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ABSTRACT
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MIRMEYSAM RAFIEI ANAMAGH

Ph.D. Thesis, July 2021

Thesis Supervisor: Asst. Prof. Bekir Bediz
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vibration, buckling, design

In recent years, composite materials have become increasingly important due to
rapidly increasing applications in aerospace, civil, offshore engineering and struc-
tural systems in other modern industries. The use of composite materials in the
automotive and aerospace industry continues to become widespread due to its high
specific strength and high specific rigidity. Since, the composite structures are criti-
cal to the functional and failure characteristics of a myriad of systems, understanding
and predicting the static, buckling, and dynamic/vibration behavior of these sys-
tems is highly crucial. A composite material is obtained basically by mixing two or
more materials having different physical and/or chemical properties.

The material properties of the obtained material have different physical and chemical
properties. According to the reinforcement type, composite materials are classified
as fiber-reinforced, particle-reinforced, and laminated/sandwich composite materi-
als. Also, another category of composite materials are functionally graded materials.
Due to the flexibility of the reinforcing process using functionally graded materials, it
is possible to design and produce composite materials with desired properties along
the specific direction of the structure. Predicting the strains and stresses, buckling
instability and dynamics of composite materials is critical to the functional and fail-
ure characteristics of a myriad of systems. Furthermore, during the design stage of a
composite structure, it is necessary to perform dynamic/structural analysis for the
entire design alternatives.

Although there are many analytical/numerical modeling methods developed for com-
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posite structures in the literature, they are either for composite structures having
simple geometries (one-dimensional models such as beam or two-dimensional models
such as plates) or computationally inefficient such as finite element technique. There-
fore, in literature, there is no comprehensive modeling technique that can accurately
and efficiently calculate the deformation, buckling loads (instability), the vibrational
behavior of composite structures having arbitrary geometries under mixed boundary
conditions.

In this thesis, it is aimed to develop a new modeling technique for accurate and
efficient prediction of two-dimensional and three-dimensional vibration/dynamic be-
havior, static, and buckling behavior of composite structures and to integrate the
proposed solution approach with an optimization algorithm to determine the opti-
mum design. In the proposed modeling technique, first order deformation theory as
a two-dimensional modeling and three-dimensional elasticity equations will be used
and above-mentioned analysis will be performed using kinetic and strain energies
of the composite structure. Since the material properties of composite structures
may vary continuously/discontinuously or depend on the direction, the constitutive
relationship between strains and stresses needs to be expressed to include all the
different material properties specified. Furthermore, to simplify the domain of the
boundary value problem, necessary coordinate transformations will be derived to
transform the geometries of composite structures having variable curvature along
one or two directions. To obtain high accuracy and high computational efficiency
in the analyses, a spectral solution technique will be used incorporating Chebyshev
polynomials in discretizing the problem domain.

As a general conclusion, this research aims to present an accurate approach to
decrease the cost of analysing of composite structures with complex materials and
geometries to be a promising method for optimization studies.

v



ÖZET

KOMPOZIT YAPILARIN DINAMIK VE BURKULMA DAVRANIŞINI
ARAŞTIRMAK IÇIN YENI BIR SPEKTRAL MODELLEME YAKLAŞIMININ

GELIŞTIRILMESI

MIRMEYSAM RAFIEI ANAMAGH

DOCTORA TEZİ, TEMMUZ 2021

Tez Danışmanı: Asst. Prof. Bekir Bediz

Anahtar Kelimeler: Chebyshev, ağsız yöntemler, kompozit yapılar, fonksiyonel
olarak derecelendirilmiş malzemeler, karbon nanotüpler, grafen nano-plakalar,

titreşim, burkulma, tasarım

Son yıllarda, inşaat, denizcilik, havacılık mühendisliği ve diğer modern endüstril-
erdeki yapısal sistemlerdeki hızla artan uygulamalarından dolayı kompozit
malzemeler giderek önem kazanmıştır. Özellikle, kompozit malzemelerin yüksek
spesifik mukavemet ve yüksek spesifik rijitlik benzeri üstün özelliklerinden dolayı
otomotiv ve havacılık sanayiinde kullanımı giderek yaygınlaşmaktadır. Dolayısıyla,
bu yapıların gerilme (yarı-durağan ve dinamik kuvvetler altında), burkulma (yapısal
kararsızlık) ve dinamik/titreşim davranışlarının modellenmesi, fonksiyonel özellikleri
ve performansları açısından büyük bir önem arz eder.

Kompozit malzeme, temel olarak farklı fiziksel ve/veya kimyasal özelliklere sahip iki
veya daha fazla malzemenin karıştırılması/birleştirilmesi yolu ile elde edilir. Elde
edilen malzeme, bu malzemelerden farklı fiziksel ve kimyasal özelliklere sahiptir.
Kompozit malzemeler takviye türüne göre lif destekli, parçacık destekli ve katmanlı
kompozit malzemeler olmak üzere üçe ayrılır. Takviye işleminin esnekliğinden dolayı
istenilen sağlamlık ve sertlik gibi özelliklere sahip kompozit malzemeler tasarlan-
abilir ve üretilebilir. Kullanıldıkları alanlardan dolayı kompozit malzemelerin yapısal
kararsızlık ve dinamik davranışlarının yüksek hassasiyet ile bulunması çalışma
koşulları altındaki davranışları ve arızalanma karakteristikleri açısından kritik bir
öneme sahiptir. Ayrıca tasarım sürecinde ortaya çıkan tüm tasarım alternatiflerinin
değerlendirilmesi için dinamik/yapısal analizlerinin yapılması ve sistem karakteris-
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tiklerinin çıkarılan tüm alternatif tasarımlar için belirlenmesi ve en uygun tasarımın
seçilmesi gerekmektedir.

Literatürde kompozit malzemelerin yapısal/dinamik davranışlarını tahmin etmek
için birçok analitik/numerik yöntem olmasına rağmen, bu yöntemler sadece belli
basit geometrideki (kiriş benzeri bir boyutlu -1B- ya da plaka benzeri iki boyutlu
-2B-) kompozit yapılar için çalışmaktadır ya da sonlu elemanlar tekniği gibi uygu-
lama alanı geniş ama oldukça zaman alıcı yöntemlerdir. Fakat, günümüzde üç
boyutlu kompozit yapıların gerilme/gerinim, burkulma (yapısal kararsızlık) ve di-
namik davranışlarının tam olarak anlaşılmasını ve çalışmaları esnasında değişik di-
namik yükler altındaki davranışlarının incelenmesini/ön görülmesini sağlayacak şek-
ilde kapsamlı, yüksek başarımlı (hem yüksek doğruluğa hem de yüksek hesaplama
verimliliğine sahip) bir hesaplama tekniği bulunmamaktadır.

Bu tezde, kompozit yapıların iki ve üç boyutlu titreşim/dinamik davranışlarının,
burkulma davranışlarının ve deformasyon karakteristiklerinin hızlı ve yüksek doğru-
lukla tahmini için yeni bir modelleme tekniği geliştirilmesi ve bir tasarım sürecinde
optimum özelliklere sahip kompozit yapının bulunabilmesi amacıyla geliştirilecek
modelleme tekniği ile entegre çalışabilecek optimizasyon (eniyileme) algoritması
tasarlanması amaçlanmaktadır. Öngörülen modelleme tekniğinde birinci dereceden
kayma deformasyon teorisi (2-B-) ve üç boyutlu doğrusal olmayan elastisite denklem-
leri kullanılacak ve belirtilen analizler yapının kinetik ve gerinim enerjis kullanılarak
gerçekleştirilecektir. Kompozit yapıların malzeme özellikleri yapı içerisinde sürekli
veya süreksiz bir davranış gösterebileceği için veya yöne bağlı olabileceği için ger-
ilim ve gerinim arasında ilişkiyi içeren yapısal matris belirtilen tüm farklı malzeme
özelliklerini içerecek şekilde ifade edilecektir. Endüstride kullanılan değişken kavisli
ve kompleks bir kesit alanına sahip olan geometrilerdeki kompozit yapıların incelen-
mesi için gerekli koordinat transformasyonları tanımlanarak problemin tanımlandığı
alan basitleştirilecektir. Yapısal ve dinamik analizler için elde edilecek denklemlerin
çözümünde hem yüksek doğruluğun hem de yüksek hesaplama verimliliğinin elde
edilmesi amacıyla spektral bir çözüm yönteminden yararlanılacak ve denklemlerin
ayrıklaştırılmasında Chebyshev polinomları kullanılacaktır. Geliştirilen modelleme
tekniği sonlu elemanlar yöntemi kullanılarak doğrulanacaktır.

Genel bir sonuç olarak, bu araştırma, optimizasyon çalışmaları için umut verici bir
yöntem olarak karmaşık malzeme ve geometrilere sahip kompozit yapıların analizinin
maliyetini düşürmeyi amaçlamaktadır.
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1. INTRODUCTION

1.1 Motivation

Material science has achieved notable progress in recent years to produce novel
materials with extraordinary mechanical properties for various applications such as
aerospace, energy, and biomedical fields. In these wide range of engineering fields,
the need for lighter and stiffer materials become inescapable. Composite materials
are one of the outstanding materials that can meet the need for many cutting-edge
applications due to their high stiffness-to-weight ratio, resistance to corrosion and
thermal effects [1].

Composite materials are basically composed of two or more materials [2]. Thus,
tailoring the design (or material properties) is highly feasible [3]. However, consid-
ering the vast design space and complexity in geometry, an accurate and efficient
modeling approach is required to leverage the flexibility in design.

Therefore, the main goal of this study is to develop an accurate and computation-
ally efficient modeling approach to study and predict the behavior of composite
structures.

1.2 Composite materials

Materials have always played a major role in the development and growth of hu-
man civilization. Generally, materials can be divided into four main categories; (i)
metal, (ii) polymers, (iii) ceramics, and (iv) composites. Composite materials are
composed of the first three categories of materials. The use of composite materials
can be traced back to 4000 BC or even earlier[4]. Evidence exists on the use of
composites in ancient Japan, where the Samurais used laminated metals to make
swords[5].
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The composite materials can be considered as a two-phase material that includes a
continuous phase (matrix) and a discontinuous phase (reinforcement) [2]. The role
of the matrix phase is to bind the reinforcement phase together. The reinforcement
parts are not dissolved or merged. Therefore, the constituent materials retain their
individual properties. The resultant combination of these two-phase exhibits an ef-
ficient behavior in comparison to each phase behavior merely. From the structural
and material points of view, the composite definition includes two main categories
where they can be subdivided into the several different types as shown in Fig. 1.1.
Furthermore, Table 1.1 is presented for common terms used in the composite mate-
rials field.

Composite material

Phased composites

Layered composites

 Short fiber composites

 Unidirectional composites

Particulate composites

Flake composites

 Laminated composites

Sandwich composites

Figure 1.1 Categorization of composite materials.

Table 1.1 Terminology for composite materials.

Terminology Definition
Isotropic Material properties are not dependent on directions in an isotropic material.

Anisotropic Material properties are dependent on directions.
Orthotropic Material properties that are different in three mutually perpendicular directions at a point.
Homogeneous Material has equal or same material properties in a specified direction at all points.

Nonhomogeneous Matrial has unequal or dissimilar material properties in a specified direction at different points.
Lamina It (laminae in plural) is a single layer or ply in a laminated composite material.
Laminate It is a laminated composite structural element that is made by a number of laminae.

The first category is the phased composites in which inclusions in the form of (i)
short fibers/whiskers, (ii) particles, (iii) flakes, and (iv) continuous fibers are added
to a continuous matrix. In short fiber, particulate, and flake composites, the inclu-
sions are distributed randomly; thus the material properties are isotropic [5]. Note
that, although the material properties are isotropic, the inclusions can be added to
increase/decrease along a specified direction to create a varying material property
[5]. On the other hand, unidirectional composites include continuous fibers. Since
the strength and stiffness of the structure highly depend on the direction of the
fibers, the material property is anisotropic [5].
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The second category is the layered composites, commonly divided as laminated
and sandwich composites. The laminated composite structures include stacked
thin plies, where each ply is reinforced with unidirectional, bidirectional, or multi-
directional fibers. In the case of sandwich composites, there is a core layer (com-
monly lightweight) between two face sheets. The core material can be foam or
honeycomb type of structures [6].

The composite materials can be produced via various manufacturing processes as
presented in Fig. 1.2. Open mold processes, also referred to as contact molding
processes, are one of the most common fabrication techniques that operate as placing
either dry fabrics or prepregs on an open mold [7, 8]. The main advantage of these
processes is that the cost of tooling and equipment, and machinery is generally low.
On the other hand, in the closed mold processes, the fabrication is performed in a
closed mold as the names suggests; thus it is more expensive compared to the open
mold process. The closed molding is done by pumping the matrix part in a porous
environment which contains the fibers. Another fabrication process is continuous
molding processes that include pultrusion, winding processes, fiber placement, etc.
Winding processes are those in which continuous reinforcement in the form of either
roving or tape is deposited on a rotating mandrel. Two distinct winding processes
are in practice, filament winding and tape winding [5].

Composite parts manufacturing processes

Open mold processes Closed mold processes Continuous molding 

Wet 

lay-up

Prepreg 

lay-up
Spray-up

Rosette 

lay-up

Compression 

molding

RTM and 

its variants
Pultrusion

Filament 

winding

Tape 

winding

Fiber 

placement

Figure 1.2 Manufacturing processes of composite parts.

The introduction of advanced composites has influenced almost every aspect of mod-
ern life. Today, major impacts are experienced in the aerospace/aviation, automo-
bile, naval and civil engineering application, etc. Composites have their own unique
features that enables them to be used in a wide range of applications [9, 10, 11, 12].
However, note that they have advantages as well as disadvantages as listed below:

• Advantageous:

– high strength and stiffness

– high weight-to-stiffness ratio
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– high fatigue strength

– inherent material damping and good impact properties

– design flexibility

– resistance to corrosion

– near net shape part and lower part count

– cost-effective product development

• Disadvantages:

– may have low service temperature

– sensitivity to radiation and moisture

– low elastic properties in the transverse direction

– complex design and analysis

– complex mechanical characterization

– high cost of raw materials and fabrication

– difficulty in joining

A common type of (laminated) composite structures is the singly- or doubly-curved
geometries since the coupling between the membrane and bending deformations
leads to higher strength [13, 14, 15]. Thus, these structures have attracted increasing
attention leading to a wide range of applications [16]. In recent decades, compos-
ite sandwich structures have been designed and used in complicated systems such
as aerospace applications (e.g., helicopter rotor blades, large wind turbine blades,
fitting, joints and ribs, and vehicle armor).

In addition to the fabrication of thin composite shells and plates with low curvature,
thick laminates are growing to be utilized in automobile and aerospace industries to
decrease the system’s overall weight. Sandwich types of structures can be designed
with specific materials to satisfy the reduction and enhancement of the weight and
stiffness properties of the thick structures, respectively. Sandwich structures consist
of two thin and stiff face-sheets, usually the same thickness, that are separated by
a lightweight, thicker core. The face-sheets carry almost all of the bending and in-
plane loads, while the core helps stabilizing the face-sheets and defines the flexural
stiffness and out-of-plane shear and compressive behavior [17]. Generally, these
structures are subjected to dynamic loading. Therefore, it is highly crucial to obtain
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high-fidelity computationally efficient models to understand their dynamic/vibration
behavior [18].

1.2.1 Functionally graded materials

The main scope of this study is on developing novel modeling approaches for
thin/thick functionally graded (FG) composites. Functionally graded materials
(FGM), a concept in composite structures that is proposed in the late twentieth
century, are heterogeneous composites made from different phases of material con-
stituents (usually ceramic and metal) [19, 20]. Depending on the volume fraction
of the material constituents that is generally described by a simple power law or an
exponential relationship, a smooth transition (variation) of material properties can
be obtained within the structure (along the gradation direction) [21, 22]. There-
fore, it is possible to mitigate the problems of the conventional laminated composite
structures such as delamination and matrix cracking problems that occur due to
the sudden change of material properties [23]. Furthermore, to achieve a desired
dynamic behavior, a tailor-made composite structure can be designed by simply
varying the gradation amount and rate along a desired direction within the domain
of the structure [23, 24, 25].

To describe the material distribution within the FGM structure along one or more
spatial directions, there are two common approaches: (i) Mori–Tanaka Method
[21, 22, 26] or (ii) the theory of mixtures [14, 27]. In the theory of mixtures method,
the material properties of the composite structure is found as a linear combination of
the constitute materials based on their volumetric ratios. Various models are based
on the thoery of mixture such as Rule of mixture (ROM) [28], Chamis (Ch) [29],
Halpin-Tsai (HT) [30], Modified rule of mixture (ROMm)[31]. In the Mori–Tanaka
approach the material properties are found using Eshelby’s elasticity solution us-
ing the eigenstrain concept [32] where the idea is to establish an average behavior
defined from fiber and matrix behaviors. To find the volumetric fractions for both
techniques, different methods such as four parameter power law and Weibull distri-
butions are used in literature [14, 33].

As aforementioned, FGMs are fabricated generally using metals and ceramics as
in particulate composites (see Fig. 1.1). However, it is possible to obtain a vary-
ing material property through various approaches such as the inclusion of short
fibers/whiskers (e.g. carbon nanotubes - CNTs) and flake composites (e.g. graphene
nano-platelets - GPLs) [34].
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1.2.1.1 Porous media

Porous (cellular) materials, such as metal foams, are one of the recent composite
materials [35, 36]. The porosity distribution in the structure can be engineered
to offer distinct properties such as weight reduction, energy absorption, and bio-
compatibility; thereby enabling these materials to be used in diverse applications in
aerospace, automobile, civil industries, and bio-engineering fields [37, 35]. Although,
there has been a lot of attention to these materials in recent years, mainly mate-
rials having uniform or random porosity distributions are used. However, above-
mentioned distinct properties highly depend on the porosity distribution, and ran-
dom porosity distributions may have problems such as mismatch of mechanical prop-
erties. To better control the associated material properties of the porous structures,
a smooth (i.e. functionally graded - FG) distribution can be utilized [38, 39, 40].

Although, the porosity in the structure can be tailored to achieve an FGM property
and meet the design requirements, effective stiffness of the material is significantly
compromised due to the presence of pores [41]. To overcome this reduction in
stiffness without increasing the weight of the material, one common approach is
to reinforce the material with nanofillers [42, 43, 44]. In this regard, due to the
remarkable mechanical and stability characteristics, carbon nanotubes (CNTs) have
been widely used as reinforcement material [45, 46]. More recently, instead of CNTs,
platelets that include few layers of graphene (graphene platelets - GPLs) have been
introduced as a reinforcement material. It has been reported that compared to
CNTs, due to the increased interaction between the surfaces of GPLs and the matrix
material, GPLs showed better mechanical enhancement [42, 47, 48].

1.2.1.2 Carbon nanotubes

Carbon nanotubes (CNTs) have been widely used as a reinforcement material due to
their extraordinary mechanical and stability characteristics (high strength, high stiff-
ness, and high aspect ratio but very low density) [49]. Carbon nanotubes can be pro-
duced in two different configuration: (i) single-walled carbon nanotube (SWCNT)
[50, 51] and (ii) multi-walled carbon nanotube (MWCNT). Single-walled carbon
nanotubes are fabricated by rolling a graphene sheet as a cylindrical shaped particle
with 1 nm diameter, where the MWCNTs are fabricated as an array of concentric
cylinders with an interlayer spacing of 3.4 nm [52].

Until recently, scientists mostly research on the traditional fiber fillers. These con-
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ventional fibers have an impressive ultimate and yield stresses properties with a
range of 230–725 GPa and 1.5–4.8 GPa, respectively [53]. The carbon nanotubes
with a diameter of between 1 to 100 nm and a length in the order of millimeters pro-
vide superior mechanical properties compared to the traditional fibers; for instance
the Young’s Modulus exceeds 1 TPa. Thus, they act as the leader type of carbon
fibers [54] and an excellent candidate to be used in . FGMs. Functionally graded
CNTs (FGCNTs) as an advanced type of FGM can also be engineered to achieve
the desired behavior in a preferred direction.

The FGCNTs were presented by Shen [55] for the first time with an isotropic material
property. After Shen’s study, it can be seen that there is an extraordinary interest
on FGCNT materials [56]. After Shen’s study, a large body of literature is devoted
to the advantages of using CNTs to enhance the dynamic and static behavior of
composite structures. Investigations demonstrate that utilizing a meager percentage
of the weight of CNTs compared to the matrix part of the composite has a remarkable
effect in improving the performance of the structure [57, 58, 59, 60, 61]. Thostenson
and Chou [62] show that using CNTs, the tensile modulus, yield strength, and
ultimate strength of the structure increases significantly. Also, they concluded that
the improvement of elastic modulus with the aligned CNTs is five times greater
than the improvement of the randomly oriented CNTs. Zhu. et al. [63] considered
the various distribution type of CNTs along with the thickness of the structure and
show that the volume fraction distribution of CNTs has a major role in changing the
natural frequencies and mode shapes of the moderately thick structure. Aragh et al.
[64] studied different distribution of CNTs and geometry parameters and their results
indicate that the symmetric distribution of CNTs enhances the dynamic behavior
more effectively than the uniform distribution of CNTs.

Considering the mentioned extraordinary properties of FGCNTs, they are a promis-
ing candidate to be used in the face-sheet and core layers of a sandwich structure to
strengthen the weak structures such as honeycomb type of structures. In practice,
sandwich structures include a core layer, usually composed of foam materials [65]
or lattice materials [66]. In this regard, the advantage of the foam type of layer is
to have a continuous form, leading to a continuous connection to the face-sheets.
Nevertheless, the foam structures have low stiffness and strength. In contrast, the
lattice material such as honeycomb types possesses high stiffness and strength due
to their strong nodal connectivity [67]. Due to the high out-of-plane stiffness, lon-
gitudinal shear strength, and ultra-low density characteristics of honeycombs, they
are considered a viable solution for aerospace engineering application [68]. To over-
come the honeycomb’s weakness in the in-plane stiffness, the CNT face-sheets can
be used.
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1.2.1.3 Graphene platelets

Functionally graded graphene platelets (GPL) reinforced porous composite materials
are a relatively new concept and have attracted immense attention since it can be
widely used in many engineering applications. Thus, it is highly critical to develop
novel modeling approaches to accurately and efficiently predict their mechanical
and dynamic behavior. Although, there are many studies regarding modeling of
the conventional composite materials, the computational modeling studies of GPL
reinforced FG porous composites are still limited. The studies in the literature can
be divided into two categories as beams and plates/shells depending on the domain
of the problem.

Among the recent studies on the GPL reinforced FG porous material (FGPM-GPL)
composites, the majority of the literature are devoted to investigate the bending
and dynamic behavior of structures using beam based theories. Kitipornchai et al.
[42] employed the Timoshenko beam theory with the Ritz approach to obtain the
natural frequencies and critical buckling loads of nano composite beams. Then,
buckling and post-buckling behavior of functionally graded multilayer beams rein-
forced with randomly oriented GPLs was studied by Yang et al. [69]. In this study,
the first order shear deformation theory (FSDT) was used to express the kinematic
relations and the numerical solution was performed using the differential quadrature
method (DQM). They concluded that introducing even a low percentage of GPLs
into the matrix material enables the composite structure to have stiffer behavior.
The post-buckling behavior was also studied by Kiani and Mirzaei [70] for laminated
beams reinforced with the GPLs using the von Karman type of strain displacement
relations and including the temperature effects. In a recent work done by Gana-
pathi et al. [71], the vibrational behavior of curved FG porous beams with GPLs
by employing the trigonometric shear deformation theory and considering thickness
stretching effect was studied. The Navier’s method is applied to solve the derived
equations and the results showed that porosity distribution over the thickness result
in variation of natural frequencies. Apart from predicting the natural frequencies
and buckling loads, dynamic stability is another important issue. Liu et al. [72]
studied the stability of FG porous arches reinforced with graphene platelets (GPLs)
analytically. Later, Zhao et al. [48] conducted the instability analysis using the clas-
sical Euler–Bernoulli theory and Galerkin approach. They investigated the dynamic
instability using the Bolotin method. The dynamic buckling analysis of FGPM-GPL
plates were investigated by Li et al. [73]. They concluded that the porosity and
GPLs distributions have a significant effect on the stiffness of the plate. The dy-
namic behavior and stability of the FGPM-GPL plates under dynamic/aerodynamic
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loads were also investigated [74, 75]. It was concluded that increasing the percentage
of GPLs in the structure increases the resonance frequencies.

1.3 Modeling approaches of composite structures

To model composite structures, researchers use either two-dimensional (2D) or three-
dimensional (3D) modeling approaches based on the geometry of structure such as
thickness ratio and curvature amount. It should be noticed that there is not a
straightforward conclusion to choose a 2D or 3D approach. However, using an
appropriate approach can help to decrease the cost of computation. Furthermore,
using an approach that enables to predict strains and stresses at any location of
the structure is a critical issue [76]. Therefore, in this section, an overview of the
common 2D and 3D modeling approaches is presented.

1.3.1 Two-dimensional approaches

Due to the wide range of applications, plate/shell type of composite structures have
also attracted considerable attention due to their load carrying capabilities. Ma-
jority of the studies based on different 2D analytical and numerical methods are
listed in the review articles of Gibson et al. [77], Liew et al. [54], and Swaminathan
et al. [19]; however only the significant and recent relevant works are listed here
for the sake of completeness. These studies can be classified according to the or-
der of the shear deformation mechanism that is followed, such as Kirchhoff–Love
(classical) plate theory (CPT) [78, 79, 80, 81, 82], Mindlin plate (first order shear
deformation theory — FSDT) theory [81, 83, 84, 85], or higher-order shear defor-
mation theories (HSDT) [86, 87]. The classical theory that follows Kirchhoff–Love
assumptions is only suitable for thin plates and shells as it neglects the effects of
the shear deformation [88, 89, 90, 91, 92]. To overcome the limitations of the clas-
sical plate theory, Mindlin or higher order shear theories are utilized. For instance,
in Tornabene et al.’s work [93, 94], the dynamics of the doubly-curved plate is ana-
lyzed using FSDT where the solution is performed using the Generalized Differential
Quadrature (GQD) method.

To overcome the inadequacies of the plate theories (arising from the restricting as-
sumptions for the deformation kinematics) and also to increase their computational
efficiency, attempts were made to modify the plate/shell theories to accurately and
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efficiently capture the dynamics of composites and also to construct a general mod-
eling approach. For instance, Tornabene et al. [16, 86] overcome the inadequacies of
the plate theory in the case of zig-zag effects [95] and analyzed the dynamics of lam-
inated doubly-curved structures including plate geometries with arbitrarily shaped
in-plane geometries [16] and varying thickness [86]. Another important modeling
approach that can overcome the limitations in deformation kinematics is to use
meshless methods such as unified formulation (UF) where the displacement field
is written by approximating functions; and the solution can be performed using
collation methods or generalized differential quadrature (GDQ) method [96, 97].
The GQD method is one of the common approaches used in the literature due to
its simplicity and versatility [98]. However, the derivative and integral operations
are performed numerically in the GQD technique; thereby, the selected basis func-
tions and the sampling scheme highly effect the precision of the results. To analyze
the arbitrarily shaped composite plates, in some recent studies, a unified modeling
approach such as integration of NURBS or isogeometric modeling or conventional
mapping approach commonly used in finite element method to plate modeling equa-
tions is followed [99, 100, 101, 102, 43]. This method enables accurately capturing
the geometry of the structure and achieving more controllable continuity across
elements.

As stated above, computational duration is another important factor of the devel-
oped modeling techniques. Thai et al. [100] and Khiloun et al. [103] used a re-
fined plate model and thus decreased the total number of degrees of freedom of the
structure. Another common approach to increase the computational efficiency is to
select fast converging orthogonal polynomials in the solution approach. To achieve
this, Fourier series or Chebyshev (Tchebychev) polynomials are selected since they
present exponential convergence characteristics [104, 105, 106, 107]. Furthermore,
spectral/meshless methods lead to lower number of degrees of freedom; since these
methods uses basis functions that are non-zero over the whole domain, they enable
accurate and computationally efficient prediction of the mechanical and dynamic
behavior [108, 107, 109].

Despite that the mentioned plate theories can predict the accurate behavior of the
thin structures, they have a critical weakness in the study of thick structures, espe-
cially when the material properties have a smooth variation through the thickness
[110]. Demasi [111] studied the static behavior of a laminated structure using two
dimensional, quasi-three dimensional, and exact three dimensional. He concluded
that by increasing the thickness of layers, the accuracy of the two-dimensional ap-
proach is decreased. For the moderately thick structures, proportional types of plate
theories should be selected among various types of theories. Also, he demonstrated
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the high accuracy of layer-wise modeling of laminated structures. Using a simplified
formulation of plate theories indicates that they lack accuracy in analyzing the free
vibrations [112]. Furthermore, in the case of sandwich structures, the discontinuity
between the face-sheets and the core layer with different material properties carried
another difficulty for the shell/plate theories [113].

1.3.2 Three-dimensional approaches

Although, there is a large body of literature on 2D (plate and shell) methods to
understand the dynamics of composite structure, there are only a few studies on
fully 3D methods due to the difficulties in the modeling process [19]. However,
3D methods lead to higher accuracy and also automatically eliminates the need to
make the restricting assumptions for the deformation kinematics of the structure
as in most of the 2D approaches [114, 115, 116]. In this regard, various HSDT
with refinement parameters and quasi-3D theories are presented to catch the thick
structure’s behavior, especially the transverse deformation of the structure as close as
possible to the 3D solution. However, the mentioned approaches are highly affected
by geometry’s complexity, such as change of thickness and radius of curvature. Also,
deriving the analytical or numerical solutions of these approaches need too much
effort.

As a part of the engineering process, the empirical stage of testing the study can
increase the cost due to the repetition of the test process to evaluate the analyzing
method, especially if the study is accomplished for the cases with plastic defor-
mations such as impact or buckling analysis. Hence, it is necessary to improve
an accurate and sufficient three-dimensional method to minimize the development
costs.

In recent years, it can be seen that literature have been more devoted to using
three-dimensional approaches to model and predict the behavior of thick struc-
tures. Farid et al.[117] studied a thick and functionally graded curved panel using
the three-dimensional elasticity formulation. They used a hybrid semi-analytic-
differential quadrature method to solve the problem with the series based expansion
of displacement components[117]. In another work done by Malekzadeh, the men-
tioned method is employed to study the free vibration of a functionally graded
structure(FGM) [118]. Liu et al. [119] used the 3D elasticity approach to investi-
gate the static and vibration behavior of a structure reinforced with CNTs. In this
study, the state-space-based differential quadrature method is employed to solve the
equation of motion for an annular-shaped structure. Malekzadeh and Heydarpour
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[120] utilized 3D elasticity to investigate the static and free vibration behavior of a
laminated composite structure reinforced with CNTs. A semi-analytical approach
composed of the layer-wise differential quadrature method and the series solution
was employed to model the 3D variations of the displacement components accu-
rately. Alibegloo et al. [121, 122] study the static and vibrational behavior of CNT
reinforced type of laminated structure using 3D elasticity equation and Fourier se-
ries expansion approach. In another research, Albeigloo et al. [121, 123] apply the
3D elasticity approach to the FGM sandwich structures where the face-sheets are
the soft materials. They carried out the static and vibration analysis by employing
the differential quadrature approach and the Fourier series expansion method.

The main disadvantage of using three-dimensional solution of thick structures is the
computational time. As a part of the author’s knowledge, advances in computer
sciences and using new meshless methods integrated with mathematical science can
be part of investigations of the engineering field to overcome the computational
weakness of the 3D solution methods. In deriving the BVP, 3D elasticity equa-
tions are used; and the solutions are carried out using techniques such as spectral
element method (SEM), differential quadrature method (DQM), or quadrature ele-
ment method (QEM) [85, 124, 125]. Although, they are computationally efficient,
they suffer due to the difficulty in selecting proper basis/trial functions that needs to
be determined for each different geometry and boundary conditions (thus, the solu-
tions can only be performed for certain simple geometries and boundary conditions),
and the necessity to use special numerical algorithms to calculate the derivative and
integral operations.

One of the most common method that is used in literature to model the dynamics
(vibration behavior) of composite structures is finite-element (FE) methods [19, 126,
127]. The FE technique uses weak formulation of the boundary value problem (BVP)
and requires an arduous effort to obtain a suitable mesh of the investigated structure.
If 3D elements are used, this technique enables accurate prediction of deformations
within the structure, natural frequencies, and mode shapes, even for FGM structures
having complex geometries and material distributions. Although finite element (FE)
based methods are the prevailing approach to analyze mechanical/dynamic behavior
of structures, it has several drawbacks: (i) when the material gradation rate is rapid
along one or more directions, obtaining a converged result requires a significant
amount of computational cost; (ii) when the investigated structure has complex
geometry (for instance sharp edges), it is required to perform h-refinement or p-
refinement techniques to achieve accurate results. Both of the refinement techniques
increases the size of the system matrices, leading to a decrease in the computational
efficiency. Consequently, researches aim to develop more computationally efficient
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techniques. However, computational efficiency is the main problem of FE approach.
Especially time domain response simulations and harmonic solutions lead to overlong
simulation duration.

1.4 Design of composite structures

Due to the flexibility in composite fabrication, the material properties and/or the
geometry of the structure can be tailored to meet the design requirements. The
process of finding the best possible design is called optimization. In the modern
era, optimization is one of the most crucial issues associated with engineering de-
signs. Weight reduction, utilizing less expensive materials, increasing the strength,
reducing the number of prototype fabrication and testing have always been sought
in designing different mechanical structures. As a result, there are many optimiza-
tion studies conducted on composite structures, that are focused on developing new
optimization algorithms and/or on implementing new design variables, objective
functions, and/or constraints. A great insight into optimization of composite struc-
tures can be achieved by probing these two areas individually and/or combining
them comprehensively.

Commonly, the objectives of most of the studies in literature are either maximiz-
ing the critical buckling load [128], minimizing the weight [129], maximizing the
fundamental frequency [130], minimizing the coefficient of thermal expansion and
maximizing the elasticity modulus [131] or combination of them, where the design
variables can be defined as stacking sequence of layers and fiber orientations.

From the literature, it can be concluded that the design studies related to the sand-
wich structures with accurate solutions need more and comprehensive investigations.
Setoodeh and Shojaei accomplished an optimization study to obtain optimum CNTs
orientations for maximizing the buckling critical force [132]. They performed the op-
timization using Genetic algorithms. Vo-Duy et al. [133] conducted an optimization
of natural frequencies of the structure by designing the CNTs orientations. Adap-
tive Elicit Differential Evolution Algorithm (AEDEA) is developed by authors to be
used in the optimization process. In the reviewed literature, the CNTs orientations
are designed for one layer or for a laminated structure. However, majority of the
studies focused on dynamic or static behavior optimizations of sandwich structures
are conducted for FGM structures. The materials volume, thickness, and distribu-
tion types of FGM are the main design variables of these studies [134, 135, 136].
The literature reviews show a lack of research on the design of sandwich structures
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via a 3D modeling approach.

1.5 Objectives

In this thesis, it is aimed to develop a new modeling technique for accurate and
efficient prediction of two-dimensional and three-dimensional vibration/dynamic be-
havior, static, and buckling behavior of composite structures and to integrate the
proposed solution approach with an optimization algorithm to determine the op-
timum design. In the proposed modeling technique, first order shear deformation
theory for two-dimensional modeling and three-dimensional elasticity equations will
be used and above-mentioned analyses will be performed using kinetic and strain
energies of the composite structure. Since the material properties of composite
structures may vary continuously/discontinuously or depend on the direction, the
constitutive relationship between strains and stresses needs to be expressed to in-
clude all the different material properties specified. Furthermore, to simplify the
domain of the boundary value problem, necessary coordinate transformations will
be derived to transform the geometries of composite structures having variable cur-
vature along one or two directions. To obtain high accuracy and high computational
efficiency in the analyses, a spectral solution technique will be used incorporating
Chebyshev polynomials in discretizing the problem domain. The accuracy/precision
of developed modeling technique will be validated comparing the results to those
obtained through finite element method.

1.6 Thesis organization

The thesis outline is as follows:

The second chapter presents the problem definitions and describes the cases to be
analyzed. In this chapter, the material definitions for various types of materials are
explained. Since complex geometries are considered, a coordinate transformation is
presented to simplify the problem domain. Finally, the 2D and 3D integral boundary
value problems are derived to obtain the governing equations.

The third chapter is devoted to developed spectral method based on Chebyshev
polynomials to solve the integral boundary value problem. The main elements of
the spectral-Chebyshev(ST) approach includes discretization, differentiation and in-
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tegral operations. Furthermore, basis recombination approach is described to couple
different composite structures and to impose (essential) boundary conditions.

The presented approach is validated and examined in chapter four through various
problems defined in chapter two. This chapter includes the vibration, buckling, and
static analysis of composite structures. Also, a design study is accomplished for the
sandwich structure to obtain an optimized displacement and natural frequency.

In the last chapter, a general conclusion regarding the performance of the developed
modeling approach is presented. Furthermore, possible future studies are high-
lighted. The flowchart of thesis is presented in Fig. 1.3.

2D-ST
Buckling

Vibration
3D-ST

Static

Vibration

Design Displacement
Fundamental 

frequency

Validation

Literture FEM

Modeling

* Finite Element Method

** Spectral-Chebychev

*

** **

Figure 1.3 Thesis vision.
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2. PROBLEM DEFINITION

2.1 Plate contains graphene platelets and porous media

2.1.1 Boundary value problem

In this study, a multilayer plate model as depicted in Fig. 2.1 is used where the
displacement fields are defined based on the first-order shear deformation theory
(FSDT) as follows

u(x,y,z, t) = u0(x,y, t) + zφx(x,y, t)

v(x,y,z, t) = v0(x,y, t) + zφy(x,y, t) (2.1)

w(x,y,z, t) = w0(x,y, t)

Here, u0, v0, and w0 indicate the displacements on the neutral surface along x, y,
and z directions, respectively; φx and φy represent the rotational movements on
x− z and y− z planes, respectively.

x

y
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h
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b

y

z

h/2

-h/2
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zn+1

z2
zj
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Figure 2.1 Schematic of a multilayer plate.
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Considering linear strains, the strain-displacement relations can be written in matrix
form as: 

εxx

εyy

εxy

εxz

εyz


=



∂
∂x 0 0 z ∂

∂x 0
0 ∂

∂y 0 0 z ∂
∂y

∂
∂y

∂
∂x 0 z ∂

∂y z ∂
∂x

0 0 ∂
∂x 1 0

0 0 ∂
∂y 0 1


︸ ︷︷ ︸

B



u0

v0

w0w0w0

φx

φy

︸ ︷︷ ︸
q

(2.2)

where B is the differential operator matrix and q is the displacement vector. The
strain field can also be used to obtain the stresses in the structure using the con-
stitutive matrix, C, as σ = Cε. Therefore, using the stresses and the strains, the
strain energy can be expressed as

Es = 1
2

∫
V
εTσdV = 1

2

∫
A

∫
qTBTCBqdzdA (2.3)

The kinetic energy for the plate can be written as

Ek = 1
2

∫
A

∫
ρ q̇T



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 z2 0
0 0 0 0 z2


︸ ︷︷ ︸

Υ

q̇dzdA (2.4)

where ρ is the density and q̇ represent the velocity terms. Lastly, the work done
by in-plane stresses (Nxx and Nyy) can be expressed as

Wnc = 1
2

∫
V

Nxx(∂www0
∂x

)2
+Nyy

(
∂www0
∂y

)2
dV (2.5)

Inserting Eqs. (2.3)-(2.5) into Hamilton’s equation, the system matrices can be de-
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rived as

K =
∫
A

∫
qTBTCBδqdzdA (2.6)

M =
∫
A

∫
q̈TρΥδqdzdA (2.7)

KG =
∫
A

∫ (∂wwwo
∂x

)T
Nxx

(
∂

∂x
δwwwo

)

+
(
∂wwwo
∂y

)T
Nyy

(
∂

∂y
δwwwo

)dzdA (2.8)

where M, K and KG are the mass, elastic stiffness, and geometric stiffness matri-
ces, respectively. Therefore, to determine the free vibration behavior, the following
eigenvalue problem needs to be solved[

K−ω2 M
]
ψ = 0 (2.9)

where ω and ψ represent the natural frequencies and mode shapes of the investigated
structure. In the case of (elastic) buckling, the critical buckling load (λ) can be found
solving the following eigenvalue problem,1

λ
K−KG

ψ = 0 (2.10)

2.1.2 Porosity distributions

Figure 2.2 illustrates the symmetric and uniform porosity distributions. The ma-
terials properties corresponding to symmetric porosity distribution can be found
as

E(z) = E∗(z)[1− e0cos(πz/h)]

G(z) =G∗(z)[1− e0cos(πz/h)] (2.11)

ρ(z) = ρ∗(z)[1− emcos(πz/h)]
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Similarly, for the uniform porosity distribution, the material properties can be cal-
culated as

E(z) = E∗(z)α

G(z) =G∗(z)α (2.12)

ρ(z) = ρ∗(z)α′

where E(z), G(z), and ρ(z) defines the variation Young’s Modulus, shear modulus,
and density of the porous plates along the thickness direction; E∗(z), G∗(z), and
ρ∗(z) are the materials properties corresponding to the non-porous case; e0 and em
present the porosity coefficients of distribution and mass density, respectively; α and
α′ are the coefficients for uniform distribution.

h/2

-h/2

h/2

-h/2

z

z

Material Property

Material Property

(a)

(b)

Figure 2.2 (a) Symmetric and (b) uniform porosity distributions along the
thickness direction.

Porosity coefficient, e0 can be calculated as

eo = 1−E1/E2 (2.13)

where E1 and E2 represent the maximum and minimum values of the Young’s mod-
ulus of the porous plate. The porosity coefficient is proportional to the size and
density of pores. As shown in Eqs. (2.11) and (2.12), as the porosity increases, the
material properties diminish. The relation between e0 and em is defined as

em = 1−
√

1− e0 (2.14)

Based on the porosity coefficient, α can be calculated using the theory for open-cell
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metal foams:
∫ h/2

0

√
αdz =

∫ h/2

0

√
1− e0 cos(πz/h)dz (2.15)

As stated above, the effective stiffness of the material is compromised due to the
porosity; thus nanofillers such as CNTs and GPLs can be introduced to improve the
strength without a significant increase in the overall weight.

2.1.3 Reinforcing with randomly oriented GPLs

Graphene nanoplatelets (GPLs) are a type of 2D nanofillers that are basically stacks
of graphene sheets. In this study, two different distributions for randomly oriented
GPL reinforcements are considered as shown in Fig. 2.3. The material properties
along the thickness vary and they can be obtained following the Halpin-Tsai mi-
cromechanics model as follows [137, 48];

E∗(z) = 3
8

1 + ζGPL
L ηGPLL VGPL(z)

1−ηGPL
L VGPL(z)

Em
+ 5

8(1 + ζGPL
W ηGPL

W VGPL(z)
1−ηGPL

W VGPL(z)
)Em (2.16)

ν∗(z) = νGPLVGPL(z) +νmVm(z) (2.17)

ρ∗(z) = ρGPLVGPL(z) +ρmVm(z) (2.18)

where Em, ρm and νm are the elasticity modulus, density, and Poisson’s ratio of
matrix material; ρGPL and νGPL are the density and Poisson’s ratio of GPL, re-
spectively; VGPL(z) and Vm(z) are the volume of the constituent materials along z
direction; ζGPL

L , ζGPL
W , ηGPL

L and ηGPL
W represent the geometric parameters of the

GPLs that are defined as;

ζGPL
L = 2lGPL/tGPL (2.19)

ζGPL
W = 2wGPL/tGPL (2.20)

ηGPL
L =

(
1− Em

EGPL

)/(
1 + ζGPL

L
Em
EGPL

)
(2.21)

ηGPL
W =

(
1− Em

EGPL

)/(
1 + ζGPL

W
Em
EGPL

)
(2.22)

Here, lGPL, tGPL, and wGPL represents the length, thickness and width of GPLs, and
EGPL is the elasticity modulus of GPLs. The GPL distributions along the thickness
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Figure 2.3 (a) Symmetric and (b) uniform configurations of randomly oriented
nanofillers.

corresponding to each distribution, shown in Fig. 2.3, can be found as follows:

Pattern A: VGPL(z) = A1

[
1− cos

(
πz/h

)]
(2.23)

Pattern B: VGPL = A2 (2.24)

where A1 and A2 can be determined by calculating the total volume of GPLs (V Tot
GPL)

in whole structure as

V Tot
GPL = ΛGPL

ΛGPL + (ρGPL/ρm)(1−ΛGPL) (2.25)

A1 = V Tot
GPL

∑n
j=1 ρj/ρ

∗∑n
j=1(1− cos(πzj/h))ρ(zj)/ρ∗

(2.26)

A2 = V Tot
GPL

∑n
j=1 ρj/ρ

∗∑n
j=1 ρ(zj)/ρ∗

(2.27)

where ΛGPL is the weight fraction of GPLs in the plate.

2.2 Laminated structure with functionally graded materials

2.2.1 Structure model

The schematic of a doubly-curved 3D structure having an arbitrary geometry is
depicted in Fig. 2.4. Here, x-y-z is the global (inertial) coordinate frame of reference;
B(x,y,z) defines the boundary of the 3D structure; and R1(θ1) and R2(θ2) are the
vectors that define curvatures around x and y axes, respectively.
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Figure 2.4 Schematic of a doubly-curved laminated composite structure having an
arbitrary curved (in-plane) geometry.

To obtain the integral boundary value problem (IBVP) that governs the dynamics
of the laminated structures, extended Hamilton’s principle is used. Therefore, the
IBVP can be derived as;

∫
V

(
ρ q̈T q +qTBTCBq

)
dV =

∫
V

fq
TqdV. (2.28)

Here, ρ is the density as a function of spatial variables (x, y, and z), q = {u;v;w} is
the deflection vector, B is the differential operator matrix that relates the displace-
ments (deflections) to strains (ε= Bq), C is the constitutive matrix (σ = Cε), and
fq is the non-conservative forces acting on the structure. Note that the IBVP defined
by Eq. (2.28) seems straightforward to solve; however since the integral operation
includes varying functions (due to the varying material properties) and is defined
over a complicated domain (doubly curved structure with arbitrary geometry), the
solution of the IBVP poses significant challenges.

2.2.2 Domain simplification: Coordinate transformations

To address the aforementioned challenges/complexities, in the first step, the domain
of the problem is simplified using coordinate transformations and cross-section map-
ping. Figure 2.5 depicts the flowchart of the domain simplification process. The
process starts with mapping the curved geometry onto a straight geometry using
two translating (local) coordinate frames, x′-y′-z′ and x′′-y′′-z′′ that curl with the
curvature around x and y axes (see Fig. 2.5(a)-(c)). Thus, using two rotational
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transformation matrices consecutively, as follows
x

y

z

= Tx


x′

Rx sin(θ1)
z′−Rx

[
1− cos(θ1)

]
 (2.29)


x′

y′

z′

= Ty


Ry sin(θ2)

y′′

z′′−Ry
[
1− cos(θ2)

]
 (2.30)

the doubly curved geometry in Fig. 2.5(a) can be transformed into a straight ge-
ometry as depicted in Fig. 2.5(c). Here, Tx and Ty are the rotational transfor-
mation matrices around x and y axes, respectively; θi, is the angle associated with
the amount of curvature at any particular location. For instance, considering the
rotation around x axis, the angle, θ1 at any particular location (x′) is equal to
θ1 = 2πβy′/Ly, where β is the curvature rate that quantities the fraction of full rev-
olution. Therefore, it is possible to relate the coordinates of the straight geometry
to the coordinates of the curved geometry through the Jacobian matrix, JJJCoorM.

dxdydz = |JJJCoorM|dx′′dy′′dz′′ (2.31)

where the Jacobian matrix includes the mathematical relationship of the derivatives
of Eqs. (2.29)-(2.30) with respect to the coordinates of the straight geometry. Sec-
ondly, the complex geometry is mapped onto a simple rectangular geometry defined
by the coordinates (ξ and η) using one-to-one cross-section mapping approach [107].
The main steps of the procedure shown in Fig. 2.5(c)-(d) are depicted in Fig. 2.6. To
obtain the Jacobian of this cross-section mapping, a polynomial approach is used.
In this approach, first, the complex domain defined by x′′ and y′′ coordinates are
discretized; where the number of mapping points are determined based on the order
of the mapping functions [138]. Then, a shape function is derived for each mapping
point such that the value of the shape function is unity for the corresponding point
and zero for all other mapping points.
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Figure 2.5 Coordinate transformation applied to simplify the primary model: (a)
doubly-curved structure with arbitrary geometry, (b) singly-curved structure with

arbitrary geometry, (c) straight structure with arbitrary geometry, and (d)
straight parallelepiped.
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Figure 2.6 Cross-section mapping of arbitrary (in-plane) geometry to a square
cross-section.

Using the shape functions defined for the mapping points, the derivatives of these
functions respect to the coordinates (ξ and η) in the simplified domain can be calcu-
lated to determine the Jacobian matrix, JJJCrossM, that relates the physical coordinates
(x′′ and y′′) to the mapped coordinates (ξ and η) as follows

∂

∂qj
=

3∑
i=1

(
JCrossM
ij

)−1 ∂

∂εi
. (2.32)
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where q and ε represent the physical domain and mapped domain coordinates, re-
spectively.

Finally, using the Jacobian of the coordinate transformations defined by Eqs. (2.29)-
(2.30) and the Jacobian of cross-section mapping, the physical coordinates of the
original doubly-curved structure can be related to the mapped coordinates (ξ and
η)

dxdydz = |JJJCrossM| |JJJCoorM|︸ ︷︷ ︸
JJJ

dξdηdζ (2.33)

Note that this mathematical relationship increases the computational complexity of
the problem; however, more importantly, it simplifies the domain of the IBVP and
the calculation of the integral operations given by Eq. (2.28).

2.2.3 Functionally graded materials

Another challenge aforementioned above is the variation of the material proper-
ties within the 3D structure. The material distribution can be defined three-
dimensionally; however in this study, uni-directional (that the material gradation is
only along the one direction) case is considered.

The varying material properties (such as density, Young’s Modulus, etc.) in FGM
structures are based on the volume fraction distributions and thereby the properties
of the constituent materials. In literature, two common approaches are used to
model the varying material properties: (i) Mori-Tanaka [26, 139] and (ii) theory
of mixtures [14, 83]. For both methods, first, the volume fraction of the material
constituents needs to be calculated using methods such as power law or exponential
methods. In this study, the volume fractions for an FGM having uni-directional
material gradation are calculated using the power law approach as

Vc(y,z) =
1

2 + z

h

p (2.34)

Vm(y,z) = 1−Vc (2.35)

where Vc is the volume fraction of the particulate phase (added material) and Vm is
the volume fraction of the matrix phase; p is the gradation parameter along the z
axis.

Based on the volume fractions, the varying material properties can be calculated
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using either the Mori-Tanaka method or theory of mixture. In the method of theory
of mixture, the material property of the FGM structure is basically the linear com-
bination of the mechanical properties of the constituent materials [14]. However,
for the Mori-Tanaka method, the effective material properties are found using the
effective local bulk and shear moduli of the FGM calculated using the technique
described in [21, 107].

2.3 Sandwich structure with carbon nanotube face-sheets and honeycomb
core

2.3.1 Model development

The schematic of the (curved) sandwich-structured composite is depicted in Fig. 2.7.
A hexagonal type of honeycomb layer, having a thickness of hm, is used as the core
layer (see Fig. 2.7(b) with detailed geometry properties of the hexagonal type of
honeycomb structure); and the top and bottom layers (i.e. face-sheets), having
a thickness of ho, are composed of a porous matrix reinforced with CNTs. The
curvature of the structure is defined by either the radius of curvature (R) that is
measured from the mid-plane of the structure or angle of the curvature (Θ). The
curvature amount (β), that quantifies the number (or fraction) of full revolution
along the specified direction, can be defined to calculate the curvature radius as
R = L/(2πβ) where L is the length of the structure along x or y axis. Lastly, a
distributed line force (F ) is applied on the edge of the top layer along (−z) direction
as shown in Fig. 2.7a. It should be noticed that the domain of this structure is
simplified using the transformation approach described in section. 2.2.2.

2.3.2 Material definition

2.3.2.1 Honeycomb

In this study, the hexagonal honeycomb structure with double thickness walls as
depicted in Fig. 2.7(b) is used as the core layer of the sandwich-structured composite.
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Figure 2.7 (a) Schematic of the sandwich-structured composite with
CNT-reinforced face-sheets and a honeycomb core. (b) Detailed geometry of the

hexagonal type of honeycomb structure.

Based on the study of Kelsey et al. [140], out-of-plane shear stiffness and density
values can be obtained as;

G13 = δ cosϕ
1 + sinϕGs (2.36)

ρ= 2δ
(1 + sinϕ)cosϕρs (2.37)

where δ is the ratio of thickness to the length of hexagonal geometry (t/l), ϕ is
the honeycomb angle, Gs and ρs are the shear and density of the honeycomb ma-
terial, respectively. In continue, Sun et al. purpose that the direct stiffness of the
honeycomb core is proportional to its density [141] and can be presented as;

E33 = 2δ
(1 + sinϕ)cosϕEs (2.38)
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Also, Klintworth and Strong [142] present the equations to obtain the elasticity
modulus in other directions;

E11 = δ3 cosϕ
(1 + sinϕ)sin2ϕ

Es (2.39)

E22 = δ3(1 + sinϕ)
cos3ϕ

Es (2.40)

G12 = δ3(1 + sinϕ)
cosϕ (2.41)

where Es is the hexagonal honeycomb core elasticity modulus. The accurate in-
plane poisson’s ratio is a function of hexagonal honeycomb core poisson’s ratio (νs)
presented by Scarp and Tomlinson [143] as;

ν12 = cos2ϕ

(1 + sinϕ)sinϕ

 1 + (1.4 + 1.5νs)δ2

1 + (2.4 + 1.5νs+ cot2ϕ)δ2

 (2.42)

Grediac approximates the other out-of-plane shear modulus [144];

G23 =
1 + sinϕ

2cosϕ + 0.787 1 + sin2ϕ

(1 + sinϕ)cosϕ( l
h

)
δGs (2.43)

Also, Zhang and Ashby calculated the out-of-plane poisson’s ratios as [145];

ν31 = ν32 = νs (2.44)

ν13 = E11
E33

ν31 ≈ 0 (2.45)

ν23 = E22
E33

ν32 ≈ 0 (2.46)

2.3.2.2 Face-sheets

In this section, porosity and CNTs distributions along the thickness of the face-sheets
and honeycomb type of structure are described. Four different CNTs distributions
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along the thickness of the face-sheets are used as shown in Fig. 2.8;

Vcnt = V ∗cnt UD

Vcnt = (1 + 2z
h

)V ∗cnt FG−V

Vcnt = 2(1−2 | z |
h

)V ∗cnt FG−O (2.47)

Vcnt = (4 | z |
h

)V ∗cnt FG−X

where VCNT defines the contained volume of CNTs in thicknesses direction and V ∗CNT
is the total volume contained of CNTs in each layer;

V ∗CNT = wCNT
wCNT + (ρCNT/ρm)− (ρCNT/ρm)wCNT

(2.48)

where wCNT is the mass fraction of CNTs in the layer, ρm and ρCNT are the matrix

X

X

(a) UD (b) FG-V

(c) FG-X (d) FG-O

Z

Z

HONEYCONB HONEYCONB

HONEYCONB HONEYCONB

Figure 2.8 CNT distribution along the thickness of each face-sheets with
honeycomb core; (a) Uniform, (b) FG-V, (c) FG-X, (d) FG-O.

and CNTs densities, respectively. However, the effective material properties of face-
sheets can be determined using the matrix and CNTs material properties;

E∗11 = η1VCNTE
CNT
11 +VmE

m

η2
E∗22

= VCNT
ECNT

22
+ Vm
Em (2.49)

η3
G∗12

= VCNT
GCNT

12
+ Vm
Gm
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where ECNT
11 , ECNT

22 , and GCNT
12 corresponds to the elasticity and shear modulus of

CNTs. Also, Em and Gm are the elasticity and shear modulus of the matrix part
of the CNTs, respectively. ηi (i=1,2,3) are the CNTs efficiency parameters. Poisson
ratio and density properties of face-sheets can be obtained as;

ν12 = V ∗CNTν
CNT
12 +Vmν

m

ρ= VCNTρ
CNT +Vmρ

m (2.50)

where, ν12CNT and num are the poisson’s ratios of CNT and matrix parts of face-
sheet, respectively. ρCNT and ρm are the CNT and matrix parts’ densities, re-
spectively. The CNTs composite including the CNTs particles and matrix part is
distributed in the porous media in which the media’s distribution (Pdist) along the
thickness is specified as;

Psymm = 1− e0cos(
πz

ho
) (2.51)

where e0 is the porosity parameter. It should be noticed that Eq. (2.51) is defined
for the mechanical property variation of the material along the thickness; where, for
the density distribution, e0 should be replaced with em(porosity mass parameter,
em = 1−

√
1− e0). Consequently, the face-sheet material properties can be obtained

as;


Eii = E∗ii×Psymm

Gij =G∗ij×Psymm Symmetric porosity distribution, i, j = 1,2,3

ρ= ρ∗×Psymm

(2.52)

2.3.3 Governing equations

To study the sandwich structure’s dynamic and static behavior, the system’s integral
boundary value problem (IBVP) is obtained using the Hamilton approach as written
in equation. 2.28. It should be noticed that the constitutive matrix C contains the
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transformed material properties of the face-sheets as[146];

C = T



Q11 Q12 Q13 0 0 0
Q12 Q22 Q23 0 0 0
Q13 Q23 Q33 0 0 0

0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66


T′ (2.53)

T =



cos2(ψ) sin2(ψ) 0 0 0 sin(ψ)cos(ψ)
sin2(ψ) cos2(ψ) 0 0 0 −sin(ψ)cos(ψ)

0 0 1 0 0 0
0 0 0 cos(ψ) −sin(ψ) 0
0 0 0 sin(ψ) cos(ψ) 0

−sin(2ψ) sin(2ψ) 0 0 0 cos2(ψ)− sin2(ψ)


(2.54)

The ψ is the CNTs orientations. The system matrices can be obtained;

M =
∫
V
ρ dV (2.55)

K =
∫
V
BTCB dV (2.56)

where M and K are the stiffness and mass matrices of the problem, respectively.
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3. SOLUTION OF GOVERNING EQUATIONS

3.1 Two dimensional spectral-Chebyshev solution

To numerically calculate the vibration and buckling behavior, the continuous de-
flection functions need to be represented by a vector sampled at certain increments
in the domain. For sampling the domain, Gauss-Lobatto sampling is used to min-
imize the interpolation error. Since, the problem domain forms a 2D space, the
sampling of deformations along x and y directions will lead to a second rank ten-
sor as qij = q(x(i),y(j)). However, for numerical purposes, the following mapping
algorithm is used

qk = qij , k = (i−1)Ny + j (3.1)

to obtain the deflections as a vector where i, j = 1, . . . ,Nx or Ny. The deflection at
any point (x, y) can be expressed as double expansion of Chebychev polynomials

qk =
Nx∑
i=1

Ny∑
j=1

aqkTi−1(x)Tj−1(y) (3.2)

where T ’s are the Chebychev polynomials (of the first kind), a’s are the coefficients
of expansion, Nx and Ny are the number of polynomials used for expansion along x
and y directions, respectively. The (sampled) deflection vectors can be written as

uo = [III OOOOOOOOOOOO] = IuoIuoIuoq

vo = [OOO IIIOOOOOOOOO] = IvoIvoIvoq

wo = [OOOOOO IIIOOOOOO] = IwoIwoIwoq (3.3)

φx = [OOOOOOOOO IIIOOO] = IφxIφxIφxq

φy = [OOOOOOOOOOOO III] = IφyIφyIφyq
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where III and OOO are (NxNy×NxNy) zero and identity matrices, respectively. It is
possible to relate the sampled function’s values to the coefficients of expansion as
q = ΓB a or a = ΓF q, where ΓB and ΓF are (NxNy×NxNy) extended backward
and forward transformation matrices (ΓBΓF = I). These extended transformation
matrices can be derived using the forward and backward transformation matrices
obtained using the one-dimensional expansion for each direction as ΓqtBij = Tj−1(qti)
where i, j = 1, . . . ,Nqt and t = 1,2 (i.e. q1 = x and q2 = y) [108, 107]. Thus, using
the mapping algorithm defined in Eq. (3.1), extended transformation matrices can
be calculated as

ΓBk1k2
= ΓxBi1i2 ΓyBj1j2 (3.4)

k1 = (i1−1)Ny + j1 , k2 = (i2−1)Ny + j2

i1, i2 = 1, . . . ,Nx , j1, j2 = 1, . . . ,Ny

To perform the derivative operations in Eqs. (2.6)-(2.8), differentiation matrices (Qx

and Qy) need to be determined. Using the recursive polynomial form of the Cheby-
chev polynomials, it is possible to obtain a relationship between the coefficients of
expansion of a function and its derivative as b = Dqta, where b’s are the coefficients
of expansion of the function’s derivative and Dqt is (Nqt ×Nqt) derivative matrix.
Using Eq. (3.4), the derivative matrices calculated for x and y variable can be ex-
tended for a two-dimensional function to obtain (NxNy×NxNy) extended derivative
matrices, Dqt . Note that these derivative matrices are defined between the coeffi-
cients of the expansion; however, it is required to apply the derivative operation to
the function values. Thus, using the extended forward and backward transforma-
tion matrices, the derivative of the deflection vector with respect to x and y can be
calculated as follows

∂q

∂qt
= ΓBb = ΓBDqta = ΓBDqtΓF q = Qqtq (3.5)

where, Qqt is the differentiation matrix.

To obtain the system matrices in Eqs. (2.6)-(2.8), we need to perform integral oper-
ations. Similar to the derivation operation described above, first the inner product
matrix, Vqt , for each individual direction needs to be determined [108]. Then, using
the mapping algorithm as in Eq. (3.4), the extended inner product matrix, VVV, can
be derived [147].

After finding the differentiation and inner product matrices, the system matrices
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(mass, elastic stiffness and geometric stiffness matrices), can be obtained as follows:

K =h
[
C11IIITuo

QT
x VVVQxIIIuo +C12IIITuo

QT
x VVVQy IIIvo +C21IIITvo

QT
y VVVQxIIIuo +C22IIITvo

QT
y VVVQy IIIvo

+C33IIITuo
QT
y VVVQy IIIuo +C33IIITuo

QT
y VVVQxIIIvo +C33IIITvo

QT
x VVVQy IIIuo +C33IIITvo

QT
x VVVQxIIIvo

+C44IIITwo
QT
x VVVQxIIIwo +C44IIITwo

QT
x VVVIIIφx +C44IIITφx

VVVQxIIIwo +C44IIITφx
VVVIIIφx

+C55IIITwo
QT
y VVVQy IIIwo +C55IIITwo

QT
y VVVIIIφy +C55IIITφy

VVVQy IIIwo +C55IIITφy
VVVIIIφy

]
+

h3

12

[
C11IIITφx

QT
x VVVQxIIIφx +C12IIITφx

QT
x VVVQy IIIφy +C21IIITφy

QT
y VVVQxIIIφx +C22IIITφy

QT
y VVVQy IIIφy

+C33IIITφx
QT
y VVVQy IIIφx +C33IIITφx

QT
y VVVQxIIIφy +C33IIITφy

QT
x VVVQy IIIφx +C33IIITφy

QT
x VVVQxIIIφy

]
(3.6)

M = ρh
(
IIITuo

VVVIIIuo +IIITvo
VVVIIIvo +IIITwo

VVVIIIwo

)
+ρ

h3

12
(
IIITφx

VVVIIIφx +IIITφy
VVVIIIφy

)
(3.7)

KG = h
(
IIITwo

QT
xNxxVVVQxIIIwo +IIITwo

QT
yNyyVVVQy IIIwo

)
(3.8)

The system matrices that are evaluated by applying the area integrals as shown
in Eqs. (3.6)-(3.8), corresponds to a plate whose mid-surface is its neutral surface
(note that the integral operation along the thickness is evaluated analytically and
the results are placed as constants in area integral calculations). However, to ac-
curately capture the varying material properties along the thickness direction, a
multilayer plate approach is used. In this approach, the plate is divided into n

number of layers having the same thickness (see Fig. 2.1). It is assumed that each
layer is made from an isotropic porous matrix and nanofillers; however the porosity
amount and the weight fraction of the nanofillers varies from layer to layer. In other
words, each layer has different material properties based on the gradation amount.
Furthermore, the integral operation along the z direction has different limits for
each layer based on the distance of the individual layer to the neutral surface of the
composite plate. Therefore, the overall system matrices can be obtained using the
superposition method. For instance, the overall stiffness matrix can be calculated
as

K =
n∑
l=1

∫
A

∫ zl+1

zl
qTBTCBδqdzdA (3.9)

3.2 Three dimensional spectral-Chebyshev solution
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The three dimensional deformations in the FGM structure can be expressed as a
summation of triple expansion of Chebychev polynomials as

q(ξ,η,ζ) =
∞∑
l=1

∞∑
m=1

∞∑
n=1

aiTl−1(ξ)Tm−1(η)Tn−1(ζ) (3.10)

where T ’s represent the orthogonal Chebychev polynomials, and a’s are the coeffi-
cients of the polynomial expansion (that decay exponentially with increasing i value
[148]).

For numerical calculations, the continuous deflection function needs to be discretized
(which leads to finite summation in the expansion process). Thus, using the Gauss-
Lobatto sampling [149] algorithm, the continuous deflection function is represented
by a third rank tensor as follows

qlmn = q(ξ(l),η(m), ζ(n)) (3.11)

Here, l= 1, . . . ,Nξ, m= 1, . . . ,Nη, and n= 1, . . . ,Nζ are the indices of the tensor; Nξ,
Nη, and Nζ are the polynomial numbers used in ξ, η, and ζ directions, respectively.
To transform this third rank tensor to a vector, a mapping algorithm as follows

qi = flmn , i= (l−1)NηNζ + (m−1)Nζ +n. (3.12)

is used. Then, we can write a relationship between the vector of the sampled de-
flection function (q) and the coefficients of expansion (a) through either extended
forward (ΓF) or backward (ΓB) transformation matrices

q = ΓBa , or a = ΓFq , (3.13)

whose sizes are NξNηNζ ×NξNηNζ , and are obtained using the forward/backward
matrices defined for each direction as ΓqtBij = Tj−1(qki). Thus, using the mapping
algorithm defined by Eq. (3.12), the extended forward/backward matrices can be
obtained using the individual forward/backward matrices having a size of Nqi ×
Nqi [150].

After simplifying the domain, calculating the functions for the varying material
properties and discretizing the domain using Chebychev polynomials, the IBVP
given in Eq. (2.28) can be rewritten for the free vibrations of a lamina as

∫
V

(
Υq̈T q̂ +qT BTCBq̂

)
|JJJ|dξdηdζ = 0. (3.14)

Here, Υ and C are the matrices that includes the varying density, and Young’s
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Modulus and Poisson’s ratio, respectively, that are evaluated at the sampling points.
To solve this equation, the derivative operations inside the differential operator
matrix, B, and the volume integral operations should be evaluated considering the
varying material properties.

To calculate the spatial derivatives of the 3D deflection vector, differential matrices
(Qqi) are needed. To address this issue, first, the spatial derivative operations, Dqi ,
for each direction are defined. Since the derivative of the deflection function can
also be expressed as a summation Chebychev polynomials with different expansion
coefficients, we can formulate a relationship between the coefficients of the derivative
of the original function (b) and the original function (a) as b = Dqia . Secondly, using
the same mapping algorithm as in the backward/forward matrices, the extended
derivative matrices (Dqi) with respect to each direction, qi, can be obtained. Finally,
the required (NξNηNζ ×NξNηNζ) dimensional differential matrices (Qqi) can be
derived as follows

∂f

∂qi
= ΓBb = ΓBDqia =

(
ΓBDqiΓF

)
f = Qqi f , (3.15)

To calculate the volume integrals, inner product matrix approach is used [108]. The
derivation of the inner product matrix for simple 1D and 3D problems are given
in author’s previous publications [150, 151, 107, 152] in detail. However, here, the
IBVP given in Eq. (3.14) has two varying functions (i.e. weighting functions).
Therefore, the inner product matrix calculation for the multiplication of arbitrary
functions f(x,y,z) and g(x,y,z) with weighting functions A(x,y,z) and B(x,y,z)
can be written as

∫
V
f(x,y,z)g(x,y,z)A(x,y,z)B(x,y,z)dV = fTVVVA,B g (3.16)

where VVVA,B is the weighted inner product matrix. Each function in the integral
operation has a degree ofNxNyNz; thus the multiplication of four functions will have
an order of 4Nx 4Ny 4Nz. Therefore, to obtain the weighted inner product matrix,
each function evaluated at NxNyNz sampling points needs to be extrapolated to
4Nx 4Ny 4Nz sampling points using

f4Nx 4Ny 4Nz = Sx4Sy4Sz4 fNxNyNz (3.17)

where Sqin is the extrapolation matrix that can be obtained following the derivation
in [108, 150]. Inserting Eq. (3.17) into Eq. (3.16), we can rewrite the weighted inner
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product tensor as

VVVabcdefA,B =
4Nx 4Ny 4Nz∑

i,j,k

v4Nx
i v4Ny

j v4Nz
k

(Sx4
iaSy4

jbS
z4
kc

)
(
Sx4
id Sy4

jeS
z4
kf

)(
Sx4
il Sy4

jmSz4
kn

)(
Sx4
io Sy4

jpS
z4
kr

)
AlmnBopr

 , (3.18)

where v’s are the definite integral matrix derived in [108]. Note that VVVabcdefA,B is a
6th order tensor. To efficiently calculate this 6th order tensor, tensor multiplications
are used [153, 154]. To transform VVVabcdefA,B into a matrix form, the same mapping
algorithm, as given in Eq. (3.12), is applied.

Consequently, the system matrices of a lamina for the unconstrained case can be
derived using the above formulations as;

M = IuIuIuTV(Υ,JJJ)IuIuIu+IvIvIvTV(Υ,JJJ)IvIvIv +IwIwIwTV(Υ,JJJ)IwIwIw (3.19)

K =
(
QxIuIuIu

)T
V(λ,JJJ)

(
QxIuIuIu

)
+ 2

(
QxIuIuIu

)T
V(µ,JJJ)

(
QxIuIuIu

)
+
(
QxIuIuIu

)T
V(λ,JJJ)

(
QyIvIvIv

)
+
(
QxIuIuIu

)T
V(λ,JJJ)

(
QzIwIwIw

)
+
(
QyIvIvIv

)T
V(λ,JJJ)

(
QxIuIuIu

)
+
(
QyIvIvIv

)T
V(λ,JJJ)

(
QyIvIvIv

)
+ 2

(
QyIvIvIv

)T
V(µ,JJJ)

(
QyIvIvIv

)
+
(
QyIvIvIv

)T
V(λ,JJJ)

(
QzIwIwIw

)
+
(
QzIwIwIw

)T
V(λ,JJJ)

(
QxIuIuIu

)
+
(
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Here, λ and µ are the varying Lamé parameters, and IqiIqiIqi is the operator matrix (hav-
ing a size of NξNηNζ × 3NξNηNζ) to extract the necessary deflection components
(u, v, and w) in each direction and can be defined as

u=
[
III OOO OOO

]
q = IuIuIuq , (3.21)

v =
[
OOO III OOO

]
q = IvIvIvq , (3.22)

w =
[
OOO OOO III

]
q = IwIwIwq , (3.23)

where III and OOO are (NξNηNζ ×NξNηNζ dimensional) identity and zero matrices.
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To increase the numerical efficiency of the presented technique, a non-
dimensionalization approach can be used. For non-dimensionalizing, the spatial
variables are scaled by a reference length, Lr; thus the spatial parameters defining
the geometry of doubly-curved geometry leads to x∗ = x/Lr, y∗ = y/Lr, and
z∗ = z/Lr (superscript ∗ denotes the parameter is non-dimensionalized). The
differential operator matrix needs to be non-dimensionalized as B∗ = BLr, since
the partial derivative operation includes spatial variables. Lastly, using the Young’s
Modulus of the one of the constitutes of the FGM material, the constitutive matrix
can be non-dimensionalized, C∗ = C/Ei.

3.2.1 Boundary condition and coupling of the laminates

To couple the system matrices (i.e. the dynamics of) each lamina, and also to impose
the boundary conditions to the system, projection matrices approach can be used.
However, note here that since the IBVP approach is used, natural boundary condi-
tions are already incorporated to the system matrices; only the essential boundary
conditions need to be imposed. The boundary conditions can be defined in a matrix
form as βqG = 0 where qG is the generalized coordinates of the laminated composite
structure.

To couple individual lamina, compatibility equations need to be formed. These
compatibility equations can basically be obtained by equating the degrees of freedom
(u, v, and w) of each laminate at the intersection boundary. Similar to the boundary
conditions, these equations can be included in the β matrix.

Then, following the projection matrices approach, the singular value decomposition
of the β matrix will lead to β = UΣVT where U and V are unitary matrices and
Σ is diagonal matrix with singular values of β. Thus, using the left singular values,
we can obtain

qG = Pqd (3.24)

where P is the matrix that span the null space of β and can be expressed as

P =
[
VRβ ;VRβ+1; . . . ;VN

]
. (3.25)

where Rβ is the rank of β, and N is the size of β. Inserting Eq. (3.24) into the
IBVP equation, and premultiply each term by PT, the global system matrices can
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be found as

MMM = PT


Ml1 . . . 0
... . . . ...
0 . . . Mln

P (3.26)

KKK = PT


Kl1 . . . 0
... . . . ...
0 . . . Kln

P , (3.27)

where Mli and Kli are the mass and stiffness matrices of each individual (ith) lamina
calculated using Eqs. (3.19) and (3.20), respectively.
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4. RESULTS

4.1 Plate reinforced with GPLs

In this study, we present a two-dimensional spectral method that uses Chebyshev
polynomials (that have exponential convergence characteristics [30]) as the basis
functions. The integral boundary value problem is derived using FSDT assump-
tions together with Hamilton’s principle. To capture the varying material properties
of FGPM-GPL reinforced composite plates, a multilayer modeling approach is fol-
lowed. The problem domain is descritized using Gauss–Lobatto points to minimize
the effect of Runge’s phenomenon and further increase the computational efficiency.
The problem domain is scaled to interval since in this interval a stable representation
can be obtained with Chebyshev polynomials [30], [31]. The accuracy and perfor-
mance of the presented solution technique is demonstrated for different porosity and
nanofiller contents by comparing the natural frequencies and the critical buckling
loads to those found in literature or to those calculated using a commercial finite
element software.

The main contribution of this work is an accurate and fast converging meshless
solution approach based on a novel use of Chebyshev polynomials to predict the
vibration and elastic buckling behavior for functionally graded porous plates rein-
forced by graphene platelets. The recursive relations in forming the differentiation
and inner-product (integration) matrices and the basis recombination (projection
matrices) approach brings significant advantages including numerical efficiency and
stability to the solution approach. The derivative and inner-product operations are
calculated exactly, and the basis recombination approach can directly incorporate
different boundary conditions without the necessity to use an admissible or an aux-
iliary function for each different boundary condition.

4.1.1 Model validation
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To demonstrate the capability of the presented solution approach, two main case
studies are investigated: (i) functionally graded porous material (FGPM) plates,
and (ii) FGPM plates reinforced with GPLs (FGPM-GPL). In each case study, nat-
ural frequencies and critical buckling loads under fully-clamped (CCCC) or fully
simply supported (SSSS) cases are calculated and the results are validated by com-
paring to the ones found in literature and/or using FE approach.

4.1.1.1 Convergence study

To determine the required number of layers (to accurately capture the grading ma-
terial properties) and polynomial numbers along x and y directions, a convergence
study is conducted. In this study, polynomial numbers and number of layers in
the presented modeling approach is incrementally increased and the results for each
individual case is compared to a reference case, that is obtained using a large poly-
nomial number set (Nx =Ny = 17) and number of layers (n= 20). The convergence
assessment is performed via a logarithmic approach given as follows:

LCVNx,Ny = log
λNx,Ny −λr

λr

 (4.1)

where LCV represent the logarithmic convergence number, λiNx,Ny and λir are the
results for each individual case calculated using the selected polynomial numbers,
and for the reference case, respectively. Note that the convergence analysis can
be performed either for a specific parameter or for a set of parameters through
averaging. The logarithmic approach enables to assess the convergence based on
percent errors. For instance, for an error threshold of 0.1 %, the polynomial and
layer numbers can be selected such that LCV ≤−3 is satisfied.

This convergence analysis leads to a four dimensional data. However, two dimen-
sional contour plots are used to clearly visualize the convergence behavior. For
instance, Fig. 4.1 shows the convergence behavior of the first five natural frequen-
cies of an FGPM plate having the geometric properties of a = b, h/a = 0.01, and
porosity coefficient of eo = 0.1 under fully simply supported (SSSS) boundary condi-
tion for several selected number of layers. Note that, interpolation is used to present
continuous contour plots.

As shown in Fig. 4.1, the optimum number of polynomial numbers correspond to
Nx = Ny since the investigated geometry is a square plate and the boundary con-
dition is symmetric. Therefore, depending on the required accuracy, suitable poly-
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Figure 4.1 Convergence plots for a square FGPM plate with h/a= 0.01 under
SSSS boundary condition for (a) n= 3, (b) n= 8, (c) n= 12, and (d) n= 16.

nomial numbers and total layer number can be found. It is important to highlight
that depending on the geometry, material gradation amount, and the boundary con-
dition, the required polynomial numbers may change to satisfy the same accuracy.
The effect of these parameters on the convergence behavior has been investigated in
detail in authors’ previous publications [107, 109]. Therefore, following the presented
convergence analysis, the polynomial numbers and the number of layers are selected
to be Nx = Ny = 11 and n = 15, respectively, to achieve a minimum logarithmic
convergence value of -4 (corresponds to an accuracy of 0.01 %).

4.1.1.2 Vibration and buckling analysis of FGPM plate

In this case study, first, the vibration behavior of an FGPM plate, having the geo-
metric properties of a/b= 1, h/b= 0.01 or 0.1, is analyzed. The material properties
of the nonporous material are given as E∗ = 200 GPa, ν = 0.3, and ρ∗ = 7850 kg/m3.
Using the presented solution approach, first five natural frequencies corresponding
to symmetric and uniform porosity distributions are calculated for fully-clamped
(CCCC) and fully simply supported (SSSS) boundary conditions. The results are
compared (i) to those given in Xue et al.’s study [155] where an isogeometric anal-
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ysis based on FSDT and non-uniform rational B-spline (NURBS) basis functions is
used, and (ii) to those obtained using a commercial FE software (COMSOL v5.5).
The FE modeling in COMSOL is performed using the shell model with quadratic
shape functions, based on a layered material approach and FSDT theory. A similar
convergence analysis is also performed for FE analyses, and the required number of
elements along x and y-directions of the plate are determined to be 20.

Table 4.1 The comparison of non-dimensional first five natural frequencies of an
FGPM plate with symmetric porosity distribution, having the geometric properties

of a= b, h/b= 0.01 or 0.1.

BC h/b Mode e0=0.1 e0=0.3 e0=0.5
ST [155] FE ST [155] FE ST [155] FE

CCCC

0.01

1 10.853 10.857 10.853 10.837 10.848 10.837 10.893 10.912 10.893
2 22.115 22.126 22.115 22.082 22.106 22.081 22.192 22.234 22.192
3 22.115 22.126 22.115 22.082 22.106 22.081 22.192 22.234 22.192
4 32.579 32.595 32.578 32.528 32.564 32.526 32.688 32.749 32.687
5 39.595 39.649 39.594 39.531 39.608 39.531 39.725 39.829 39.724

0.1

1 9.798 9.800 9.798 9.726 9.734 9.726 9.699 9.713 9.699
2 18.664 18.668 18.664 18.468 18.482 18.468 18.338 18.361 18.338
3 18.664 18.668 18.664 18.468 18.482 18.468 18.338 18.361 18.338
4 26.138 26.143 26.137 25.815 25.832 25.815 25.570 25.601 25.570
5 30.774 30.781 30.774 30.351 30.371 30.351 30.008 30.042 30.007

SSSS

0.01

1 5.959 5.960 5.959 5.950 5.956 5.950 5.981 5.991 5.981
2 14.888 14.893 14.888 14.866 14.881 14.866 14.943 14.969 14.943
3 14.888 14.893 14.888 14.866 14.881 14.866 14.943 14.969 14.943
4 23.807 23.816 23.807 23.772 23.796 23.772 23.893 23.935 23.893
5 29.748 29.772 29.748 29.704 29.746 29.704 29.853 29.918 29.854

0.1

1 5.752 5.754 5.752 5.732 5.737 5.732 5.746 5.755 5.746
2 13.709 13.712 13.709 13.626 13.638 13.626 13.612 13.632 13.612
3 13.709 13.712 13.709 13.626 13.638 13.626 13.612 13.632 13.612
4 19.168 19.169 19.168 18.511 18.513 18.511 17.831 17.835 17.831
5 19.168 19.169 19.168 18.511 18.513 18.511 17.831 17.835 17.831

Tables 4.1 and 4.2 list the first five non-dimensional natural frequencies for porosity
coefficients of e0 = {0.1, 0.3, 0.5}. The results are non-dimensionalized following the
relation, ω̄ = ω (b2/h)

√
ρ∗/E∗. As shown, based on the investigated case studies,

the results are in excellent agreement with literature and FE results. To show
the spectral-Chebychev efficiency in solving the problem, the computational time is
compared to the FE method duration. The computational cost are obtained for three
boundary conditions of a plate with geometric properties of a/b = 1 and h/b = 0.1,
where the the porosity distribution is set to be symmetric along the thickness. It
should be noticed that the study is accomplished with the same central processing
unit(CPU). The computational costs are shown in Table. 4.3. The results indicate
that the spectral-Chebuchev approach can obtain the accurate solution more efficient
in comparison to the most-used method, FE approach.

Secondly, the elastic buckling of an FGPM plate with uniform porosity distribution
having the geometry of a/b= 1.5, h/b= {0.01, 0.05, 0.1, 0.2}, is analyzed under SSSS
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Table 4.2 The comparison of non-dimensional first five natural frequencies of an
FGPM plate with uniform porosity distribution, having the geometric properties of

a= b, h/b= 0.01 or 0.1.

BC h/b Mode e0=0.1 e0=0.3 e0=0.5
ST [155] FE ST [155] FE ST [155] FE

CCCC

0.01

1 10.698 10.698 10.698 10.296 10.296 10.296 9.810 9.811 9.810
2 21.798 21.803 21.798 20.979 20.984 20.979 19.991 19.995 19.990
3 21.798 21.803 21.798 20.979 20.984 20.979 19.991 19.995 19.990
4 32.113 32.119 32.112 30.907 30.912 30.905 29.450 29.456 29.449
5 39.029 39.072 39.028 37.563 37.604 37.562 35.792 35.832 35.792

0.1

1 9.680 9.680 9.680 9.317 9.317 9.317 8.877 8.877 8.877
2 18.465 18.465 18.465 17.771 17.771 17.771 16.933 16.933 16.933
3 18.465 18.465 18.465 17.771 17.771 17.771 16.933 16.933 16.933
4 25.879 25.879 25.879 24.907 24.907 24.906 23.733 23.733 23.732
5 30.488 30.488 30.488 29.342 29.343 29.342 27.959 27.959 27.959

SSSS

0.01

1 5.873 5.873 5.873 5.652 5.652 5.652 5.386 5.386 5.386
2 14.674 14.675 14.674 14.123 14.124 14.123 13.457 13.458 13.457
3 14.674 14.675 14.674 14.123 14.124 14.123 13.457 13.458 13.457
4 23.466 23.467 23.466 22.584 22.585 22.584 21.520 21.521 21.520
5 29.322 29.337 29.322 28.220 28.235 28.220 26.890 26.904 26.890

0.1

1 5.674 5.674 5.674 5.461 5.461 5.461 5.204 5.204 5.204
2 13.537 13.537 13.537 13.028 13.028 13.029 12.414 12.414 12.415
3 13.537 13.537 13.537 13.028 13.028 13.029 12.414 12.414 12.415
4 19.162 19.163 19.162 18.443 18.442 18.443 17.573 17.573 17.573
5 19.162 19.163 19.162 18.443 18.442 18.443 17.573 17.573 17.573

Table 4.3 The computational cost comparison of cases studied.

Case (i) Case (ii) Case (iii)
(FFFF) (SSSS) (CCCC)

ST FEM ST FEM ST FEM
DOFs 605 5766 477 8214 405 10086

Duration (s) 0.34 10 0.29 11 0.30 10

boundary condition. The material properties of the nonporous material is given
as E∗ = 70 GPa, ν = 0.3, and ρ∗ = 2707 kg/m3. The calculated critical buckling
loads are compared to those found using FE analysis and to those listed in Thang
et al.’s study in which the results are obtained following FSDT assumptions and
Navier procedure [41]. Table 4.4 lists the non-dimensional uniaxial and biaxial
critical buckling loads (N cr =Ncrb

2/E∗h3). As expected, the plate gets stiffer with
increasing thickness; thereby leading to higher critical buckling loads. Due to the
geometry of the plate and the selected boundary condition, the critical buckling
load is higher if the plate is uniaxially compressed along x direction. In all cases,
excellent agreement is observed with the results found in literature and calculated
using the FE approach.

Based on the performed convergence analyses, it is demonstrated that the presented
solution approach enables a rapid convergence. To quantitatively assess the compu-
tational performance, we measured the simulation durations to obtain the results in
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Table 4.4 The comparison of non-dimensional critical uniaxial and biaxial buckling
loads of an FGPM plate having the geometric and material properties of a/b= 1.5

and eo = 0.4 under SSSS boundary condition.

Distribution h/b
(uniaxial) (uniaxial) (biaxial)

Nx = −1, Ny = 0 Nx = 0, Ny = −1 Nx = −1, Ny = −1
ST FE ST Ref. [41] FE ST Ref. [41] FE

uniform

0.01 2.875 2.876 1.383 — 1.383 0.957 — 0.957
0.05 2.822 2.823 1.369 — 1.369 0.948 — 0.948
0.1 2.669 2.669 1.329 1.332 1.329 0.920 0.922 0.920
0.2 2.191 2.191 1.190 1.198 1.190 0.824 0.829 0.824

symmetric

0.01 3.342 3.342 1.607 — 1.607 1.113 — 1.113
0.05 3.272 3.272 1.590 — 1.590 1.100 — 1.101
0.1 3.070 3.070 1.536 1.544 1.536 1.064 1.069 1.064
0.2 2.462 2.462 1.355 1.370 1.355 0.938 0.948 0.938

Tables 4.1 and 4.2. Note that the simulations are performed on the same computer,
and computation duration is measured as the total simulation time in terms of cen-
tral processing time (CPU) to find the first hundred eigenvalues and eigenvectors.
Since the presented approach is a meshless method, the size of the system matrices
is significantly smaller (about 20 folds in this case study) than the size of the sys-
tem matrices used in a finite element approach to achieve the same level of accuracy.
Consequently, the simulations durations are decreased at least 30 times with respect
to FE simulations. Therefore, it can be concluded that the presented ST solution
technique enables to capture the vibration and buckling behavior of porous plates as
accurate as finite-element approach, yet at a fraction of the computational duration.

4.1.1.3 Vibration and buckling analysis of reinforced FGPM plate

To remedy the significant reduction in the effective stiffness of the material due
to the porosity, nanofillers are used as reinforcement materials. In literature, re-
inforcing with CNTs is a common approach that can be applied to introduce an
FG property along the thickness direction. However, due to the increased specific
surface area and interaction between the matrix material, reinforcing with GPLs
offers better mechanical enhancement compared to reinforcing with CNTs. There-
fore, to demonstrate and compare the mechanical enhancement due to the addition
of different nanofillers, natural frequencies of an FGPM composite plate and the
percent improvements in the natural frequency values are calculated. The geometry
of the plate is selected to be a/b = 1 and h/b = 0.1; the porosity distribution is set
to be symmetric with a porosity coefficient of eo = 0.3. The material and geometric
properties of the matrix and nanofiller materials are tabulated in Table 4.5. In both
cases of nanofillers, uniform distribution is used and the effective material properties
can be found using the Halpin-Tsai formulations defined in Sec. 2.1.3. However, note

45



Table 4.5 Material and geometric properties of matrix material, GPLs, and
single-walled CNTs.

Property Matrix GPLs CNTs
Young’s Mod. [Pa] 3×109 1.01×1012 1.12×1012

Density [kg/m3] 1200 1062.5 2290
Poisson ratio 0.34 0.186 0.245
Width [m] — 1.5×10−6 —
Thickness [m] — 1.5×10−9 0.34×10−9

Length [m] — 2.5×10−6 10×10−6

Radius [m] — — 1×10−9

that the nanofiller geometry factor, ζGPL
W is equal to 2 for CNTs [48, 69].

Figure 4.2 presents the variation of first and second natural frequencies as a func-
tion of wt.%. To validate the results in the case of nanofiller reinforcement, FE
simulations are also performed. As shown, presented model predicts the natural
frequencies as accurate as the FE approach; the maximum difference is calculated
to be less than 0.003%. Another important observation that can be inferred from
Fig. 4.2 is that as the volume of the reinforcement material is increased, the stiffness
of the structure is significantly improved. Lastly, reinforcing using GPLs presents
significantly better mechanical enhancement; for instance, the improvements in the
fundamental frequency values are calculated as 37 % and 73 % due to the inclusion
of 0.5 wt.% CNT and GPL, respectively. As stated above, the main reason is due
to the GPL’s improved interaction with the matrix material.

Next, to investigate the effect of thickness on the critical uniaxial buckling load of an
FG square composite plate reinforced with GPL, a case study is performed for the
porosity and GPL distribution patterns shown in Figs. 2.2 and 2.3. The porosity
coefficient and the weight fraction (wt.%) of GPL are set to eo = 0.5 and Λ = 1
wt.%, respectively. The matrix material is selected to be copper with the material
properties defined as Em = 130 GPa, ρm = 8960 kg/m3, νm = 0.34. The results are
listed in Tables 4.6 and 4.7. To validate the calculated critical buckling loads, the
results found in literature are used. Note that in this study, the results in the referred
literature are obtained using 12 layers and non-dimensionalized following the relation
N cr =Ncr(1−ν2

m)/E∗h; thus the same amount of layers and non-dimensionalization
approach are used for comparison. As seen, the results are in good agreement to
those found in Yang et al.’s study [69]; the maximum difference is below 1%. The
(uniaxial and biaxial) critical buckling loads increases as the composite plate gets
thicker and also if the plate is fully-clamped, due to the significant increase in the
stiffness of the structure. Furthermore, distributing the GPLs symmetrically instead
of uniformly will increase the stiffness of the structure (that leads to an increase in
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Figure 4.2 The comparison of non-dimensional first and second natural frequencies
of a fully-clamped FG porous plate reinforced with uniformly distributed CNTs

and GPLs. The geometry of the plate is defined as a/b= 1 and h/b= 0.1.

critical buckling loads) if the wt.% of the nanofillers is kept constant. This is mainly
due to the fact that, in the case of symmetric distribution the GPL content at the
outer layers of the plate is higher than the uniform distribution case and the stiffness
of each layer is calculated based on the distance of each layer to the neutral surface
(see Eq. 3.9).

To investigate the effects of weight fraction of GPL inclusion, the porosity and GPL
distributions on the fundamental frequency and uniaxial critical buckling loads of
an FGPM composite plate, a parametric case study is performed and the results
are plotted in Fig. 4.3. Firstly, as expected, the fundamental frequency and critical
buckling load increase as we increase the weight fraction of GPLs; even a small
amount of GPL inclusion has a significant effect on the stiffness of the structure.
Secondly, the distribution of the nanofiller has also a dominant effect. Although the
same amount of nanofillers are used, distributing them closer to the outer layers of
the material will increase the stiffness of the composite panel more than distributing
them uniformly; thereby leading to higher natural frequency and critical buckling
force values.
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Table 4.6 The comparison of non-dimensional uniaxial (Nx =−1, Ny = 0) buckling
loads of an FGPM square plate reinforced with GPLs having a porosity coefficient

of eo = 0.5 and weight fraction of Λ = 1 wt.%.

BC b/h
Symmetric Porosity Distribution Uniform Porosity Distribution

GPL - Patern A GPL - Patern B GPL - Patern A GPL - Patern B
ST [69] ST [69] ST [69] ST [69]

CCCC

20 0.02912 0.02899 0.02396 0.02384 0.02464 0.02452 0.02002 0.01990
30 0.01349 0.01343 0.01103 0.01098 0.01136 0.01130 0.00917 0.00911
40 0.00771 0.00767 0.00629 0.00625 0.00647 0.00644 0.00521 0.00518
50 0.00497 0.00494 0.00405 0.00403 0.00417 0.00415 0.00335 0.00333

SSSS

20 0.01223 0.01217 0.00998 0.00992 0.01028 0.01022 0.00827 0.00822
30 0.00550 0.00547 0.00448 0.00445 0.00461 0.00459 0.00371 0.00368
40 0.00310 0.00309 0.00253 0.00251 0.00260 0.00259 0.00209 0.00208
50 0.00199 0.00198 0.00162 0.00161 0.00167 0.00166 0.00134 0.00133

SCSC

20 0.02235 - 0.00237 - 0.00245 - 0.00196 -
30 0.01035 - 0.00106 - 0.00110 - 0.00087 -
40 0.00591 - 0.00060 - 0.00062 - 0.00049 -
50 0.00381 - 0.00038 - 0.00040 - 0.00032 -

SFSF

20 0.00292 - 0.01835 - 0.01886 - 0.01530 -
30 0.00131 - 0.00844 - 0.00869 - 0.00700 -
40 0.00074 - 0.00481 - 0.00495 - 0.00398 -
50 0.00047 - 0.00310 - 0.00319 - 0.00256 -

weight fraction (wt. %) weight fraction (wt. %)
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Figure 4.3 The effects of weight fraction and porosity/GPL distributions on
non-dimensional fundamental frequency and uniaxial buckling load of a

fully-clamped FGPM plate reinforced with GPLs. The geometry of the plate is
defined as a/b= 1 and h/b= 0.1, and the porosity coefficient is set to eo = 0.5.

Solid and dashed lines corresponds to the results obtained under SSSS and CCCC
boundary conditions, respectively.
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Table 4.7 The comparison of non-dimensional biaxial (Nx =−1, Ny =−1) buckling
loads of an FGPM square plate reinforced with GPLs having a porosity coefficient

of eo = 0.5 and weight fraction of Λ = 1 wt.%.

BC b/h
Symmetric Porosity Distribution Uniform Porosity Distribution

GPL - Patern A GPL - Patern B GPL - Patern A GPL - Patern B
ST Ref. [69] ST Ref. yang2017buckling ST Ref. [69] ST Ref. [69]

CCCC

20 0.01557 0.01550 0.01278 0.01271 0.01315 0.01308 0.01066 0.01059
30 0.00715 0.00712 0.00584 0.00581 0.00602 0.00599 0.00485 0.00482
40 0.00407 0.00405 0.00332 0.00330 0.00342 0.00340 0.00275 0.00273
50 0.00262 0.00261 0.00214 0.00212 0.00220 0.00219 0.00177 0.00176

SSSS

20 0.00611 0.00608 0.00499 0.00496 0.00514 0.00511 0.00414 0.00411
30 0.00275 0.00273 0.00224 0.00223 0.00231 0.00229 0.00185 0.00184
40 0.00155 0.00154 0.00126 0.00126 0.00130 0.00129 0.00105 0.00104
50 0.00100 0.00099 0.00081 0.00081 0.00083 0.00083 0.00067 0.00067

SCSC

20 0.01142 - 0.00934 - 0.00961 - 0.00776 -
30 0.00522 - 0.00425 - 0.00437 - 0.00352 -
40 0.00296 - 0.00241 - 0.00248 - 0.00199 -
50 0.00190 - 0.00155 - 0.00159 - 0.00128 -

Finally to understand the effects of other parameters such as porosity coefficient and
aspect ratio (a/b) on the dynamic and buckling behavior of FGPM reinforced with
GPLs, several case studies are performed and the results are plotted in Figs. 4.4 and
4.5. As shown in Fig. 4.4(a), in the case of symmetric porosity distribution, porosity
coefficient does not have a significant effect of the vibration behavior of the composite
structure due to the fact that porosity decreases the stiffness and the weight of the
structure proportionally. On the other hand, the weight fraction of the nanofiller
affect the stiffness of the structure dominantly; thus the natural frequencies depends
highly on the weight fraction. However, in the case of buckling behavior, both the
porosity coefficient and the weight fraction values have a significant effect on the
critical buckling load.

In Fig. 4.5, the variation in natural frequency and uniaxial buckling load values as a
function of plate aspect ratio (a/b) is shown for three different thickness ratios (h/b).
As expected, as the length of the structure increases, its natural frequency decreases
as well. Since the non-dimensional natural frequency is plotted, the difference be-
tween the three different thickness ratios is extremely small; the only difference in
these cases are due to the variations arising from the porosity and GPL distributions.
On the other hand, the critical buckling load does not monotonically decrease as
the aspect ratio increases. The lowest critical buckling loads are observed for aspect
ratios where the number of half sine waves divides the buckling mode shape into
unit squares [156, 157]. In both cases, the effect of aspect ratio is highly significant
between a/b= 0.5 to a/b= 1; both the natural frequency and critical buckling load
values experiences a sudden decrease with a minor increase in aspect ratio.
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Figure 4.4 Contour plot showing the effects of weight fraction and porosity
coefficient on (a) non-dimensional fundamental frequency and (b) uniaxial
buckling load of a simply-supported FGPM plate reinforced with GPLs. The

geometry of the plate is selected to be a/b= 1 and h/b= 0.1. The porosity and
GPL distributions are selected to be symmetric.
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Figure 4.5 Effect of aspects ratio (a/b) on (a) non-dimensional fundamental
frequency and (b) uniaxial (Nx =−1, Ny = 0) buckling load of a simply-supported

FGPM plate reinforced with GPLs. The porosity and GPL distributions are
selected to be symmetric.

4.2 Layered FGM structure

The aim of the present work is to study the 3D (coupled) dynamics of laminated
FGM composite structures having arbitrary shapes using the 3D spectral Chebychev
(3D-ST) technique. In this technique, the integral boundary value problem (IBVP)
governing the dynamics of the problem is derived using 3D elasticity equations. To
simplify the domain of the problem, two consecutive transformations are applied:
(i) first, a coordinate mapping to map the curved geometry to a straight one [50],
[56], and (ii) second, a one-to-one mapping technique based on polynomial mapping
to map the arbitrary curved geometry onto a simple square geometry [57]. Then,
the simplified form of the IBVP is discretized using Gauss–Lobatto points and triple
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expansion of Chebychev polynomials [58]. To facilitate the spatially varying mate-
rial properties along one or more spatial directions, the Mori–Tanaka or theory of
mixtures methods are utilized. Finally, the boundary conditions are incorporated
and the laminates are coupled using projection matrix method. This technique
offers several important advantages compared to the available methods in the lit-
erature. First of all, the projection matrices approach eliminates the need to use
different basis/trial functions for each different boundary condition. Secondly, the
presented approach can be applied to arbitrarily shaped composite structures since
the free-from geometry is transferred to a simplified geometry. Thirdly, since the
integral form of the boundary value problem is used, the necessity to impose natu-
ral boundary conditions is eliminated; only the essential boundary conditions need
to be imposed. Lastly, the IBVP is discretized using Chebychev polynomials that
exhibits exponential convergence behavior [59], [60]; and the derivative and integral
operations are evaluated exactly and efficiently using Chebychev matrix operations
and Galerkin’s method [61]. Note that compared to (spectral-) collocation meth-
ods (such as Chebyshev spectral approach [62] or Carrera Unified Formulation [63],
[64]) where the equations are satisfied only at the sampling points, the presented
solution technique ensures that the integrals of the equations vanish with respect to
all polynomials of a certain degree; thereby increases the accuracy/precision of the
solution approach.

4.2.1 Model validation

The validation and performance of the presented spectral-Chebychev solution ap-
proach is performed through three case studies. In the first case study, the (non-
dimensional) natural frequencies and the corresponding mode shapes of a FGM dou-
bly curved lamina under various boundary conditions is investigated. Second case
study includes the analyses of doubly-curved laminated FGM structures. Lastly,
in the third case study, FGM structures having arbitrary geometries are studied.
In each case, the results are compared either to those obtained through a com-
mercial FE software or to those found in literature. For FE analysis, COMSOL
Multiphysicsr software is used. The composite structures are meshed with tetra-
hedral elements (with linear shape functions) and the natural frequency and mode
shapes are determined using direct eigenfrequency solver MUMPS (which is based
on LU decomposition).

For case studies, the constituent materials of the FGM doubly-curved structure
are selected to be aluminum as the metallic structure (Em = 70 GPa, νm = 0.3, and
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ρm = 2702 kg/m3) and zirconia as the ceramic structure (Ec = 200 GPa, νc = 0.3, and
ρc = 5700 kg/m3). Note that, if necessary, the IBVP is non-dimensionalized based on
the material properties of the metallic structure (i.e., E∗m = Em/Em, E∗c = Ec/Em,
ρ∗m = ρm/ρm, and ρ∗c = ρc/ρm).

4.2.1.1 Doubly-curved FGM rectangular lamina

In this case study, a doubly curved lamina made of FGM, as depicted in Fig. 4.6,
is investigated using the presented solution method. Here, R1 and R2 represent the
radii corresponding to the curvatures around x and y axes, respectively; Lx and Ly
are the lengths of the rectangular lamina along x′′ and y′′ axes, respectively; and
h represents the thickness of the lamina. Note that, depending on the R1 and R2

values, it is possible to analyze the dynamics of straight, cylindrical, spherical, and
hyperbolic laminates.

R1
R2

z

x y
h

Ly
Lx

Figure 4.6 Schematic showing the geometries of a rectangular doubly-curved
lamina.

Prior to the validation of the presented solution technique, a convergence analysis
is performed to demonstrate the stability and fast convergence characteristics of the
presented approach. In this analysis, the geometric parameters of the doubly curved
FGM lamina is selected as Lx/Ly = 1 (i.e. when mapped to a straight lamina, it
corresponds to a parallelepiped), h/Lx = 0.1, and β1 = β2 = 0.25 (note that β is
defined as the fraction of full curvature in Sec. 2.2.2). The material distribution is
assumed to be along the thickness direction (z direction) and gradation parameter
is selected to be p= 0.3. For the investigated geometry, the number of polynomials
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along each direction x, y, z (or ξ, η, and ζ) are increased incrementally, and the
results are compared to those obtained for a reference case (that is obtained using a
large triplet polynomial number set). To qualitatively assess the level of convergence
for each triplet number of polynomials, a logarithmic convergence (LC) value defined
as follows

CiNξ,Nη,Nζ = log
( |λiNξ,Nη,Nζ −λir|

λir

)
, (4.2)

is used. Here, the λ’s are the natural frequencies and C is the LC value. The
superscripts represents the values corresponding to the ith natural frequency, and
subscripts show the chosen triplet polynomial numbers or the result of the selected
reference case. Therefore, based on a selected convergence value (that can be defined
for each individual mode or can be defined as an average of a number of modes),
the optimum triplet polynomial numbers can be selected. Note that the LC values
forms a three-dimensional matrix. Thus, the optimum triplet polynomial number is
determined such that it both satisfies the selected convergence criteria and leads to
the smallest product of polynomials (thus minimizes the degrees of freedom -DOF-
of the model).

To understand the convergence rate/characteristic thoroughly, two studies are per-
formed. In the first one, the convergence characteristic of the presented solution
approach is investigated in detail for an unconstrained doubly curved FGM paral-
lelepiped. Although, the convergence analysis leads to a 3D-plot, to clearly visualize
the behavior, 2D convergence plots that are given for a specific Nζ value (i.e. hori-
zontal and vertical axes indicate the Nξ and Nη polynomials, respectively), are given
in Fig. 4.7. Note that, the 2D convergence plots are based on the average LC values
calculated using the first ten natural frequencies that are compared to the reference
solution, that is selected as Nξ −Nη −Nζ = 21− 21− 13 . As seen from straight
portions of the contour lines in Fig. 4.7, increasing the polynomial numbers along
the Nξ and Nη directions beyond a point does not affect the results. Since the ge-
ometry of the investigated geometry is selected as Ly/Lx = 1, the convergence plots
are (almost) symmetric with respect to Nξ = Nη line. Therefore considering the
convergence data in Fig. 4.7, if the convergence criteria is determined as Ci < −3
or Ci < −4, the triplet polynomial number can be selected as 9-9-7 or 11-11-11,
respectively.

Next, to demonstrate the convergence characteristics corresponding to various
boundary conditions and geometric parameters, four different cases are inves-
tigated (keeping the geometric parameters of the structure as Ly/Lx = 1 and
h/Lx = 0.1): (i) unconstrained straight parallelepiped with uniform material prop-
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Figure 4.7 Convergence study for an unconstrained doubly curved FGM structure
with uni-axially varying material property along the z (p= 0.3) direction. Red

circle markers show the required (optimum) number of triplet-polynomials to meet
the selected convergence criteria.

erties (i.e. β1 = β2 = 0 and p = 0.0), (ii) unconstrained singly-curved (cylindri-
cal) parallelepiped with uniform material properties (i.e. β1 = 0.25, β2 = 0, and
p= 0.0), (iii) unconstrained doubly curved FGM parallelepiped (i.e. β1 = β2 = 0.25
and p = 0.3), and (iv) fully-constraint doubly curved FGM parallelepiped (i.e.
β1 = β2 = 0.25 and p = 0.3). The first ten (non-dimensional) natural frequencies
are calculated in each case and the results are compared to the one that is found
using Nξ−Nη−Nζ = 21−21−13 polynomials (that is selected to be the reference

54



-4

-3.5

-3

-3

-2
.5

-2.5

-2

-2

-1

-1
.5

-1.5

4

5

6

7

8

9

10

11

12

13

14

15

N

-3
.5

-3.5

-3

-3

-2
.5

-2.5

-2

-2

-1
.5

-1.5

-1
-1

-3

-3

-3

-3-2
.5

-2.5

-2

-2

-1
.5

-1.5

-1

-1

-3.5

-3

-2
.5

-2.5

-2

-2

-1
.5

-1.5

-1

-1

-0.5

y

4

5

6

7

8

9

10

11

12

13

14

15

N
y

4 6 8 10 12 14

Nx

4 6 8 10 12 14

Nx

a)N  = 4z

c)N  = 7z

b)N  = 4z

d)N  = 6z

Figure 4.8 Convergence study for (a) unconstrained straight parallelepiped (b)
unconstrained doubly-curved structure (c) unconstrained doubly-curved structure
with uni-axially varying material properties along the z (p= 0.3) direction and (d)
doubly-curved structure with uni-axially varying material properties along the z
(p= 0.3) direction and constrained at all edges. Red circle markers show the
required (optimum) number of triplet-polynomials in each case to meet the

selected convergence criteria (Ci <−3).

solution). The convergence criteria is selected such that the individual and average
error threshold values are set to 0.1% (Ci < −3). The selected triplet polynomial
numbers are shown in Fig. 4.8. Although, the convergence analysis leads to a 3D
plot, as mentioned above 2D convergence plots are used here. Therefore, based on
the selected convergence criteria, the triplet polynomial numbers can be chosen as
9-9-4, 9-9-4, 9-9-7, and 10-10-6, for cases (i) through (iv), respectively.

Note that comparing the cases (i) and (ii) in Fig. 4.8, the required triplet polynomial
numbers to meet the convergence criteria is found to be equal to each other; however,
if the contours of the plots are analyzed, it can be seen that there is a shift in counter
lines to higher polynomial numbers. Thus, the LC value corresponding the chosen set
of polynomials in case (i) is calculated to be higher than case (ii) (see Fig. 4.8 (a) and
(b)). Therefore, it can be concluded from Fig. 4.8 that as the complexity increases
in the problem either in geometry (due to curvatures or boundary conditions) or
in material distribution, the convergence rate decreases. As a result, to meet the
required LC value, the required triplet polynomial numbers (i.e., required degree of
freedom) increases as well.

55



Table 4.8 The comparison of non-dimensional natural frequencies of an
unconstrained doubly-curved FGM (p= 0.3 along the z direction) structure having

the geometric properties of Lx/Ly = 1, h/Lx = 0.1, (i) β1 = 0.0, β2 = 0 (ii)
β1 = 0.50, β2 = 0.00, (iii) β1 = 0.25, β2 = 0.25, and (iv) β1 = 0.25, β2 =−0.25

predicted using the presented ST solution and FE simulations.

Mode

Case (i) Case (ii) Case (iii) Case (iv)
(straight panel) (cylindrical panel) (spherical panel) (hyperbolic panel)

ST FEM Diff. ST FEM Diff. ST FEM Diff. ST FEM Diff.
(%) (%) (%) (%)

1 0.4120 0.4119 0.04 0.3554 0.3554 0.03 0.4446 0.4444 0.04 0.3408 0.3405 0.08
2 0.6124 0.6131 0.10 0.4165 0.4180 0.35 0.5616 0.5623 0.13 0.6126 0.6142 0.26
3 0.7527 0.7553 0.34 0.6856 0.6865 0.13 1.0193 1.0196 0.02 0.7776 0.7791 0.19
4 1.0350 1.0357 0.06 1.1130 1.1152 0.20 1.1599 1.1611 0.11 0.7983 0.7967 0.19
5 1.0350 1.0357 0.06 1.2018 1.2048 0.25 1.2175 1.2187 0.10 1.0316 1.0322 0.06
6 1.7960 1.8000 0.22 1.2961 1.2972 0.08 1.7941 1.7976 0.20 1.4010 1.3986 0.17
7 1.7960 1.8000 0.22 1.3981 1.4015 0.25 1.9098 1.9116 0.09 1.6454 1.6429 0.15
8 1.8116 1.8128 0.06 1.8740 1.8734 0.04 2.1370 2.1399 0.14 1.7236 1.7192 0.26
9 1.9731 1.9730 0.00 2.1874 2.1908 0.15 2.1396 2.1399 0.02 1.7302 1.7346 0.25
10 2.2012 2.2044 0.15 2.2764 2.2873 0.48 2.5320 2.5370 0.20 1.7793 1.7801 0.05

To validate and present the capability of the solution approach, firstly, various 3D
geometries such as straight, cylindrical, spherical, and hyperbolic structures are
investigated (see Table 4.8). Secondly, the dynamics of a 3D doubly-curved structure
under various boundary conditions is analyzed (see Table 4.9). As described in
Sec. 3.2.1, the essential boundary conditions can be applied in 3D-ST solution by
using the projection matrices. In both studies, the material variation is assumed to
be along the z (ζ) direction and the gradation parameter, p, is selected to be 0.3 (see
Eq. (2.34)) in both cases. The calculated non-dimensional natural frequencies are
compared to those obtained from a commercial FE software (COMSOL v5.3). Note
that a similar convergence analysis is performed for the FE analysis to determine the
required element number. As seen from the given tables, the maximum difference in
predicted natural frequencies is calculated as 0.77% (the average difference is found
as 0.13%); therefore we can conclude that the results are in excellent agreement.

The predicted mode shapes are also investigated and validated using FE results.
As an example, Fig. 4.9 shows the predicted first four mode shapes for the cases
investigated in Table 4.8. To validate the mode shapes, the modal assurance criteria
(MAC), which is a measure of consistency of mode shapes calculated by two different
solution approaches [158], is used. The MAC plots for the case studies given in
Tables 4.8 and 4.9 are given in Fig. 4.10. Note that for the symmetric mode shapes
(corresponding to the same natural frequency) as can be seen in the straight panel
case in 4th and 5th and 6th and 7th mode shapes, the MAC values can be lower than
0.9. However, in general it is observed that the calculated MAC values for the first
ten natural frequencies for all cases are close to unity. The average MAC value is
calculated to be 0.9716 for the investigated cases. Therefore, we can conclude that
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Table 4.9 The comparison of non-dimensional natural frequencies of a
doubly-curved FGM structure having the geometric properties of Lx/Ly = 4/3,

h/Lx = 0.1, β1 = 1/4, β2 = 1/3 and material variation parameter as p= 0.3 (along
the z direction) under four different boundary conditions: (i) unconstrained
(FFFF), (ii) constrained at x=−Lx/2 side (CFFF), (iii) constrained at

x=−Lx/2 and x= Lx/2 sides (CFCF), and (iv) constrained on all sides (CCCC).

Mode
Case (i): FFFF Case (ii): CFFF Case (iii): CFCF Case (iv): CCCC

ST FEM Diff. ST FEM Diff. ST FEM Diff. ST FEM Diff.
(%) (%) (%) (%)

1 0.3864 0.3868 0.10 0.0720 0.0719 0.10 0.7072 0.7055 0.24 1.8366 1.8358 0.04
2 0.3985 0.3985 0.00 0.1068 0.1066 0.14 0.7368 0.7355 0.18 2.0453 2.0421 0.16
3 0.8518 0.8516 0.02 0.2845 0.2844 0.04 0.9476 0.9470 0.06 2.0833 2.0849 0.07
4 0.9724 0.9740 0.17 0.3592 0.3587 0.16 0.9925 0.9918 0.08 2.5830 2.5858 0.11
5 1.4424 1.4446 0.15 0.6656 0.6650 0.08 1.2509 1.2503 0.05 2.6733 2.6729 0.01
6 1.4832 1.4844 0.08 0.8084 0.8083 0.02 1.5865 1.5858 0.04 2.9768 2.9802 0.12
7 1.6618 1.6633 0.09 1.1838 1.1838 0.00 1.8398 1.8413 0.08 3.2907 3.2935 0.09
8 1.7743 1.7775 0.18 1.3963 1.3958 0.04 1.8775 1.8759 0.08 3.4268 3.4004 0.77
9 2.1222 2.1257 0.17 1.5648 1.5656 0.05 1.8785 1.8796 0.06 3.5447 3.5494 0.13
10 2.1958 2.1943 0.07 1.6545 1.6542 0.01 2.2219 2.2195 0.11 3.9027 3.8946 0.21

Table 4.10 The computational cost comparison of cases studied in Table 1

Case (i) Case (ii) Case (iii) Case (iv)
(straight panel) (cylindrical panel) (spherical panel) (hyperbolic panel)
ST FEM ST FEM ST FEM ST FEM

DOFs 1701 153165 2079 178794 1701 145806 1701 158877
Duration (s) 1.55 127 3.92 1112 3.07 91 2.9 125

the mode shapes obtained using the presented solution technique are in excellent
agreement to those found through FEM approach.

In these analyses, we also compared the computational cost of each solution approach
based on the central processing unit (CPU) time. To compare the computational
cost, the total duration of the simulation to find the first hundred eigenvalues and
eigenvectors is measured. Tables 4.10 and 4.11 show the simulation duration (in
terms CPU time) of the presented solution technique and the FE simulations to
achieve a converged result, and the corresponding number of degrees of freedom
for each case. The comparison are performed on the same computer. As a result,
the matrix sizes are decreased significantly (around 50 folds), thereby reducing the
computational cost of the investigated cases at least 10 folds. Note that in FE
modeling, the meshing is performed automatically with tetrahedral elements (with
linear shape functions) and solutions are performed using MUMPS algorithm (that
can take advantage of all of the processor cores).

The presented approach can be used both together with the Mori-Tanaka and the-
ory of mixtures approaches to impose the varying material properties to the system
equations. To investigate the changes in predicted natural frequencies, we performed
three case studies for an unconstrained cylindrical FG composite structure having
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Figure 4.9 The first four mode shapes of the case studies investigated in Table 4.8.
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Figure 4.10 The MAC plots of the first ten natural frequencies for the cases
investigated in Tables 4.8 and 4.9 (Top row shows the results of the cases (i) to
(iv) in Table 4.8 and bottom row shows the results of the cases (i) to (iv) in

Table 4.9 from left to right).

the geometric properties of Ly/Lx = 1, h/Lx = 0.1, β1 = 0.25 and β2 = 0.0. Table 4.12
presents the first ten natural frequencies obtained for three different volumetric ra-
tios (p= 0.1, p= 1.0, and p= 10.0). It is observed that Mori-Tanaka and theory of
mixture methods lead to similar results, as also stated in [14]; however experimen-
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Table 4.11 The computational cost comparison of cases studied in Table 2

Case (i) Case (ii) Case (iii) Case (iv)
(FFFF) (CFFF) (CFCF) (CCCC)

ST FEM ST FEM ST FEM ST FEM
DOFs 1680 107319 1848 107319 1848 107319 2457 107319

Duration (s) 2.79 78 3.4 67 3.26 82 6.89 73

FGM

FGM

h1

h2

h3

hT

Figure 4.11 Schematic of a FG sandwich composite structure.

tation need to be done to determine the most accurate approach to characterize the
varying material property.

Table 4.12 The comparison of first ten (non-dimensional) natural frequencies of an
unconstrained cylindrical FG composite structure having the geometric properties

of Ly/Lx = 1, h/Lx = 0.1, β1 = 0.25 and β2 = 0.0.

(i) p= 0.1 (ii) p= 1.0 (iii) p= 10.0
Mode Mori-Tanaka Theory of Mixtures Mori-Tanaka Theory of Mixtures Mori-Tanaka Theory of Mixtures
1 0.3981 0.4078 0.3674 0.3815 0.3779 0.3871
2 0.5656 0.5807 0.5211 0.5417 0.5374 0.5503
3 0.8944 0.9169 0.8244 0.8574 0.8456 0.8650
4 1.0719 1.0961 0.9951 1.0365 0.9854 1.0091
5 1.0747 1.0999 0.9957 1.0429 1.0091 1.0337
6 1.5567 1.5982 1.4330 1.4924 1.4692 1.5024
7 1.7762 1.8177 1.6436 1.7153 1.6550 1.6935
8 1.8081 1.8540 1.6651 1.7345 1.6989 1.7357
9 2.1257 2.1760 1.9686 2.0561 1.9770 2.0237
10 2.2375 2.2912 2.0706 2.1599 2.0925 2.1420

4.2.1.2 Laminated FGM parallelepiped

In this section, the dynamics of laminated doubly curved FG structures are studied.
In this case study, two different FG sandwich configurations, as seen in Fig. 4.11, are
considered: (a) soft-core and (b) hard-core. The first configuration is referred as the
soft-core since the middle laminate is metal and outer layers are FGM. Similarly,
the second configuration is hard-core since the middle layer is ceramic and outer
layers are FGM.
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Table 4.13 The comparison of natural frequencies (in Hz) of a soft-core FG (p= 1)
sandwich cylindrical (β1 = 0.5, and β2 = 0) structure having the geometric

properties of Lx = 2.67 m, Ly = 3 m, hT = 0.3 m (where h2/h1 = 2 and h1 = h3).

Mode

Case (i): FFFF Case (ii): FCFC Case (iii): CFCF Case (iv): CCCC

ST Ye at al. FEM ST Ye at al. FEM ST Ye at al. FEM ST Ye at al. FEM

1 171.2 171.2 171.2 414.3 418.6 414.1 340.2 343.0 340.1 674.7 678.1 674.6
2 220.2 220.2 220.2 562.5 565.0 562.2 401.9 404.6 401.8 845.3 850.9 845.5
3 327.4 327.3 327.4 564.5 568.0 564.3 484.4 486.5 484.3 1100.5 1104.7 1100.5
4 449.1 - 449.0 716.6 - 716.7 671.9 - 671.8 1134.1 - 1134.2
5 525.1 - 525.1 830.1 - 830.2 742.3 - 742.4 1272.1 - 1273.1
6 580.8 - 582.0 909.0 - 908.8 751.2 - 751.1 1311.3 - 1311.4
7 657.6 - 658.2 949.6 - 949.7 783.9 - 783.8 1348.6 - 1350.2
8 666.2 - 666.1 1147.6 - 1148.2 951.2 - 951.1 1506.1 - 1506.7
9 887.9 - 888.5 1206.7 - 1207.5 1093.2 - 1093.2 1523.6 - 1524.0
10 910.2 - 910.5 1222.3 - 1223.2 1183.6 - 1183.2 1555.7 - 1556.2

First, the dynamics of a soft-core FG sandwich cylindrical structure having the
geometric properties of Lx = 2.67 m, Ly = 3 m, hT = 0.3 m (where h2/h1 = 2 and
h1 = h3, i.e. 1-2-1 configuration), β1 = 0.5, and β2 = 0 is investigated. The predicted
natural frequencies are compared to those obtained from FE simulations and also
to those found in the literature. For this purpose, a recent study done by Ye et al.,
in which they investigated the dynamics of FG sandwich shells using cosine Fourier
series together with the Rayleigh-Ritz approach, is used [12]. In this study, the
material gradation in the FG layer is determined using theory of mixtures. For the
analysis, they selected the constituent materials of the FGM doubly-curved structure
to be aluminum as the metallic structure having the properties of Em = 70 GPa,
νm = 0.3, and ρm = 2707 kg/m3 and the ceramic structure having the properties
of Ec = 380 GPa, νc = 0.3, and ρc = 3800 kg/m3. The volumetric amounts of the
constituent materials are calculated based on power law, Eq. (2.34), and the material
gradation parameter, p, is set to 1. The first ten natural frequencies (in Hz) are
predicted under FFFF, FCFC, CFCF, and CCCC boundary conditions and listed
in Table 4.14. Note that, in Ye et al.’s work only the first three natural frequencies
are calculated; however, here we included the comparison of the first ten natural
frequencies. As seen, the results are in excellent agreement to those calculated
using FE approach, and to those presented in Ye et al.’s work [12]; the average and
maximum percent differences in predicted natural frequencies are calculated as 0.03
% and 0.21 %, respectively.

Second, the dynamics of a hard-core FG sandwich spherical structure having the
geometric Lx = 1.34 m, Ly = 2.0 m, hT = 0.3 m (where h1 = h2 = h3, i.e. 1-1-1
configuration), β1 = 0.25, and β2 = 3/8 is investigated. Similar to the previous case,
the material gradation parameter, p, is set to 1. The calculated natural frequencies
are compared using the FE results and the results presented in Ye et al.’s work
[12]. Table 4.14 lists the first ten natural frequencies that are calculated under
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Table 4.14 The comparison of natural frequencies (in Hz) of a hard-core FG (p=1)
sandwich spherical (β1 = 1/4, and β2 = 3/8) structure having the geometric

properties of Lx = 1.34 m, Ly = 2.0 m, hT = 0.3 m (where h2/h1 = 1 and h1 = h3).

Mode

Case (i): FFFF Case (ii): FCFC Case (iii): CFCF Case (iv): CCCC

ST Ye at al. FEM ST Ye at al. FEM ST Ye at al. FEM ST Ye at al. FEM

1 430.4 430.5 430.4 1057.0 1060.8 1055.6 1188.9 1194.5 1188.3 1725.1 1726.8 1724.1
2 468.5 468.6 468.5 1074.9 1077 1074.4 1244.1 1247.9 1243.6 1991.1 1992 1990.5
3 923.7 923.8 923.6 1336.8 1337.7 1336.4 1467.3 1467.9 1467.1 2059.9 2062.9 2058.4
4 1098.8 - 1098.7 1483.0 - 1482.8 1605.2 - 1604.9 2588.7 - 2587.6
5 1166.7 - 1166.3 1518.5 - 1517.7 1713.1 - 1711.4 2651.4 - 2649.7
6 1460.9 - 1461.4 1792.2 - 1791.8 1789.3 - 1787.6 2699.6 - 2699.4
7 1732.9 - 1732.5 2155.3 - 2154.9 1941.5 - 1941.1 3231.4 - 3231.1
8 1908.4 - 1908.2 2296.0 - 2294.8 2232.2 - 2231.8 3250.8 - 3249.6
9 2021.6 - 2021.5 2320.7 - 2320.5 2572.7 - 2573.5 3449.5 - 3446.1
10 2082.9 - 2083.5 2449.3 - 2448.3 2782.9 - 2781.5 3471.6 - 3471.2

Figure 4.12 The first ten mode shapes and the corresponding MAC plot for the
unconstrained soft-core sandwich composite given in Table 4.13.

FFFF, FCFC, CFCF, and CCCC boundary conditions. It is observed that the
natural frequencies obtained using the ST solution match those obtained from the
FE closely; the maximum difference is below 0.13 % for any boundary condition.

In both soft and hard core sandwich structures investigated here, the mode shapes
are also calculated and validated using modal assurance criteria. The minimum
MAC value for all the cases listed in Tables 4.13 and 4.14 is found to be 0.9915. As
an example, Fig. 4.12 shows the first ten natural frequencies of the unconstrained
soft-core structure and the corresponding MAC plot.

Due to the simplicity, numerical efficiency, and completely parameterized nature
of the presented ST solution approach, it is possible to perform the analysis of
the effects of different parameters on the dynamics of FG structures easily. As an
example, we investigated the change of first three natural frequencies with (1) in-
creasing gradation amounts for a hard-core FG sandwich spherical composite having
the geometric properties of Lx/Ly = 1 m, hT /Lx = 0.3 m (where h1 = h2 = h3, i.e.
1-1-1 configuration), and β1 = β2 = 0.25; (2) increasing core thickness for a hard-
core FG (p=0.8) sandwich spherical composite having the geometric properties of
Lx/Ly = 1, h1/Lx = h2/Lx = 0.1, and β1 = β2 = 0.25. The results of the ST and
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Figure 4.13 Variation of the first three non-dimensional natural frequencies of a
spherical sandwich FG composite structure for (a) varying gradation parameter
(p) and (b) varying core thickness (h2/h1). The solid (blue), dashed (red), and

dotted black lines presents 1st, 2nd, and 3rd (non-dimensional) natural frequencies
found using the ST approach. Similarly, circle, square, and diamond markers shoes

the results of the FE simulations.

FE approaches with varying volume fraction parameter (p) and core thickness are
plotted in Fig. 4.13. As observed, the natural frequencies are decreasing with de-
creasing the ceramic content or the core thickness of the structure, and the ST model
matches very closely with the results of the FE (the maximum difference is 0.85 %).

4.2.1.3 Curved FG laminated structure having complex geometry

In this case study, to present the capability of the 3D-ST solution approach, curved
FG laminated structures having complex/arbitrary geometries are investigated. As
mentioned in Sec. 2.2.2, the presented solution technique enables accurately cap-
turing the dynamics of structures having complex geometries using the one-to-one
mapping procedure. This mapping procedure basically simplifies the domain of the
problem (defined by the governing IBVP) through the Jacobian of mapping. To this
end, the curved geometry as depicted in Fig. 4.14 is investigated.
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Figure 4.14 Laminated composite structure having arbitrary geometry: (a-b)
in-plane geometry (in x′′−y′′ plane) and curved three-dimensional model of the

investigated geometry, respectively.

Table 4.15 The comparison of first ten natural frequencies (in Hz) of an
unconstrained doubly-curved (β1 = 0.5 and β2 = 0.0) FG (p=0.7) soft-core

sandwich lamina having a total thickness of hT = 0.3 m, 0.4 m, and 0.5 m and
thickness ratios of 1-1-1, 1-2-1, and 2-1-2, respectively, using the presented 3D-ST

solution and 3D-FE simulations.

(i) 1-1-1 (ii) 1-2-1 (iii) 2-1-2

Mode 3D-ST 3D-FEM Diff. 3D-ST 3D-FEM Diff. 3D-ST 3D-FEM Diff.
(%) (%) (%)

1 68.98 69.05 0.09 85.39 85.44 0.06 98.33 98.39 0.07
2 106.66 106.66 0.00 132.83 132.77 0.04 152.38 152.27 0.07
3 202.04 202.25 0.10 246.70 246.85 0.06 272.43 272.38 0.02
4 206.82 206.87 0.03 249.02 248.99 0.01 277.86 278.08 0.08
5 395.54 395.72 0.05 470.36 470.37 0.00 503.84 503.80 0.01
6 396.31 396.43 0.03 473.46 474.33 0.18 521.08 522.52 0.28
7 567.38 564.19 0.56 666.90 666.75 0.02 644.23 643.99 0.04
8 628.90 628.98 0.01 671.31 668.39 0.44 737.00 735.18 0.25
9 641.22 639.84 0.22 754.97 754.52 0.06 791.51 791.53 0.00
10 682.53 682.53 0.00 762.38 763.12 0.10 811.57 813.25 0.21

In this case study, a doubly-curved soft-core sandwich composite structure (as de-
picted in Fig. 4.14(b)) having the curved (in-plane) geometry is considered. The
material gradation amount for the outer layers is set to p = 0.7, and the curva-
ture amounts are assumed to be β1 = 0.5 and β2 = 0.0. The total thickness of the
sandwich composite structure is varied as hT = 0.3 m, 0.4 m, and 0.5 m and the
corresponding thickness ratios of each sub-cases are set to h1/h2 = 1, h1/h2 = 0.5,
and h1/h2 = 2, respectively (note that the thicknesses of the outer layers are as-
sumed to be equal, h1 = h3). The first ten natural frequencies calculated using the
presented 3D-ST approach and FEM analysis are listed in Table 4.15. As observed,
the results found using the 3D-ST approach accurately matches to those found using
FE approach. The average and maximum differences in results are obtained to be
0.1 % and 0.56 %, respectively.

Similar to previous case studies, the mode shapes are also calculated using the
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Figure 4.15 The first ten mode shapes and the corresponding MAC plot for the
case (i) where the thickness ratio is selected as 1-1-1 (in Table 4.15.

presented solution technique and compared to those found using COMSOL. Modal
assurance criteria is used to assess the consistency of the mode shapes obtained by
these two approaches. Figure 4.15 shows the first ten mode shapes of the soft-core
case study where the thickness ratio is selected as 1-1-1. Based on these analyses,
the minimum MAC value is calculated as 0.9941; therefore we can conclude that
the mode shapes obtained by the ST technique are in excellent agreement to those
found by FE approach.

4.3 Sandwich structure with carbon nanotubes face-sheets and honey-
comb type core

This section, the 3D-ST method is developed to study and design the straight and
curved sandwich structures. The hexagonal type of honeycomb as a core layer of
sandwich structure is reinforced by the face-sheets, including CNTs within porous
media. CNTs distribute along the thickness of face-sheets with two symmetric, one
anti-symmetric and uniform form. To validate the presented approach, vibration
and static studies are conducted by obtaining the natural frequencies and defor-
mation, respectively. The design process is accomplished using the Pattern Search
algorithm to optimize the CNTs orientations to maximize the fundamental frequency
and minimize the displacement.

4.3.1 Model Validation

The 3D-ST approach explained in section. 3.2 is validated through studying the
vibration and static behavior of the straight and curved sandwich structure. For
this purpose, the face-sheets contain CNT particles where the CNTs distribution
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along the thickness of the layers are the same for both face-sheets as FG−O type
of distribution. The distribution type defined in Eq. 2.51 is utilized for the varia-
tion of porosity along the thickness. The CNTs material properties are presented
in Table. 4.16 and 4.17. The middle layer is defined as a hexagonal honeycomb
with the mechanical properties presented in Table. 4.18. For the vibration analysis,
all edges are clamped. For the bending study the clamped boundary condition is
applied at y = Ly edge where a line force is applied on the edge y = 0 as shown in
Fig. (2.7)a. The obtained results from the 3D-ST approach are compared to those
calculated with the FE method. The finite element approach is accomplished by
using COMSOL v5.5.

Table 4.16 Material properties of CNTs composite

material Elasticity(Pa) Poisson ratio Shear elasticity(Pa) Density( kg
m3 )

CNT E11=5.6466 ×1012 ν12 = ν13 = 0.175 G12 =GG13 = 1.9445×1012 1400
E22 = E33 = 7.08×1012 ν23 = ν21 G23 = 1

2
E22

1+ν23
Matrix 2.1 ×109 0.34 - 1150

Table 4.17 CNT material parameters

V∗CNT η1 η2 η3
0.11 0.149 0.934 0.934
0.14 0.150 0.941 0.941
0.17 0.149 1.381 1.381
0.28 0.141 1.585 1.109

Table 4.18 Material properties of hexagonal honeycomb structure

Elasticity(Pa) Poisson ratio Shear elasticity(Pa) Density( kg
m3 )

E11 = 0.0354×106 ν12 = 0.999856 G12 = 0.0266×106

E22 = 0.0354×106 ν13 = 0 G13 = 92.463×106 24.94
E33 = 655.87×106 ν23 = 0 G23 = 141.12×106

4.3.1.1 Straight sandwich structure

In this section, vibration and bending analysis of a square layered structure are
studied. The non-dimensional geometry properties are Lx/Ly = 1 with two different
thickness to length ratios of ht/Ly = 0.1 and 0.2. Also, the ratio of face-sheets to the
middle layer is ho/hm = 0.5. The number of polynomials used to model the struc-
ture to accomplish the vibration and static studies is 11×11 in x and y directions.
Also, the number of polynomials in the thickness direction is set to 7, 5, and 7 for
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the bottom face-sheet, core layer, and upper face-sheet, respectively. After applying
the coupling conditions, the overall degrees of freedom decreased to 3×11×11×17.
Table. 4.19 shows the first five natural frequencies of a square thick structure for
different porosity parameters (e0) and different CNTs orientations[ψ1,ψ2], where ψ1

and ψ2 are the bottom face-sheet and top face-sheet CNTs orientations, respectively.
The results are compared to those obtained from the FE analysis. The error per-
centage indicates that the 3D-ST approach can predict the vibration behavior of the
sandwich structure accurately. The bending analysis of the aforementioned struc-

Table 4.19 Natural frequencies (Hz) of straight structure with different porosity
values and CNTs orientations[ψ1,ψ2].

e0 = 0.1 e0 = 0.3 e0 = 0.5
[30,60] [-45,45] [60,30]

h/a Modes 3D-ST FEM Diff (%) 3D-ST FEM Diff (%) 3D-ST FEM Diff (%)
1 96.80 96.69 0.12% 91.29 91.15 0.15% 96.71 96.52 0.19%
2 153.51 153.32 0.12% 156.66 156.46 0.12% 153.21 152.92 0.19%

0.1 3 174.56 174.42 0.08% 163.31 163.08 0.14% 173.79 173.51 0.16%
4 210.70 210.44 0.12% 222.71 222.44 0.12% 210.13 209.74 0.18%
5 245.90 245.72 0.07% 237.32 237.05 0.11% 245.17 244.78 0.16%
1 123.71 123.65 0.05% 123.00 122.90 0.08% 123.17 123.02 0.13%
2 192.16 191.97 0.10% 198.30 198.08 0.11% 190.84 190.56 0.15%

0.2 3 215.57 215.39 0.08% 207.41 207.15 0.12% 211.63 211.33 0.14%
4 259.46 259.18 0.11% 272.20 271.83 0.13% 258.14 257.74 0.15%
5 275.98 275.04 0.34% 290.54 290.14 0.14% 261.16 260.44 0.28%

ture is accomplished by calculating the displacement magnitude of the center of the
structure on the top surface of the upper face-sheet. The acting force is described in
section 4.3.1. However, for the thickness ratios of 0.1 and 0.2, the line force amount
is 106 N/m. Table. 4.20 indicates the displacements ( δ

Ly
) of the structure with dif-

ferent CNTs volume percents and various CNT orientations. Comparing obtained
results with the FE approach solutions shows that the 3D-ST approach can obtain
accurate results in static studies.

Table 4.20 Bending analysis of straight structure for different volume and
orientations[ψ1,ψ2] of CNTs.

V ∗CNT = 0.11 V ∗CNT = 0.13 V ∗CNT = 0.17
[30,60] [-45,45] [60,30]

h/Lx 3D-ST FEM Diff% 3D-ST FEM Diff% 3D-ST FEM Diff%
0.1 0.4150 0.4184 0.82% 0.5892 0.5944 0.88% 0.2877 0.2902 0.86%
0.2 0.0710 0.0717 0.99% 0.0887 0.0894 0.81% 0.0518 0.0522 0.75%

4.3.1.2 Single-curved sandwich structure
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In this section, a single curved sandwich structure’s vibration and static behaviors
are investigated to validate the presented approach. Considering the Fig. 2.7a, the
geometry properties for this study are Lx

R = π
2 ,

Ly
R = 3 and ht

R = 0.3 and 0.6. The
curvature amount(β) is set to 0.25. The material property configuration and the
type of boundary conditions were described in the section. (4.3.1). The vibration
and static investigations are accomplished for different volume percentages and var-
ious orientations of CNTs[ψ1,ψ2]. Vibration study of the single-curved structure
is conducted by obtaining the first five natural frequencies shown in Table. 4.21.
The results show an excellent agreement between the 3D-ST approach and the FE
method. It should be noticed that to study the curved layered thick structure, the
3D-ST approach employs 13×13×(7×5×7) polynomials in X, Y and Z directions,
respectively. Consequently, considering the boundary condition, the number of de-
grees of freedom is 7293 for the 3D-ST approach. This number is equal to 40000 for
the FE method. Hence, it can be concluded that decreasing the number of degrees
of freedom results in decreasing the computational time.
The static behavior of a curved sandwich structure is studied via investigation of

Table 4.21 Natural frequencies (Hz) of the curved sandwich structure for different
porosity values and various CNTs orientations[ψ1,ψ2].

e0 = 0.1 e0 = 0.3 e0 = 0.5
[30,60] [-45,45] [60,30]

h/a Modes 3D-ST FEM Diff% 3D-ST FEM Diff% 3D-ST FEM Diff%
1 272.89 272.76 0.05 270.15 269.99 0.06 269.31 269.15 0.06
2 292.46 294.75 0.78 294.33 295.12 0.27 280.78 281.76 0.35

0.1 3 307.00 306.88 0.04 308.73 309.47 0.24 305.40 305.20 0.07
4 356.64 358.61 0.55 354.35 354.43 0.02 344.10 344.71 0.18
5 367.47 367.48 0.00 381.42 382.38 0.25 362.49 362.36 0.04
1 266.24 266.58 0.13 261.80 261.57 0.09 257.39 257.21 0.07
2 299.11 298.68 0.15 301.95 302.15 0.07 286.37 286.84 0.16

0.2 3 315.72 315.81 0.03 324.73 325.53 0.24 305.89 305.74 0.05
4 383.20 382.83 0.10 361.62 361.25 0.10 367.30 367.58 0.08
5 394.15 393.82 0.08 377.09 377.21 0.03 378.44 378.37 0.02

the structure’s displacement using the 3D-ST approach. The boundary condition
type and line load are described in the section. 4.3.1. Three different volume per-
cent of CNTs are defined for the face-sheets with various orientations[ψ1,ψ2]. The
applied load on the edge for thickness ratios of 0.3 and 0.6 are 105. Table. 4.22
indicates the comparison of displacements at the center of the structure between
the presented approach and the FE method. The results show that the 3D-ST ap-
proach can predict the proper static displacement of a thick sandwich structure with
complex geometry.

In the following, a parametric study is accomplished to present the CNTs orienta-
tions effect on the displacement and fundamental natural frequency of a described
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Table 4.22 Bending analysis of a curved sandwich structure with different volume
and orientations[ψ1,ψ2] of CNTs

V ∗CNT = 0.11 V ∗CNT = 0.13 V ∗CNT = 0.17
[30,60] [-45,45] [60,30]

h/a 3D-ST FEM Diff% 3D-ST FEM Diff% 3D-ST FEM Diff%
0.1 0.0307 0.0304 0.93 0.0401 0.0399 0.53 0.0236 0.0233 0.94
0.2 0.0060 0.0060 0.51 0.0073 0.0073 0.78 0.0045 0.0045 0.85

geometry in this section. The structure is clamped at y = 0 edge. The CNTs volume
is set to 0.17. The results are plotted and shown in Fig. 4.16. The results show that
the CNTs orientations effect the static and dynamic behavior of the structure signif-
icantly. For the presented case of structure, the structure indicates to be more stiff
around the zero orientation of CNTs. The validation is accomplished for some cases
and shown on the figure with black circles. Obviously, the CNTs orientations of the
upper or bottom face-sheets have a recognizable effect on the structure behavior.
For instance, for two points marked with red stars on the Fig. 4.16a and b for the
displacement and fundamental natural frequency studies, the CNTs orientations are
[-50,0], [0,-50] and [-70,0], [0,-70], respectively. It shows that the behavior of the
structure is not symmetric relative to the CNTs orientations, where the percent of
differences are 5% and 10% for displacement and fundamental natural frequency,
respectively. This issued can be caused by the curvature complexity which leads
to have the variation of length in X axis for bottom and upper face-sheets. The
parametric study shows that the CNTs affect on the structure static and dynamic
behavior is significant and a design studies should be conducted to obtain a desired
decision.

4.3.2 Design of sandwich-structured composites

This section aims to optimize the CNTs orientations of face-sheets ([ψ1,ψ2]) to catch
the desired dynamic and static behavior. The objective functions of the optimization
are maximizing the fundamental natural frequency(ωf ) and minimizing the deflec-
tion of the center point of the upper face-sheet(δ), separately. The contained CNTs
of each face-sheet has independent orientations defined as the design variables of
this optimization study. Mathematically, the optimization study can be written as;

Objective function : Maximum ωf or Minimize δ

Design variables : [ψ1,ψ2] (4.3)

Bounds : −π2 < ψ1 <
π

2 , −
π

2 < ψ2 <
π

2
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Figure 4.16 Parametric study of CNTs orientations effect on the (a) displacement
and (b) fundamental natural frequency of a sandwich structure

To solve the optimization problem, the Pattern Search(PS) method presented by
Hooke and Jeeves[159]is used, which is a member of the Generalized Pattern Search
(GPS) algorithms. This method is presented as a local optimization theory. How-
ever, this method has valuable characteristics compared to the global optimization
algorithms such as Genetic Algorithm(GA)[160]. The initial mesh size is set to
1, which can change with the basis of 2. For the optimization step, geometry of
structure is set to two thickness ratios ( hLy = 0.1,0.2) and five curvature amounts
(β = 0.1,0.2,0.3,0.4,0.5). Also, four case of CNT distributions along the thickness of
face-sheets (FG−X,FG−O,FG−V and UD) with four value of volume percent-
age of CNTs (V ∗ = 0.11,0.14,0.17 and 0.28) are defined. The porosity distribution
is set to the symmetric equation presented in Eq. 2.52 with porosity coefficient
of e0 = 0.3. The boundary conditions for the natural frequency and displacement
optimizations are defined as all-edges clamped and one-edge clamped at (y = Ly),
respectively. Also, in the case of displacement optimization, line force is applied to
the half part of the y =Ly edge of the upper face-sheet in Z direction with the value
of 106N

m(shown in Fig. 2.7 with the red color.

4.3.2.1 Fundamental natural frequency optimization
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In this section, the optimum CNTs angle of upper and bottom face-sheets are ob-
tained to maximize the fundamental natural frequencies. Table. 4.23 presents the
optimum CNT angles and obtained maximum fundamental natural frequencies re-
lated to the optimum CNT angles. It should be noticed that each row of results
includes optimum CNTs orientations[ψ1,ψ2] and maximum fundamental natural
frequency(ωf ). In an overview, Table. 4.23 shows that the optimum CNT angles
highly depend on the geometry and material properties of the sandwich structure.
For instance, the change of curvature amount (β) results in the mode shape jump,
leading to changes in the optimum CNT angles. However, optimum CNT angles
are changed for different thickness ratios with the same curvature amounts. On
the other hand, It is clear that the structure tends to have a higher fundamental
natural frequency due to the curvature amount. However, it can be concluded that
for higher curvature amounts, the increment of fundamental natural frequency has
a slow growth, whereas it decreases after a specific curvature amount (here β=0.4).
Another part of this optimization study is to present the effect of material vari-
ation on the optimum CNT angles and maximum fundamental natural frequency.
Table. 4.23 indicates that the distribution type of CNTs along the thickness has
a small effect on the obtained optimum CNT angles. However, the results show
that geometry parameters are more effective on the CNTs angles than the material
characteristics. To highlight the material and geometry complexity effects on the
optimization process, the maximum fundamental natural frequencies are presented
in Table. 4.23. Considering the curvature amount, it is clear that CNTs distribu-
tion type can affect the maximum fundamental natural frequency approximately
1% to 5% with the same volume of CNTs. The CNTs distribution type effect is
more comprehensible when the CNT volume and curvature amounts have higher
values. A substantial point about the CNT volume role is that increasing the CNTs
volume increases the natural frequency. However, the increase of optimum natural
frequency does not have a meaningful relation with the increase of CNTs volume.
For instance, change of the contained volume of CNTs from 0.14 to 0.17 (+21%)
results in an 18% increment of optimum fundamental natural frequency, approxi-
mately, where this volume changes from 0.11 to 0.14 (+27%) result in 3% increment
of optimum fundamental natural frequency. This issue is related to the CNTs effi-
ciency parameters (ηi) obtained from the molecular dynamic analysis of CNTs. To
show the optimization importance, Fig. 4.17 indicates the comparison of optimum
fundamental natural frequencies to those obtained for the [0,0] angle of CNTs for
upper and bottom face-sheets. Fig. 4.17 is accomplished for different types of CNT
distributions, thickness ratios, and curvature amounts, where the CNTs volume is
set to 0.11. The results show that the fundamental natural frequency can be in-
creased 45% at most by designing the CNTs orientations. As shown in Fig. 4.17,
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Table 4.23 Optimized CNT orientations of upper and bottom face-sheets [θ1, θ2]
and maximum fundamental frequencies.

h
Lx

= 0.1 h
Lx

= 0.2
V∗ β FG-X FG-O FG-V UD FG-X FG-O FG-V UD

0.11

0.1 [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0]
149.2 146.5 148.2 150.2 158.6 154.7 156.7 158.3

0.2 [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0]
162.8 160.3 161.6 162.6 167.5 165.3 166.4 167.1

0.3 [-50, -35] [-45,-35] [-45,-40] [-50,-35] [55,0] [55,5] [50,0] [55,0]
165.2 161.0 161.9 163.8 202.1 171.0 171.9 173.1

0.4 [-60,60] [-60,60] [-60,60] [-60,60] [-65,60] [-60,55] [-60,55] [-65,60]
171.9 167.0 169.0 169.9 182.6 177.2 178.9 180.5

0.5 [-60,70] [-60,70] [-60,70] [-60,70] [-55,55] [-55,55] [-55,50] [-55,60]
170.9 165.9 167.7 168.9 182.4 177.5 178.3 180.6

0.14

0.1 [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0]
153.8 151.1 152.7 154.3 162.5 158.7 160.6 161.8

0.2 [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0]
166.6 163.9 165.3 165.9 170.8 168.5 169.6 169.9

0.3 [-50,-35] [-50,-40] [-45,-40] [-50,-35] [55,0] [55,-10] [50,0] [55,0]
168.5 164.5 164.8 166.7 177.6 173.7 174.8 175.8

0.4 [-60,60] [-60,60] [-60,60] [-60,60] [-65,60] [-65,60] [-60,60] [-65,60]
175.8 170.5 172.5 173.3 186.2 180.7 182.2 183.8

0.5 [-60,70] [-60,70] [-60,70] [-60,70] [-60,55] [-55,55] [-55,55] [-55,60]
174.4 168.8 170.7 171.9 185.7 180.4 181.7 183.9

0.17

0.1 [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0]
180.6 176.6 178.9 180.6 189.2 183.5 186.3 187.7

0.2 [35,0] [45,0] [45,10] [35,-5] [0,0] [0,0] [0,0] [0,0]
192.8 186.1 187.4 190.2 201.0 197.4 199.0 199.2

0.3 [-35,40] [-35,40] [-40,40] [-40,35] [0,50] [-10,45] [-15,35] [0,50]
198.3 191.4 194.0 195.2 206.3 200.5 202.5 203.2

0.4 [-60,60] [-60,60] [-60,60] [-60,60] [-55,60] [60,55] [-55,55] [-60,60]
205.4 197.6 200.3 201.4 217.0 209.6 211.6 213.6

0.5 [-60,70] [-60,65] [-60,65] [-60,70] [-55,55] [-55,55] [-55,50] [-65,65]
199.7 192.1 194.6 196.0 214.4 206.4 207.6 210.6

0.28

0.1 [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0]
185.4 182.0 183.0 180.7 192.3 187.8 189.0 186.8

0.2 [30,0] [40,0] [35,-5] [30,0] [0,0] [0,0] [0,0] [0,0]
194.8 189.2 190.3 188.7 200.8 197.6 198.0 194.8

0.3 [-60,40] [-55,40] [-55,40] [-60,40] [55,0] [-60,55] [-5,50] [55,0]
200.1 193.6 194.9 192.8 206.8 200.5 201.7 200.1

0.4 [-60,65] [-60,65] [-60,65] [-65,65] [-60,65] [-60,60] [-60,60] [-65,60]
208.2 200.4 202.1 200.9 217.5 210.9 211.6 210.5

0.5 [-55,70] [-60,70] [-60,70] [-60,70] [-55,60] [-55,60] [-55,60] [-55,60]
201.5 193.2 194.9 194.8 214.2 206.3 207.6 207.4
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the optimization is more effective in higher curvature amounts. In general, it can
be detected that optimization can change the dynamic behavior of the structure.
For instance, Fig. 4.17 shows that the sandwich structure with [0,0] orientations of
CNTs, tends to decrease the fundamental natural frequency for higher curvature
amounts, where the optimum CNTs orientations behave in the opposite direction.
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Figure 4.17 Comparison of the optimum natural frequency and the obtained
fundamental frequency by set of [0,0] orientation for the face-sheets for different

CNT distributions; (a) h/Lx = 0.1,(b)h/Lx = 0.2.

4.3.2.2 Optimization of static behavior of a sandwich structure

In this section, the optimization study of the static behavior of the sandwich struc-
ture is accomplished to minimize the displacement of the center of the top surface
of the upper face-sheet. The CNTs orientations of the face-sheets are designed to
catch the minimum displacement. Fig. 4.18 shows the comparison of the optimized
displacement and the displacement with [0,0] CNTs orientations of face-sheets. The
CNTs distribution is FG−X in this section. The comparison indicates that the
CNTs orientations significantly affect the displacement of sandwich structure with
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honeycomb core. It should be noticed that the line force is applied to the half-edge
of the structure, which leads to having a torsion moment and shear stress. In this
regard, the honeycomb structures cannot tolerate that stress effectively, because
of their structural characteristics. It is obvious that for the lower thickness ratio
(Fig. 4.18a), the percentage of improvement is too high in comparison to the higher
thickness ratio(Fig. 4.18b). Also, it is shown that increasing the curvature follows
the making the optimized CNTs orientation role less effective in minimizing the
displacement. On the other hand, the mentioned issue is confirmed for the volume
percentage of CNTs role, where for the lower volume percentage of CNTs the design
study should be considered a determinant element of analysis.

Another design study is conducted using the aluminum core to show the structure
behavior in different conditions. The same boundary condition, line load, and CNTs
material properties are included in this study. The elasticity modulus, Poisson ra-
tio and density of the aluminum are 70 Gpa, 0.34 and 2700 kg/m3, respectively.
Fig. 4.19 shows the displacement results for the optimized and [0,0] orientations of
CNTs displacements. In comparison to the sandwich structure with a honeycomb
core(Fig. 4.19), curvature effect shows the same trend of decreasing. In general,
it can be seen that the improvement percentage is decreased in comparison to the
sandwich structure with a honeycomb core. The variation of volume of CNTs shows
a vice versa effect compared to its effect on the honeycomb case, where the per-
cent of improvement of displacement increases with the increase of the volume of
CNTs. Also, the same trend is detected for the thickness ratio, wherein the case
of aluminum core, for the high thickness ratio ( hLy = 0.2), the percentage of the
difference between optimized orientations and [0,0] case is higher than the lower
thickness ratio ( hLy = 0.2). In conclusion, the design approach strongly depends on
the geometry complexities and material properties, which can be an interesting field
to be investigated in more detail.
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Figure 4.18 Comparison of the minimum displacement with optimum CNT angles
and obtained displacement of the sandwich structure with [0,0] orientation of the

CNTs for different volume of CNTs; (a) h/Ly = 0.1, (b) h/Ly = 0.2.
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Figure 4.19 Comparison of the minimum displacement with optimum CNT angles
and obtained displacement of the sandwich structure with [0,0] orientation of the

CNTs for different volume of CNTs and aluminum core; (a)
h/Ly = 0.1,(b)h/Ly = 0.2.
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5. CONCLUSIONS

5.1 Results and discussion

In this study, we presented a general 2D and 3D spectral-Chebyshev modeling ap-
proach to obtain high-fidelity dynamic models for laminated or sandwich (doubly-)
curved (FG) composite structures. The Hamilton energy approach is utilized to ob-
tain the integral boundary value problem. The Chebyshev polynomials are used to
approximate the function due to their exponential convergence characteristics. The
derivative operator is obtained using the expansion of a function, where the inner
product approach accomplishes the integral operation. Furthermore, the domain is
discretized using the Gauss-Lobatto points.

The performance of the solution approach in terms of accuracy and computational
efficiency is shown through various case studies. For comparison, the reference so-
lutions are obtained either using a commercial FE software (COMSOL) or data
available in literature. Since, the solution approach uses mapping algorithms (coor-
dinate transformation) to simplify the domain, the vibrational behavior of composite
laminated structures having complex geometries can be accurately identified. Fur-
thermore, due to the parametrized nature of the presented solution approach, it is
possible to efficiently perform various parametric analyses.

Based on the studies performed, following the conclusions can be obtained:

• In all case studies (both using 2D and 3D spectral Chebyshev approach), it
is shown that the results obtained using the presented solution approach are
in excellent agreement to those found in literature or to those obtained using
FE analysis. The maximum differences are calculated to be less than 1 %
corresponding to literature and FE result. To validate the predicted mode
shapes, modal assurance criteria is used and MAC plots are obtained for each
case study. The minimum MAC value is calculated to be 0.8 for the symmetric
(repeated) modes; note that the average MAC value for the investigated cases
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are above 0.95.

• Based on the computational efficiency analyses performed in the same comput-
ing environment, the presented solution approach provides analysis speed-ups
at least 30 folds compared to FE methods. The main reason due to this advan-
tage is the significant decrease in the number of degrees of freedom to achieve
the same level of accuracy.

• As expected, the increasing porosity decreases the stiffness of the plate leading
to lower uniaxial/biaxial buckling loads. However, since the mass of the struc-
ture decreases with porosity, it has a minor effect on natural frequencies. On
the other hand, as the reinforcement amount increases (either in the case of
CNT or GPL reinforcement), there is a significant improvement in the stiffness
of the structure.

• Due to the fact the GPLs are a type of 2D nanofillers, significant improvements
are observed compared to CNT reinforcements. This finding is consistent
with the literature, since it has been reported that the GPLs showed better
mechanical enhancement as a result of the increased interaction between the
nanofiller and matrix materials [47, 48, 42].

• Note that the developed model can also be extended (i) to different distribu-
tion profiles including asymmetric distributions considering the chance in the
neutral surface [161] or (ii) to the analysis of curved composite panels by in-
cluding a curvilinear coordinate frame and updating Eq. (2.2) accordingly. In
the future, this modeling technique can be utilized to optimize the gradation
profile and wt.% of the reinforcement amount in composite panels exploiting
its numerically efficient and accurate nature.

• To leverage the computational efficiency, design studies are performed for sand-
wich structures. The CNTs orientations are designed to obtain the maximum
fundamental natural frequency and minimum displacement, respectively. The
pattern search method is used as an optimization algorithm. It can be con-
cluded that in both dynamic and static optimization processes, the optimum
CNTs orientations highly depend on the geometry and material characteris-
tics. To comprehend the advantage of optimization, we compared the op-
timum CNT orientations and [0,0] orientations of CNTs. The results show
that dynamic and deformation behavior (with defined objective functions) are
enhanced approximately 45% and 1000%, respectively.
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5.2 Future work

In this thesis, the 2D and 3D spectral Chebyshev technique is presented. It is
possible to extend this study in different aspects such as (i) flexibility for differ-
ent geometries, (ii) material complexities, and (iii) various different engineering
problems.

In this thesis, although complex geometries such as singly or doubly curved geome-
tries are studied, due to the nature of the spectral technique, the geometry needs
to be expressed higher order polynomials; thereby necessitates a continuity. To
overcome this problem such that this approach can be applied to an assembly of
structures or geometries that have discontinuities such as cavities, it should be ex-
tended to a spectral element formulation. One of the first attempts of this approach
is applied to piezoelectric energy harvester systems that shows promising results to
be implemented for composite structure design problems [162].

Furthermore, it can be applied to different types of composite structures such as vari-
able stiffness composites or to analyze different phenomenon such as non-linearity,
post buckling, cracked or delaminated composite structures.

5.3 Side works

During the developing the spectral-Chebychev approach as the main work of inves-
tigations, we try to extend this approach to study various problems presented in
following to show the capability of this technique.

5.3.1 Dynamic analysis of a doubly curved composite structure

In this research[163], a modeling framework for the dynamic analysis of doubly
curved composite panels is developed. Lamination parameters are used to char-
acterize the stiffness properties of the laminate, and the responses are calculated
through the two-dimensional spectral-Tchebychev method. The proposed frame-
work combines the computational efficiency advantages of both lamination param-
eters formulation and spectral-Tchebychev method which is extended for dynamic
analysis of curved composite laminates.
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5.3.2 Electromechanical analysis of functionally graded panels

This study [164] presents an electromechanical modeling approach for predicting
the dynamics of (straight/curved) functionally graded panels with multiple surface-
integrated piezo-patches. Bi-axial material variation is considered using the theory
of mixture approach. The governing equations are derived following the first or-
der shear deformation theory and the Hamilton’s principle. The derived boundary
value problem is solved numerically using a meshless approach based on Chebyshev
polynomials. Mass and stiffness contributions of piezo-patch(es), as well as two-way
electromechanical coupling behavior, are incorporated both for modal and harmonic
analyses. To validate the accuracy of the presented solution technique, the results
for various cases are compared to those obtained from finite-element analyses. It is
shown that the maximum difference in the predicted natural frequencies is below
1%, but for a fraction of the computational time. Furthermore, the harmonic anal-
ysis results excellently match FE results. Note that material variation changes the
spatial stiffness of the panel and thus, the functionally graded panel can be designed
according to a predefined objective function using the proposed modeling approach.
As a demonstration, specific to energy harvesting application, the voltage/power
output was maximized through material and geometry/shape variations. It was
demonstrated that significant improvements can be achieved through the presented
methodology.

5.3.3 vibration analysis of axially moving doubly-curved panels/shells

In this research [165] a general model to study the vibration behavior of axially mov-
ing two-dimensional continuums in the presence of curvature along the moving axis
is developed. To this end, an axially moving doubly-curved panel of variable radius
of curvature is considered. The integral boundary value problem is obtained based
on a higher-order shear deformation with first-order thickness stretching theory. Due
to its high accuracy and computational performance, spectral Chebyshev approach
is used to numerically solve the boundary value problem. Considering the geometry
capabilities of the developed model, dynamics of various axially moving structures
such as flat, singly- and doubly-curved plates/shells in different engineering applica-
tions with different boundary conditions can be investigated. The numerical results
confirmed that the calculated natural frequencies for axially moving flat plates and
circular cylindrical shells are in excellent agreement to those found in the literature
and obtained via finite element approach. Furthermore, the effects of the axial ve-
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locity, thickness stretching, curvature ratio, and boundary conditions on the natural
frequencies and stability behavior of the doubly-curved panels are investigated.

5.3.4 Nonlinear resonances of axially functionally graded rotating beams

The purpose of the current study is to develop an accurate model to investigate the
nonlinear resonances in an axially functionally graded beam rotating with timede-
pendent speed. To this end, two important features including stiffening and Coriolis
effects are modeled based on nonlinear strain relations. Equations governing the
axial, chordwise, and flapwise deformations about the determined steady-state equi-
librium position are obtained, and the rotating speed variation is considered as a
periodic disturbance about this equilibrium condition. Multi-mode discretization of
the equations is performed via the spectral Chebyshev approach and the method of
multiple scales for Gyroscopic systems is employed to study the nonlinear behavior.
After determining the required polynomial number based on convergence analysis,
results obtained are verified by comparing to those found in literature and numerical
simulations. Moreover, the model is validated based on simulations carried out by a
commercial finite element software. Properties of the functionally graded material
and the values of average rotating speed leading to 2:1 internal resonance in the
system are found. Time and steady-state responses of the system under primary
and parametric resonances caused by the time-dependent rotating speed are inves-
tigated when the system is tuned to 2:1 internal resonance. A comprehensive study
on the time response, frequency response, and stability behavior shows that the ro-
tating axially functionally graded beam exhibits a complicated nonlinear behavior
under the effect of the rotating speed fluctuation frequency, damping coefficient, and
properties of the functionally graded material.

5.3.5 Design of laminated conical shells

This study presents a modeling approach to accurately and efficiently predict the dy-
namics of laminated conical shells. The governing equations are derived based on the
first order shear deformation theory kinematic equations following the Hamilton’s
principle. To express the strain energy of the shells, in-plane and bending lamina-
tion parameters are used. A two-dimensional spectral approach based on Cheby-
shev polynomials is implemented to solve the governing equations. The developed
framework including the spectral-Chebyshev approach and lamination parameters
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results in an accurate and computationally efficient solution method. To demon-
strate the performance of the presented solution approach, various case studies in-
cluding straight panels, curved shells, and truncated conical shells are investigated.
The benchmarks indicate that the calculated non-dimensional natural frequencies
excellently match the results found using finite element method and the simulation
duration can be decreased by 100 folds. To leverage the computational performance
of the presented approach, a stacking sequence optimization is performed to max-
imize the fundamental frequency of a shell geometry, and the corresponding fiber
angles are retrieved from the optimized lamination parameters. Furthermore, a para-
metric analysis is performed to investigate the effect of geometry on the optimized
lamination parameters (and fiber angles) based on fundamental natural frequency
maximization.

81



Bibliography

[1] T. W. Clyne, D. Hull, An introduction to composite materials, Cambridge
university press, 2019.

[2] J. N. Reddy, Mechanics of composite materials: selected works of Nicholas J.
Pagano, Vol. 34, Springer Science & Business Media, 1994.

[3] K. K. Chawla, Composite materials: science and engineering, Springer Science
& Business Media, 2012.

[4] C. T. Herakovich, Mechanics of composites: a historical review, Mechanics
Research Communications 41 (2012) 1–20.

[5] M. K. Buragohain, Composite structures: design, mechanics, analysis, manu-
facturing, and testing, CRC press, 2017.

[6] J. R. Vinson, Sandwich structures (2001).

[7] D. Cripps, T. Searle, J. Summerscales, Open mold techniques for thermoset
composites (2000).

[8] D. Sidwell, Hand lay-up and bag molding, in: Handbook of Composites,
Springer, 1998, pp. 352–377.

[9] K. Swaminathan, D. T. Naveenkumar, A. M. Zenkour, E. Carrera, Stress, vi-
bration and buckling analyses of FGM plates-A state-of-the-art review, Com-
posite Structures 120 (2015) 10–31. doi:10.1016/j.compstruct.2014.09.
070.
URL http://dx.doi.org/10.1016/j.compstruct.2014.09.070

[10] H. Chen, A. Wang, Y. Hao, W. Zhang, Free vibration of FGM sandwich
doubly-curved shallow shell based on a new shear deformation theory with
stretching effects, Composite Structures 179 (2017) 50–60. doi:10.1016/j.
compstruct.2017.07.032.
URL http://dx.doi.org/10.1016/j.compstruct.2017.07.032

[11] N. El Meiche, A. Tounsi, N. Ziane, I. Mechab, et al., A new hyperbolic shear
deformation theory for buckling and vibration of functionally graded sandwich
plate, International Journal of Mechanical Sciences 53 (4) (2011) 237–247.

[12] T. Ye, G. Jin, Z. Su, Three-dimensional vibration analysis of functionally
graded sandwich deep open spherical and cylindrical shells with general re-
straints, Journal of Vibration and Control 22 (15) (2016) 3326–3354.

82

http://dx.doi.org/10.1016/j.compstruct.2014.09.070
http://dx.doi.org/10.1016/j.compstruct.2014.09.070
https://doi.org/10.1016/j.compstruct.2014.09.070
https://doi.org/10.1016/j.compstruct.2014.09.070
http://dx.doi.org/10.1016/j.compstruct.2014.09.070
http://dx.doi.org/10.1016/j.compstruct.2017.07.032
http://dx.doi.org/10.1016/j.compstruct.2017.07.032
http://dx.doi.org/10.1016/j.compstruct.2017.07.032
https://doi.org/10.1016/j.compstruct.2017.07.032
https://doi.org/10.1016/j.compstruct.2017.07.032
http://dx.doi.org/10.1016/j.compstruct.2017.07.032


[13] F. Tornabene, E. Viola, N. Fantuzzi, General higher-order equivalent single
layer theory for free vibrations of doubly-curved laminated composite shells
and panels, Composite Structures 104 (2013) 94–117.

[14] F. Tornabene, N. Fantuzzi, M. Bacciocchi, Free vibrations of free-form doubly-
curved shells made of functionally graded materials using higher-order equiva-
lent single layer theories, Composites Part B: Engineering 67 (2014) 490–509.

[15] Y. Hao, Z. Li, W. Zhang, S. Li, M. Yao, Vibration of functionally graded sand-
wich doubly curved shells using improved shear deformation theory, Science
China Technological Sciences 61 (6) (2018) 791–808.

[16] F. Tornabene, N. Fantuzzi, M. Bacciocchi, E. Viola, J. N. Reddy, A numerical
investigation on the natural frequencies of fgm sandwich shells with variable
thickness by the local generalized differential quadrature method, Applied
Sciences 7 (2) (2017) 131.

[17] P. Davies, Towards More Representative Accelerated Aging of Marine Com-
posites, 2020. doi:10.1007/978-3-030-31065-3_17.

[18] M. T. Tran, A. T. Trinh, et al., Static and vibration analysis of cross-ply
laminated composite doubly curved shallow shell panels with stiffeners resting
on winkler–pasternak elastic foundations, International Journal of Advanced
Structural Engineering 9 (2) (2017) 153–164.

[19] K. Swaminathan, D. Naveenkumar, A. Zenkour, E. Carrera, Stress, vibra-
tion and buckling analyses of fgm plates—a state-of-the-art review, Composite
Structures 120 (2015) 10–31.

[20] V. Birman, L. W. Byrd, Modeling and analysis of functionally graded materials
and structures (2007).

[21] H.-S. Shen, Functionally graded materials: nonlinear analysis of plates and
shells, CRC press, 2016.

[22] S. S. Vel, R. Batra, Three-dimensional exact solution for the vibration of
functionally graded rectangular plates, Journal of Sound and Vibration 272 (3-
5) (2004) 703–730.

[23] A. J. Goupee, S. S. Vel, Optimization of natural frequencies of bidirectional
functionally graded beams, Structural and Multidisciplinary Optimization
32 (6) (2006) 473–484.

[24] N. T. Alshabatat, K. Naghshineh, Optimization of natural frequencies and
sound power of beams using functionally graded material, Advances in Acous-
tics and Vibration 2014 (2014).

[25] K. Maalawi, Optimization of functionally graded material structures: some
case studies, in: Optimum Composite Structures, IntechOpen, 2018.

[26] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of
materials with misfitting inclusions, Acta metallurgica 21 (5) (1973) 571–574.

83

https://doi.org/10.1007/978-3-030-31065-3_17


[27] A. Neves, A. Ferreira, E. Carrera, M. Cinefra, C. Roque, R. Jorge, C. M.
Soares, Static, free vibration and buckling analysis of isotropic and sandwich
functionally graded plates using a quasi-3d higher-order shear deformation
theory and a meshless technique, Composites Part B: Engineering 44 (1) (2013)
657–674.

[28] R. M. Jones, Taylor and francis,“, Mechanics of Composite Materials (1999).

[29] C. C. Chamis, Mechanics of composite materials: past, present, and future,
Journal of Composites, Technology and Research 11 (1) (1989) 3–14.

[30] J. C. Halpin, Effects of environmental factors on composite materials., Tech.
rep., Air Force Materials Lab Wright-Patterson AFB OH (1969).

[31] L. L. Vignoli, M. A. Savi, P. M. Pacheco, A. L. Kalamkarov, Comparative
analysis of micromechanical models for the elastic composite laminae, Com-
posites Part B: Engineering 174 (2019) 106961.

[32] T. Mura, Micromechanics of defects in solids (martinus nijhoff, dordrecht,
1987)., and 179 149.

[33] K. Mercan, A. K. Baltacıoglu, Ö. Civalek, Free vibration of laminated and
fgm/cnt composites annular thick plates with shear deformation by discrete
singular convolution method, Composite Structures 186 (2018) 139–153.

[34] S. Nikbakht, S. Kamarian, M. Shakeri, A review on optimization of compos-
ite structures Part II: Functionally graded materials, Composite Structures
214 (December 2018) (2019) 83–102. doi:10.1016/j.compstruct.2019.01.
105.
URL https://doi.org/10.1016/j.compstruct.2019.01.105

[35] M. F. Ashby, T. Evans, N. A. Fleck, J. Hutchinson, H. Wadley, L. Gibson,
Metal foams: a design guide, Elsevier, 2000.

[36] J. Banhart, Manufacture, characterisation and application of cellular metals
and metal foams, Progress in materials science 46 (6) (2001) 559–632.

[37] W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel,
D. Scharnweber, K. Schulte, Functionally graded materials for biomedical ap-
plications, Materials Science and Engineering: A 362 (1-2) (2003) 40–60.

[38] A. Hassani, A. Habibolahzadeh, H. Bafti, Production of graded aluminum
foams via powder space holder technique, Materials & Design 40 (2012) 510–
515.

[39] S.-Y. He, Y. Zhang, G. Dai, J.-Q. Jiang, Preparation of density-graded alu-
minum foam, Materials Science and Engineering: A 618 (2014) 496–499.

[40] M. Heshmati, F. Daneshmand, A study on the vibrational properties of weight-
efficient plates made of material with functionally graded porosity, Composite
Structures 200 (2018) 229–238.

84

https://doi.org/10.1016/j.compstruct.2019.01.105
https://doi.org/10.1016/j.compstruct.2019.01.105
https://doi.org/10.1016/j.compstruct.2019.01.105
https://doi.org/10.1016/j.compstruct.2019.01.105
https://doi.org/10.1016/j.compstruct.2019.01.105


[41] P. T. Thang, T. Nguyen-Thoi, D. Lee, J. Kang, J. Lee, Elastic buckling and
free vibration analyses of porous-cellular plates with uniform and non-uniform
porosity distributions, Aerospace Science and Technology 79 (2018) 278–287.

[42] S. Kitipornchai, D. Chen, J. Yang, Free vibration and elastic buckling of func-
tionally graded porous beams reinforced by graphene platelets, Materials &
Design 116 (2017) 656–665.

[43] K. Li, D. Wu, X. Chen, J. Cheng, Z. Liu, W. Gao, M. Liu, Isogeometric
analysis of functionally graded porous plates reinforced by graphene platelets,
Composite Structures 204 (2018) 114–130.

[44] S. Zhao, Z. Yang, S. Kitipornchai, J. Yang, Dynamic instability of functionally
graded porous arches reinforced by graphene platelets, Thin-Walled Structures
147 (2020) 106491.

[45] S. Zghal, A. Frikha, F. Dammak, Mechanical buckling analysis of functionally
graded power-based and carbon nanotubes-reinforced composite plates and
curved panels, Composites Part B: Engineering 150 (2018) 165–183.

[46] P. Zhu, Z. Lei, K. M. Liew, Static and free vibration analyses of carbon
nanotube-reinforced composite plates using finite element method with first or-
der shear deformation plate theory, Composite Structures 94 (4) (2012) 1450–
1460.

[47] I. Zaman, H.-C. Kuan, J. Dai, N. Kawashima, A. Michelmore, A. Sovi,
S. Dong, L. Luong, J. Ma, From carbon nanotubes and silicate layers to
graphene platelets for polymer nanocomposites, Nanoscale 4 (15) (2012) 4578–
4586.

[48] M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, Enhanced
mechanical properties of nanocomposites at low graphene content, ACS nano
3 (12) (2009) 3884–3890.

[49] J. P. Salvetat-Delmotte, A. Rubio, Mechanical properties of carbon nanotubes:
A fiber digest for beginners, Carbon 40 (10) (2002) 1729–1734. doi:10.1016/
S0008-6223(02)00012-X.

[50] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, nature
363 (6430) (1993) 603–605.

[51] D. Bethune, C. H. Kiang, M. De Vries, G. Gorman, R. Savoy, J. Vazquez,
R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-
layer walls, Nature 363 (6430) (1993) 605–607.

[52] S. Iijima, Helical microtubules of graphitic carbon, nature 354 (6348) (1991)
56–58.

[53] D. WILLIAN Jr, Materials science and engineering: An introduction, 3ª
edição, John Willey, New York (1994).

85

https://doi.org/10.1016/S0008-6223(02)00012-X
https://doi.org/10.1016/S0008-6223(02)00012-X


[54] K. M. Liew, X. Zhao, A. J. Ferreira, A review of meshless methods for lami-
nated and functionally graded plates and shells, Composite Structures 93 (8)
(2011) 2031–2041.

[55] H.-S. Shen, Nonlinear bending of functionally graded carbon nanotube-
reinforced composite plates in thermal environments, Composite Structures
91 (1) (2009) 9–19.

[56] K. M. Liew, Z. Pan, L.-W. Zhang, The recent progress of functionally graded
cnt reinforced composites and structures, Science China Physics, Mechanics
& Astronomy 63 (3) (2020) 1–17.

[57] J. M. Wernik, S. A. Meguid, Multiscale modeling of the nonlinear response
of nano-reinforced polymers, Acta Mechanica 217 (1-2) (2011) 1–16. doi:
10.1007/s00707-010-0377-7.

[58] E. T. Thostenson, Z. Ren, T. W. Chou, Advances in the science and technology
of carbon nanotubes and their composites: A review, Composites Science
and Technology 61 (13) (2001) 1899–1912. doi:10.1016/S0266-3538(01)
00094-X.

[59] M. Moniruzzaman, K. I. Winey, Polymer nanocomposites containing car-
bon nanotubes, Macromolecules 39 (16) (2006) 5194–5205. doi:10.1021/
ma060733p.

[60] B. Valter, M. K. Ram, C. Nicolini, Synthesis of multiwalled carbon nanotubes
and poly(o-anisidine) nanocomposite material: Fabrication and characteri-
zation of its Langmuir-Schaefer films, Langmuir 18 (5) (2002) 1535–1541.
doi:10.1021/la0104673.

[61] D. Qian, E. C. Dickey, R. Andrews, T. Rantell, Load transfer and deforma-
tion mechanisms in carbon nanotube-polystyrene composites, Applied Physics
Letters 76 (20) (2000) 2868–2870. doi:10.1063/1.126500.

[62] E. T. Thostenson, T.-w. Chou, Aligned multi-walled carbon nanotube-
reinforced composites : processing and mechanical characterization 77 (2002).

[63] P. Zhu, Z. X. Lei, K. M. Liew, Static and free vibration analyses of carbon
nanotube-reinforced composite plates using finite element method with first
order shear deformation plate theory, Composite Structures 94 (4) (2012)
1450–1460. doi:10.1016/j.compstruct.2011.11.010.
URL http://dx.doi.org/10.1016/j.compstruct.2011.11.010

[64] B. S. Aragh, A. H. Barati, H. Hedayati, Eshelby-Mori-Tanaka approach
for vibrational behavior of continuously graded carbon nanotube-reinforced
cylindrical panels, Composites Part B: Engineering 43 (4) (2012) 1943–1954.
doi:10.1016/j.compositesb.2012.01.004.
URL http://dx.doi.org/10.1016/j.compositesb.2012.01.004

[65] H. N. Wadley, Multifunctional periodic cellular metals, Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering Sciences
364 (1838) (2006) 31–68. doi:10.1098/rsta.2005.1697.

86

https://doi.org/10.1007/s00707-010-0377-7
https://doi.org/10.1007/s00707-010-0377-7
https://doi.org/10.1016/S0266-3538(01)00094-X
https://doi.org/10.1016/S0266-3538(01)00094-X
https://doi.org/10.1021/ma060733p
https://doi.org/10.1021/ma060733p
https://doi.org/10.1021/la0104673
https://doi.org/10.1063/1.126500
http://dx.doi.org/10.1016/j.compstruct.2011.11.010
http://dx.doi.org/10.1016/j.compstruct.2011.11.010
http://dx.doi.org/10.1016/j.compstruct.2011.11.010
https://doi.org/10.1016/j.compstruct.2011.11.010
http://dx.doi.org/10.1016/j.compstruct.2011.11.010
http://dx.doi.org/10.1016/j.compositesb.2012.01.004
http://dx.doi.org/10.1016/j.compositesb.2012.01.004
http://dx.doi.org/10.1016/j.compositesb.2012.01.004
https://doi.org/10.1016/j.compositesb.2012.01.004
http://dx.doi.org/10.1016/j.compositesb.2012.01.004
https://doi.org/10.1098/rsta.2005.1697


[66] F. Côté, V. S. Deshpande, N. A. Fleck, A. G. Evans, The compressive and
shear responses of corrugated and diamond lattice materials, International
Journal of Solids and Structures 43 (20) (2006) 6220–6242. doi:10.1016/j.
ijsolstr.2005.07.045.

[67] V. S. Deshpande, N. A. Fleck, M. F. Ashby, Effective properties of the octet-
truss lattice material, Journal of the Mechanics and Physics of Solids 49 (8)
(2001) 1747–1769. doi:10.1016/S0022-5096(01)00010-2.

[68] I. Dayyani, A. D. Shaw, E. I. Saavedra Flores, M. I. Friswell, The mechan-
ics of composite corrugated structures: A review with applications in mor-
phing aircraft, Composite Structures 133 (2015) 358–380. doi:10.1016/j.
compstruct.2015.07.099.
URL http://dx.doi.org/10.1016/j.compstruct.2015.07.099

[69] J. Yang, H. Wu, S. Kitipornchai, Buckling and postbuckling of functionally
graded multilayer graphene platelet-reinforced composite beams, Composite
Structures 161 (2017) 111–118.

[70] Y. Kiani, M. Mirzaei, Enhancement of non-linear thermal stability of temper-
ature dependent laminated beams with graphene reinforcements, Composite
Structures 186 (2018) 114–122.

[71] M. Ganapathi, B. Anirudh, C. Anant, O. Polit, Dynamic characteristics of
functionally graded graphene reinforced porous nanocomposite curved beams
based on trigonometric shear deformation theory with thickness stretch effect,
Mechanics of Advanced Materials and Structures (2019) 1–12.

[72] Z. Liu, C. Yang, W. Gao, D. Wu, G. Li, Nonlinear behaviour and stability
of functionally graded porous arches with graphene platelets reinforcements,
International Journal of Engineering Science 137 (2019) 37–56.

[73] Q. Li, D. Wu, X. Chen, L. Liu, Y. Yu, W. Gao, Nonlinear vibration and dy-
namic buckling analyses of sandwich functionally graded porous plate with
graphene platelet reinforcement resting on winkler–pasternak elastic founda-
tion, International Journal of Mechanical Sciences 148 (2018) 596–610.

[74] S. S. Mirjavadi, M. Forsat, A. Hamouda, M. R. Barati, Dynamic response
of functionally graded graphene nanoplatelet reinforced shells with porosity
distributions under transverse dynamic loads, Materials Research Express 6 (7)
(2019) 075045.

[75] A. R. Saidi, R. Bahaadini, K. Majidi-Mozafari, On vibration and stability
analysis of porous plates reinforced by graphene platelets under aerodynamical
loading, Composites Part B: Engineering 164 (2019) 778–799.

[76] D. Li, Layerwise theories of laminated composite structures and their appli-
cations: A review, Archives of Computational Methods in Engineering 28 (2)
(2021) 577–600.

87

https://doi.org/10.1016/j.ijsolstr.2005.07.045
https://doi.org/10.1016/j.ijsolstr.2005.07.045
https://doi.org/10.1016/S0022-5096(01)00010-2
http://dx.doi.org/10.1016/j.compstruct.2015.07.099
http://dx.doi.org/10.1016/j.compstruct.2015.07.099
http://dx.doi.org/10.1016/j.compstruct.2015.07.099
https://doi.org/10.1016/j.compstruct.2015.07.099
https://doi.org/10.1016/j.compstruct.2015.07.099
http://dx.doi.org/10.1016/j.compstruct.2015.07.099


[77] R. F. Gibson, E. O. Ayorinde, Y.-F. Wen, Vibrations of carbon nanotubes and
their composites: a review, Composites science and technology 67 (1) (2007)
1–28.

[78] G. Serhat, I. Basdogan, Design of curved composite panels for optimal dynamic
response using lamination parameters, Composites Part B: Engineering 147
(2018) 135–146.

[79] M. Aydogdu, Conditions for functionally graded plates to remain flat under
in-plane loads by classical plate theory, Composite Structures 82 (1) (2008)
155–157.

[80] B. Koohbor, S. Mallon, A. Kidane, A. Anand, V. Parameswaran, Through
thickness elastic profile determination of functionally graded materials, Ex-
perimental Mechanics 55 (8) (2015) 1427–1440.

[81] Ö. Civalek, Vibration of laminated composite panels and curved plates with
different types of fgm composite constituent, Composites Part B: Engineering
122 (2017) 89–108.

[82] K. Gao, W. Gao, D. Chen, J. Yang, Nonlinear free vibration of functionally
graded graphene platelets reinforced porous nanocomposite plates resting on
elastic foundation, Composite Structures 204 (2018) 831–846.

[83] F. Tornabene, Free vibration analysis of functionally graded conical, cylindri-
cal shell and annular plate structures with a four-parameter power-law distri-
bution, Computer Methods in Applied Mechanics and Engineering 198 (37-40)
(2009) 2911–2935.

[84] S. Hosseini-Hashemi, K. Khorshidi, M. Amabili, Exact solution for linear buck-
ling of rectangular mindlin plates, Journal of Sound and Vibration 315 (1-2)
(2008) 318–342.

[85] F. Abad, J. Rouzegar, An exact spectral element method for free vibration
analysis of fg plate integrated with piezoelectric layers, Composite Structures
180 (2017) 696–708.

[86] F. Tornabene, N. Fantuzzi, M. Bacciocchi, A new doubly-curved shell element
for the free vibrations of arbitrarily shaped laminated structures based on weak
formulation isogeometric analysis, Composite Structures 171 (2017) 429–461.

[87] A. G. Shenas, P. Malekzadeh, S. Ziaee, Vibration analysis of pre-twisted func-
tionally graded carbon nanotube reinforced composite beams in thermal envi-
ronment, Composite Structures 162 (2017) 325–340.

[88] J. Reddy, Analysis of functionally graded plates, International Journal for
numerical methods in engineering 47 (1-3) (2000) 663–684.

[89] S. Pradyumna, J. Bandyopadhyay, Free vibration analysis of functionally
graded curved panels using a higher-order finite element formulation, Jour-
nal of Sound and Vibration 318 (1-2) (2008) 176–192.

88



[90] F. Tornabene, N. Fantuzzi, F. Ubertini, E. Viola, Strong formulation finite
element method based on differential quadrature: a survey, Applied Mechanics
Reviews 67 (2) (2015).

[91] N. Fantuzzi, F. Tornabene, E. Viola, Four-parameter functionally graded
cracked plates of arbitrary shape: a gdqfem solution for free vibrations, Me-
chanics of Advanced Materials and Structures 23 (1) (2016) 89–107.

[92] H. Matsunaga, Free vibration and stability of functionally graded shallow
shells according to a 2d higher-order deformation theory, Composite Structures
84 (2) (2008) 132–146.

[93] F. Tornabene, A. Liverani, G. Caligiana, Fgm and laminated doubly curved
shells and panels of revolution with a free-form meridian: a 2-d gdq solution
for free vibrations, International Journal of Mechanical Sciences 53 (6) (2011)
446–470.

[94] F. Tornabene, N. Fantuzzi, M. Bacciocchi, The local gdq method for the nat-
ural frequencies of doubly-curved shells with variable thickness: a general
formulation, Composites Part B: Engineering 92 (2016) 265–289.

[95] E. Carrera, Historical review of zig-zag theories for multilayered plates and
shells, Appl. Mech. Rev. 56 (3) (2003) 287–308.

[96] A. Ferreira, E. Carrera, M. Cinefra, E. Viola, F. Tornabene, N. Fantuzzi,
A. Zenkour, Analysis of thick isotropic and cross-ply laminated plates by gen-
eralized differential quadrature method and a unified formulation, Composites
Part B: Engineering 58 (2014) 544–552.

[97] S. K. Kumar, D. Harursampath, E. Carrera, M. Cinefra, S. Valvano, Modal
analysis of delaminated plates and shells using carrera unified formulation–
mitc9 shell element, Mechanics of Advanced Materials and Structures 25 (8)
(2018) 681–697.

[98] C. Shu, Differential quadrature and its application in engineering, Springer
Science & Business Media, 2012.

[99] P. Tan, N. Nguyen-Thanh, T. Rabczuk, K. Zhou, Static, dynamic and buckling
analyses of 3d fgm plates and shells via an isogeometric-meshfree coupling
approach, Composite Structures 198 (2018) 35–50.

[100] C. H. Thai, A. Ferreira, T. Tran, P. Phung-Van, Free vibration, buckling
and bending analyses of multilayer functionally graded graphene nanoplatelets
reinforced composite plates using the nurbs formulation, Composite Structures
220 (2019) 749–759.

[101] R. Ansari, J. Torabi, R. Hassani, A comprehensive study on the free vibration
of arbitrary shaped thick functionally graded cnt-reinforced composite plates,
Engineering Structures 181 (2019) 653–669.

[102] T. J. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: Cad, finite
elements, nurbs, exact geometry and mesh refinement, Computer methods in
applied mechanics and engineering 194 (39-41) (2005) 4135–4195.

89



[103] M. Khiloun, A. A. Bousahla, A. Kaci, A. Bessaim, A. Tounsi, S. Mahmoud,
Analytical modeling of bending and vibration of thick advanced composite
plates using a four-variable quasi 3d hsdt, Engineering with Computers 36 (3)
(2020) 807–821.

[104] J. Zhao, K. Choe, C. Shuai, A. Wang, Q. Wang, Free vibration analysis of
functionally graded carbon nanotube reinforced composite truncated conical
panels with general boundary conditions, Composites Part B: Engineering 160
(2019) 225–240.

[105] R. Kadoli, N. Ganesan, Buckling and free vibration analysis of functionally
graded cylindrical shells subjected to a temperature-specified boundary con-
dition, Journal of sound and vibration 289 (3) (2006) 450–480.

[106] Y. Zhao, Y. Huang, M. Guo, A novel approach for free vibration of axially
functionally graded beams with non-uniform cross-section based on chebyshev
polynomials theory, Composite Structures 168 (2017) 277–284.

[107] B. Bediz, Three-dimensional vibration behavior of bi-directional functionally
graded curved parallelepipeds using spectral tchebychev approach, Composite
Structures 191 (2018) 100–112.

[108] B. Yagci, S. Filiz, L. L. Romero, O. B. Ozdoganlar, A spectral-tchebychev
technique for solving linear and nonlinear beam equations, Journal of Sound
and Vibration 321 (1-2) (2009) 375–404.

[109] M. R. Anamagh, B. Bediz, Three-dimensional dynamics of functionally graded
and laminated doubly-curved composite structures having arbitrary geome-
tries and boundary conditions, Composites Part B: Engineering 172 (Febru-
ary) (2019) 533–546. doi:10.1016/j.compositesb.2019.05.087.
URL https://doi.org/10.1016/j.compositesb.2019.05.087

[110] H. Zafarmand, M. Salehi, K. Asemi, Three dimensional free vibration and
transient analysis of two directional functionally graded thick cylindrical pan-
els under impact loading, Latin American Journal of Solids and Structures
12 (2) (2015) 205–225. doi:10.1590/1679-78251099.

[111] L. Demasi, 2D, quasi 3D and 3D exact solutions for bending of thick and thin
sandwich plates, Journal of Sandwich Structures and Materials 10 (4) (2008)
271–310. doi:10.1177/1099636208089311.

[112] A. V. Marchuk, S. V. Reneiskaya, O. N. Leshchuk, Three-Dimensional Analy-
sis of the Free Vibrations of Layered Composite Plates Based on the Semian-
alytic Finite-Element Method, International Applied Mechanics 56 (4) (2020)
481–497. doi:10.1007/s10778-020-01031-9.

[113] S. Natarajan, M. Haboussi, G. Manickam, Application of higher-order struc-
tural theory to bending and free vibration analysis of sandwich plates with
CNT reinforced composite facesheets, Composite Structures 113 (1) (2014)
197–207. arXiv:1403.1712, doi:10.1016/j.compstruct.2014.03.007.
URL http://dx.doi.org/10.1016/j.compstruct.2014.03.007

90

https://doi.org/10.1016/j.compositesb.2019.05.087
https://doi.org/10.1016/j.compositesb.2019.05.087
https://doi.org/10.1016/j.compositesb.2019.05.087
https://doi.org/10.1016/j.compositesb.2019.05.087
https://doi.org/10.1016/j.compositesb.2019.05.087
https://doi.org/10.1590/1679-78251099
https://doi.org/10.1177/1099636208089311
https://doi.org/10.1007/s10778-020-01031-9
http://dx.doi.org/10.1016/j.compstruct.2014.03.007
http://dx.doi.org/10.1016/j.compstruct.2014.03.007
http://dx.doi.org/10.1016/j.compstruct.2014.03.007
http://arxiv.org/abs/1403.1712
https://doi.org/10.1016/j.compstruct.2014.03.007
http://dx.doi.org/10.1016/j.compstruct.2014.03.007


[114] M. R. Moghaddam, G. H. Baradaran, Three-dimensional free vibrations anal-
ysis of functionally graded rectangular plates by the meshless local petrov–
galerkin (mlpg) method, Applied Mathematics and Computation 304 (2017)
153–163.

[115] P. Malekzadeh, Three-dimensional free vibration analysis of thick functionally
graded plates on elastic foundations, Composite Structures 89 (3) (2009) 367–
373.

[116] P. Malekzadeh, M. Ghaedsharaf, Three-dimensional free vibration of lami-
nated cylindrical panels with functionally graded layers, Composite Structures
108 (2014) 894–904.

[117] M. Farid, P. Zahedinejad, P. Malekzadeh, Three-dimensional temperature de-
pendent free vibration analysis of functionally graded material curved pan-
els resting on two-parameter elastic foundation using a hybrid semi-analytic,
differential quadrature method, Materials and Design 31 (1) (2010) 2–13.
doi:10.1016/j.matdes.2009.07.025.
URL http://dx.doi.org/10.1016/j.matdes.2009.07.025

[118] P. Malekzadeh, Three-dimensional free vibration analysis of thick functionally
graded plates on elastic foundations, Composite Structures 89 (3) (2009) 367–
373. doi:10.1016/j.compstruct.2008.08.007.
URL http://dx.doi.org/10.1016/j.compstruct.2008.08.007

[119] D. Liu, Z. Li, S. Kitipornchai, J. Yang, Three-dimensional free vibration
and bending analyses of functionally graded graphene nanoplatelets-reinforced
nanocomposite annular plates, Composite Structures 229 (2019) 111453.

[120] P. Malekzadeh, Y. Heydarpour, Mixed Navier-layerwise differential quadrature
three-dimensional static and free vibration analysis of functionally graded car-
bon nanotube reinforced composite laminated plates, Meccanica 50 (1) (2015)
143–167. doi:10.1007/s11012-014-0061-4.

[121] A. Alibeigloo, Effect of viscoelastic interface on three-dimensional static and
vibration behavior of laminated composite plate, Composites Part B: Engi-
neering 75 (2015) 17–28. doi:10.1016/j.compositesb.2015.01.025.
URL http://dx.doi.org/10.1016/j.compositesb.2015.01.025

[122] A. Alibeigloo, H. Jafarian, Three-Dimensional Static and Free Vibration Anal-
ysis of Carbon Nano Tube Reinforced Composite Cylindrical Shell Using Dif-
ferential Quadrature Method, International Journal of Applied Mechanics 8 (3)
(2016) 1–23. doi:10.1142/S1758825116500332.

[123] A. Alibeigloo, K. M. Liew, Free vibration analysis of sandwich cylindrical
panel with functionally graded core using three-dimensional theory of elastic-
ity, Composite Structures 113 (1) (2014) 23–30. doi:10.1016/j.compstruct.
2014.03.004.
URL http://dx.doi.org/10.1016/j.compstruct.2014.03.004

91

http://dx.doi.org/10.1016/j.matdes.2009.07.025
http://dx.doi.org/10.1016/j.matdes.2009.07.025
http://dx.doi.org/10.1016/j.matdes.2009.07.025
http://dx.doi.org/10.1016/j.matdes.2009.07.025
https://doi.org/10.1016/j.matdes.2009.07.025
http://dx.doi.org/10.1016/j.matdes.2009.07.025
http://dx.doi.org/10.1016/j.compstruct.2008.08.007
http://dx.doi.org/10.1016/j.compstruct.2008.08.007
https://doi.org/10.1016/j.compstruct.2008.08.007
http://dx.doi.org/10.1016/j.compstruct.2008.08.007
https://doi.org/10.1007/s11012-014-0061-4
http://dx.doi.org/10.1016/j.compositesb.2015.01.025
http://dx.doi.org/10.1016/j.compositesb.2015.01.025
https://doi.org/10.1016/j.compositesb.2015.01.025
http://dx.doi.org/10.1016/j.compositesb.2015.01.025
https://doi.org/10.1142/S1758825116500332
http://dx.doi.org/10.1016/j.compstruct.2014.03.004
http://dx.doi.org/10.1016/j.compstruct.2014.03.004
http://dx.doi.org/10.1016/j.compstruct.2014.03.004
https://doi.org/10.1016/j.compstruct.2014.03.004
https://doi.org/10.1016/j.compstruct.2014.03.004
http://dx.doi.org/10.1016/j.compstruct.2014.03.004


[124] P. Zahedinejad, P. Malekzadeh, M. Farid, G. Karami, A semi-analytical three-
dimensional free vibration analysis of functionally graded curved panels, In-
ternational Journal of Pressure Vessels and Piping 87 (8) (2010) 470–480.

[125] M. Adineh, M. Kadkhodayan, Three-dimensional thermo-elastic analysis of
multi-directional functionally graded rectangular plates on elastic foundation,
Acta Mechanica 228 (3) (2017) 881–899.

[126] A. E. Alshorbagy, M. A. Eltaher, F. Mahmoud, Free vibration characteristics
of a functionally graded beam by finite element method, Applied Mathematical
Modelling 35 (1) (2011) 412–425.

[127] K. Asemi, S. J. Salami, M. Salehi, M. Sadighi, Dynamic and static analysis
of fgm skew plates with 3d elasticity based graded finite element modeling,
Latin American Journal of Solids and Structures 11 (3) (2014) 504–533.

[128] H. A. Deveci, L. Aydin, H. Seçil Artem, Buckling optimization of composite
laminates using a hybrid algorithm under puck failure criterion constraint,
Journal of Reinforced Plastics and Composites 35 (16) (2016) 1233–1247.

[129] F.-X. Irisarri, D. H. Bassir, N. Carrere, J.-F. Maire, Multiobjective stacking
sequence optimization for laminated composite structures, Composites Science
and Technology 69 (7-8) (2009) 983–990.

[130] A. Vosoughi, H. D. Forkhorji, H. Roohbakhsh, Maximum fundamental fre-
quency of thick laminated composite plates by a hybrid optimization method,
Composites Part B: Engineering 86 (2016) 254–260.

[131] L. Aydin, O. Aydin, H. S. Artem, A. Mert, Design of dimensionally stable
composites using efficient global optimization method, Proceedings of the In-
stitution of Mechanical Engineers, Part L: Journal of Materials: Design and
Applications 233 (2) (2019) 156–168.

[132] A. R. Setoodeh, M. Shojaee, Critical buckling load optimization of functionally
graded carbon nanotube-reinforced laminated composite quadrilateral plates,
Polymer Composites 39 (2018) E853–E868. doi:10.1002/pc.24289.

[133] T. Vo-Duy, T. Truong-Thi, V. Ho-Huu, T. Nguyen-Thoi, Frequency opti-
mization of laminated functionally graded carbon nanotube reinforced com-
posite quadrilateral plates using smoothed FEM and evolution algorithm,
Journal of Composite Materials 52 (14) (2018) 1971–1986. doi:10.1177/
0021998317737831.

[134] K. Torabi, H. Afshari, Optimization of flutter boundaries of cantilevered trape-
zoidal functionally graded sandwich plates, Journal of Sandwich Structures
and Materials 21 (2) (2019) 503–531. doi:10.1177/1099636217697492.

[135] Q. X. Lieu, J. Lee, D. Lee, S. Lee, D. Kim, J. Lee, Shape and size opti-
mization of functionally graded sandwich plates using isogeometric analysis
and adaptive hybrid evolutionary firefly algorithm, Thin-Walled Structures
124 (November 2017) (2018) 588–604. doi:10.1016/j.tws.2017.11.054.
URL https://doi.org/10.1016/j.tws.2017.11.054

92

https://doi.org/10.1002/pc.24289
https://doi.org/10.1177/0021998317737831
https://doi.org/10.1177/0021998317737831
https://doi.org/10.1177/1099636217697492
https://doi.org/10.1016/j.tws.2017.11.054
https://doi.org/10.1016/j.tws.2017.11.054
https://doi.org/10.1016/j.tws.2017.11.054
https://doi.org/10.1016/j.tws.2017.11.054
https://doi.org/10.1016/j.tws.2017.11.054


[136] M. Ashjari, M. R. Khoshravan, Multi-objective optimization of a functionally
graded sandwich panel under mechanical loading in the presence of stress
constraint, Journal of the Mechanical Behavior of Materials 26 (3-4) (2017)
79–93. doi:10.1515/jmbm-2017-0017.

[137] J. H. Affdl, J. Kardos, The halpin-tsai equations: a review, Polymer Engineer-
ing & Science 16 (5) (1976) 344–352.

[138] E. B. Becker, G. F. Carey, J. T. Oden, Finite elements, an introduction:
Volume i., ., 258 (1981) 1981.

[139] Y. Benveniste, A new approach to the application of mori-tanaka’s theory in
composite materials, Mechanics of materials 6 (2) (1987) 147–157.

[140] S. Kelsey, R. Gellatly, B. Clark, The Shear Modulus of Foil Honeycomb Cores,
Aircraft Engineering and Aerospace Technology 30 (10) (1958) 294–302. doi:
10.1108/eb033026.

[141] W. Q. Sun, W. Cheng, Finite element model updating of honeycomb sand-
wich plates using a response surface model and global optimization tech-
nique, Structural and Multidisciplinary Optimization 55 (1) (2017) 121–139.
doi:10.1007/s00158-016-1479-1.
URL http://dx.doi.org/10.1007/s00158-016-1479-1

[142] J. Klintworth, W. Stronge, Elasto-plastic yield limits and deformation laws
for transversely crushed honeycombs, International Journal of Mechanical Sci-
ences 30 (3-4) (1988) 273–292.

[143] F. Scarpa, G. Tomlinson, Theoretical characteristics of the vibration of sand-
wich plates with in-plane negative Poisson’s ratio values, Journal of Sound
and Vibration 230 (1) (2000) 45–67. doi:10.1006/jsvi.1999.2600.

[144] M. Grediac, A finite element study of the transverse shear in honeycomb
cores, International Journal of Solids and Structures 30 (13) (1993) 1777–1788.
doi:10.1016/0020-7683(93)90233-W.

[145] J. Zhang, M. F. Ashby, The out-of-plane properties of honeycombs, In-
ternational Journal of Mechanical Sciences 34 (6) (1992) 475–489. doi:
10.1016/0020-7403(92)90013-7.

[146] J.N. Reddy, Mechanics of laminated composite plates and shells: theory and
analysis (2003). doi:10.1007/978-1-4471-0095-9.

[147] B. Bediz, S. Aksoy, A spectral-Tchebychev solution for three-dimensional dy-
namics of curved beams under mixed boundary conditions, Journal of Sound
and Vibration 413 (2018) 26–40. doi:10.1016/j.jsv.2017.10.006.
URL http://dx.doi.org/10.1016/j.jsv.2017.10.006

[148] D. Gottlieb, S. A. Orszag, Numerical analysis of spectral methods: theory and
applications, SIAM, 1977.

93

https://doi.org/10.1515/jmbm-2017-0017
https://doi.org/10.1108/eb033026
https://doi.org/10.1108/eb033026
http://dx.doi.org/10.1007/s00158-016-1479-1
http://dx.doi.org/10.1007/s00158-016-1479-1
http://dx.doi.org/10.1007/s00158-016-1479-1
https://doi.org/10.1007/s00158-016-1479-1
http://dx.doi.org/10.1007/s00158-016-1479-1
https://doi.org/10.1006/jsvi.1999.2600
https://doi.org/10.1016/0020-7683(93)90233-W
https://doi.org/10.1016/0020-7403(92)90013-7
https://doi.org/10.1016/0020-7403(92)90013-7
https://doi.org/10.1007/978-1-4471-0095-9
http://dx.doi.org/10.1016/j.jsv.2017.10.006
http://dx.doi.org/10.1016/j.jsv.2017.10.006
https://doi.org/10.1016/j.jsv.2017.10.006
http://dx.doi.org/10.1016/j.jsv.2017.10.006


[149] R. Pasquetti, F. Rapetti, Spectral element methods on triangles and quadrilat-
erals: comparisons and applications, Journal of Computational Physics 198 (1)
(2004) 349–362.

[150] S. Filiz, B. Bediz, L. A. Romero, O. B. Ozdoganlar, A spectral-Tchebychev so-
lution for three-dimensional vibrations of parallelepipeds under mixed bound-
ary conditions, Journal of applied mechanics 79 (5) (2012).

[151] S. Filiz, B. Bediz, L. Romero, O. B. Ozdoganlar, Three dimensional dynamics
of pretwisted beams: A spectral-tchebychev solution, Journal of Sound and
Vibration 333 (10) (2014) 2823–2839.

[152] B. Bediz, U. Kumar, T. L. Schmitz, O. B. Ozdoganlar, Modeling and exper-
imentation for three-dimensional dynamics of endmills, International Journal
of Machine Tools and Manufacture 53 (1) (2012) 39–50.

[153] B. W. Bader, T. G. Kolda, Algorithm 862: Matlab tensor classes for fast
algorithm prototyping, ACM Transactions on Mathematical Software (TOMS)
32 (4) (2006) 635–653.

[154] B. W. Bader, T. G. Kolda, et al., Matlab tensor toolbox version 2.5, Available
online, January 7 (2012).

[155] Y. Xue, G. Jin, X. Ma, H. Chen, T. Ye, M. Chen, Y. Zhang, Free vibra-
tion analysis of porous plates with porosity distributions in the thickness and
in-plane directions using isogeometric approach, International Journal of Me-
chanical Sciences 152 (2019) 346–362.

[156] L.-K. Yao, B. He, Y. Zhang, W. Zhou, Semi-analytical finite strip transfer
matrix method for buckling analysis of rectangular thin plates, Mathematical
Problems in Engineering 2015 (2015).

[157] N. M. Barkoula, B. Alcock, N. O. Cabrera, T. Peijs, Flame-Retardancy Prop-
erties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Mag-
nesium Hydroxide in Combination with Graphene, Polymers and Polymer
Composites 16 (2) (2008) 101–113. arXiv:1206.4529, doi:10.1002/pc.

[158] R. J. Allemang, The modal assurance criterion–twenty years of use and abuse,
Sound and vibration 37 (8) (2003) 14–23.

[159] R. Hooke, T. A. Jeeves, “Direct Search” Solution of Numerical and Statistical
Problems, Journal of the ACM (JACM) 8 (2) (1961) 212–229. doi:10.1145/
321062.321069.

[160] M. Wetter, J. Wright, Comparison of a Generalized Pattern Search and a
Genetic Algorithm Optimization Method, Ibpsa (2003) 1401–1408.

[161] A. Aghakhani, P. L. Motlagh, B. Bediz, I. Basdogan, A general electromechan-
ical model for plates with integrated piezo-patches using spectral-tchebychev
method, Journal of Sound and Vibration 458 (2019) 74–88.

94

http://arxiv.org/abs/1206.4529
https://doi.org/10.1002/pc
https://doi.org/10.1145/321062.321069
https://doi.org/10.1145/321062.321069


[162] S. Alan, B. Bediz, A novel electromechanical spectral element method for
piezoelectric energy harvester plates, Journal of Sound and Vibration 505
(2021) 116139.

[163] G. Serhat, M. R. Anamagh, B. Bediz, I. Basdogan, Dynamic analysis of doubly
curved composite panels using lamination parameters and spectral-tchebychev
method, Computers & Structures 239 (2020) 106294.

[164] P. L. Motlagh, M. R. Anamagh, B. Bediz, I. Basdogan, Electromechanical
analysis of functionally graded panels with surface-integrated piezo-patches
for optimal energy harvesting, Composite Structures 263 (2021) 113714.

[165] S. Lotfan, M. R. Anamagh, B. Bediz, A general higher-order model for vi-
bration analysis of axially moving doubly-curved panels/shells, Thin-Walled
Structures 164 (2021) 107813.

95



APPENDIX A

The in-plane geometric information of the arbitrary cross-sections in the third case
study is given in Fig. A.1. To map the arbitrary cross-section into a simple rect-
angular cross-section using Eq. (2.32), a fourth order polynomial mapping is used.
As shown in Fig. A.1, fourth order polynomial mapping necessitates 25 sampling
points.

1 5

8

21
18

23

12

617

24

20

16

2139

22

19

711154 3

14

25
10

1

5

8

21
18

23

12

6

17

24

20

16

2

13
9

22

19

7

11

15

4 3

14

25
10

Figure A.1 Coordinates of the arbitrary in-plane cross-section geometry used in
the case studies: (i) tapered geometry (top figure), (ii) complex-curved geometry

(bottom figure)

Points 1, 2, 3, and 4 in Fig. A.1 correspond to the four edges of the rectangular cross-
section as seen in Fig. 2.6. Table A.1 shows the x and y positions of each mapping
point used in this study. The details of the mapping procedure is described in detail
in [107]. Note that the accuracy of the cross-sectional mapping highly depends
on the selection of the mapping points and the order of the polynomial mapping;
however, in this study no attempt has been made to obtain the optimum mapping.
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Table A.1 Positions (x and y coordinates) of the 25 sampling points used to map
the complex cross-section into a simple rectangular cross-section.

Point # Tapered Geometry Curved Geometry
x [m] y [m] x [m] y [m]

1 -3 0 -1.5 -1
2 3 0 1.5 -1
3 1 5 1.5 1
4 -1 5 -1.5 1
5 -1.413 0 -0.760 -0.813
6 2.410 1.490 1.868 -0.559
7 0.583 5 0.760 0.813
8 -1.427 3.932 -1.868 0.559
9 0 0 0 -0.750
10 1.893 2.766 2 0
11 0 5 0 0.750
12 -1.893 2.766 -2 0
13 1.413 0 0.760 -0.813
14 1.427 3.932 1.868 0.559
15 -0.583 5 -0.760 0.813
16 -2.410 1.490 -1.868 -0.559
17 -1.238 1.262 -0.944 -0.465
18 1.238 1.262 0.944 -0.465
19 0.750 3.791 0.944 0.465
20 -0.750 3.791 -0.943 0.434
21 0 1.263 0 -0.434
22 0.970 2.581 1.010 0
23 0 3.777 0 0.434
24 -0.970 2.581 -1.010 0
25 0 2.544 0 0
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