine the strain and stress fields in the laminated composites.

In general, there are two main approaches to model laminated composite structures:
equivalent single layer (ESL) theories and layer-wise (LW) theories. In the LW
theories, displacement fields in every single layer are determined independently and
then imposed compatibility conditions at the interfaces between laminae to decrease
the unknown variables [27–29]. This approach can be used to predict the kinematics
and transverse stress fields of the laminated structures accurately. However, in this
approach, variables are directly related to the number of layers. This issue can be
considered as the method’s main drawback. Therefore, for laminated composites
with many layers, the computation cost will be considerably high.

On the other hand, the ESL approach assumes a statically equivalent single layer for
a heterogeneous laminated composite and reduces the number of unknowns. Hence,
it has significant advantages in simplicity and computational time. In other words,
ESL theories are more practical when the primary goal of the analysis is to determine
the global behavior of the laminated structures like dynamic responses (fundamental
natural frequency, critical buckling load, etc.) [28,30,31].

In both modeling approaches, the governing equations can be derived based on
various deformation mechanics and transverse shear stresses as described in the
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below sections.

1.2.1 Classical laminated plate deformation theory (CLPT)

The most straightforward plate deformation theory is the classical laminated plate
theory (CLPT) [32–35]. This approach is an extended form of Kirchhoff-Love plate
theory, and it follows the Kirchhoff theory’s assumptions:

• thickness of the plate does not change after deformation

• straight lines that are normal to the middle surface remain straight after de-
formation

• straight line perpendicular to the middle surface remain perpendicular

From the first and second assumptions, it is clear that transverse normal displace-
ment is independent of thickness coordinate, and it is neglected (εzz = 0). Further-
more, based on the last assumption, transverse shear strains are considered as zero
(εxz = 0, εyz = 0). Therefore, CLPT formulation for analyzing the laminated plate’s
kinematics may not be adequate, especially for moderately thick or thick composite
structures [28]. Fig 1.5 indicates the cross-section view of a plate’s deformations
based on CLPT.

Figure 1.5 Cross-section of undeformed and deformed geometries of a plate based
on CLPT

According to the CLPT, deformation of any arbitrary point on the shell in terms of
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displacement can be described as:

u(x,y,z, t) = uo(x,y, t)− z
∂w0
∂x

(1.1)

v(x,y,z, t) = vo(x,y, t)− z
∂w0
∂y

(1.2)

w(x,y,z, t) = wo(x,y, t) (1.3)

where u, v, and w are the displacements along x, y, and z directions, respectively.
In addition subscript ‘o’ denotes the displacement of the middle-surface and z is the
distance of an arbitrary point from the neutral surface of the shell, and t is the time
variable.

1.2.2 First-order shear deformation theory (FSDT)

The Mindlin-Reissner theory of plate, also known as first-order shear deformation
theory (FSDT), is an extension of the Kirchhoff-Love plate theory. The main im-
provement in this approach is that shear deformations through the thickness of the
plate are taken into account in an average sense [28].

In FSDT, straight lines to the reference surface remains straight and inextensi-
ble. However, it is no longer remains perpendicular after deformation. Therefore,
transverse shear strains are considered as constant through the thickness. Fig 1.6
indicates the deformation of the plate according to the FSDT. [36–43].

Figure 1.6 Cross-section of undeformed and deformed geometries of a plate based
on FSDT
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In addition, the kinematic equations for deformation depends on five unknowns,
three for middle surface displacement and two for rotations around the x- and y-
axis. Since, shear deformation is considered in an average sense, determining a shear
correction factor for transverse shear strains is necessary. According to FSDT, defor-
mation of an arbitrary point of the shell can be described in terms of displacements
and rotations of the neutral surface as:

u(x,y,z, t) = uo(x,y, t) + zφx(x,y, t) (1.4)

v(x,y,z, t) = vo(x,y, t) + zφy(x,y, t) (1.5)

w(x,y,z, t) = wo(x,y, t) (1.6)

Here, u0, v0, and w0 are the displacement of neutral-surface along x, y, and z

direction, respectively. In addition, φx and φy are normal rotations about the y-z
and x-z planes, respectively.

1.2.3 Higher-order shear deformation theory (HSDT)

The higher-order shear deformation theory (HSDT) is developed based on the same
hypothesis in CLPT and FSDT. However, one of the main assumption stating that
straight lines that are normal to the neutral-surface after deformation have been re-
laxed [44–51]. Therefore, transverse normal strains are no longer perpendicular and
straight to the reference surface after expanding the displacements (u,v,w) as third
or higher order functions of the thickness coordinate [27, 28, 30]. Fig 1.7 shows the
shear deformation of the plate based on HSDT and the comparison of all mentioned
plate theories.

Figure 1.7 Cross-section of undeformed and deformed geometries of a plate based
on HSDT
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Accordingly, kinematics of plate are described byat least nine independent un-
knowns. However, these variables can be reduced by imposing certain conditions.
For that purpose, traction-free boundary conditions on the top and bottom layers
of laminated structures have been imposed [30]. Deformation of a plate according
to the kinetics of HSDT can be written as

u(x,y,z, t) = uo(x,y, t) + zφx(x,y, t) + z3
(−4

3h2

)(
φx+ ∂w0

∂x

)
(1.7)

v(x,y,z, t) = vo(x,y, t) + zφs(x,y, t) + z3
(−4

3h2

)(
φy + ∂w0

∂y

)
(1.8)

w(x,y,z, t) = wo(x,y, t) (1.9)

where h is total thickness of the plate. Although HSDT leads to more accurate
results compared to CLPT and FSDT, FSDT provides an acceptable accuracy to
capture the dynamic behavior of thin and moderately thick laminated composite
structures [28].

1.3 Solution Methods

In literature, various numerical methods are employed to solve the derived governing
equations for the composite shell. Finite element (FE) based solution methods are
one of the most popular techniques to study the dynamics of laminated composite
shells [33, 34, 52–60]. In FE, the continuum domain is divided into a finite number
of elements, and finite numbers of parameters specify the behavior of each element.
Then, the system matrices can be obtained by an assembly of these elements. For
instance, Chakravorty et al. [52] analyzed the free and forced vibration of laminated
doubly-curved composite shells through FEM. Niyogi et al. [10] investigated the vi-
bration response of laminated composite folded plate structures using FEM following
FSDT approach. Later, Nguyen-Xuan et al. [54] studied free vibration and buck-
ling load of composite sandwich structure through isogeometric FEM method with
FSDT approach. In recent years, new FE methods have been presented to increase
the efficiency in analyzing the dynamic behavior of laminated composite plates. The
FE method uses a weak formulation of the boundary value problem (BVP). When
converged, it provides accurate predictions for natural frequencies, mode shapes, and
buckling loads; however, a large number of degrees-of-freedom (DOFs) is needed to
obtain a precise solution, which imposes a significant computational burden, espe-
cially for time-domain response simulations and harmonic solutions. Furthermore,
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an arduous effort is required to obtain a suitable mesh [29,61].

To overcome the aforementioned drawbacks of the FE methods, meshless approaches
have been proposed. The interpolation in this technique is entirely based on scat-
tered nodes. This unique feature can remove some of the difficulties in FE, such as
mesh distortion and remeshing. Smooth particle hydrodynamics [62,63] is one of the
initially proposed meshless methods. It is considered an interpolation method based
on kernel approximation. Later, Nayroles et al. [64] introduced a meshless method
called the diffuse element method (DEM). The estimation approach behind this
method was moving least square approximations. Later, Belytschko et al. [65, 66]
proposed the element-free Galerkin method. Furthermore, Krysl and Belytschko [67]
applied Galerkin method to analyze thin composite shells.

Due to the meshless nature of the mentioned techniques, series-based computa-
tional techniques to solve governing equations become more critical. So far, several
methods such as Rayleigh-Ritz method [68–71], dynamic stiffness method [48], wave
propagation method [51,72,73] were presented for the dynamic behavior analysis of
laminated shells and plates. In most of these studies, the computational techniques
were initially developed for isotropic structures, then extended to laminated compos-
ite ones. Although these techniques are computationally efficient compared to FE,
different basis functions are required to satisfy each different boundary conditions.

Recently, Tornabene et al. developed several differential quadrature methods
(DQM), including generalized differential quadrature (GDQ) [74], local generalized
differential quadrature (LGDQ) [75], and moving least square differential quadra-
ture (MLSDQ) [76] methods to study the dynamic response of various complex shell
geometries. Although the GQD method is one of the common computationally ef-
ficient approaches used in the literature due to its simplicity and versatility, since
the derivative and integral operations in the governing equations are performed nu-
merically, the selected basis/trial functions and the sampling scheme highly affect
the convergence of the solution and precision of the results.

Therefore, to overcome the limitations of these solution methods, a new meshless
approach based on Chebyshev polynomials is developed to study the dynamics of
various complex geometries, including beams [77], panels/shells [35, 36, 78], and
three-dimensional structures [79–82]. In this method, Chebyshev polynomials, which
presents exponential convergence characteristics, are used as the basis to discretize
the BVP in either the weak or strong form. Furthermore, the solution can be for-
mulated to directly incorporate the boundary conditions into the solution using the
projection matrix approach. Thus, the need to use a different set of basis functions
for each different boundary condition is eliminated [77,81,83].

12



1.4 Design of Composite Structures

Engineers and researchers that are working on laminated composite structures, not
only interested in modeling of such structures but they also seek for the best possible
design to leverage the flexibility in the design of composite structures [84]. Design
quality can be measured based on strength, dynamic stability, etc., that are spe-
cific to the application, while the resources are measured based on cost and weight.
Traditionally, engineers try to obtain better designs experimentally. Then, a struc-
tural modification that improves the performance and reduces the cost or weight
has been applied. However, these tasks are tedious and require a high number of
trials [9]. Later, mathematical optimization, which includes objective functions, de-
sign variables, and constraints, emerged. This procedure deals with changing design
variables in order to maximize or minimize an objective function subject to the
constraints [85].

In laminated composite materials, lamination layup, which has a significant role in
the mechanical properties of laminated composite shells, is a critical issue. There-
fore, through layup optimization, the dynamic behavior of laminated composites can
be improved. In many studies, fiber orientations and ply thicknesses are considered
as design variables. While objective functions can be different such as maximizing
critical buckling load, fundamental natural frequency, structural stiffness, and min-
imizing cost or weight [85]. However, the high number of design variables and vast
design space are the main difficulties in the optimization process. To simplify the
design variables, lamination parameters that are the material invariants describing
the overall stiffness of the structure are introduced by Tsai and Hahn [86,87]. Lam-
ination parameters are basically functions of fiber orientation and ply thickness of
each individual layers. Using lamination parameters as design variables not only
provides laminate stiffness in a compact form but also offers a convex design space
to make the optimization procedure simpler and smoother [9, 87].

In this approach, to set a suitable design domain, several feasible regions are intro-
duced and developed through their trigonometric relations and optimization con-
straints [88–90]. For instance, Diaconu et. al. [91] maximized the natural frequency
of symmetrically laminated plates using lamination parameters and FSDT. In this
study, the design variables are considered as two in-plane and four out-of-plane lami-
nation parameters. Similarly, Trias et. al. [92] used optimized lamination parameters
for balanced symmetrical laminated plates and cylinders to achieve the maximum
fundamental frequency. Recently, Serhat and Basdogan [93] performed a multi-
objective optimization by two in-plane lamination parameters for constant-stiffness
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laminated plates. In this study, Pareto-optimal solutions were found that maximizes
the first natural frequency and buckling load. Furthermore, Serhat et. al. [36] maxi-
mized the natural frequency of laminated doubly-curved panels through two in-plane
lamination parameters and the two-dimensional (2D) spectral Chebyshev method.
Also, several researches have been performed on optimization of sandwich compos-
ites based on lamination parameters. For example, Kameyama and Fukunga [94]
used lamiation parameters to optimum design of composite plate wings. In addition,
Balabanov et. al. [95] designed a sandwich panel through lamination parameters.
In this work, they design a lightest weight sandwich structure under a considered
buckling load capacity and optimize the face-sheet design based on lamination pa-
rameters. Recently, Silva and Meddaikare [96] presented a lamination parameters
scheme which are suitable for sandwich and hybrid panels. Considering these design
studies, one of the most challenging parts of lamination parameters is retrieving the
associated fiber orientations to obtain the closest lamination configuration for the
optimized values. For that purpose, several methods have been suggested and used
to recover the ply angles through optimization algorithms [9, 97–99]. For instance,
Macquart [100] considered twelve lamination parameters linked with a set of blend-
ing constraints to achieve manufacturable designs and developed an open-source
stacking sequence optimization toolbox, Opti-BLESS, which is based on genetic
algorithm (GA).

1.5 Thesis Objective

In this paper, a general two-dimensional (2D) spectral solution method based on
Chebyshev polynomials is presented to study the dynamics of laminated composite
(truncated) conical shells using lamination parameters and following FSDT assump-
tions. Note that based on the configuration type of the ply angles, the required num-
ber of lamination parameters may change; for instance eight lamination parameters
are necessary for symmetric configuration of ply angles.

The derived governing equations were descritized using Gauss-Lobatto sampling al-
gorithm. To impose any type of boundary condition without changing the basis/trial
functions, basis recombination (projection matrices) method was implemented. To
demonstrate the accuracy and computational efficiency of the presented solution
technique, the first ten natural frequencies of three different case studies includ-
ing straight panels, single curved, and truncated conical shells under two different
boundary conditions were investigated. Furthermore, critical buckling load analysis
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of straight panels including laminated and sandwich composite structures under two
different boundary condition were performed. The results were compared to those
obtained using a commercial FE software. To leverage the computational efficiency
of the presented meshless approach, first, layup optimization of laminated coni-
cal shell to maximize the dimensionless fundamental frequency was carried out for
clamped and simply supported edges. Secondly, a parametric analysis was performed
to investigate the effect of geometry of the conical shell on the layup optimization.

1.6 Research Contribution

The main contributions of this research are (i) developing a modeling framework
to predict the dynamic behaviors of the laminated composite shells and (ii) to
determine the stacking sequence of laminated conical shells to obtain maximum
fundamental frequency. Specific contributions can be described as follows:

• Developing a simulation framework based on 2D spectral Chebyshev method
and lamination parameters to capture the free vibrations and critical buckling
force of laminated composite structures having various geometries including:

– straight panels

– cylindrical Shells

– truncated conical shells

– straight sandwich panels

• Optimization of the layup for symmetrically laminated conical shells for max-
imized the fundamental natural frequency, subjected to the non-linear con-
straints derived from feasible design domain of the lamination parameters. In
this optimization study, to reach the optimum composite layups eight lamina-
tion parameters including four in-plane and four out of has been considered
as design variables.
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1.7 Thesis Outline

In the following chapter, the details about the modeling of laminated composite
plates, lamination parameters formulation, and governing equations to capture the
structure’s dynamic behavior are provided. In addition, to solve the derived govern-
ing equation, a developed two-dimensional spectral Chebyshev method is presented.
Next, to demonstrate the efficiency of the presented analyzing technique, some val-
idation case studies with various geometries, lamination layup, and aspect ratios
under different boundary conditions are carried out in Chapter 3. Then in Chapter
4, layup optimization of the laminated conical shell to maximize the fundamental
natural frequency of the structure is provided. Also, to show the effects of the
geometry on layup optimization of laminated conical shells are investigated. Sub-
sequently, the conclusions and possible directions for future works are presented in
Chapters 5 and 6, respectively.
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2. Problem Description

This chapter presents the modeling and analysis of laminated composite plates.
A laminated truncated conical shell, as a general case study is considered. The
governing equations to capture the dynamic behavior of the laminated composite
structures was derived. Note that according to the defined geometric parameters,
various structure types such as straight panels, cylindrical shells, and sandwich
panels can be modeled using the derived governing equations. Finally, the developed
solution technique is explained in detail to numerically solve the boundary value
problem.

2.1 Laminated Panels and Shells

In this part of study, the schematic of a conical laminated curved panel is illustrated
in Fig. 2.1. A cylindrical coordinate frame (x-s-z) is used in the derivation of the
governing equations, where x is the coordinate along meridional direction, s is the
circumferential direction, and z refers to the thickness direction of the shell. As
shown in Fig. (2.1a), α is the semi-vertex of the cone; R1 and R2 denotes the radii
at the small and big edges of the panel, respectively; Lx, Ls, and h are the lengths of
the shell along x and s axes, and thickness along z-axis, respectively. The curvature
of the shell is varying as Rθ = xtan(α) +R1/cos(α) along the length of the shell
(i.e. along the x-direction). To estimate the displacement of the conical shell,
FSDT assumptions are followed. According to FSDT, deformation of an arbitrary
point of the shell can be described in terms of displacements and rotations of the
neutral surface.

u(x,s,z, t) = uo(x,s, t) + zφx(x,s, t) (2.1)

v(x,s,z, t) = vo(x,s, t) + zφs(x,s, t) (2.2)

w(x,s,z, t) = wo(x,s, t) (2.3)
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Figure 2.1 Schematics of (a) a general curved conical panel geometry and (b)
cross-section view of the laminated shell.

where u, v, and w are the displacements along x, s, and z directions, respectively.
Subscript ‘o’ indicates the deformations of the neutral-surface, φx and φs are normal
rotations about the s-z and x-z planes, respectively; and z is the distance of an
arbitrary point from the neutral surface of the shell, and t is the time variable.

2.1.1 Stiffness formulation using lamination parameters

According to FSDT, the related linear strain equations are given as:

εxx

εss

γxs

γsz

γxz


=



εxxo

εsso

γxso

γszo

γxzo


+ z



kxx

kss

kxs

0
0


(2.4)

where εxxo , εsso ,γxso , γxzo , and γszo represent the strains on the neutral surface; and
kxx, kss, kxs are the curvature deformations. The strains and curvature deformations
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are related to the deformations of shell as

εxxo

εsso

γxso

kxx

kss

kxs

γszo

γxzo



=



∂
∂x 0 0 0 0

1
A
∂A
∂x

1
A

∂
∂θ

1
Rθ

0 0
1
A

∂
∂θ

∂
∂x −

1
A
∂A
∂x 0 0 0

0 0 0 ∂
∂x 0

0 0 0 1
A
∂A
∂x

1
A

∂
∂θ

0 0 0 1
A

∂
∂θ

∂
∂x −

1
A
∂v
∂x

0 − 1
Rθ

1
A

∂
∂θ 0 1

0 0 ∂
∂x 1 0


︸ ︷︷ ︸

B



u0

v0

w0

φx

φs


(2.5)

where B is the differential operator matrix and q = {u0; v0; w0; φx; φθ} is the dis-
placement vector. A is the geometry parameter that is determined by the shape of
the shell:

• for straight shells, A= 1 and Rθ =∞

• for cylindrical shells, A=R and Rθ =R

• for conical shells, A=R1 +xsin(α), Rθ = xtan(α) +R1/cos(α)

According to Hook’s law and the relation between stress and strain (σ = Cε), the
constitutive matrix can be expressed as follows:

C =



A11 A12 A16 0 0 0 0 0
A12 A22 A26 0 0 0 0 0
A16 A26 A66 0 0 0 0 0
0 0 0 D11 D12 D16 0 0
0 0 0 D12 D22 D26 0 0
0 0 0 D16 D26 D66 0 0
0 0 0 0 0 0 A∗44 A∗45
0 0 0 0 0 0 A∗45 A∗55



(2.6)

Here, Aij , Dij , and A∗ij are extensional, bending, and transverse shear stiffness enti-
ties of laminated composites. Due to the symmetric configuration of the composite
layups, extensional and bending coupling stiffness matrices were omitted. However,
it should be noticed that, in a sandwich structure, stiffness matrices are considered
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as a summation of face-sheets and core parts, which can be described as

A= 2Af +Ac (2.7)

D = 2Df +Dc (2.8)

A∗ = 2A∗f +A∗c (2.9)

In this study, the stiffness properties of laminated structure are obtained through
material invariants and lamination parameters as

A = h(Ψ0 +V A
1 Ψ1 +V A

2 Ψ2 +V A
3 Ψ3 +V A

4 Ψ4) (2.10)

D = h3

12(Ψ0 +V D
1 Ψ1 +V D

2 Ψ2 +V D
3 Ψ3 +V D

4 Ψ4) (2.11)

A∗ = kch(ψ0 +V A
1 ψ1−V A

2 ψ2) (2.12)

where V A
i and V D

i (i= 1,2,3,4) are extensional and bending lamination parameters,
respectively and can be expressed as

V A
{1,2,3,4} = 1

h

N∑
k=1

(hk−hk−1)
[

cos2θk,sin2θk,cos4θk,sin4θk
]

(2.13)

V D
{1,2,3,4} = 4

h3

N∑
k=1

(h3
k−h3

k−1)
[

cos2θk,sin2θk,cos4θk,sin4θk
]

(2.14)

Here, hk, θk, and h are the thickness and fiber angle of kth layer, and the total
thickness of the shell, respectively. In a nutshell, lamination parameters denotes
the overall stiffness of laminated composite structures indirectly, in terms of fiber
orientation angles, number of layers, and ply thicknesses. Furthermore, in sandwich
type structures neutral-axis for face-sheets and core parts are considered as middle
plane of the whole structure which can be seen in Fig 2.2. According to that the
lamination parameters for laminated sandwich panel can be expressed differently for
core and face-sheets.

hc
2

hcNc
2

- 1

fNc 2

h
fNc + 1

h
fN 2 - 1

hfN
2

Face-sheet

core

z

x

h
h

c
2

2

h
cNc 2

h

hc
1

2

Figure 2.2 cross-section view of the half laminated sandwich shell
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V A
f{1,2,3,4}

= 2
hf

N/2∑
k=Nc/2+1

(hfk −hfk−1)[cos2θfk ,sin2θfk ,cos4θfk ,sin4θfk ] (2.15)

V A
c{1,2,3,4}

= 2
hc

Nc/2∑
k=1

(hck −hck−1)[cos2θck ,sin2θck ,cos4θck ,sin4θck ] (2.16)

V D
f{1,2,3,4}

= 8
h3−h3

c

N/2∑
k=Nc/2+1

(h3
ck
−h3

ck−1)[cos2θfk ,sin2θfk ,cos4θfk ,sin4θfk ] (2.17)

V D
c{1,2,3,4}

= 8
h3
c

Nc/2∑
k=1

(h3
ck
−h3

ck−1)[cos2θck ,sin2θck ,cos4θck ,sin4θck ] (2.18)

Here, Nc and hc denote the number of plies and thickness of core part, respectively.
Regardless of the exact number of layers, the maximum number of lamination pa-
rameters are twelve (twenty four for sandwich) considering FSDT kinematic equa-
tions [98, 101]; however, depending on the configuration type of the ply angles, the
number of lamination parameters can vary. In the present study, the lamination
configuration type of the composite shell is assumed to be symmetric; thus, the
stiffness matrix of the shell depends on eight lamination parameters as shown in
Eqs. (2.10)-(2.12). The feasible design space is defined by the following nonlinear
constraints [90,99,102]:

2V 2
1 (1−V3) + 2V 2

2 (1 +V3) +V 2
3 +V 2

4 −4V1V2V4 ≤ 1 (2.19)

V 2
1 +V 2

2 ≤ 1 (2.20)

−1≤ Vi ≤ 1 , (i= 1, ...4) (2.21)

In addition, accroding to Eqs (2.10)-(2.12), Ψi (i = 0, ..4) and ψj j(0,1,2) contains
material invariant stiffness parameters, kc is the shear correction factor. Material
invariant components comprise of the material properties (Young’s Modulus, shear
modulus, and Poisson’s ratio) of the structure that are independent of the fiber
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angle and can be expressed as

Ψ0 =


U1 U2 0
U4 U1 0
0 0 U5

 Ψ1 =


U2 0 0
0 −U2 0
0 0 0

 Ψ2 =


0 0 U2

2
0 0 U2

2
U2
2

U2
2 0



Ψ3 =


U3 −U3 0
−U3 U3 0

0 0 −U3

 Ψ4 =


0 0 U3

0 0 −U3

U3 −U3 0

 (2.22)

ψ0 =
U11 0

0 U11

 ψ1 =
U22 0

0 −U22

 ψ2 =
 0 U22

U22 0


where

U1 = 1
8(3Q11 + 3Q22 + 2Q12 + 4Q66) U11 = 1

2(Q44 +Q55)

U2 = 1
2(Q11−Q22) U22 = 1

2(Q44−Q55)

U3 = 1
8(Q11 +Q22−2Q12−4Q66) (2.23)

U4 = 1
8(Q11 +Q22 + 6Q12−4Q66)

U5 = 1
8(Q11 +Q22 +−2Q12 + 4Q66)

Here, Qij are the lamina stiffness constants that are defined as

Q11 = E11
(1−ν12ν21) , Q22 = E22

(1−ν12ν21) , Q12 = ν12E22
(1−ν12ν21) (2.24)

Q66 =G12 , Q44 =G23 , Q55 =G13

where E11 and E22 are the elastic modulus along and perpendicular the fiber direc-
tion, respectively. In addition, G12, G23, and G31 are shear modulus in x−y, y− z
and x− z planes, respectively. Furthermore, ν12 refer to the major Poisson’s ratio
of a uni-directional layer.
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2.1.2 Derivation of the boundary value problem

The boundary value problem that governs the dynamics of the composite shell can
be derived using an energy based approach. The strain energy (Es) of the laminated
shell can be expressed as;

Es = 1
2

∫
V
σT εdV = 1

2

∫
A
qTBTCBqAdsdx (2.25)

where V and A are volume and area of the shell, respectively. Furthermore, panel’s
kinetic energy (Ek) can be calculated;

Ek = 1
2

∫
A
ρ q̇T



h 0 0 0 0
0 h 0 0 0
0 0 h 0 0
0 0 0 h3/12 0
0 0 0 0 h3/12


q̇Adsdx= 1

2

∫
A
ρ q̇TΥq̇Adsdx (2.26)

where ρ is the density. Moreover, It must be noticed that, the required kinetic
energy for sandwich structures are divided into two parts and written as follows

Ek = Ekc +Ekf (2.27)

Here, (Ekf ) and (Ekf ) refer to the face-sheets and core parts kinetic energies, re-
spectively and can be expressed as follow:

Ekc = 1
2

∫
A
ρc q̇T



hc 0 0 0 0
0 hc 0 0 0
0 0 hc 0 0
0 0 0 h3

c/12 0
0 0 0 0 h3

c/12


q̇dydx= 1

2

∫
A
ρc q̇TΥcq̇dydx (2.28)

Ekf = 1
2

∫
A
ρf q̇T



hf 0 0 0 0
0 hf 0 0 0
0 0 hf 0 0
0 0 0 h3−h3

c
12 0

0 0 0 0 h3−h3
c

12


q̇dydx= 1

2

∫
A
ρf q̇TΥfq̇dydx (2.29)

Furthermore, the work done by non-conservative forces can be written as:
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Wnc = 1
2

∫
A
h

Nxx
(
∂wo
∂x

)2
+Nss

(
∂wo
∂s

)2AdA = 1
2

∫
A
hqTBTNBqdA (2.30)

where Nxx, and Nss are the in-plane stresses along x and s directions, respectively.
The integral boundary value problem (IBVP) that governs the dynamic behavior of
the curved shells, can be derived using Hamilton’s principle as

∫
t

∫
V
δ(Ek−Eu+Wnc)dV =

∫
t

∫
A

(
ρ q̈TΥδq +qTBTCBδq +hqTBTNBδq

)
Adsdx= 0

(2.31)

2.2 Spectral Chebyshev Approach

To solve the IBVP defined in Eq. (2.31), two-dimensional spectral Chebyshev
method, previously developed in [35, 36, 78, 83], is used. Chebyshev polynomials,
are recursive and orthogonal polynomials that can be described as [103,104]:

Tk(x) = cos(k cos−1(x)) for k = 0,1,2, ... (2.32)

Here, k is an integer. Due to the exponential convergence behavior of Chebyshev
polynomials, they are used as the basis for the spatial discretization. Since, the do-
main of the problem is two-dimensional, the deformation function can be represented
by a double expansion of Chebyshev polynomials as

q(x,s) =
Nx∑
k=1

Ns∑
l=1

aklTk−1(x)Tl−1(s) (2.33)

where, akl’s are expansion coefficients and T ’s are the Chebyshev polynomials of
the first kind [103,104], Nx and Ns are the number of polynomials used along the x
and s directions for the truncated expansion. To numerically calculate the dynamic
behavior, the domain is discretized using Gauss-Lobatto sampling approach. Since
the sampling of the deformation function will lead to a second rank tensor (qkl =
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q(x(k), s(l))), a tensor to vector mapping is applied as

qc = qkl , c= (k−1)Ns+ l (2.34)

The discretized deflection terms can be expressed as:

u0 = [III 000 000 000 000]q = Iu0Iu0Iu0 q (2.35)

v0 = [000 III 000 000 000]q = Iv0Iv0Iv0 q (2.36)

w0 = [000 000 III 000 000]q = Iw0Iw0Iw0 q (2.37)

φx = [000 000 000 III 000]q = IφxIφxIφx q (2.38)

φs = [000 000 000 000 III]q = IφsIφsIφs q (2.39)

where III and 000 are (NxNs×NxNs) identity and zero matrices, respectively. Note that
the vector mapping defined in Eq. (2.34) is also applied to the expansion coefficients
(akl). Thus, it is possible to define a relationship between the function values at the
sampling points and the expansion coefficients as

a =�F�F�F q (2.40)

q =�B�B�B a (2.41)

where �F�F�F and �B�B�B are (NxNs×NxNs) extended forward and backward transfor-
mation matrices, respectively. The derivation of transformation matrices for a
one-dimensional function, f(x), the Chebyshev expansion can be written similar
to Eq. (2.33) as

f(x) =
N∑
k=1

akTk−1(x) (2.42)

Considering Gauss-Lobatto sampling points, Eq. (2.42) can be written in matrix
form as 

f1

f2
...
fN

︸ ︷︷ ︸
f

=


T0(x1) T1(x1) . . . TN−1(x1)
T0(x2) T1(x2) . . . TN−1(x2)

... ... . . . ...
T0(xN ) T1(xN ) . . . TN−1(xN )


︸ ︷︷ ︸

ΓB



a1

a2
...
aN

︸ ︷︷ ︸
a

(2.43)

Here, ΓB is the (N ×N) backward transformation matrix. Since, ΓBΓF = I, the
forward transformation can be calculated taking the inverse of the backward trans-
formation matrix.
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In the case of two-dimensional problem/domain, the forward and backward trans-
formation matrices for each direction are extended through a mapping procedure
defined in Eq. (2.34) as

�Bc1c2 = ΓxBk1k2
ΓsBl1l2 (2.44)

c1 = (k1−1)Ny + l1 , c2 = (k2−1)Ny + l2

k1 = 1, . . . ,Nx , k2 = 1, . . . ,Nx
l1 = 1, . . . ,Ns , l2 = 1, . . . ,Ns

to obtain the (NxNs×NxNs) extended forward (���F ) and backward (���B) transfor-
mation matrices.

To determine the mass and stiffness matrices from Eqs. (2.31), the integral and
derivative operations need to be performed. Note that derivative and integral oper-
ations are computed exactly for any function that can be expressed by the Cheby-
shev expansion given in Eq. (2.33). To calculate the derivative of a function, first its
derivative is also expressed as a double expansion of Chebyshev polynomials. It is
possible to write a relation between the expansion coefficients of the original func-
tion and its derivative as b =DDDqi a, where DDDqi is the (NxNs×NxNs) differentiation
matrix with respect to qi (qi = x or s).

Using the recursive nature of the Chebyshev polynomials, the derivatives of Cheby-
shev polynomials can be formulated for a problem defined on (-1,1) as

T ′0 (x) = 0 (2.45)

T ′1 (x) = T0(x) (2.46)

T ′2 (x) = 4T1(x) (2.47)

T ′2n−1(x) =
n−1∑
m=1

2(2k−1)T2m(x) + (2n−1)T0(x) if n > 1 (2.48)

T ′2n(x) =
n∑

m=1
4kT2m−1(x) if n > 1 (2.49)

Using the above equations, the (N×N) derivative matrix (D) defined on (l1, l2) can
be obtained through scaling as D = 2/(l2− l1)D, where D is the derivative matrix
defined on (-1,1).

Note that the derivative matrix obtained for each direction need to be extended for
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a two-dimensional domain similar to Eq. (2.44),

Dxc1c2 =Dx
k1k2 (2.50)

c1 = (k1−1)Ns+ l , c2 = (k2−1)Ns+ l

k1 = 1, . . . ,Nx , k2 = 1, . . . ,Nx , l = 1, . . . ,Ns

Dsc1c2 =Ds
l1l2 (2.51)

c1 = (k−1)Ns+ l1 , c2 = (k−1)Ns+ l2

l1 = 1, . . . ,Ns , l2 = 1, . . . ,Ns , k = 1, . . . ,Nx

Here, DDDx and DDDs are the (NxNs×NxNs) extended derivative matrices with respect
to x and s, respectively. Then, using the extended transformation matrices, the
derivative of a function using its sampled values can be calculated as

q,x =�B�B�Bb =���BDDD
xa =�B�B�BDDD

x���F q = Qxq (2.52)

q,s =���Bb =���BDDD
sa =���BDDD

s���F q = Qsq (2.53)

where Qx and Qs are the (NxNs×NxNs) differential matrices with respect to x and
s.

To calculate the integral operation, inner product matrix approach is implemented.
According to this approach, the multiplication of two functions can be calculated as
follows:

∫
A
f(x,s)g(x,s)dA = fTVg (2.54)

where V is the inner product matrix [77]. However, in the case of conical shells, the
geometry spatially varies along the length of the shell which necessitates calculation
of new inner product matrices to retain the symmetry of the system matrices as

∫
A
r(x,s)f(x,s)g(x,s)dA = fTVrg (2.55)

Here, Vr is the weighted inner product matrix. Each function in the integral opera-
tion has an order of Nx Ns degrees. Therefore, the multiplication of three functions
can be expressed as 3Nx 3Ns. In that case, to obtained the inner product matrix,
each function evaluated at 3Nx 3Ns sampling point using

f3Nx 3Ns = Sx3Ss3 fNx Ns (2.56)

Here, Sqin is the extrapolation matrix that can be obtained through the derivation
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in [77, 80–82]. By putting the Eq. 2.56 in Eq. 2.55 the weighted inner product
tensor can be rewritten as

Vr
abcde =

3Nx 3Ns∑
i,j

V3Nx
i V3Ns

j

[
(Sx3

ia Ss3
jb)(S

x3
ic Ss3

jd)(S
x3
ie Ss3

jf )) rgh
]

(2.57)

Furthermore, To obtain the Vr
abcde tensor, tensor multiplication are employed [105].

To transform Vr
abcde from tensor into a matrix form, mapping algorithm described

in Eqs. 2.50 and 2.51 are used.

After discretizing the IBVP and performing derivative and integral operations, the
general equation of motion for an unconstrained shell can be obtained as:

Mq̈ + (K+KG)q = 0 (2.58)

where M, K, and KG are mass, elastic stiffness, and geometric stiffness matrices of
the structure, respectively. Thus, following the spectral Chebyshev approach, the
mass matrix can be obtained as:

M =



ρhVA 0 0 0 0
0 ρhVA 0 0 0
0 0 ρhVA 0 0
0 0 0 ρh

3

12 VA 0
0 0 0 0 ρh

3

12 VA


(2.59)

As it mentioned before, for a sandwich structures mass matrix are accumulation of
face-sheets and core’s mass matrices and can be described as :

M = Mf +Mc (2.60)

Mf = ρf



hf VA 0 0 0 0
0 hf VA 0 0 0
0 0 hf VA 0 0
0 0 0 h3−h3

c
12 VA 0

0 0 0 0 h3−h3
c

12 VA


(2.61)
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Mc = ρc



hcVA 0 0 0 0
0 hcVA 0 0 0
0 0 hf VA 0 0
0 0 0 h3

c
12 VA 0

0 0 0 0 h3
c

12 VA


(2.62)

In addition, stiffness matrices of structure can be derived through presented method
as:

K =



K11 K12 K13 0 0
K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

0 K42 K43 K44 K45

0 K52 K53 K54 K55


(2.63)

KG =



0 0 0 0 0
0 0 0 0 0
0 0 KG33 0 0
0 0 0 0 0
0 0 0 0 0


(2.64)

where the elements of the elastic and geometric stiffness can be derived as given
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below:

K11 = A11QT
xVAQx+A12 sin(α)VQx+A16QT

s VQx+A12 sin(α)QT
xV

+A22 sin2(α)V1/A+A26 sin(α)QT
s V1/A+A16QT

xVQs+A26 sin(α)V1/AQs

+A66QT
s V1/AQs (2.65)

K12 = A12QT
xVQs+A22 sin(α)V1/AQs+A26QT

s V1/AQs+A16QT
xVQx

−A16 sin(α)QT
xV +A26 sin(α)VQx−A26 sin2(α)V1/A+A66QT

s VQx

−A66 sin(α)QT
s V1/A (2.66)

K13 = A12QT
xVA/Rθ +A22 sin(α)V1/Rθ +A26QT

s V1/Rθ (2.67)

K22 = A22QT
s V1/AQs+A26QT

xVQs−A26 sin(α)V1/AQs+A26QT
s VQx

−A26 sin(α)QT
s V1/A+A66QT

xVAQx−A66 sin(α)QT
xV−A66 sin(α)VQx

+A66 sin2(α)V1/A+kcA44VA/R
2
θ (2.68)

K23 = A22QT
s V1/Rθ +A26QT

xVA/Rθ −A26 sin(α)V1/Rθ −kcA45VA/RθQx

+kcA55V1/RθQs (2.69)

K24 =−kcA45VA/Rθ (2.70)

K25 =−kcA55VA/Rθ (2.71)

K33 = A22VA/R
2
θ +kcA44QT

xVAQx+kcA45QT
s VQx+kcA45QT

xVQs

+kcA55QT
s V1/AQs (2.72)

K34 = kcA44QT
xVA+kcA45QT

s V (2.73)

K35 = kcA45QT
xVA+kcA55QT

s V (2.74)

K44 =D11QT
xVAQx+D12 sin(α)VQx+D16QT

s VQx+D12 sin(α)QT
xV

+D22 sin2(α)V1/A+D26 sin(α)QT
s V1/A+D16QT

xVQs+D26 sin(α)V1/AQs

+D66QT
s V1/AQs+kcA44VA (2.75)

K45 =D12QT
xVQs+D22 sin(α)V1/AQs+D26QT

s V1/AQs+D16QT
xVAQx

−D16 sin(α)QT
xV +D26 sin(α)VQx−D26 sin2(α)V1/A+D66QT

s VQx

−D66 sin(α)QT
s V1/A+kcA45VA (2.76)

K55 =D22QT
s V1/AQs+D26QT

xVQs−D26 sin(α)V1/AQs+D26QT
s VQx

−D26 sin(α)QT
s V1/A+D66QT

xVAQx−D66 sin(α)VQx+D66 sin2(α)V1/A

+kcA55VA (2.77)

KG33 = h (QT
xNxxVQx+QT

s NssVQs) (2.78)

Note that only the upper triangle part of the stiffness matrices is provided since it
is symmetric.
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To impose the effect of essential boundary conditions, projection matrices approach
is used [77]. In this approach, first, the boundary equations are in matrix form as
βq = 0. The projection matrix, P, can be calculated using the singular value decom-
position of the β matrix. In a nutshell, the projection matrix defines a coordinate
transformation, as

q = Pqd (2.79)

Thus, inserting Eq. (2.79) into Eq. (2.58), and premultiplying each term with PT,
the global system matrices can be obtained as

MMM = PTMP (2.80)

KKK = PTKP (2.81)

KKKGGG = PTKGP (2.82)

Subsequently, the natural frequencies (ω), first critical buckling load (λ) and mode
shapes (u) of the system can be calculated using the following eigenvalue problems:

[
KKK−ω2MMM

]
ueiωt = 0 (2.83)[

KKK−λKKKGGG

]
u = 0 (2.84)
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3. Model Validation and Results

To validate and demonstrate the performance of the presented modeling approach,
two main case studies including laminated composite and sandwich structures were
investigated. In each case study, the composite structure having various fiber ori-
entations and layup was studied. The analysis in this section has been performed
to obtain the first ten natural frequencies and critical buckling load. The (non-
dimensionalized) results were compared to those found through the FE method.
The relation between the non-dimensional natural frequency (ω̄n) and the natural
frequency (ωn) of the shell is given by the following formulation:

ω̄n = ωn

(
L2
x

h

)√(
ρ

E22

)
(3.1)

Also, dimensionless critical buckling (λcr) load can be expressed as

λcr = λ

(
L2
x

h3E22

)
(3.2)

It is important to note that, for sandwich structures, E22 term used in non-
dimensional relations belongs to face-sheet material. The material properties used
in the analyses are listed in Table 3.2 for laminated composites, and Tables ?? and
?? for sandwich structures. Note that, the material properties used for laminated
composites are non-dimensional [106]. However, for sandwich structures dimensional
material properties were utilized [107].

Table 3.1 Material properties of the unidirectional lamina.

E11/E22 15
G12/E22 or G13/E22 0.6

G23/E22 0.5
ν 0.25
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Table 3.2 Material properties of the unidirectional laminae.

Graphite/epoxy face-sheets Glass/epoxy core
E11 181 GPa 38.6 GPa
E22 10.3 GPa 8.27 GPa
G12 7.17 GPa 4.14 GPa
ρ 1600 kg/m3 1800 kg/m3

ν12 0.28 0.26

3.1 Laminated Composite Structures

In this part, three case studies including straight panels, curved shells, and
truncated conical shells investigated. In each case, free vibration behavior under
two different boundary conditions were examined. Besides, for straight panels
buckling study performed as well.

3.1.1 Case study I: Straight panel

The geometry of the straight panel is described by the non-dimensional parameters
Ls/Lx (aspect ratio) and h/Lx. For a straight panel s direction was corresponded to
the y direction. Since, the considered geometry is a straight panel, the geometry pa-
rameter A and the curvature of the panel are set to A= 1 and Rθ =∞, respectively.
Figure 3.1 illustrates the schematics of a 6-layered general laminated straight panel.
As seen, s direction in straight panels corresponded to y direction. Here, straight
laminated composite panel having different laminate configurations and aspect ra-
tios (Ly/Lx =1, 1.5, and 2) were investigated under simply supported (SSSS) and
fully clamped (CCCC) boundary conditions. In each case, the thickness ratio was
set to h/Lx = 0.05.
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Figure 3.1 Schematics of a laminated straight panel

3.1.1.1 Modal Analysis

In this first case study, the free vibrations of a straight panel/shell was investi-
gated. Prior to validation, a convergence analysis was carried out to determine the
required (i) polynomial numbers that need to be used along x and s directions for
the presented solution approach, and (ii) element number for FE solution. In this
preliminary convergence analysis, a straight laminated composite panel having a ge-
ometry of Ly/Lx = 1 and h/Lx = 0.05, and a layup of [45/0]s was investigated under
SSSS boundary condition. Figure 3.2 shows the stacking sequences of considered
case study. The first ten non-dimensional natural frequencies were computed by
increasing the polynomial numbers along x and y directions, and listed in Table 3.3.
Note that since the investigated panel is a square panel, the polynomial numbers in
each axis were kept equal to each other.

Figure 3.2 Stacking sequence of laminated composite with [45/0]s layup

As seen from Table 3.3, the presented solution approach is stable and a good con-
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Table 3.3 Convergence of the first ten (non-dimensional) natural frequencies for a
straight laminated composite panel having a geometry of Ly/Lx = 1 and
h/Lx = 0.05, and a layup of [45/0]s under SSSS boundary condition.

Modes

Method ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6 ω̄7 ω̄8 ω̄9 ω̄10

Present

Nx =Ns = 6 12.88 24.96 35.06 42.13 67.40 70.47 75.95 97.27 110.70 117.49
Nx =Ns = 7 12.83 24.80 34.59 39.40 54.94 58.17 64.06 80.90 85.42 112.02
Nx =Ns = 8 12.80 24.77 34.40 39.06 53.77 56.16 63.46 75.45 77.34 88.17
Nx =Ns = 9 12.77 24.76 34.36 38.99 53.27 55.65 63.03 73.49 75.21 86.79
Nx =Ns = 10 12.76 24.76 34.33 38.98 53.21 55.56 62.98 72.85 74.56 85.65
Nx =Ns = 11 12.75 24.76 34.32 38.97 53.19 55.54 62.95 72.73 74.44 85.55
Nx =Ns = 12 12.74 24.76 34.30 38.97 53.19 55.54 62.93 72.70 74.41 85.50
Nx =Ns = 13 12.74 24.76 34.29 38.97 53.19 55.54 62.92 72.69 74.41 85.49

FEM 15 × 15 elements 12.74 24.76 34.30 38.98 53.21 55.56 62.94 72.75 74.46 85.56
(5766 DOFs)

vergence can be obtained even when small polynomial orders are used. To quantita-
tively assess the level of convergence of the presented solution method for laminated
conical composite panels, a thorough investigation was also performed. In this anal-
ysis, using the presented solution approach the polynomial numbers along each axis
is increased incrementally and the predicted natural frequencies are compared to a
reference case (where Nx and Ns are set to 25) using. In order to quantitatively as-
sess the level of convergence the following equation based on logarithmic convergence
(LC) has been used

LCNxNs = log
 1
nmodes

nmodes∑
i=1

∣∣∣ω̄iNxNs− ω̄ir∣∣∣
ω̄ir

 (3.3)

Here, ω̄iNxNs represents the ith natural frequency calculated with the selected poly-
nomial numbers along x and s-directions (Nx and Ns), ω̄ir represents the ith natu-
ral frequency of the reference solution, and nmodes shows the number of interested
modes. Thus, the convergence of any arbitrary natural frequency or a set of natural
frequencies can be investigated using Eq. (3.3).

To visualize how the increase in polynomial numbers affect the convergence, contour
maps were plotted in Fig 3.3. Figure 3.3 shows an exemplary contour plot of the LC
values (that are averaged for the first ten natural frequencies) for the validation of
straight panels under SSSS boundary conditions. Note that to create the contour
plots, averaging is used since the LC values are only calculated for integer values of
polynomial numbers.

It is possible to determine the required polynomial numbers based on the target
accuracy/precision. For instance, if the target accuracy is selected to be 0.1 % com-
pared to the reference, the corresponding LC value will be -3; thereby the polynomial
set (Nx–Ns) can be determined accordingly from the convergence contour plots. For
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Figure 3.3 Convergence contour plots for the validation of straight panels having
Ly/Lx = 1, 1.5, and 2 under SSSS boundary condition

the investigated validation case studies (under SSSS boundary condition), the se-
lected polynomial numbers to satisfy an LC value of -3 can be seen in Figure 3.3.
Based on the performed convergence analysis, the polynomial numbers used in the
validation simulations are given in Table 3.4.

Table 3.4 Polynomial numbers (Nx–Ns) used in the validation studies based on the
convergence analyses.

Case Study Parameter Layup Boundary Condition
SSSS CCCC

Straight panels
Ly/Lx = 1 [45/0]s 11–11 11–11
Ly/Lx = 1.5 [60/30/0]s 11–12 11–12
Ly/Lx = 2 [90/45/30/0]s 11–11 11–11

The polynomial numbers for straight laminated composite panel were selected based
on the convergence analyses in Table 3.4. Table 3.5 lists the predicted (non-
dimensional) natural frequencies and the corresponding simulation duration ob-
tained using the presented solution technique and the FE results for comparison.
The computational duration was measured based on the central processing unit
(CPU) time to calculate the first hundred eigenvalues and eigenvectors. Note that
a similar convergence study was also performed for the FE simulations. In FE
modeling, mapped meshing was used and the modal analysis was performed using
MUMPS algorithm. As seen from Table 3.5, there is an excellent agreement between
the presented spectral Chebyshev solution and FE method; the maximum and av-
erage difference between the predicted results were calculated as 0.22 % and 0.03
%, respectively. Thus, it can be concluded that the solution approach is as accu-
rate as the FE technique; however since the convergence of the presented method is
very rapid, there is a remarkable difference in the computational duration as seen in
Table 3.6. Considering all cases, a computational speed-up of around 30 folds was
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observed. The main reason for this significant difference in computational duration
is the size difference of the obtained system matrices (i.e. the significant difference
in required DOFs to achieve the same level of accuracy).

Table 3.5 Comparison of the first ten (non-dimensional) natural frequencies of
straight composite laminated panels having different aspect ratios and symmetric

layup configurations under SSSS and CCCC boundary conditions.

Modes
BC Ly/Lx Layup Method ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6 ω̄7 ω̄8 ω̄9 ω̄10

SSSS

1 [45/0]s
Present 12.75 24.76 34.32 38.97 53.19 55.54 62.95 72.73 74.44 85.55
FEM 12.74 24.76 34.30 38.98 53.21 55.56 62.94 72.75 74.46 85.56

1.5 [60/30/0]s
Present 8.75 16.27 25.81 26.10 35.69 37.30 49.16 50.10 51.94 59.42
FEM 8.75 16.27 25.80 26.10 35.68 37.31 49.17 50.11 51.95 59.42

2 [90/45/30/0]s
Present 6.71 12.51 21.15 21.86 26.45 32.22 37.77 43.19 44.64 47.93
FEM 6.71 12.51 21.16 21.86 26.45 32.22 37.74 43.19 44.60 47.98

CCCC

1 [45/0]s
Present 21.07 34.79 44.92 49.83 64.09 66.77 74.26 83.58 85.68 96.02
FEM 21.07 34.80 44.93 49.85 64.12 66.80 74.29 83.57 85.68 95.97

1.5 [60/30/0]s
Present 15.67 23.73 34.52 35.85 44.95 46.35 58.94 59.16 63.23 69.79
FEM 15.67 23.73 34.52 35.86 44.96 46.37 58.94 59.16 63.25 69.80

2 [90/45/30/0]s
Present 12.87 18.95 28.96 30.60 35.52 40.59 45.70 52.54 55.54 59.09
FEM 12.87 18.95 28.97 30.63 35.54 40.59 45.67 52.51 55.66 59.22

Table 3.6 Comparison of the required DOFs and the computational cost of
validation case studies in Table 3.5.

Ly/Lx Layup BC DOF Duration (s)
Present FE Present FE

1 [45/0]s
SSSS 605 5766 0.3 8
CCCC 605 5766 0.3 8

1.5 [60/30/0]s
SSSS 660 7626 0.4 10
CCCC 660 7626 0.4 10

2 [90/45/30/0]s
SSSS 605 5166 0.3 10
CCCC 605 5166 0.3 10

3.1.1.2 Buckling analysis

In this section, critical compressive buckling forces for laminated straight panels are
investigated. As shown Fig 3.4 the buckling analysis performed for uni-axial and bi-
axial load types which applied along x−axis (red lines), and x and y-axis (red and
blue lines), respectively. The thickness ratio of a 20-layered sandwich structure for
all cases has been taken as h/Lx = 0.05. Here, straight laminated composite panel
having different laminate configurations and aspect ratios(Ly/Lx = 0.5, 1, 1.5, and
2) were studied. Also, the boundary condition for all case studies was considered as
all edges simply supported (SSSS). The required polynomial numbers for spectral
Chebyshev method were selected based on the convergence analysis performed for
straight panels in Table 3.4. Therefore, the achieved results from both presented and
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the FE methods are listed in Table 3.7. As observed the calculated critical buckling
loads using presented approach are in an excellent agreement to the FE results;
the maximum and average differences between two methods results are 0.28 % and
0.04 %, respectively. Furthermore, due to the significant reduction in size of system
matrices, used number of DOFs and as a result calculation time decreased around
20 folds.

Figure 3.4 Load types in straight laminated composites. Red arrows imply
uni-axial loading, and red and blue lines imply bi-axial loading.

3.1.2 Case study II: Cylindrical shell

In this second case study, the free vibration of a cylindrical shell under SSSS and
CCCC boundary conditions were investigated. The aspect and thickness ratios were
set to Ls/Lx = 1 and h/Lx = 0.05, respectively. Since, the considered geometry is
a cylindrical shell, the geometry parameter is set to the curvature radius of the
panel (i.e., A = R = R1 = R2). The analyses were performed for three different
curvature amounts (Θ = 45o, 60o, and 120o) with various fiber orientations and
layup configurations.

The convergence analysis for three curvature amounts under SSSS and CCCC

boundary conditions were performed and the counter plots for SSSS boundary
conditions were depicted in Fig 3.5. The corresponding polynomial numbers to an
average LC value of -3 considering the first ten natural frequencies, obtained and
listed in Table 3.8. In that case, the accuracy of selected polynomial sets reach
the difference less than 0.1% respect to the reference case. Following the results of
convergence studies, required polynomial numbers were determined for each analysis
as Nx–Ns = 11–11. To validate the results, similar analyses were also performed

38



Table 3.7 Comparison of the (non-dimensional) critical buckling load of straight
composite laminated panels having different aspect ratios and symmetric layup

configurations under SSSS boundary condition.

λcr

Layup Ly/Lx Method Uni-axial Bi-axial

[60/30/0]s

0.5 Present 44.53 19.37
FEM 44.57 19.38

1 Present 14.04 7.06
FEM 14.08 7.07

1.5 Present 7.26 5.01
FEM 7.27 5.01

2 Present 5.45 4.34
FEM 5.44 4.34

[90/45/30/0]s

0.5 Present 49.82 27.91
FEM 49.83 27.91

1 Present 16.62 8.37
FEM 16.62 8.37

1.5 Present 6.76 4.68
FEM 6.76 4.68

2 Present 4.46 4.57
FEM 4.46 4.57

using FE approach and the required element number was determined as 15× 15.
The predicted first ten (non-dimensional) natural frequencies using the presented
technique and the FE method are listed in Table 3.9. As seen from Table 3.9,
the results are in close agreement; the maximum and average differences between
presented method and FE simulation are 0.59 % and 0.13 %, respectively. However,
the computational cost of the simulations are significantly reduced (around 27 folds)
with the presented spectral approach while preserving the accuracy.

Table 3.8 Polynomial numbers (Nx–Ns) used in the validation studies of
cylindrical shells based on the convergence analyses.

Case Study Parameter Layup Boundary Condition
SSSS CCCC

Cylincrical shells
Θ = 45o [45/0]s 11–11 11–11
Θ = 60o [60/30/0]s 11–11 11–11
Θ = 120o [90/45/30/0]s 11–11 11–11
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Figure 3.5 Convergence contour plots for the validation of cylindrical shells having
Θ = 45o, 60o, and 120o under SSSS boundary condition

Table 3.9 Comparison of the first ten (non-dimensional) natural frequencies of
cylindrical composite laminated panels having different curvature amounts and
symmetric layup configurations under SSSS and CCCC boundary conditions.

Modes

BC Θ Layup Method ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6 ω̄7 ω̄8 ω̄9 ω̄10

SSSS

45 [45/0]s
Present 26.93 31.33 38.86 44.02 55.35 58.99 65.15 74.53 76.85 86.20
FEM 26.99 31.36 38.91 44.09 55.39 59.06 65.17 74.57 76.90 86.18

60 [60/30/0]s
Present 36.46 38.79 45.80 50.76 61.57 64.32 65.95 78.01 80.63 91.17
FEM 36.46 38.86 45.92 50.88 61.69 64.46 65.97 78.09 80.77 91.26

120 [90/45/30/0]s
Present 46.90 63.37 73.93 79.19 95.61 96.60 98.32 101.74 106.62 111.28
FEM 46.84 62.99 73.97 78.92 95.88 96.70 98.78 102.21 106.20 111.78

CCCC

45 [45/0]s
Present 30.71 39.23 48.16 53.51 65.68 69.36 76.29 85.06 87.59 96.41
FEM 30.71 39.23 48.18 53.52 65.69 69.37 76.32 85.04 87.54 96.32

60 [60/30/0]s
Present 40.63 45.69 52.04 59.38 71.61 74.32 77.62 88.52 91.31 102.57
FEM 40.62 45.66 52.05 59.39 71.65 74.35 77.58 88.52 91.34 102.54

120 [90/45/30/0]s
Present 54.94 68.38 80.34 83.68 101.43 102.44 104.00 109.35 115.71 120.12
FEM 54.77 68.19 80.17 83.55 101.55 102.43 103.96 109.36 115.46 120.19

3.1.3 Case study III: Conical shell

In the last validation case study of laminated composite panels, free vibrations of
a truncated conical composite shell structure under SSSS and CCCC was investi-
gated. The aspect and thickness ratios, the curvature amount, and the curvature at
the short edge were set to Ls/Lx = π/4, h/Lx = 0.025, Θ = 2π/3, and R1/Lx = 0.375,
respectively. The geometry parameter is set to A=R1 +xsin(α) since the geometry
is a conical shell. The analyses were performed for three different vertex angles
(α = 30o, 45o, and 60o).

Convergence analysis were carried out for mentioned case studies under SSSS and
CCCC boundary conditions. Figure 3.6 demonstrates the convergence results of
truncated conical shells under SSSS boundary condition. The polynomial numbers
were selected based on the convergence analyses to achieve an average LC value of
-3 considering the first ten natural frequencies and listed in Table 3.10. Table 3.11
lists the results of the presented solution approach together with the FE method.
As seen, the maximum and average differences between presented method and FE
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simulation were calculated as 0.81 % and 0.15 %, respectively. Since the geometry is
more complex in this study, the required number of elements to reach the same level
of accuracy is higher compared to previous case studies. Thus, the computational
speed-ups up to 100 folds can be achieved.
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Figure 3.6 Convergence contour plots for the validation of truncated conical panel
having α = 30o, 45o, and 60o under SSSS boundary condition

Table 3.10 Polynomial numbers (Nx–Ns) used in the validation studies of
truncated conical shells based on the convergence analyses.

Case Study Parameter Layup Boundary Condition
SSSS CCCC

Conical shells
α = 30o [45/0]s 10–14 11–14
α = 45o [60/30/0]s 10–14 11–14
α = 60o [90/45/30/0]s 10–12 11–13

Table 3.11 Comparison of the first ten (non-dimensional) natural frequencies of
truncated conical composite laminated panels having different apex angles and
symmetric layup configurations under CCCC and SSSS boundary conditions.

Modes

BC α Layup Method ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6 ω̄7 ω̄8 ω̄9 ω̄10

SSSS

30 [45/0]s
Present 49.99 51.99 60.50 70.58 79.13 82.89 85.86 90.55 92.60 99.15
FEM 50.18 51.98 60.90 70.56 79.23 83.03 86.00 91.00 92.61 99.24

45 [60/30/0]s
Present 42.95 43.71 52.33 59.87 66.79 69.38 71.88 76.96 79.67 84.90
FEM 43.15 43.76 52.65 59.90 66.86 69.49 72.04 77.21 79.84 85.03

60 [90/45/30/0]s
Present 36.06 36.11 46.59 50.09 55.62 57.32 63.44 64.50 75.02 77.90
FEM 36.11 36.39 46.74 50.16 55.66 57.79 63.36 64.56 75.39 78.08

CCCC

30 [45/0]s
Present 56.43 56.66 69.83 76.38 87.62 90.35 93.70 98.77 104.72 111.06
FEM 56.40 56.61 69.81 76.36 87.59 90.34 93.67 98.72 104.40 110.84

45 [60/30/0]s
Present 47.90 49.24 60.15 65.29 75.25 77.26 79.10 84.86 91.92 96.77
FEM 47.88 49.23 60.15 65.28 75.25 77.24 79.08 84.84 91.68 96.62

60 [90/45/30/0]s
Present 39.75 42.00 52.21 59.74 62.28 63.55 73.36 76.30 86.10 88.46
FEM 39.75 42.00 52.21 59.74 62.29 63.56 73.37 76.26 86.10 88.44
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3.2 Sandwich Structures

The presented spectral Chebyshev method enables to capture the dynamic behavior
of laminated sandwich structures as well. Therefore, in this section of study, free
vibrations and buckling analysis of straight sandwich panels was performed. Due
to the geometric characteristics of the panel, the curvature of the panel and the
geometry parameter A are set to Rθ =∞ and A = 1, respectively. The geometry
of the straight panel is described by the non-dimensional parameters Ly/Lx (aspect
ratio), h/Lx and h̄c/h̄f . Here, h̄c and h̄f denote the thickness of the each layer in
sandwich core and face-sheets, respectively. In the this analyses, 20-layered symmet-
rical straight sandwich panels having different laminate configurations, aspect and
thickness ratios under two different boundary conditions SSSS and CCCC were
investigated.

3.2.1 Modal Analysis

In this part, first five (non-dimensional) natural frequency of sandwich structures
has been studied. For that purpose the analyses divided into two groups. In the
first case study the natural frequencies of sandwich structures with uniform layer
thickness (h̄c/h̄f = 1) are calculated. Then, the identical analyses performed for
the sandwich panels with various lamina thicknesses where h̄c/h̄f = 2. To asses
the accuracy of presented method the obtained results compared to those found
by the FE method. However, before the natural frequency validation of laminated
sandwich panels, a convergence study was carried out. The corresponding LC values
for analyses was considered as -3, where the difference between polynomial numbers
and reference case must be less than 0.1%. Based on the performed analyses, the
polynomial numbers used in the validation study are listed in Table 3.12. Based
on the obtained polynomial numbers first five (non-dimensional) natural frequency
of laminated sandwich panels are calculated and listed in Table 3.13. As seen from
Table 3.13 the result have an agreement with each other. In that case, maximum
and average differences between spectral Chebyshev and the FE methods are 0.25%
and 0.07%, respectively. Besides, the required DOFs and simulation duration to
analyze the free vibrations of the considered model are listed in Table 3.14. As
observed, the number of DOFs used to reach the same level of accuracy with the
FE method, reduced significantly. Subsequently, the calculation time can speed up
around 100 folds.
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Table 3.12 Polynomial numbers (Nx–Ns) used in the validation studies of
laminated sandwich panels based on the convergence analyses

Thickness ratio Aspect ratio Layup Boundary condition
Ly/Lx Face-sheets Core SSSS CCCC

h̄c/h̄f = 1
1 [90/±45/0]s [06]s 10–9 10–10
1.5 [75/60/45/30]s [ 456]s 10–12 10–12
2 [90/−60/30/15]s [(90/0)6]s 9–11 9–13

h̄c/h̄f = 2
1 [90/±45/0]s [06]s 10–10 10–10
1.5 [75/60/45/30]s [ 456]s 10–11 10–12
2 [90/−60/30/15]s [(90/0)6]s 9–10 9–11

Table 3.13 Comparison of the first five (non-dimensional) natural frequencies of
straight laminated sandwich panels having different aspect ratios and symmetric

layup configurations under SSSS and CCCC boundary conditions.

BC h̄c/h̄f Ls/Lx
Layup Method Modes

Face sheet core ω̄1 ω̄2 ω̄3 ω̄4 ω̄5

SSSS

1

1 [90/±45/0]s [06]s
Present 13.55 32.33 35.21 53.35 63.39
FEM 13.55 32.35 35.22 53.37 63.43

1.5 [75/60/45/30]s [±456]s
Present 8.20 16.60 24.07 27.17 36.91
FEM 8.21 16.62 24.09 27.20 36.94

2 [90/-60/30/15]s [(90/0)6]s
Present 7.74 13.19 22.70 25.79 30.65
FEM 7.74 13.19 22.70 25.81 30.66

2

1 [90/±45/0]s [06]s
Present 12.02 29.60 30.07 46.54 58.07
FEM 12.02 29.62 30.10 46.56 58.08

1.5 [75/60/45/30]s [±456]s
Present 7.75 15.37 22.48 25.54 32.99
FEM 7.76 15.39 22.50 25.58 33.03

2 [90/-60/30/15]s [(90/0)6]s
Present 7.13 11.72 19.79 23.97 27.93
FEM 7.13 11.73 19.80 24.00 27.95

CCCC

1

1 [90/± 45/0]s [06]s
Present 24.59 47.45 51.52 71.82 83.05
FEM 24.59 47.47 51.53 71.85 83.07

1.5 [75/60/45/30]s [±456]s
Present 15.13 25.24 35.18 37.91 48.79
FEM 15.14 25.26 35.22 37.97 48.85

2 [90/− 60/30/15]s [(90/0)6]s
Present 15.35 20.98 31.18 38.89 43.68
FEM 15.35 20.99 31.19 38.93 43.72

2

1 [90/±45/0]s [06]s
Present 21.63 42.64 43.23 61.39 74.06
FEM 21.64 42.65 43.27 61.42 74.04

1.5 [75/60/45/30]s [±456]s
Present 13.98 22.76 32.28 34.59 42.81
FEM 13.99 22.79 32.33 34.64 42.83

2 [90/-60/30/15]s [(90/0)6]s
Present 14.13 18.71 27.13 35.54 39.11
FEM 14.14 18.73 27.14 35.59 39.01

3.2.2 Buckling analysis

In this part of study, buckling behavior of laminated sandwich panels under SSSS
boundary condition was investigated. The geometry of the 20-layered sandwich
structure can be described by the Ly/Lx = 1 and h/Lx = 0.05. In addition, ac-
cording to the Fig 3.4 two different load cases including uni-axial and bi-axial
loads applied to the structure. The (non-dimensional) critical buckling loads for
different layups and aspect ratios are calculated and obtained result using spectral-
Chebyshev method were compared to those found by the FE method. The predicted
result using the presented and the FE method are listed in Table 3.15. As it seen,
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Table 3.14 Comparison of the required DOFs and the computational cost of
validation case studies in Table 3.13.

Layup
Ls/Lx h̄c/h̄f BC DOF Duration (s)

Face-sheets Core Present FE Present FE

[90/±45/0]s [06]s 1
1 SSSS 450 5766 0.15 15

CCCC 500 5766 0.15 15

2 SSSS 500 5766 0.2 15
CCCC 500 5766 0.2 15

[75/60/45/30]s [±456]s 1.5
1 SSSS 600 3906 0.2 10

CCCC 600 3906 0.2 10

2 SSSS 550 3906 0.1 10
CCCC 600 3906 0.1 10

[90/−60/30/15]s [(90/0)6]s 2
1 SSSS 450 5166 0.1 12

CCCC 465 5166 0.15 12

2 SSSS 450 5166 0.1 10
CCCC 495 5166 0.1 10

the results are quite close together; the maximum and average differences between
the presented and the FE methods are 0.14% and 0.08%, respectively. In addition,
spectral-Chebyshev technique can reduce the critical buckling load’s computational
time up to 100 folds.

Table 3.15 Comparison of the (non-dimensional) critical buckling load of straight
laminated sandwich panels having different aspect ratios and symmetric layup

configurations under SSSS boundary condition.

Layup λcr

Face-sheets Core Ls/Lx Method Uni-axial Bi-axial

[90/±45/0]s [06]s

0.5 present 77.81 27.00
FEM 77.85 27.00

1 present 20.00 10.00
FEM 20.01 10.00

1.5 present 9.94 6.88
FEM 9.93 6.88

2 present 7.26 5.81
FEM 7.26 5.81

[75/60/45/30]s [±456]s

0.5 present 53.78 25.65
FEM 53.91 25.71

1 present 15.29 7.70
FEM 15.33 7.71

1.5 present 6.68 4.76
FEM 6.69 4.77

2 present 4.81 3.84
FEM 4.81 3.84
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Moreover, to understand the effects of the aspect and thickness ratios on the buck-
ling behavior of the laminated sandwich structure under SSSS boundary condition
several case studies were studied and results were plotted in Figs 3.7 and 3.8. The
composite layups considered is this section are [(90/±45/0)s]f and [(90/0/90/0)s]c
for face-sheets and core parts, respectively.
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Figure 3.7 Effects of aspect ratios Ly/Lx on non-dimensional critical buckling load
under uni-axial (a) and bi-axial (b) buckling forces for uniform layer thickness

sandwich
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Figure 3.8 Effects of aspect ratios Ly/Lx on non-dimensional critical buckling load
under uni-axial (a) and bi-axial (b) buckling forces for variable layer thicknesses

sandwich [(90/±45/0)/(90/0)2]s layup

In Fig 3.7 the variation in uni-axial and bi-axial buckling load as a function of plate
aspect ratio (Ly/Lx) with uniform lamina thickness (hc = hf ) is depicted for three
different thickness ratios(h̄c/Lx = 0.001, 0.005, 0.01). As seen from Fig 3.7, by
increasing the thickness of each layer, both uni-axial and bi-axial critical buckling
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loads has been decreased. In addition, for higher aspect ratios, the effect of thickness
on buckling behavior of the structure is insignificant.
In Fig 3.8, the same procedure has been followed. However, the thickness of each
lamina is no longer uniform. In that case, different thickness ratios (hc/hf = 2, 5, 10)
has been considered and their effects on variation of uni-axial and bi-axial buckling
load were investigated. As it expected, by increasing the thickness and aspect ratios
non-dimensional critical buckling load has been reduced for both uni-axial and bi-
axial load cases.
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4. Design of Laminated Composite Panels

4.1 Fundamental Frequency Maximization

The presented solution approach is a promising technique to be used in the design
of composite panels due to its remarkable computational efficiency. In the design
of composite panels, the main objective is to determine the optimum lamination
parameters that meet the target design requirements. Once the optimum lamination
parameters are found, they can be used to determine the ply angles and stacking
sequence.

To maximize the fundamental natural frequency, the optimization problem can be
formulated as

min : f(X) =−ω̄o
find : Xopt = {V A

1 ,V
A

2 ,V
A

3 ,V
A

4 ,V
D

1 ,V D
2 ,V D

3 ,V D
4 } (4.1)

subject to : Eqs. (2.19)− (2.21)

Here, lamination parameters that determine the fiber orientation angles are con-
sidered as design variables. The nonlinear constraint equations, Eqs. (2.19)-(2.21),
define the feasible design space. Note that lamination parameters provide a convex
design space for the most physical quantities such as natural frequency or buckling
load [87, 93]. To solve the optimization problem, interior point method in fmincon
solver of MATLAB is used. In the optimization solution, the origin of the feasible
design space is set to be the initial guesses. As a numerical example, a (truncated)
conical panel having the geometry of α= 60o, Ls/Lx = 2π/3, h/Lx = (0.05 and 0.1),
and R1/Lx= (0.5, 1) under CSCS boundary condition (edges along x-direction
are clamped and s-direction are simply supported) was investigated. Figure 4.1
demonstrates a 8-layered conical panel with h/Lx = 0.05 and R1/Lx = 0.5 geometry
characteristics.
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Figure 4.1 8-layered laminated truncated conical shell with α= 60o, Ls/Lx = 2π/3,
h/Lx = 0.05 and R1/Lx = 0.5 gometry properties

The lamination parameters that maximizes the fundamental frequency were calcu-
lated and listed in Table 4.1. Note that the optimization simulation only reveals
the lamination parameters; however, the fiber angles and stacking sequence need
to be identified afterwards. For that purpose, a symmetric layup with constant
layer thicknesses was considered for all the cases and the corresponding ply angles
and stacking sequence was found using Opti-BLESS toolbox [100] and listed in Ta-
ble 4.2 together with the differences compared to the maximum natural frequencies
obtained using lamination parameters. In that case, to demonstrate the effects of
the retrieved fiber angels on maximum fundamental frequencies, fiber orientations
with increments of 15o and 1o were considered. Although, the most common fiber
orientation in composite design and production are 0o, ±45o, and 90o, fibers with
15o resolution are manufacturable as well. As the number of layers are increased,
the results obtained with the determined layup get close to the calculated optimum
values. However, there exists no clear tendency in the results when fiber orientations
with 15o and 1o increments are used.
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Table 4.1 Optimized lamination parameters and the corresponding fiber angles and
stacking sequence of laminated conical shell under CSCS boundary conditions

that maximizes non-dimensional fundamental frequency.

h/Lx = 0.05 h/Lx = 0.1
R1/Lx = 0.5 R1/Lx = 1 R1/Lx = 0.5 R1/Lx = 1

V A
1 -0.2277 -0.3026 -0.3024 -0.34391
V A

2 0.0003 -0.0024 -0.0001 -0.0006
V A

3 -0.8960 -0.8163 -0.8170 -0.76178
V A

4 0.0002 0.0018 0.0001 0.00058
V D

1 0.5955 0.8340 0.7113 0.90597
V D

2 0.0002 -0.0006 -0.0001 -0.00017
V D

3 -0.2902 0.3917 0.0122 0.64183
V D

4 -0.0009 -0.0013 0.0001 -0.00034
(λo)opt 27.29 24.85 18.88 17.64

Table 4.2 Optimal layups considering 15o and 1o angle increments.

N Optimal layup Diff. (%) Optimal layup Diff. (%)(15o angle increments) (1o angle increments)
h/Lx = 0.05 4 [45/-45]s 11.95 [36/-39]s 14.29
R1/Lx = 0.5 8 [30/-30/-45/60]s 4.62 [-25/34/-58/52]s 4.36

12 [15/-30/-45/45/60/-60]s 3.37 [23/-28/-44/53/-55/51]s 3.74
16 [15/-30/45/-45/45/-45/60/-60]s 3.59 [-12/31/-46/46/-51/52/53/-53]s 3.63

h/Lx = 0.05 4 [0/45]s 6.04 [4/-47]s 5.88
R1/Lx = 1.0 8 [0/-45/45/45]s 8.09 [5/-41/53/-54]s 5.67

12 [0/15/-45/-45/60/45]s 5.51 [-8/19/-49/54/53/-52]s 5.63
16 [0/0/45/-45/45/-45/-60/60]s 5.51 [-1/-4/42/-51/52/-52/53/-52]s 5.79

h/Lx = 0.1 4 [15/-45]s 7.89 [-25/39]s 12.45
R1/Lx = 0.5 8 [-15/45/-60/45]s 4.56 [-11/39/-55/53]s 3.71

12 [0/45/-45/-45/-60/60]s 3.87 [8/-33/51/-54/-55/55]s 3.65
16 [-15/15/45/-45/45/60/-60/-45]s 4.08 [8/-21/43/-50/52/-53/-54/54]s 3.81

h/Lx = 0.1 4 [0/-45]s 3.97 [2/-48]s 3.74
R1/Lx = 1 8 [0/45/-60/60]s 4.48 [−6/31/58/-52]s 4.31

12 [0/0/-45/45/-60/60]s 3.12 [3/-9/47/52/-53/-53]s 4.14
16 [0/0/-30/45/-60/-60/45/60]s 4.02 [-3/-5/26/57/-52/54/-52/-51]s 4.42

4.2 Effect of Geometry on Fundamental FrequencMaximization

To analyze the effect of geometry such as vertex angle and panel curvature on the
optimized ply angles and staking sequence for fundamental frequency of laminated
conical shell, we performed a parametric case study leveraging the high computa-
tional efficiency of the presented solution approach. In the analyses, the constant
geometry values were set to Ls/Lx = π/4 and h/Lx = 0.05. In the first part, the ef-
fect of curvature amount (Θ) on maximized fundamental frequency of a conical shell
under SSSS and CCCC boundary conditions were studied for several semi-vertex
angles (α = 15o, 30o, 45o, and 60o) and the results are shown in Fig. 4.2. In the
second part, the effect of vertex angle (α) on maximized fundamental frequency of a
conical shell under SSSS and CCCC boundary conditions were studied for several
curvature amounts (Θ = 30o, 45o, 60o, 90o, and 120o) and the results are shown
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in Fig. 4.3. Note that for each individual value of semi-vertex angle and curvature
amount, we performed the optimization problem defined by Eq. (4.1). Thus, opti-
mal layups of each point is different. To exemplify, Table 4.3 lists the corresponding
optimal layups for the geometries shown by the dashed red curves in Figs. 4.2 and
4.3.
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Figure 4.2 Effect of curvature amount (Θ) on maximized natural frequency,
(ω̄o)max, of a conical panel having Ls/Lx = π/4 and h/Lx = 0.05 under (a) SSSS
and (b) CCCC boundary conditions for various semi-vertex angle. Blue, red,
green, and black lines represent the semi-vertex angles of 15o, 30o, 45o, and 60o,
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Figure 4.3 Effect of semi-vertex angle (α) on maximized natural frequency,
(ω̄o)max, of a conical panel having Ls/Lx = π/4 and h/Lx = 0.05 under (a) SSSS
and (b) CCCC boundary conditions. Blue, red, green, black, and magenta lines

represent the curvature amount of 30o, 45o, 60o, 90o, and 120o, respectively.
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Table 4.3 Optimal layups considering 12 layers and 15o angle increments for the
selected geometries shown by the dashed red curves in Figs. 4.2 and 4.3.

Geometry
BC: SSSS BC: CCCC

Optimal layup Diff. (%) Optimal layup Diff. (%)
α= 15o, θ = 45o [90/90/-60/60/60/-60]s 0.40 % [90/90/90/90/90/90]s 0.55 %
α= 15o, θ = 90o [90/90/45/-45/-45/45]s 5.27 % [90/90/-45/45/45/-45]s 3.96 %
α= 30o, θ = 30o [-45/45/90/90/90/90]s 8.42 % [90/0/90/90/90/90]s 3.19 %
α= 30o, θ = 45o [75/-60/-75/60/-75/75]s 0.14 % [90/0/90/90/90/90]s 2.33 %
α= 30o, θ = 60o [90/-60/60/45/45/-45]s 2.15 % [90/90/-45/45/75/-75]s 1.23 %
α= 30o, θ = 90o [75/-60/-45/45/45/-45]s 1.94 % [90/90/-45/45/-45/45]s 2.39 %
α= 30o, θ = 120o [60/-60/-60/60/-45/45]s 0.54 % [90/90/-45/45/45/-45]s 2.72 %
α= 45o, θ = 45o [-45/45/90/90/90/90]s 3.81 % [0/90/90/90/90/90]s 1.38 %
α= 45o, θ = 90o [-60/60/45/-45/60/-60]s 0.84 % [90/90/45/-45/-45/45]s 1.84 %
α= 60o, θ = 30o [-45/45/90/90/90/90]s 6.91 % [90/0/90/90/90/90]s 1.71 %
α= 60o, θ = 45o [45/-45/90/90/90/90]s 5.85 % [0/0/90/90/90/90]s 3.37 %
α= 60o, θ = 60o [-45/45/90/90/90/90]s 3.76 % [0/0/90/90/90/90]s 3.03 %
α= 60o, θ = 90o [45/-45/-60/60/75/-60]s 1.63 % [0/-75/60/-60/60/90]s 1.25 %
α= 60o, θ = 120o [45/-45/-60/60/-60/75]s 1.49 % [0/-60/60/60/-60/45]s 3.25 %

As seen from both plots, increasing the semi-vertex angle decreases the maximized
fundamental frequency monotonically. On the other hand, the effect of curvature
amount is complex. For instance, increasing the curvature amount increases the
maximized fundamental frequency if the semi-vertex angle is smaller than 40o. How-
ever, as can be seen in Fig. 4.2, increasing the curvature amount higher than 40o

does not effect the maximized natural frequencies significantly.

51



5. Conclusion

This paper presents a spectral modeling approach to accurately predict the dynam-
ics of laminated composite structures. In this solution technique, FSDT kinematic
equations were followed and the spatial disretization was performed using Chebyshev
polynomials (of the first kind). To describe the stiffness properties of the laminate,
eight lamination parameters (in-plane and bending) were used since laminate con-
figuration was assumed to be symmetric. Then, the discretized equations of motion
were derived following the Galerkin’s method to obtain the system matrices of the
composite panel.

To demonstrate the accuracy and performance of the presented technique, several
case studies including straight, cylindrical, truncated conical, and sandwich panels
were investigated. The predicted (non-dimensional) natural frequencies and critical
buckling loads were compared to those obtained using a commercial FE software.
Considering all the validation case studies, maximum differences in predicted free
vibration and critical buckling load results are 0.8% of 0.3%, respectively. Thus,
it can be concluded that the presented solution approach enables predicting the
dynamics of laminated composite structures as accurate as an FE approach, yet
at a fraction of the computational time. The main reason of these speed-ups is the
significant decrease in the required DOFs and the size of the system matrices. In that
case, calculation time for natural frequency analyses reduced to around 100 folds.
While, in critical buckling load study this computational time can be decreased
around 100-150 folds.

To leverage the rapid convergence of the solution approach, we also performed opti-
mization case studies to design laminated conical shells for maximum fundamental
frequency. Since the lamination parameter approach leads a convex design space, a
gradient base optimization approach was employed to find the optimum lamination
parameters.In this optimization procedure, the main goal of optimization was to
maximize the fundamental frequency of the laminated conical shell subjected to the
non-linear constraint, which was derived from the feasible design space’s lamination
parameters. In this study, eight lamination parameters were considered as the prob-
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lem’s design variables (due to the symmetric configuration). Then, the correspond-
ing fiber angles and the stacking sequence were determined using the Opti-BLESS
toolbox which is based on the genetic algorithm optimiztion in MATLAB. Based on
the performed analyses, as the number of layers, the predicted natural frequencies
for the determined ply angles converges to the maximized natural frequencies ob-
tained using the lamination parameters. For that purpose, symmetrical laminated
conical shells with various aspect ratios, thickness ratios, boundary conditions and
layer numbers was investigated. However, there is not much differences in the natu-
ral frequencies corresponding to the optimal layups for 15o and 1o angle increments.
Subsequently, a parametric study to demonstrate the effects of semi-vertex angle
and curvature on maximized natural frequency were carried out. From the analyses,
it can be concluded that using proper layup optimization plays a crucial role in the
dynamic performance improvement of laminated composite shells significantly.
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6. Future Work

Modeling and analyzing the dynamics of composite structures is a highly challeng-
ing subject. In addition, to achieve a better performance in composite material,
structural optimization plays a vital role. In this thesis, to predict the dynamic
behavior of the laminated composite shells and sandwich panels, a two-dimensional
spectral-Chebyshev technique was developed and combined with lamination param-
eters. Furthermore, a single objective optimization study has been performed to
obtain a maximum natural frequency of a laminated conical shell. However, cap-
turing the dynamics of composites, including complex geometries and layups, de-
mands considerable effort. Thus, the future work of this study can be expressed
by improving the versatility and robustness of the presented method. For instance,
different plate geometries, such as discontinuous shells which exist in the industry,
can be modeled through the improved spectral Chebyshev method. In addition,
to achieve a better structural performance, an effective multi-objective optimiza-
tion using the presented method and lamination parameters is proposed. Reducing
structure weight and cost, maximizing the frequency gaps, and maximizing critical
buckling loads can be the main goals of this optimization problems. Subsequently,
to increase the efficiency of the analysis, the aforementioned numerical study can be
extended to experimental research.
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