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ABSTRACT

THE GEOMETRIC REPRESENTATIONS OF RANK-METRIC CODES

ALTAN BERDAN KILIÇ

MATHEMATICS M.A. THESIS, JULY 2021

Thesis Supervisor: Prof. Dr. Michel Lavrauw

Keywords: rank-metric code, MRD code, tensor, tensor rank, complexity, MTR
code, semifield, Segre variety.

In this thesis, geometric representations of rank-metric codes have been
examined as well as their connection with algebraic coding theory and complexity
theory. Given a vector code, we introduced an algorithm using the well-known field
reduction map from projective geometry to get the corresponding rank-metric
code. Following that correspondence, we revisited the codes that satisfy the
analogues of the Singleton bound, called maximum rank distance(MRD) codes,
and show that there is a one-to-one correspondence to finite semifields if they are
additive. Given a semifield, we get a tensor associated to it. Tensor rank of various
objects have been analyzed and its relation with complexity theory is explained in
detail. In 1977, Kruskal proposed a lower bound on tensor rank and the codes that
satisfy this bound are called minimal tensor rank(MTR) codes. We state an open
problem on the existence of MTR codes deducing from the analyzed cases so far. We
have solved the existence problem and proposed an attack on the characterization
of all possible solutions using the algorithm Snakes and Ladders with the help of
the computer algebra system GAP.
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ÖZET

RANK-METRIK KODLARIN GEOMETRIK GÖSTERIMLERI

ALTAN BERDAN KILIÇ

MATEMATİK YÜKSEK LİSANS TEZİ, TEMMUZ 2021

Tez Danışmanı: Prof. Dr. Michel Lavrauw

Anahtar Kelimeler: rank-metrik kod, MRD kod, tensör, tensör rank, karmaşıklık,
MTR kod, yarı cisim, Segre varyete

Bu tezde, rank-metrik kodların geometrik gösterimleri, cebirsel kodlama teorisi
ve karmaşıklık teorisi ile olan ilişkileriyle beraber incelenmiştir. Bir vektör kodu
verildiğinde, buna karşılık gelen rank-metrik kodunu bulmak için izdüşümsel
geometride iyi bilinen cisim azaltma fonksiyonunu kullanan bir algoritma
sunulmuştur. Bu ilişkiden yola çıkarak, Singleton sınırının analogunu sağlayan
maksimum rank uzaklığı(MRD) kodlarının toplamsal olmaları durumunda yarı
cisimler ile aralarında birebir eşleme olduğu gösterilmiştir. Bir yarı cisim
verildiğinde, ona karşılık gelen tensör elde edilir. Çeşitli nesnelerin tensör
rankları analiz edilip, karmaşıklık teorisi ile olan ilişkileri detaylı bir şekilde
incelenmiştir. 1977’de Kruskal tensör rank için bir alt sınır sunmuş ve bu sınırı
sağlayan kodlara minimal tensör rank(MTR) kodlar denilmiştir. MTR kodların
varoluşu üzerine şimdiye kadar incelenen durumlar ele alınarak bir açık soru
sunulmuştur. Bu açık sorunun çözümü olduğu gösterilmiş ve tüm olası çözümlerin
sınıflandırılması için Yılan ve Merdivenler algoritmasını kullanarak, soruya bilgisayar
cebir sistemi GAP yardımıyla hücum önerisinde bulunulmuştur.
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1. INTRODUCTION AND PRELIMINARIES

Rank-metric codes have started to gain interest in the recent years due to their use
against error amplification problem in Network Coding. In the first 2 sections, we
give necessary information to understand the thesis and define rank-metric codes
with the reason why they are effective against error amplification. In Section 3,
based on the papers [15] and [23], 3-fold tensor representations of rank-metric codes
are examined and tensor rank is shown as a complexity measure based on the idea
provided in [16]. In Section 4, some constructions of minimal tensor rank(MTR)
codes are visited. In Section 5, we show the role of tensors in complexity theory so
that the correspondence between 3-tensors and rank-metric codes can be understood
better. Additionally, we show the relation between complexity and rank and finish
by explaining the famous matrix multiplication problem and the application of the
tensor rank in that case. In Section 6, we underline the well-known connection
between spreadsets and quasifields to show that semifields correspond to maximum
rank distance(MRD) codes, i.e, the most popular family of rank-metric codes. We
note that given a semifield, we can create a tensor associated to it, and then provide
some results known in that context including the tensor rank of semifields based on
the articles [16],[18], and [19]. We also provide some other geometric representations
of MRD codes in Section 6, and show their relations. In Section 7, we pick up this
geometric approach to attack an open problem that is related to the existence of
MTR codes. By considering the points of the Segre variety as pure tensors, we
deduce some well known geometric relations and try to create some new ones using
algorithms with the help of [1] and [20].
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1.1 Rank Inequalities and Properties of Tensor Product

Firstly, we recall some of the basic facts needed to understand this thesis.
Afterwards, we will state and prove some of the rank inequalities that will be used
throughout this thesis. Lastly, we will finish with some basic properties of tensor
products which will come handy later.

Definition 1.1.1. For an integer i≥ 0, we let [i] := {1, . . . , i}.

Definition 1.1.2. Let K be a field. A K-vector space is an abelian group (V,+)
with scalar multiplication operation K×V−→V, satisfying the following properties:

• λ(v1 +v2) = λv1 +λv2 for all λ ∈K, v1,v2 ∈ V.

• (λ+µ)v = λv+µv for all λ,µ ∈K, v ∈ V.

• (λµ)v = λ(µv) for all λ,µ ∈K, v ∈ V.

• 1v = v for all v ∈ V.

The following is known as the Grassmann’s Identity.

Theorem 1.1.3. Let (V,+, ·) be a K-vector space, and A and B are two finite
dimensional subspaces of V. Then, we have

dim(A+B) = dim(A) +dim(B)−dim(A∩B).

Definition 1.1.4. Given two vector spaces V and W , a linear transformation
between them is a map L : V →W satisfying the following:

1.1 L(v1 +v2) = L(v1) +L(v2) for all v1,v2 ∈ V, and

1.2 L(av) = aL(v) for all a ∈K.

Definition 1.1.5. The group of nonsingular linear transformations of an
n-dimensional vector space over Fq is denoted by GL(n,q).

Given a linear transformation L : V →W and a basis B = {v1, . . . ,vn} for the vector
space V , we can create the matrix A of that linear transformation as follows:

A= [L]B = [L(v1) | L(v2) | . . . | L(vn)].
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Definition 1.1.6. Let K be a field and A be an n×m matrix. The space spanned
by the rows of A is called the row space of A, and it is a subspace of Km. Similarly,
the space spanned by the columns of A is called the column space of A, and it is a
subspace of Kn. The dimensions of the row space and the column space are equal,
and is called the rank of A. The null space of A is

null(A) = {x ∈Km : Ax= 0}.

Its dimension is called the nullity of A.

Theorem 1.1.7 (Rank Nullity Theorem). For any n×m matrix A,

rank(A) +nullity(A) =m.

Definition 1.1.8. Let S⊆K. If S satisfies the field axioms with the same operations
of the field K, then S is called a subfield of K.

Let p be a prime. In a finite field of order pn, there always exists a subfield of order
pm for every m dividing n. So, we can find smaller fields given a field. The following
definition talks about extending one.

Definition 1.1.9. Let F be a subfield of K. Then, K is called an extension field of
the field F.

The two famous examples are the complex numbers being an extension field of the
real numbers, and the real numbers being an extension field of the rational numbers.

Definition 1.1.10. Let K be an extension of the field F. The extension degree (or
index) is denoted [K : F], and it is equal to the dimension of K when it is considered
as a vector space over F, i.e., [K : F] = dimFK.

Remark 1.1.11. In general, if F is a field and K is a field extension of F, then K is
a F-vector space and every K-vector space V is also an F-vector space. In addition,
it holds that:

dimFV = dimKV ·dimFK.

For example, dimRCn = dimCCndimRC = n ·2 = 2n.

Definition 1.1.12. A group G acts on a set X means we have a group action
X ×G → X : (x,g) 7−→ x · g such that x · eG = x and x · (gg′) = (x · g) · g′ where
g,g′ ∈ G, x ∈ X and eG denote the identity element of the group G. For x ∈ X,
we can define the orbit of x as G(x) = {x · g | g ∈ G}, and the stabilizer of x as
Gx = {g ∈G | x ·g = x}.

3



Note that, equivalent to Definition 1.1.6, we can also define the rank of a matrix as
the smallest number R such that the matrix can be written as a sum of R rank 1
matrices. This way of defining the rank will be very useful when we consider tensor
rank in the following parts. Now, we will show some rank inequalities.

Theorem 1.1.13. Let A,B matrices of required size. Then, we have
rank(AB)≤min{rank(A), rank(B)}.

Proof. Consider the matrix AB. Note that the columns of AB can be written as a
linear combination of columns of A. So, rank(AB) ≤ rank(A). Similarly, rows of
AB can be written as a linear combination of rows of B, so rank(AB)≤ rank(B).
Combining these two gives us the theorem.

Theorem 1.1.14 (Sylvester’s Rank Inequality). Let A,B two matrices of size
n×n. Then, rank(A) + rank(B)≤ rank(AB) +n.

Proof. Note that left or right multiplications by invertable matrices do not change
the rank of a matrix. Consider the matrix A. We can reduce it to echelon form by
multiplying it with elementary matrices. Since elementary matrices are invertable,
the rank of A will not change. Therefore, without loss of generality we may assume

that A is in reduced row echelon form, i.e., A=
Ir 0

0 0

. Then,
rank(A) + rank(B) = rank(A) + rank(AB+ (I−A)B)

≤ rank(A) + rank(AB) + rank((I−A)B)

= r+ rank(AB) + rank((I−A)B)

≤ r+ rank(AB) + (n− r) = rank(AB) +n

where the first inequality follows from the fact that sum of ranks can not be less
than the rank of the sum, and the last inequality follows since first r rows of I−A
is 0, i.e., rank(I−A) is at most n− r.

Note that we can generalize this for non-square matrices, i.e., for matrices A and
B of dimension k×n and n×m, the above inequality still works. The following
corollary is the combination of the above theorems.

Corollary 1.1.15. Let A be k×n matrix and B be n×m matrix. Then,

rank(A) + rank(B)−n≤ rank(AB)≤min{rank(A), rank(B)}.
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In matrix theory, we can decompose matrices into full rank matrices. This process
is called the rank factorization of matrices. Although we will define tensors more
formally later, we can think of them as n-dimensional arrays, and see matrices as
2-tensors. In general, decomposition of tensors is a very important problem, and we
will try to explain some parts of this huge problem in this thesis, as well.

Theorem 1.1.16. Every finite dimensional matrix has a rank factorization.

Proof Outline. Consider the matrix A. Let M denote its reduced row echelon form.
Remove all zero rows of M and denote it by V. Similarly, remove all non-pivot
columns of A and denote it by U. Then, A= UV where U and V have full rank.

For example, consider an invertible matrix A so that A has full rank. Then since
the reduced row echelon form of A is the identity matrix and the matrix A itself
does not have any non-pivot columns, we will have A= AI by rank factorization.

Note 1.1.17. Decomposition is a very important problem. One of the most famous
matrix decompositions is the singular value decomposition(SVD) which has so many
applications. However, extending this idea to higher orders, even for a well known
decomposition, such as SVD, is proven to be very difficult. We will talk about this
later in the thesis.

Now, the following inequality is very important and well-known.

Theorem 1.1.18 (Frobenius Inequality). Let A be k×n, B be n×m, and C be
m×p matrices. Then, rank(AB) + rank(BC)≤ rank(ABC) + rank(B).

Proof. Assume that rank(B) = r. Let B = UV be the full rank factorization by
Theorem 1.1.16 such that U is n× r and V is r×m matrix. Note that AU is k× r,
and V C is r× p. Then, rank(ABC) = rank((AU)(V C)). By applying Theorem
1.1.14 to AU and V C, we have

rank(ABC) ≥ rank(AU) + rank(V C)− r(1.1)

= rank(AB) + rank(BC)− rank(B)(1.2)

where the equality follows from the fact that U and V are full rank matrices.

5



Now, we will define some properties of tensor products.

Definition 1.1.19. Let K be a field, and let U,V be K-vector spaces. The tensor
product U ⊗V of this two vector spaces is itself a K-vector space, equipped with a
K-bilinear map t : U ×V → U ⊗V satisfying:

U × V

t

U ⊗ V W

φ

g

For all K− space W and for all K− bilinear
map φ : U × V →W, there exists a unique

map g : U ⊗ V →W such that g ◦ t = φ.

Denote u ⊗ v = t(u,v).

Tensor product of 2 vectors v,w is

v⊗w = vwT =


v1w1 v1w2 . . . v1wm

v2w1 v2w2 . . . v2wm
... ... . . . ...

vnw1 vnw2 . . . vnwm


Let us also list some other well-known properties.

• (u⊗v)T = (v⊗u)T .

• (v+w)⊗u= v⊗u+w⊗u.

• u⊗ (v+w) = u⊗v+u⊗w.

• λ(v⊗u) = (λv)⊗u= v⊗ (λu).

• Given a matrix A=
a b

c d

 and B, we have A⊗B =
aB bB

cB dB


Form a new larger vector space K = U⊗V ⊗W . Then, by Definition 1.1.5, consider
the group G=GL(U)×GL(V )×GL(W ).

Definition 1.1.20. The action of G on K is given as:

K×G→K : ((u⊗v⊗w),(g1,g2,g3) 7−→ (ug1⊗vg2⊗wg3).

6



2. SINGLETON BOUND AND ITS ANALOGOUS VERSION

In this section, focusing on two examples given in [24], we will explain some basic
concepts in coding theory which are needed to understand this work. After that, we
will prove one of the most important bounds in coding theory and its analogue for
our work. Then, we will start introducing rank-metric codes by first giving the
motivation to study them. In the back cover of every book, there is an
ISBN(International Standardized Book Number) code. Depending on the date
of publication, it is either 10 digit or 13 digit. The books before 2007 have
ISBN-10 codes. For example, 0−587−44213−1. The last digit is called the check
digit. First 9 digits contain information about the book. Consider an ISBN code
x1−x2x3x4−x5x6x7x8x9−x10 and the integer

R = x1 + 2x2 + . . .+ 9x9.

If R≡ 10 (mod 11), then we say x10 =X. Otherwise, we say x10 ≡R (mod 11). In
the example above, R= 155. Then, R (mod 11)≡ 1. Since 1 6= 10, we have x10 = 1,
as above. If you make a mistake when typing in the check digit, then the system
can catch your error by the use of above formula. So, the ISBN code can detect all
single digit errors. However, it can not correct any of those detected errors. In this
case, since we can simply send the message again by re-entering the correct ISBN
code, it is not so crucial. In general, this will not be the case. We also say that
this code is very efficient. The reason is that, we only need one non-info symbol for
every nine information symbol. Now, let us examine our second example. Suppose
every data is encoded as a five bit string. This time, we duplicate each data 3 times
by repeating it rather than simply transmitting it. Consider 11010. It would be
forwarded as 11010 11010 11010. In the case of a single error, we can correct and
detect it as follows. The error has to be contained in one of the 3 blocks. That
means, the other two blocks are error-free and thus will still be equal to each other.
For example, the receiver can get 11010 10010 11010. In that case, we can see that
the first and the third are equal, whereas the second digit of the middle is 0. Thus,
we detected that error and can simply correct it by writing the second digit of the
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first or the third. In general, we need more than half of the blocks agree to correct
the errors. Therefore, if we want to fix m errors, we need to repeat the data 2m+1
times. These codes are called repetition codes, and they are not efficient since we
are transmitting 3 symbols for only 1 information symbol. Now, let us properly
define what a code is.

Definition 2.0.1. A subset C of Λn is called a code over the alphabet Λ.

For now, consider Λ to be a finite field. However, note that codes over finite rings
are also possible and very interesting. To construct a code, we need an alphabet
and a desired length. Length of a code is denoted by n where C ⊆ Λn. C is called
a linear code if it is a subspace of the vector space Λn, and in this case the usual
notation for the dimension is dim(C) = k. Our main work will be about codes that
are subspaces of the ring Fn×mq . We will call them rank-metric codes.

Theorem 2.0.2. Given a linear code C, we have |C|= qdim(C) where Λ = Fq.

Proof. Consider the basis B of C. Let dim(C) = k. So, the basis has k elements.
Let B = {b1, . . . , bk}. Then, any codeword can be written as c1b1 + . . .+ ckbk where
ci ∈ Fq. For each ci we have q choices, so in total there are qk elements.

Each of these k basis elements are vectors of length n. By writing them as rows, we
construct a k×n matrix. It is called a generator matrix for C. If G is a generator
matrix for C, then C = {uG|u ∈ Λk} since

uG= (u1 . . .uk)


− r1 −

...
− rk −

= u1r1 + . . .ukrk.

Definition 2.0.3. The orthogonal complement C⊥ of C is called the dual code of
C. This makes sense since C is a subspace.

Definition 2.0.4. A generator matrix for the dual code C⊥ is called a (parity)-check
matrix H of the linear code C. It checks whether an element lies in the code or not.
That is, C = {c ∈ Fnq | cHT = 0}.

We denote the linear codes of length n and dimension k as [n,k] codes. Note that
if C is an [n,k] linear code, then a generator matrix is k×n, and the parity-check
matrix for C must be an (n−k)×n matrix. Rows of G,H are linearly independent.
The following is very useful in computations.

Theorem 2.0.5. HGT = 0 =GHT where 0 is in appropriate size.

8



Example 2.0.6. Let C =< (1 2 0),(0 1 1)>⊆ F 3
3 . Then we have

G=
1 2 0

0 1 1

 and H =
(
1 1 2

)

See that Theorem 2.0.5 holds. Similarly, for any c = (a b c) ∈ C, we have cHT = 0
since a+ b+ 2c= 0 for all c ∈ C. Thus, H checks whether c ∈ C or not.

Definition 2.0.7. For x,y ∈ Λn, let d(x,y) be the number of different entries
in the same position, i.e., number of times xi 6= yi is occuring. The weight of
a codeword is given by wt(x) = d(x,0). The minimum distance of a code C is
d(C) = min{d(x,y) | x,y ∈ C, x 6= y}. For linear codes, we have

d(C) = min{wt(x) | x ∈ C, x 6= 0}.

If we also know the minimum distance of a code, then we will denote it as [n,k,d]
code. This is of course if the field is clear from the context. We sometimes use
F− [n,k,d] to emphasize the field which the code is defined over.

Now, we will analyze our two examples according to the preceeding definitions.
ISBN code is a code of length 10 over F11 where X stands for 10 ∈ F11. Consider
a1 = 0− 587− 44213− 1 and a2 = 2− 469− 65111− 5. When we try to compute
a1 + a2, we see that in the fifth digit we have X. However, we can not have X in
the first 9 digits by definition. So, the code is not linear. First 9 digits can take 10
different values, and the last digit is computed by the first 9 digits. So, |C| = 109.
Since it is nonlinear, we can not talk about the dimension.
Repetition code is a linear code of length 5m over F2 where m is the number of
blocks. Since it is linear, we can talk about the basis. Consider the case m = 1.
The basis for the code is {10000,01000,00100,00010,00001}. So, the dimension is 5.
What about the minimum distances?
Consider I1 = a1−a2a3a4−a5a6a7a8a9− c1 and I2 = b1−a2a3a4−a5a6a7a8a9− c2.
Here, we assumed without loss of generality that the first digits are different and
we will argue that this will force the last digits to be different as well so that the
minimum distance can not be equal to 1. Note that if a1 = b1, then c1 = c2 since the
last digits are determined by the first 9 digits and they are the same in this case.
So, the minimum distance is 2 for ISBN code. For the repetition code, we can have
d = 1 for length 5, so the minimum distance is m for a code of length 5m. Now, if
we combine all the knowledge we got so far, we have the following table:
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Table 2.1 Repetition Codes vs. ISBN Codes

Repetition Code ISBN Code
over F2 over F11

detect errors detect errors
correct errors -
non-efficient efficient

linear, dimension = 5 non-linear
length = 5m length = 10
distance = m distance = 2

Suppose C is a linear [n,k,d] code over Λ. What that really means is that each
codeword in our code has k information symbols and n−k non-info symbols. The
more information symbols we have, the more efficient our code will be. Therefore,
we want k large with respect to n so that we are not transmitting respectively large
amount of non-info symbols. Besides efficiency, we mainly care about correcting as
many errors as possible. The parameter d determines how many errors our code
can correct. We want to say that our code C is t-error correcting for some positive
integer t. To establish this, we need to make sure that given any word, there is
only one codeword of distance at most t from it. Let x ∈ Λn. Geometrically, this
can be described by defining the closed ball Bt(x) centered at x of radius t, i.e.,
Bt(x) = {y ∈ Λn | d(x,y)≤ t}. In the following theorem we will prove that the code
C is

⌊
d−1

2

⌋
-error correcting.

Theorem 2.0.8. Let d(C) = d, and x,y ∈ C such that x 6= y. Then, we have

Bbd−1
2 c(x)∩Bbd−1

2 c(y) = ∅.

Proof. Assume to the contrary that z lies in the intersection.

Then, d(x,y) ≤ d(x,z) + d(z,y) ≤ 2
⌊
d−1

2

⌋
=

 2k = d−1 , if d= 2k+ 1
2k = d−2 , if d= 2k+ 2

So,

d(x,y)< d, a contradiction.

Since the balls can not intersect, the corrupted word will be inside a unique ball
of radius

⌊
d−1

2

⌋
by the above theorem. Then, we will understand that the correct

message was the center of that particular ball. Thus, we can correct the error since
we now know what was the corrupted word equal to before the noise.

Example 2.0.9. Consider the linear binary code C =< 001110,110001> . The code
has 4 elements which are 000000,001110,110001,111111. The minimum distance is
3 by definition. Thus, C is F2− [6,2,3] linear code.
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Then,
⌊
d−1

2

⌋
= 1. Let x= 001110 and y = 110001. We have

B1(x) = {001110,101110,011110,000110,001010,001110,001111},

B1(y) = {110001,010001,100001,111001,110101,110011,110000}.

See that the intersection is empty. Let say we received a codeword 110101. It is
not an element of our code. However, it lies on the unique ball B1(y) =B1(110001).
Thus, we can understand that it was supposed to be 110001.
In general, we want d large with respect to n so that we will be able to correct
reasonably high amount of errors. In summary, to have "good" codes, we want d,k
large with respect to n. We will see that they can not be both large at the same
time. Now, we move on to the family of error-correcting codes. Error-correcting
codes are developed by Richard W. Hamming and they are used to transfer data
in the most reliable way possible over unreliable communication channels. As the
name suggest, they are transmitted in a way that the message can be recovered given
unintentional errors. In almost all message transmissions, error correcting codes are
being used. The reason we are calling some channels unreliable is that they have
channel noise. In general, these communication channels can be physical such as
wires, or most commonly not physical such as computer networks.
Repetition codes are examples of error-correcting codes. One real life example is
providing clean communication with the astronauts in space using Reed-Solomon
codes. Note that we will use generalized Reed-Solomon codes in Chapter 4 to con-
struct extremal triples and they will play a crucial role for the existence of MTR
codes. In coding theory, block codes are a family of error-correcting codes that
encode data in blocks. When a sender wants to transmit a very long data using a
block code, the sender breaks it into messages of fixed size.

Definition 2.0.10. A block code is an injective function C : Λk → Λn where Λ is
our finite and nonempty alphabet. A block code of length n is just a subset of Λn.

Since Λ is injective, k ≤ n. Note that, we do not know if C is surjective or not.
Thus, the following definition is required.

Definition 2.0.11. For c ∈ Λn, if C(m) = c for some m ∈ Λk then c is called the
codeword corresponding to the element m.

The procedure given by the block code is the following:

• Encode each message separately into a codeword which is called a block.

• Transmit all the blocks to the receiver.
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Example 2.0.12. Let Λ = {0,1}. Choose k = 2 and n= 6. We encode as

00 → 100000
01 → 010000
10 → 001000
11 → 000100

Consider the message m = 011000. Then, this will go to the receiver as
01 I 10 I 00 where “ I” represents concatenation. Then the receiver gets
e1 =010000001000100000. Now, consider k = 3 and n= 6. Let us use the following:

000→ 001000 100→ 100000

010→ 000100 001→ 000010

110→ 000001 101→ 110000

011→ 010000 111→ 000111

The same message m will go to the receiver as 011 I 000. Then, the receiver will
get e2 =010000001000. See that e1 = e2 I 100000. Thus, by increasing k we get a
shorter code and we also increased the efficiency.

In this example, it may seem that choosing k = n is the best choice. However, we
will see a bound called the Singleton bound. If k= n, that would mean d= 1. A code
can detect at most d− 1 errors, and that means our code can not even detect any
errors in the case k = n. As we explained before, we want both k and d large with
respect to n, and this is just one of the reasons. As seen in the previous example,
the transmission speed is very important, and we need a way to examine this. The
following definition comes naturally.

Definition 2.0.13. The transmission ratio of a block code is TR = k

n
.

Since C is injective, k ≤ n. Therefore, TR ≤ 1. Another way to see this is that, in
practice the data can not be compressed without a loss, and thus the ratio can be
at most 1. Now, we are ready to prove the singleton bound.

Definition 2.0.14. Aq(n,d) = Maximum number of codewords in a block code over
Fq of length n and minimum distance d.

It is easy to see that Aq(n,n) = q and Aq(n,1) = qn. However, there is no general
formula for Aq(n,d). Finding that could be one of the biggest achievements in coding
theory and we will state it here as an open problem.

Open Problem 2.0.15. Find a formula for Aq(n,d).
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Theorem 2.0.16 (Singleton Bound).

Aq(n,d)≤ qn−d+1

Proof. Let C be an arbitrary block code over Fq of minimum distance d. The number
of words of length n is qn. So, if d= 1, then we are done. Now, consider the following
matrix: 

. . . u

. . . v

︸ ︷︷ ︸
d−1

... ︸ ︷︷ ︸
n−d+ 1

...


Let the rows of this matrix be all the codewords in our code. Suppose that the
codeword c1 including u is in the a-th row and the codeword c2 including v is on
the b-th row. Now, if u = v, then d(c1, c2)≤ d−1 since only the left part can have
different letters, and there are d− 1 columns on the left. This contradicts the fact
that minimum distance is d. Therefore, all the words on the right are pairwise
different. Now, assume that we deleted the first d−1 letters of each word, i.e., the
left part of the matrix above. The newly obtain codewords have length n− d+ 1.
Since C is over Fq, there are q different options for each coordinate in such a word
of length n− d+ 1. That means, we can have at most qn−d+1 of them. However,
C was arbitrary, so this bound must hold for the largest possible code with these
parameters. That is, |C| ≤ Aq(n,d)≤ qn−d+1.

Corollary 2.0.17. If C is a linear [n,k,d] code over Fq, then the number of code-
words is equal to qk. Theorem 2.0.16 gives qk ≤ qn−d+1. Thus, k ≤ n−d+ 1.

Codes that meet the Singleton bound are called MDS(Maximum Distance
Separable) codes. The name makes sense since when the equality holds, d= n−k+1
is maximum. They are very important as MDS codes have the largest error correc-
tion capacity since the amount of error correction is a non-decreasing function of d.
Separable code means that any codeword can be separated, i.e, the codewords are
of the form "information digits" I "check digits". It can not be the case that they
are mixed. For example, the ISBN code is a separable code.

Note 2.0.18. Linear MDS codes geometrically corresponds to arcs. For more details
and exposition of arcs in projective spaces, see [17].
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2.1 Rank Metric Codes

We are now ready to define our main family of codes, namely the rank-metric codes.
They will be the foundation of this thesis. We will start by explaining the reason for
their recently increased use by following [22]. Rank-metric was found as a solution
in network coding as a tool to handle the error amplification problem. Firstly, the
structure of the network is given in Figure 2.1.

S Some Nodes

T1

T2

Tm

Terminals

Source
...

v1,v2, . . . ,vn

Figure 2.1 Network N, Source S, and Terminals T

Note that v1,v2, . . . ,vn are vectors. Terminals wants all the n messages. The goal
of the network is to maximize the number of transmitted messages to all terminals
per channel use, i.e., maximize the rate.

S
v1 v2

v1 v2

v1 +v2
v1 v2

v 1+
v 2

v1 +
v2

T1 T2

Figure 2.2 Butterfly Network

14



To increase the rate, there is a very common idea which is allowing the nodes to
combine received vectors. Here, combining can have different meanings given the
setting. In this case, we mean allowing the nodes to do linear operations. Consider
the classic butterfly example of network coding given in Figure 2.2 when the node
in the middle can add the received vectors. Here, T1 does (v1 +v2)−v1 = v2, and T2

does (v1 +v2)−v2 = v1 so that they both get all the messages. Now, we will try to
calculate the rate of the butterfly network. See that the transmission between the
middle nodes allow us to use the channel only once instead of twice( first sending v1,
and then v2.) So, we are transmitting 2 messages and we are only using the channel
once. So the rate is 2

1 = 2.

Definition 2.1.1. For any terminal T , we can associate a transfer matrix M(T )
such that M(T ) · V gives us the messages that the terminal T receives where the
source S sends V . Note that the rows of V are the messages S send.

The following theorem summarizes the idea presented in [13]. Note that when we
say node operations, we mean the linear operations that the nodes perform such as
addition, scalar multiplication etc.

Theorem 2.1.2. Suppose N is a linear network, i.e, the nodes can perform linear
operations. Let µ(N) = n denote the minimum of minimum number of edges to be
removed in the network to cut the connection of S and Ti for i ∈ [m]. Assume S
sends the messages v1, . . . ,vn. We will denote the transfer matrix by M(T ) for a
terminal T . Then,

(i) rate(N) = µ(N).

(ii) There exists some node operations so that the transfer matrices of all the
terminals are n×n invertable at the same time.

The following example is very crucial to understand the theorem above.

Example 2.1.3. Consider the Butterfly network given in Figure 2.2. We need to
remove at least 2 edges to cut the connection between S and T1. Since the network
is symmetric, the same is also true for T2. So, µ(N) = min{2,2} = 2. The first
part of the theorem holds since 2 ≤ 2. We are left to find the transfer matrices for

each terminal. It is easy to see that M(T1) =
1 0

1 1

 and M(T2) =
1 1

0 1

 so that

M(T1)
v1

v2

 =
 v1

v1 +v2

 which says that T1 received v1 and v1 + v2. Similarly, we

can do the same to show that T2 received v2 and v1 +v2.

Given a transfer matrix M , the decoding is very easy by using part (ii) of the
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theorem since we now have 
v1

v2
...
vn

=M−1(M


v1

v2
...
vn

).

It is time to talk about the amplification problem which we mentioned in the begin-
ning. See Figure 2.3 for a visualization of the error amplification problem.

Figure 2.3 Error Amplification

S

T1 T2

S

T1 T2

Error Amplification

As can be seen from the figure, one error leads to more errors. In general, suppose
we have one adversary who can corrupt up to t edges. This number t is called the
adversarial strength. The corrupted edges are known as noise in communication
theory. If there is error amplification, then the number of errors in the edges, i.e.,
the amount of noise will be much higher than t. Fortunately for us, the rank-metric
is the solution. Suppose the message X is sent. Here, X is a vector whose entries
are the messages vi. Since each message has also fixed length, X is a matrix. If
we have n messages of length m, then X is of size n×m. If there is no error, then
the terminal receives M(T )X as we showed before. However, suppose there is noise
and the terminal T received some other matrix E(T ). It is explained in [14] that the
rank-metric prevents errors from amplifying and reformulated in [22] as follows.

Theorem 2.1.4. If the adversarial strength is t, then rank(E(T )−M(T )X)≤ t.

Thanks to this theorem, if we use the rank-metric then the edges that are corrupted
by the adversary can not lead to errors in the remaining part of the network. This
theorem is the reason of the renewed interest in rank-metric codes. Now, we will
zoom in on the theory of rank-metric codes to understand them better.
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Definition 2.1.5. Let Fn×mq denote the ring of n×m matrices with entries coming
from Fq. An Fq-linear rank metric code is a subspace C ⊆ Fn×mq . The rank distance
between X,Y ∈ Fn×mq is d(X,Y ) = rank(X − Y ). If C 6= {0} then the minimum
distance of C is the following integer

d(C) := min{rank(X) :X ∈ C,X 6= 0}= min{d(X,Y ) :X,Y ∈ C,X 6= Y }.

From this moment on, we will denote a rank-metric code C of dimension k and
minimum distance d as an Fq− [n×m,k,d] code.

Theorem 2.1.6 (Rank Metric Analogue of the Singleton Bound). Let C be
an Fq− [n×m,k,d] code. Then, k ≤max{n,m}(min{n,m}−d+ 1).

Proof. Without loss of generality, let n≤m. Let us consider the desired inequality in
base q. So, we want to prove qdim(C) = |C| ≤ qm(n−d+1). Assume to the contrary that
|C| > qm(n−d+1). Take any element of the code, i.e., a matrix and consider the last

n−(d−1) rows of the matrix
 . . .

m(n−d+ 1)entries

 . See that there arem(n−d+1)

entries below. Since |C|> qm(n−d+1), by the Pigeonhole principle, there exists X,Y
distinct in C such that they coincide in every entry of the last n−d+1 rows. These
X and Y must exist since there are q choices for each entry but |C|> qm(n−d+1).

So, X−Y =
A

0

 has rank ≤ d−1. Thus, we have d(X,Y )≤ d−1< d, contradicting

the fact that d(C) = d. Therefore, |C| ≤ qm(n−d+1) , i.e., dim(C)≤m(n−d+1).

Definition 2.1.7. Codes that meet this bound are called MRD(Maximum Rank
Distance) codes. The reason we are calling them MRD is clear since when the
equality occurs, the distance is maximal.

In [5], it is proven that MRD codes exists for all parameters m,n, and d. One famous
example is the Delsarte-Gabidulin codes. It is the same paper that rank-metric codes
were introduced.

Example 2.1.8. Consider an Fq − [5× 3,k,3] code C. Suppose we want to find
a range for k. Rank-metric analogue of the singleton bound without considering
max/min gives k ≤ 3(5− 3 + 1), that is k ≤ 9. Now, if we consider rank-metric
analogue of the singleton bound properly this time, we will get k≤ 5(3−3+1), that is,
k ≤ 5. So, we get a better bound. The reason we are taking the maximum/minimum
of m,n is to get a better bound. In general 1−d(C)< 0. As a proof, observe that

m≥ n =⇒ m(−d+ 1)≤ n(−d+ 1) =⇒ m(n−d+ 1)≤ n(m−d+ 1).
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3. 3-TENSORS REPRESENTATION OF RANK-METRIC CODES

In this chapter we will follow the footsteps of [23] but we will interpret it in our
terminology and make some additions.

Consider m vector spaces Vi over F. Define T = V1⊗ . . .⊗Vm. T is called the tensor
space and it is easy to see that it is an F-vector space. Let dim(Vi) = di. Consider
the bases Bi for those m vector spaces:

B1 = {e11, . . . , e1d1}= {e1i1}
d1
i1=1

B2 = {e21, . . . , e2d2}= {e2i2}
d2
i2=1

...

Bm = {em1, . . . , emdm}= {emim}dm
im=1

Definition 3.0.1. Tensors of the form v1⊗ . . .⊗ vm are called pure (or simple)
tensors. Consider a pure tensor v1⊗ . . .⊗ vm where vi ∈ Vi. We can write each of
these vectors as a linear combination of the basis elements.

v1⊗ . . .⊗vm = (
d1∑
i1=1

v1i1e1i1)⊗ . . .⊗ (
dm∑
im=1

vmimemim)

Arbitrary elements of T are expressed as sums of pure tensors. Now, let us consider 3
vector spaces. If {u1, . . . ,uk},{v1, . . . ,vn}, and{w1, . . . ,wm} are bases of U,V, andW
respectively, then a basis of U ⊗V ⊗W is given by

{ui⊗vj⊗ wl : 1≤ i≤ k, 1≤ j ≤ n, 1≤ l ≤m}.

In particular, dimF(U ⊗V ⊗W ) = dimF(U)dimF(V )dimF(W ) for a field F. In this
section, we are interested in tensor products of the form Fk ⊗ Fn ⊗ Fm, whose
elements are called 3-tensors, or 3-fold tensors. An element of this space can be
represented by a 3-dimensional array. Similarly, a 2-fold tensor can be represented
by a matrix, just as a 1-fold tensor can be represented by a vector. One can define
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a 3-dimensional array of size k×n×m as a function

X : [k]× [n]× [m]→ F

which we represent as X = (xijl : 1≤ i≤ k, 1≤ j ≤ n, 1≤ l ≤m).

Note 3.0.2. Given a 3-fold tensor X =∑R
r=1ur⊗vr⊗wr, we automatically have its

coordinate tensor xijl =∑R
r=1uirvjrwlr, where ur = (u1r, . . . ,ukr),vr = (v1r, . . . ,vnr),

and wr = (w1r, . . . ,wmr). Hence, we can represent Fk⊗Fn⊗Fm by Fk×n×m.

The natural question is how to do operations with tensors. The following maps
define the multiplication of 3-fold tensors with vectors (s= 1) and matrices (s > 1):

m1 : Fs×k×Fk×n×m→ Fs×n×m : (A,X) 7−→m1(A,X) =
∑
i

(Aui)⊗vi⊗wi

m2 : Fs×n×Fk×n×m→ Fk×s×m : (B,X) 7−→m2(B,X) =
∑
i

ui⊗ (Bvi)⊗wi

m3 : Fs×k×Fk×n×m→ Fk×n×s : (C,X) 7−→m3(C,X) =
∑
i

ui⊗vi⊗ (Cwi)

for any X =∑
iui⊗vi⊗wi ∈ Fk×n×m.

Definition 3.0.3. Let X ∈ FD1×D2×D3 . For each i ∈ 1,2,3, we define the i− th
contraction space of X to be csi(X) = 〈mi(e1,X), . . . ,mi(eDi

,X)〉, where ei ∈ F1×k

such that i− th entry is 1 and other entries are 0.

Clearly, contraction spaces are F-vector spaces, so we can talk about their
dimensions. The following definition will be used all around in the thesis.

Definition 3.0.4. We denote the dimension of csi(X) by dimi(X). X is called
i-concise if dimi(X) =Di. X is called concise if it is i-concise for all i.

Let X =∑R
r=1ur⊗vr⊗wr ∈ Fk×n×m. Now, we will try to calculate m1(ej ,X) where

1≤ j ≤ k. By the map defined above, m1(ej ,X) =∑R
r=1(ejur)⊗vr⊗wr. Note that

(ejur) = ujr, and ujr⊗vr = 1⊗ujrvr = ujrvr. Thus, we have the following.

Note 3.0.5. m1(ej ,X) =∑R
r=1ujrvr⊗wr.

So, the first contraction space cs1(X) = 〈∑R
r=1ujrvr⊗wr : 1≤ j ≤ k〉 is a span of k

matrices of rank at most R.

Example 3.0.6. Let X = e1⊗ (e1⊗ e1 + e2⊗ e3 + e2⊗ e4 + e3⊗ e2 + e3⊗ e3)
+e2⊗(e1⊗e4 +e2⊗e2 +e2⊗e4 +e3⊗e1) in F2⊗F3⊗F4. Find csi(X) for i∈ 1,2,3.
For X ∈ Fk⊗Fn⊗Fm, cs1(X) is the span of k matrices of size n×m, cs2(X) is
the span of n matrices of size k×m, and cs3(X) is the span of m matrices of size
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k×n. Basically, to find cs1(X), we write X = e1⊗ (. . .)+e2⊗ (. . .)+ . . .+ek⊗ (. . .).
Similarly, to find cs3(X), we write X = (. . .)⊗ e1 + . . .+ (. . .)⊗ em. The same
reasoning works for cs2(X), where we look for e1, . . . , en as the middle elements
of the pure tensors whose sum is X.
X = e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e3 + e2 ⊗ e4 + e3 ⊗ e2 + e3 ⊗ e3) + e2 ⊗ (e1 ⊗ e4 + e2 ⊗ e2

+ e2⊗ e4 + e3⊗ e1). By definition, cs1(X) is the span of two 3×4 matrices. Thus,

cs1(X) =
〈

1 0 0 0
0 0 1 1
0 1 1 0

 ,


0 0 0 1
0 1 0 1
1 0 0 0


〉

where e1⊗ (e1⊗ e1 + e2⊗ e3 + e2⊗ e4 + e3⊗ e2 + e3⊗ e3) corresponds to

A=


1 0 0 0
0 0 1 1
0 1 1 0


such that ei⊗ ej = aij.
By the same process, we get the following results:
X = (e1 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e4) + (e1 ⊗ e2 ⊗ e3 + e1 ⊗ e2 ⊗ e4 + e2 ⊗ e2 ⊗ e2

+ e2⊗ e2⊗ e4) + (e1⊗ e3⊗ e2 + e1⊗ e3⊗ e3 + e2⊗ e3⊗ e1), which implies

cs2(X) =
〈1 0 0 0

0 0 0 1

 ,
0 0 1 1

0 1 0 1

 ,
0 1 1 0

1 0 0 0

〉 .
Also, X = (e1⊗ e1 + e2⊗ e3)⊗ e1 + (e1⊗ e3 + e2⊗ e2)⊗ e2 + (e1⊗ e2 + e1⊗ e3)⊗ e3

+ (e1⊗ e2 + e2⊗ e1 + e2⊗ e2)⊗ e4, which implies that

cs3(X) =
〈1 0 0

0 0 1

 ,
0 0 1

0 1 0

 ,
0 1 1

0 0 0

 ,
0 1 0

1 1 0

〉 .

Now, let us define one of the main complexity measures we are going to use
throughout the thesis.

Definition 3.0.7. Let X ∈ Fk×n×m. The tensor rank of X is the minimum
integer R such that X = ∑R

r=1ur ⊗ vr ⊗wr for u1, . . . ,uR ∈ Fk, v1, . . . ,vR ∈ Fn,
and w1, . . . ,wR ∈ Fm. We write trk(X) to denote the tensor rank of X.

We will also see that this has very interesting geometric meanings and try to create
codes whose tensor ranks are minimal. In the next subsection, we will state and
prove a lower bound on the tensor rank that will be one of the fundamental theorems
which we are going to use in this thesis.
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3.1 Three-Way Arrays

The following theorem stated in [15] provides a lower bound for the tensor rank.

Theorem 3.1.1. Let X ∈ Fk×n×m be 1-concise. Then,

trk(X)≥ dim1(X) + min{trk(m1(u,X)) : u ∈ Fk \{0}}−1.

In our language, X being 1-concise means dim1(X) = k. Recall that a rank metric
code is a subspace C ⊆ Fn×mq . If C 6= {0}, then the minimum distance of the code
is d(C) := min{rank(M) : M ∈ C,M 6= 0} = min{d(M,N) : M,N ∈ C,M 6= N}, as
stated in Definition 2.1.5. Since cs1(X) = 〈m1(e1,X), . . . ,m1(ek,X)〉 is the span of
n×m matrices, and the ei’s are nonzero, we have cs1(X)⊆Fn×mq , and cs1(X) 6= {0},
for X 6= 0. Thus, d(cs1(X)) = min{trk(m1(u,X)) : u ∈ Fk \ {0}}. That is, in our
terminology, Kruskal’s Theorem is equivalent to say that trk(X)≥ k+d(cs1(X))−1.

Theorem 3.1.2 (Kruskal’s Theorem). Let X ∈ Fk×n×m be 1-concise. Then,
trk(X)≥ k+d(cs1(X))−1.

We will prove Kruskal’s Theorem using three-way arrays. Note that, in this
subsection, we will also construct correspondences with the previous parts and show
the analogues versions in three-way arrays language, just as we did above with
rewriting the Kruskal theorem. A three-way array (or 3D matrix) is an array of
numbers xijk for i ∈ [I], j ∈ [J ], and k ∈ [K]. We say X is an I×J×K array, xijk.

Definition 3.1.3. A v-slice of X is a matrix formed by fixing the v-th index, for
v = 1,2,3. We will use Xi to indicate the i-th slice of X, which is a J×K matrix.

It is clear that there are I such slices since i runs from 1 to I. We let dimi(X) to
be the dimension of the space consisting of all linear combinations of Xi’s. This is
actually the same as we defined them in Definition 3.0.3 and 3.0.4. Let us show the
correspondence with our original definitions by showing dim1(X) = dim(cs1(X)).
First observation is that, v-slice corresponds to mv map. We will only examine the
case v = 1. The other cases v = 2 and v = 3 are similar. We can see this by recalling
the m1 map:

m1 : FS×I ×FI×J×K → FS×J×K .

Since we are fixing the first index, we have S = 1 in the map. Thus, we have a map
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F1×I ×FI×J×K → F1×J×K(J ×K matrices), that is, m1 takes I different inputs
that fixes the first index just as there are I many 1-slices. So,

cs1(X) = 〈m1(e1,X), . . . ,m1(eI ,X)〉= 〈Xi | i= 1, . . . , I〉.

Thus, dim1(X) = dim(cs1(X)), as desired. We shall call X to be 1-concise if
dim1(X) is the number of slices Xi, i.e., dim1(X) = I.
The natural continuation is the representation of X in this context. Let A be I×R
matrix of elements (air), and similarly B, and C are J×R and K×R matrices.

Definition 3.1.4. The triple product [A,B,C] of three matrices is a three-way array
whose (i, j,k)− th element is xijk =∑R

r=1airbjrckr.

Obviously, a triple product can be taken only when all three matrices have the same
number of columns. At this point, we would like to continue our analogy by realizing
that the definition above is the same as the definition of a coordinate tensor given
in Note 3.0.2. Suppose X = [A,B,C] and the decomposition involves R columns.
This corresponds to X =∑R

i=1Ai⊗Bi⊗Ci, where

A=
(
A1 . . . AR

)
,B =

(
B1 . . . BR

)
,C =

(
C1 . . . CR

)
.

Let V be an n-dimensional vector space. Let a⊗ b⊗ c ∈ V ⊗V ⊗V , where
a= (a1, . . . ,an), b= (b1, . . . , bn), and c= (c1, . . . , cn). Also, let {e1, . . . , en} be a basis
for V . Then, a=∑n

i=1aiei, b=∑n
j=1 bjej , c=∑n

k=1 ckek. Therefore, we have

a⊗ b⊗ c = (
n∑
i=1

aiei)⊗ (
n∑
j=1

bjej)⊗ (
n∑
k=1

ckek)

=
n∑
i,j,k

[aibjck(ei⊗ ej⊗ ek)]

=
n∑
i,j,k

[xijk(ei⊗ ej⊗ ek)]

This connection shows how we defined the 3-tensors in the first place. Again just as
in the beginning of the chapter, it is time to introduce multiplication of an array by
a matrix to continue our analogy. The product in general is an array, as well. We
are only interested in left multiplication, the m1 map, which we write as

UX = U [A,B,C] = [UA,B,C]

This multiplication is associative just as matrix multiplication.

Definition 3.1.5. Let X = [A,B,C]. We say that X is a representation with R
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columns if the number of columns in each of the matrices A,B, and C is R. Then,
we say that rank of this array is R.

Note that, if X is 1-concise, then A has full rank. The reason is that, A is an I×R
matrix by definition and X being 1-concise implies dim1(X) = I. Since we have
dim1(X) ≤ rank(A), we conclude that A has full rank. Here, let us also note the
following inequality which follows from the definition:

rank(X)≥ dim1(X).

The following lemma shows the importance of being 1-concise.

Lemma 3.1.6. Let X be 1-concise. If u 6= 0, then uX 6= 0.

Proof. Here u is a vector, so that uX is a matrix formed by taking a linear
combination of the 1-slices of X. However, we are also given that X is 1-concise.
Thus, all 1-slices of X are linearly independent. That means, if u 6= 0, then
uX 6= 0.

Recall that our goal is to prove Kruskal’s Theorem 3.1.2. The following lemma and
theorem are needed to proceed that are stated in [15].

Lemma 3.1.7. Let X = [A,B,C] be a representation with R columns. Then,
rank(X)≤R − number of zero columns of A.

Proof. Suppose A has p zero columns. Without loss of generality, call them A1, ...,Ap

and represent A as A=
(
A1 . . . Ap . . . AR

)
. Then, we have

xijk =∑R
r=1AirBjrCkr =∑R

r=p+1AirBjrCkr. So, rank(X)≤R−p, as desired.

Theorem 3.1.8. Suppose X is 1-concise, and Υ = {u|u 6= 0}, where u is a vector.
Then, rank(X)≥minu∈Υ rank(uX) +dim1(X)−1.

We claim that this theorem is equivalent with Kruskal’s Theorem. Observe that,
in both cases u 6= 0. In both statements, I − 1 are the same since X being
1-concise in Theorem 3.1.8 implies that dim1(X) = I. Note that tensor rank equals
to rank when we have 2-tensors. Multiplication is given by the m1 map in tensors.
So, we are multiplying u and X and taking the minimum of the rank in both cases.
Thus, min{trk(m1(u,X)) : u∈ Fk \{0}} and minu∈Υ rank(uX) where Υ = {u|u 6= 0}
are equivalent. In addition to that, X is 1-concise in both cases, so we have two
equivalent statements. We will prove this theorem, and that will mean proving
Kruskal’s Theorem 3.1.2. Here is the proof of Theorem 3.1.8.
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Proof. Since X is 1-concise, by Lemma 3.1.6, u 6= 0 implies uX 6= 0. So,
minu∈Υ rank(uX)> 0. Observe that we can have rank(uX) = 1 by choosing u equals
to 1 in a single entry and 0 elsewhere. So, minu∈Υ rank(uX) = 1. Then, we are left to
prove that rank(X)≥ 1+dim1(X)−1 = dim1(X). Of course, rank(X)≥ dim1(X)
as we noted before. So, we are done.

Kruskal proves it in a different setting by first proving the following theorem.

Theorem 3.1.9. [Theorem 2 in [15]] If X = [A,B,C] is any representation, then
we have R≥minT∈Υ rank(TX)+maxS∈δ(number of zero columns in SA), where Υ
is any set of matrices and δ ⊆Υ.

Proof. Let R be the number of columns in A,B,C. For any S ∈ δ, we have
minT∈Υ rank(TX) ≤ rank(SX) since δ ⊂ Υ. We know that X = [A,B,C], so
SX = [SA,B,C] and rank(SX) = rank([SA,B,C]).

min
T∈Υ

rank(TX) ≤ rank(SX) = rank([SA,B,C])

≤ R−number of zero columns in SA

where the second inequlity follows from Lemma 3.1.7. Since this is true for any S,
we can take the maximum over all S ∈ δ. Thus, we have

minT∈Υrank(TX)≤R−maxS∈δ(number of zero columns in SA).

Kruskal considered Theorem 3.1.8 as a corollary of this theorem and proves it
differently but in an elegant manner. We give the proof here, as well.

Proof. Let X = [A,B,C] and R be the number of columns in X, i.e., by definition
rank(X) = R. Define δ = {u|uA 6= 0}. X being 1-concise with the Lemma 3.1.6
implies Υ = {u|u 6= 0} = {u|uX 6= 0}. We claim that Υ = δ. We will show both
inclusions. uX = [uA,B,C] 6= 0 means uA 6= 0, so Υ⊂ δ. However, if uA 6= 0, then
u 6= 0, so δ ⊂ {u|u 6= 0}= Υ. Thus, we have Υ = δ. Now, consider

maxu∈δ(number of zero columns in uA)

= maxu∈δ(number of columns of A which are orthogonal to u)≥ rank(A)−1 = I−1.

First of all, since X is 1-concise, rank(A) = I. Last inequality follows from picking
I independent columns of A, and select u orthogonal to I − 1 of them so that we
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have u 6= 0 and uA 6= 0. Thus, we get

maxu∈δ(number of zero columns in uA)≥ I−1.

Now, we will use Theorem 3.1.9 which states that if δ ⊆Υ, then we have

R≥min
u∈Υ

rank(uX) +maxu∈δ(number of zero columns in uA).

Here, δ = Υ, so we can use the theorem.

R ≥ min
u∈Υ

rank(uX) +maxu∈δ(number of zero columns in uA)

≥ min
u∈Υ

rank(uX) +dim1(X)−1

Since rank(X) =R and rank(A) = dim1(X), we are done.

Now, we have a lower bound on the tensor rank. We noted in Definition 3.0.7 that
the rank of a tensor equals to the minimal number of pure tensors whose sum give us
the tensor back. This minimal decomposition of a given tensor into its pure tensor
components is a very important problem and has many applications from machine
learning to quantum information as well as algebraic geometry. In the last chapter,
we will pick up the algebraic geometric approach and see that the points of the
Segre variety corresponds to pure tensors. Afterwards, we will argue that we can
construct some minimal tensor rank codes by this method. To explain the difficulty
of this problem, it is important to note that there are no known algorithms like
Gauss-Jordan elimination for computing the tensor rank.

Open Problem 3.1.10. Given a tensor, find an algorithm to compute its rank.

We will start examining the tensor rank in the next subsection and finally define
what we mean by the tensor rank of a code.

25



3.2 Tensor Rank

For a given Fq− [n×m,k] code C, encoding is done via an Fq-monomorphism(i.e.,
an injective homomorphism)

E : Fkq → Fn×mq .

Here Fkq is called the information space and Fn×mq is called an ambient space.
Roughly speaking, ambient space is a space surrounding an object along with the
object itself. The space of all such encoding maps is a subset of set of all Fq-module
homomorphisms HomFq(Fkq ,Fn×mq ) =H.

Theorem 3.2.1. If R is a commutative ring and A,B are two R-modules, then
HomR(A,B) is an R-module.

By the above theorem, we have H is also an Fq-module since Fq is commutative.
We also know that Fq is a field, so H is a Fq-vector space of dimension k×n×m.
Therefore, HomFq(Fkq ,Fn×mq )∼= Fk×n×mq . The isomorphism is the following:

ϕ : Fk×n×mq −→H

X 7−→EX

Fkq 7−→ Fn×mq : g−→m1(g,X)

Remark 3.2.2. One might argue that m1(g,X) was defined to be an element of
F1×n×m
q , and so it should not lie in Fn×mq . Here we are seeing m1(g,X) ∈ Fn×mq by

considering the isomorphism F1×n×m
q

∼= Fn×mq since the first component is a scalar.

So, we can see 3-tensors as encoders. Thus, as an analogy of the generator matrix
of a linear code, we define a generator tensor of a rank-metric code.

Definition 3.2.3. A generator tensor for an Fq− [n×m,k] code C is an element
X ∈ Fk×n×m such that cs1(X) = C.

Lemma 3.2.4. If X ∈ Fk×n×m is a generator tensor of the code C, then any
codeword in C is of the form m1(a,X) where a ∈ F k.

Proof. By definition, C = cs1(X) = 〈m1(e1,X), . . . ,m1(ek,X)〉. Thus, any codeword
is of the desired form.

Now, recall that X is 1-concise if dim(cs1(X)) = k. This means, if X is a generator
tensor of C, then X is 1-concise. This is very useful but we need a clever way to
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make use of this definition. The important question is how to realize a code C as a
contraction space of a tensor X. It depends on the tensor rank! We want to somehow
realize a code as a contraction space of a tensor X. We want to express the generating
tensors as minimal sums of pure tensors. However, given a tensor, finding a tensor
rank is NP-complete as proven in [9]. Here, the importance of generator tensors will
appear via help of the following theorem.

Theorem 3.2.5. [Theorem 14.45 in [2]] Consider T ∈ Fk×n×m, and R > 0. Let
X1, . . . , Xk, Y1, . . . , Yn, Z1, . . . , Zm be indeterminates over F. TFAE:

(1) trk(T )≤R.

(2) ∃A1, . . . ,AR ∈ Fn×m of rank 1 matrices such that cs1(T )⊆ span{A1, ...,AR}.

(3) ∃D1, . . . ,Dk ∈ FR×R and P ∈ Fn×R, Q ∈ Fm×R such that
cs1(T ) = P 〈D〉QT = P 〈D1, . . . ,Dk〉QT = 〈PD1QT , . . . ,PDkQ

T 〉.

(4) There exists linear forms fs ∈X, gs ∈ Y , and hs ∈ Z for s ∈ [R] such that

∑
i,j,l

tijlXiYjZl =
R∑
s=1

fs(X)gs(Y )hs(Z).

Proof. We will denote ur = (ujr : 1≤ j ≤ k) ∈ Fk and ei ∈ F1×k.

“1 =⇒ 2” Let trk(T )≤ R. Then, T = ∑R
r=1ur⊗ vr⊗wr for some ur ∈ Fk, vr ∈ Fn

and wr ∈ Fm. Recall that m1(ej ,T ) =∑R
r=1ujrvr⊗wr by Note 3.0.5. Thus,

cs1(T ) = 〈m1(e1,T ), . . . ,m1(ek,T )〉

= 〈
R∑
r=1

ujrvr⊗wr : 1≤ j ≤ k〉

⊆ 〈vr⊗wr : 1≤ r ≤R〉= span{A1, . . . ,AR}.

“2 =⇒ 1” Assume the hypothesis cs1(T ) ⊆ span{A1, ...,AR}. Let Ar = vr⊗wr be
rank 1 matrices. Then, for all 1≤ j ≤ k, there exists ujr ∈ F by Note 3.0.2 such that

m1(ej ,T ) =
R∑
r=1

ujrAr =
R∑
r=1

ujrvr⊗wr.

Thus, T =∑R
r=1ur⊗vr⊗wr and trk(T )≤R.

“1 ⇐⇒ 4” Apply Note 3.0.2 to Definition 3.0.7, and then set

fs(X) =
k∑
i=1

uirXi, gs(X) =
n∑
j=1

vjrYj , hs(X) =
m∑
l=1

wlrZl.
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“1 =⇒ 3” Let Dj be R×R matrix such that the diagonal elements of Dj are ujr
for 1 ≤ r ≤ R. Now, construct two matrices P = (vjr : 1 ≤ j ≤ n,1 ≤ r ≤ R) and
Q= (wjr : 1≤ j ≤m,1≤ r ≤R). Then,

PDjQ
T = P


uj1 0

. . .
0 ujR

QT =


| |

v1uj1 . . . vRujR

| |



− w1 −

...
− wR −

=
R∑
r=1

ujrvr⊗wr.

“3 =⇒ 1” Construct T = ∑R
r=1ur⊗ vr⊗wr such that vr is the r-th column of P ,

wr is the r-th column of Q and ujr is the r-th element of the main diagonal of Dj

for each j. Then, by construction the tensor rank is at most R, as desired.

We will write an example to understand what is going on.

Example 3.2.6. Let X = e1⊗ (e1⊗ e4 + e2⊗ e2 + e3⊗ e2 + e3⊗ e4) +
e2⊗ (e1⊗ e3− e3⊗ e3) in F2⊗F3⊗F4. Firstly, we will find the first contraction
space just as in the Example 3.0.6. We know that cs1(X) is the span of two 3× 4
matrices. Thus,

cs1(X) =
〈

0 0 0 1
0 1 0 0
0 1 0 1

 ,


0 0 1 0
0 0 0 0
0 0 −1 0


〉

= 〈A,B〉

Now, the critical part here is to write X as sums of rank 1 tensors. As mentioned
before, this is a very hard problem in general. In this case, considering the small
dimension of the example, we were able to find the following pure tensors
X1 = e2 ⊗ (e1 − e3) ⊗ (e2 + e3 + e4), X2 = (e1 − e2) ⊗ (e1 + e3) ⊗ (e2 + e4),
X3 = 2e2⊗ e3⊗ (e2 + e4), and X4 = e1⊗ (−e1 + e2)⊗ e2. Observe that

X =X1 +X2 +X3 +X4.

Now, we choose P , Q and Dj exactly in the proof of 3.2.5 in the part “1 =⇒ 3.”
So,

P =


1 1 0 −1
0 0 0 1
−1 1 1 0

 ,Q=


0 0 0 0
1 1 1 1
1 0 0 0
1 1 1 0

 ,D1 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 ,D2 =


1 0 0 0
0 −1 0 0
0 0 2 0
0 0 0 0


since u1 = e2,u2 = (e1− e2),u3 = 2e2,u4 = e1,v1 = (e1− e3),v2 = (e1 + e3),v3 = e3,

v4 = (−e1 + e2),w1 = (e2 + e3 + e4),w2 = (e2 + e4),w3 = (e2 + e4),w4 = e2.

Now, also see that we get the desired A= PD1QT , B = PD2QT .

28



Remark 3.2.7. Note that in Example 3.2.6, X was written as a sum of 6 pure
tensors in the beginning. That means, trk(X) ≤ 6. However, we found 4 rank 1
tensors whose sum is X. Thus, we actually showed that trk(X)≤ 4.

Theorem 3.2.5 also has a very useful corollary which will be used a lot.

Corollary 3.2.8. Let C be an Fq− [n×m,k,d] code. If X1 and X2 are different
generator tensors for C, then

trk(X1) = trk(X2).

Proof. By Theorem 3.2.5 and the fact that cs1(X1) = C for a generator tensor X1

of the code C, we have trk(X1) = min{R : C ⊆ span{A1, ...,AR}}. Similarly, by
definition cs1(X2) =C. We know from basic linear algebra that the number of basis
vectors is unique although the choice of basis vectors for a given vector space is not
unique. Therefore, we have the desired result

trk(X1) = min{R : C ⊆ span{A1, ...,AR}}= trk(X2).

As a conclusion, we have the following definition.

Definition 3.2.9. trk(C) = trk(any generating tensor of C).

Now, naturally we wonder how small or how large can tensor rank be.

Theorem 3.2.10. trk(C)≥ k+d−1.

Proof. Let X be a generating tensor for C. Then, trk(C) = trk(X) as we observed
above. Since any generating tensor is 1-concise, i.e., dim1(X) = k, we can apply the
Kruskal’s Theorem 3.1.2. Thus,

trk(C) = trk(X)

≥ k+d(cs1(X))−1 = k+d(C)−1 = k+d−1.

The natural question comes to mind is that whether the tensor rank is invariant
under code equivalence or not. To determine this, we first define what does it mean
for codes to be equivalent.
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Definition 3.2.11. A bijective map f : Fn×mq → Fn×mq is called an isometry if it
preserves rank distance, i.e,

d(M,N) = d(f(M),f(N))

for all M,N ∈ Fn×mq . Two codes C1,C2 ⊆ Fn×mq are equivalent if and only if there
exist an Fq-linear isometry f such that f(C1) = C2.

The following theorem is very important because it shows that tensor rank is
invariant under code equivalence. Note that, there are other types of equivalences
but there we restrict ourselves to Definition 3.2.11.

Theorem 3.2.12. Let C1 and C2 be two equivalent codes, then

trk(C1) = trk(C2).

Definition 3.2.13. Let C be an Fq − [n×m,k] code with trk(C) = R. A set
A= {A1, . . . ,AR} ⊆ Fn×mq of rank 1 matrices such that C ⊆ 〈A〉 is called an R-basis
for the code C.

Note that if C1 and C2 are a pair of codes satisfying C2 = f(C1) for an isometry f ,
then any R-basis A for C1 gives an R-basis f(A) for C2. Since f is a bijection, we
have dim(〈A〉) = dim(〈f(A)〉). Tensor rank of a code equals to the tensor rank of
any of its generator tensors. Then, by Corollary 3.2.8, we get Theorem 3.2.12, as
desired.

Definition 3.2.14. A code C is called MTR(Minimal Tensor Rank) if the equality
holds in Theorem 3.2.10, i.e, trk(C) = k+d−1.

In algebraic complexity theory, it is known that existence of MTR codes implies the
existence of MDS codes. We can think of it as follows. Suppose trk(C) = R. We
will see in Theorem 4.1.2 that there can be constructed a [R,k,d′] code where d′ ≥ d.
Since, C is MTR, we have R= k+d−1. Thus, by the Singleton bound, d′ = d. So,
we get a [k+d−1,k,d] code, i.e, an MDS code. What about the converse?

Open Problem 3.2.15. Given an MDS code, find an MTR code.

Note 3.2.16. Existence of MTR codes for any given variable is still an open
question, as well. The problem is adressed in [23] and they constructed some classes
of MTR codes which we will explain later in the thesis.

In coding theory, finding efficient ways to realize equivalence or inequivalence of
codes is a big problem. We are going to define generalized tensor ranks of a code
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C that can be used for that manner. Equivalent codes have the same generalized
tensor ranks. However, note that generalized tensor ranks fail in terms of duality,
i.e., there exists two codes with same generalized tensor rank but their duals have
different generalized tensor ranks. For examples of these, see [23].

Definition 3.2.17. Let S be the set of all subspaces of Fn×mq which are generated
by rank 1 matrices. Let r ∈ Z such that 1 ≤ r ≤ k where k is the dimension of an
Fq− [n×m,k,d] code C. The r-th generalized tensor rank of C is

dr(C) = min{dim(S) | S ∈ S, dim(C ∩S)≥ r}.

Let us explain this definition. We are looking for subspaces of rank 1 matrices in
Fn×mq such that the intersection of those with the code is at least a space of dimension
r. Then, among those subspaces, we take the one that has the minimum dimension.
Basically, we are constructing an inclusion type of relation with subspaces of rank
1 matrices and the code C, that is, we are trying to find the tensor rank!

Note 3.2.18. Observe that r-th generalized tensor rank is invariant under the group
of the Segre variety that we will see in Chapter 7.

Given a code C as in the above definition, we have the following theorem which
shows the relation between the k-th generalized tensor rank and the tensor rank,
and that is the reason we are looking at generalized tensor ranks in this thesis.

Theorem 3.2.19. Let 1≤ r ≤ k. Then, we have

(1) d= d1(C).

(2) trk(C) = dk(C).

(3) If 1≤ r ≤mn−1, then dr(C) + 1≤ dr+1(C).

(4) trk(C)−k+ r ≥ dr(C)≥ d+ r−1.

Proof. (1) We are given that d(C) = d. Thus, consider a matrix A ∈ C such that
rank(A) = d. That means, we can represent A as a sum of rank 1 matrices Ai such
that

A= A1 + . . .+Ad.

Clearly, the subspace S = 〈A1, . . . ,Ad〉 gives us the desired subspace to calculate
d1(C). Since dim(S) = d, we have d1(C) = d, as desired.
(2)

trk(C) = min{R : C ⊆ span{A1, ...,AR}}.
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Let A= span{A1, ...,AR}. Note that A ∈ S. Since C ⊆A, we have C ∩A= C. By
definition, A is the smallest dimensional set in S such that it contains C. Thus,
dk(C) = dim(A) =R = trk(C), as desired.
(3) Note that if r ≥mn, then dr+1(C) = ∅. Let dr+1(C) = dim(S). Then, we have
dim(C ∩S) ≥ r+ 1. Now, consider an hyperplane H of S. By definition, H ⊆ S

and dim(H) = dim(S)− 1. To finish, we will show that dr(C) ≤ dim(H). Since
dim(H) = dr+1(C)− 1, that would imply that dr(C) + 1 ≤ dr+1(C), as desired.
However, dr(C) ≤ dim(H) is obvious since every hyperplane H of S meet C in
dimension at least r due to the assumption dim(C ∩S)≥ r+ 1.
(4) Note that dr+1(C) ≥ dr(C) + 1 ≥ dr−1(C) + 2 ≥ . . . ≥ d1(C) + r = d+ r where
the first inequlity follows from (3) and the last inequality follows from (1). Thus,
dr(C) ≥ d+ r− 1. For the other part, we will use (2), i.e., trk(C) = dk(C). Since
1≤ r ≤ k, we have trk(C) = dk(C)≥ dk−1(C) + 1≥ . . .≥ dr(C) +k− r.

We will close this section by noting that the theorem above provides another proof
for Theorem 3.2.10. Here is the proof:

trk(C) = dk(C)≥ dr(C) +k− r

≥ dr−1(C) +k− r+ 1≥ . . .

≥ d1(C) +k− r+ (r−1) = d+k−1.

We will close this subsection by showing one of the reasons why evaluating the tensor
rank is very difficult. That is, it depends on field we are working on.

Example 3.2.20. Let X ∈ F2⊗F2⊗F2 such that

X = e1⊗ e1⊗ e1− e1⊗ e2⊗ e2− e2⊗ e2⊗ e1 + e2⊗ e1⊗ e2.

We will show that it has different ranks over R and C.

X = (−e1− e2)⊗ e2⊗ e2 + (e1− e2)⊗ e1⊗ e1 + e2⊗ (e1 + e2)⊗ (e1 + e2).

So, its rank is 3 over R.

X = (1
2e1 + 1

2ie2)⊗ (e1 + ie2)⊗ (e1 + ie2) + (1
2e1−

1
2ie2)⊗ (e1− ie2)⊗ (e1− ie2).

So, its rank is 2 over C.
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3.3 Vector Codes

In this subsection we will provide some projective geometry background and show
some constructions of rank-metric codes from the vector codes.

Definition 3.3.1. Given a vector space V over a field K, the projective space PG(V )
is the geometry obtained from the nontrivial subspaces of V , i.e., it is the set of
equivalence classes of V \{0} with the equivalence relation ∼ given by x∼ y if they
are scalar multiple of each other.

Let V = Kn+1. Then, the subspaces of V of dimension 1, 2, 3, 4, and n are called

points, lines, planes, solids, and hyperplanes of PG(V ) = PG(n,K).

Their projective dimensions are 0, 1, 2, 3, and n−1 respectively. Note that if K=Fq,
then we denote PG(n,K) = PG(n,q).

Definition 3.3.2. A vector code is an Fqm-subspace C ⊆ Fnqm .

We have two main questions in this subsection.

Question 3.3.3. How do we obtain rank-metric codes from vector codes?

Question 3.3.4. How do we define the tensor rank of any vector code?

We will start with the first question and then it will provide us a clue about the
second one. Consider a basis B = {b1, . . . , bm} of Fqm over Fq. Let v ∈Fnqm . Define the
matrix B(v) ∈ Fn×mq whose (i, j)-th entry is the j-th coordinate of vi with respect
to B. Then, we define the corresponding rank-metric code as

B(C) = {B(v) : v ∈ C}.

In addition to that, we have dimFq(B(C)) = m · dimFqm (C) and the minimum
distance of the vector code is the minimum distance of the code B(C) for any
basis B. Note that, when m≥ n the code C is MRD if and only if B(C) is MRD if
and only if dimFq(B(C)) =m(n−d+1) if and only if m ·dimFqm (C) =m(n−d+1)
if and only if dimFqm (C) = n−d+ 1. Thus, we have the following theorem.

Theorem 3.3.5. Let m≥ n. A vector code C ⊆ Fnqm is MRD if and only if

d(C) = n−dimFqm (C) + 1.
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The following example explains the concepts defined above.

Example 3.3.6. Consider C =< (1,α)>⊆F2
8. Let F8 =F2[α]/(α3 +α+1). Consider

the standard basis B = {1,α ,α2}. Note that

1 · (1,α) = (1,α), α · (1,α) = (α,α2), α2(1,α) = (α2,α+ 1).

So, we have the matrices

B(1,α) =
1 0 0

0 1 0

 ,B(α,α2) =
0 1 0

0 0 1

 ,B(α2,α+ 1) =
0 0 1

1 1 0

 .
Thus, the corresponding rank-metric code is

B(C) = 〈
1 0 0

0 1 0

 ,
0 1 0

0 0 1

 ,
0 0 1

1 1 0

〉= 〈B1,B2,B3〉.

Now, consider the normal basis N = {α,α2,α2 +α+ 1}.Note that

(α2 +α+ 1) · (1,α) = (α2 +α+ 1,α2 + 1), α · (1,α) = (α,α2), α2(1,α) = (α2,α+ 1).

So, we have the matrices

N(α2 +α+1,α2 +1) =
1 1 1

1 0 1

 ,N(α,α2) =
0 1 0

0 0 1

 ,N(α2,α+1) =
0 0 1

1 1 0

 .
Thus, the corresponding rank-metric code is

N(C) = 〈
1 1 1

1 0 1

 ,
0 1 0

0 0 1

 ,
0 0 1

1 1 0

〉= 〈N1,N2,N3〉.

See that B2 = N2 and B3 = N3. We also have the relations N1 = B1 +B2 +B3 and
B1 =N1 +N2 +N3. So, N(C) =B(C).

Thus, we answered Question 3.3.3. This example also motivates the following remark
and that will help us answering Question 3.3.4.

Remark 3.3.7. Let C ⊆ Fnqm a vector code, and B,N be bases of Fqm/Fq. Then,
the rank-metric codes B(C) and N(C) are equivalent.

The following corollary answers Question 3.3.4.

Corollary 3.3.8. Let C ⊆ Fnqm a vector code, and B,N be bases of Fqm/Fq. Then,

trk(B(C)) = trk(N(C)).
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Proof. By Remark 3.3.7, B(C) and N(C) are equivalent rank-metric codes. Then,
by Theorem 3.2.12, we get the desired result.

So, tensor rank of a vector code C is the tensor rank of any of its rank-metric
representation. Of course, we already answered the Question 3.3.3 but there is a
beautiful geometric answer to it, as well. Now, we will provide that here.
A point v of PG(n−1, qm) is a one dimensional subspace of Fnqm and consists of the
set Sv = {λv |λ ∈ Fqm}. To generalize this, consider a (k−1)-dimensional subspace
Π of PG(n−1, qm). In the above, k = 1. Note that k = 0 corresponds to the empty
set. Let Π = PG(U) where U = 〈u1, . . . ,uk〉. Similarly, we get

SU = {a1u1, . . . ,akuk|ai ∈ Fqm}.

Define the km-dimensional subspace F (Π) as the set spanned by the elements of
SU . Now, the big idea is to use the field reduction map which we define next.

Fn,m,q : PG(n−1, qm)−→PG(nm−1, q)

Π 7−→F (Π)

Consider Example 3.3.6 again. Here, q = 2, m= 3, and n= 2.

F2
8

F6
2

(1,α)

v 〈(1,α)〉

3−dimensional
subspaceF2

PG
(
1,23

) F2,3,2
PG(5,2)

PG(2,2)

Figure 3.1 Field Reduction

Now consider U = 〈(1,α)〉 and F8 = {0,1,α,α+ 1,α2,α2 + 1,α2 + α,α2 + α+ 1}.
Then, we have SU = {(0,0),(1,α),(α,α2),(α2,α + 1),(α + 1,α2 + α),(α2 + 1,1),
(α2 +α,α2 +α+ 1),(α2 +α+ 1,α2 + 1)}. Let Π = PG(U). Then, F2,3,2(Π) = F (Π)
is actually the image of SU in PG(5,2) since q = 2. Thus, we have
F (Π) = {(1,0,0,0,1,0),(0,1,0,0,0,1),(0,0,1,1,1,0),(1,1,0,0,1,1),(1,0,1,1,0,0),
(0,1,1,1,1,1),(1,1,1,1,0,1)} = {p1,p2,p3,p4,p5,p6,p7}. Note that we removed
(0,0,0,0,0,0) since it is not a point of the projective space by definition. Write

35



these points as rows of a matrix, then reduce it into echelon form and remove the
zero rows to get the generator matrix G of the code. So, we get

1 0 0 0 1 0
1 1 0 0 1 1
1 0 1 1 0 0
1 1 1 1 0 1
0 0 1 1 1 0
0 1 1 1 1 1
0 1 0 0 0 1


→


1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 1 0

=G.

However, our code must be consisting of matrices of size 2×3. So, transform each
row of G into 2×3 matrices. Then we get the desired code

C ′ = 〈
1 0 0

0 1 0

 ,
0 1 0

0 0 1

 ,
0 0 1

1 1 0

〉.
See that we get the same result as in Example 3.3.6.

Remark 3.3.9. Note that the coordinates for the 7 points we just gave are consistent
with the homogeneous coordinates of the points of PG(2,2),i.e., the Fano Plane which
is drawed in the Figure 3.1. Fano plane is the smallest projective plane since it is a
projective plane of order 2. By definition, a projective plane of order 2 has 7 points
and 7 lines(The circle in the figure is a line). Also, each line consist of 3 points,
and there are 3 lines passing from each point. See that p1 + p2 = p4, p1 + p3 = p5,
p1 +p6 = p7, p2 +p3 = p6, p2 +p5 = p7, p3 +p4 = p7, and p4 +p5 = p6. Thus, our 7
lines are L1 = {1,2,4}, . . . ,L7 = {3,4,7}. So, we can put the points as follows:

p1(1,0,0,0,1,0)

p4(1,1,0,0,1,1) p5(1,0,1,1,0,0)
p7

(1,1,1,1,0,1)

p3(0,0,1,1,1,0)p6
(0,1,1,1,1,1)

p2(0,1,0,0,0,1)

p1(1,0,0)

p4(1,1,0)
p5(1,0,1)

p7

(1,1,1)

p3(0,0,1)p6
(0,1,1)

p2(0,1,0)

Figure 3.2 Fano Plane

Observe that if we send the first 3 coordinates of the points to points in PG(2,2),
then we get one of the coordinatization of the Fano plane. So, it is consistent in that
aspect, as well. That would still work if we do the same for the last 3 coordinates.
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In summary, the geometric way of creating a rank-metric code from a given vector
code is as follows:

• We are given a code C in Fnqm of dimension k. We will transform it into a code
in Fn×mq of dimension km.

• Consider it in PG(n−1, qm) as Π = PG(C) where C = 〈c1, . . . , ck〉 is of
dimension k.

• Construct SC = {a1c1 + . . .+akck|ai ∈ Fqm} and the set spanned by the vectors
in SC as F (Π). Note that F (Π) corresponds to the image of Π under the field
reduction map Fm,n,q.

• Write all the elements of F (Π) as rows of a matrix A. Then, take the nonzero
rows of rref(A) to form the generator matrix G.

• Transform rows of G into n×m matrices and take their span as our newly
produced rank-metric code.

Lastly, let us analyze if the rank-metric code

C ′ = 〈
1 0 0

0 1 0

 ,
0 1 0

0 0 1

 ,
0 0 1

1 1 0

〉
corresponding to the vector code C = 〈(1,α)〉 ⊆ F2

8 is MRD or not. We will use the
criteria Theorem 3.3.5 provides. See that m = 3, n = 2 and dimFqm (C) = 1. So, we
will check whether d(C) = 2 or not. We know that d(C) = d(C ′). After writing all
the 8 elements of C ′ and checking that all the nonzero matrices have rank 2, we
conclude d(C ′) = d(C) = 2, and thus the vector code C is MRD.

Remark 3.3.10. In general, when we talk about codes, we also talk about their
duals. Dual of a vector code H is defined as

H⊥ := {x ∈ Fnqm | 〈x,y〉= 0for all y ∈ C}.

Naturally, we can ask the same question about the dual of a rank-metric code C.

Definition 3.3.11. The dual of Fq− [n×m,k] code C is

C⊥ := {X ∈ Fn×mq | 〈X,Y 〉= 0for all Y ∈ C}.

Note that C⊥ is an Fq − [n×m,nm− k] code. Of course, we need to define this
product given in the definition.
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Definition 3.3.12. Trace Product of X,Y ∈ Fn×mq is 〈X,Y 〉 := Tr(XY T ).

We note that the map (X,Y )→ Tr(XY T ) defines a symmetric bilinear form on
Fn×mq . In general, a dual code of C is the annihilator of C with respect to the
bilinear form. Observe that

〈aX+Y,Z〉 = Tr(ZT (aX+Y ))

= Tr(aZTX+ZTY ) = aTr(ZTX) +Tr(ZTY )

= a〈Z,X〉+ 〈Z,Y 〉

The other part can also be shown similarly. Let us do an example on finding the
dual of a given rank-metric code.

Example 3.3.13. Find the dual of the rank-metric code

C = 〈
1 0 0

0 1 0

 ,
0 1 0

0 0 1

 ,
0 0 1

1 1 0

〉 ⊆ F2×3
2 .

Consider M =
a b c

x y z

 ∈ C⊥. Then,

Tr(
1 0 0

0 1 0



a x

b y

c z

) = Tr(
a x

b y

) = a+y = 0.

T r(
0 1 0

0 0 1



a x

b y

c z

) = Tr(
b y

c z

) = b+ z = 0.

T r(
0 0 1

1 1 0



a x

b y

c z

) = Tr(
 c z

a+ b x+y

) = x+y+c= 0. After solving the three

equations together, we get that M =
 a b c

a− c −a −b

 . So, we can write all possible

8 elements of the dual code. We know that it is of dimension nm−k, i.e., 3. So, by
inspection we can find 3 matrices which will form the basis. After doing so, we get

C⊥ = 〈
1 0 0

1 1 0

 ,
1 1 0

1 1 1

 ,
0 0 1

1 0 0

〉.

Another occasion where the trace product being used is the double-dot product.
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Definition 3.3.14. Let p,k,n,m be natural numbers and define 3-tensors

A=
∑
i

ui⊗vi⊗wi ∈ Fk×n×m, B =
∑
j

u′j⊗v′j⊗w′j ∈ Fp×n×m.

The double-dot product A :B is a 2-tensor lying in Fk×p with the formula

A :B =
∑
i,j

(vi ·v′j)(wi ·w′j)ui⊗u′j .

If we consider their 3-way array representations as in [15] and as mentioned in the
beginning of this section, we get A = aijl and B = bsjl. Then, we define the double
product as

(A :B)is =
∑
j,l

aijlbsjl where 1≤ i≤ k, 1≤ s≤ p.

As a remark, note that we can apply this definition to 2-tensors. It is even okay if
only one of them is a 2-tensor, as well. The trick is to see Fn×m as F1×n×m. For
two matrices X,Y ∈ Fn×m, we have

X : Y = Tr(XY T ).

The following theorem is handy in computations.

Theorem 3.3.15. Let X ∈ Fs×k, Y ∈ Fs×p, A ∈ Fk×n×m, and B ∈ Fp×n×m. Then,

m1(X,A) :B =X(A :B), A :m1(Y,B) = (A :B)Y T .

Proof. In the first chapter, we noted the tensor product of two vectors as a⊗b= abT .

By using this definition, we have

(Xui)⊗u′j = (Xui)u′jT =X(uiu′jT ) =X(ui⊗u′j),

ui⊗ (Y u′j) = ui(Y u′j)T = ui(u′jTY T ) = (uiu′jT )Y T = (ui⊗u′j)Y T .

We have m1(X,A) =∑
i(Xui)⊗vi⊗wi, by definition. Thus,

m1(X,A) :B =∑
i,j(vi ·v′j)(wi ·w′j)(Xui)⊗u′j =∑

i,j(vi ·v′j)(wi ·w′j)X(ui⊗u′j) =X(A :B).
This proves the first equality. Proving the second one is again in a similar fashion.
We have m1(Y,B) =∑

j(Y u′j)⊗v′j⊗w′j , by definition. Thus,

A:m1(Y,B) =∑
i,j(vi ·v′j)(wi ·w′j)(ui)⊗ (Y u′j) =∑

i,j(vi ·v′j)(wi ·w′j)(ui⊗u′j)Y T = (A :B)Y T .
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Now, using the double-dot product, as an analogy to parity-check matrix of a vector
code, we define a parity-check tensor for a rank-metric code.

Definition 3.3.16. Let C be an Fq− [n×m,k] code, and let Y ∈ F(mn−k)×n×m
q . The

tensor Y is called a parity-check tensor for C if C = {M ∈ Fn×m | Y :M = 0}.

Choose a matrix M ∈ Fn×m. We can represent it as a vector code of length nm by

M → (M11 . . .M1m| . . . |Mn1 . . .Mnm).

Then we can construct the generator matrix G ∈ Fk×nm by

Git = xijl, where t= (j−1)m+ l for 1≤ j ≤ n,1≤ l ≤m.

Let X ∈ Fk×n×m be a generator tensor for C and Y be a parity check tensor for
C. Form the generator matrix G ∈ Fk×nm as above. Let H ∈ F(nm−k)×nm be a
parity-check matrix for the vector code. So, Hst = Ysjl where 1≤ s≤ nm−k. Recall
that GHT = 0 by Theorem 2.0.5. Then we get

0 = (GHT )is =
nm∑
t=1

GitHts =
∑
j,l

XijlYsjl = (X : Y )is.

Therefore, we get the desired analogy which says

X : Y = 0 ⇐⇒ GHT = 0.

Thus, given a generator tensor X of a rank-metric code C, we say Y is a parity-check
tensor for C if and only if X : Y = 0. The following proposition is only natural.

Proposition 3.3.17. Let Y ∈ F(nm−k)×n×m and let C be an F− [n×m,k] code.
Then, Y is a generator tensor for C⊥ if and only if Y is a parity check tensor for
C.

Proof. Y is a parity check tensor for C if and only if Y :M = 0 ∈ F(nm−k)×1 for all
M ∈ C. Let A ∈ F1×(nm−k). Then, A(Y :M) = 0 for all M ∈ C. By Theorem 3.3.15,
this is equivalent of saying 0 =m1(A,Y ) :M. This is true for all A ∈ F1×(nm−k) and
for all M ∈ C. However, that means we have

C⊥ = {m1(A,Y )|A ∈ Fnm−k}.

So, by Lemma 3.2.4, Y is a generator tensor for C⊥, as desired.
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4. TENSOR RANK EXTREMAL CODES

In this section, our main goal is to explain tensor rank extremal and MTR codes.

4.1 Two Useful Maps

We will introduce two maps which will be very useful for the upcoming parts of the
thesis.

Definition 4.1.1. Let k,d be positive integers.

Nq(k,d) = min{N ∈ N| There exists an Fq− [N,k,d] code}.

It is clear from the definition that Nq(k,d′)≥Nq(k,d) where d′ ≥ d.

Consider the linearly independent set of rank 1 matrices A= {A1, . . . ,AR} ⊆ Fn×mq .
Then, we have an Fq-linear isomorphism between two vector spaces:

ψA : <A>−→ FRq :
R∑
i=1

µiAi 7−→
R∑
i=1

µiei.

There is a connection with linear block codes. Consider an R-basis A for the code
C. Define the linear block code as the image of C under the map ψA, that is,

ψA(C) = CA.

By Lemma 3.2.4, we know that any element M of the code C is of the form
M = m1(a,X) = ∑R

i=1(a ·ur)(vr⊗wr) for a ∈ Fkq . Let Ar = vr⊗wr for 1 ≤ r ≤ R.
Then, ψA(M) = (a ·ur : 1≤ r ≤ R). This means, CA is an Fq− [R,k] code with the
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generator matrix


| |
u1 . . . uR

| |

 . The following theorem explains more about this.

Theorem 4.1.2 (Theorem 4.11 in [23]). Let C be an Fq − [n×m,k,d] code with
tensor rank R. Let A be an R-basis for C. Then,

(1) For all M ∈ C, we have rank(M)≤ wt(ψA(M)).

(2) CA is an Fq− [R,k,≥ d] code.

(3) trk(C)≥Nq(k,d).

Proof. Let r = rank(M). That is, M = ∑R
i=1µiAi for some µi ∈ Fq with at least

r of its coordinates are nonzero. Thus, ψA(M) has at least r nonzero entries, i.e,
r ≤ wt(ψA(M)) as desired. This proves the first one. For the second one, we only
need to prove that the linear block code CA has distance ≥ d since we already showed
above that CA is an Fq− [R,k] code.

d(C) = d= min{rank(M) :M ∈ C} and d(CA) = min{wt(ψA(M)) :M ∈ C}.

By the first part, result follows. Lastly, Suppose CA is Fq− [R,k,d′] code with d′≥ d.
Then, R≥Nq(k,d′).We are done since Nq(k,d′)≥Nq(k,d), as explained before.

Definition 4.1.3. Let C be an Fq − [n×m,k,d] code. C is called tensor rank
extremal if trk(C) =Nq(k,d).

The following remark gives us our second useful map φV,W that provides a new way
to represent the multiplication map using Note 3.0.5.

Remark 4.1.4. Consider two full-rank matrices V ∈ Fn×Rq and W ∈ Fm×Rq . Define
the Fq linear map

φV,W : FRq −→ Fn×mq : x 7−→ V diag(x)W T .

Let vr and wr denote the r-th columns of the matrices V and W. Let Ar = vr⊗wr
as before. Let U ∈ Fk×Rq and a ∈ Fkq . Then we have aU ∈ FRq . Let ur represent the
r-th column of U. Then, we have

aU =


a1u11 + . . .+akuk1

...
a1u1R+ . . .+akukR

=


a ·u1
...

a ·uR

 .
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Note that diag(aU) is an R×R matrix whose diagonal entries are coming from aU

and all the other entries are zero. Let X =∑R
r=1ur⊗vr⊗wr. Then, we have

V diag(aU)W T =


v11(a ·u1) v12(a ·u2) . . . v1R(a ·uR)

... ... ... ...
vn1(a ·u1) vn2(a ·u2) . . . vnR(a ·uR)



w11 . . . wm1
... ... ...

w1R . . . wmR



=


| |

(a ·u1)v1 . . . (a ·uR)vR
| |



− w1 −

...
− wR −


= (a ·u1)v1w

T
1 + . . .+ (a ·uR)vRwTR

=
R∑
r=1

(a ·ur)vr⊗wr

= m1(a,X).

To proceed, we need the concept of nondegenerate codes.

Definition 4.1.5. Let C be a rank-metric code. The column support and the row
support of C are Fq-subspaces of Fnq and Fmq respectively, given by

csupp(C) = 〈colsp(M)〉M∈C , rsupp(C) = 〈rowsp(M)〉M∈C .

The code C is called nondegenerate if csupp(C) = Fnq , and rsupp(C) = Fmq .

Let X ∈ Fk×m×nq be any generator tensor for the rank-metric code C. Then, we have

• dim1(X) = k,

• dim2(X) = dim(csupp(C)),

• dim3(X) = dim(rsupp(C)).

Thus, by only knowing the generator tensor, we can say if the code is nondegenerate
or not. We will see why that is useful in the following lemma. Note that, what we
mean by C = V 〈D〉W T is explained in part (3) of Theorem 3.2.5.

Lemma 4.1.6. Let C be nondegenerate Fq− [n×m,k] code. Suppose C = V 〈D〉W T

for D = {D1, . . . ,Dk} a set of R×R diagonal matrices and V ∈ Fn×Rq , W ∈ Fm×Rq

are full rank matrices(rank n and rank m). Define A = {Ar : 1 ≤ r ≤ R} where
Ar = vr⊗wr. Then, φV,W (ψA(C)) = C.

Proof. Consider V diag(p)W T , an arbitrary element in C. Then, we have
V diag(p)W T =∑R

i=1 prvr⊗wr =∑R
i=1 prAr ∈ 〈A〉. So, C ⊆ 〈A〉. This means ψA(C)
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makes sense. Let M ∈ 〈A〉 such that M =∑R
i=1µrAr. Then, ψA(M) = µ ∈ FRq .

Now, observe that

φV,W (µ) = V diag(µ)W T =
R∑
r=1

µrvr⊗wr =
R∑
r=1

µrAr =M.

Thus, we have φV,W (ψA(M)) = M for all M ∈ 〈A〉 and C ⊆ 〈A〉. Result follows
directly.

One might ask if the converse is true or not. The answer is no. We will give a
counterexample here.

Example 4.1.7. Let V =


1 1
1 0
0 1

 and W =
1 1

1 0

.
Observe that V and W are full-rank matrices in F2. We can compute A1 and A2

directly from the tensor product of their columns.

A1 =


1 1
1 1
0 0

 and A2 =


1 0
0 0
1 0

 .

Also, let D = {
1 0

0 0

 ,
1 0

0 1

}. Then, the code C = V 〈D〉W T is an F2− [3×2,2]

code. We can compute 〈D〉 to find the 4 codewords of C. We get

C = {


0 0
0 0
0 0

 ,


1 1
1 1
0 0

 ,


0 1
1 1
1 0

 ,


1 0
0 0
1 0

}= {c1, c2, c3, c4}.

We have c1 = 0, c2 = A1, c3 = A1 +A2, and c4 = A2. This means, ψA(c1) = (0,0),
ψA(c2) = (1,0), ψA(c3) = (1,1), and ψA(c4) = (0,1). It can easily be checked that
φV,W (ψA(C)) = C. Now, we will show that C is not nondegenerate to finish up the

example. Although rsupp(C) = F2
q, we have csupp(C) =


0 1 1 0
0 , 0 , 1 , 1
0 1 0 1

 6= F3
q .

Now, we are ready to state the big corollary of this section. Note the following.

Note 4.1.8.
φ−1
V,W (C) = {x ∈ FRq : V diag(x)W T ∈ C}.

We simply rewrite Theorem 4.1.2 and get our crucial result.
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Corollary 4.1.9 (Corollary 4.14 in [23]). Let C be an Fq− [n×m,k,d] code with
trk(C) = R. Let D = {D1, . . . ,Dk} be a set of R×R diagonal matrices such that
C = V 〈D〉W T where V and W are full rank matrices of rank n and m, respectively.
Then,

(i) For all M ∈ C, we have rank(M)≤ wt(φ−1
V,W (M)),

(ii) φ−1
V,W (C) is an Fq− [R,k,≥ d] code,

(iii) If C is a tensor rank extremal code, then φ−1
V,W (C) is an Fq− [R,k,d] code of

length Nq(k,d). In particular, if C is MTR, then φ−1
V,W (C) is an MDS code.

Proof. (i) By Lemma 4.1.6, φ−1
V,W (M) = ψA(M). By Theorem 4.1.2,

rank(M)≤ wt(ψA(M)) = wt(φ−1
V,W (M)).

(ii) By Lemma 4.1.6, we have φ−1
V,W (C) = ψA(C). By Theorem 4.1.2, ψA(C) is an

Fq− [R,k,≥ d] code. Thus, φ−1
V,W (C) is an Fq− [R,k,≥ d] code.

(iii) Let C be a tensor rank extremal code. That means, trk(C) =Nq(k,d). Since C
is of the form V 〈D〉W T , and d(C) = d, there exists x0 such that

rank(V diag(x0)W T ) = d.

Since V is a full rank matrix, d = rank(V diag(x0)W T ) = rank(diag(x0)W T ).
Similarly, since W is a full rank matrix, d = rank(diag(x0)W T ) = rank(diag(x0)).
Thus, we get wt(x0) = d. Therefore, we have d(φ−1

V,W (C)) = d. Since R=Nq(k,d), we
have φ−1

V,W (C) is an Fq− [R=Nq(k,d),k,d] code. Now, in particular we consider the
case R= k+d−1. Then, [R=Nq(k,d),k,d] =⇒ [k+d−1,k,d]. That is, it becomes
MDS, as desired.

This gives us the third proof of Theorem 3.2.10. We know that trk(C) = R. By
Corollary 4.1.9, we know that φ−1

V,W (C) is an [R,k,d′] code where d′ ≥ d. Just using
the Singleton bound 2.0.16. we get

trk(C) =R≥ k+d′−1≥ k+d−1.

This is not the only use of Corollary 4.1.9 as we will constantly go back to this in
the following parts of the thesis.
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4.2 Extremal Triples

In this section we start by proposing the two main questions in the paper [23].

Question 4.2.1. Let R=Nq(k,d). Decide for which values of n and m, we can find
an Fq− [n×m,k,d] tensor rank extremal code φV,W (C),i.e., with trk(φV,W (C)) =R

such that V ∈ Fn×Rq , W ∈ Fm×Rq and C is an Fq− [R,k,d] code.

Definition 4.2.2. The triple (C,V,W ) is called an extremal triple if it is a solution
to Question 4.2.1. Note that this happens if and only if

rank(V diag(x)W T )≥ d for all x ∈ C−{0}.

We will use this characterization when we try to show that some triple is extremal.

They also propose a special case of Question 4.2.1 as follows:

Question 4.2.3. Let R = k+ d− 1. Decide for which values of n and m, we can
find an Fq− [n×m,k,d] MTR code φV,W (C) such that V ∈ Fn×Rq , W ∈ Fm×Rq and
C is an Fq− [R,k,d] MDS code.

Note that we are trying to work with full rank matrices V and W. However, in the
statements of both of the questions we are not given that. Now, we will prove a
lemma which will provide us to assume without loss of generality that V and W are
full-rank matrices. So, this is a pretty big lemma for the analysis of Question 4.2.1.
Before we state the lemma, we need the following definition.

Definition 4.2.4. For an arbitrary matrix M ∈ Fk×Rq and a vector x ∈ FRq , define

CM = rowsp(M) and CMx = rowsp(Mdiag(x)).

Lemma 4.2.5. Let C be an Fq− [R=Nq(k,d),k,d] code. Let matrices V ∈Fn×Rq and
W ∈ Fm×Rq such that (C,V,W ) is an extremal triple. Then, for all integers n′ ≥ n,
m′ ≥m and for all matrices V ′ ∈ Fn

′×R
q , W ′ ∈ Fm

′×R
q with rowsp(V ) ⊆ rowsp(V ′)

and rowsp(W )⊆ rowsp(W ′), we have (C,V ′,W ′) is an extremal triple.

This lemma means, we can increase n and m until we get full rank matrices V and
W , as desired. We will prove it here.
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Proof. Let (C,V,W ) be an extremal triple. Also let V ′ ∈ Fn
′×R
q , and W ′ ∈ Fm

′×R
q

such that rowsp(V ) ⊆ rowsp(V ′) and rowsp(W ) ⊆ rowsp(W ′). Then, there exists
matrices A ∈ Fn

′×n′
q and B ∈ Fm′×m′q such that

AV ′ =
V
Ṽ

 and BW ′ =
W
W̃

 .
Now, let x ∈ C −{0}. Let D = diag(x) ∈ FR×Rq . To show that (C,V ′,W ′) is an
extremal triple, we need to show that rank(V ′D(W ′)T ) ≥ d. Multiplying a matrix
from left or right can not increase its rank. Thus, we have

rank(V ′D(W ′)T ) ≥ rank(AV ′D(W ′)TBT )

= rank(
V
Ṽ

D(W T W̃ T
)
)

= rank(
V D
Ṽ D

(W T W̃ T
)
)

= rank(
V DW T V DW̃ T

Ṽ DW T Ṽ DW̃ T

)

≥ rank(V DW T )

≥ d.

The last inequality follows from the fact that (C,V,W ) is an extremal triple by the
criteria given in Definition 4.2.2.

In general showing that (C,V,W ) is an extremal triple is a difficult job. To handle
that problem, we will state some equivalent forms of it. To prove that theorem, we
will need the following lemma.

Lemma 4.2.6. Let A ∈ Fn×Rq and B ∈ Fm×Rq . Then,

rank(ABT ) = rk(A)−dim(CA∩C⊥B ) = rank(B)−dim(CB ∩C⊥A ).

Proof. We will consider this in two cases where the matrices are full rank and not
full rank. First, suppose rank(A) = n and rank(B) =m. Note that rank of ABT is
the rank of the bilinear map

ϕ : Fnq ×Fmq −→ Fq : (x,y) 7−→ xABT yT .
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By definition and using the rank-nullity theorem 1.1.7, we have

(?) rank(ϕ) = n−dimkerL(ϕ) =m−dimkerR(ϕ).

Since A and B are full rank matrices, CA ∼= Fnq and CB ∼= Fmq . Now, by calculating
left and right kernel, we will show the desired result.

kerL(ϕ) = {x ∈ Fnq |xABT yT = 0 ∀y ∈ Fmq }
∼= {v ∈ CA|vBT = 0}

= CA∩C⊥B .

Similarly,

kerR(ϕ) = {y ∈ Fmq |xABT yT = 0 ∀x ∈ Fnq }
∼= {w ∈ CB|AwT = 0}

= CB ∩C⊥A .

By the Equation (?), result follows. Now suppose rank(A) = s≤ n and rank(B)≤m
excluding the case we analyzed above. By Theorem 1.1.16, we can use full-rank
factorization. That is, there exists matrices M ∈ Fs×nq and N ∈ Ft×mq such that
MA ∈ Fs×mq and NB ∈ Ft×mq are full-rank matrices with

(??) CA = CMA and CB = CNB.

Since we can not increase the rank by multiplying with other matrices, we have
rank(ABT )≥ rank(MABTNT ).We will show that rank(MABTNT )≥ rank(ABT )
so that they are equal. By the Frobenius rank inequality 1.1.18, we have

rank(MA) + rank(ABTNT )≤ rank(MABTNT ) + rank(A).

This implies rank(ABTNT ) ≤ rank(MABTNT ) since rank(A) = rank(XA) by
Equation (??). Again, Frobenius rank inequality implies

rank(ABT ) + rank(BTNT )≤ rank(ABTNT ) + rank(BT ).

This means rank(ABT ) ≤ rank(ABTNT since rank(BTNT ) = rank(BT ) by
Equation (??). Thus, we have

rank(ABT )≤ rank(ABTNT ≤ rank(MABTNT ) =⇒ rank(ABT )≤ rank(MABTNT ).
Therefore, rank(ABT ) = rank(MABTNT ) = rank((MA)(BTNT )) where MA and
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NB are full rank matrices. Then, we have by the first part

rank(ABT ) = rank(MA)−dim(CMA∩C⊥Y B).

By Equation (??) result follows.

One might wonder about how to guarantee the equation (??). We provide an
example here to make it absolutely clear.

Example 4.2.7. A=
1 2 3 4

2 4 6 8

, and B =


2 0 1 1
−1 1 3 −2
1 1 4 −1

.
See that n= 2, m= 3, R = 4, s= 1, t= 2 and we have

CA = 〈
(
1 2 3 4

)
〉 and CB = 〈

(
2 0 1 1

)
,
(
−1 1 3 −2

)
〉.

So, M should be a 1×2, and N should be a 2×3 matrix. In general, if M is p×k
matrix, then choose its rows as e′is where i− th row of A contributes to the rank.

That is, M =
(
1 0

)
and N =

1 0 0
0 1 0

 so that MA and Y B are full rank matrices

such that CA = CMA and CB = CY B as desired.

Now, we have the resources to prove an important theorem which gives 9 equivalent
statements of being an extremal triple.

Theorem 4.2.8. Let C be an Fq− [R =Nq(k,d),k,d] code. Let n,m ∈ N such that
d≤ n,m < R and V ∈ Fn×Rq , W ∈ Fm×Rq . The followings are equivalent:

1. (C,V,W ) is an extremal triple.

2. ∀c ∈ C−{0}, dim(CV ∩C⊥Wc
)≤ rank(V )−d.

3. ∀c ∈ C−{0}, dim(CW ∩C⊥Vc
)≤ rank(W )−d.

4. ∀c ∈ C−{0}, dim(CVc ∩C⊥W )≤ dim(CVc)−d.

5. ∀c ∈ C−{0}, dim(CWc ∩C⊥V )≤ dim(CWc)−d.

6. ∀c ∈ C−{0}, dim(CWc +C⊥V )≥R− rank(V ) +d.

7. ∀c ∈ C−{0}, dim(CVc +C⊥W )≥R− rank(W ) +d.

8. ∀c ∈ C−{0}, dim(CV +C⊥Wc
)≥R−dim(CWc) +d.

9. ∀c ∈ C−{0}, dim(CW +C⊥Vc
)≥R−dim(CVc) +d.
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Proof. We will use Definition 4.2.2, Lemma 4.2.6 and Grassmann’s Identity 1.1.3.
“1 ⇐⇒ 2”

rank(V diag(c)W T ) = rank(V (Wdiag(c))T )

= rank(V )−dim(CV ∩C⊥Wc
)≥ d.

So, we get rank(V )−d≥ dim(CV ∩C⊥Wc
).

“1 ⇐⇒ 3”

rank(V diag(c)W T ) = rank(Wdiag(c)TV T ) = rank(W (V diag(c))T )

= rank(W )−dim(CW ∩C⊥Vc
)≥ d.

So, we get rank(W )−d≥ dim(CW ∩C⊥Vc
).

“1 ⇐⇒ 4”

rank(V diag(c)W T ) = rank(V diag(c))−dim(CVc ∩C⊥W )

= dim(CVc)−dim(CVc ∩C⊥W )≥ d.

So, we get dim(CVc)−d≥ dim(CVc ∩C⊥W ).
“1 ⇐⇒ 5”

rank(V diag(c)W T ) = rank(Wdiag(c)V T )

= rank(Wdiag(c))−dim(CWc ∩C⊥V )

= dim(CWc)−dim(CWc ∩C⊥V )≥ d.

So, we get dim(CWc)−d≥ dim(CWc ∩C⊥V ).
“5 ⇐⇒ 6”

dim(CWc +C⊥V ) = dim(CWc) +dim(C⊥V )−dim(CWc ∩C⊥V )

≥ dim(CWc) +dim(C⊥V )−dim(CWc) +d

= dim(C⊥V ) +d

= R−dim(CV ) +d=R− rank(V ) +d.

“4 ⇐⇒ 7”

dim(CVc +C⊥W ) = dim(CVc) +dim(C⊥W )−dim(CVc ∩C⊥W )

≥ dim(CVc) +dim(C⊥W )−dim(CVc) +d

= dim(C⊥W ) +d

= R−dim(CW ) +d=R− rank(W ) +d.
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“2 ⇐⇒ 8”

dim(CV +C⊥Wc
) = dim(CV ) +dim(C⊥Wc

)−dim(CV ∩C⊥Wc
)

≥ dim(CV ) +dim(C⊥Wc
)− rank(V ) +d

= dim(CV ) +dim(C⊥Wc
)−dim(CV ) +d

= dim(C⊥Wc
) +d

= R−dim(CWc) +d.

“3 ⇐⇒ 9”

dim(CW +C⊥Vc
) = dim(CW ) +dim(C⊥Vc

)−dim(CW ∩C⊥Vc
)

≥ dim(CW ) +dim(C⊥Vc
)− rank(W ) +d

= dim(CW ) +dim(C⊥Vc
)−dim(CW ) +d

= dim(C⊥Vc
) +d

= R−dim(CVc) +d.

Next, we are going to examine how we can get (C,V,W ) extremal triple in the case
of CV and CW being MDS codes. Given that V ∈ Fn×Rq , the code CV is generated
by the rows of V , so V is a generator matrix of CV . Thus, CV is an [R,n,d] code.
Since it is MDS, d=R−n+ 1. So, CV is an Fq− [R,n,R−n+ 1] code.

Lemma 4.2.9. G is a generator matrix of an MDS code C of length n and dimension
k if and only if any subset of k columns of G are linearly independent.

Proof. Suppose every subset of k columns of G are linearly independent. Then any
k×k submatrix of G are full rank. Recall that C = {uG|u ∈ Fkq}. So, any codeword
of C is of the form uG. Since any k× k submatrix are full rank, that means any
codeword c = uG ∈ C has at most k− 1 zero coordinates. That is, d ≥ n− (k− 1),
i.e, d ≥ n− k+ 1. By Singleton Bound, d = n− k+ 1, i.e, C is MDS. Conversely,
suppose C is MDS. Then, d≥ n−k+ 1 so that with the Singleton bound, we have
an MDS code C. The fact d ≥ n− (k− 1) means, there can not be any codeword
with at least k zeros. Since any codeword is of the form uG, any k×k submatrix is
full rank, and thus any k columns of G are linearly independent, as desired.

Remark 4.2.10. This is a very powerful lemma since it removes the necessity to
mention the code. In addition to that, this lemma is basis-free, i.e, it works for any
basis which is super nice.
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Also, note that Lemma 4.2.9 is the correspondence between linear MDS codes and
arcs given in Note 2.0.18. By Lemma 4.2.9, any n columns of V are linearly
independent since CV is an MDS code of dimension n. We have the following
proposition.

Proposition 4.2.11. Let C be an Fq− [R = Nq(k,d),k,d] code. Let n,m ∈ N such
that d ≤ n,m < R and V ∈ Fn×Rq , W ∈ Fm×Rq are matrices such that CV and CW
are MDS codes of dimension n and m. Then, we have

n+m≥R+d =⇒ (C,V,W ) is an extremal triple.

Before the proof, observe that CV and CW being MDS codes of dimension n and m
implies that V and W are full-rank matrices since we have dim(CV ) = rank(V ) = n

and dim(CW ) = rank(W ) = m by the fact n,m < R in the hypothesis. It is good
to note that, if we do not have the hypothesis n,m < R, then we do not necessarily
have full rank matrices V and W . In that case, Lemma 4.2.5 will be used again.

Proof. Let c ∈ C − {0} such that wt(c) = d′ ≥ d. Note that since C has length
R, we have R ≥ d′. Suppose rank(V diag(c)W T ) = r. We want to show that
r ≥ d. Note that, rank(V diag(c)) ≤ min{n,d′}. Since CV is MDS, we have
rank(V diag(c)) = min{n,d′} by Lemma 4.2.9. Similarly, since CW is MDS, we
have rank(diag(c)W T ) = min{d′,m}. By Frobenius inequality 1.1.18, we get

rank(V diag(c)W T ) ≥ rank(V diag(c)) + rank(diag(c)W T )− rank(diag(c))

= min{n,d′}+ min{m,d′}−d′.

So, we have 4 cases to check.

• r ≥ n+m−d′ ≥R+d−d′ = (R−d′) +d≥ d.

• r ≥ n+d′−d′ = n≥ d by definition.

• r ≥ d′+m−d′ =m≥ d by definition.

• r ≥ d′+d′−d′ = d′ ≥ d.

See that r ≥ d in all of the cases. Thus, we are done.
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4.3 Construction of Extremal Triples using GRS Codes

In this subsection, construction of extremal triples using Generalized Reed Solomon
codes will be explained. We will also present a GAP code which can give extremal
triples for suitable parameters. Another nice thing is that it will actually be an
MTR code, as well.

Definition 4.3.1. For each k ∈ N, let Fq[x,y]k−1 denote the set of homogeneous
polynomials of degree k−1.

For any homogenous polynomial f(x,y) =∑k−1
i=0 fix

iyk−1−i ∈ Fq[x,y]k−1, define the
map f as

Fq ∪{∞} −→ Fq : p 7−→ f(p) =

 f(p,1) if p ∈ Fq,
f(1,0) if p=∞.

Let N ∈ N. For P = (p1, . . . ,pN ) ∈ (Fq ∪{∞})N , define the evaluation map

evP : Fq[x,y]k−1 −→FNq
f(x,y) 7−→(f(p1), . . . ,f(pN ))

Let 1≤ k≤N−1 and B = (b1, . . . , bN )∈FNq . Also, we suppose p1, . . . ,pN are pairwise
distinct in Fq ∪{∞}. We can now define what a generalized Reed-Solomon(GRS)
code is.

Definition 4.3.2. The Generalized Reed-Solomon code GRS(P,k,B) is the set

GRS(P,k,B) = {(b1f(p1), . . . , bNf(pN )) : f ∈ Fq[x,y]k−1}.

By using the evaluation map we define above, we can also represent the GRS code
by using componentwise multiplication, which we denote by ∗.

GRS(P,k,B) = {B ∗ evP (f) : f ∈ Fq[x,y]k−1}.

Theorem 4.3.3. Let 0< d< k <R positive integers such that R= k+d−1. Let the
vector P = (p1, . . . ,pR) ∈ (Fq∪{∞})R such that p′is are pairwise distinct. Let g(x,y)
be an irreducible polynomial in Fq[x,y]k . Define C = GRS(P,k,1). Let V ∈ Fk×Rq

be a parity-check matrix of GRS(P,R−k,evP (g)) and let W ∈ Fd×Rq be a generator
matrix of GRS(P,d,1). Then, (C,V,W ) is an extremal triple.

Here we stated the big theorem of this subsection. However, we will prove it at the
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end after giving a detailed example to see how it works. Now, we will give a detailed
analysis of the example provided in [23].

Example 4.3.4. Let q= 8, R= 7, k= 5 and d=R−k+1 = 3. Let p be the generator
of F∗8 and let P = (1,p, . . . ,p6). Consider g(x) = x5 +x2 +1 an irreducible polynomial
in F8[x]. By Theorem 4.3.3, the code C is the Fq− [7,5,3] code GRS(P,5,1). After
considering F8 = F2[p]/(p3 +p+ 1), we can find the evaluation as

evP (g) = (1,p,p2,p4,p4,p2,p).

Note that R−k = 2. Then, we have

GRS(P,2,evP (g)) = {(f(1),pf(p),p2f(p2),p4f(p3),p4f(p4),p2f(p5),pf(p6)) : f ∈ Fq[x,y]1}.
Since f is of degree 1, f is either x or y. So, consider

f1 = x and f2 = y.

For f1, we get the vector (1,p2,p4,1,p,1,1). For f2, using the definition we have
f2(P ) = f2(P,1) = 1. So, we get (1,p,p2,p4,p4,p2,p). Then, the generator matrix for
the code is the following 1 p p2 p4 p4 p2 p

1 p2 p4 1 p 1 1

 .
Note that, to apply the theorem, we need to find the parity check matrix of this code.
To do so, we will transform the generator matrix into the standard form

(
I | M

)
.

Then, the parity check matrix V equals to
(
−MT | I

)
. We have

1 p p2 p4 p4 p2 p

1 p2 p4 1 p 1 1

−→
1 0 p3 p p3 p5 p3

0 1 p4 p p5 p2 p6

 .
Then, V becomes

V =



p3 p4 1 0 0 0 0
p p 0 1 0 0 0
p3 p5 0 0 1 0 0
p5 p2 0 0 0 1 0
p3 p6 0 0 0 0 1


.

Now, we need to find the generator matrix W of GRS(P,3,1). Note that

GRS(P,3,1) = {(f(1),f(p),f(p2),f(p3),f(p4),f(p5),f(p6)) : f ∈ Fq[x,y]2}.
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Since f is of degree 2, we could have f1 = x2, f2 = xy and f3 = y2. First of all, for
f3 we have (1,1,1,1,1,1,1). For f2 we have (1,p,p2,p3,p4,p5,p6). Similarly, for f1

we get (1,p2,p4,p6,p,p3,p5). Thus, the generator matrix is

W =


1 1 1 1 1 1 1
1 p p2 p3 p4 p5 p6

1 p2 p4 p6 p p3 p5

 .

Thus, by the Theorem 4.3.3, we conclude that (C,V,W ) is an extremal triple.

So, we get an extremal triple. That means, φV,W (C) is a tensor rank extremal code
with trk(φV,W (C)) = 7. Let us find a basis for this code. Note that

C =GRS(P,5,1) = {(f(1),f(p),f(p2),f(p3),f(p4),f(p5),f(p6)) : f ∈ Fq[x,y]4}.

Thus, we need to consider

f1 = x4, f2 = x3y, f3 = x2y2, f4 = xy3, f5 = y4.

We get the codewords (1,p4,p,p5,p2,p6,p3), (1,p3,p6,p2,p5,p,p4),
(1,p2,p4,p6,p,p3,p5), (1,p,p2,p3,p4,p5,p6), and (1,1,1,1,1,1,1). Let us denote
them by c1, c2, c3, c4, c5 respectively. Recall that we would like to find the basis
elements of the F8− [5×3,5,3] code φV,W (C) with tensor rank of it equals to 7. If
the basis is B = {b1, b2, b3, b4, b5}, then we can find those basis elements by

bi = V diag(ci)W T for 1≤ i≤ 5.

After the computations, we get

B =





p3 p2 p5

p p6 p6

p3 p6 p4

p5 0 1
p3 1 p4


,



p5 p3 p2

0 p p6

p4 p3 p6

p p5 0
1 p3 1


,



0 p5 p3

p2 0 p

0 p4 p3

p p p5

p4 1 p3


,



0 0 p5

p6 p2 0
0 0 p4

p3 p p

p5 p4 1


,



p2 0 0
1 p6 p2

p6 0 0
p p3 p

p5 p5 p4


.

We know that tensor rank equals to 7. Thus, for a generator tensor X of the code,
we can represent it as

X =
7∑
r=1

ur⊗vr⊗wr

where vr and wr are the r− th columns of the matrices V and W. Remember that,
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we can define Ar = vr⊗wr such that the set

A= {A1,A2,A3,A4,A5,A6,A7}

is an R-basis for the code φV,W (C). Now, we will find that R-basis as well. Since in
this case we know the exact tensor rank, we can say that

cs1(X) = 〈A〉

by the equivalence given Theorem 3.2.5. Applying Ar = vr⊗wr, we get

〈A〉=





p3 p3 p3

p p p

p3 p3 p3

p5 p5 p5

p3 p3 p3


,



p4 p5 p6

p p2 p3

p5 p6 1
p2 p3 p4

p6 1 p


,



1 p2 p4

0 0 0
0 0 0
0 0 0
0 0 0


,



0 0 0
1 p3 p6

0 0 0
0 0 0
0 0 0


,



0 0 0
0 0 0
1 p4 p

0 0 0
0 0 0


,



0 0 0
0 0 0
0 0 0
1 p5 p3

0 0 0


,



0 0 0
0 0 0
0 0 0
0 0 0
1 p6 p5


.

Remark 4.3.5. Let us summarize here the importance of the above example. We
found that (C,V,W ) is an extremal triple. That means φV,W (C) is an tensor rank
extremal code. So, we get a solution to Question 4.2.1. Note that φV,W (C) is an
F8 − [5× 3,5,3] code with tensor rank equals to 7. Observe that 7 = 5 + 3− 1.
That means, φV,W (C) is an MTR code, as well. By Corollary 4.1.9, we have
φ−1
V,W (φV,W (C)) = C is an MDS code. Therefore, we get an answer for Question

4.2.3, too. Additionally, this is another way to see that the GRS codes are MDS when
they are of the form GRS(P,k,1). In general, GRS(P,k,B) is MDS if B ∈ (F∗q)N .

We present an GAP algorithm to find MTR codes given the condition that
0 < d < k < R such that R = k+ d− 1. The reason we are not given the pseudo
code is that it is basically given in the statement of Theorem 4.3.3. The
algorithm will take R and k as inputs. Then by using R = k + d − 1, we
will know d. Similarly, we will also take q as an input to clarify the field we
are working on. Lastly, an irreducible polynomial on GF (q) will be taken as
an input. Note that it is beneficial to add an irreducibility check function
inside the code just to be sure. We will consider x as our indeterminate over
the field. We used the GUAVA package [3] to write the following algorithm.
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Algorithm 1: MTR(R,q,k,g)
Result: This algorithm will create an Fq− [k×d,k,d] MTR code.
K := GF(q), z := Z(q), F := PolynomialRing(K,"x");
P := List([0..(R-1)],i→ zi);
eval := List(P,i→ V alue(g, i));
B := List([1..R], i→ 1);
C := GeneralizedReedSolomonCode(P,k,F,B);
V := CheckMat(GeneralizedReedSolomonCode(P,R-k,F,eval));
W := GeneratorMat(GeneralizedReedSolomonCode(P,R-k+1,F,B));
Phi := [ ];
for c in C do

Add(Phi, V*DiagonalMat(c)*TransposedMat(W));
end
return Phi

It is of very good use to create a record and return it instead of returning the
elements of the code since we would like to see the the general characteristics of the
code. However, we leave it like this so that it can be called inside other functions.
We will get Example 4.3.4 if we use

MTR(7,8,5,x5 +x2 + 1).

Remark 4.3.6. Note that in GAP, Z(q) returns a generator of F∗q. The parameters
P , eval, B are exactly the same as they defined in this subsection.

Last but not least, we are going to prove Theorem 4.3.3 to end this section.

Proof of Theorem 4.3.3. We will use Theorem 4.2.8 and show that

∀c ∈ C−{0}, dim(CWc ∩C⊥V )≤ dim(CWc)−d.

W is a generator matrix of GRS(P,d,1). So, we have

CW =GRS(P,d,1) and CWc =GRS(P,d,c).

Thus, dim(CWc) = d. So, we reduced our goal to showing dim(CWc ∩C⊥V ) = 0.
That means, we want to show that

CWc ∩C⊥V = {0}.
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Recall that C = GRS(P,k,1) = {1 ∗ evP (g) | g ∈ Fq[x,y]k−1}. Thus, any nonzero
codeword c is of the form c = evP (g) for some nonzero g(x,y) ∈ Fq[x,y]k−1. Thus,
we have CWc = GRS(P,d,evP (g)). Now, let b ∈ C⊥V ∩CWc . We want to show that
b= 0. Since V is a parity check matrix of GRS(P,R−k,evP (f)), this means

C⊥V =GRS(P,R−k,evP (f)).

Note that we have

CWc = {evP (g)∗ evP (h) | h ∈ Fq[x,y]d−1},

C⊥V = {evP (f)∗ evP (s) | s ∈ Fq[x,y]R−k−1}.

Since b lies on both of them, we get the equation

b= evP (f)∗ evP (s) = evP (g)∗ evP (h).

This means, bi = f(pi)s(pi) = g(pi)h(pi) for i ∈ [R]. Keep in mind that deg(f) = k,
deg(g) = k−1, deg(h) = d−1, and deg(s) =R−k−1. Then,

deg(fs) =R−1<R and deg(gh) =R−2<R.

So, we have two polynomials of degree strictly less than R and they agree on R

inputs. In one variable polynomails this means they are equal. However, here we
have polynomials in Fq[x,y]. Remember our way of evaluation

Fq ∪{∞} −→ Fq : p 7−→ f(p) =

 f(p,1) if p ∈ Fq,
f(1,0) if p=∞.

So, we are actually computing in one variable, and thus fs= gh. Since Fq[x,y] is a
unique factorization domain, f is being irreducible implies that f is prime. That is,

f |g or f |h.

Note that deg(g) = k− 1 < k = deg(f) and deg(h) = d < k = deg(f) because of the
assumption d < k. That means, h = 0 since g is nonzero by assumption. Then, we
get b= 0, as desired.
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5. CONNECTION TO COMPLEXITY THEORY

In this section, we will mention some complexity results and look into the theory of
tensors more closely. Throughout this chapter, we will follow the book [2].

5.1 Basics of Complexity Theory

Definition 5.1.1. Algebraic complexity theory is the study of understanding the
required computational power to solve algorithmic problems using algebraic tools and
models.

The aim is to find the best possible model and to prove its optimality. Let us give
a simple example to understand this concept.

Example 5.1.2. Suppose we are only allowed to do multiplication. Consider a ring
R, a positive natural number n. We want to compute rn given any r ∈R.

The input r can be modeled by an indeterminate X since it is not known. We
transform the question into computing Xn given X. Some notation is required here.
We say that X is the 0th intermediate result, X2 is the 1st intermediate result, and
so on. We understand the computation is over when Xn is one of the intermediate
results. The model we are going to use for this example is “Multiplication Chain of
Length r for n”. Consider a sequence (a0 = X,. . . ,ar = Xn) such that ak = ai×aj
for some 0≤ i, j ≤ k. Define

u(n) = minimum number of multiplications needed to compute Xn.

Then, we have u(n) = shortest length of an multiplication chain for n. An obvious
upper bound is u(n)≤ n−1 since we can just consider the sequence (X,X2, . . . ,Xn).
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However, it can be done much faster. Consider

X13 =X · (((X ·X2)2)2).

Definition 5.1.3. w2(n) is the Hamming weight of the binary expansion of n.

Suppose n is odd. Then, n = 2m+ 1 for some integer m. To compute Xn, we first
compute Xn−1 and then multiply it with X. So, u(2m+ 1)≤ u(2m) + 1. Similarly,
if n is even, then n = 2m. We first compute Xm and then take its square. So,
u(2m)≤ u(m) + 1.

Lemma 5.1.4. w2(2m+ 1) = w2(2m) + 1 and w2(2m) = w2(m).

Proof. Let m = (−−−A−−−)2. Then, we have 2m = (−−−A−−− 0)2, and
2m+1 = (−−−A−−−1)2 where ()2 represents the binary number system. It can
be easily seen that the result follows.

Example 5.1.5. 10 = (1010)2, 20 = (10100)2 and 21 = (10101)2.

Theorem 5.1.6. u(n)≤ blog(n)c+w2(n)−1.

Proof. We will induct on n. Let n = 2. u(2) = 1 ≤ 1 + 1− 1 = blog(2)c+w2(2)− 1.
Assume u(2m) ≤ blog(2m)c+w2(2m)− 1. Then, u(2m) + 1 ≤ blog(2m)c+w2(2m).
We want to show that

u(2m+ 1)≤ blog(2m+ 1)c+w2(2m+ 1)−1 = blog(2m+ 1)c+w2(2m),

where the last equality follows from the above lemma. As we explained above
u(2m+ 1)≤ u(2m) + 1. Using this, we conclude the proof as

u(2m+ 1)< u(2m) + 1≤ blog(2m)c+w2(2m)≤ blog(2m+ 1)c+w2(2m).

Example 5.1.7. Let n= 100. Then, 100 = (1100100)2 and thus w2(100) = 3. Also,
note that blog(100)c = 6. So, u(100) ≤ 8. The trivial upper bound we mentioned
before gives u(100)≤ 100−1 = 99. Thus, this is much better.

Now, let us try to put a lower bound. Observe that the 0th intermediate result
have degree 1. Maximum of the degrees obtained can be at most doubled in each
step. That is, h-th intermediate step can have degree at most 2h. So, if we want
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to compute Xn from X, then n is at most 2h. So, dlog(n)e ≤ u(n). We combine our
bounds in the following theorem.

Theorem 5.1.8. dlog(n)e ≤ u(n)≤ blog(n)c+w2(n)−1.

Putting nontrivial bounds is one of the main study areas of algebraic complexity
theory. The example above shows such a process. Now, suppose allowing division
as well as multiplication between intermediate results. Let l(n) denotes minimum
number of operations. Clearly l(n)≤ u(n). Note that, we also have dlog(n)e ≤ l(n).

Example 5.1.9. Show that l(31) = 6< 7 = u(31).

We will start with u(31). Recall that we are only allowed to do multiplication using
intermediate results. X → X2 → X4 → X8 → X16 → X24 → X28 → X30 → X31.
This process takes 8 steps. We need a better approach. Consider the following
two steps first : X → X2 and X ·X2 → X3. So, we are left with 5 more steps.
Consider X3→ X6→ X12→ X24→ X30→ X31, as desired. So, u(31) ≤ 7. Note
that dlog(n)e ≤ u(n), l(n). So, 5≤ l(31) and 5≤ u(31)≤ 7. Let us try to calculate
l(31). Consider X → X2→ X4→ X8→ X16→ X32→ X31 where in the last step
we use division as it is allowed for l(n). Thus, 5≤ l(n)≤ 6. If we show that l(31) 6= 5
then it will imply that u(31) 6= 5. Thus, we are left to show

• l(31) 6= 5

• u(31) 6= 6

X→X2 is a forced move. Then, even we square in every step, in the fifth move we
will arrive at X32. So, l(31) 6= 5. Since we can not divide when calculating u(n), the
move X32→X31 is not possible. Using X3 requires 7 step as we explained above.
Therefore, u(31) = 6 is not possible, as desired.

Remark 5.1.10. In the previous example, we see that computing Xn from
X only makes sense when the algebraic operations admitted for an algorithmic
solution and the cost of each operation have been agreed. The complexity of a problem
depends on these agreements and in particular on the selected cost function.

The following is known as the Scholz-Brauer conjecture.

Open Problem 5.1.11. Prove or disprove that given a positive integer n, we have
u(2n−1)≤ n−1 +u(n).

Now, we need to explain a little bit about the straight-line programming to build
up our argument. We will do this by an example. Let λ ∈ F. We denote λc as the
operation of taking the constant λ. Denote the entity of all these operations by Fc.
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Here, c denotes the cost function

c : σ→ N

where σ = F∪Fc∪{·,/,+,−}. Note that c(λc) = 0, i.e., we can use constants freely.

Example 5.1.12. Suppose we want to compute X9−1
X−1 . We first compute X9 as

follows. Let X0 :=X. Then, define X1 :=X0 ·X0, X2 :=X1 ·X1, X3 :=X2 ·X2, and
X4 := X0 ·X3. Now, we need to substract 1. This can be done by using two steps.
Let X5 := 1. Then, we can define X6 :=X4−X5 and X7 :=X0−X5. Now, we can
divide and get X8 := X6

X7
. We can create a straight-line programming S = (S1, . . . ,S8)

such that each Si gives us an instruction as follows: S1 = (·;0,0), S2 = (·;1,1),
S3 = (·;2,2), S4 = (·;0,3), S5 = (1c), S6 = (−;4,5), S7 = (−;0,5) and S8 = (/;6,7).
Any straight-line programming can be represented by a directed acyclic multigraph.
For this example, we have

0 3

5

6

4

1 2

7

8

The length of the longest directed path in this graph is called the depth DS of the
straight-line program S. In this example, we have DS = 6.

Definition 5.1.13. Let oi denote the operation symbol used in Si. Then, define the
c-length of the program S as

cl(S) =
∑
i

c(oi).

Now, we can precisely define what does complexity mean with the help of the follow-
ing definition of an algebra. We will also talk about algebras in Section 6, specifically
semifields, and show a very beautiful connection with MRD codes.

Definition 5.1.14. An algebra is a vector space U over a field F with an additional
binary operation · called multiplication such that given x,y,z ∈ U and a,b ∈ F, the
following holds

(x+y) · z = x · z+y · z, z · (x+y) = z ·x+ z ·y, (ax) · (by) = (ab)(x ·y)
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Note 5.1.15. The 3 properties in the above definition can also be seen as the
existence of an F−bilinear map f :U×U→U which satisfies f(ax,by) = (ab)f(x,y),
f(x+y,z) = f(x,z) +f(y,z), and f(z,x+y) = f(z,x) +f(z,y).

Definition 5.1.16. Let A be an F-algebra. The complexity LcA(G|I) ∈ N∪{∞} of
the finite subset G ⊆ A with respect to the input set I ⊆ A is the minimal c-length
of a straight line programming which computes G. If what we mean by LcA(G|I) is
clear from the context, then we just denote it as LA(G), or even simpler L(G).

Remark 5.1.17. In the above example, A is F[X], G = X9−1
X−1 and I = {X}.

Assuming that all the operations have cost 1, we get L(G) = 7 since c(1c) = 0.

We will finish with a very useful theorem.

Theorem 5.1.18. Let |F| ≥ n+1. Then the product of two polynomials a and b in
an F-algebra A[X] with n= deg(ab) can be computed with n+1 nonscalar operations.
This is true if |F|= n provided that deg(ab) = deg(a) +deg(b).

Proof. Let a and b have degree α and β. Since |F| ≥ n+ 1, take n+ 1 distinct
elements p0, . . . ,pn in F. Assuming c= ab, for all 0≤ r ≤ n, we have

n∑
k=0

ckp
k
r = (

α∑
i=0

aip
i
r)(

β∑
j=0

bjp
j
r) = ur ·vr = gr

where ur is the evaluation of polynomial a at the point pr, and vr is the evaluation of
b at the point pr. As both ur and vr are linear combinations of the input coefficients,
the computation of ur and vr are free of charge in the nonscalar model, i.e., in a
model such that addition, substraction and scalar multiplication has no cost. Thus,
each gr can be computed with cost 1, which is coming from the multiplication ur ·vr.
Hence, g0, . . . ,gn can be computed with n+ 1 operations. Now, note that

(g0 . . .gn)T = (pkr ) · (c0 . . . cn)T .

Since pr’s are pairwise distinct, the Vandermonde matrix (pkr ) of size (n+1)×(n+1)
is invertable. Hence, each of ck is a linear combination of g0, . . . ,gn, and thus can
be computed with no additional nonscalar cost.

Lastly, note that we can also represent Theorem 5.1.18 by

LF (Cf(ab) | Cf(a)∪Cf(b)) = n+ 1

where Cf(a) is the set of coefficients of the polynomial a.
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5.2 Encoding Complexity of Rank-Metric Codes

Now, we have the necessary background to talk about the encoding complexity of
rank-metric codes. Consider an Fq− [n×m,k,d] code C. Let X =∑R

r=1ur⊗vr⊗wr
be its generating tensor. Given a vector a ∈ Fkq , we encode it as

m1(a,X) =
R∑
r=1

(a ·ur)vr⊗wr.

In Remark 4.1.4, it is shown that m1(a,X) = V diag(aU)W T . Recall that a matrix
M is said to be in standard form if M = [I|M ′] for some other matrix M ′ of suitable
size. Similarly, we can define the concept of standard form for generator tensors.

Definition 5.2.1. Consider X as in Definition 3.0.7. We say that X is in standard
form if the matrices U , V , and W are all in standard form where ur,vr and wr are
columns of U ∈ Fk×R, V ∈ Fn×R, and W ∈ Fm×R respectively.

Thus, X has storage complexity kR+ nR+mR = R(k+ n+m) for the general
case and n(R−n) +m(R−m) + k(R− k) = R(k+n+m)− (n2 +m2 + k2) if it is
in standard form. We noted before that any element of the code is of the form
m1(a,X) for some vector a ∈ Fkq . So, to represent a codeword, we just need to
compute aU since we already know V and W. See that computing aU requires
k multiplication for each column and (k− 1) addition per column, and thus in
total of kR multiplications and (k− 1)R additions. So, the encoding complexity
becomes 2kR−R. If U is in standard form, then the encoding complexity becomes
k(R− k) + (k− 1)(R− k) = 2kR−R− (k2− k). Secondly, we can use generator
matrix to handle the encoding. Since elements of C are matrices of size n×m, we
first see them as vectors of length nm as we did before. Then, the generator matrix
G is of size k×nm and we encode as a→ aG. Clearly, the storage complexity is
knm for the general case and k(nm− k) if G is in standard form. Now, consider
evaluating the multiplication aG. We need to do k multiplication for each column
and (k− 1) additions per column to decide on the final entry. So, the encoding
complexity is knm+ (k− 1)nm = 2knm−nm. If G is in standard form, then the
encoding complexity becomes k(nm−k)+(k−1)(nm−k) = 2knm−nm−(2k2−k).
We summarize what we wrote above in the following table. In the following table,
GM is short for generator matrix and GMS is short for generator matrix in standard
form. Similarly, GT and GTS is used. Since R ≤ nm, it might seem that using
generator tensors will always give lower complexity. Although this is true most of
the time, it is not always true as we will show in the next example.
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Table 5.1 Complexity

GM GMS GT GTS
STORAGE knm k(nm−k) R(k+n+m) R(k+n+m)− (n2 +m2 +k2)
ENCODING 2knm−nm 2knm−nm− (2k2−k) 2kR−R 2kR−R− (k2−k)

Example 5.2.2. X = e1⊗ e1⊗ e1 + e1⊗ e2⊗ e2 + e2⊗ e3⊗ e1 + e2⊗ e4⊗ e2 + e3⊗
e1⊗ e3 + e3⊗ e2⊗ e4 + e4⊗ e3⊗ e3 + e4⊗ e4⊗ e4 ∈ F4⊗F 4⊗F 4. In Theorem 5.4.5,
we will prove that trk(X) = 7. Thus, we have R = 7 and k = n = m = 4. Assuming
X as the generator tensor, the first contraction space is the code C by definition.
Thus, we can also form the generator matrix as explained above.

G=


1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

 .

Using the proof of Theorem 5.4.5, we can form the matrices U , V and W .

U=


1 0 1 0 1 −1 0
0 1 0 0 0 1 0
0 0 0 0 1 0 1
1 1 0 1 0 0 −1

, V=


1 1 0 −1 0 1 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
1 0 −1 0 1 0 1

,W=


1 0 0 1 −1 0 1
0 1 0 0 0 0 0
0 0 1 1 1 0 0
1 −1 1 0 0 1 0

.

Calculations explained before give us lower complexity when encoding via G.

Remark 5.2.3. In practice, we need to find a way to choose between these two
approaches. Suppose that X and G are in standard form. Just a small calculation
shows that using generator tensors is preferable if and only if R< knm+n2+m2

k+n+m . This
inequality comes from comparing the storage complexities found in the Table 5.1
as R(k+n+m)− (n2 +m2 + k2) < k(nm− k). If we apply the same idea for the
encoding complexities, it can be seen that we need R < 2knm−nm−k2

2k−1 .
Thus, we can guarantee that complexity of the generator tensor in standard
form is lower if R < min{knm+n2+m2

k+n+m , 2knm−nm−k2

2k−1 }. Similar calculation gives a
formula when they are not in standard form as R < min{ knm

k+n+m ,
2knm−nm

2k−1 }. By
combining these 2 formulas, checking the following will guarantee lower complexity
if the generator tensor approach is used:

R <min{ knm

k+n+m
,
2knm−nm−k2

2k−1 }.

See that in the above example 7 is not less than min{64
12 ,

96
7 }, comfirming the result.
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5.3 Tensorial Notation for Complexity

In this subsection, we will give a tensorial approach to complexity theory and see
some more correspondences with our main topic. In Definition 3.0.1, we defined pure
tensors and noted that a general element T in our tensor space T can be written as
sums of pure tensors. Thus, T is of the form

T =
∑

i1,...,im

ti1...im(e1i1⊗ . . .⊗ emim).

Example 5.3.1. Consider m= 2. Then, T ∈ U⊗V for vector spaces U and V . Let
{ui} and {vj} be bases for U and V respectively. Then, a general element of U ⊗V
is of the form T =∑

i,j tij(ui⊗vj). Consider the following tensor:

T = 2u1⊗v2−u2⊗v1 +u2⊗v2 + 3u3⊗v3.

Then, t12 = 2, t21 = −1, t22 = 1, and t33 = 3. We can see this as a matrix of size
3×3 as

AT =


0 2 0
−1 1 0
0 0 3

 .
Naturally, we can consider a linear map LT : U → V such that

LT (u) = LT (
∑
i

xiui) =
∑
i

xiLT (ui) =
∑
i

xi
∑
j

tijvj .

In our example, we have

LT (u) = LT (a b c) = (a b c)AT = (−b 2a+ b 3c).

The following note is clear from the previous example.

Note 5.3.2. Linear maps corresponds to 2-fold tensors.

We will provide an alternative way to define the linear map corresponding to the
tensor T. We will use the dual vector space.

Definition 5.3.3. The dual of the vector space U is the set of all linear functionals
on U . That is,

UD = {uD : U → F}.
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Choose a basis {uDi }. Then we have

uDi (uj) =

 1 , if i= j

0 , if i 6= j

Now define LT : UD→ V such that LT (uDk ) =∑
j tkjvj . Using the definition above,

we have tkj =∑
i tiju

D
k (ui). Thus, we get

LT (uDk ) =
∑
i,j

tiju
D
k (ui)vj .

The following theorem also shows the correspondence between 2-fold tensors and
homomorphisms from UD to V . In the following theorem, choose A = UD and
B = V. Then, we have U ⊗V ∼= Hom(UD,V ), as desired.

Theorem 5.3.4. Given two vector spaces A and B, we have AD⊗B ∼=Hom(A,B).

Proof. Let uD ∈ UD and a ∈ U . Define f : UD⊗V −→ Hom(U,V ) with the rule
f(uD⊗ v)(a) = uD(a)v. Suppose {ei} is a basis of U and {eDi } is a basis for UD.
Define

g :Hom(U,V )−→ UD⊗V : H→
∑
i

eDi ⊗H(ei)

where H : U → V . We claim that f and g are inverses. Consider

f(g(H))(a) =
∑
i

eDi (a)H(ei) =H(
∑
i

eDi (a)ei) =H(a).

Similarly,

g(f(uD⊗V )) =
∑
i

eDi ⊗f(uD⊗v)ei =
∑
i

eDi ⊗uD(ei)v =
∑
i

uD(ei)eDi ⊗v = uD⊗v.

The linearity of f and g can be easily checked. So, we have two linear maps that
are inverses of each other. That means, we have the desired isomorphism.

Let us apply this new approach to the same example.

T = 2u1⊗v2−u2⊗v1 +u2⊗v2 + 3u3⊗v3.

Suppose f : U ⊗ V → Hom(UD,V ) is the isomorphism. We denote the image of
T ∈ U ⊗V under f by T f . So, we have
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T f (uD1 ) = (2u1⊗v2)f (uD1 )− (u2⊗v1)f (uD1 ) + (u2⊗v2)f (uD1 ) + (3u3⊗v3)f (uD1 )

= (uD1 )(2u1)v2− (uD1 )(u2)v1 + (uD1 )(u2)v2 + (uD1 )(3u3)v3

= 2v2 =
∑
j

t1jvj .

So, t12 = 2.

T f (uD2 ) = (2u1⊗v2)f (uD2 )− (u2⊗v1)f (uD2 ) + (u2⊗v2)f (uD2 ) + (3u3⊗v3)f (uD2 )

= (uD2 )(2u1)v2− (uD2 )(u2)v1 + (uD2 )(u2)v2 + (uD2 )(3u3)v3

= −v1 +v2 =
∑
j

t2jvj .

So, t21 =−1 and t22 = 1.

T f (uD3 ) = (2u1⊗v2)f (uD3 )− (u2⊗v1)f (uD3 ) + (u2⊗v2)f (uD3 ) + (3u3⊗v3)f (uD3 )

= (uD3 )(2u1)v2− (uD3 )(u2)v1 + (uD3 )(u2)v2 + (uD3 )(3u3)v3

= 3v3 =
∑
j

t3jvj .

Lastly, we have t33 = 3, as we found before.

Remark 5.3.5. We started by showing the relation between 2-fold tensors and
matrices. Using that, we found an alternative way to represent the space of
2-fold tensors by Hom(UD,V ). Now, we will extend it to create a relation for
3-fold tensors.

U ⊗V ∼= Hom(UD,V )

↓ extend

U ⊗V ⊗W ∼= Bil(UD×V D,W ).

Then, we will have (u ⊗ v ⊗ w)f (uD,vD) = uD(u)vD(v)w supposing that the
isomorphism is given by f . So, a pure tensor T = u⊗v⊗w defines a bilinear map

T : UD×V D→W : (uD,vD) 7−→ uD(u)vD(v)w.

Thus, we get a new correspondence, that is, bilinear maps corresponds to 3-fold
tensors. Observing that (v1, . . . ,vm) 7−→ v1⊗ . . .⊗vm is multilinear, we can conclude
that multilinear maps corrensponds to m-fold tensors.
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Example 5.3.6. Consider an algebra A. Given our Definition 5.1.14, A is a vector
space U with a multiplication φ : U×U → U . A corresponds to a 3-fold tensor TA in
UD⊗UD⊗U such that T fA = φ. Let us give a precise correspondence to understand
what is going on here. If TA =∑r

i=1u
D
i ⊗vDi ⊗wi, then φ(u,v) =∑r

i=1u
D
i (u)vDi (v)wi.

What is so special about TA is that the tensor rank of the algebra A corresponds to
the rank of TA. Recall that tensor rank of T ∈ T is the minimum positive integer R
such that there exists a decomposition of T into R pure tensors. Similarly, rank of a
subspace U of T is the minimal number of pure tensors needed to span a subspace
containing U . Thus, tensor rank of an algebra gives a measure of complexity of
multiplication. We can also see this by following a very similar approach as follows.
We call a map φ : V →W quadratic if there exists bases {vi}i≤n and {wj}j≤p of V
and W respectively, and quadratic forms g1, . . . ,gp ∈ F[x1, . . . ,xn] such that

φ(
n∑
i=1

bivi) =
p∑
j=1

gj(b)wj for all b= (b1, . . . , bn) ∈ Fn.

Definition 5.3.7. The quadratic forms g1, . . . ,gp are called coordinate functions of
φ with respect to bases {vi} and {wj}.

Let uD1 , . . . ,uDr ,vD1 , . . . ,vDr ∈ V D and w1, . . . ,wr ∈W such that for all v ∈ V we have

φ(v) =
r∑
i=1

uDi (v)vDi (v)wi.

Then, (uD1 ,vD1 ,w1; . . . ;uDr ,vDr ,wr) is called a quadratic computation algorithm for φ
of length r.

Definition 5.3.8. We have L(φ) = LF[X1,...,Xn]({g1, . . . ,gp}). This is called the
multiplicative complexity of φ. It is equivalent to the shortest quadratic
computation algorithm for φ.

Similarly, we can define the bilinear complexity by making the quadratic map into
a bilinear map. That is, we have φ : U ×V →W such that

φ(u,v) =
r∑
i=1

uDi (v)vDi (v)wi

where uDi ∈ UD, vDi ∈ V D and wi ∈W.

Definition 5.3.9. (uD1 ,vD1 ,w1; . . . ;uDr ,vDr ,wr) is called a bilinear computation for φ
of length r. The length of a shortest bilinear computation for φ is called the bilinear
complexity, or the most common name for it, the rank of φ. It is denoted by Rk(φ).
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So, we finally arrived at the concept of rank. The big theorem combining the relation
between multiplicative complexity and the rank is the following.

Theorem 5.3.10. L(φ)≤Rk(φ)≤ 2L(φ).

Proof. By definition, L(φ)≤Rk(φ). To see the other inequality, consider the bilinear
map φ :U×V −→W . Denote L(φ) =L. Let ai, bi ∈ (U×V )D and wi ∈W. So, given
(u,v) ∈ U ×V , using the definition of bilinearity, we have the following

φ(u,v) =
L∑
i=1

ai(u,v)bi(u,v)wi

=
L∑
i=1

(ai(u,0) +ai(0,v))(bi(u,0) + bi(0,v))wi

=
L∑
i=1

ai(u,0)bi(0,v)wi+
L∑
i=1

bi(u,0)ai(0,v))wi.

where in the last equality we used the fact that ∑L
i=1ai(u,0)bi(u,0)wi = 0 and∑L

i=1ai(0,v)bi(0,v))wi = 0. So, we get the upper bound 2L, as desired.

The following example shows one of the advantages of using rank instead of the
multiplicative complexity.

Example 5.3.11 (Remark 14.22 in [2]). Consider a permutation π ∈ S3. It induces
an isomorphism

U1⊗U2⊗U3→ Uπ−1(1)⊗Uπ−1(2)⊗Uπ−1(3)

that send tensor T to πT . Rk(T ) =Rk(πT ), however L(π) 6= L(πT ).

Given bilinear maps φ : U ×V →W and φ′ : U ′×V ′→W ′, consider

φ ⊕ φ′ : (U⊕U ′)× (V ⊕V ′)→W ⊕W ′ and φ ⊗ φ′ : (U⊗U ′)× (V ⊗V ′)→W ⊗W ′

that send (u⊕u′,v⊕v′) to φ(u,v)⊕φ(u′,v′) and φ(u,v)⊗φ(u′,v′).

Theorem 5.3.12 (Prop 14.23 in [2]). Let φ1 and φ2 be two bilinear maps.

• Rk(φ1 ⊕ φ2)≤Rk(φ1) +Rk(φ2).

• Rk(φ1⊗φ2)≤Rk(φ1)Rk(φ2).
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One of the other advantages of rank comparing to the complexity is that, we do not
know if L(φ1⊗φ2) ≤ L(φ1)L(φ2) or not. Additivity conjecture states the rank of
the direct sum is equal to the sum of the ranks. However, common belief is that the
conjecture is wrong. So, the following open problem is natural.

Open Problem 5.3.13. Find an example with Rk(φ1 ⊕ φ2)<Rk(φ1) +Rk(φ2).

We can do some comments on the rank of the polynomial multiplication which will
give us a great theory on tensor rank. Let k be a field. Consider the bilinear map

φm,nk : k[X]<m×k[X]<n→ k[X]<m+n−1.

Theorem 5.3.14. R(φm,nk )≥m+n−1. We have equality if |k| ≥m+n−2.

See that the equality is just the special case of Theorem 5.1.18 by putting the degrees
m−1 and n−1. Since bilinear maps corresponds to 3-tensor, the bilinear map φm,nk

can be denoted by a tensor Tm,n,k ∈ Fm×n×kq . Thus, we get the following theorem.

Theorem 5.3.15. trk(Tm,n,k)≥m+n−1. We have equality if q ≥m+n−2.

Let us denote φn,nk by φnq when k = Fq. From the above theorem, R(φn,nk )≥ 2n−1.
We will give some known results and open problems here.

Theorem 5.3.16 ([10]). R(φnq )≥max{Nq(r,2n− r) | n≤ r < 2n}.

Theorem 5.3.17 ([2]). Let r = φnq . Then, for any 1 ≤ x ≤ n, there exists and
[r−n+x,x,n]q code.

Open Problem 5.3.18. Determine R(Fqn) for any given q and n.

Open Problem 5.3.19. Determine R(φm,nk ) for all m,n and finite field k.

Open Problem 5.3.20. Determine for which values of q and n, the rank Rk(Fn×nq )
is minimal.

Consider a bilinear map φ : U × V → W. The following definition is the
correspondence of Definition 3.0.3.

Definition 5.3.21. φ is 1-concise if {u ∈ U | φ(u,V ) = 0}= {0}.

As we noted, φ gives us a 3-tensor T. If T =∑R
i=r ur⊗ vr⊗wr ∈ U ⊗V ⊗W and T

is 1-concise, then we have < u1, . . . ,uR >= U. Thus, Rk(T ) ≥ dim(U). This is very
crucial since it help us characterize n-dimensional F-algebras of rank n.

Theorem 5.3.22 (Proposition 14.39 in [2]). Let A be an n-dimensional F-algebra.
Then Rk(A) = n if and only if A∼= Fn.
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Example 5.3.23. Consider the R-algebra C. Note that C is 2-dimensional over
R with the basis {1, i}. We need to define a bilinear map. We multiply two
complex numbers as (x+ yi)(c+ di) = (xc− dy) + i(xd+ yc). By Definition 5.1.14
and Theorem 5.3.22, we have the multiplication map

φ : R2×R2→ R2 : ((a,b),(a′, b′) 7−→ (aa′− bb′,a′b+ab′).

In R2, we have 1 = (1,0) and i= (0,1). Let e1 and e2 be standard basis for R2. Then,

φ((1,0),(1,0)) = (1,0) =
2∑

k=1
T11kek = T111e1 +T112e2 =⇒ T111 = 1, T112 = 0.

φ((1,0),(0,1)) = (0,1) =
2∑

k=1
T12kek = T121e1 +T122e2 =⇒ T121 = 0, T122 = 1.

φ((0,1),(1,0)) = (0,1) =
2∑

k=1
T21kek = T211e1 +T212e2 =⇒ T211 = 0, T212 = 1.

φ((0,1),(0,1)) = (−1,0) =
2∑

k=1
T22kek = T221e1 +T222e2 =⇒ T221 =−1, T222 = 0.

Thus, we have T = e1⊗e1⊗e1 +e1⊗e2⊗e2 +e2⊗e1⊗e2−e2⊗e2⊗e1. Equivalently,
T = e1⊗ (e1⊗ e1 + e2⊗ e2) + e2⊗ (e1⊗ e2− e2⊗ e1). So, we have

cs1(T ) =
〈1 0

0 1

 ,
 0 1
−1 0

〉= 〈T1,T2〉 .

See that T is 1-concise since the dimension of the first contraction space is 2.
Similarly, this can also be seen by checking Definition 5.3.21.

Recall that in Chapter 3, we noted that X ∈ Fk×n×m is 1-concise if and only if all
1-slices of X are linearly independent. For example, see Lemma 3.1.6. We end this
subsection by rewriting it in the following theorem that explains this concept in
bilinear maps language.

Theorem 5.3.24. Let φ : Fk × Fn −→ Fm be a bilinear map such that the first
contraction space of the corresponding tensor is the span of T1, . . . ,Tk. Then,

φ is 1-concise ⇐⇒ {T1, . . . ,Tk} is linearly independent.
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5.4 Matrix Multiplication

One of the leading problems in algebraic complexity theory is matrix multiplication.
Multiplying two n×n matrices C and D using

(cij)(djk) =
∑
j

cijdjk

uses a number of operations which is proportional to n3. We can see this by
considering the first entry c11. It will be multiplied with n entries of D. So, in
total we will need n3 multiplications since C has n2 entries. There will be (n− 1)
additions for each entry. This will give us n2(n−1) = n3−n2 additions. So, we will
have 2n3−n2 operations in total.

Example 5.4.1. Consider multiplication of 2× 2 matrices. Let F be a field.
Consider 2 different bases A= {A0,A1,A2,A3} and B = {B0,B1,B2,B3} where

A0 =
1 0

0 1

 , A1 =
1 0

0 0

 , A2 =
 0 0
−1 1

 , A3 =
0 1

0 1

 ,

B0 =
1 0

0 1

 , B1 =
0 0

0 1

 , B2 =
1 −1

0 0

 , B3 =
1 0

1 0

 .
Note that this is a very smart choice since for all 0≤ i, j ≤ 3, we have the property
that AiBj ∈ {Ai,Bj ,02×2}. This is checked in Table 5.2.

Table 5.2 2×2 Matrix Multiplication

B0 B1 B2 B3

A0 A0 B1 B2 B3
A1 A1 0 B2 A1
A2 A2 B1 A2 0
A3 A3 A3 0 B3

Consider n= 2m. Then, X,Y ∈ (Fn×n) = (Fm×m)2×2. In Section 1.2, we mentioned
that given C ∈Kr×r and D ∈Ks×s, we have

C⊗D =


c11D c12D .. .

c21D c22D .. .
... ...

 ∈ (Fs×s)r×r.
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Now, let us write X by using the basis A and Y by using the basis B. We have

X =
∑

0≤i≤3
Ai⊗xi and Y =

∑
0≤j≤3

Bj⊗yj ,

where xi, yj ∈ Fm×m are uniquely determined since A and B are bases. Then,

XY = (
∑

0≤i≤3
Ai⊗xi)(

∑
0≤j≤3

Bj⊗yj)

=
∑
i,j

(AiBj)⊗ (xiyj)

= A0⊗ (x0y0) +A1⊗ (x1(y0 +y3)) +A2⊗ (x2(y0 +y2)) +A3⊗ (x3(y0 +y1))

+ B1⊗ ((x0 +x2)y1) +B2⊗ ((x0 +x1)y2) +B3⊗ ((x0 +x3)y3)

= A0⊗P1 +A1⊗P2 +A2⊗P3 +A3⊗P4 +B1⊗P5 +B2⊗P6 +B3⊗P7.

where the second last equality follows from Table 5.2. Note that the m×m matrices
Pk’s contains 1 addition of the form x0 + xi or y0 + yj and 1 multiplication. So,
we have 7 multiplications to compute all Pk’s. In [2], it is proven that the xi’s and
yj’s can be evaluated using 10 additions. Also, it is shown that the 1 addition inside
Pk’s can be evaluated using those 10 additions. Let M =XY be the desired product.
Now, observe that

M11 = P1 +P2 +P6 +P7 , M12 = P4−P6,

M21 =−P3 +P7 , M22 = P1 +P3 +P4 +P5.

Thus, we have 8 more additions. So, in total of 7 multiplications and 18 additions
are required to multiply two n×n matrices where n= 2m for some integer m. This
algorithm explained above is known as Strassen’s algorithm.

Definition 5.4.2. T (n) is the minimum number of arithmetic operations required
to compute the product of two n×n matrices.

18 additions of m×m matrices gives us in total of 18m2 additions. Similarly, 7
multiplication of m×m matrices are required. So, we have the upper bound

T (n)≤ 7T (n2 ) + 18(n2 )2.

Solving this with T (1) = 1, give us T (n)≤ 7nlog7−6n2. Note that log7 < 2.81 < 3,
i.e., this is a huge improvement since we now can say that it is O(nlog7) instead of
O(n3).

74



Definition 5.4.3. w = inf{h ∈ R |multiplication in Fn×n has cost O(nh)}.

This is a very active research area and so far it is known that w < 2.38. We finish
this discussion and state the open problem.

Open Problem 5.4.4. Determine the exponent w of matrix multiplication.

We write < e,h, l > for the matrix multiplication Fe×h×Fh×l→ Fe×l. Thus,

< e,h, l >=
∑
i,j,m

uij⊗vjm⊗wmi ∈ Fe×h⊗Fh×l⊗Fl×e

Clearly, < e,e,e >= Fe×e, and < e,h, l >⊗< e′,h′, l′ >∼=< ee′,hh′, ll′ > . We showed
that Rk(< 2,2,2 >) ≤ 7. We will give another approach which help us to see the

tensor rank. Consider
a b

c d

x y

z t

. This can be seen as


a 0 b 0
0 a 0 b

c 0 c 0
0 d 0 d




x

y

z

t

 .We

have the basis

B = {


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 ,


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

}.

This can be split into 8 rank one matrices. Thus, trk(M2×2(F)) ≤ 8. However, we
showed above that it is at most 7. We can actually create a tensor to represent this
and show that its rank is at most 7. See the first basis element. The entry in the first
row and first column is 1. So, we have e1⊗e1⊗e1 as the first pure tensor. The first
component represent which basis element it corresponds to, second one represents
in which column it lies and the last one represents the row it lies on. Using this
approach, we get
T = e1⊗ e1⊗ e1 + e1⊗ e2⊗ e2 + e2⊗ e3⊗ e1 + e2⊗ e4⊗ e2 +
e3⊗ e1⊗ e3 + e3⊗ e2⊗ e4 + e4⊗ e3⊗ e3 + e4⊗ e4⊗ e4.

Theorem 5.4.5. trk(T )≤ 7.

Proof. T = (e1 + e4) ⊗ (e1 + e4) ⊗ (e1 + e4) + (e2 + e4) ⊗ e1 ⊗ (e2 − e4)
+ e1⊗ (e3− e4)⊗ (e3 + e4) + e4⊗ (−e1 + e2)⊗ (e1 + e3) + (e1 + e3)⊗ e4⊗ (−e1 + e3)
+ (−e1 + e2)⊗ (e1 + e3)⊗ e4 + (e3− e4)⊗ (e2 + e4)⊗ e1.

In [26], it is proven that trk(T ) = 7.
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6. FINITE GEOMETRIC APPROACH

So far, the only geometric object which is related to rank-metric codes was tensors.
In this chapter, we will talk about the relation between rank-metric codes and some
other geometric objects.

6.1 Semifields

Definition 6.1.1. A finite semifield (S,+,◦) is a structure satisfying

• |S| ≥ 2,

• (S,+) is an abelian group,

• (a+ b)◦ c= a◦ c+ b◦ c,

• a◦ (b+ c) = a◦ b+a◦ c,

• x◦y = 0 =⇒ x= 0 or y = 0,

• ∃1 ∈ S such that a◦1 = 1◦a= a for all a,b,c ∈ S.

Note that, semifields are division algebras which are not necessarily associative or
commutative. So, we define the center of a semifield as a measure of its closeness to
being a field.

Definition 6.1.2. Z(S) = {x∈S| x commutes and associates with all elements of S}.

We have the following theorem by [6].

Theorem 6.1.3. If [S : Z(S)] = 2, then S is a field.

Given a semifield we can define its left, right and middle nucleus.
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Definition 6.1.4. Given a semifield S, we have

Nl(S) = {x ∈ S| x◦ (y ◦ z) = (x◦y)◦ z, ∀y,z ∈ S}.

Nm(S) = {y ∈ S| x◦ (y ◦ z) = (x◦y)◦ z, ∀x,z ∈ S}.

Nr(S) = {z ∈ S| x◦ (y ◦ z) = (x◦y)◦ z, ∀x,y ∈ S}.

Similarly, the middle and right nucleus of a rank-metric code C are defined as follows
in [21].

Definition 6.1.5. Given a rank-metric code C ⊆ Fn×mq , we have

Nm(C) = {A ∈ Fn×nq | AM ∈ C ∀M ∈ C}.

Nr(C) = {B ∈ Fm×mq | MB ∈ C ∀M ∈ C}.

In Definition 3.2.11, we defined the equivalence of two rank-metric codes C and C ′

with respect to an isometry on Fn×mq . The following well-known theorem gives us
another equivalence criteria.

Theorem 6.1.6. If f is an isometry of Fn×mq with n,m≥ 2, then there exists ma-
trices X ∈GL(n,q) and Y ∈GL(m,q) and Z ∈ Fn×mq such that f(A) = XAαY +Z

for all A ∈ Fn×mq where α ∈ Aut(Fq). In particular, Z = 0 if f is additive.

Using the theorem, the equivalence of rank-metric codes can be defined as the fol-
lowing. Two rank metric codes C1 and C2 are equivalent if there are X ∈GL(n,q),
Y ∈GL(m,q), Z ∈ Fn×mq and α ∈ Aut(Fq) such that

C2 = {XAαY +Z : A ∈ C1}.

Clearly, if C1 and C2 are linear, then we can assume Z = 0. In the next theorem, we
will start to see the connection between rank-metric codes and semifields.

Theorem 6.1.7. If C1 and C2 are equivalent linear rank-metric codes, then their
middle(similarly right) nucleus are also equivalent.

Proof. A ∈Nm(C1) ⇐⇒ AM ∈ C1 , ∀M ∈ C1 ⇐⇒ X(AM)αY ∈ C2 , ∀M ∈ C1

⇐⇒ XAαMαY ∈ C2 , ∀M ∈ C1 ⇐⇒ (XAαX−1)(XMαY ) ∈ C2 , ∀M ∈ C1. Thus,

A ∈Nm(C1) ⇐⇒ XAαX−1 ∈Nm(C2)

since by Theorem 6.1.6, we have XMαY ∈ C2, i.e, XAαX−1 ∈ Nm(C2) due to the
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assumption that the codes C1 and C2 are equivalent. Again, by Theorem 6.1.6, we
have the desired result.

Now, we will define what does it mean to have an isotopism between semifields.
Note that given a map F and x ∈ S, xF denotes the image of x under the map F .

Definition 6.1.8. Consider two finite semifields (S,+,◦) and (S′,+,?). The 3-tuple
(F,G,H) where all three components are nonsingular linear maps from S to S′ is
called an isotopism between S and S′ if

xF ?yG = (x◦y)H ∀x,y ∈ S.

Semifield theory is mainly studied by looking at the isotopism classes of semifields.
Note that if a linear code C defines a semifield, then the middle and right nucleus
are invariant under isotopy. However, if the code in non-linear, then they are not
invariant.

By relaxing some of the properties in the definition of a semifield, we can get some
other geometric objects.

Definition 6.1.9. If we remove the left distributivity law in the definition of a
semifield, then it is called a finite (right) quasifield (Q,+,◦).

We will state a very important classification theorem using quasifields in the follow-
ing parts. It will come in handy to define the kernel of a quasifield now.

Definition 6.1.10.

KerQ= {s ∈Q : s◦ (a+ b) = s◦a+ s◦ b,s◦ (a◦ b) = (s◦a)◦ b for all a,b ∈Q}.

Definition 6.1.11. Without the multiplicative identity element, (S,+,◦) is called a
pre-semifield.

The reason we like working with pre-semifields instead of semifields is that sometimes
it is very difficult to find a reasonable formula for the multiplication. However, we
need to find a way to get semifields starting from pre-semifields so that it makes
sense to work with pre-semifields. There is way introduced by Kaplansky in [11].
This is also known as Kaplansky’s trick.

Theorem 6.1.12. Given a pre-semifield (S,+,◦) and a,b,x ∈ S, we have (S,+,?)
as a semifield by defining

(a◦x)? (x◦ b) = a◦ b.

78



Proof. See that x◦x is the multiplicative identity, and thus we are done.

Similarly, using Kaplansky’s trick, one can show that any pre-semifield is isotopic
to a semifield under the isotopism (R,L,id) where R,L : (S,+,◦)→ (S,+,?) denotes
the right and left multiplication by x, respectively.
We mentioned that semifields are algebras which are not necessarily associative or
commutative. We precisely defined what an algebra is in Definition 5.1.14. Let A
be an n-dimensional algebra over F and {e1, . . . , en} be a F−basis for S. Then, we
can define

x◦y =
n∑

i,j=1
xiyj(ei ◦ ej) =

n∑
i,j=1

xiyj(
n∑
k=1

aijkek).

Here, x = ∑n
i=1xiei and y = ∑n

i=1 yiei with xi,yi ∈ F and some constant aijk ∈ F.
These constants aijk ∈ F are called structure constants. In [12], it was observed that
the action of the symmetric group S3 over the indices of the structure constants give
us 5 more semifields. In total, we get 6 semifields, not necessarily different. The set
of those 6 semifields is given by {S,S(12),S(13),S(23),S(123),S(132)} and it is called
the S3-orbit of S. That give us the set of isotopism classes of semifield S. The set
is known as the Knuth orbit and defined as follows:

Definition 6.1.13. Knuth orbit of a semifield S is

{[S], [S(12)], [S(13)], [S(23)], [S(123)], [S(132)]}

To understand the behaviour, we will consider S12.

Theorem 6.1.14. S(12) fixes the middle nucleus and interchanges the left and right
nucleus.

Proof. Nl : x◦ (y ◦ z) = (x◦y)◦ z ∀y,z ∈ S→ (z ◦y)◦x= z ◦ (y ◦x) ∀y,z ∈ S :Nr.
Nm : x◦ (y ◦ z) = (x◦y)◦ z ∀x,z ∈ S −→ (z ◦y)◦x= z ◦ (y ◦x) ∀x,z ∈ S :Nm.
Nr : x◦ (y ◦ z) = (x◦y)◦ z ∀x,y ∈ S −→ (z ◦y)◦x= z ◦ (y ◦x) ∀x,y ∈ S :Nl.

Question 6.1.15. What happens if we apply this action to rank-metric codes? Can
we derive a similar theory just like for the semifields to the rank-metric codes?

Given a semifield S, we can construct a spread S of PG(2n−1, q) as follows:
S = {Sa| a ∈ S∪{∞}} where Sa = {(x,a◦x) : x ∈ S} and S∞ = {(0,x) : x ∈ S}. We
can also define a spread of PG(2n−1, q) using a spreadset C in Fn×nq . First, let us
define what is a spreadset.

Definition 6.1.16. A spreadset C ≤ Fn×nq is a set of qn nonsingular matrices such
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that the difference of any two of them is nonsingular. In other words, we have 0∈C,
|C|= qn, and det(A−B) 6= 0 for all A,B ∈ C.

Given a semifield S, we can create the spreadset C defined above.

Definition 6.1.17. If the spreadset C is closed under addition, then it is called a
semifield spread set.

Now, the spread S becomes

S = {S(A) | A ∈ C}∪{S(∞)}.

Here, S(A) = {(x,xA) : x ∈ Fnq } and S(∞) = {(0,y) : y ∈ Fnq }. Again, clearly S is
an (n− 1)-spread of PG(2n− 1, q) since it is a partition of the points of the space
by subspaces of projective dimension n−1.

Remark 6.1.18. Let S be a semifield and C be its corresponding spreadset. Since
Fn×nq

∼= EndFq(Fnq ) := E, we can see the elements of C as Fq-linear maps on Fnq .

Note that two spreadsets are equivalent if their corresponding spreads are isomor-
phic. Similar to the equivalence of rank-metric codes, we can define the equivalence
of semifield spreadsets. The following theorem is taken from [18] and proven there.

Theorem 6.1.19. Semifield spreadsets C,C ′ ⊆E are equivalent if and only if there
exists invertable elements X,Y ∈ E and α ∈ Aut(Fq) such that

C ′ = {XAαY : A ∈ C}.

Note 6.1.20. This is actually the same definition as the equivalence of rank-metric
codes. We do not have the “+Z” term here since as stated in Theorem 6.1.6, Z = 0
if we have additivity. This is the case since semifield spreadsets are closed under
addition by Definition 6.1.17.

Consider C a semifield spreadset. Thus, by definition, C is an additive subgroup of
E. Then, we can assume that it is an Fp-subspace for some subfield Fp of Fq where
q = pt. By Remark 1.1.11, we have

dimFpC = (dimFq C)(dimFp Fq) = n · t= nt.

Therefore, we have the following theorem which we will prove in a moment.

Theorem 6.1.21. The semifield S whose corresponding spreadset is C, defines an
Fp-linear set L in PG(n2−1, q) of rank nt.
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We will use the field reduction map that was introduced in Chapter 3.

Fr,t,p : PG(r−1,pt)−→PG(rt−1,p)

all points 7−→Dr,t,p

Here, Dr,t,p represents the Desarguesian spread. We will come back to it later. Let
U be a subspace of D, i.e. U ≤D, such that BU = {x ∈D| x∩U 6= ∅} ⊆D. Then,
we take its pre-image and call it the linear set L(U).

Definition 6.1.22. If U has dimension d in PG(rt−1,p), then the linear set L(U)
is said to be of rank d+ 1.

Remark 6.1.23. Note that L(U) is scattered if and only if U intersect x in at most
a point for all x ∈ D. A scattered linear set has rank at most rt

2 . If that bound is
met, then it is called maximum scattered set, and they have some very interesting
relations with MRD codes. For more on this subject, see [4].

Proof of Theorem 6.1.21. Note that PG(n2−1, q) = PG(n2−1,pt). By the field re-
duction Fn2,t,p, it is mapped to PG(n2t−1,p). Recall that dimFpC = nt. Thus, C has
dimension nt− 1 in PG(n2t− 1,p). Then, BC = {x ∈D| x∩C = ∅}. Its pre-image
is the set L= {Fptu| u ∈ C−{0}} which has rank (nt−1) + 1 = nt, as desired.

Note 6.1.24. We talked about how to use field reduction map to get rank-metric
codes from the vector codes before. See Figure 3.1 and how we applied it to the
Example 3.3.6.

Consider the tensor space T defined in Section 3. Now, we will define a contraction
of an element in T just like we defined the contraction spaces of 3-tensors to get
information about rank-metric codes.

Definition 6.1.25. We call any nonzero vector of Vi nonsingular. Let T ∈ T . We
call vDi (T ) ∈ V1⊗ . . .⊗Vi−1⊗Vi+1⊗ . . .⊗Vm the contraction of T ∈ T by vDi ∈ V D

i .

We call a tensor T nonsingular if the contraction vDi (T ) is nonsingular for all i∈ [m].

Now, we can define the contraction spaces just as we did in Definition 3.0.3. It is
basically the subspace spanned by all the contractions of T .

Example 6.1.26. Let us find the i− th contraction space of a nonsingular tensor
T ∈ T . It is equal to

cs1(T ) =< vDi (T ) | vDi ∈ V D
i > .

Consider any nonzero element T ′ of cs1(T ). Then, T ′ can be written as a linear
combination of contractions of T. Hence, T ′ is a contraction itself. Since T is
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nonsingular, T ′ is nonsingular as well. Thus, any element of the contraction space
is also a nonsingular tensor.

Hence, given any nonsingular tensor T , we have a set of nonsingular tensors in
tensor product where the i− th factor is left out. Then, the dimension of the i− th
contraction space of T is equal to dimension of Vi, i.e., the factor that is left out.
So, we have the following corollary.

Corollary 6.1.27. Given a nonsingular tensor T , we have csi(T ) = dim(Vi) = di.

Thus, T is concise.

We can combine Definition 3.2.3 and 3.2.9 to make the following observation.

Note 6.1.28. rank(T ) = rank(cs1(T )) for all i ∈ [m].

Given a semifield, we can define a tensor associated to it. We did it in Example
5.3.6. Now, we will state a theorem using Definition 1.1.20.

Theorem 6.1.29 (Theorem 4.2 and Theorem 4.3 in [16]). Consider a semifield S
and two presemifields S1 and S2.

(1) S1 and S2 are isotopic if and only if TGS1 = TGS2 . This is given by the relation

(A,B,K) : S1→ S2 ⇐⇒ (AD,BD,K−1) : TS1 → TS2 .

(2) TS ∈ U ⊗V ⊗W is nonsingular.

(3) Given a nonsingular tensor T , there exists a presemifield S′ such that T = TS′ .

The important takeaway from this theorem is the following remark.

Remark 6.1.30. There exists a correspondence between set of isotopism classes of
semifields and the G-orbits of nonsingular tensors in U ⊗V ⊗W. In other words,

[S] ⇐⇒ TGS .

Note 6.1.31. Observe that Remark 6.1.30 also means that if we have two tensors
T1,T2 ∈ T that are in the same G-orbit, then it is equivalent to say that i− th
contraction spaces csi(T1) and csi(T2) are also in the same G-orbit.

Consider a semifield S and its associated nonsingular tensor TS ∈ U ⊗V ⊗W. Then
the following definition is natural.
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Definition 6.1.32. A point corresponding to the semifield S is

PS = PG(〈TS〉) ∈ PG(U ⊗V ⊗W ).

Lemma 6.1.33. If PS1 = PS2, then the semifields S1 and S2 are isotopic.

Proof. PS1 = PS2 means there exists a nonzero scalar c ∈ F such that TS1 = cTS2 .

By Theorem 6.1.29, consider (id, id,x 7−→ c−1x) so that (id, id,x 7−→ cx) gives two
semifield in the same isotopism class.

We need the following concepts from projective geometry to continue. Recall that
just as in Definition 1.1.5, we can define ΓL(V ) as the group of nonsingular semilinear
transformations of V . So, ΓL(V ) is just the semidirect product of GL(V ) and
Aut(F). That means, any f ∈ ΓL(V ) is of the form (A,σ) where A ∈ GL(V ) and
σ ∈ Aut(F). The following definition is well-known.

Definition 6.1.34. Any f ∈ ΓL(V ) induces a collineation(bijective morphism) α
of PG(V ). If α is induced by f = (A,id), then α is called a projectivity and the
group of all projectivities is denoted by PGL(V ). Similarly, if f = (A, 6= id), then
α ∈ PΓL(V ).

In Definition 1.1.20, we defined G = GL(U)×GL(V )×GL(W ). Thus, G is a
subgroup of GL(U ⊗V ⊗W ). Now, consider a subgroup M of PGL(U ⊗V ⊗W )
such that any element of M is induced by (A,id) where A ∈G.

Theorem 6.1.35 (Theorem 4.7 in [16]). S1 ∼= S2 ⇐⇒ PMS1 = PMS2 .

Proof. By Theorem 6.1.29, S1 ∼= S2 ⇐⇒ TGS1 = TGS2 . By how we constructed M and
Lemma 6.1.33, we have S1 ∼= S2 ⇐⇒ TGS1 = TGS2 ⇐⇒ PMS1 = PMS2 .

Last but not least, we define the tensor rank of a semifield.

Definition 6.1.36. Tensor rank of a semifield S is the rank of the corresponding
tensor TS .

The big idea that help us understand and develop the correspondence between
rank-metric codes, tensors and algebras was this definition and the theory behind it.
This is examined in [16] where tensor rank also turns out to be an invariant under
semifield isotopy.

Theorem 6.1.37. Tensor rank of semifields is an invariant under isotopism of
semifields.
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Proof. Let S1 ∼= S2 given by (A,B,K). By Theorem 6.1.29, (AD,BD,K−1) maps
TS1 to TS2 . Since A,B,K are nonsingular, ranks are also the same. Thus, the ranks
of the corresponding tensors are also the same, as desired.

Now, let us talk about how to compute the tensor rank of semifields, so that we can
apply this theory to MRD codes, i.e, to a family of rank-metric codes. Here we refer
to the paper [19]. In that paper, the first examples of semifields of the same order
with different tensor ranks have been given. Similarly, they prove that there are
semifields of order 81 whose tensor rank is less than the tensor rank of a finite field
of size 81. In terms of complexity, this is huge result since one can use semifields
instead of finite fields in some occasions to provide faster algorithms. This is the first
such known example in the literature. In the same paper, they considered T ∈ T
such that we have its decomposition into R pure tensors. That is,

T =
R∑
r=1

vr1⊗vr2⊗ . . .⊗vrm.

Then, one can define m linear codes with the generator matrices

Gi =


| | . . . |
v1i v2i . . . vRi

| | . . . |

 .

The following theorems summarizes this relation and proofs can be found therein.

Theorem 6.1.38 ([19]). Let Ci be the codes that are generated by Gi.

(1) Ci is a code of length R.

(2) dim(Ci)≤ di.

(3) d(Ci)≥min{max{dim(vD(csj(T ))) : i 6= j} vD ∈ V D
i }.

(4) trk(T ) ≥Nq[dim(Ci), ti] where ti is the minimal tensor rank belonging to the
elements of the i− th contraction space.

Lastly, we propose two open questions using the theorem above.

Open Problem 6.1.39. Find the exact equalities in Theorem 6.1.38.

Open Problem 6.1.40. In Theorem 6.1.38, the codes are defined by a
decomposition of a tensor, not by a tensor. What would the parameters be in that
case and what can be said about the uniqueness keeping in mind that decomposition
of tensors are not unique.
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6.2 Gabidulin Codes and the Case m=n=d

Let us start by recalling the isomorphism Fn×mq
∼= Fnqm . Given (v1, . . . , vn) ∈ Fnqm , we

denote the k×n Moore matrix by

Mk(v1, . . . ,vn) :=


v1 v2 . . . vn

vq1 vq2 . . . vqn
...

vq
k−1

1 vq
k−1

2 . . . vq
k−1
n

 .

Definition 6.2.1. Let u1, . . . ,un ∈ Fqm be linearly independent vectors over Fq and
form the Moore matrix G= Mk(u1, . . . ,un). We define the Gabidulin code C ⊆ Fnqm

as the linear code whose generator matrix is G. Clearly, it has dimension k. The
code C can be seen as a rank-metric code in Fn×mq by the fact that Fn×mq

∼= Fnqm. It
has been proven in [7] that a Gabidulin code C ⊆ Fnqm of dimension k over Fqm has
minimum distance n−k+ 1, i.e, it is an MRD code.

Since the relation between the Gabidulin codes and the linearized polynomials are
well-known, we will define and use linearized polynomials here and show how they
are related to MRD codes.

Definition 6.2.2. Let t ∈N. A linearized polynomial(q-polynomial) in Fqn [X] is of
the form

a0X+a1X
q + . . .+aiX

qi

+ . . .=
t∑
i=0

aiX
qi

Let Ln,q[X] be the set of all linearized polynomials in Fqn [X]. Then we have

Ln,q[X]
/

(Xqn−X) ∼= EndFq(Fqn).

Fqn is the splitting field of the polynomials xqn−x. The elements of Fqn are precisely
the roots of xqn−x. Now consider

t∑
i=0

aiX
qi

∈ Fqn [X]
/

(Xqn−X) .

The Gabidulin codes are defined as follows.
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Definition 6.2.3. Given n and d, we let k = n−d+ 1 and m= n. Then,

G= {a0X+a1X
q + . . .+ak−1X

qk−1
: a0, . . . ,ak−1 ∈ Fqn}.

Now, observe that for each f ∈G, f has at most qk−1 roots. There are k coefficients
where each can take qn values. Thus, we have

|G|= (qn)k = qnk = qn(m−d+1).

So, the Gabidulin codes are Fqn-linear MRD codes. Now, let us define the middle
and right nucleus of a Gabidulin code. Again if the code defines a semifields, then
they will correspond to the middle and right nucleus of a semifield.

Definition 6.2.4.

Nr(C) = {g : g ◦f ∈ C for all f ∈ C} ∼= Fqn

Nm(C) = {g : f ◦g ∈ C for all f ∈ C} ∼= Fqn .

It is good to know that your nucleus is isomorphic to Fqn when you are dealing
with some classification problems, or any kind of problem in general. We state the
following remark before going further to the special case m= n= d.

Remark 6.2.5. The existence of linear MRD codes for all q,m,n are known. It
is also shown in [25] that there are some MRD codes which are different from the
Gabidulin codes.

For the rest of this section, considerm=n= d, i.e., k= 1. Then C = {a0X : a0 ∈Fqn}.
That is, |C| = qn. Since m = n = d, we get an MRD code C in Fn×nq of minimum
distance n. Hence, C is a set of matrices such that det(A−B) 6= 0 for all A 6= B in
C. Let B ∈ C. Now, consider the set

C−B = {A−B : A ∈ C}.

So, if we replace C with C −B, then we can have the zero matrix as an element
of C since we can choose A = B. Thus, all nonzero matrices in C are invertable.
Similarly, if we replace C with B−1C for some B 6= 0, then we can have the identity
matrix an element of C. All this transformations are isometries, so the rank distance
is preserved. So far, we have |C| = qn and det(A) 6= 0 for all nonzero A ∈ C. That
means, we get a spreadset in Fn×nq . Conversely, a spreadset in Fn×nq defines an MRD
code C. To see this, we will show that we get a quasifield and prove a theorem
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afterwards. Observe that C−{0} acts transitively without the fixed points. That
is, the pointwise stabilizer is trivial. So, suppose we fix a nonzero vector v0 ∈ Fqn .
Then, for all v ∈ Fqn , there exists A(v) ∈ C such that v0A(v) = v. Without loss of
generality, let v0 = e1 = (1,0, . . . ,0). Thus, the first row of A(v) is equal to v itself.
In particular, we write C = {A(v) : v ∈ Fqn} where A(0) = 0. In summary, given any
two distinct nonzero elements v,w in Fqn , there is an unique matrix A such that
Av = w. Consider the standard vector addition Fqn and define the multiplication ◦
by

v ◦w = vA(w).

This multiplication gives us a quasifield. If Q is a finite quasifield, then kerQ is
a finite field. We can see Q as a finite dimensional left vector space over kerQ.
Therefore, we have the following correspondence.

Theorem 6.2.6. MRD codes in Fn×n with minimum distance n corresponds to
finite quasifields Q with dimFQ= n. In particular, additive MRD codes corresponds
to finite semifields S with dimFS = n.

Proof. Observe that Definition 6.1.16 is the same as the definition of an MRD code
since det(A−B) 6= 0 means that the matrices are full rank, and thus the minimum
distance is n. Above we showed how to get a quasifield from a spreadset. Thus,
we are done with the first part. Now, let Q be a quasifield and C = {A(u) : u ∈Q}
be additively closed. Thus, for each u,v ∈ Q, since C is additive, there is a unique
w ∈Q such that A(u) +A(v) = A(w). Then, we have

w = eQ ◦w = eQA(w) = eQA(u) + eQA(v) = eQ ◦u+ eQ ◦v = u+v.

Now, see that x ◦u+x ◦ v = xA(u) +xA(v) = xA(w) = x ◦ (u+ v). Thus, Q is left
distributive and hence Q is a semifield.

Remark 6.2.7. Note that we have some inequivalent quasifields and semifields as
shown in [18].

Quasifields are strongly related to translation planes. Translation planes are
precisely the affine planes which can be coordinatized by quasifields. Given a quasi-
field Q, we define a map T : Q×Q×Q→ Q by T (a,b,c) = ab+ c for all a,b,c ∈ Q.
(Q,T ) satisfies the axioms of a planar ternary ring(PTR). Associated to (Q,T ) is
its projective plane. The details were shown in [8].

Remark 6.2.8. A projective plane is a translation plane with respect to a line at
infinity if and only if any (or all) of its associated PTR’s are right quasifields.
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Following remark shows the connection of translation planes with spreads.

Remark 6.2.9. Consider a spread S in PG(3, q). S is a set of q2 + 1 lines with
no two intersecting. Andre-Bruck-Bose(ABB) construction produces a translation
plane P (S) of order q2 as follows:
Firstly, we embed PG(3, q) as a hyperplane of PG(4, q). Then, define the incidence
structure A(S) = (Points,Lines,I) where

• Points = points of PG(4, q) not on PG(3, q).

• Lines = planes of PG(4, q) meeting PG(3, q) in a line.

• I = symmetric containment.

Then P (S) is just the projective completion of A(S). In general, ABB construction
shows that the study of translation planes correspond with the study of (n−1)-spreads
of PG(2n−1, q).

We summarize what we showed so far in the following note.

Note 6.2.10. We have a close relation between quasifields and translation planes
and this relation can be used to determine if a given projective plane is a
translation plane or not. In addition to that, translation planes corresponds with
the (n− 1)-spreads of PG(2n− 1) which can also be constructed using a spreadset.
Thus, all of them are connected. Lastly, in Theorem 6.2.6 it has been shown that
quasifield are related to MRD codes, not to mention their relation with semifields.

The following corollary is obvious now.

Corollary 6.2.11. MRD codes C(m=n=d) and the following objects are equivalent:

• quasifields Q
When C is Fq-linear, then Q is a semifield.

• Spreadsets

We propose an open problem, and an interesting question.

Open Problem 6.2.12. For m = n = 2,3 and d = 2, classification of Fq-linear
codes in Fn×nq is solved. However if q = pe for a prime p and integer e > 1, the
classification is open for all n.

Question 6.2.13. Note 6.2.10 shows that there are obvious similarities between
Semifield Theory and Rank-metric codes. Given the best of our knowledge, it seems
as a missing piece in the literature. Try to find as many correspondence as possible
to develop and improve this corresponce.
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7. EXISTENCE OF MTR CODES

In this section, we will go back to Note 3.2.16 and summarize what has been proven
so far. Then, we will state the open problem and provide some ideas on attacking
that problem. The following has been said but not explicitly stated in [23].

Theorem 7.0.1. Given d≥ k, there exists an Fq− [n×m,k,d] MTR code for every
m,n≥ d.

Depending on that, they move on to the case d < k. We analyzed the known results
in Section 4 and summarize them in the following remark.

Remark 7.0.2. Suppose we have d < k.

• Proposition 4.2.11 =⇒ existence of MTR codes for n+m≥R+d.

• Lemma 4.2.5 =⇒ existence of MTR codes where m≥ k and n≥ d.

• Lemma 4.2.5 =⇒ existence of MTR codes where m≥ d and n≥ k.

• Theorem 2.1.6 =⇒ there can not exist MTR codes for

k >min{n(m−d+ 1),m(n−d+ 1)}.

• Theorem 4.3.3 =⇒ existence of MTR codes that are also MRD, i.e, satisfying
the analogue of the Singleton bound, Theorem 2.1.6.

Thus, the only remaining case to check is the following.

Open Problem 7.0.3. Given k > n,m> d and R+d > n+m, decide whether there
are Fq− [n×m,k,d] MTR codes with tensor rank R. If yes, characterize them.

In this section, we will try to attack on this problem 7.0.3. On the way, we will find
correspondences with the previous parts as we did throughout the thesis. Let us
start with the existence problem. We will choose the following parameters and try
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to create an MTR code with those parameters.

n= 5, m= 3, k = 6, d= 2, R = 7, q = 3.

So, we are looking for an F3− [5× 3,6,2] MTR code. We are going to follow the
geometric approach using Segre embedding.

Definition 7.0.4. Segre embedding is given by the following map

σd1,...,dk
: PG(d1, q)× . . .×PG(dk, q)−→ PG(m,q)

that maps the k-tuple of points (〈v1〉, . . . ,〈vk〉) to the point 〈v1 ⊗ . . .⊗ vk〉 where
m= (d1 + 1) . . .(dk + 1)−1. Its image is called the Segre variety Sd1,...,dk

.

Clearly from the definition, we can see the points of the Segre variety as rank 1
matrices. Thus, to achieve an F3− [5×3,6,2] code, we need to consider

σ4,2 : PG(4,3)×PG(2,3)−→ PG(14,3).

Since, we want the dimension to be 6, we will look for subspaces of projective
dimension 5 in PG(14,3) such that it has no intersection with the Segre variety S4,2

so that minimum distance of the code is at least 2. Let us talk about our strategy
to find such a code.

(1) Look at all spaces spanned by 7 points of S4,2 so that trk(C) = 7. It is
important to note that Theorem 3.2.5 gives trk(C) ≤ 7. However, since 7 is
the minimal possibility given the Theorem 3.2.10, we will have trk(C) = 7.

(2) From the spaces created in (1), select the ones which have dimension 6 so that
we have the dimension k = 6.

(3) Inside each of those selected spaces, try to find 5 dimensional spaces disjoint
from the Segre variety S4,2. These are the codes we are looking for.

The following algorithm can be used without any restrictions on the parameters to
create MTR codes. We apply the 3 steps.
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Algorithm 2: Creation of MTR codes with tensor rank R
Result: This algorithm will create an Fq− [n×m,k,d] MTR code.
We first create the finite field we are working on, K := Fq;
Define the Segre Variety Sn,m;
Create the points of the Segre Variety and write them as a list, call it P ;
Now, we need to look all the subspaces spanned by R points of P ;
From each of those R points, we will check if their span is a k-space;
Denote the list of those k-spaces as L;
For each k-space in L, we will look for k−1 dimensional subspaces disjoint
from the Segre variety Sn,m

A big problem in the above algorithm occurs when we are creating all the subspaces
spanned by R points of P . Even for the small parameters for which we are trying to
find an example, the size of P is 1573. Since, we need to choose R = 7 points from
those 1573, we get a memory error. The reason is that

(
1573

7

)
is too large. We write

this in the following remark.

Remark 7.0.5. We used [20] for the above algorithm. However, GAP has a memory
limit and even for the very small cases, the computer memory is not enough to
run the above algorithm. Although it should be theoretically examined, the storage
complexity seems to be very high.

We propose the following open problem.

Open Problem 7.0.6. Implement the algorithm in programming language C or
Java since they are much more developed and faster to see if the above algorithm
gives an output or not.

In the thesis, we revisited various constructions of MTR codes and stated the
remaining case in the beginning of this section. If somehow we solve the
memory problem in a clever way and run the algorithm, then we will get a list
of all possible MTR codes with given tensor rank. Analyzing that codes might give
us a pattern so that a classification can be done. Firstly, we need to make sure there
exists a solution to Problem 7.0.3. Thus, we go back to the paramaters choosen in
the beginning and apply this algorithm by hand in the following example.

Example 7.0.7. Since we get a problem while computing
(

1573
7

)
, we will just choose

7 random points from the set P until we get the span of those 7 points as a 6
dimensional space. Using “repeat-until”, we got such a space very easily in GAP.
Call that space A. In [20], there is a function ShadowOfElement(IG,E,D) which
returns the collection of elements of type D incident with E, where IG is the ambient
incidence structure. Note that 1,2,. . . are types of points,lines and so on. Since we

91



are looking for a 5-space that is disjoint from the Segre variety S4,2 and S4,2 lies on
PG(14,3), we should first create those 5-spaces by

shadow := ShadowOfElement(PG(14,3),A,6)

and then choose a random element in shadow, say C := Random(shadow) and try
until P ∩C = ∅ so that the minimum distance is at least 2. If the minimum distance
is exactly 2, then we get the desired code. After applying this algorithm, we have
found that

C =
〈


1 0 0
0 1 0
0 0 1
0 0 0
2 2 2


,



0 1 0
0 2 0
0 1 0
2 0 2
2 2 2


,



0 0 1
0 1 0
0 1 1
2 0 0
2 1 0


,



0 0 0
1 0 0
0 0 2
1 0 1
1 1 2


,



0 0 0
0 0 1
0 1 2
0 2 2
0 0 0


,



0 0 0
0 0 0
1 0 0
2 0 0
2 1 1


〉
.

See that the second codeword in the basis has rank 2. Thus, d(C) = 2. So, we have
found an F3− [5×3,6,2] MTR code, as desired.

Of course, we need a better way to find all such codes. Now, we will develop a
theory to construct a better approach.

Definition 7.0.8. A frame of PG(n,K) is an ordered tuple of n+2 points, no n+1
of them are contained in a hyperplane of PG(n,K).

Theorem 7.0.9. If B = {e1, . . . , en} is a standard basis for Kn+1, then
(p0, . . . ,pn,pn+1) is a frame of PG(n,K) where en+1 = e1 + . . .+ en and pi = 〈ei〉
for 0≤ i≤ n+1. This frame is called the standard frame. Moreover, for each frame,
we can find a suitable basis with respect to which the frame becomes a standard frame.

Basically, a frame manages the role of a basis for projective spaces. This will play a
crucial role. Consider the homomorphism

ψ GL(n,q)×GL(m,q)−→ PGL(nm,q).

For a generator g = (g1,g2) of G=GL(n,q)×GL(m,q), we will compute the image
of a standard frame F of PG(nm−1, q). Let p ∈ F . Now, p is of length nm. So, we
can create its n×m matrix representation, say Mp. Now, consider the image of Mp

under g:
Mg
p = g1Mpg2 =Mr.

Next, transform Mr back to a vector of length nm, call it r. Do this pro-
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cess for all points p ∈ F . Thus, we get Fg. Do this for each generator of
G. Put all of them in a list L. Again, we are going to get help from [20].
There is a function V ectorSpaceToElement(IG,X) that return to element of IG
represented by the subspace spanned by X. Since Sn,m lies on PG(nm− 1, q), we
will apply this function to see each element l ∈ L as a point in PG(nm− 1, q).
Evaluate V ectorSpaceToElement(PG(nm−1, q), l) for each l ∈ L and put them in
a new list L̃. Elements of L̃ are points in PG(nm−1, q).

Note 7.0.10. Observe that number of generators of G will divide the list L̃ into
blocks. For example, in our simple case, both GL(5,3) and GL(3,3) have 2
generators. Note that a frame in PG(14,3) has 16 points. So, L̃ consists of
16× 2× 2 points of PG(14,3) and we can see them as divided into 4 blocks of size
16 each of which represents an image of a frame under one generator of the group
G = GL(5,3)×GL(3,3). In general, if you have k generators of G, then the list L̃
looks like

L̃= [Fg1 | Fg2 | . . . | Fgk ]

where each of the blocks Fgk contains nm+ 1 points of PG(nm−1, q).

The whole reason we followed this approach is to use a function in [20]. This
function is ProjectivityByImageOfStandardFrameNC(IG,List). After applying
this function to each blocks of L̃, we get the set of projectivities, call it Proj.
After using H := Group(Proj) in [20], we get the projective collineation group in
PGL(nm,q) as desired. What we have achieved is stated in the following theorem.

Theorem 7.0.11. H = ψ(G) is the subgroup of the setwise stabiliser of the points
on the Segre Variety Sn,m.

We end this subsection with the following remark that will motivate the algorithm
we are going to propose in the next part.

Remark 7.0.12. Geometrically, we can view rank-metric codes in Fn×mq as
subspaces in PG(nm− 1, q) and Fqm vector codes as subspaces in PG(n− 1, qm).
The set of rank 1 matrices corresponds to Segre variety in the first case, and a
subgeometry in the second case. Then, the equivalence of rank-metric codes
corresponds to equivalence under the setwise stabiliser of the Segre Variety
inside the collineation group. In Chapter 6, we mentioned that Desarguesian
spread of PG(nm− 1, q) can be formed by the field reduction map on the points
of PG(n− 1, qm). So, the set of 1-dimensional Fqm-subspaces corresponds to a
Desarguesian spread D and Segre variety is partitioned by them.

This remark emphasizes the importance of the field reduction map once more.
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7.1 The Algorithm Snakes and Ladders

Consider Theorem 7.0.11. Now, the idea is to use this group H to reduce the total
number of candidate subspaces in the original algorithm by taking one subspace
from each orbit, i.e., a representative. That way, instead of having to check the
required property for each subspace, we only need to verify the property for the
representatives.
We have arranged our setup in a way that is suitable to use the Algorithm Snakes
and Ladders presented in [1]. The algorithm constructs the orbit representatives
level by level, and thus deserves the name given to it. Let us give some definitions.

Definition 7.1.1. G//X is the set of all G-orbits on X where G is a group such
that G acts on the set X.

We will try to compute the orbits of H on subsets of X.

Definition 7.1.2. Pk(X) = {S ⊆X : |S|= k} and P≤k(X) =
k⋃
i=0

Pi(X).

The following example is crucial to understand how the algorithm can be applied to
our case.

Example 7.1.3 (Example 9.5.12 in [1]). Construct and classify all F2− [8,4,≥ 3]
codes. Note that we are skipping the details since they are not related to the task at
hand. In [1], they are looking for sets of 8 points in PG(3,2), and say that in order
to construct the codes, the orbits of PGL(4,2) on P≤8(PG(3,2)) should be computed.

We already have the projectivity group H constructed in Theorem 7.0.11. Suppose
we want the tensor rank to be R. Let N be the set of points of the Segre variety
Sn,m in PG((n+1)(m+1)−1, q) = PG(nm+n+m,q). Thus, in order to construct
the codes with tensor rank R, we need to compute the orbits of H on P≤R(N ).
We end this thesis with the following question that will hopefully characterize the
remaining class of MTR codes and answer the open problem 7.0.3.

Question 7.1.4. Apply the algorithm Snakes and Ladders with the given parameters
above. Once you have H//P≤R(N ), try to find a relation so that a classification
result can be obtained.

This question can also be regarded as a future work since if answered positively, it
will finish the classification of MTR codes.
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