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Abstract

Application areas of Unmanned Aerial Vehicles (UAVs) are widened significantly over the last decade. Off-

the-shelf components such as low-cost sensors and actuators have broaden their usability. UAVs can be used

in various missions from logistics to surveillance where ongoing research keeps encouraging new developments.

Substituting a human operator with an on-board computer proposes a very appealing solution to improve

the operation productivity and the cost. However, this replacement raises some safety concerns and it might

be harder for a flight computer to recover from hazardous situations. Especially, UAVs that operate over

crowded areas and high safety demanding environments introduce new constraints on their design process.

Fault Tolerant Controllers (FTC) serve to reduce this safety gap by modeling and recovering faults during a

mission. Fault recovery is a highly sought-after research topic where it is aimed to increase robustness and

immunity to possible fault scenarios.

This thesis deals with developing a fault tolerant controller for a quadrotor helicopter. A high-fidelity

nonlinear model of a quadrotor is constructed using Newton-Euler formulation where Dryden wind effects

and sensor noise are included to simulate real-world flight conditions. A hierarchical control algorithm is

employed for outer and inner control loops where PID-LQG controllers are designed to control position and

attitude dynamics. For full state feedback, first a linear Two-Stage Kalman Filter (TSKF) is implemented

to detect and estimate the faults and provide state estimates. Second, an Extended Kalman Filter (EKF) is

used to provide more accurate state estimates. In order to increase robustness to external disturbances and

uncertainties in the plant dynamics, a disturbance observer is designed and integrated to the control system.

Simulations carried out with the high fidelity model have shown that the proposed fault tolerant control

algorithms successfully detect and compensate for actuator and/or sensor failures in a trajectory tracking

task, and hence provide good tracking performance with reasonable control effort.
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Özet

İnsansız hava araçlarının uygulama alanları son on yılda epey artmıştır. Rafta hazır, düşük maliyetli sensör

ve eyleciler bu araçların kullanım imkanlarını genişletmiştir. Bu cihazlar lojistikten gözetlemeye kadar çeşitli

görevlerde kullanılabilir ve bu durum araştırmada yeni gelişmelere öncelik etmektedir. Bir insan operatörü

yerine gömülü bir bilgisayar üzerinden çalışma fikri, verim ve maliyet açısından önem arz etmektedir. Ancak

tamemen bilgisayar tabanlı bir sistemde, güvenlik açısından başka kaygılar öne çıkabilir. Özellikle, kalabalık

ortamlar gibi yüksek güvenlik önlemi gerektiren koşullarda yeni kısıtlamalar olması kaçınılmazdır. Hata

toleranslı kontrolcü tasarımı, bu güvenlik açıklarına hizmet etmek amacıyla tasarlanır ve olabilecek hata

senaryolarını modelleyip kurtararak görevi güvenilir kılmak için çalışır. Hata kurtarma çalışmaları, çok

rağbette olan bir çalışma konusu olup sistemin gürbüzlüğünü arttırmaya ve hatalara karşı bağışıklı olmayı

amaçlar.

Bu tezin konusu, dört pervaneli bir helikopter için hata toleranslı kontolcü geliştirme üzerinedir. Yüksek

sadakatli doğrusal olmayan bir model Newton-Euler formülasyonuyla geliştirilmiştir ve gerçek uçuş senary-

olarını yansıtması adına Dryden rüzgar efekti ve sensör gürültüsü de eklenmiştir. İç ve dış kontrol döngülerini

içeren, hiyerarşik bir kontrol algoritması geliştirilmekle birlikte; PID-LQG kontolcüsü pozisyon ve oryanta-

syon kontrolü için kullanılmıştır. Bütün sistem parametrelerini geri beslemek adına, önce bir lineer İki

Kademeli Kalman Filtresi kullanılmıştır. Bu filtre hem hata hem de sistem parametrelerini tahmin etmek

için kullanılmıştır. İkinci olarak, bir Genişletilmiş Kalman Filtresi sistem parametre tahminini iyileştirmek

için kullanılmıştır. Sistemi dış bozucu ve belirsizliklere karşı gürbüz kılmak adına kontrol sistemi üzerine bir

kargaşa gözlemcisi entegre edilmiştir. Simülasyondan alınan sonuçlara istinaden, tasarlanan hata toleranslı

kontrolcünün eyleyici ve sensör hatalarını bulup, yörünge takip senaryosında başarılı bir şekilde ve mantıklı

kontrol eforu ile telafi edebildiği görülmüştür.
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Ünel for his continuous support and his marvellous supervision. It was a great privilege and honor to work

and study under his guidance. I am so grateful for his immense patience to me on this three years of journey

where he kept his support all the time which is the main reason for concluding this work. I would like to

thank him for his exceptional vision as an engineer where he taught me to show immense focus on every

detail where nothing works by chance. I have also highly benefited from his remarkable multi-disciplinary

background as a researcher where I have found great eagerness to discover. His passion and dedication to

his profession has always mesmerized me and he stands as a role model for me to shape my career.

I would also like to thank Assoc. Prof. Dr. Kemalettin Erbatur and Assist. Prof. Dr. Hüseyin Üvet for

spending their valuable time to review my thesis.

I am very grateful to my colleague Mehmet Emin Mumcuoğlu where his enormous help guided me to surpass
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consequence. I am also very grateful to my love İlayda Yelken for all the discussions we had to look hopefully

to future together and her continuous support with every possible way.



Contents

List of Figures 8

List of Tables 12

1 Introduction 13

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Background and Literature Survey 18

2.1 Unmmanned Aerial Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Rotary-Wing UAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Fixed-Wing UAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Fault Detection and Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Description of Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Detecting a Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Fault Tolerant Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Active FTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Passive FTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Nonlinear Model for Quadrotor 27

4 Definition and Classification of Faults 33

4.1 System and Fault Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Residual Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Full-state observer-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Kalman filter-based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Fault Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6



CONTENTS 7

4.5 Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Fault Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Controller Design 41

5.1 Position Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Attitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 PD Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.2 LQG Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Observer Design 45

6.1 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.1 Two-Stage Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Disturbance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Simulation Results 54

7.1 Baseline Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.3 Disturbance Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4 State Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.5 Fault Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Conclusions and Future Work 101

Bibliography 103



List of Figures

2.1 UAVs with different sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 UAVs with different altitude and range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 UAVs with different actuation types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Qball-X4 test-bed used by Concordia University[26] . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Georgia Tech GTMax Platform[27] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 60% Wing Loss on F-18 Subscale UAV[29] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Type of sensor faults: (a) sensor bias; (b) loss of accuracy of calibration error; (c) sensor drift;

(d) frozen sensor[31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Active FTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 Passive FTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Quadrotor System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Schematic Representation of Quadrotor [26] . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Body Coordinate System for a Quadrotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Hardware and analytical redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Residual generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Parallel Kalman filters assigned to separate faults . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Fault detection, isolation and reconfiguration (FDIR) scheme on a system . . . . . . . . . . . 39

5.1 Hierarchical Control Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 TSKF MATLAB/SIMULINK Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 TSKF Estimated Faults: (a) Step; (b) Sinusuoid; (c) Random Number; (d) Pulse . . . . . . 50

6.3 EKF Implementation in MATLAB/SIMULINK . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 Block Diagram of a Reversible Plant[82] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5 Realizable Disturbance Observer[82] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.6 A More Convenient DOB Architecture [83] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8



LIST OF FIGURES 9

7.1 MATLAB/SIMULINK Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Visualized Quadrotor Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3 Quadrotor Trajectory in Baseline Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.4 X position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . . 57

7.5 Y position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . . 57

7.6 Z position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . . 58

7.7 Roll angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . . 58

7.8 Roll angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . . 59

7.9 PWM Signals for All Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.10 LQG Trajectory Following with Actuator LOE . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.11 X position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 62

7.12 Y position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 62

7.13 Z position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . . 63

7.14 Roll angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . . 63

7.15 Pitch angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 64

7.16 Yaw angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 64

7.17 PWM Signals for LQG Controller with Actuator LOE . . . . . . . . . . . . . . . . . . . . . . 65

7.18 PD Trajectory Following with Actuator LOE . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.19 X position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 67

7.20 Y position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 67

7.21 Z position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . . 68

7.22 Roll angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . . 68

7.23 Pitch angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 69

7.24 Yaw angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 69

7.25 PWM Signals for PD Controller with Actuator LOE . . . . . . . . . . . . . . . . . . . . . . . 70

7.26 VbDOB on PD Controller Trajectory Following with Actuator LOE . . . . . . . . . . . . . . 71

7.27 X position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 72

7.28 Y position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 72

7.29 Z position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . . 73

7.30 Roll angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . . 73

7.31 Pitch angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 74

7.32 Yaw angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 74

7.33 PWM Signals for VbDOB on PD Controller with Actuator LOE . . . . . . . . . . . . . . . . 75

7.34 VbDOB on LQG Controller Trajectory Following with Actuator LOE . . . . . . . . . . . . . 76

7.35 X position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 76

7.36 Y position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 77



LIST OF FIGURES 10

7.37 Z position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . . 77

7.38 Roll angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . . 78

7.39 Pitch angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 78

7.40 Yaw angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 79

7.41 PWM Signals for VbDOB on LQG Controller with Actuator LOE . . . . . . . . . . . . . . . 79

7.42 AbDOB on LQG Controller Trajectory Following with Actuator LOE . . . . . . . . . . . . . 80

7.43 X position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 81

7.44 Y position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 81

7.45 Z position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . . 82

7.46 Roll angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . . 82

7.47 Pitch angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 83

7.48 Yaw angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 83

7.49 PWM Signals for AbDOB on LQG Controller with Actuator LOE . . . . . . . . . . . . . . . 84

7.50 TKSF Feedback and AbDOB on PD Controller Trajectory Following with Actuator LOE . . 85

7.51 X position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 86

7.52 Y position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 86

7.53 Z position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . . 87

7.54 Roll angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . . 87

7.55 Pitch angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 88

7.56 Yaw angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 88

7.57 PWM Signals for AbDOB on PD Controller with Actuator LOE and TSKF Feedback . . . . 89

7.58 TKSF Feedback and AbDOB on LQG Controller Trajectory Following with Actuator LOE . 90

7.59 X position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 90

7.60 Y position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . 91

7.61 Z position of the quadrotor (top), position error (bottom) . . . . . . . . . . . . . . . . . . . . 91

7.62 Roll angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . . 92

7.63 Pitch angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 92

7.64 Yaw angle of the quadrotor (top), tracking error (bottom) . . . . . . . . . . . . . . . . . . . 93

7.65 PWM Signals for AbDOB on LQG Controller with Actuator LOE and TSKF Feedback . . . 94

7.66 System Response to Case # 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.67 System Response to Case # 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.68 System Response to Case # 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.69 System Response to Case # 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.70 System Response to Case # 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.71 System Response to Case # 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.72 System Response to Case # 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



LIST OF FIGURES 11

7.73 System Response to Case # 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



List of Tables

6.1 Injected Actuator LOEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Tracking Errors for Baseline Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 Actuator Fault (LOE) Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.4 Tracking Errors for LQG Controller with Actuator LOE . . . . . . . . . . . . . . . . . . . . . 65

7.5 Tracking Errors for PD Controller with Actuator LOE . . . . . . . . . . . . . . . . . . . . . . 70

7.6 Tracking Errors for VbDOB ob PD Controller with Actuator LOE . . . . . . . . . . . . . . . 75

7.7 Tracking Errors for VbDOB on LQG Controller with Actuator LOE . . . . . . . . . . . . . . 80

7.8 Tracking Errors for AbDOB on LQG Controller with Actuator LOE . . . . . . . . . . . . . . 84

7.9 Tracking Errors for AbDOB on PD Controller with Actuator LOE and TSKF Feedback . . . 89

7.10 Tracking Errors for AbDOB on LQG Controller with Actuator LOE and TSKF Feedback . . 93

7.11 Fault Injection and Structural Failure Simulation Scenarios . . . . . . . . . . . . . . . . . . . 95

7.12 Fault Injection and Structural Failure Controller Efforts . . . . . . . . . . . . . . . . . . . . . 100

12



Chapter 1

Introduction

Unmanned Aerial Vehicles’ popularity is increasing rapidly as their application areas are widened through

time. Due to enhanced availability of low-cost sensors and platforms, civil field has also benefited highly

from UAVs regarding research and applications[1]. One of the reasons that enabled this circumstance is the

increased trust on these devices due to ever-evolving advancements.

UAVs are employed for a variety of tasks such as photography, military defense, precision agriculture,

logistics and etc.[2]. Different types of UAVs can be found on operation with respect to employed tasks and

work loads. These differences basically can be classified according to structural properties which include

rotary-wing, fixed-wing and hybrid configurations. Rotary-wings use multiple(3,4,6,8) rotors for actuation,

fixed-wings use generated lift from its airfoils and hybrid configuration combines both properties in the

case of a tilt-wing or tilt-rotor UAV. Separately from their structural properties; UAVs can be piloted by

remote-control or autonomously and can be utilized as single or in multi-agent manner[3].

Although there is an active research environment for various UAV-based topics, many incremental innova-

tions bring new challenges that are introduced with increased complexity and safety requirements. Espe-

cially, considering immensely growing market opportunities for logistic delivery UAVs where fast shipments

are made possible. This inevitably increases market share of these devices and their operation intensity

accordingly. Therefore, managing safe missions is and will be playing a very important role for preventing

possible hazardous situations.

So, their safety under operation, concerns human safety factor if it crashes. This is a very crucial topic

especially under UAV guidance because of the possibility they might operate under crowded environments.

Therefore, it is possible to observe a tendency to operate fully autonomously for eliminating human feedback

for control. This brings another challenge because even though ground robots are able to localize themselves

and can create a map of their environment for some time, UAVs suffer from localizing themselves [4]. It

13
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is much harder to explore and map an unknown space. Enabling an autonomy to a UAV would cancel

human feedback out of control loop. A related and very active field of research is improving the feedback

quality for the UAV. For example, UAVs that use optical feedback for position estimation is a very active

field of research in terms of control and obstacle avoidance. There are a great number of algorithms such as

RANSAC [5] that try to optimize visual guidance for better pose estimation. This wide variety of research

that combines various engineering disciplines leads to expand application areas every day. Few contemporary

applications can be given as example such as;

• Structural inspections where buildings[6] or various infrastructures like road[7] investigation

• Transportation where landslide monitoring[8] is used to take precautions on the road and traffic

monitoring[9]

• Historic preservation which monitors sensitive and cultural monuments[10]

• Progress monitoring where tracking materials[11] and fatigue inspection under unsafe worksites

• Search and rescue missions[12]

One other benefit for preventing any hazardous situations is disuse of expensive components accordingly

which are valid apprehensions. However, techniques such as fault tolerant control serves to decrease this

safety gap by modeling and controlling possible fault scenarios that may harm an aerial mission. For this

reason, developing fault compensation mechanisms play a very important role to consolidate the role of

UAVs in the future.

Fault-tolerant control systems become very handy if conventional feedback does not satisfy the system

requirements and shows poor performance which is a possible case under a fault scenario. However, we

can compensate the feedback signal with a fault tolerant controller in order to make the system perform

better with these unexpected situations. Only solution however is not a controller design, one can make a

system fault tolerant via hardware redundancy but this would increase cost and weight which is not very

desirable. A FTC overview can be categorized in two sectors where fault diagnosis is one category that

focuses on modeling or finding the fault which can be considered as a health monitoring system. Second

category is fault recovery where solutions to compensate a detected fault are proposed. There are plenty of

configurations for each field of research that collectively serve fault tolerant systems. This work combines

UAV dynamics with fault scenarios that will be compensated by various controller and observer architectures.
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1.1 Motivation

Fault tolerant control strategies constitute an active field of research in terms of employing an Unmanned

Aerial Vehicle as a test bed. Combining a highly intricate platform such as UAV with possible recovery

solutions under a high disturbance environment constitutes a challenging proposition. Idea of fault compen-

sation is spread to a vast majority of engineering disciplines where safety critical systems are prioritized such

as nuclear facilities and aircraft flight controls[13]. Even though these safety critical applications remain

important, UAVs have many advantages over conventional aircraft for research purposes due to mechanical

simplicity, ability to take-off and land vertically(VTOL) and proportionally small sizes with respect to a

conventional aircraft[14].

Aerial vehicles also provide great benefits due to their wide operation environments. Their ability to perform

with hard-to-reach operations puts them one move ahead over human personnel. High safety-demanding

workloads such as fire rescue to military applications make UAVs capable tools.

Specialized missions can be achieved via blending this ease of applicability of a UAV and tolerance to various

types of faults. Depending on the type of mission whether its a trajectory tracking or payload delivery target;

robustness to any fault would be highly beneficial. Therefore, designing a control architecture which is robust

to faults pose a challenge in terms of integrity of the model. Mentioned control architecture does not have to

consider every possible scenario that may prevent mission completion but may also adapt to differentiating

model characteristics with respect to faults, disturbances and noise. While faults basically can be classified

into 3 major branches as actuator, sensor and structural; many other configurations within these branches

may effect UAV dynamics. Therefore, apart from the control perspective; modeling each and every fault

with accuracy in order to counter-act is also a major challenge within this area of research.

One of the highly worked-over test beds for experimentation are quadrotors which itself resents from its

under-actuated architecture. Controlling 4 rotors to move in 6 degree-of-freedom while having sufficient

bandwith to control all rotors simultaneously is a valid challenge still, depending on the workload and

task[15]. Due to having a challenging platform with coupled high non-linearity and fault scenarios requests

very precise and high-fidelity model in which a robust controller can act upon accordingly.

1.2 Contributions of the Thesis

The contributions of this thesis are outlined as follows:

• A high-fidelity non-linear model is constructed using Newton-Euler formulation for quadrotor type

UAV.

– No linearization is required for plant dynamics.
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– Developed model includes Dryden wind effects and measurement noise in order to simulate real-

world scenarios.

• Two hierarchical controllers are designed where

– A PID-PD architecture is employed for outer and inner controllers.

– A PID-LQG architecture is employed for outer and inner controllers, respectively.

• Fault models have been integrated to the model which are comprised of;

– Actuator faults

– Sensor faults

– Structural failures

• Various observers have been implemented for achieving accurate state and disturbance estimations

with and without fault injection.

– A Two-Stage-Kalman Filter which employs a linear model for state estimation and estimates

faults independently.

– An Extended Kalman Filter which provides more accurate state estimates due to its nonlinear

prediction capability.

– A Disturbance Observer which estimates a lumped disturbance to counter-balance actual distur-

bance on the plant.

1.3 Outline of the Thesis

This thesis consists of 8 chapters where;

Chapter 2 gives background information and literature survey on UAVs, fault modeling and detection,

various controller architectures and possible aerial missions that are formed under these topics.

Chapter 3 gives a detailed model development using Newton-Euler formulation.

Chapter 4 is about modeling faults and articulates possible scenarios related to these fault types.

Chapter 5 accounts for controller types and reasons behind their selection. This section gives details about

employed hierarchical control architecture where outer control loop is responsible for position dynamics and

inner control loop is responsible for attitude dynamics.
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Chapter 6 provides details about observer dynamics and mathematical background of all the observers that

are used for state and fault estimation.

Chapter 7 presents simulation results for various scenarios where different faults have been considered and

appropriate estimators, controllers and observers have been implemented.

Chapter 8 concludes the thesis with several remarks and indicates possible future directions.



Chapter 2

Background and Literature Survey

2.1 Unmmanned Aerial Vehicles

Unmanned Aerial Vehicle is a mobile robot that operates midair which can be controlled either remotely by

a human operator or fully autonomously. These devices benefit from various sensors that helps it to navigate

consciously in a controlled manner. It is possible to categorize UAVs in 3 categories which are based on

weight, altitude and range, wings and rotors. Following list provides sub-types for each category of UAVs

which is inspired from [16].

Classification with respect to weight

• Nano UAVs which weigh less than 250 grams

• Micro UAVs which weigh higher than 250 grams and less than 2 kilograms

• Small UAVs which weigh higher than 2 kilograms and less than 25 kilograms

• Medium UAVs which weigh higher than 25 kilograms and less than 150 kilograms

• Large UAVs which weigh higher than 150 kilograms

18
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(a) Black Hornet Nano UAV[17] (b) DJI AGRAS Small UAV[18] (c) TAI Anka Large UAV[19]

Figure 2.1: UAVs with different sizes

Classification with respect to altitude and range

• Hand-held UAVs that flies altitude under 600 meters and has range lower than 2 kilometers

• Close UAVs that flies altitude under 1500 meters and has range lower than 10 kilometers

• NATO UAVs that flies altitude under 3000 meters and has range lower than 50 kilometers

• Tactical UAVs that flies altitude under 5500 meters and has range lower than 160 kilometers

• MALE (Medium Altitude Low Endurance) UAVs that flies altitude overr 9100 meters and has ranger

higher than 200 kilometers

• Hypersonic UAVs that flies altitude around 15000 meters and has range higher than 200 kilometers

(a) Optimus Close UAV[20] (b) JOUAV NATO UAV[21] (c) D-21 Hypersonic UAV[22]

Figure 2.2: UAVs with different altitude and range

Classification with respect to actuation

• Fixed-Wing

• Single Rotor

• Multi Rotor

• Fixed-Wing Hybrid VTOL
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(a) Insitu Fixed-Wing UAV[23] (b)Single Rotor UAV[24] (c) SUAVI Tilt-Wing UAV[25]

Figure 2.3: UAVs with different actuation types

Even though fault tolerant control studies on UAVs have huge research interest for the last decade, simulation-

based experiments outweigh real-world test-beds. However, it is possible to find various test-beds that

accompany different platforms such as rotary-wing and fixed-wing applications. Following sections will

present a background information on UAV platforms that are test-beds under fault tolerant control, fault

modeling and diagnosis, controller architectures within FTC scheme, respectively.

2.1.1 Rotary-Wing UAV

One of the most commonly used test-beds under UAV research activities are quadrotors for their relatively

low price and ease of controllability by driving its actuators with Pulse Width Modulation (PWM) signals.

There are a lot of different quadrotor brands which can be off-the-shelf or custom-built depending on use-

cases. However, as fault tolerant flight is concerned; Quanser’s Qball-X4 is a very actively used platform

by Concordia University[26]. This test-bed has a carbon fibre cage which protects the drone from possible

expenses and ensures its agility with preserving a low payload.

Figure 2.4: Qball-X4 test-bed used by Concordia University[26]
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Rotary wing platforms include single rotor type helicopter UAVs where Georgia Tech’s GTMax[27] platform

is used as an experimental test bed which includes fault tolerant control studies. Single rotor helicopters are

known to have high instability by not having an instant lift-to-power property due to lack of control surfaces

to accommodate airfoil. Therefore, this platform can be a good test-bed for experimenting high variety of

faults which even small ones might cause catastrophic consequences.

Figure 2.5: Georgia Tech GTMax Platform[27]

GTMax platform has a 2 cylinder internal combustion engine that powers its single rotor. Fault injection

on this platform is conservative due to its expensive price therefore a typical fault scenario includes limiting

the swash plate angle for introducing limited actuator command. Developed fault tolerant control module

is able to cope with this type of fault as additive control effort is employed[27].

2.1.2 Fixed-Wing UAV

Fixed-wing UAV platforms have high impact factor on influencing FTC research because of its possible

benefits on civil aviation. Fixed-wing UAVs have high stability over their control surfaces which opens a

large envelope for applicable FTC techniques. However, due to disadvantages such as need of high speed

take-off and landing, runway requirements and being always open to disturbances such as cross wind and

gust[28]; puts this platform into a challenging situation.
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Figure 2.6: 60% Wing Loss on F-18 Subscale UAV[29]

One of the used platforms for real-world testing experiments is a sub-scale of F-18 turbojet UAV whose dam-

age tolerant controller is developed and tested by Rockwell Collins aerospace company. In this experiment,

up to 60% wing loss has been implied on the UAV which is recovered by its on-board adaptive controller[29].

2.2 Fault Detection and Identification

Fault detection and identification is a very broad field of research due to its applicability on various en-

gineering disciplines. Therefore, elaborating on its background has an importance on understanding its

effects.

2.2.1 Description of Fault

It is possible to see an effort in literature on describing what is considered to be a fault and why it is important

to make a distinction between a fault and a failure. A fault is defined to be a condition where an unallowed

malfunction occurs within the system where this malfunction does not directly effect system dynamics[30].

On the other hand, a failure effects directly the functioning of a component on the system. It would be

possible to say that multiple faults may occur on the system but the system may still be functioning via

compensating a fault. However, if one or multiple faults prevent system dynamics to operate in a controlled

fashion, this would be classified as a failure. A good example to make this distinction can be the relation

between a sensor fault and an actuator failure. A sensor may read inaccurate readings due to sensor bias

or calibration error where this wrong reading behaviour might not harm a component until some time is

passed.

However, if there is an actuator failure such as its loss of effectiveness is reduced per se, instant effects can

be observed due to component failure[30]. Some type of sensor faults can be seen in Figure 2.7[31].
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Figure 2.7: Type of sensor faults: (a) sensor bias; (b) loss of accuracy of calibration error; (c) sensor drift;

(d) frozen sensor[31]

2.2.2 Detecting a Fault

In order to comprehend and tolerate any given fault, one can suggest to model each fault explicitly within

system dynamics. This is a valid approach for consciously improving the system however it is not always the

case. In FTC scheme, fault does not always have to be modelled and isolated from the system. Even though

there are plenty of methods related to fault modeling, fault can be compensated by a robust controller ar-

chitecture without the controller having any clue about any fault. In order to detect a fault, one can use the

aforementioned fault model to counter-act. However, this is not the only option where fault detection meth-

ods can be categorized in two major branches which are model-based and model-free where model-based’s

name is self explanatory and model-free systems use data driven approaches and statistical proofing[32].

Data driven approaches are highly benefited from neural networks[33], SVM algorithms[34], reinforcement

learning[35] and statistical methods become handy in terms of simplicity and ease of applicability[36]. Nev-

ertheless, model-free methods need huge bank of data and computation effort can be costly therefore, one of

the most encountered fault detection algorithm is model-based approach where an observer architecture is

employed mostly. Some of the highly used techniques for model-based fault detection are Thau observers[37],

sliding mode switching observers[38], high gain observers[39] and different variants of Kalman filters[31] such

as a Two-Stage Kalman filter[40].

2.3 Fault Tolerant Controllers

Fault tolerant control (FTC) is an active field of research with improving control architectures to back-up

system failures. Unmanned Aerial Vehicles are one of the highly benefited areas of work due to high non-
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Figure 2.8: Active FTC Figure 2.9: Passive FTC

linearity of aircrafts and high safety requirements. Therefore, finding a fault and isolating that from system

dynamics via a controller plays a very important role for its robustness. So, designing a controller is as

important as defining a fault accurately due to high disturbances and symmetric structures of most UAVs

which augments the importance of fault identification techniques to estimate and verify how much a fault is

qualified to be considered. This section presents a literature review on fault tolerant control schemes where

fault diagnosis and reconfiguring a corresponding control architecture will be presented.

Fault tolerant control systems can be classified in two sections namely passive and active FTC schemes.

Active type uses a strategy to modify control gains with respect to estimated fault or uncertainty during

simulation. On the other hand, passive systems use one controller architecture but additive control input

can be used for estimated faults and uncertainty.

Active techniques can either be active for using a separate fault detection and identification mechanism, or

can be active regarding to controller which adapts to faults without having the knowledge of fault itself[41].

Even though we have branched fault detection techniques as model-based and model-free earlier, how it is

detected during the simulation without emphasizing on the model stands as a category under fault tolerant

control ideology. This section focuses on articulating the controller part due to scope of this work where

comparisons will be laid accordingly. However interested reader can go through references [42]-[47] where

detailed information about Thau observers as an active fault identification method is discussed extensively.

Also, in this thesis we have used a Two-Stage Kalman Filter where active fault identification is achieved via

simultaneously estimating system states and faults[26].

2.3.1 Active FTC

Unlike a traditional controller, active fault tolerant systems introduce more state parameters into the state

vectors where these parameters are actively controlled depending on the architecture of the plant. As in

the FTC case, estimated faults are included in the controller decision. It is possible to come across a high

variety of active fault tolerant controllers in literature. One of the highly used architectures is adaptive

feedback linearization where nonlinear state space dynamics are modeled[48]. Adaptive sliding mode[43] and
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adaptive sliding mode backstepping[44] are also useful controllers for their adaptivity and high robustness

envelope. Model Reference Adaptive Control (MRAC) is another highly used application where controller

parameters are updated with respect to changing system dynamics and faults in order to increase robustness

to parametric uncertainties[49].These parametric uncertainties that are related to un-modelled dynamics

can be actively estimated and used in control allocation where bounded uncertainties can be represented[50].

Rather than altering control law for controller as in the case of MRAC, gain scheduling[51] is also highly

employed for dynamically changing control gains with fast response.

It is possible to come across hybrid control techniques such as [52] where a passivity-based adaptive back-

stepping technique is used to deal with mass uncertainties on the quadrotor due to unknown payload.

Generally for the adaptive approach, parameter uncertainties are targeted to be eliminated and passive

techniques such as backstepping[46] is good for overcoming under-actuation problem[53].

Rather than focusing solely on controller, some applications include altering the trajectory such that if a

fault is introduced, an optimized easier to follow trajectory can be reconfigured for compensation[54].

2.3.2 Passive FTC

Passive FTC lays its foundations on robust control in which it defends having a single controller architecture

compliant enough to cope with parametric uncertainties. Passive fault tolerant controllers have a fixed stabil-

ity margin where faults, disturbances and noise can be compensated within that region. This controller type

is especially beneficial for faster response however depending on disturbances, it may need high robustness

envelope which can be hard to accomplish. LQR control[55] is an optimal control technique which has high

robustness envelope and it is used extensively for UAVs. Backstepping[56] is also an effective way in terms

of its adaptation capability without knowing a fault in the system.

Some works in literature use sliding mode control (SMC)[57][45] due to its high robustness margin. How-

ever due to its switching behaviour of SMC, discontinuities appear during SMC regulation which induces

chattering. Even though SMC is known for providing asymptotic stability, unmatched disturbances such

as fault introduction may be a problem due to its discontinuous nature[58]. However, SMC architecture is

one of the highly worked-over controller configurations where different techniques such as terminal sliding

mode control (TSMC) [59] are experimented to overcome this chattering problem. Normally linearly defined

tracking error on SMC is defined in a non-linear manner in this work where error is estimated apriori for its

compensation on the controller. By this way, controller can act faster and reduce chattering problem.

Passive FTC method is also highly used with simpler to implement controllers such as PID. It can show

exceptional results such as in this work [60] where it uses a PD controller and a robust compensation

mechanism to deal with uncertainties. Authors have managed to get successful results with a passive PD
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controller on a real experimental test-bed.

It should be noted that artificial intelligence based techniques are also applied on FTC which serves an

advantage since not requiring a model to deal with uncertainties. This is defined under passive FTC because

AI is mostly used for uncertainty estimation which backs up a passive controller. One example [61] can be

usage of a radial basis function network (RBFNN) which can be employed as an uncertainty observer that

uses prior flight data obtained from the system. Estimated uncertainty is lumped back to the controller to

compensate the uncertainty in the system just like in the case of a disturbance observer. This work employs

a backstepping controller which is unaware of neither a fault nor any uncertainty so it is a passive system

however, used RBFNN estimates uncertainties online therefore fault detection is conveyed actively. These

are hybrid systems where combining adaptation and robustness techniques aim to operate back to back for

fault compensation. This aims for serving best of both worlds where robustness of controller is increased

with adaptive fault estimation. There are also right opposite structures where highly adaptive controller’s

robustness is increased with a robust observer [62] to have better attitude dynamics.



Chapter 3

Nonlinear Model for Quadrotor

A nonlinear mathematical model of a quadrotor is presented in this section. This model will later employ

various choice of controllers within the simulation that can be switched manually by the operator. This

system takes reference trajectories as input and gives position, velocity and acceleration as output. A

general view of modelled dynamics of quadrotor can be seen in Figure 3.1

Figure 3.1: Quadrotor System Block Diagram

Fault injection and motor dynamics block contains motor dynamics where it takes force and torque control

inputs and converts them to individual PWM motor inputs. Every motor is modelled with a linear first

order transfer function which takes PWM input ui and motor model K w
s+w where K is the positive motor

gain and w is the motor bandwith. Combining motor dynamics with PWM input of each rotor gives motor

thrusts;

Ti = K
w

s+ w
ui ; i = 1, 2, 3, 4 (3.1)

For mapping between control inputs to motor PWM control inputs, we have used the following matrix;

27
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
U1

U2

U3

U4

 =


K K K K

0 0 KL −KL

KL −KL 0 0

KKψ KKψ −KKψ −KKψ




u1

u2

u3

u4

 (3.2)

where L is the distance from the center of mass to each motor. Kψ is a constant for yawing motion. U1 is

the total lifting force acting on the system, U2, U3, U4 are torques for rolling, pitching and yawing motions

respectively. For the output of PWM signals, we have also saturated the signals in between 0 and 0.05

where 0 denotes no power and 0.05 denotes maximum actuator effort. Rotor directions and corresponding

movements can be visualized in Figure 3.2.

Figure 3.2: Schematic Representation of Quadrotor [26]



CHAPTER 3. NONLINEAR MODEL FOR QUADROTOR 29

Newton-Euler formulation is employed in order to obtain dynamic models for the quadrotor. It is assumed

that air frame is rigid body where it benefits from same dynamic force and moment equations. Dynamic

equations are calculated with respect to body frame where it is denoted as subscript b.

m(wb × vb + v̇b) = F (3.3)

wb × (Ibwb) + Ibẇb = M (3.4)

where m is the mass, wb = [p q r]T is the angular velocity in body frame, vb = [u v w]T is the linear velocity

in body frame and F is the total force. Ib is the moment of inertia matrix in body frame and M is the total

moment. It is possible to manipulate equations (3.3) and (3.4) to show linear and angular velocities in body

frame at left hand side.


u̇

v̇

ẇ

 =
F

m
− (wb × vb) (3.5)


ṗ

q̇

ṙ

 = Ib
−1(M − (wb × Ibwb)) (3.6)

Mathematical model of the quadrotor is derived from its force and moment balance equations given in (3.3)

and (3.4) where they mostly rely on propeller thrust and gravity as force components and moment created

under roll, pitch and yaw due to orientation imbalance and opposite propeller speeds. Vector [x y z φ θ ψ]

denotes position and orientation of the UAV in earth frame and vector [u v w p q r] denotes linear and

angular velocities in body frame.
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Figure 3.3: Body Coordinate System for a Quadrotor

Z-axis’ direction is taken pointing upwards as can be seen in Figure 3.3 where gravitational forces are denoted

negative and propeller thrust as negative. Body and earth frame can be linked by velocity transformation

and rotation matrices such as;

v = Rvb (3.7)

w = Twb (3.8)

where v = [ẋ ẏ ż]T , w = [φ̇ θ̇ ψ̇]T , vb = [u v w]T and wb = [p q r]T . R matrix enables transformation from

body frame to inertial frame which is formulated by multiplying three rotation matrices at ZYX conversion;

R =


cψcθ −sψcφ + cψsθsφ sψsφ + cψsθsψcφ

sψcθ cψcφ + sψsθsφ −cψsφ + sψsθsψcφ

−sθ cθsφ cθcφ

 (3.9)

T matrix is the rotation matrix that maps angular velocities from body frame to inertial frame.

T =


1 sφtθ cφtθ

0 cφ −sφ
0

sφ
cθ

cφ
cθ

 (3.10)
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Kinematic model becomes;

ẋ = w[s(φ)s(ψ) + c(φ)c(ψ)s(θ)]− v[c(φ)s(ψ)− c(ψ)s(φ)s(θ)] + u[c(ψ)c(θ)]

ẏ = v[c(φ)c(ψ) + s(φ)s(ψ)s(θ)]− w[s(φ)c(ψ)− s(ψ)c(φ)s(θ)] + u[s(ψ)c(θ)]

ż = w[c(φ)c(θ) + c(φ)c(ψ)s(θ)] + v[c(θ)s(φ)]− u[s(θ)]

φ̇ = p+ r[c(φ)t(θ)] + q[s(φ)t(θ)]

θ̇ = q[c(φ)]− r[s(φ)

ψ̇ = r
c(φ)

c(θ)
+ q

s(φ)

c(θ)

(3.11)

where s denotes sin, c denotes cos and t denotes tan. Next, total force acting on the system will be found

by Newton’s law;

fx = m(u̇+ qw − rv)

fy = m(v̇ − pw − ru)

fz = m(ẇ − pv − qu)

(3.12)

We have showed total force generated as U1 such as U1 = fx + fy + fz. Total moment acting on the system

can be found as;

mx = ṗIxx − qrIyy + qrIzz

my = q̇Iyy − prIxx − prIzz

mz = ṙIzz − pqIxx + pqIyy

(3.13)

We define forces and moments in body frame as fb = [fx fy fz] and mb = [mx my mz] where gravity will be

combined as well. But first gravity vector should be multiplied with RT to body frame representation;

fb = mgRT ez − fte3 + fw (3.14)

where ez is the unit vector in inertial z axis, e3 is the unit vector in body z axis, fb denotes external forces

in body frame, ft is the total thrust generated by rotors which can be expressed as Ti = K w
s+wui, K is

thrust coefficient and fw is the force caused by the wind. Similar formulation is again conveyed to calculate

external moment balance.

mb = τB − ga + τw (3.15)

where τB = [U2 U3 U4]T is control torques generated by motor speed difference, ga is generated gyroscopic

moments and τw is torques generated by wind. Generally, ga is neglected for quadrotors due to very small
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inertia value for each rotor. If it would have been a tilt wing application per se, then rotor inertia should

have been considered as well. Combining external force and moment equations gives;

−mg[s(θ)] + fwx = u̇+ qw − rv

mg[c(θ)s(φ)] + fwy = m(v̇ − pw − ru)

mg[c(θ)c(φ)] + fwz − ft = m(ẇ − pv − qu)

U2 + τwx = ṗIxx − qrIyy + qrIzz

U3 + τwy = q̇Iyy + prIxx − prIzz

U4 + τwz = ṙIzz + pqIxx − pqIyy

(3.16)

Actuator dynamics can be modelled by using generated PWM thrusts in (3.1) where control inputs can then

be found via (3.17).

U1 =

4∑
i=1

Ti

U2 = LT3 − LT4

U3 = LT1 − LT2

U4 = KψT1 +KψT2 −KψT3 −KψT4

(3.17)

where L is the distance between the center of the quadrotor and the center of the rotor and Kψ is the yawing

constant. Combining all the previous equations provide us the position in earth frame and orientation in

body frame which constitutes a hybrid frame for the quadrotor is as follows;

Ẍ = (s(φ)s(ψ) + c(ψ)s(θ)c(φ))
U1

m

Ÿ = (−c(ψ)s(φ) + s(ψ)s(θ)c(φ))
U1

m

Z̈ = (c(φ)c(θ))
U1

m
− g

ṗ =
Iyy − Izz
Ixx

qr +
U2 + τwx
Ixx

q̇ =
Izz − Ix
Iyy

pr +
U3 + τwy
Iyy

ṙ =
Ixx − Iy
Izz

pq +
U4 + τwz
Izz

(3.18)



Chapter 4

Definition and Classification of Faults

Fault detection and isolation process can be utilized under phenomenon of hardware or software redundancy.

Hardware redundancy employs duplicate of several hardware where measurement signal can be supplied from

two independent sensors for example which are allocated for the same task. Therefore, if a fault occurs for a

specific sensor, a correlated separate sensor would still send correct data for evaluation of that signal. Same

redundancy can be applied to actuators or even computers to recover the system from a faulty condition

likewise. Hardware redundancy is utilized frequently for aerospace applications where safety plays a high

importance under certification purposes. However as one could expect, relying more on hardware introduces

extra cost, increased weight and occupies more space which can not be desirable for plenty of low cost or

space-restricted applications.

Figure 4.1: Hardware and analytical redundancy

On the other hand, software (analytical) redundancy employs a mathematical model of the system where it

constantly checks deviations of measured output from estimated output via various estimation techniques
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which will be discussed further in this section.

This work focuses on analytical redundancy where fault modeling will be investigated for further isolate

that fault out of the system and reconfigure the controller to take an action accordingly. The outline of this

chapter will be as follows;

• System and Fault Modeling

• Residual Generation

• Fault Isolation

• Decision Making

• Reconfiguration

• Fault Injection Interface

Chapter 5 will be dedicated to controller design in which once an accurate fault model is obtained; various

fault tolerant controller architectures will be discussed.

4.1 System and Fault Modeling

We can add disturbance terms to represent the plant dynamics of a system where observer dynamics are

introduced via assuming a linear system. Lineariazed system model becomes;

x(t+ 1) = (A+ ∆A)x(t) + (B + ∆B)u(t) + E1n1(t)

y(t) = (C + ∆C)x(t) + (D + ∆D)u(t) + E2n2(t)
(4.1)

where n1 and n2 are unknown disturbance vectors; ∆A and ∆B correspond to model uncertainties.

Fault vector is generally modelled including 3 states which are sensor, actuator and component faults.

Actuator and sensor faults are modelled as ‘additive fault’ where a stuck elevator or faulty sensor reading

can be examples. On the other hand component fault is modelled as ‘multiplicative fault’ where a permanent

damage on fuselage or broken control surface. If we include fault terms to our system model;

x(t+ 1) = (A+ ∆A+ ∆Ac)x(t) + (B + ∆B + ∆Bc)u(t) + E1n1(t) +Bfa(t)

y(t) = (C + ∆C + ∆Cc)x(t) + (D + ∆D + ∆Dc)u(t) + E2n2(t) + fs(t)
(4.2)

where fa(t) is actuator faults, fs(t) is sensor faults; ∆Ac and ∆Bc represent component faults. As one

can see from (4.2), a possible component fault disturbs the system dynamics highly and unwanted effects

such as sensor noise, environmental disturbances and component faults are evaluated within the same model

uncertainty matrix. This is not a desired calculation method because we would like to isolate disturbances

specific to faults in order to reconfigure an updated control strategy. This is where a residual signal is
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introduced which is defined as the difference between measured output and estimated output. Goal for

designing an effective residual is to minimize effects of disturbances and sensor noise to emphasize strictly

on the fault itself which is a challenging objective. The ideology behind creating a ‘pure’ residual remains

an active field of research. As in the scope of this work, we can embed the model uncertainties into the state

matrices and take out multiplicative component fault to be added to a generalized additive fault vector.

This notion of an isolated fault(ft) can be modelled as;

x(t+ 1) = Ax(t) +Bu(t) + E1(t)n1(t) +Bfa(t) + F1(t)fc(t)

y(t) = Cx(t) +Du(t) + E2(t)n2(t) + fs(t) + F2(t)fc(t)
(4.3)

where n = [n1 n2]T is the noise vector, f = [fa fs fc]
T is the fault vector. If we squeeze (4.3) into an

input-output scheme and take the z-transform of the equation;

y(z) = G(z)u+ F (z)f + E(z)n (4.4)

where G(z), F (z), E(z) are transfer functions for how effective the control, fault or noise vectors on output.

They are defined as;

G(z) = C(zI −A)−1B +D

F (z) = [(zI −A)−1E1E2]

E(z) = [(zI −A)−1BI(zI −A)−1F1 + F2]

4.2 Residual Generation

As stated earlier, residual signal is defined as the difference between measured output and estimated output

which can be shown as;

r(t) = y(t)− ŷ(t) (4.5)

If there is no fault in the system, the mean of the residual E[r(t)] is zero. If there is a detected fault, then

mean should diverge from zero.

There are various methods that tries to create the most robust residual that is independent of noise and

disturbances. Some of them are;

4.2.1 Full-state observer-based methods

If we would write a simplified version of the existing fault model;

x(t+ 1) = Ax(t) +Bu(t) + E1n1(t) +Bfa(t)

y(t) = Cx(t)
(4.6)
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Figure 4.2: Residual generation

A full state observer would give an estimate such as;

x̂(t+ 1) = Ax̂(t) +Bu(t) + L(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)
(4.7)

where L is the typical observer gain. Residual should also be updated due to altered estimate;

r(t) = W (y(t)− ŷ(t)) = WCξ(t) (4.8)

where W is the weighting matrix and ξ is state estimation error x− x̂. Next, error dynamics can be written

as;

ξ(t+ 1) = (A− LC)ξ(t) + E1n1(t) +Bfa(t) (4.9)

By using pole placement, one can choose such observer gain L that may lead the system to asymptotic

stability. Also eigenstructure assignment can be employed other than pole placement where transfer function

of noise in residual signal can be nulled via choosing such W and L.

4.2.2 Kalman filter-based approach

A Kalman filter based observer identify faults regarding to the whiteness, mean and covariance of residuals.

Generally, such application is assembled to the system by assigning separate Kalman filters to every possible

fault scenario. By this way, a bank of Kalman filters are employed as in Figure 4.3.
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Figure 4.3: Parallel Kalman filters assigned to separate faults

This technique is very widely used with aerospace applications where Multiple Model Adaptive Estimation

(MMAE) under reconfiguration chapter is a good example. With MMAE, each type of fault for parallel

Kalman outputs are recorded and a specific model is assigned to each fault configuration. If the system

detects a fault under a predefined condition, entire system model will switch to that faulty scenario model

where again a predefined controller architecture will be assigned accordingly.

Actuator Fault Modeling

In this work Kalman filter-based approach will be employed for modeling actuator faults. An adaptive two

stage Kalman filter(ATSKF) is used for this purpose where an augmented state matrix which embeds system

states and actuator faults is configured. Augmenting the state vector enables us to make MIMO predictions

separating states and faults. However, this method will be only used for estimating actuator faults with

respect to loss of effectiveness factor where a γ parameter is constituted to represent how effective that

actuator is. Loss of control effectiveness is reasoned to partial losses in either hydraulic or pneumatic

pressures for control surfaces in fixed wing aircrafts or inadequate thrust for quadrotors due to limited motor

bandwith. One can show the direct effect of partial actuator loss as;

ufi = (1− γi)ui (4.10)

where ufi is the faulty control input, γi is the LOE factor which is bounded between 0 ≤ γi ≤ 1 and ui is the

apriori control input before fault injection. This part mainly focuses on actuator faults due to loss of control

effectiveness but three other actuator fault types are included into the fault injection block for simulation

that are specific to fixed wing UAV types which are

• Actuator lock denotes a mechanical jam on the actuator that supplies a constant value due to its

position for control input.
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• Float failure denotes a hydraulic, pneumatic or electric failure for the actuator where a control pressure

or electrical current is completely lost for that actuator. This results in a freely moving control surface

where it generates no lift.

• Hardover Actuator Failure denotes the actuator at its maximum deflection where it supplies high lift

without the need due to software or hardware faults.

Fault modeling techniques are not limited to Kalman filtering only. Even though only KF is employed for

fault detection in this work, various compensation schemes are also available in literature. Some of the other

techniques that are used for fault detection and residual generation are;

• Parity relations approach [63]

• Optimization-based approach [64]

• Stochastic approach [65]

• System identification methods [66]

• Nonlinear systems [67]

• Artificial intelligence approach [68],[69]

4.3 Fault Isolation

Now that is clear that an optimum residual is the one that is sensitive to faults; we need to define how that

specific fault is isolated from other faults. Basically, an isolation is needed to distinguish each fault from

another which is covered under two methods being directional residual approach and structured residual

approach. In directional residual approach, direction of every residual is defined under a residual set where

faults are classified regarding to their directional properties. In structural residual approach, every fault is

quantified due to how similar it is to other faults. In other words, each fault has a weight that is assigned

from similarity to other faults. By this way a certain fault characteristic can be chosen and can be isolated

conforming to that fault property.

4.4 Decision Making

This part mostly rely on a statistical background where an identified fault is evaluated whether it should

be taken into account for controller reconfiguration[70]. Essentially, a decision is made for a previously

quantified fault to be worthy of a compensation. The most basic technique to make such decision is to

define a threshold where consider every fault as valid if it exceeds that threshold. However, this is not a

comprehensive method which is why various decision making techniques are employed. Some techniques use
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adaptive thresholds in which a probabilistic designation becomes handy. Some of the highly used examples

are as follows;

• Sequential probability ratio test (SPRT) [71]

• Cumulative sum algorithm (CUSUM) [72]

• Local approach [73]

4.5 Reconfiguration

This part is about re-configuring a control action to back up the actual controller output. A control action

is taken at this step in the light of quantified valid faults to be added to the real controller. A block diagram

for tracing the signals can be seen in Figure 4.4.

Figure 4.4: Fault detection, isolation and reconfiguration (FDIR) scheme on a system

Various controller architectures can be employed under 2 major branches which are passive and active

control. Passive control method tries to find a robust control region where possible fault scenarios have

already been modelled and these faults are compensated within this entire robust control envelope. This

method can be very fast comparing to active control due to defined control actions however designing a

wide robustness margin can make the system nonreactive under some conditions. With active FTC on the

other hand, controller structure changes with respect to identified faults to improve real time fault handling

characteristics. Even though active control reconfiguration sound promising, it requires high computation

power. Some of the methods that are used for control reconfiguration in literature are classified as follows[74];

• Passive (Robust Control)

• Active

– Multiple Model (Multiple Model Switching and Tuning)
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– Adaptive (MRAC, Adaptive Feedback Linearization via ANN)

– Actuator Only (Sliding Mode Control, Control Allocation)

– Controller Synthesis where Fault Model is Assumed (Eigenstructure Assignmet, MPC)

4.6 Fault Injection

This part is dedicated to fault injection methods where one can change fault characteristics to his/her own

preference. Depending on the origin of fault and its type, fault injection module has three branches where it

lets user to set faults either one-by-one or simultaneously. Faults caused by actuators, sensors or components

can be configured depending on the fault scenario.

Actuator faults are modeled in this work as LOE (Loss of Effectiveness) factors where injected step LOE

value causes degradation in actuator operation. Sensor faults effect system output matrix where they are

classified under 5 configurations. Bias represents a constant error in the output where a random noise will be

generated for each click. Loss of accuracy is self explanatory for this sensor fault where an accuracy rating

can be manually tuned in percentage. Drift is a cumbersome fault where the sensor output keeps diverging

with respect to time. This fault can be modelled as a ramp function where the assigned slope would emulate

rate of the drift. Freezing is again a straight forward fault where sensor reading is stuck at a specific value.

This option will serve as a steady state sensor measurement. Calibration Error is the last sensor fault option

where a sensor becomes unreliable to be read. If this fault is selected, a chosen sensor will continuously send

uncorrelated set of random measurements.

One other fault type is structural failure where UAV looses a part from its body. This can be modeled

as actuation loss if a fixed-wing UAV looses its rudder per se. However, if our quadrotor model looses an

actuator totally like an entire motor for example; its balance would totally collapse and become very hard

to control unlike rudder loss where a fixed-wing can still preserve its symmetry. So, structural failure on our

model will be modeled as a battery-pack that is ruptured from the rigid body where it only effects weight

not moments of inertia.



Chapter 5

Controller Design

This work lays its foundations on to Passive FTC scheme in which defends one and only robust controller

can compensate effects of disturbances such as faults, failures and noise. Therefore, an attempt to compose

a robust controller architecture is presented in this chapter. We have used a hierarchical control scheme due

to under-actuated structure of the quadrotor.

Figure 5.1: Hierarchical Control Architecture

Two controller loops are generated where a feed-forward PID architecture is employed for outer (Position)

controller and two switchable controllers are embedded inside the inner (Attitude) controller. Inner con-

troller’s robustness plays a very important role for stabilizing the system therefore PD and LQR architectures

are constituted for studying robustness.
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5.1 Position Control

5.1.1 PID Control

Position controller is responsible from trajectory tracking in which deals to minimize error dynamics on

reference states. It also provides desired pitch and roll commands for the attitude controller. Position

controller employs virtual control inputs forces the errors on X,Y,Z states in order to converge to zero[75].

We can formulate these errors on position dynamics with the following error dynamics formulation;

ex = Xd −X

ey = Yd − Y

ez = Zd − Z

(5.1)

Taking derivative of error terms yields;

ėx = Ẋd − Ẋ => ëx = Ẍd − Ẍ

ėy = Ẏd − Ẏ => ëy = Ÿd − Ÿ

ėz = Żd − Ż => ëz = Z̈d − Z̈

(5.2)

We can now define the virtual control inputs;

µx = Ẍd +Kp,xex +Kd,xėx +Ki,x

∫
exdt

µy = Ÿd +Kp,yey +Kd,y ėy +Ki,y

∫
eydt

µz = Z̈d +Kp,zez +Kd,z ėz +Ki,z

∫
ezdt

(5.3)

Desired feed-forward terms are obtained by taking double derivatives of desired X,Y,Z values outputted from

trajectory generation block, and PID terms are feedback terms obtained from error dynamics. Next, we can

determine the total thrust U1 and the desired roll and pitch angles in terms of calculated virtual control

inputs as [75];

U1 = m
√
µ2
x + µ2

y + (µz + g)2

φd = asin

 sψdµx − cψdµy√
µ2
x + µ2

y + (µz + g)2



θd = asin

 cψdµx − sψdµy
cψd

√
µ2
x + µ2

y + (µz + g)2



(5.4)
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5.2 Attitude Control

Attitude controller needs a well-designed controller architecture due to high frequency operating conditions.

Therefore, maintaining robustness inside inner loop takes huge importance for overall stability of the system.

In order to cope with high non-linearity that is brought by fault injection and disturbance; we have designed

two switchable controllers to emphasize the importance of robust attitude control.

5.2.1 PD Control

Just as in the case of position controller, attide controller is benefited from PID control. However, control

gains are higher with inner loop with respect to outer loop and even a small error can lead a control

degradation which is why integral control is eliminated with attitude control.

Just as before, we can define error dynamics for attitude controller as follows;

φ̈ = φ̈d +Kp,φeφ +Kd,φėφ

θ̈ = θ̈d +Kp,θeθ +Kd,θ ėθ

ψ̈ = ψ̈d +Kp,ψeψ +Kd,ψ ėψ

(5.5)

Now, we can calculate control inputs U2, U3, U4 as follows;

U2 = Ixx(φ̈d +Kp,φeφ +Kd,φėφ)

U3 = Iyy(θ̈d +Kp,θeθ +Kd,θ ėθ)

U4 = Izz(ψ̈d +Kp,ψeψ +Kd,ψ ėψ)

(5.6)

5.2.2 LQG Control

Linear Quadratic control is an optimal control method which employs a state feedback for closed loop

dynamics. Gains for state feedback controller can be chosen depending on demands of the system by

minimizing a cost function[76]. LQR control places the eigenvalues on desired positions which ensures

stability. In our case, we are using output of Kalman filter estimates to achieve full state feedback therefore,

such applications are named as Linear Quadratic Gaussian control.

A finite horizon, linear quadratic regulator (LQR) is formulated as;

xk+1 = Axk +Buk (5.7)

where a discrete linear state space model is given such that x ∈ <N , u ∈ <N , x0 given. A cost function J is
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defined;

J =

∞∑
k=1

xTkQxk + uTkRuk (5.8)

where Q ≥ 0 is a positive semi-definite and R > 0 is a positive definite matrix. A control input is determined

as;

uk = rk −Kxk (5.9)

where K is the feedback gain matrix and r is the reference input vector. K is calculated by solving the

algebraic Riccati equation. However, in MATLAB lqr command minimizes the cost function by placing

eigenvalues automatically via given Q and R matrices such as K = lqr(A,B,Q,R)

Gains are chosen depending on what is required out of the system. Giving higher values for Q enables

better trajectory tracking but increases control effort. Giving higher values for R reduces control effort by

sacrificing less accurate trajectory tracking therefore, an optimal calibration is done via tuning them with

trial and error.

Linearized system matrices at hovering condition and small angle approximation are as follows;

U2 = Ixxφ̈

U3 = Iyy θ̈

U4 = Izzψ̈

(5.10)

which leads to obtain a linear state space model to calculate feedback gain;



φ̇

φ̈

θ̇

θ̈

ψ̇

ψ̈


=



0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0





φ

φ̇

θ

θ̇

ψ

ψ̇


+



0 0 0

1
Ixx

0 0

0 0 0

0 1
Iyy

0

0 0 0

0 0 1
Izz




U2

U3

U4

 (5.11)

Obtained A and B matrices are utilized along with Q and R matrices to compute the optimal state feedback

gain.

LQR is also known for its disability to eliminate steady-state error even though it gives remarkable tracking

results[77]. In order to compensate for this, we have added an integral action to error dynamics which

eliminated previous steady-state error perfectly.



Chapter 6

Observer Design

In this section, some mathematical background is provided for observer development. We have first imple-

mented a Two-Stage Kalman Filter (TSKF) which is designed to estimate injected faults and system states

seperately. TSKF is a beneficial filter especially under FTC scheme however its driving equations are based

on linearized system dynamics at a given hovering condition. Therefore, it may have some difficulties if

nonlinearities are dominant.

In order to cope with nonlinearities in the system dynamics, an Extended Kalman Filter (EKF) has been

implemented. Extended Kalman Filters provide more accurate state estimations due to their fully nonlinear

architecture. This ability to perform estimations in a non-linear manner, removes necessity to estimate a

separate fault value from residual.

These two observers are employed for improving state estimations in order to enable full state feedback

condition. We have also designed another observer additively benefits system dynamics. A disturbance

observer (DOB) is implemented in order to estimate a lumped disturbance value where a disturbance estimate

can be added to the feedback control as a feedforward term for compensating effects of disturbance. Two

relevant disturbance observer architectures are implemented which are called Acceleration-Based (AbDOB)

and Velocity-Based disturbance observers (VbDOB).

6.1 State Estimation

6.1.1 Two-Stage Kalman Filter

This part is dedicated to deriving a TSKF for predicting loss of control effectiveness in an arbitrary actuator.

This method is first formulated by [78] where two Kalman filters are combined for multiple predictions. First

a state matrix should be formed to represent the dynamics which is why we should linearize both of our
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plants around a trim point. This trim point will be the hovering condition for quadrotor where there is no

yaw and very small roll and pitch angles are assumed. Simplified model becomes[26];

ẍ = θg

ÿ = −φg

z̈ = g − U1

m

φ̈ =
U2

Ixx

θ̈ =
U3

Iyy

ψ̈ =
U4

Izz

(6.1)

State vector is [x, ẋ, y, ẏ, z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇], and [U1, U2, U3, U4] are total lift force, moment of roll, moment

of pitch and moment of yaw respectively. In order to stay in these trim points, quadrotor control input is

taken to be [U1, U2, U3, U4] where it covers all the rotors. Linearized state space matrices A, B, C and D are

formulated by using Jacobian matrices.

ẋp(t) = Apxp(t) +Bpup(t)

yp = Cpxp(t)
(6.2)

In order to include the fault model into the state space model, we can augment the states by including faulty

actuator control inputs. First, state space model is designed that takes actuator dynamics into account.

ẋa(t) = Aaxa(t) +Bau(t)

ya(t) = Caxa(t)
(6.3)

where xa = [xp up]
T is the augmented state vector, u = [u1, u2, u3, u4] for quadrotor. If we consider control

inputs to be modelled as PWM where a first order linear transfer function becomes

Fi = K
w

s+ w
ui = K̄ui (6.4)

where K is a positive gain, w is motor bandwith and variation in thrust can be modeled accordingly. Ba

becomes Ba = [K̄Bp Kw]T and Ca = [Cp0]. Aa = Aa0 + δAa where Aa0 = [Ap0; 0−w]2x2 and δAa denotes

unknown model uncertainties. If we combine actuator loss of control effectiveness (4.10) and augmented

state space equations, following expression is obtained.

ẋa(t) = Aaxa(t) +Ba(I − Γ)u(t) (6.5)
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where it can be converted into additive form such as;

ẋa(t) = Aaxa(t) +Baua(t) + Eaγ(t) (6.6)

where Γ = diag(γ1, γ2, γ3, γ4) for quadrotor, γ = [γ1, γ2, γ3, γ4]. Ea = −BaU where U = diag(u1, u2, u3, u4).

We can alter the equation once more to obtain;

ẋa(t) = Aaxa(t) +Baua(t) + Ēaf(t) (6.7)

where Ēa = −Ba and f(t) = Uγ(t).

Now that fault augmented state equations are obtained, we can design the two step Kalman filter. This filter

is discrete therefore a discrete-time model should be obtained from upper continuous time representation.

Sampling rate of 100 Hz has been chosen by using zero-order hold. Discrete time state equations become;

xk+1 = Akxk +Bkuk + Ekγk + wxk

yk = Ckxk + vk

(6.8)

where wxk and vk are uncorrelated white Gaussian noise sequences with covariences Qxk and Rk. These

covariances are found by designing a state feedback that makes eigenvalues of the system matrix stable.

LQR method is employed for optimization in order to obtain best Q and R values with respect to the cost

function J =
∑∞
k=1 x

TQx+ uTRu. A quantified fault value is formulated as;

γk+1 = γk + wγk (6.9)

where wγk denotes the zero mean white noise with covarience Qγk . This quantified fault value will be sent to

TSKF in order to obtain a loss of control effectivess factor(LOE) for fault detection and isolation. TSKF

employes two parallel filters that inputs the augmented state matrix to estimate the fault parameter and

system state [79]. The output of the filter gives these estimations by minimizing variances for state and

actuator fault. First filter that is responsible for fault estimation can be formulated as;

γ̂k+1|k = γ̂k|k (6.10)

P γk+1|k = P γk|k +Qγk (6.11)

Kγ
k+1 = P γk+1|kH

T
k+1|k(Hk+1|kP

γ
k+1|kH

T
k+1|k + S̄k+1)−1 (6.12)

γ̂k+1|k+1 = γ̂k+1|k +Kγ
k+1(rk+1 −Hk+1|kγ̂k+1|k) (6.13)
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P γk+1|k+1 = (I −Kγ
k+1Hk+1|k)P γk+1|k (6.14)

We can formulate fault free subfilter that represents states as;

x̄k+1|k = Akx̄k|k +Bkuk +Wkγ̂k|k − Vk+1|kγ̂k|k (6.15)

P xk+1|k = AkP
x
k|kA

T
k +Qxk +WkP

γ
k|kW

T
k − Vk+1|kP

γ
k+1|kVk+1|k (6.16)

Kx
k+1 = P xk+1|kC

T
k+1(Ck+1Pk + 1|kxCTk+1 +Rk+1)−1 (6.17)

x̄k+1|k+1 = x̄k+1|k +Kx
k+1(yk+1 − Ck+1x̄k+1|k) (6.18)

P xk+1|k+1 = (I −Kx
k+1Ck+1)P xk+1|k (6.19)

where residual is formulated as rk+1 = yk+1 − Ck+1x̄k+1|k and its covariance matrix is formulated as

S̄k+1|k = Rk+1 + Ck+1P
x
k+1|kC

T
k+1 (6.20)

The coupling equations are as follows;

Wk = AkVk|k + Ek (6.21)

Vk+1|k = WkP
γ
k|k(P γk+1|k)−1 (6.22)

Hk+1|k = Ck+1Vk+1|k (6.23)

Vk+1|k+1 = Vk+1|k −Kx
k+1Hk+1|k (6.24)

Redressed estimated state and its estimated covarience becomes

x̂k+1|k+1 = x̄k+1|k+1 + Vk+1|k+1γ̂k+1|k+1 (6.25)

Pk+1|k+1 = Vk+1|k+1P
γ
k+1|k+1V

T
k+1|k+1 + P xk+1|k+1 (6.26)

TSKF is implemented on MATLAB which takes control inputs and plant outputs as input and supplies full

state estimate vector for controller.
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Figure 6.1: TSKF MATLAB/SIMULINK Implementation

Even though we have used step actuator LOE for our fault injection procedure, different LOE characteristics

have also been tested on the filter for demonstration purposes. Given LOE factors:

Fault Type Motor 1 Motor 2 Motor 3 Motor 4

Step t = 38s, 50% 0 t = 22s, 45% t = 48s, 15%

Sinusoid t = 38s, 20% 0 t = 22s, 40% 0

Random (0 ≤ LOE ≤ 20) (0 ≤ LOE ≤ 20) (0 ≤ LOE ≤ 20) (0 ≤ LOE ≤ 20)

Pulse 0 t = 22s, 25% 0 t = 44s, 30%

Table 6.1: Injected Actuator LOEs
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TSKF can successfully estimate different fault types as can be seen in Figure 6.2.

Figure 6.2: TSKF Estimated Faults: (a) Step; (b) Sinusuoid; (c) Random Number; (d) Pulse

Although it is possible to add multiple fault behaviours, we have chosen to use step LOE for all the simulations

due to being the most challenging one.

6.1.2 Extended Kalman Filter

Rather than directly giving linear state space model as in the case of a regular Kalman filter, Extended

Kalman filter takes nonlinear plant model where it linearizes the model itself in every simulation step by

using Jacobians. EKF is a highly useful tool in terms of catching non-linearaties and improve estimations

with this recursive behaviour accordingly. Although it is pretty obvious that its more computationally heavy

with respect to regular Kalman observer; it may undeniably serve much more accurate state estimations

especially as in our fault injected cases.

We have used Simulink’s built-in EKF block where we have embedded our nonlinear quadrotor model. It

should also be denoted that EKF block takes discretized inputs which is why zero-order-hold blocks are used

which can be seen in Figure 6.3.



CHAPTER 6. OBSERVER DESIGN 51

Figure 6.3: EKF Implementation in MATLAB/SIMULINK

Due to adaptive architecure of EKF where every simulation cycle is handled as a separate configuration, EKF

does not need an extra fault estimation term. In TSKF we have used a separate embedded bias estimator in

order to improve observer estimate by being aware of faults but with EKF this burden is removed where each

full state estimation is indirectly manipulated by any disturbance respectively. Therefore, EKF’s ability to

adapt itself under nonlinearity, provided us full state estimate without needing an isolated fault estimation

model.

6.2 Disturbance Estimation

Disturbance observers are very useful tools in order to cancel effects of uncertainties and external distur-

bances. An estimated lumped disturbance parameter is fed back as a compensation signal in which counter-

acts effects of that disturbance value[80]. Many applications[81] can be found in literature due to its simple

architecture for implementation and abilty to reject disturbances. However, disturbances can be estimated

if the disturbance signal is under coverage of used low-pass filter’s bandwith for DOB[83].

An overview for DOB can be presented with the following simple to understand block diagram;

Figure 6.4: Block Diagram of a Reversible Plant[82]
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One can see from this block diagram that ideally, we could obtain a disturbance term D(z) by subtracting

the control input U(z) from nominal plant output G−1n (z). This looks fairly simple however, G−1n (z) is not

realizable because given plant Gn(z) might not be exactly as it is on the model. Therefore, even being not

sure about reversing the plant as true as possible to the nominal plant, sensor noise will be added to reversed

plant as well. Briefly, we can’t be sure about modelling all the dynamics inside the plant which corrupts the

notion of estimating a good disturbance term. At this point, we introduce a new term Q(z) which is the

low-pass filter.

Figure 6.5: Realizable Disturbance Observer[82]

This filter is employed to make dynamics from U(z) and Y (z) to D̂(z) realizable. The task of our DOB is

to estimate such lumped disturbance value for disturbance rejection. Figure 6.5 shows the block diagram of

a conventional DOB based controller. On the other hand, we have implemented a realizable DOB structure

which comes more handy for disturbance estimation.

Figure 6.6: A More Convenient DOB Architecture [83]

We have implemented two types of DOB architectures which are Velocity-Based and Acceleration-Based

disturbance observers. Their working principle is same but nominal plants and corresponding Q filters differ.

For AbDOB, nominal plant model is constructed as;
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Gn(s) =


1

Ixxs2
0 0

0 1
Iyys2

0

0 0 1
Izzs2

 (6.27)

which uses as its filter.

QAbDOB =
w2

s2 + 2w + w2
(6.28)

For VbDOB, nominal plant model is constructed as;

Gn(s) =


1

Ixxs
0 0

0 1
Iyys

0

0 0 1
Izzs

 (6.29)

which uses as its filter.

QV bDOB =
w

s+ w
(6.30)

Filter cut-off parameter w is chosen as w = 5 for each alternative.



Chapter 7

Simulation Results

In this chapter, simulation results are presented for various implemented configurations. Due to having

plenty of configurations and corresponding result sets, only one trajectory configuration is presented for

preventing excessive result deposition.

Figure 7.1: MATLAB/SIMULINK Model

Simulation parameters are originated from Concordia University’s QBALL-X4 platform[26] which are tabu-

lated in Table 7.1.

54
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Table 7.1: Simulation Parameters

Parameter Description Value

K Thrust Gain 175

w Motor Bandwith 15 rad/s

L Distance from Motor to C.G 0.2 m

Kψ Thrust to Moment Gain 0.023

m Mass 1.42 kg

g Gravity 9.81 m/s2

Ixx; Iyy; Izz Moments of Inertia 0.03; 0.03; 0.04 kg.m2

Results are presented with the following layout;

• Baseline Configuration: This is the reference result which neither contains any fault nor added

compensation mechanism. It is presented to visualize designed cubic trajectory generation and corre-

sponding basic controller response. Every other following section can be thought as a supplementation

to this reference configuration.

• Controller Effects: In this section, effects of controller types are discussed. Due to having a singular

PID outer controller for each controller architecture, only inner controller variations are discussed.

Therefore, presented variations due to controllers are specified to inner controllers notably.

• Disturbance Observer Effects: Effects of disturbance observers are presented at this section.

• State Observer Effects: This section compares effects of TKSF and EKF state observers that are

used under load of actuator faults. Results presented are targeted to present the importance of accurate

state estimation methods with high non-linearity.

• Various Types of Faults Effects: This part is the only section where other fault types are injected

on to the system. Multiple configurations of reaction to various faults are presented.

7.1 Baseline Configuration

A reference case is presented here to lay basis for every other following implementation. A trajectory is set

to our quadrotor where it first hovers to 0.6 meters and draws a 1m2 square in air by remaining the same

altitude. Dryden wind model is implemented and all the results presented are under its impact. Also, process

and measurement noise is always acting on the system independently of any scenario. Ideal trajectory we

would like to follow can be seen in Figure 7.2.
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Figure 7.2: Visualized Quadrotor Trajectory

However, results will be presented in graphical form such as Figure 7.3 because later when we add faults, its

effects can be visualized better on the graph.

Figure 7.3: Quadrotor Trajectory in Baseline Configuration

For the baseline configuration, LQG controller is used in order to get the best response to assign as a

reference. Following visualizations are given for understanding error dynamics and system performance.
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Again, this is the lowest error generating condition in which a tabulated form will be presented for every

result set.

Figure 7.4: X position of the quadrotor (top), position error (bottom)

Figure 7.5: Y position of the quadrotor (top), position error (bottom)
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Figure 7.6: Z position of the quadrotor (top), position error (bottom)

Trajectory tracking is conveyed very smoothly and tracking errors are very low as expected.

Figure 7.7: Roll angle of the quadrotor (top), tracking error (bottom)
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Figure 7.8: Roll angle of the quadrotor (top), tracking error (bottom)

Following table construction is used for presenting root mean square (RMS) and maximum values of errors

for measurement states.

Table 7.2: Tracking Errors for Baseline Configuration

Error RMS Errors Max Errors

ex 0.0044 0.0179

ey 0.0042 0.0184

ez 0.008 0.0907

eφ 0.4520 1.5402

eθ 0.4761 1.9486

eψ 0.0187 0.2310

PWM outputs for all motors are smooth and linear. Motors do not have to operate under full power and

controller task is conveyed by an even distribution on control signal. Motor PWM output is modelled to be

maximum 0.05 under full load and 0 under no load with respect to given actuator response.
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Figure 7.9: PWM Signals for All Motors

Controller effort is calculated for every scenario by summing all the PWM values and divide it by time

interval to get a mean value. Average control effort for the baseline controller is 0.07947.

7.2 Controller

This section presents results for both controller architectures.

From now on, results presented have the same fault injection type which is actuator loss of control effective-

ness until otherwise specified. Corresponding fault injection arrangement can be seen in Table 7.3.

Table 7.3: Actuator Fault (LOE) Injection

Motor 1 Motor 2 Motor 3 Motor 4

30%, t=38s 0% 20%, t=22s 15%, t=48s
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LQG Control

First, LQG controller response will be shown after injecting actuator loss of effectiveness faults. Due to only

making controller comparison, state feedback should remain the same which is supplied from the Extended

Kalman filter.

Figure 7.10: LQG Trajectory Following with Actuator LOE

One can immediately realize that fault injection has brought drop in altitude. Drops in altitude are pro-

portional to amount of actuator loss as expected. Here, we can see that no matter which actuator looses

control effectiveness; altitude is lost respectively. However, LQG controller performance is robust enough to

compensate the injected faults.
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Figure 7.11: X position of the quadrotor (top), position error (bottom)

Figure 7.12: Y position of the quadrotor (top), position error (bottom)
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Figure 7.13: Z position of the quadrotor (top), position error (bottom)

Tracking on X and Y directions are not effected but changes in Z is pretty visible. This is because the

feedforward gravity term at Z that is involved in the nonlinear quadrotor model (3.18).

Figure 7.14: Roll angle of the quadrotor (top), tracking error (bottom)
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Figure 7.15: Pitch angle of the quadrotor (top), tracking error (bottom)

Tracking error is increased for attitude dynamics with fault injection as expected however error residuals are

not high and controllable.

Figure 7.16: Yaw angle of the quadrotor (top), tracking error (bottom)
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Table 7.4: Tracking Errors for LQG Controller with Actuator LOE

Error RMS Errors Max Errors

ex 0.0040 0.0189

ey 0.0046 0.0168

ez 0.0376 0.1154

eφ 0.4469 1.5214

eθ 0.4413 2.3469

eψ 0.0439 0.3998

Fault injections on 1st, 3rd and 4th motor is pretty visible on PWM signals as well. If controller detects

actuator loss on a motor, it opens up that motor proportionally more to compensate fault. This is of course

under saturation conditions where a limited increase in voltage is possible. One can see that highest fault

value of 30% on first rotor creates a big margin over standard linear behaviour.

Figure 7.17: PWM Signals for LQG Controller with Actuator LOE

Due to increase in PWM signals, average control effort has increased excessively over baseline configuration

having a value of 0.08645 on behalf of fault compensation.
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PD Control

A PD controller is also implemented for controlling attitude dynamics under fault tolerant control scheme.

Integral control is eliminated here because fault introduction combined with this controller architecture

yields to high oscillations and hard to recover error residuals. Therefore, in order not to increase error and

lack of observed steady state error; control dynamics let us to eliminate integral feedback. Presented PD

controller results below are showing significantly poorer trajectory tracking outcomes but it constructs a

good comparison study.

Figure 7.18: PD Trajectory Following with Actuator LOE

As can be seen from Figure 7.18, quadrotor is highly deflected from intended trajectory. Unlike LQG, PD

controller is not a type of optimal controller and its results may be cumbersome if nonlinearity and amount of

controlled states are high. In order to compensate sudden faults that has high burden on controller, control

gains had to be very high initially. Even though this works for some simulation scenarios, many impudent

configurations really challenge the system and makes PD controller fail. Therefore, we have added desired

double derivatives of trajectory Ẍd, Ÿd, Z̈d as feedforward to our controller which enabled a better response

via employing lower gains. Accordingly, a more robust controller architecture is fulfilled and enabled us to

experiment on various configurations.
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Figure 7.19: X position of the quadrotor (top), position error (bottom)

Figure 7.20: Y position of the quadrotor (top), position error (bottom)
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Figure 7.21: Z position of the quadrotor (top), position error (bottom)

Figure 7.22: Roll angle of the quadrotor (top), tracking error (bottom)



CHAPTER 7. SIMULATION RESULTS 69

Figure 7.23: Pitch angle of the quadrotor (top), tracking error (bottom)

Figure 7.24: Yaw angle of the quadrotor (top), tracking error (bottom)

Lower frequency position controller can still show acceptable performance however it is not the same case

with high frequency attitude controller. Tracking error on Euler angles have increased very significantly and
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PD controller is having a very hard time coping with this error. Roll angle is controlled at some extent

but pitch angle is completely lost after second fault injection to motor 1. Results may seem distant from

LQG controller but with introduction of the disturbance observer at the next section, this gap will close

spectacularly. This is why direct PD response to faults are shown here.

Table 7.5: Tracking Errors for PD Controller with Actuator LOE

Error RMS Errors Max Errors

ex 0.0827 0.3937

ey 0.04286 0.0661

ez 0.0307 0.0902

eφ 4.1892 7.7096

eθ 7.9748 15.712

eψ 6.0053 14.8623

Figure 7.25: PWM Signals for PD Controller with Actuator LOE

Average control effort with this case is found to be 0.08665.
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7.3 Disturbance Observer

This section shows differences of observer types for both controller architectures. Again, fault type is fixed

to only actuator LOE. First implementation is configured to be added on PD controller with high tracking

error. The velocity-based disturbance observer perfectly helps PD controller to reduce tracking error.

VbDOb on PD Controller with Actuator LOE

Figure 7.26: VbDOB on PD Controller Trajectory Following with Actuator LOE

As can be seen from Figure 7.26, Vbdob has improved results incredibly. If one would compare this figure

with non-dob PD configuration at Figure 7.18, a huge difference can be seen. Vbdob is the best option to

be applied on the PD controller where control performance is very close to LQG control.
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Figure 7.27: X position of the quadrotor (top), position error (bottom)

Figure 7.28: Y position of the quadrotor (top), position error (bottom)
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Figure 7.29: Z position of the quadrotor (top), position error (bottom)

Figure 7.30: Roll angle of the quadrotor (top), tracking error (bottom)
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Figure 7.31: Pitch angle of the quadrotor (top), tracking error (bottom)

Figure 7.32: Yaw angle of the quadrotor (top), tracking error (bottom)
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Disturbance observer has shown exceptional results in terms of error tracking.

Table 7.6: Tracking Errors for VbDOB ob PD Controller with Actuator LOE

Error RMS Errors Max Errors

ex 0.0062 0.0437

ey 0.0040 0.0144

ez 0.0375 0.1161

eφ 0.7817 2.7508

eθ 0.5489 5.5796

eψ 0.6610 4.0297

Figure 7.33: PWM Signals for VbDOB on PD Controller with Actuator LOE

Estimated lumped disturbance is directly added on calculated control input which is why increased oscilla-

tions on PWM signals are seen. Also, other than first motor; fault effects are minimized on PWM signals due

to acted disturbance observer beforehand. Average control effort is reduced slightly comparing to non-DOb

case which is calculated to be 0.08654.
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VbDOB on LQG Controller with Actuator LOE

VbDOB does not change LQG response significantly as in the case of PD. It minimizes error even more on

positional states but change in angular dynamics is negligibly small if we compare it to Table 7.4. LQG

response while acting a VbDOB is as follows;

Figure 7.34: VbDOB on LQG Controller Trajectory Following with Actuator LOE

Figure 7.35: X position of the quadrotor (top), position error (bottom)
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Figure 7.36: Y position of the quadrotor (top), position error (bottom)

Figure 7.37: Z position of the quadrotor (top), position error (bottom)
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Figure 7.38: Roll angle of the quadrotor (top), tracking error (bottom)

Figure 7.39: Pitch angle of the quadrotor (top), tracking error (bottom)
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Figure 7.40: Yaw angle of the quadrotor (top), tracking error (bottom)

Figure 7.41: PWM Signals for VbDOB on LQG Controller with Actuator LOE
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Table 7.7: Tracking Errors for VbDOB on LQG Controller with Actuator LOE

Error RMS Errors Max Errors

ex 0.0039 0.0170

ey 0.0036 0.0157

ez 0.03771 0.1169

eφ 0.5113 1.8184

eθ 0.5804 2.2886

eψ 0.03465 0.2243

AbDOB on LQG Controller with Actuator LOE

An acceleration based velocity disturbance observer is tested on LQG controller to compare with velocity-

based version. AbDOB uses a nominal plant with second order terms and acts on directly to Euler angles

raher than Euler rates in the VbDOB case.

We have wanted to test this because due to VbDOB acting on Euler rates, high oscillation is observed under

attitude dynamics. This is because improved trajectory response due to VbDOB requires higher demanding

desired roll and pitch angles. One can see from Figures 7.38 and 7.39 tracking error is increased with these

terms due to demanding position controller. In order to lift the burden from attitude dynamics, AbDOB is

designed which improves navigational tracking by not extensively loading on attitude controller.

Figure 7.42: AbDOB on LQG Controller Trajectory Following with Actuator LOE
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Figure 7.43: X position of the quadrotor (top), position error (bottom)

Figure 7.44: Y position of the quadrotor (top), position error (bottom)
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Figure 7.45: Z position of the quadrotor (top), position error (bottom)

Figure 7.46: Roll angle of the quadrotor (top), tracking error (bottom)
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Figure 7.47: Pitch angle of the quadrotor (top), tracking error (bottom)

Figure 7.48: Yaw angle of the quadrotor (top), tracking error (bottom)

Inner controller’s work load is eased simultaneously achieving very good trajectory following. This configu-
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ration gives the best results so far.

Table 7.8: Tracking Errors for AbDOB on LQG Controller with Actuator LOE

Error RMS Errors Max Errors

ex 0.0040 0.01738

ey 0.0037 0.01578

ez 0.03777 0.1166

eφ 0.4472 1.5005

eθ 0.4655 2.3038

eψ 0.0302 0.2593

Figure 7.49: PWM Signals for AbDOB on LQG Controller with Actuator LOE

Average control effort is 0.08645 for this configuration.
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7.4 State Observer

This section presents results for two state observer types. It is stated earlier that TSKF is an adaptive fault

estimator which uses linear state space equations for state estimation. On the other hand EKF does not

have a separate fault estimation unit but gives state estimations by directly using nonlinear equations.

Previously, all the results employed EKF for state feedback due to having slightly better estimation figures

with respect to TSKF. This section presents results that employs TSKF as the state-feedback observer. Each

result set has disturbance observer acting upon due to having improved reactions. Therefore, reader can

compare correlating results with Section 7.3 that disturbance observer is activated at all cases.

TSKF - PD - AbDOB

Figure 7.50: TKSF Feedback and AbDOB on PD Controller Trajectory Following with Actuator LOE
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Figure 7.51: X position of the quadrotor (top), position error (bottom)

Figure 7.52: Y position of the quadrotor (top), position error (bottom)
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Figure 7.53: Z position of the quadrotor (top), position error (bottom)

Figure 7.54: Roll angle of the quadrotor (top), tracking error (bottom)
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Figure 7.55: Pitch angle of the quadrotor (top), tracking error (bottom)

Figure 7.56: Yaw angle of the quadrotor (top), tracking error (bottom)

Even though taking state feedback from TSKF does not effect system dynamics highly when disturbance
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observer is acting on the system. A little oscillations are observed especially on X and Y states but overall

performance is satisfactory. Also, due to used AbDOB rather than VbDOB for PD setup gave much better

results again just like with the LQG case. So, it is safe to say that acceleration-based disturbance observer

works better and much more efficiently if the position controller is slogging on.

Table 7.9: Tracking Errors for AbDOB on PD Controller with Actuator LOE and TSKF Feedback

Error RMS Errors Max Errors

ex 0.01048 0.0880

ey 0.0056 0.0232

ez 0.03769 0.1178

eφ 0.4923 3.5078

eθ 0.8308 8.2729

eψ 1.3624 8.0259

Figure 7.57: PWM Signals for AbDOB on PD Controller with Actuator LOE and TSKF Feedback

Average control effort is 0.08680 for this configuration.
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TSKF - LQG - AbDOB

Figure 7.58: TKSF Feedback and AbDOB on LQG Controller Trajectory Following with Actuator LOE

Figure 7.59: X position of the quadrotor (top), position error (bottom)
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Figure 7.60: Y position of the quadrotor (top), position error (bottom)

Figure 7.61: Z position of the quadrotor (top), position error (bottom)
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Figure 7.62: Roll angle of the quadrotor (top), tracking error (bottom)

Figure 7.63: Pitch angle of the quadrotor (top), tracking error (bottom)
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Figure 7.64: Yaw angle of the quadrotor (top), tracking error (bottom)

Surprisingly, TSKF feedback showed poorer performance on LQG controller comparing to PD controller.

This is probably due to high error tracking requirement designed for LQG controller. LQG Q gain is selected

conservative for best trajectory following however with poorer feedback response from TSKF, it prevents

LQG to find an optimized strategy to smoothen control decision. In other words, LQG is trying to find the

best solution with the upcoming feedback signal however the signal can’t represent the actual dynamics as

in the case of EKF feedback. This is why, TSKF feedback puts LQG controller into a chattering behaviour

which decreases error tracking performance highly especially with attitude dynamics.

Table 7.10: Tracking Errors for AbDOB on LQG Controller with Actuator LOE and TSKF Feedback

Error RMS Errors Max Errors

ex 0.0098 0.022

ey 0.009 0.02410

ez 0.0399 0.1212

eφ 1.1494 4.6378

eθ 0.9862 3.5211

eψ 0.0518 0.3628



CHAPTER 7. SIMULATION RESULTS 94

Figure 7.65: PWM Signals for AbDOB on LQG Controller with Actuator LOE and TSKF Feedback

One very important fact to note here is; normally LQG controller shows better performance with every

simulation scenario we have tested so far. However, the only exception is with this configuration where

PD performance out performs LQG performance if feedback signal has higher uncertainty. Therefore, it is

possible to say that an LQG controller architecture is much beneficial under FTC scheme as long as we

design an accurate state feedback for it. Mean control effort is 0.08657 for this configuration.
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7.5 Fault Types

Last part is focused on reaction to different fault types. Only EKF is used to prevent any uncertainty related

to state estimation. Injected fault and failure types are as follows;

• Structural Failure: A battery pack weighing 300 grams breaks of from quadrotor. It is assumed

that the battery pack is lost right from c.g at t = 22s which only causes sudden weight loss and does

not effect any inertia term.

• Sensor Bias: It is assumed that the barometer that is responsible for measuring altitude has a constant

bias of 10−3 right from beginning to end of the simulation cycle. Therefore, only fault reflection will

be expected to be observed on altitude.

• Sensor Drift: Additive to bias case, in this scenario initial bias of 10−3 is increased linearly and

proportionally to simulation time.

Following cases are experimented as in Table 7.11 to also see reactions of controllers. All of the defined

scenarios are ran with disturbance observers to capture the best performance as possible. This section

aims to give reader an intuitive view about possible fault scenarios and their respective dynamic response.

Therefore, rather than providing detailed analysis of error dynamics on each state; figures that present

general system response are provided in order not to go out of scope.

Table 7.11: Fault Injection and Structural Failure Simulation Scenarios

Case Number Controller Fault Type

Case # 1 LQG Structural Failure

Case # 2 PD Structural Failure

Case # 3 LQG Sensor Bias

Case # 4 PD Sensor Bias

Case # 5 LQG Sensor Drift

Case # 6 PD Sensor Drift

Case # 7 LQG Sensor Bias + Structural Failure

Case # 8 LQG Sensor Drift + Structural Failure+ Actuator LOE
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Figure 7.66: System Response to Case # 1

PD controller induces a chattering behaviour particularly on X and roll.

Figure 7.67: System Response to Case # 2
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Figure 7.68: System Response to Case # 3

Sensor bias on barometer does not affect controller performance. Both systems are able to compensate for

a fixed bias.

Figure 7.69: System Response to Case # 4
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Figure 7.70: System Response to Case # 5

Both controllers are effected with barometer sensor drift. This is because drift is additively summed through-

out simulation time which is why error on Z becomes harder to compensate as time is passed.

Figure 7.71: System Response to Case # 6
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Figure 7.72: System Response to Case # 7

With scenario #7 bias on barometer is increased to 10−1 to visualize any changes. In before cases this bias

could be compensated but with this scenario, effects of sensor bias and structural failure are highly visible.

With increased bias, quadrotor constantly thinks its on the right altitude even though its not.

Figure 7.73: System Response to Case # 8
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Case #8 is designed to be the most challenging scenerio which includes every type of fault and failure on top

of the system. Our designed LQG controller gives exceptional results that can even recover extreme cases

as such. To make a general commentary about this section, controller efforts for all the cases in Table 7.11

are given in Table 7.12.

Table 7.12: Fault Injection and Structural Failure Controller Efforts

Case Number Mean Control Effort

Case # 1 (LQG and Structural Failure) 0.06911

Case # 2 (PD and Structural Failure) 0.06954

Case # 3 (LQG and Sensor Bias) 0.07947

Case # 4 (PD and Sensor Bias) 0.07955

Case # 5 (LQG and Sensor Drift) 0.07947

Case # 6 (PD and Sensor Drift) 0.07955

Case # 7 (LQG and Sensor Bias + Structural Failure) 0.06922

Case # 8 (LQG and Sensor Drift + Structural Failure+ Actuator LOE) 0.07485

One can immediately see by looking at Table 7.12 that sensor fault scenarios use the highest control effort.

Also at first sight, decrease in control effort under structural failure would seem nonsensical because how can

controller effort is reduced while requiring more of the controller under FTC scheme. This is due to reduced

weight after a structural failure where motor voltages are decreased with less weight to carry. Also, LQG

effort is always less than PD effort due to optimal control background.



Chapter 8

Conclusions and Future Work

In this thesis, we have presented a fault tolerant controller architecture via employing and comparing types

of Kalman filters for state estimation and disturbance observers for disturbance estimation. Overall, a com-

prehensive result set is produced by interchanging between 2 controllers, 2 state estimators and 2 disturbance

observers.

Our fault tolerant controller configuration which consists of both PID and LQG options have performed

satisfactorily at a wide robustness envelope. It should be noted that LQG controller performed much more

efficiently when compared to PD control in terms of both minimal control effort and maximum tracking

error. However, PD feedback’s ease of configurability has pushed itself forward from time to time, especially

under finding instant solutions to problems.

Due to having very high gains for attitude response in order to stabilize the quadrotor under actuator fault,

even small increments in fault would have resulted as a failure of control at first. By adding feed-forward terms

of double-derivative trajectory references, we were able to reduce controller gains which directly increased

robustness for more eager fault injection methods. Also, adding disturbance observer on PD control output

was highly beneficial for enabling much better tracking error and better trajectory following. On the other

hand, LQG is highly optimal as itself; does not need too much intervention. Because LQG structure is simply

based on optimizing Q and R matrices where loop shaping is done by the controller itself to ensure stability

which is why LQG does not need too much intervention unlike PID. Even disturbance observer did not make

a lot of difference due to this self-maintained optimality for LQG. One fact that required intervention was

due to inherent steady-state error problem of LQG which was solved via adding integral action. Therefore,

it would be possible to say that even though LQG shows more promising performance at first, it does not

mean PID can’t. PID controller’s enthusiasm on accepting new implementations and ease of applicability

due to its relatively simpler architecture makes it still a very useful and reliable tool.

101
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In this work, we have also benefited from diving deep into Kalman filters in order to have good state

estimations which was also an advantage for observing effects of uncertainty over FTC. Knowing what the

system is precisely doing is one of the most important aspects of designing a system especially when this

system is subjected to high non-linearity. At first, a linear Two-Stage Kalman Filter is implemented which

is a generally proposed filter for additive bias estimation from a residual output. This nested structure

of TSKF comes very handy for preventing disadvantages of a linear filter because effects of fault can be

embedded to state estimations anyway.

Every simulation scenario was able to operate with TSKF state feedback but we wanted to see possible

effects that may come from uncertainty due to state estimations, which is why we have implemented an

Extended Kalman Filter as well. Running two filters side-by-side showed that uncertainty can be a major

problem even if we are using LQG controller such as in the case of Figure 7.65 where higher uncertainty due

to TSKF might put extra burden on the controller in order to tolerate. Therefore, importance of accuracy

of a state estimation has really justified itself via this comparison.

Furthermore, robustness of our controllers let us to experiment on various new implementations like intro-

ducing a disturbance observer to fault tolerant control scheme. This study has turned out to be very effective

especially for PD control on attitude dynamics as discussed above. Disturbance observer is very handy for

improving trajectory tracking as well. One other huge benefit of DOB is its feasibility for compensating a

disturbance with an estimated anti-disturbance. This is why its applicability is not only restricted to distur-

bance estimation with fault only but to generate a lumped disturbance to counter-act on the control input

generally. So, rather than compensating solely disturbance due to fault; we could cover an entire envelope

of disturbances including wind, noise and any other possible unmodelled dynamics.

Overall, proposed methods showed successful results on their own way where fault and failure recovery was

achieved for all the presented cases in this work. For future work, active fault tolerant control strategies can

be developed either by adaptive controllers or adaptive fault detection observers. Or combinations of these

methods can be studied; such as estimating faults online while using these faults to actively change control

laws etc. Running all the scenarios and their corresponding solutions on a real test-bed would be a good

opportunity as a future work as well.
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