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Abstract

DESIGN OF ACTIVE MAGNETIC BEARING SPINDLES FOR
MICRO-MILLING APPLICATIONS

Kazi Sher Ahmed

Mechatronics Engineering, Master’s Thesis, July 2021

Thesis Supervisor: Assist. Prof. Bekir Bediz

Keywords: Micro-milling, active magnetic bearing, spectral element method,
multiobjective optimization, electromagnetism, surrogate optimization

The application of micro-milling for the fabrication of micro-scale parts/features
from a plethora of materials has found significantly increased usage. In this fabri-
cation process, miniaturization of mechanical components requires smaller machine
tools with ultra-high rotational speeds. However, such rotational speeds complicate
the spindle’s dynamic response and affect the machining process’s quality. Although
contact or air bearings are generally used in micro-milling spindles, active magnetic
bearing is a promising technology because it enables high-speed and contact-free
rotation with active control of the spindle dynamics. Active magnetic bearings are
being extensively studied to provide the benefits of regulated magnetic levitation
and ultra-high speeds to the machining industry with condition monitoring and
disturbance rejection capabilities such as chatter suppression.

The primary objective of this thesis is to design and optimize active magnetic bear-
ing spindles for micro-milling applications and demonstrate a multiobjective op-
timization scheme that can be adapted to different application requirements. To
achieve this objective, we developed an algorithm for the spectral element method
based on the one-dimensional spectral-Chebyshev approach to predict the dynamics
of high-speed spindles. Next, we developed three-dimensional finite element mod-
els for accurate performance analysis of active magnetic bearings. Afterwards, the
bearing performance was optimized using gradient and nongradient-based methods.
Finally, we designed the major components for spindle assembly and identified the
manufacturing methods for the next steps of spindle realization.
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Özet

MIKRO FREZE UYGULAMALARI IÇIN AKTIF MANYETIK YATAK
MILLERININ TASARIMI

Kazi Sher Ahmed

Mekatronik Mühendisliği ,Yüksek Lisans Tezi, Temmuz 2021

Tez Danışmanı: Assist. Prof. Bekir Bediz

Anahtar Kelimeler: Mikro frezeleme, aktif manyetik rulmanlar, spektral eleman
yöntemi, çok amaçlı optimizasyon, elektromanyetizma, vekil optimizasyon

Çok sayıda malzemeden mikro ölçekli parçaların/özelliklerin üretimi için mikro
frezeleme uygulaması, kullanımı önemli ölçüde artırmıştır. Bu üretim sürecinde,
mekanik bileşenlerin minyatürleştirilmesi, ultra yüksek dönüş hızlarına sahip daha
küçük takım tezgahları gerektirir. Ancak, bu tür dönüş hızları iş milinin dinamik
tepkisini zorlaştırır ve işleme sürecinin kalitesini etkiler. Mikro freze iğlerinde genel-
likle temaslı veya havalı yataklar kullanılmasına rağmen, aktif manyetik yatak,
iş mili dinamiklerinin aktif kontrolü ile yüksek hızlı ve temassız dönüş sağladığı
için umut verici bir teknolojidir. Aktif manyetik yataklar, talaş kaldırma gibi du-
rum izleme ve bozulma reddetme yetenekleriyle işleme endüstrisine düzenlenmiş
manyetik kaldırma ve ultra yüksek hızların faydalarını sağlamak için kapsamlı bir
şekilde araştırılmaktadır.

Bu tezin birincil amacı, mikro frezeleme uygulamaları için aktif manyetik yataklı
milleri tasarlamak ve optimize etmek ve farklı uygulama gereksinimlerine uyarlan-
abilen çok amaçlı bir optimizasyon şemasını göstermektir. Bu amaca ulaşmak için,
yüksek hızlı iğlerin dinamiklerini tahmin etmek için tek boyutlu spektral-Chebyshev
yaklaşımına dayanan spektral eleman yöntemi için bir algoritma geliştirdik. Ardın-
dan, aktif manyetik yatakların doğru performans analizi için üç boyutlu sonlu eleman
modelleri geliştirdik. Daha sonra, gradyan ve gradyan tabanlı olmayan yöntemler
kullanılarak rulman performansı optimize edildi. Son olarak, iş mili montajı için
ana bileşenleri tasarladık ve iş mili gerçekleştirmenin sonraki adımları için üretim
yöntemlerini belirledik.
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Chapter 1

Introduction

Chapter 1 discusses the application of micro-milling to address the growing demands
of miniaturized components. It further elaborates on the benefits of using active
magnetic bearing (AMB) in micro-milling spindles. The design and performance
optimization of AMBs aided by finite element (FE) modelling is an important goal
of this thesis.

1.1 Miniaturization and Micro-Machining Processes

There has been an increasing demand for (complex) three-dimensional (3D) compo-
nents with micro-scale features, especially in the fields of bio-engineering, aerospace,
energy conversion, and robotics [1, 2]. Functionality, material savings, small dimen-
sions, and reduced masses motivate the miniaturization of components. In addition
to being a well-established need of industrial sectors, the focus on miniaturization
also aligns with the recently published European Union missions and policies on
climate change [3, 4]. In this context, miniaturized products require less specific
energy.

To fabricate these micro-scale features, various micro-manufacturing techniques/ap-
proaches have been developed. In general micro-manufacturing can be classified into
two types: lithography and non-lithography methods [5]. Within lithography-based
techniques, photolithography is the key fabrication method, but it has certain lim-
itations in terms of material and geometry capabilities. Fabricating complex 3D
(high-aspect) ratio features can be impractical and costly. To address these issues
(i.e. to overcome these limitations), non-lithography methods such as mechani-
cal micromachining are used. Benefits are present in terms of freedom of material
selection, intricate part geometry, relative accuracy, and cost efficiency.
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Mechanical micro-milling, which is basically the scaled-down version of macro-scale
mechanical milling process, is a promising versatile micro-fabrication process for
micro-scale parts/components. This technique can be used to fabricate complex 3D
(free-form) features on a broad range of materials, including polymers, ceramics,
and metals [6–8]. There are three main elements of a micro milling-tool (µMT): (i)
a micro-scale cutting tool (whose diameter can go down to 50 µm), (ii) a miniature
ultra-high-speed (UHS) spindle, and (iii) high-precision stages to provide relative
motion between the workpiece and the cutting tool. Although mechanical micro-
milling is a promising approach, its full potential has not been realized yet since it
is not that straightforward to relate the process parameters with the performance
metrics due to the size effects.

One of the main issues that hinders the exploitation of the potentials of this process
is arising from the bearings that are used in commercially available systems. Ini-
tially, contact bearing systems are used in miniature spindles, however, due to the
continuous contact, there are problems such as heating (leads to thermal deforma-
tion) and spindle speed limitations [9]. More recently, air bearings are implemented
and rotational speeds up to 400,000 rpm can be achieved [10]. Although ultra high
rotational speeds can be achieved with air bearings, it is a passive system; thus the
spindle error motions, that are radial, axial, and tilt motions of the spindle) are the
main problems since they leads to low process accuracy.

To overcome these limitations, AMBs seem a promising approach since it allows
high rotation speeds required by the process and high accuracy since it enables
monitoring the process and thereby controlling the micro-tool motions to increase
the positional accuracy [9].

1.2 Active Magnetic Bearings in Micro-Milling Spindles

Micro-milling spindles require relatively very high rotational speeds (above 60,000
rpm) compared to the macro-scale milling machines to provide the same quality of
machining and tool edge cutting speed (i.e., to achieve process quality and efficiency)
[11]. In conventional bearings, the mechanical contact between stator-rotor limits
the rotational speed due to heat generation and deformation. In contrast, AMBs
enable a non-contact, lubrication-free, energy-efficient, and ultra-high speed rotation
with an ability to control the spindle dynamics [12]. Among machining-focused
implementations of AMBs, Kimman et al. [9] realized a miniature milling spindle
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supported by permanent magnet (PM) biased homopolar magnetic bearings with a
target speed of 150,000 rpm. The spindle was driven by a commercial permanent
magnet synchronous motor. Park et al. [13] constructed a prototype of an air-
turbine driven miniature spindle that reached up to 200,000 rpm with a tool orbit
of less than 10 µm. Knospe [14] experimented with two AMB test-rigs for active
suppression of machining chatter.

Typical AMB-supported spindles involve slender and stepped rotors. The stepped
segments of the rotor are necessary to accommodate spatially separated components
including radial bearings, sensors, backup bearings, axial bearing, and motor drive.
Many AMB spindles are based on this configuration. However, in line with minia-
turization of micro-machining devices, a significant reduction in rotor slenderness
shifts the flexural (bending) resonances out of the operating range; thereby prevents
resonance due to machining excitation [15]. Such a design necessitates a compact
integration of the spindle components with a combined radial-axial AMB as con-
ceived by Lee [16] and later analysed by Kimman [15] for a five-degree-of-freedom
(5-DOF) control of a short rotor.

1.3 Modeling Methods for Active Magnetic Bearing Spindles

This section describes the modelling techniques for the rotor and bearing components
of the spindle.

1.3.1 Modeling the rotor dynamics

The dynamic behavior of the machine tool system reflected at the tool tip dictates
the achievable process efficiency and quality. One of the critical elements that affect
the tool tip dynamics is the spindle. Furthermore, as mentioned above, the micro-
milling spindles rotate at relatively high rotational speeds, the dynamics of the
system may change significantly as a function of the spindle speed. Therefore, to
design a micro-milling spindle, the speed-dependent dynamics of the spindle rotor
needs to be analyzed to accurately predict the response of the system and decrease
the unwanted vibrations that may limit the process quality and productivity.

The rotor has a sectioned geometry composed of simple circular cross-sections lead-
ing to uncoupled axial, torsional, and bending motions [17]. Therefore, in the lit-
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erature, common beam-based methods such as Euler-Bernoulli beam approach [18]
and Timoshenko beam approach [19], are used to model the rotordynamics (that is
basically a spinning beam). The beam-based methods can be classified based on the
kinematic equations used for the deformation of the beam. Note that the rotor of
the micromilling spindles is composed of stubby sections, therefore Euler-Bernoulli
beam approach may not capture the dynamics of the rotor accurately since the
shear and rotary effects are not included. Thus, Timoshenko beam approach is the
prevailing method used in literature. Cao and Altintas [20], using finite elements,
developed a general modeling approach including the centrifugal force and gyro-
scopic effects to determine the spindle dynamics. Although the FE approach leads
to accurate results, its main drawbacks are the mesh convergence and computational
burden [21]. To overcome the limitations of FE methods, Erturk et al. [22, 23] used
the Timoshenko beam modeling approach to model the spindle dynamics using a
receptance coupling approach.

To increase the computational efficiency in modeling approaches, series based meth-
ods are getting popular such as Differential Quadrature Method [24, 25] and spectral
Chebyshev approach [26, 27]. If the polynomials used in expressing the deflections
have exponential convergence such as Fourier series and Chebyshev polynomials, ac-
curate results can be obtained using very few degrees of freedom [28]. However, the
main drawback of the spectral methods is that the geometry should be continuous.
To overcome this limitation, in this study, we developed a spectral element method
based on Timoshenko beam modeling approach. Thus, each segment of the rotor
can be modeled individually and the system matrices of each section can be used to
obtain the overall system matrices to analyze the speed-dependent dynamics of the
system.

1.3.2 Modeling active magnetic bearings

Conventionally, AMBs have been modelled analytically, and the necessary dimen-
sions are determined based on certain rules of thumb accepted in industry and
academia [29]. In most of the analytical models, it is assumed that no leakage flux
and hysteresis occur. Furthermore, infinite permeability of iron and absence of flux
saturation are commonly assumed in the modelling process. These assumptions, cou-
pled with correction factors based on experience or experiments, have been largely
accepted in design and optimization of AMBs [30]. For instance, Han et al. [30]
optimized a combined radial-axial magnetic bearing for a compressor application
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using an integrated optimization method. Another important study was carried out
by Le and Wang [31] where they considered the eddy current and leakage effects
while optimizing a combined magnetic bearing for high-speed motors following a
weighted sum approach and sequential quadratic programming algorithm.

While analytical models are computationally inexpensive in optimization studies,
they are inaccurate in compact designs where flux leakage, nonlinear nature of mag-
netic flux density-magnetic field intensity (B-H) curves, and saturation effects are
prominent enough to affect the bearing performance. In the short rotor design
analysed by Kimman [15], the air-gap flux densities from analytical and FE mod-
els differed as much as 50%, rendering the assumptions incorrect and mandating a
more accurate model, such as an FE model. In this regard, Ding et al. [32] pre-
sented an optimal design of a radial bearing for hard disk drives. Later, Cheng et
al. [33] optimized a hybrid magnetic bearing for heart pumps using a 3D FE-based
optimization.

1.4 FE-Based Multi-Objective Optimization

In favor of the increased accuracy needed for a compact design where flux leakage
and saturation effects are not negligible, FE model is preferred to aid the per-
formance optimization. The initial design is developed in response to high-speed
milling requirements (defined in detail in Section 4.1), and to accommodate motor
integration as an important next step. The initial sizing ensures that the magnetic
flux paths do not become saturated when maximum current excitation is applied.

1.5 Thesis Objectives and Contributions

The mechanical micromachining requires ultra-high rotational speeds to provide
acceptable quality for machined parts. The use of conventional bearings in mi-
cromilling machines limits achievable speeds due to thermal deformation. AMB is
a promising technology to achieve ultra-high speeds and positional accuracy with-
out stator-rotor contact. Advantages of AMBs include low machine maintenance
costs, active compensation of disturbances during operation, and process/condition
monitoring.

The conventionally used analytical AMB design methods are less accurate when
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compared with 3D FE models, particularly for compact designs where flux leakage,
non-linear magnetization, and saturation effects are prominent. Moreover, several
parameters define the performance of an AMB. These performance parameters can
have different hierarchy levels for different target applications. This guides to the
objectives of this thesis to design active magnetic bearing spindles based
on accurate three-dimensional finite element models and demonstrate an
optimization scheme which can be adapted based on different application
requirements.

To meet the objectives, the main contributions of this thesis are focused on the design
and performance optimization of AMB-supported micro-milling spindles. Specifi-
cally:

A. Development of spectral element method based on one-dimensional (1D)
spectral-Chebyshev (ST) approach to predict the dynamics of high-speed spin-
dles. This element approach also allows convenient placement of components
such as bearings and discs on the rotor.

B. Development of 3D FE-based models for accurate performance analysis of
AMBs.

C. FE-based performance optimization of bearing using gradient and nongradient
optimization methods.

D. Design of spindle assembly, identification of manufacturing methods, and de-
velopment of machining drawings for the next step of spindle realization.

1.6 Thesis Outline

The thesis is organized as follows:

• A precise prediction of the dynamic response of high-speed rotors in micro-
milling spindles is of paramount importance at the design stage. To be able to
successfully predict this rotordynamic response and make design adjustments
accordingly, Chapter 2 describes an spectral element method based on Timo-
shenko beam theory. It further explains the code algorithm to model stepped
rotors with discs and bearings.

• Considering several AMB topologies suited for different applications, Chap-
ter 3 justifies two different topologies for micro-milling applications: (1) minia-
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turized combined radial-axial bearing spindle and (2) relatively larger, slender
rotor spindle with separate axial and radial bearings. The analytical and fi-
nite element modelling is presented next, which forms the basis for design and
optimization process in later chapters.

• Chapter 4 establishes micro-milling application requirements for the initial
design and subsequent multiobjective performance optimization of AMBs.
Based on the models developed in Chapter 3, the miniaturised spindle topol-
ogy is dimensioned to meet the application requirements. Afterwards, single
and multiobjective optimizations, using gradient and nongradient methods,
are performed to improve the performance of bearings.

• With miniaturized spindle dimensioned and optimized, we now treat a slightly
larger spindle with a slender rotor. Chapter 5 presents the design of major
components of such a spindle with a focus on manufacturing as an immediate
next step building on this thesis.

• Finally, the thesis is concluded in Chapter 6 with recommendations on man-
ufacturing and experimentation for future work.
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Chapter 2

Spectral Element Modelling for Rotordynamical
Analysis

A high-speed rotor is one of the primary elements of a micromilling spindle. The
speed-dependent dynamics become more prominent and vibration issues are ampli-
fied at higher rotational speeds. Therefore, a precise prediction of the rotordynamic
response is necessary at the design phase. This predicted response, through an
accurate model, enables design modifications for a stable rotor function within op-
erating speeds. Additionally, in AMB-supported rotor systems, this model aids the
development of model-based levitation controllers [34].

While FE models are highly accurate for rotordynamics, they carry a computa-
tional cost when the structure becomes complex [26]. For increased computational
efficiency, series-based methods such as differential quadrature method and spectral
Chebyshev approach are gaining traction. As explained in Section 1.3.1, we devel-
oped an algorithm for spectral element method using Timoshenko beam theory and
exponentially converging Chebyshev polynomials. This allowed us to conveniently
integrate system components such as bearings and discs in the model for the analy-
sis of speed-dependent system dynamics. This chapter describes a summary of the
Timoshenko beam equations and the details of the spectral element method.

2.1 Timoshenko Beam Theory

As opposed to Euler-Bernoulli beam model, Timoshenko beam model includes shear
deformation and rotational inertia effects. This makes the latter more accurate for
determining the dynamic response at higher frequencies and for beams with lower
slenderness (ratio of the square of beam length and radius of gyration of the cross-
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section) [35].

In this model based on one-dimensional spectral-Chebyshev approach, bending, ax-
ial, and torsional deformations are taken into account. The integral form of the
boundary value problem (IBVP) is derived using the extended Hamilton’s principle
[36] which is stated as

∫ t2

t1
(δT − δV + δWnc) dt= 0, δqi = 0 at t= t1, t2 (2.1)

where T , V , and Wnc are the kinetic energy, strain (potential) energy, and the work
done by non-conservative forces, respectively. Two instants of time are given by t1
and t2. The generalised coordinate qi corresponds to the ith term of the displacement
vector

q = {wx; wy; wz; ψx; ψy; ψz} (2.2)

which packs six degrees of freedom: three linear displacements and three rotational
displacements about the cross-sectional axis. For a beam based on Timoshenko
theory, the strain (potential) energy for an axisymmetric beam is written as

V = 1
2

∫ L

0

EIxx(z)
(
∂ψx
∂z

)2
+EIyy(z)

(
∂ψy
∂z

)2

+ 2EIxy
(
∂ψx
∂z

)(
∂ψx
∂z

)

+kA(z)G
(∂wx

∂z
−ψy

)2
+
(
∂wy
∂z

+ψx

)2
+EA(z)

(
∂wz
∂z

)2
+GJ(z)

(
∂ψz
∂z

)2dz

(2.3)

where L is beam’s length, E is the Young’s modulus, Ixx(z) is cross-sectional moment
of inertia with respect to x axis, Iyy(z) is cross-sectional moment of inertia with
respect to y axis, Ixy(z) is the product of inertia, k is the shear constant, A(z) is
beam’s area along the z axis, G is a dimensionless shear modulus based on cross-
section geometry, and J(z) is the polar moment of inertia.

Next, the kinetic energy is formulated as the sum of translational Tt and rotational
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Tr terms (to capture rotary effects) and is given by

T = Tr +Tt

= 1
2

∫ L

0
ρ
[
Ixx(z)ω2

1 + 2Ixyω1ω2 + Iyy(z)ω2
2 +J(z)ω2

3
]
dz

+
1
2

∫ L

0
ρA(z)(vD ·vD)dz

(2.4)

where ρ is beam’s density, vD is velocity of any point along the length of beam
(bold letter denoting a vector quantity), w1, w2, and w3 are the components of
rotational velocity vector wr applied to tool cross-section centre on the t1t2t3 frame
undergoing rotary vibrations (refer to Fig. S12 in supplementary material of Bediz
and Ozdoganlar [17]). Next, the velocity vector vD is derived in terms of deflection
and rotational velocities. For details, the readers are referred to Bediz et al. [26]
and Filiz et al. [37].

The work done by non-conservative forces is stated as

Wnc =
∫ L

0

(
fT
x wx+fT

y wy +fT
z wz

)
dz (2.5)

where fx, fy, and fz are external forces aligned in x, y, and z directions, respectively.

With the kinetic energy, strain energy, and the work done by non-conservative forces
derived, we use the extended Hamilton’s principle given in Eq. (2.1) to obtain the
IBVP for 1D beam as

∫ t2

t1

{∫ L

0

{
ρq̈TNMδq + 2ρΩq̇TNCcorδq +qTNKδq

−ρΩ2qTNKspinδq−ρΩ2qip
TNFcδq−nT

Fcδq

−fT
x δwx−fT

y δwy−fT
z δwz

}
dz
}

dt= 0

(2.6)

where qip = {0; 0; z; 0; 0; 0} is the vector of initial positions for each point along the
beam axis; NM and NK represent the operator system matrices for mass and stiffness
matrices, respectively; NCcor NKspin , and NFc are operator system matrices related
to rotational effects of the Coriolis forces, the spin-softening (centrifugal-softening)
effect, and the centrifugal forces, respectively; and nFc is the vector arising from
the centrifugal forces. These operator system matrices are given in supplementary
material in Bediz and Ozdoganlar [17].

10



2.2 One-Dimensional Spectral-Chebyshev Technique

For solution of the derived IBVP, 1D spectral-Chebyshev technique [27] will be used
to spatially discretize Eq. (2.6). This involves the use of Chebyshev series expansion
with representation of the derivatives and inner products as Chebyshev matrices.
Chebyshev polynomials are defined as a set of recursive and orthogonal polynomials
[38] given as

Tk(x) = cos
(
k cos−1(x)

)
for integer k = 0,1,2, · · · (2.7)

These polynomials (functions) are defined for all x values but are a stable repre-
sentation (form a complete set) only for the interval (−1,1). In other words, any
square-integrable function can be expressed in an exact manner by an infinite series
expansion with Chebyshev polynomials as the basis. However, in applications such
as modelling a beam, the physical dimensions may be better expressed in the in-
terval (l1, l2) instead of (−1,1). Therefore, a linear mapping (scaling) is established
between the two intervals x ∈ (l1, l2) and ξ ∈ (−1,1) as

x(ξ) = `2− `1
2 ξ+ `1 + `2

2 (2.8)

ξ(x) = 2
`2− `1

x− `1 + `2
`2− `1

(2.9)

This allows us to use the scaled Chebyshev polynomials Tk(x) = Tk(ξ(x)) when
considering functions on the interval (l1, l2). Now a function y(x) ∈ (l1, l2) can be
written using Chebyshev series expansion as

y(x) =
∞∑
k=0

akTk(x) (2.10)

The coefficients ak in the Chebyshev expansion will decay exponentially with an
increasing value of k if the square-integrable function y(x) is infinitely differentiable
on the interval (l1, l2). Consequently, if a function y(x) is well-behaved (no narrow
spikes or regions with very large derivates) on the interval (l1, l2), a finite number
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of terms can accurately represent the function [27] for numerical calculations as

yN (x) =
N−1∑
k=0

akTk(x) (2.11)

where N is the number of polynomials utilized in the truncated expansion. Due
to the exponential convergence nature of Chebyshev expansion, functions can be
represented accurately with a low number of polynomials and the error from the
truncation can be estimated.

2.3 Gauss-Lobatto Sampling

For calculations, while it is possible to sample a continuous function at N arbitrary
spatial points, the following two sampling approaches are suitable for Chebyshev
polynomials: (1) Gauss-Chebyshev sampling, (2) Gauss-Lobatto sampling. Adopt-
ing the second option, the Gauss-Lobatto sampling points pk are given by:

pk = cos
(

(k−1)π
N −1

)
, k = 1,2,3, · · · ,N (2.12)

With the condition that a function can be represented by N Chebyshev polynomials
and sampled spatially at N points {xk}Nk=1, the Chebyshev expansion coefficients ak
and sampled function points yk = y(xk) can be related with a one-to-one mapping
[27] as



y0

y1
...

yN−1


=


T0 (x0) T1 (x0) · · · τN−1 (x0)
T0 (x1) T1 (x1) · · · τN−1 (x1)

... ... . . . ...
T0 (xN−1) T1 (xN−1) · · · TN−1 (xN−1)





a0

a1
...

aN−1


(2.13)

Expressing this in the matrix form as

y = ΓBa (2.14)

where y, ΓB, and a denote the vector of sampled function, the NxN backward trans-
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formation matrix, and the vector of Chebyshev expansion coefficients, respectively.
Similarly, a forward transformation matrix is given by

a = ΓFy (2.15)

It should be noted that ΓBΓF = ΓFΓB = I, where I is an NxN identity matrix.

2.4 Equation of Motion

We sampled the generalised coordinates defined in the displacement vector q (refer
to Eq. (2.2)) in the spatial domain and represent them using truncated Chebyshev
polynomial expansion as

qi(z, t)∼=
N−1∑
k=0

ai(t)Tk(z) (2.16)

where Tk(z) are the scaled Chebyshev polynomials, N is the number of polynomials
used in the expansion, and ai are time-dependent coefficients of expansion [17]. In a
similar manner to Eqs. (2.14-2.15), the vector of sampled function q and the vector
of expansion coefficients a can be related as

q = ΓBa and a = ΓFq (2.17)

Next, nth spatial derivative of q can be written as

qni = Qnqi (2.18)

where Qn is the nth derivative matrix derived using backward and forward trans-
formation matrices [27]. An inner product of f(x) and g(x) can be written as

∫ b

a
r(x)f(x)g(x)dx= fTVrg (2.19)

where r(x) denotes the weighing function, and Vr is the weighted inner product
matrix [27]. Afterwards, the global matrices can be used to write the discretized
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deflections as

v = [ O I O O O O ] q = Ivq (2.20)

ψz = [ O O O O O I ] q = Iψzq (2.21)

where I and O are NxN identity and zero matrices, respectively. With the de-
flections discretized and applying the derivative and inner product operations, we
derived the equation of motion as

Mq̈ + (C+Ccor) q̇ + (K−Kspin )q = f (2.22)

where M, C, Ccor, K, Kspin, and f are the mass, damping, Coriolis, spin-softening
(centrifugal softening) matrices and the force vector, respectively. Afterwards, the
state-space formulation is used and the eigenvalues and eigenfrequencies of the sys-
tem matrix are obtained to study the speed-dependent dynamics of the system.

2.5 Spectral Element Method Algorithm

Continuing with the results from previous sections, the algorithm of 1D spectral
element method (SEM) for Timoshenko rotating beam is summarised below.

• Rotor geometrical and mechanical properties along with the number of spatial
divisions required for Chebyshev polynomials are defined by the user. Alter-
natively, the number of Chebyshev polynomials can also be determined using
the specified length-to-diameter ratio for each rotor segment (the definition of
segment follows next).

• Next, the rotor is divided into segments. A new segment is defined whenever
the diameter is changed or components such as bearing and discs are present.

• The polar and diametral mass moments of inertia and mass of discs are cal-
culated.

• Next, the numbers of polynomials are calculated for each segment.
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• Based on the number of polynomials and segments, the global system matrices
are declared.

• A segment-by-segment build-up of global matrices takes place in a loop. The
forward and backward transformation matrices, derivative, and inner product
matrices are formed.

• Next, the positions of the degree of freedoms are rearranged so that global
assembly of segment matrices is not complicated.

• Segment stiffness, mass, and Coriolis matrices are filled in and placed at the
right position in the global matrices.

• The loop moves on to the next segment and the aforementioned procedure
repeats.

• Once the global matrices have been formed, the disc and bearing dynamics
are added at the relevant nodal locations.

• Finally, the eigenvalue problem is solved using the command eig in MATLAB.

• The eigenvalues and eigenvectors are postprocessed to get the results including
mode shapes and Campbell diagrams.

2.6 Example Problem

The rotor geometry used by Ahmed and Ahmad [39] is modelled using the SEM
code and the schematic is shown in Fig. 2.1. As noticed, this rotor consists of a
stepped shaft with three discs and two bearings.

The elastic modulus of shaft is kept at 2.07x1011 N/m2. The density of rotor and disc
material is 7.83 kg/m3. A Poisson’s ratio of 0.33, shear modulus of 8.27x1010 N/m2,
and shear factor of 1.128 are used. To determined the number of polynomials for
each segment, a length-to-diameter ratio of 0.4 is used.

As a example analysis, the Campbell diagram to study the speed-dependent dynam-
ics of the rotor is shown in Fig. 2.2
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Figure 2.1: Rotor schematic with shaft sections in red and three discs in blue. The
bearing locations are represented with pink dash-dotted lines.
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Figure 2.2: Campbell diagram showing variation of natural frequencies in cycles
per minutes with the rotor speed in revolutions per minute. The dashed lines show

the backward modes. 1X speed line is shown in black dashes.
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2.7 Summary

This chapter elaborates on an spectral element model method and algorithm based
on Timoshenko beam theory and Chebyshev polynomials. The algorithm of the
developed code summarizes the primary steps from user input to the final evaluation
of eigenvalue problem. The approach divides the rotor/beam into segments based on
change in diameter and bearing/disc locations. Afterwards, a segment-by-segment
buildup is initiated to complete the global mass, stiffness, and Coriolis matrices for
the eigenvalue problem. An example problem is modelled and its Campbell diagram
is presented.
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Chapter 3

Active Magnetic Bearing Topologies and
Modelling

This chapter describes the two active magnetic bearing topologies for micro-milling
spindles considered in this thesis, along with analytical and finite element method
approaches.

3.1 Miniaturized Combined Radial-Axial Bearing

Compared to conventional magnetic bearing configurations with slender rotors, as
described in Section 3.2, a considerable reduction in rotor length enables a miniatur-
ized arrangement of radial and axial bearing stators. As explained in Section 1.2,
a reduction in rotor slenderness leads to increased flexural (bending) resonances
providing the following benefits: (1) the spindle can be operated at higher speeds
without overlap of operating speed and flexural modes. The forward rigid conical
mode is also avoided in the operation range (refer to Section 4.3.1), and (2) a higher
flexural mode prevents resonance due to machining excitations.

3.1.1 Bearing topology

Adopting a miniaturized bearing arrangement, the combined radial-axial bearing
topology adopted from Lee [16] showing the bias and control flux paths is depicted
in Fig. 3.1. It consists of a short rotor supported by a permanent magnet
(PM)-biased combined radial-axial magnetic bearing. The PM rings with radially
inward magnetization provide bias flux for both radial and axial stators. With
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a relative magnetic permeability almost equal to that of the air, the PM rings
almost separate the paths of axial and radial control fluxes. For the axial control
of the rotor, the control flux generated by the axial coils travels across the rotor
axially. The empty space within the axial stator is kept for motor integration for
the future work related to this study. The radial control flux is intended to stay
within the radial stators. For the radial stator, a homopolar topology is adopted.
In this homopolar arrangement, the rotor segments facing the radial stator do
not experience a change in magnetic polarity. This leads to reduced eddy current
losses in the rotor, especially in high-speed applications where the centrifugal
stresses discourage the use of the laminated rotors. The material selection for all
components is justified in Section 4.2.

Figure 3.1: Half-section view of the bearing topology showing bias and control flux
directions.

3.1.2 Finite element model

We used the Rotating Machinery, Magnetic (rmm) interface of COMSOL AC/DC
module to develop a three-dimensional (3D) finite element (FE) model of the bearing
arrangement to aid the initial design and the optimization process. This interface
uses the moving mesh approach to model the rotations and solves Maxwell’s equa-
tions using a combination of magnetic vector and scalar potentials as dependent
variables [40]. In vector potential formulation, the magnetic vector potential A is
linked to magnetic flux density B and electric field E as:
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E =−∂A
∂t

(3.1)

B =∇ × A (3.2)

These definitions of fields E and B fulfil the two Maxwell’s equations: Faraday’s law
and magnetic Gauss’ law defined in Eqs. (3.3) and (3.4), respectively.

∇ × E =−∂B
∂t

(3.3)

∇ · B = 0 (3.4)

The equation to be solved is Ampere’s law, given in Eq. (3.5), which equates the
curl of magnetic field intensity H to the current density J.

∇ × H = J (3.5)

In scalar potential formulation, the magnetic field intensity is defined as the gradient
of magnetic scalar potential Vm in Eq. (3.6). This results in Ampere’s law being
automatically fulfilled and afterwards magnetic Gauss’ law is solved.

H =−∇ Vm (3.6)

Considering that the magnetic bearing has electrically conductive and non-
conductive components, we opted for a mixed formulation in COMSOL. Here, the
conductive domains are assigned vector potential formulation (implemented by Am-
pere’s Law node) and the non-conductive ones are assigned scalar potential formula-
tion (implemented by Magnetic Flux Conservation node). All bearing components
were divided into rotating and stationary domains, with a boundary cut separating
both domains. All the flux carrying components were enclosed in airgap so that flux
leakage and fringing effects can be studied. The radial and axial airgaps around
the boundary cut were assigned scalar potential formulation, and a Continuity pair
feature enforced the continuity of electromagnetic field. The constitutive relations
in the form of built-in B-H curves were used to include non-linear magnetization
and saturation effects in the model. For improved numerical stability, Gauge Fixing
for A-Field feature was applied on all domains with vector potential formulation. A
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unique solution for magnetic scalar potential is needed for solver convergence, hence
the Zero Magnetic Scalar Potential node was applied at a point on each side of the
boundary cut. For the linear system solver, multifrontal massively parallel sparse
direct solver (MUMPS) was selected. To improve simulation performance, the linear
discretization order of FE mesh was selected for both magnetic vector and scalar
potential regions. For more accuracy, a relative tolerance of 1x10−5 was selected for
the nonlinear solver.

Finer tetrahedral elements were used for bearing components, while a less fine mesh
was used for the surrounding air region. Refining the mesh further resulted in rotor
forces within 0.8% of that obtained from the mesh size used for this study. Thus, the
constructed model instilled confidence in the solution accuracy and ensured reason-
able solution times in the optimization studies. The mesh depicted in Fig. 3.2 (a)
shows the finer elements used for rotating and force calculation domains. Fig. 3.2
(b) is the mesh element quality histogram based on the quality measure of skewness.
The horizontal axis has quality ranging between 0.0-1.0, where 0.0 reflects a degen-
erated element and 1.0 refers to the best possible element; the vertical axis has the
number of elements of similar quality. This histogram shows an overall acceptable
quality of the mesh, since most of the elements stay in the higher quality range.

More FE model details relating to the optimization objective functions are given in
Section 4.4.1.
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Figure 3.2: (a) Tetrahedral mesh with finer elements at force calculation domains,
(b) element quality histogram based on skewness
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3.2 Conventional Magnetic Bearings

In many applications, separate radial and axial magnetic bearings are used. Such
configurations are easier to manufacture and control system design is simpler when
compared with miniaturized combined bearing configurations. In this section, we
present radial and axial bearing models based on the finite element method.

3.2.1 Radial bearing

Similarly to the combined bearing arrangement, a PM-biased homopolar topology
is selected for radial bearing. In this arrangement, the rotor segments facing the
bearing do not experience a change in magnetic polarity. This leads to reduced
eddy current losses in the rotor, especially in high-speed applications where the cen-
trifugal stresses discourage the use of the laminated rotors. The bearing topology is
presented in Fig. 3.3 with dashed lines showing the magnetic flux paths. Two stators
have eight poles in total; four for each stator. Four PMs are used to provide the bias
flux. The control coils, excited with current from amplifier, provide the control flux.
Observing the directions of both fluxes (bias and control), we notice that on one side
of the rotor, the fluxes will be added leading to a higher attractive force compared to
the other side where the fluxes will be subtracted. In this way, varying the direction
of the control flux through control action can change the direction of the net force
acting on the rotor to achieve stable levitation. The control flux travels within the
stator and radially in and out of the rotor. The connection between PMs and stator
was made by connectors having a good magnetic performance. The non-magnetic
housings were used to hold the assembly together.

The development of the finite element method is treated next.

3.2.1.1 Finite element model

The 3D FE model used for for this radial bearing uses the same COMSOL AC/DC
module and rmm interface from Section 3.1.2. The assignment of the domains to
scalar potential and vector potential formulations was done in the same manner
as done for the miniaturized combined bearing. Therefore, only mesh details are
discussed in this section.
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Figure 3.3: Half-section view of the radial bearing topology with bias and control
flux directions in dashed lines.

As done before with miniaturized combined topology, finer tetrahedral elements were
used for bearing components, while a less fine mesh was used for the surrounding
air region. Refining the mesh further resulted in rotor forces within 0.8-1.0% of
that obtained from the mesh size used for this study. This led to confidence in
the solution accuracy and ensured reasonable solution time. The mesh shown in
Fig. 3.4 (a) contains finer elements used for rotating and force calculation domains.
Fig. 3.4 (b) is the mesh element quality histogram based on the quality measure of
skewness. The horizontal axis has quality ranging between 0.0-1.0, where 0.0 reflects
a degenerated element and 1.0 refers to the best possible element; the vertical axis
has the number of elements of similar quality. This histogram shows an overall
acceptable quality of the mesh, since most of the elements stay in the higher quality
range.
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Figure 3.4: (a) Tetrahedral mesh with finer elements for force calculation domains,
(b) Element quality histogram based on quality measure of skewness

3.2.2 Axial thrust bearing

The derivation of thrust bearing force is treated in this section to dimension the
bearing. The force generated in a reluctance actuator is given by:

fR = µon2Api2

4l2a
(3.7)

where µo is the relative permeability of air, n is the number of winding turns, Ap

is the area of each pole, i is the current, and la is airgap length. For a detailed
derivation of the reluctance force, the reader is referred to Kimman [15].

Since the electromagnetic actuators generate an attractive force, a second actuator,
positioned opposite to the first, is needed for levitation control and compensation
of external forces. Such can be called a double-sided configuration. We assume
n and Ap are same for both actuators, la1 is the airgap length between rotor and
actuator 1, la2 is the airgap length between rotor and actuator 2, and i1 and i2 are
the winding currents in actuators 1 and 2, respectively. The net force F can be
written as:

F = fR1−fR2 = µon2Ap
4

(
i21
l2a1
− i22
l2a2

)
(3.8)

As noticed in Eq. (3.8), the dependence of reluctance force on currents and airgap
lengths is nonlinear. Particularly, the quadratic dependence of force on current
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leads to a low force slew rate (rate of change of actuator force) when the coils
are not excited by any current [41]. To linearize this relation between force and
current, the winding current are divided into two components, namely bias current
ib and perturbation current ip. One of the actuation methods for a double-sided
configuration is the differential driving mode where the perturbation current is added
to bias current in one actuator and subtracted in the other actuator. The current
in both actuators are given by:

i1 = ib + ip (3.9)

i2 = ib− ip (3.10)

With the condition that perturbation current does not exceed the bias current.
Assuming the rotor is placed at an equal airgap length from both actuators, i.e.
la1 = la2 = la, Eq. (3.8) becomes:

F = µon2Ap
la

ibip (3.11)

It can be noticed that the net force acting on the rotor is now proportional to the
perturbation current ip while the bias current ib is kept constant. The introduction
of bias field also increases the force slew rate. During the operation, the nominal
airgap lengths also change as rotor displaces from its initial position. Taking z as
the rotor displacement, we define the actual airgap lengths for two actuators as:

la1 = lo− z (3.12)

la2 = lo + z (3.13)

Substituting the relations for currents and actual airgap lengths in Eq. (3.8), the
net force is given by:

F = µon2Ap
4

(
(ib + ip)2

(lo− z)2 −
(ib− ip)2

(lo + z)2

)
(3.14)

For the application of linear control theory, this force is linearised at the working
point [41]. A small perturbation current around the bias current and nominal rotor
position (x=0) can be taken as the working point. Next, we expand the Taylor series
around the point (x,ip) = (0,0) and neglect the second and higher order terms to
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get the linearized net force as:

F = µon2Apib
l2o

ip + µon2Api2b
l3o

z (3.15)

F =Kiip +Kzz (3.16)

where Ki is known as force-current dependency or (open loop current gain) and
Kz is known as force-displacement dependency (or open loop stiffness or negative
stiffness) of AMB actuator.

3.3 Summary and Recommendations

This chapter has discussed two topologies for active magnetic bearings and devel-
oped the finite element (FE) models of these topologies. First, the miniaturized
combined radial-axial bearing is described and then an FE model is discussed. Sim-
ilarly, the conventional magnetic bearings are treated. A finer mesh is utilized in
the force calculation domains. The presented histograms show an overall accept-
able quality of mesh. The axial thrust bearing is simply modelled using the force
relations of double-sided reluctance actuators driven in a differential mode. One
recommendation regarding the future work is:

• In most cases, the axial bearings are biased by coil current. However, recent
literature shows promise of using permanent magnets to provide bias flux.
Such an arrangement has resulted in significant improvements in the actuator
bandwidth [42].
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Chapter 4

Miniaturized Spindle Design and Optimization

This chapter describes the design and FE-based multiobjective optimization of
the miniaturized spindle modelled in Section 3.1. The topology is depicted in
Fig. 4.1. The initial design is based on the micro-milling application requirements
and developed using the FE model. The material selection is influenced by
application and reasonable availability of materials in the local market. Gradient
and nongradient-based optimization methods were used to minimize single and
weighted-sum multiobjective functions.

Figure 4.1: Half-section view of the bearing topology showing bias and control flux
directions.
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4.1 Application Requirements

The miniaturized combined radial-axial magnetic bearing shown in Fig. 4.1 is aimed
at high-speed milling operation, which influences the component design. Due to the
process dynamics and control systems, there are several requirements in terms of
rotational speed, milling forces, and negative stiffness.

4.1.1 Rotational speed

In a nutshell, micro-milling is the scaled-down version of macro-scale (conventional)
mechanical milling. However, the small diameter (micro-scale cutting) tools, that
can go down to 50 µm in diameter, used in micro-milling reduce the chip removal
rate. Therefore, to achieve process efficiency (i.e., to attain high material removal
rates), cutting tools need to rotate at high rotational speeds [11]. For this purpose,
miniature ultra-high-speed (UHS) spindles which enable rotational speeds above
60,000 rpm are used in micro machine tools (µMT) [1, 10].

In this study, we assumed a typical micro-milling tool diameter of 200 µm and
a typical cutting speed of 130 m.min−1 which is sufficient for the machining of
various common materials. In theory, this requires a rotational speed of 206,900
rpm. Therefore, we set the target speed as 207,000 rpm (3450 Hz).

4.1.2 Milling forces

Another important requirement is the (milling or cutting) forces experienced by the
bearings. The milling forces depend on the cutting mechanics and determined based
on the machining conditions (such as depth of cut, feed rate, spindle speed, etc.)
and tool geometry [1].

To estimate the amplitude of micro-milling cutting forces, the model proposed by
Dow et al. [43] is used. Using this model, Kimman et al. [9] performed a slot
milling process with a 200 µm cutting tool. The feed rate of 5 µm per tooth and
the depth of cut of 5 µm were selected. Considering a vertical milling operation,
the static components of cutting forces were obtained as 0.08 N and 0.05 N along
lateral axes. Furthermore, a slightly higher static component of 0.5 N along the axial
axis was found. The dynamic force amplitude stayed around 0.3 N in all directions.
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While the static components of cutting forces can be compensated by AMBs, the
bandwidth limit makes the dynamic force compensation challenging.

4.1.3 Negative stiffness

Considering the milling forces described above, a controlled closed-loop bearing stiff-
ness of 1.4×105 N/m is desired to compensate for the static cutting forces [15]. As
a rule of thumb, a negative bearing stiffness of the same magnitude, or at most one
order of magnitude lower, can be selected [41]. Therefore, the negative stiffness is
limited between 1×104 - 1×105 N/m in this study.

4.2 Material Selection

Considering the future realization of the designed spindle, the material selection is
influenced by reasonable availability of materials and the application requirements.
Thus, for magnetic actuators, in addition to laminated electrical steel, ferritic stain-
less steels (SS) with soft magnetic properties (typical intrinsic coercivity of less than
1000 Am−1) are generally used. However, ferritic SS have lower mechanical strength
limiting the achievable rotational speeds.

In practice, the solid rotor segments facing radial bearing stators are press-fitted
with electrical steel laminations which reduce eddy current and hysteresis losses;
and exhibit a low coercivity and high magnetic permeability [44]. However, ultra-
high speeds result in centrifugal stresses which may disturb this press-fit, justifying
the use of a complete solid rotor. Trading off between magnetic properties and
mechanical strength, we selected a ferritic SS of annealed AISI 430F for the rotor.

Since the axial magnetic bearing geometry makes the construction from electrical
steel laminations almost impractical [45], we used the solid core of AISI 430F for the
axial stator. AISI 430F provides good magnetic performance and easy machinability.
In the case of radial stator, laminated electrical steel with high magnetic performance
(as aforementioned) was selected.

Lastly, we selected sintered neodymium-iron-boron (NdFeB) magnets for PM rings.
The sintered grades favour high remanence and coercivity. It should be noted that
NdFeB magnets undergo limited loss in remanence but a significant loss in coercivity
when heated to temperatures above 100 ◦C [46]. While substitution of dysprosium
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and cobalt for some part of the neodymium helps raise the coercivity and reduce
the Curie temperature, respectively; such substitutions may negatively affect other
properties desirable for our soft magnetic application. For example, the addition
of dysprosium leads to a decrease in the remanence [47]. To keep the temperature
in control in the absence of forced cooling in the bearing topologies studied in this
thesis, we limited the coil current densities within the recommended range of 2-
5 A/mm2 [48]. Since the topology in this chapter positions the permanent magnet
away from the current coils, we do not expect the temperatures to significantly rise.

4.3 Component Design

The 3D FE model developed in Section 3.1 is used for the analysis and the magnetic
bearing components are dimensioned based on the application requirements (see
Section 4.1).

4.3.1 Rotor

A high-speed rotation leads to significant stresses under centrifugal forces, which
limit the attainable rotational speed Ωmax. The maximum rotational speed Ωmax

can be related to the disc diameter as

Ωmax = 1
r

√
8σo

(ν+ 3)ρ (4.1)

where r is the radius of the disc, σo is the yield strength, ν is the Poisson’s ratio, and
ρ is the density of the rotor material [44]. Using annealed AISI 430F as rotor material
with σo = 275 MPa, ν = 0.27, and ρ = 7750 kg/m3, a maximum disc diameter of
27.2 mm is obtained for a rotational speed of 207,000 rpm. Rotor diameter is kept
at 8 mm to attach end mills with typical micromachining tool shank diameters. The
axial length of the rotor disc is taken from Borisavljevic et al. [49] to allow future
attachment of PM rings for a motorized spindle. Next, the overall length of the
rotor is decided based on the axial length of radial stators and coils (described in
the next subsection).

With the initial dimensions fixed and shown in Table 4.1, we performed a rotor
dynamic analysis of rotor. The first flexural resonance is aimed to be at least one
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order of magnitude higher than the aimed closed-loop actuator bandwidth of 300 Hz
[9]. Additionally, our rotational speed requirement of the rotor stands at 3450 Hz
(207,000 rpm). We used an existing in-house MATLAB rotor dynamic code [39]
enhanced with the spectral Chebyshev approach [17, 27] to develop the Campbell
diagram of the rotor as shown in Fig. 4.2. Based on the rotordynamic simulation, it is
observed that not only the first flexural mode, predicted as 36180 Hz, is significantly
higher than the rotational speed requirement, but also the forward rigid conical mode
is avoided as it diverges from the synchronous excitation line. A half-section view
of the rotor is shown in Fig. 4.3 (a).
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Figure 4.2: Rotor Campbell diagram showing the variation of first four damped
rigid body modes with the rotational speed.

4.3.2 Radial magnetic stator

To radially control the rotor levitation, two radial stators, each having four poles
were used as shown in Fig. 4.1. Since magnetic materials undergo nonlinear mag-
netization in response to the applied magnetic field, it is advisable to operate in
the linear range of material B-H curves. This enables the applied coil current and
the control force to become linearly dependent on each other. The B-H curves of
stator and rotor materials, laminated electrical steel and AISI 430F, respectively,
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are almost linear up to 1 T. As a rule of thumb, the bias flux level is kept at half of
this value, i.e. 0.5 T [34].

Considering a well-balanced rotor and accounting for the backup bearing, a radial air
gap of 0.3 mm is selected. The NdFeB grade N28 PM ring is dimensioned to provide
around 0.5 T of bias flux levels in the air gap. Although the radial cutting forces
on the tool are limited to a static component of 0.08 N and a dynamic amplitude
of almost 0.3 N as discussed in Section 4.1, we set the lowest bearing radial load
capacity as 2 N accounting for unbalance and possible disturbances. Furthermore,
radial negative stiffness between 1x104 and 1x105 Nm−1 needs to be ensured. To
achieve these goals, we manually iterate the stator pole area, coil turns, and applied
current. Accordingly, the initial dimensions and key parameters of the radial stator
are listed in Table 4.1 and a half-section view is shown in Fig. 4.3 (b).

4.3.3 Axial magnetic stator

The axial stator is dimensioned similar to the radial stator, but it accounts for
the rotor weight as well. In response to axial static machining force of 0.5 N and
maximum rotor weight of 0.503 N (taking bounds for the maximum weight from
Table 4.2), we set a sufficiently high bearing axial load capacity of 5 N as lowest
acceptable value. The stator supports the rotor axially by electromagnetic forces
from two circular-ring poles as shown in Fig. 4.3 (c). The axial air gap length is kept
the same as that of radial stators, i.e., 0.3 mm. Another consideration is the space
left within the stator for integrating a motor as prototyped by Borisavljevic [50].
The dimensions of the axial stator are given in Table 4.1.

4.3.4 Conductor coils

In most naturally cooled motor and magnetic bearing applications, copper coil cur-
rent densities between 2-5 A/mm2 are recommended [48]. Using current density of
5 A/mm2 and a maximum coil current of 0.5 A, we get a recommended wire diam-
eter of 0.36 mm which very closely is found in American Wire Gauge (AWG) 27
wire.
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Figure 4.3: Half-section views of AMB components with design variables (a)
Rotor, (b) Radial stator with PM, (c) Axial stator

4.3.5 Initial flux density levels

To ensure that the magnetic flux density norm levels did not exceed the linear
range of BH curves (1 T), the flux density is plotted using FE model on two planes
intersecting different sections of the bearing. As noticed in Figs. 4.4 and 4.5, the
flux levels slightly exceed 1 T in very limited regions of the geometry.

Figure 4.4: Cut plane with magnetic flux density norm passing through half of the
bearing topology (compare with Fig. 4.1 for component definition).
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Figure 4.5: Surface magnetic flux density norm on cut plane perpendicular to
rotational axis. The plane is positioned to pass through all the components.

Table 4.1: Major AMB parameters

Parameters Initial values

Rotor diameter (mm) 8
Rotor disc diameter (mm) 24
Rotor disc axial length (mm) 8
Rotor length (mm) 24
Radial stator pole area (m2) 2.29x10−5

Radial stator axial length (mm) 4.5
Radial coil turns per pole 40
Radial coil current (A) 0.5
Axial stator pole area (m2) 7.1x10−5

Axial stator diameter (mm) 29
Axial coil current (A) 1
Axial coil turns per pole 30
PM inner surface area (m2) 12.3x10−5

4.4 Optimization Setup

With micro-machining in focus, the selection of objective functions, design variables,
and constraints is justified in this section. Next, the implementation of COMSOL-
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MATLAB LiveLinkTM to run the optimization process is explained.

4.4.1 Objective functions

Specific load capacity is the ratio of the maximum electromagnetic force that the
bearing can produce to its volume [14]. With spindle miniaturization and attach-
ment to motorized linear translation stages in mind, a high specific load capacity is
desired as the selected bearing performance for optimization. At lower volume, hence
lower weight, the spindle can utilize cost-effective linear stages to reach process-
required accelerations. The 3D FE model developed in Section 3.1 quantifies this
performance by evaluating the bearing forces and component volumes.

The electromagnetic forces acting on the rotor in radial and axial directions are
determined by using the general method of Maxwell’s stress tensor. To obtain the
force, Eq. (4.2) is integrated over the surface of the rotor [40].

nr Ta =−1
2 nr (H ·B) + (nr ·H) BT (4.2)

where nr is the outward normal from rotor (r), Ta the stress tensor in surrounding
air (a), H the magnetic field, and B the magnetic flux density. We denote the radial
and axial forces as fr and fa, respectively.

An integration nonlocal coupling is used to determine the volumes in COMSOL.
The total bearing volume V is the sum of volumes of rotor, Vr, PM, Vpm, radial
stators, Vrs, and axial stator, Vas as shown in Eq. (4.3).

V = Vr +Vpm +Vrs +Vas (4.3)

4.4.2 Sensitivity study and design variables

While analytical models enable an easier understanding of the relative importance
of various design parameters on bearing performance, an FE model necessitates a
sensitivity study since the explicit relations are not evident. This need is further
reinforced in compact bearing designs where axial and radial control fluxes affect
each other in the presence of non-linear magnetization and saturation effects. We
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performed a sensitivity study to determine the most effective dimensional parameters
for our objective functions.

We perturbed the initial bearing parameters given in Table 4.1 and noted the cor-
responding variations in radial and axial forces. Based on the sensitivities and
preferences based on spindle miniaturization, the parameters tabulated in Table 4.2
and drawn on Fig. 4.3 are selected as design variables. The variables are reason-
ably bounded by rotordynamic considerations of the short rotor as described in
Section 4.3.1.

4.4.3 Size constraints

In addition to the consideration of miniaturization, the size constraints are influenced
by rotordynamics, stress limits, and space for motor integration. The size constraints
on the rotor disc diameter and length ensure that the forward rigid conical mode of
the rotor remains divergent as the rotor speeds up as shown in Fig. 4.2. The disc
diameter is also limited by maximum allowable value calculated in Section 4.3.1.
The constraints ensure a ratio of polar and transverse moments of inertia greater
than 1.18 and the first flexural mode remains significantly farther from the operating
speed range.

The size constraints for the radial stator axial length are based on the available
rotor length. The radius of the axial stator is ranged considering the required space
for motor integration and the overall spindle size. All the side constraints are given
in Table 4.2.

Table 4.2: Design variables with initial and limiting values

Design variables Symbols
Initial
values
(mm)

Lower
bounds
(mm)

Upper
bounds
(mm)

Radial stator axial length ls 4.5 3 6
Rotor disc diameter dr 24 23.6 27.2
Axial stator diameter da 58 50 58
Rotor disc length ld 8 7 10
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4.4.4 COMSOL LiveLinkTM for MATLAB setup

Using the COMSOL LiveLinkTM for MATLAB, the FE model developed in COM-
SOL was interfaced with MATLAB. The optimization algorithm was run within
MATLAB. This subsection summarizes this interfacing. After running COMSOL
Multiphysics with MATLAB from the installation directory, three MATLAB files
can be written:

1. Main script file to define the design variables, load FE model file, and set up
optimization algorithm settings.

2. Function file to receive updated design variables, run the FE model in COM-
SOL with updated design variables, and pass the retrieved objective function
values to main script file.

3. Function file which contains the constraints.

The codes written for multiobjective optimization are given in Appendix A with
comments explaining step-by-step procedure.

4.5 Optimization Results

The objective functions were first optimized individually using single-objective opti-
mizations (SOO). When one objective was minimized in SOO, the other two worked
as unequal constraints from engineering demand, i.e. fr ≥ 2 N and fa ≥ 5 N. This
allowed us to calculate the weighting coefficients for the weighted sum function
in multi-objective optimization (MOO) where three objectives were linearly super-
posed. Considering the nonlinear optimization problem at hand with bound con-
straints, the gradient-based optimization algorithm of Sequential Quadratic Pro-
gramming (SQP) was adopted first. SQP is considered as state of the art in non-
linear programming methods. Considering that gradient-based methods are local
optimization methods, we also opted for a global (nongradient) method of surrogate
optimization. Although the objective functions of forces need to be maximized, we
treated them with a negative sign in SOO so that all objective functions meet the
definition of minimization.
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4.5.1 Single-objective optimizations

Using the initial values and bound constraints from Table 4.2, the first objective
function of radial force fr is optimized first. The convergence is shown in Fig. 4.6
with design variables optimized to:

[ ls dr da ld ]T = [ 5.88 27.19 50 9.99 ]T mm (4.4)

The initial and SOO values are shown in Table 4.3. We also ran a brute force search
between bounds for ls while keeping all other design variables at their optimized
values. As seen in Fig. 4.7 and more refined function evaluations in Fig. 4.8, the
optimized point (force) is very close to the minimum of the brute force curve. In
all the plots in this chapter, the circles show the points where the functions were
evaluated.
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Figure 4.6: Radial force optimization iterations

Similarly, the second objective function of axial force fa is optimized. The
convergence is shown in Fig. 4.9 with design variables optimized to:

[ ls dr da ld ]T = [ 6 25.38 50.03 7 ]T mm (4.5)

The initial and SOO values are shown in Table 4.3. A brute force search was also
run between bounds for dr with all other design variables at their optimized values.
As seen in Fig. 4.10, the optimized point (force) is very close to the minimum of the
brute force curve.
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Figure 4.7: Variation of radial force as a function of axial stator diameter.
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Figure 4.8: More refined function evaluations showing variation of radial force as a
function of axial stator diameter.

The optimization of the third objective function of volume V is straight forward.
All design variables will hit the lower bounds to reduce the volume:

[ ls dr da ld ]T = [ 3 23.6 50 7 ]T mm (4.6)
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Figure 4.9: Axial force optimization iterations
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Figure 4.10: Variation of axial force as a function of disc diameter.

To have increased confidence in the optimization, the radial and axial forces were
also optimized using surrogate optimization method. As noted in Fig. 4.11, the
radial force is maximized to 2.48757 N, very close in comparison to radial force SQP
optimization of 2.4846 N. The final design variables from the surrogate optimization
are

[ ls dr da ld ]T = [ 5.88 26.7 57.68 9.69 ]T mm (4.7)

A significant difference in axial stator diameter between SQP and surrogate opti-
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mization results can be explained by running a brute force search between bounds.
Such a search results in an almost oscillatory behavior of the radial force. Hence,
it can be concluded that the radial force is not sensitive to variations in the axial
stator diameter.
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Figure 4.11: Surrogate optimization for radial force.

Similarly, a surrogate optimization for axial force was run and the iterations are
shown in Fig. 4.12. The axial force is optimized to 6.50458 N as opposed to SQP
optimization of 6.6378 N. The final design variables from the surrogate optimization
are given below and are very close to the ones found from SQP optimization.

[ ls dr da ld ]T = [ 6 25.37 50.3 7 ]T mm (4.8)
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Figure 4.12: Surrogate optimization for axial force.

4.5.2 Multi-objective optimization

With SOO results, we calculated the weighting coefficients for the weighted sum
function to optimize the multiobjective problem. The optimization rates ri for SOO
are calculated as

ri =
∣∣∣∣fi−f ′ifi

∣∣∣∣ (4.9)

where i= 1,2,3, fi is the initial objective value, and f ′i is the optimized objective of
SOO. Next, we get the normalized optimization rates wnorm,i by:

wnorm,i = ri∑3
i=1 ri

(4.10)

Since we are dealing with objectives with different units and orders of magnitude,
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non-dimensionalizing (ND) coefficients wnd,i are introduced as:

wnd,i =


f ′i for objectives to be maximized
1
f ′

i
for objectives to be minimized

(4.11)

Now, the weighting coefficients wi can be written as following:

wi = wnorm,i wnd,i (4.12)

This allows us to write the weighted sum multiobjective optimization (MOO) func-
tion F in Eq. (4.13).

F = w1
1
fr

+w2
1
fa

+w3 V (4.13)

The convergence of MOO is shown in Fig. 4.13. The design variables are optimized
to:

[ ls dr da ld ]T = [ 6 25.38 50 7 ]T mm (4.14)
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Figure 4.13: MOO function minimization

A surrogate optimization was run for MOO function as well. The results are shown
in Fig. 4.14 where the MOO function was minimized to 1.0647 compared to 1.0629
from SQP optimization. The design variables also showed almost the same results.
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Figure 4.14: MOO function minimization using surrogate optimization

All results of SOO and MOO are summarized in Table 4.3. Based on MOO results,
the percent improvements in radial force, axial force, and volume are noted as 11.9,
20.8, and 10.1, respectively.

Table 4.3: Optimization results with weighting coefficients

Parameters Radial force fr Axial force fa Volume V

Initial value, fi 2.1606 N 5.4979 N 1.4x10−5 m3

SOO results, f ′i 2.4946 N 6.6378 N 1.1x10−5 m3

SOO rate, ri 0.1546 0.2073 0.2157

Normalized rate, wnorm,i 0.2676 0.3590 0.3734

ND coefficient, wnd,i 2.4946 6.6378 92606.5636

Weighting coefficient, wi 0.6675 2.3828 34582.6271

MOO results 2.417 6.6418 1.24x10−5

Optimization rate (%) 11.86 20.80 10.1
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4.6 Summary and Recommendations

This chapter delineated the design and multiobjective performance optimization
of the miniaturised combined radial-axial bearing. The micro-milling application
requirements define the required rotational speed, machining forces, and the negative
stiffness. The component design and material selection are heavily influenced by
these requirements. Components including rotor, radial and axial magnetic stators,
and conductor coils are initially dimensioned using the 3D FE model developed for
this topology.

For the optimization scheme, a gradient-based approach (SQP) is used to first opti-
mize each objective function individually and then a weighted sum multi-objective
function is developed and minimized. Next, a surrogate optimization method is
used to justify reliance on the results. Based on multiobjective optimization, the
objective functions of radial force, axial force, and volume are improved by 11.86,
20.8, and 10.1 percent. A few recommendations about the studies from this chapter
are:

• Although surrogate optimization is a global optimization method, a Pareto
search is recommended to have more confidence in the results.

• The FE force calculations using COMSOL’s built-in function were observed
to be nonsmooth. Therefore, another interface of COMSOL, named as Mag-
netic Fields (mf), was used with quadratic discretization for magnetic scalar
and vector potential domains. However, the same nonsmooth behavior of the
forces was again noticed. For better convergence with gradient-based opti-
mization methods, it is recommended to opt for a force calculation method
which returns smoother variation of forces. The sensitivities using COMSOL’s
in-built adjoint method and manual perturbation of the dimensions could not
be reconciled; a nonsmooth and oscillatory nature of the forces could be the
cause.

• The miniaturized design presented in this chapter needs realization in con-
junction with a motor installed inside the axial bearing section to prove the
practical feasibility of this design.

• Although a safe working current density is selected in this study for a design
without forced cooling, a FE-based study of temperature distribution around
the permanent magnet positions is recommended to have more confidence
that magnets do not experience a temperature above the recommended range.
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Considering the future realization of this design, an estimate for temperatures
of locally available NdFeB magnets can be found at Manyet, Istanbul [51].
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Chapter 5

Slender Rotor Spindle Design

This chapter presents a thorough treatment of the design of the major components
needed to realize a slender rotor spindle. The design is accompanied by manufac-
turing details to be implemented as future work.

5.1 Application Requirements

Similar to the miniaturized combined bearing, the slender rotor spindle is aimed
at the application of high-speed micro-milling process. The design of the spindle
components follows the application requirements of rotational speed, milling forces,
and negative stiffness as already delineated in Section 4.1. Here we only reproduce
the relevant details briefly.

• Rotational speed: Based on typical micro-milling tool diameter of 200 µm
and typical cutting speed of 130 m/min, a theoretical rotational speed of
207,000 rpm (3450 Hz) is required. However, acknowledging that (1) the
rotational speed limits the rotor diameter due to centrifugal stress; (2) enough
space on the thrust disc is required to accommodate the axial thrust bearing;
a lower rotational speed of 115,000 rpm (1917 Hz) is aimed.

• Milling forces: As explained in Section 4.1.2, a vertical slot milling operation
with a 200 µm cutting tool, feed rate of 5 µm per tooth, and depth of cut of
5 µm, was considered. The static components of cutting forces were obtained
as 0.08 N and 0.05 N along lateral axes. Moreover, a higher static component
of 0.5 N acted along the axial axis was found. The dynamic force amplitude
stayed around 0.3 N in all directions.

• Negative stiffness: Based on the milling forces found above, a controlled
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closed-loop bearing stiffness of 1.4×105 N/m is aimed to compensate for static
cutting forces. As a rule of thumb mentioned by Molenaar [41], a negative
bearing stiffness of the same magnitude, or at most one order of magnitude
lower, can be selected. Therefore, a negative stiffness in the range 1× 104 -
1×105 N/m is aimed in this study.

5.2 Rotor

The slender rotor for this bearing configuration is designed similarly to the rotor of
miniaturized bearing topology in Section 4.3.1. The maximum attainable rotational
speed Ωmax relates to disc diameter by the relation [44]:

Ωmax = 1
r

√
8σo

(ν+ 3)ρ (5.1)

where r is disc radius, σo is yield strength, ν is the Poisson’s ratio, and ρ is the rotor
material density. Since ultra-high rotational speeds make the use of electrical steel
laminations challenging due to high centrifugal stresses, a solid rotor is used here
as done for the rotor of miniaturized bearing topology in Section 4.2. Using ferritic
SS of annealed AISI 430F as rotor material with σo = 275 MPa, ν = 0.27, and
ρ = 7750 kg/m3, a maximum disc diameter of 48.9 mm is obtained for a rotational
speed of 115,000 rpm. However, considering the material inhomogeneities in the
rotor material, a factor of safety is applied to select 30 mm as the disc diameter.

Next, the rotor segments facing the radial bearings are dimensioned to have 16 mm
of diameter in response to the minimum target diameter of the selected displacement
sensors. This diameter can also accommodate typical micro-machining tool shank
diameters. The rotor segment for air turbine is kept at 12 mm based on the design
of the air turbine. The overall rotor length places the first bending (flexural) mode
around 7 times more than the target closed-loop AMB bandwidth of 300 Hz and
also out of the operating range as seen in the rotor Campbell diagram drawn in
Fig. 5.1. The estimate of bandwidth is taken from Kimman et al. [9] and Allaire et
al. [42]. An in-house and open-source rotordynamic code [39] was used to model the
rotor and extract its Campbell diagram. The rotor schematic and CAD model are
shown in Fig. 5.2. The relevant parameters of the rotor are listed in Table 5.1.
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Figure 5.1: Rotor Campbell diagram showing the rigid body and bending modes
variation with rotor speed. 1X speed line represents the synchronous excitation line

Table 5.1: Slender rotor parameters

Parameters Values

Total length (mm) 150
Diameter at bearing locations (mm) 16
Diameter (mm) 12
Axial thickness of disc (mm) 3
Diameter of disc (mm) 30
Material AISI 430F
Weight (N) 2.1
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Figure 5.2: Slender rotor geometry: (a) Schematic with dashed blue lines
illustrating the thrust disc and vertical dash-dotted lines showing the bearing

locations, (b) CAD model

5.3 Air Turbine

In spindles, the most common drive methods for the rotor include electric motors
and air turbines. Kimman [52] used a permanent magnet synchronous motor while
Park et al. [13] utilized an air turbine. For our study, we designed an air turbine
to be driven by compressed air. The design method is inspired by work of Li et
al. [53]. The procedure involves selecting the turbine diameter first while avoiding
the super sonic flow. This is followed by torque calculations based on the applied
pressure from nozzle connected to the compressor.

Next, the turbine blade profiles on the rotor are drawn by following the procedure
given by Solemslie [54]. The turbine blade profiles are shown in Fig. 5.3 and param-
eters are listed in Table 5.2. The nozzle fixture is shown in Fig. 5.4.

50



Figure 5.3: Air turbine blades on slender rotor segment

Figure 5.4: Nozzle fixture showing smaller holes as air inlets and larger holes as air
outlets

Table 5.2: Air turbine parameters

Parameters Values

Turbine diameter (mm) 12
Pitch diameter (mm) 10
Nozzle diameter (mm) 1.5
Number of nozzles 4
Inlet pressure (MPa) 0.3
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5.4 Radial Bearing

The radial bearing for slender rotor configuration is dimensioned in a similar manner
to the radial bearing section of the miniaturized topology in Section 4.3.2. Therefore
only important details are repeated in this section. The 3D FE model developed in
Section 3.2.1.1 is utilised for sizing the bearing and the topology is reproduced here
in Fig. 5.5. Operating in the linear range of BH curves of the materials used, i.e.
up to 1 T, we set bias flux levels at around 0.5 T using the usual rule of thumb [34].

Stator

Control coils
Control ux

Bias ux

Rotor

PM-stator 

connector

Non-magnetic housings

PM

Figure 5.5: Radial bearing half-section view with bias and control flux directions in
dashed lines.

Assuming a well-balanced rotor and space for backup bearing, the radial airgap
length is kept at 0.3 mm. The NdFeB grade N52 PM blocks, connected to the stator
with annealed AISI 430F steel, are used to provide the bias flux. Electrical steel
laminations are selected for the stator part. Although the radial machining forces
on the tool are limited to a static component of 0.08 N and a dynamic amplitude of
almost 0.3 N as discussed in Section 5.1, we generously set the lowest bearing radial
load capacity as 14 N accounting for unbalance (considering the rotor weighs 2.1
N) and possible disturbances. Furthermore, radial negative stiffness between 1x104

and 1x105 Nm−1 needs to be ensured.

For these objectives, we manually iterate the stator pole area, coil turns, and applied
current. Accordingly, the initial dimensions and key parameters of the radial stator
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are listed in Table 5.3 and assembly view of the bearing with housings is shown in
Fig. 5.6.

Figure 5.6: Radial bearing assembly with housings and lock nuts

5.4.1 Magnetic flux density norm

To ensure the flux density norm levels do not move towards saturation, we plotted
these levels using the FE model for two different sections using the FE model in
Figs. 5.7 and 5.8.

Figure 5.7: Magnetic flux density norm distribution for half section of radial bearing
at maximum actuation current.

A few parameters not mentioned in the table are of less significance. For instance,
the radial length of poles can be decided based on the space needed by the coils. The
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Figure 5.8: Magnetic flux density norm distribution for radial stator at maximum
actuation current.

Table 5.3: Radial bearing parameters

Parameters Values

Pole shoe surface area (mm2) 40.788
Airgap length (mm) 0.3
PM cross-sectional area (mm2) 96.788
Coil wire size AWG 16 (1.291 mm diameter)
Number of coil turns per pole 30
Maximum coil current (A) 3
PM remanent flux density (T) 1.44

radial thickness of radial stator can be selected in a way so that magnetic saturation
does not occur when maximum current is applied.

5.5 Axial Thrust Bearing

Based on the linearized force derived for double-sided reluctance actuators in dif-
ferential driving mode in Section 3.2.2, the axial thrust bearing is dimensioned in
this section. This bearing consists of two u-shaped reluctance actuators with coils
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wound tangentially. The linearized force acting on the thrust disc is given by:

Fa =Kiip +Kzz (5.2)

whereKi andKz are open-loop current gain (force-current dependency) and negative
stiffness (force-displacement dependency or open-loop stiffness), respectively, and
are given by (refer to Section 3.2.2 for notations):

Ki = µon2Apib
l2o

(5.3)

Kz = µon2Api2b
l3o

(5.4)

The relevant application requirements from Section 5.1 include: (1) static compo-
nent of milling force at 0.5 N, dynamic force amplitude of 0.3 N, and weight of
the rotor at 2.1 N, (2) negative stiffness in the range 1× 104 - 1× 105 N/m. The
bearing is dimensioned iteratively to meet these requirements. The airgap length is
kept the same as that for radial bearing, i.e. 0.3 mm. The CAD model of one ax-
ial actuator is shown in Fig. 5.9. The final bearing parameters are listed in Table 5.4.

Figure 5.9: Rendered CAD image of axial thrust actuator
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Table 5.4: Axial thrust bearing parameters

Parameters Symbols Values

Pole shoe surface area (mm2) Ap 70
Airgap length (mm) la 0.3
Coil turns (per actuator) n 35
Bias current (A) ib 2
Open loop current gain (N/A) Ki 9.57
Negative stiffness (N/m) Kz 6.38x104

5.6 Assembly

All major components designed in this chapter are assembled in Fig. 5.10. Two
radial bearings control the rotor in the radial direction. Beneath the top radial
bearing, the nozzles are present for compressor connection. Two axial bearing
actuators are placed near the rotor thrust disc. Vibration resistant locknuts with
wedge-locking washers are used to hold the components together. The material for
the side plates is aluminum for strength and low weight. The recommendations for
manufacturing processes are given in the recommendations section of this chapter.
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Figure 5.10: Rendered CAD assembly of slender rotor spindle

5.7 Summary and Recommendations

The detailed design of the slender rotor spindle is discussed in this chapter. Micro-
milling application requirements of rotational speed, milling forces, and negative
stiffness derive the components design process with the aid of analytical and FE
models. The component design for rotor, air turbine, radial bearing, and axial
bearing were described. The selection of materials was justified based on magnetic
properties and strength. For manufacturing the spindle, a few recommendations can
be noted:

• Round bar material for the rotor needs to be acquired in annealed condition
for better magnetic performance. After general machining, a grinding process
is required to give better tolerance and surface for displacement sensor target.
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• The laminated electrical steel for the radial bearing stator needs to be cut with
electrical discharge machining (EDM) to give the best performance during
bearing operation.

• Fiber lock nuts resist loosening due to vibration and torque. Additionally
wedge-locking washers are recommended.
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Chapter 6

Conclusion and Recommendations

The studies presented in this thesis are concluded here along with the recommen-
dations for future work.

6.1 Concluding Remarks

This thesis focuses primarily on four areas: (1) development of spectral element
method algorithm, (2) the modelling methods for rotors and active magnetic bear-
ings, (3) design of spindle components based on application requirements, (4) the
multiobjective performance optimization of magnetic bearings.

To study the speed dependent dynamic behavior of high-speed rotors, a spectral
element method is explained with the background theory of Timoshenko beam and
Chebyshev polynomials. The algorithm of the developed code explains the primary
steps from user input to the final evaluation of eigenvalue problem. The approach
divides the rotor/beam into segments based on change in diameter. Afterwards, a
segment-by-segment assembly is initiated to complete the global mass, stiffness, and
coriolis matrices.

Once the rotordynamic model is built, the models for active magnetic bearings are
developed to dimension and optimize the bearings. Two different spindle configura-
tions were studied, a miniaturised combined radial-axial bearing and conventional
topologies of separate radial and axial bearings. Acknowledging the accuracy of fi-
nite element (FE) models over that of analytical ones, both topologies are modelled
with FE approach. However, considering the simple geometry of axial bearing in
conventional bearing topologies, an analytical model based on reluctance force is
developed.
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With all the models developed, the application requirements of the micromilling
process, namely rotational speeds, milling forces, and negative stiffness, are imposed
on the design and material selection for the spindle components of both bearing
topologies.

For the optimization scheme, a gradient-based approach (SQP) is used to first opti-
mize each objective function individually and then a weighted sum multi-objective
function is developed and minimized. As a result of multi-objective optimization,
the objective functions of radial force, axial force, and volume are improved by 11.86,
20.80, and 10.1 percent in the miniaturised combined radial-axial bearing. A sur-
rogate optimization (nongradient global optimization method) is also performed to
increase confidence in the results.

For one of the spindle topologies, the design of the drive method of air turbine is also
conducted to meet the rotational speed and torque requirements of the machining
process. Finally, as assembled design is presented with recommendations on the
next steps of realization of the spindle setup.

6.2 Recommendations for Future Work

For the next steps including the realization of the spindle system, a few recommen-
dations are listed below.

• The force dependence on dimensional parameters was found to be very non-
smooth in the finite element model. In such a case, opting for non-gradient
based optimization methods may be a better approach.

• A global optimization approach is preferred to verify the results from the local
optimization methods. A multiobjective Pareto search is recommended.

• For manufacturing, a round bar for the rotor needs to be acquired in an-
nealed condition for a better magnetic performance. After initial machining,
a grinding process is required to give better tolerance and surface conditions,
especially at the rotor segments inside the radial bearing sections. A smooth
ground surface is specifically needed for displacement sensors to output high-
quality rotor position signals without reduced levels of noise.

• The laminated electrical steel for the radial bearing stator needs to be cut with
electrical discharge machining (EDM) to give the best performance during
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bearing operation.

• Vibration resistant lock nuts should be used to prevent the loosening of the
components.

• In most cases, the axial bearings are biased by coil current. However, recent
literature shows promise of using permanent magnets to provide bias flux.
Such an arrangement has resulted in significant improvements in the actuator
bandwidth [42].

• The miniaturized design presented in this chapter needs realization in conjunc-
tion with a motor installed inside the axial bearings to prove the feasibility of
this design practically.
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Appendix A
MATLAB code listings

1 % Main optimization script

2

3 clear all; clc;

4 format long;

5 tic % Timer starts

6

7 % Design variables with initial values [m]

8 s_t = 0.0045; % radial stator length

9 disc_d = 0.024; % Rotor disc diameter

10 ax_dia = 0.058; % Axial stator diameter

11 disc_l = 0.008; % Rotor disc length

12 xo = [ s_t disc_d ax_dia disc_l ]; % Design vector

13

14 % Linear constraints

15 % [Left empty: No such constraints used in study]

16 A = []; % Inequality linear constraint

17 B = [];

18 Aeq = []; % Equality linear constraint

19 Beq = [];

20

21 % Bounds considering physical limitations of spindle test−rig

22 lb = [ 0.003 0.0236 0.050 0.007 ]; % Lower bounds [m]

23 ub = [ 0.005 0.0272 0.058 0.010 ]; % Upper bounds [m]

24

25 % Model loading

26 model = mphload ('COMSOL model filename.mph');

27

28 % Objective function and constraint definition

29 obj_func = @(x) comsol_obj_MOO(x,model);

30 nonlcon = @(x) comsol_cons(x);

31

32 % Optimizer setup and call [example settings]

33 opts = optimoptions('fmincon','Algorithm','sqp'...

34 ,'StepTolerance',1e−4,'FunctionTolerance',1e−3...

35 ,'OptimalityTolerance',1e−3,'DiffMinChange',0.4e−3...

36 ,'DiffMaxChange',1,'ConstraintTolerance',1e−4...

37 ,'PlotFcn','optimplotfval');

38

39 opts.Display = 'iter'; % Print the iteration details

40
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41 [xopt,fval,exitflag,output,lambda,grad,hessian] =...

42 fmincon( obj_func ,xo,A,B,Aeq,Beq,lb,ub,nonlcon,opts );

43

44 toc % Timer stops

1 % Function file to feed updated design variables to COMSOL

2

3 % Function definition

4 function [MOO_obj] = comsol_obj_MOO(x,model)

5

6 % Assign the updated design variables

7 s_t = x(1);

8 disc_d = x(2);

9 ax_dia = x(3);

10 disc_l = x(4);

11

12 % Write the design variables to COMSOL model file

13 model.param.set('s_t', s_t);

14 model.param.set('disc_d', disc_d);

15 model.param.set('ax_dia', ax_dia);

16 model.param.set('disc_l', disc_l);

17

18 % Run the study in COMSOL model file

19 model.study('std1').run;

20

21 % Read the objective function values from COMSOL model file.

22 % Relevant dataset can be found using COMSOL Model Navigator

23 % in MATLAB applications

24 forcex = −mphglobal(model,'rmm2.Forcex_0'...

25 ,'dataset','dset101')

26

27 forcez = mphglobal(model,'rmm2.Forcez_0'...

28 ,'dataset','dset101')

29

30 Vol = mphglobal(model,'intop1_PM(1)+intop2_rotor(1)...

31 +intop3_rs(1)+intop4_as(1)','dataset','dset101')

32

33 MOO_obj = 0.355247*(1/forcex) + 2.520790*(1/forcez)...

34 + 43295.312256*Vol

Finally, a similar function file can be written for constraints.

67


	List of Tables
	List of Figures
	Introduction
	Miniaturization and Micro-Machining Processes
	Active Magnetic Bearings in Micro-Milling Spindles
	Modeling Methods for Active Magnetic Bearing Spindles
	Modeling the rotor dynamics
	Modeling active magnetic bearings

	FE-Based Multi-Objective Optimization
	Thesis Objectives and Contributions
	Thesis Outline

	Spectral Element Modelling for Rotordynamical Analysis
	Timoshenko Beam Theory
	One-Dimensional Spectral-Chebyshev Technique
	Gauss-Lobatto Sampling
	Equation of Motion
	Spectral Element Method Algorithm
	Example Problem
	Summary

	Active Magnetic Bearing Topologies and Modelling
	Miniaturized Combined Radial-Axial Bearing
	Bearing topology
	Finite element model

	Conventional Magnetic Bearings
	Radial bearing
	Finite element model

	Axial thrust bearing

	Summary and Recommendations

	Miniaturized Spindle Design and Optimization
	Application Requirements
	Rotational speed
	Milling forces
	Negative stiffness

	Material Selection
	Component Design
	Rotor
	Radial magnetic stator
	Axial magnetic stator
	Conductor coils
	Initial flux density levels

	Optimization Setup
	Objective functions
	Sensitivity study and design variables
	Size constraints
	COMSOL LiveLinkTM for MATLAB setup

	Optimization Results
	Single-objective optimizations
	Multi-objective optimization

	Summary and Recommendations

	Slender Rotor Spindle Design
	Application Requirements
	Rotor
	Air Turbine
	Radial Bearing
	Magnetic flux density norm

	Axial Thrust Bearing
	Assembly
	Summary and Recommendations

	Conclusion and Recommendations
	Concluding Remarks
	Recommendations for Future Work

	Bibliography
	Appendix A -4em



