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ABSTRACT

SIMULTANEOUS RATIONAL PERIODIC POINTS OF DEGREE-2 RATIONAL
MAPS

BURCU BARSAKÇI

Mathematics, Master Thesis, JUNE 2021

Thesis Supervisor: Assoc. Prof. Mohammad Sadek

Keywords: dynamical systems, periodic point, degree-2 rational map, quadratic
polynomial, orbit

In this thesis, we study the dynamical behaviour of degree two rational maps of
the form kx + b/x and quadratic polynomials with rational coe�cients. Assuming
standard conjectures on the period length of rational periodic points of these maps,
we give the possible size of the intersection of their finite orbits. In particular, we
give a necessary and su�cient condition for two rational points to be periodic for
infinitely many such maps.
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ÖZET

�K�NC� DERECEDEN RASYONEL FONKS�YONLARIN ORTAK RASYONEL
PER�YOD�K NOKTALARI

BURCU BARSAKÇI

Matematik, Yüksek Lisans Tezi, HAZ�RAN 2021

Tez Danı�manı: Assoc. Prof. Mohammad Sadek

Anahtar Kelimeler: dinamik sistemler, periyodik nokta, ikinci dereceden rasyonel
fonksiyon, ikinci dereceden polinom fonksiyon, yörünge

Bu yüksek lisans tezinde, rasyonel katsayılı kx + b/x formundaki ikinci dereceden
rasyonel fonksiyonların ve rasyonel katsayılı ikinci dereceden polinom fonksiyonların
dinamik davranı�ını inceliyoruz. Bu fonksiyonların rasyonel periyodik noktalarının
periyot uzunlu�u hakkındaki standart sanıları varsayarak, bu fonksiyonların sonlu
yörüngelerinin kesi�im kümelerine dair olası eleman sayılarını veriyoruz. Özellikle,
iki tane rasyonel noktanın, sonsuz sayıda belirtilen formdaki fonksiyonun periyodik
noktası olabilmesi için gerek ve yeter ko�ulu veriyoruz.
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When work is a pleasure, life is a joy. When work is a duty, life is slavery!

Maxim Gorky
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Introduction

A (discrete) dynamical system consists of a set S and a function „ : S æ S mapping
the set S to itself. This map permits iteration

„
n = „¶„¶ . . .¶„ = n

th iterate of „.

For a given point P œ S, the orbit of P is the set

O„(P ) = O(P ) = {„
n(P ) : n > 0}.

One of the main goals of dynamics is to classify the points P in the set S according
to their orbits O„(P ) [13]. Depending on the cardinality of their orbit under a
map, we classify points in the set S. If the cardinality of O„(P ) is infinite, P is
called a wandering point, and if the cardinality of O„(P ) is finite, P is called a
preperiodic point. Let PrePer(„,S) denote the set of preperiodic points of „ in S.
Then PrePer(„,S) is the set of points in S having finite orbit under the map „.
We also have the following equivalent definition:

PrePer(„,S) = {– œ S : „
m+n(–) = „

m(–) for some n > 1,m > 0}.

For a finite set S, we have PrePer(„,S) = S. If we take S to be an abelian group
under multiplication and „ to be the map defined by „(–) = –

d where d is an integer
greater than 1, we see that PrePer(„,S) is the torsion subgroup of S [13].

A point P œ S is periodic if there exists an integer n > 0 such that „
n(P ) = P . In

this case we say that, P has period n. Here, if n is the smallest such integer, we
say that P has exact (primitive) period n. Let Per(„,S) denote the set of periodic
points of „ in S. Clearly, Per(„,S) is a subset of PrePer(„,S).

In our study, we will take the set S to be the rational field Q and the map „ to be
a degree-2 rational map of the form

—(z) = z
2 + c , „k,b(z) = kz + b

z
,

where k,b,c œ Q with k,b are nonzero. We will focus on the rational periodic points
of these maps. By Northcott [11], we know that these maps can have only finitely
many rational periodic points.

In terms of dynamical behaviour linear conjugation is very important as linearly
conjugate maps have the same dynamical behaviour. The reason why we focus
on these degree-2 rational maps is that a quadratic polynomial over Q is linearly
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conjugate to —(z) = z
2 + c for some c œ Q, and a degree 2 rational map „ over Q

has an automorphism group isomorphic to the cyclic group of order 2 if and only
if the map „ is linearly conjugate over Q to some map of the form „k,b(z) with
k œ Q\{0,≠1/2} and b œ Qú [7].

We have a complete classification of periodic points of —(z) with period length 1,2
and 3 [12, 16]. The polynomial —(z) cannot have a rational periodic point of period
4 [10] or period 5 [5]. Under the assumption of Birch-Swinnerton- Dyer conjecture,
Stoll proved that the polynomial —(z) cannot have a rational periodic point of period
6 [15]. For details about the Birch-Swinnerton- Dyer conjecture see [2]. Poonen has
conjectured that —(z) cannot have a rational periodic point of period > 6 [12]. So
in this thesis, we suppose that possible period lengths of rational points of —(z) are
1,2, or 3.

Following Manes’s study in [7], we know that „k,b(z) can have rational points of
period 1,2 or 4. It was proved „k,b(z) has no rational point of primitive period 3 [7].
She has also conjectured that if „(z) œQ(z) is a degree-2 rational map with Aut(„) ≥=
C2 then „ has no rational point of exact period greater than 4 [7]. Therefore, in
this study, we suppose that the period length of a rational periodic point of „k,b is
either 1,2, or 4.

Chapter zero contains a brief information about elliptic curves and hyperelliptic
curves as we use the theory to find rational points on these curves. All the definitions,
and important facts related to periodic points of —(z) and „k,b(z) can be found in the
first chapter. To find the periodic points of „k,b(z) we reproduce some dynatomic
polynomials of the map „k,b(z). All the computations related to the proof of the
fact that the number of rational periodic points of „k,b with period length four is at
most 4 are included in the second chapter.

In the third chapter, we parametrize all the maps —(z) and „k,b such that they share
the same periodic point p. Besides this, we find all the triples (k,b,c) satisfying

|Orb—(p)flOrb„k,b
(p)| > 2,

for some periodic point p œ Q. Moreover, we prove that the cardinality of the
intersection of Orb—(p) and Orb„k,b

(p) cannot be more than 2. We also show that
we can find infinitely many „k,b’s sharing same periodic point p, whereas we can
find at most three —(z) sharing same periodic point p.

Parametrization of all „k,b’s with respect to their periodic points with period length
1,2, and 4, and the list of all the maps „k1,b1 and „k2,b2 having simultaneous periodic
points is included in the fourth chapter. For the maps „k1,b1 and „k2,b2 we find all

2



possible four tuples (k1, b1,k2, b2) such that

|Orb„k1,b1
(p)flOrb„k2,b2

(p)| > 2,

for some periodic point p œ Q. In particular, we show that the cardinality of the
intersection is four implies that „k1,b1 = ±„k2,b2 .

In the last chapter, we share the following analogue of Baker and De Marco’s result
in [1] which states that for fixed c1, c2 œ C, the set of t œ C such that both c1 and
c2 are preperiodic for z

d + t is infinite if and only if c
d
1 = c

d
2 where d is greater than

one. Let
„t1,t2(z) = t1 · z + t2

z
.

We prove that a,b œ Q are periodic points of „t1,t2(z) for infinitely many (t1, t2) œ

Q◊Q with t1 · t2 ”= 0 if and only if a
2 = b

2.

In chapters three, four and five, we produce new results.
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0. Elliptic Curves

Let K be a perfect field and K be the algebraic closure of K. An elliptic curve has
an equation of the form

E : Y
2
Z +a1XY Z +a3Y Z

2 = X
3 +a2X

2
Z +a4XZ

2 +a6Z
3
,

where a1,a2, . . . ,a6 œ K. The point O = [0,1,0] on E is called the point at infinity. We
usually write this equation in non-homogeneous coordinates x = X/Z and y = Y/Z,
as follows

y
2 +a1xy +a3y = x

3 +a2x
2 +a4x+a6,

keeping in mind that E is described by the latter equation together with the point
at infinity. Let us define

b2 := a
2
1 +4a2,

b4 := a1a3 +2a4,

b6 := a
2
3 +4a6,

b8 := a
2
1a6 ≠a1a3a4 +4a2a6 +a2a

2
3 ≠a

2
4,

� := ≠b
2
2b8 ≠8b

3
4 ≠27b

2
6 +9b2b4b6.

The quantity � is called the discriminant of the Weierstrass equation for E. Note
that E defines an elliptic curve if and only if the discriminant is nonzero.

We define a composition law ü on E, so that this composition law turns E into a
group where the identity is the point at infinity. The rule for the composition law
is the following:

Let P, Q œ E be distinct points. We join P and Q using a line L. There will be
a third intersection point R of the line L with E due to Bézout Theorem. The
reflection of R about the x-axis is P üQ, see figure 1.

Note that for P = Q, we take L to be the tangent of E at P .
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Figure 1 Composition law on E

Let K be a number field. Then E(K) denotes the set of the points (x,y) œ K
2 on E

including the point at infinity. Note that, E(K) is a subgroup of E. The following
theorem gives the group structure of E(K):

Theorem 0.0.1 (Mordell-Weil). ([14], Chapter 8, §6, Theorem 6.7) The group

E(K) is finitely generated.

Hence, in particular, we have

E(Q) ≥= E(Q)tors ◊Zr
,

where E(Q)tors is the torsion subgroup which is finite and the rank r of E(Q) is a
nonnegative integer. By Mazur, we have the following theorem which describes all
possibilities for the torsion subgroup of E(Q):

Theorem 0.0.2 (Mazur, [8], [9]). Let E/Q be an elliptic curve. Then the torsion

subgroup E(Q)tors is isomorphic to one of the following groups:

Z/NZ with 1 6 N 6 10 or N = 12,

Z/2Z◊Z/2NZ with 1 6 N 6 4.

Let K be a field. Now, we consider a curve C defined by an equation of the form

v
2 = au

4 + bu
3 + cu

2 +du+ e,
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where a,b,c,d,e œ K with a is nonzero. Suppose we have a point P œ C(K). This
curve is an elliptic curve as long as au

4 + bu
3 + cu

2 +du+e doesn’t have a repeated
factor. Then the following theorem shows that this curve can be transformed to a
Weierstrass equation.

Theorem 0.0.3. ([17], Chapter 2, §5.3, Theorem 2.17) Let K be a field which is

not of characteristic 2. Consider the equation

v
2 = au

4 + bu
3 + cu

2 +du+ q
2

where a,b,c,d,q œ K. Let

x = 2q(v + q)+du

u2 , y = 4q
2(v + q)+2q(du+ cu

2)≠ (d2
u

2
/2q)

u3 .

Define

a1 = d/q, ,a2 = c≠ (d2
/4q

2), a3 = 2qb, a4 = ≠4q
2
a, a6 = a2a4 .

Then

y
2 +a1xy +a3y = x

3 +a2x
2 +a4x+a6.

For the inverse transformation we take

u = 2q(x+ c)≠ (d2
/2q)

y
, v = ≠q + u(ux≠d)

2q
.

There is an implementation for Theorem 0.0.3 in the software Magma [3] that we
are going to use in this thesis.

Let K be an algebraically closed field. Let g be a positive integer. Let h(x),f(x) œ

K[x] such that degf = 2g +1 and degh 6 g. Suppose that f is monic. The curve C

given by the equation
C : y

2 +h(x)y = f(x)

is called a hyperelliptic curve of genus g if it is nonsingular for all x,y œ K [17].
When g = 1, we obtain an elliptic curve in generalized Weierstrass form. For a curve
of genus greater than one, we have the following theorem.

Theorem 0.0.4 (Faltings, [4]). Let K be a number field. A curve of genus g > 1
over K has only finitely many rational points.
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1. Rational Maps of Degree 2

Throughout this chapter K will denote a field and K will denote the algebraic closure
of K. A rational map „(z) œ K(z) is a quotient of polynomials

„(z) = F (z)
G(z) = a0 +a1z + . . .+adz

d

b0 + b1z + . . .+ bdzd ,

with no common factors. The degree of the map is defined to be

deg„ = max{degF,degG},

[13]. The a�ne n-space over K is the set of n-tuples

An = {(x1,x2, . . . ,xn) : xi œ K}.

The projective n-space over K is

Pn = An+1
\{(0,0, . . . ,0)}/ ≥

where the equivalence relation (x0,x1, . . . ,xn) ≥ (y0,y1, . . . ,yn) if there exists ⁄ œ

K
ú such that xi = ⁄ ·yi for all i.

Let F be homogeneous polynomial in K[X0,X1, . . . ,Xn], and V = V (F ) be the zero
set of F . K(V ) is the set of elements of the form f1

f2
where the following conditions

satisfied

• f1,f2 are homogeneous polynomials of the same degree,

• f2 does not vanish identically on V ,

• f1
g1

≥
f2
g2

if f1 ·g2 ≠f2 ·g1 vanishes on V .

Let F1,F2 be homogeneous polynomials over K[X0,X1, . . . ,Xn]. Let V1 = V (F1),
V2 = V (F2) µ Pn be zero sets of these polynomials. A rational map „ from V1 to V2
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is of the form „ = (f0,f1, . . . ,fn) with f0,f1, . . . ,fn œ K(V1), and it is defined by

„(P ) = (f0(P ),f1(P ), . . . ,fn(P )).

The rational map „ is said to be regular at P œ V1 if there is a g œ K(V1) such that
gfi is defined at P for all i = 0,1, . . . ,n, and there exist some i such that gfi(P ) is
nonzero. A morphism is a rational map that is regular at every point. If V1 is a
smooth curve, then „ is a morphism ([14], Chapter 2, §2, Proposition 2.1). So if
„ : P1

æ P1 is a rational map defined over K, then „ is also a morphism.

A (discrete) dynamical system consists of a set S and a function „ : S æ S mapping
the set S to itself. This map permits iteration

„
n = „¶„¶ . . .¶„ (nth iterate of „).

Orbit of a point P in the set S under a mapping „ : S æ S is the set which consists
of the images of the point P under iterations „

n of the mapping „ for all n > 0. We
will denote it by Orb„(P ).

One of the main goals of dynamical systems is to classify the points P in the set S

according to their orbits O„(P ) [13]. A point P which has a finite orbit under a map
is called a preperiodic point. In this thesis, we take the set S to be the rational field
Q, we focus on rational periodic points of some degree 2 rational maps. Now, let us
give an equivalent definition of a preperiodic point besides definition of a periodic
point:

A point P œ S is preperiodic if there exist integers n > m > 0 such that „
n(P ) =

„
m(P ). A point P œ S is periodic if there exists an integer n > 0 such that „

n(P ) = P .
In this case we say that, P has period n. Here, if n is the smallest such integer, we
say that P has exact (primitive) period n.

When we consider the iterations of rational maps, we are not interested in the
dynamical behaviour of linear maps as it is a trivial task. Clearly, any iteration of
a linear map is again a linear map.

There is a great deal of work related to dynamical behaviour of quadratic poly-
nomials in which researchers focused on the quadratic polynomial of the form
—(z) = z

2 + c. Why they didn’t focus on quadratic polynomials of the form

–(z) = a2z
2 +a1z +a0,

instead they worked on dynamical behaviour of —(z) = z
2 +c? Because any quadratic
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polynomial is linearly conjugate to —(z) for some c.

The projective linear group of degree 2 over K is the quotient of the general linear
group (the group of 2◊2 nonsingular matrices) by the group of matrices of the form
k ·I where k œ K is nonzero and I denotes the 2◊2 identity matrix. We denote the
projective linear group of degree 2 over K by PGL2(K).

Definition 1.0.1. Let „ and Â be two rational maps. These maps are linearly

conjugate if there is some f œ PGL2(K) such that f
≠1

„f = Â. They are linearly

conjugate over K if there is some f œ PGL2(K) such that f
≠1

„f = Â.

Linearly conjugate maps have the same dynamical behaviour as

–
n(P ) = –

m(P ) if and only if —
n(f≠1(P )) = —

m(f≠1(P )),

where — = f
≠1

–f . Because,

—
n(f≠1(P )) = (f≠1

–f)n(f≠1(P ))

= f
≠1

–
n
f(f≠1(P ))

= f
≠1

–
n(P )

= f
≠1

–
m(P )

= f
≠1

–
m

f(f≠1(P ))

= (f≠1
–f)m(f≠1(P ))

= —
m(f≠1(P )).

where n > m > 0.

Let a0,a1,a2 œ Q with a2 ”= 0. Now, we will show that all quadratic polynomials of
the form

–(z) = a2z
2 +a1z +a0

are linearly conjugate over Q to

—(z) = z
2 + c

for some c œ Q. Let f(z) = dz + e. Then, we have f
≠1(z) = (z ≠ e)/d. Now,

f
≠1

–f(z) = f
≠1

–(dz + e)

= f
≠1(a2(dz + e)2 +a1(dz + e)+a0)

= f
≠1(a2d

2
z

2 +(2a2de+a1d)z +(a2e
2 +a1e+a0))

= (a2d
2
z

2 +(2a2de+a1d)z +(a2e
2 +a1e+a0 ≠ e)

d
.

9



The equality f
≠1

–f(z) = —(z) yields the following

d = 1
a2

, e = ≠
a1
2a2

, c = ≠a
2
1 +4a0a2 +2a1

4 .

Hence, in terms of dynamical behaviour, —(z) = z
2 + c is the representative of all

quadratic maps over Q[z]. We have a complete classification of periodic points of
—(z) with period length 1,2 and 3, see Theorem 1 in [12] and Theorem 1, 3 in [16].

Theorem 1.0.2. [12, 16] Let —(z) = z
2 + c where c œ Q.

a. —(z) has a rational fixed point if and only if c = 1/4 ≠ fl
2

for some fl œ Q. In

this case, there are exactly two, 1/2 + fl and 1/2 ≠ fl, unless fl = 0, in which

case they coincide.

b. —(z) has a rational point of period 2 if and only if c = ≠3/4 ≠ ‡
2

for some

‡ œ Qú
. In this case, there are exactly two, ≠1/2+‡ and ≠1/2≠‡.

c. —(z) has a rational point of period 3 if and only if

c = ≠
·

6 +2·
5 +4·

4 +8·
3 +9·

2 +4· +1
4·2(· +1)2

for some · œ Q, · ”= ≠1,0. In this case, there are exactly three,

x1 = ·
3 +2·

2 + · +1
2·(· +1)

x2 = ·
3

≠ · ≠1
2·(· +1)

x3 = ≠
·

3 +2·
2 +3· +1

2·(· +1)

and these are cyclically permuted by —(z).

Proof. In part (a),(b),(c), taking c as above and using the corresponding periodic
points we get one implication. Let p be a rational periodic point of —(z) with period
length 1. Then, we get

c = p≠p
2
.

On the other hand, roots of the equality

z
2 +p≠p

2 = z,

10



are p and 1 ≠ p. Hence —(z) has a rational fixed point if and only if c = p ≠ p
2 for

some p œ Q. In this case, rational fixed points are p and 1≠p. If we substitute

p = 1
2 +fl,

this completes the proof for part (a).

Let p be a rational periodic point of —(z) with exact period length 2. So we want p

to be a root of the polynomial

—
2(z)≠ z = z

4 +2cz
2

≠ z + c
2 + c.

If we factor this polynomial, we get

(z2 + c≠ z)(z2 + z + c+1).

Since we don’t want to have —(p) = p, we only want p to be the root of

(z2 + z + c+1).

Hence, c = ≠1≠p≠p
2. Now, other root of the polynomial (z2 +z ≠p≠p

2) is ≠1≠p.
So —(z) has a rational periodic point of exact period 2 if and only if c = ≠1≠p≠p

2

for some p œ Q. In this case, rational period 2 points of the map are p and ≠1 ≠ p.
If we substitute

p = ≠
1
2 +‡,

this completes the proof for part (b).

Let ’ œ Q be an exact period 3 point —(z). Assume that Ê := —(’) = ’
2 + c is not

equal to ’, that is ’ is not a rational fixed point of —(z). Since we have c = Ê ≠ ’
2,

we get
—(z) = z

2 +Ê ≠ ’
2
.

Now,

’ = —
3(’)

= —
2(Ê)

= —(Ê2 +Ê ≠ ’
2)

= Ê
4 +2Ê

3 +Ê
2

≠2Ê
2
’

2
≠2Ê’

2 + ’
4 +Ê ≠ ’

2
.(1.1)

Now, if we rearrange Equality (1.1) and divide by Ê ≠ ’, we get an equivalent form
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of
(Ê + ’)3 +(2≠2’)(Ê + ’)2 +(1≠2’)(Ê + ’)+1 = 0.

Let · = (Ê + ’). Using this in the previous equality, we get

’ = ·
3 +2·

2 + · +1
2·(· +1) ,

where · œQ\{≠1,0}. This is nothing but the formula of x1. So, we get the following
formulas

x2 = —(’) = Ê = · ≠x1,

c = Ê ≠ ’
2 = x2 ≠x

2
1,

x3 = —(x2).

This completes the proof of part c.

The polynomial —(z) cannot have a rational periodic point of period 4 [10] or period
5 [5]. Under the assumption of Birch-Swinnerton- Dyer conjecture, it was proved
that the polynomial —(z) cannot have a rational periodic point of period 6 [15].
Finally, Poonen has conjectured that —(z) cannot have a rational periodic point of
period > 6 [12]. So in this thesis, we suppose that possible period lengths of rational
points of —(z) are 1,2, or 3.

Let „ : P1
æ P1 be a morphism defined over the rational field Q. Automorphism

group of a rational map „ is defined as follows:

Aut(„) = {f œ PGL2(K)| „
f = „}

where „
f = f

≠1
„f [7].

Lemma 1.0.3. ([7], Lemma 1) If „ is a rational map of degree 2 over Q then Aut(„)
is isomorphic to the cyclic group of order 2 if and only if „ is linearly conjugate over

Q to some map of the form

„k,b(z) = kz + b

z

with k œ Q\{0,≠1/2} and b œ Qú
.

Furthermore, „k,b and „kÕ,bÕ are linearly conjugate over Q if and only if k = k
Õ

and

b/b
Õ

is a nonzero square in Q.

By the previous lemma, we see that determining the dynamical behaviour of the
map

„k,b(z) = kz + b

z

12



is equivalent to determine the dynamical behaviour of all degree-2 rational maps
over Q with automorphism group isomorphic to the cyclic group of order 2. This is
why we focus on the rational periodic points of the map „k,b.
By Manes, we have the following theorem and conjecture (see Proposition 1,2, The-
orem 3,4 and Conjecture 1 in [7]):

Theorem 1.0.4. [7] Let „k,b(z) = kz + b
z where k œ Qú

and b œ Qú
/(Qú)2

.

i. If b © (1≠k) modulo squares, then „k,b(z) has two finite rational fixed points;

otherwise, „k,b(z) has no finite rational fixed points.

ii. „k,b(z) has a rational point of primitive period 2 if and only if b © ≠(1 + k)
modulo squares.

iii. There is a one parameter family of such maps

„m(z) = 2mz

m2 ≠1 ≠
m

z(m4 ≠1)

where m œ Q \ {0,1,≠1}, with a rational point of primitive period 4. In this

case „k,b(z) has exactly four points of primitive period 4.

iv. Let „k,b(z) be with k,b œ Qú
. Then „k,b(z) has no rational point of primitive

period 3.

Conjecture 1.0.5. [7] If „(z) œ Q(z) is a degree-2 rational map with Aut(„) ≥= C2
then „ has no rational point of exact period greater than 4.

In this thesis, we suppose that the period length of a rational periodic point of „k,b

is either 1,2, or 4.

13



2. Dynatomic Polynomials of „k,b

Using the definition of periodic point is one way to find periodic points of a rational
map. Rather than using this way, we will use an easier and systematic way in which
we deal with a special type of polynomials the so called ’dynatomic polynomials’.

Definition 2.0.1. [13] Let „(z) œ K(z) be a rational function of degree d. We write

„
n = [Fn(x,y),Gn(x,y)]

where Fn,Gn œ K[x,y] are homogeneous polynomials of degree d
n

for any n> 0. The

n- period polynomial of „ is the polynomial

�„,n(x,y) = y ·Fn(x,y)≠x ·Gn(x,y).

The n
th

dynatomic polynomial of „ is the polynomial

�ú
„,n(x,y) =

Ÿ

k|n
(y ·Fk(x,y)≠x ·Gk(x,y))µ(n/k) =

Ÿ

k|n
(�„,k(x,y))µ(n/k)

where µ is the Möbius function which is defined as µ(1) = 1, µ(n) = (≠1)l
if

n = p1p2 . . .pl with pi, i œ {1,2, . . . , l} distinct primes and µ(n) = 0 if n is not square

free.

If „ is fixed, we write �n and �ú
n. If „(z) œ K[z] is a polynomial, then we dehomog-

enize [x,y] = [z,1] and write �n(z) and �ú
n(z).

Proposition 2.0.2. Let „(z) œ K(z) be a rational function of degree d. Let

„
n
,�„,n(x,y),�ú

„,n(x,y) be as in Definition 2.0.1. Then we have the following:

i. �„,n(P ) = 0 if and only if „
n(P ) = P .

ii. Suppose k and n are positive integers such that k divides n. If „
k(P ) = P ,

then „
n(P ) = P .

iii. If P is a root of �ú
„,n(x,y) then „

n(P ) = P .

14



Proof. Part (i): We first assume that P = [1,0]. Now, P is a root of �„,n(x,y) if
and only if

�„,n(P ) = ≠Gn(P ) = 0.

This equality holds if and only if Gn(P ) = 0 and

„
n(P ) = [Fn(P ),0] = [1,0] = P.

Now, assume that P = [a,1]. P is a root of �„,n(x,y) if and only if

�„,n(P ) = Fn(P )≠a ·Gn(P ) = 0.

This can happen if and only if

„
n(P ) = [Fn(P ),Gn(P )] = [a ·Gn(P ),Gn(P )] = [a,1] = P.

Part (ii): Obvious.
Part(iii): Follows from part (i) and the definition of n-th dynatomic polynomial.

By definition, every exact period n-point is a root of �ú
„,n(z). But it is important to

notice that �ú
„,n(z) can have roots whose periods divide n and strictly smaller than

n.

Now, for the convenience of the reader I am going to reproduce the dynatomic
polynomials of „k,b. First let us share some examples of dyanatomic polynomials
for quadratic polynomial —(z). As expected, this is straightforward:

�ú
—,1(z) = z

2
≠ z + c,

�ú
—,2(z) = z

2 + z + c+1,

�ú
—,3(z) = z

6 +z
5 +(3c+1)z4 +(2c+1)z3 +(3c

2 +3c+1)z2 +(c2 +2c+1)z+c
3 +2c

2 +c+1.

Now, we will find dynatomic polynomials �ú
„,1(z), �ú

„,2(z), �ú
„,3(z) and �ú

„,4(z) for

„k,b(z) = kz
2 + b

z
,

where k,b œ Q and k,b are nonzero. Since our „ = „k,b is fixed, we will simplify the
notation as in the Definition 2.0.1. To be able to find �ú

1(z), we will find „(x,y),
�1(x,y) and �ú

1(x,y), respectively.

„(x,y) = [kx
2 + by

2
,xy],
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�1(x,y) = y ·F1(x,y)≠x ·G1(x,y)

= y(kx
2 + by

2)≠x(xy)

= (k ≠1)x2
y + by

3
.(2.1)

Since �ú
1(x,y) = �1(x,y), we get

�ú
1(z) = (k ≠1)z2 + b.

To find �ú
2(z), we will find „

2(z), „
2(x,y), �2(x,y) and �ú

2(x,y), respectively.

„
2(z) = k

3
z

4 +(2k
2
b+ b)z2 +kb

2

kz3 + bz
,

„
2(x,y) = [k3

x
4 +(2k

2
b+ b)x2

y
2 +kb

2
y

4
,kx

3
y + bxy

3],

�2(x,y) = y ·F2(x,y)≠x ·G2(x,y)

= y(k3
x

4 +(2k
2
b+ b)x2

y
2 +kb

2
y

4)≠x(kx
3
y + bxy

3)

= (k3
≠k)x4

y +2k
2
bx

2
y

3 +kb
2
y

5
.(2.2)

Using Equalities (2.1) and (2.2), we get

�ú
2(x,y) =

Ÿ

k|2
(�k(x,y))µ(2/k)

= �µ(2/1)
1 (x,y) ·�µ(2/2)

2 (x,y)

= �2(x,y)
�1(x,y)

= (k3
≠k)x4

y +2k
2
bx

2
y

3 +kb
2
y

5

(k ≠1)x2y + by3

= (k2 +k)x2 +kby
2
.

Now, if we dehomogenize �ú
2(x,y), we get

(2.3) �ú
2(z) = (k2 +k)z2 +kb.

To find �ú
3(z), we will find „

3(z), „
3(x,y), �3(x,y) and �ú

3(x,y), respectively.
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„
3(z) = k7z8+(4bk6+2bk4+bk2)z6+(6b2k5+4b2k3+3b2k)z4+(b3+2b3k2+4b3k4)z2+b4k3

k4z7+(bk+3bk3)z5+(b2+3b2k2)z3+b3kz ,

„
3(x,y) = [(b4

k
3
y

8 + b
3
y

6
x

2 +2b
3
k

2
y

6
x

2 +4b
3
k

4
y

6
x

2 +3b
2
ky

4
x

4 +4b
2
k

3
y

4
x

4+

6b
2
k

5
y

4
x

4 + bk
2
y

2
x

6 +2bk
4
y

2
x

6 +4bk
6
y

2
x

6 +k
7
x

8),(b3
kxy

7 + b
2
x

3
y

5 +3b
2
k

2
x

3
y

5+

bkx
5
y

3 +3bk
3
x

5
y

3 +k
4
x

7
y)],

�3(x,y) = y ·F3(x,y)≠x ·G3(x,y),

(2.4) �3(x,y) = ≠k
4
x

8
y +k

7
x

8
y ≠ bkx

6
y

3 + bk
2
x

6
y

3
≠3bk

3
x

6
y

3 +2bk
4
x

6
y

3+

4bk
6
x

6
y

3
≠ b

2
x

4
y

5 +3b
2
kx

4
y

5
≠3b

2
k

2
x

4
y

5 +4b
2
k

3
x

4
y

5+

6b
2
k

5
x

4
y

5 + b
3
x

2
y

7
≠ b

3
kx

2
y

7 +2b
3
k

2
x

2
y

7 +4b
3
k

4
x

2
y

7 + b
4
k

3
y

9
.

Now,

�ú
3(x,y) =

Ÿ

k|3
(�k(x,y))µ(3/k)

= �µ(3/1)
1 (x,y) ·�µ(3/3)

3 (x,y)

= �3(x,y)
�1(x,y) .

Using Equalities (2.1) and (2.4), we get

�ú
3(x,y) = (k4 +k

5 +k
6)x6 +(bk +3bk

3 +2bk
4 +3bk

5)x4
y

2+

(b2
≠ b

2
k +2b

2
k

2 + b
2
k

3 +3b
2
k

4)x2
y

4 + b
3
k

3
y.

Now, if we dehomogenize �ú
3(x,y), then we get

�ú
3(z) = (k4 +k

5 +k
6)z6 +(bk +3bk

3 +2bk
4 +3bk

5)z4+

(b2
≠ b

2
k +2b

2
k

2 + b
2
k

3 +3b
2
k

4)z2 + b
3
k

3
.

Using similar process with the help of Mathematica, we also get

(2.5)
�ú

4(z) = (k10 +k
12)z12 +(bk5 +3bk

7 +8bk
9 +6bk

11)z10 +(b2
k

2 +6b
2
k

4 +13b
2
k

6+

22b
2
k

8 +15b
2
k

10)z8 +(3b
3
k +10b

3
k

3 +18b
3
k

5 +28b
3
k

7 +20b
3
k

9)z6+

(2b
4 +5b

4
k

2 +9b
4
k

4 +17b
4
k

6 +15b
4
k

8)z4 +(b5
k + b

5
k

3 +4b
5
k

5 +6b
5
k

7)z2 + b
6
k

6
.
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In ([7], Theorem 4), it was proved that �ú
4(z) can have at most 4 rational root. In

particular,
„k,b(z) = kz + b

z
,

cannot have more than four points of exact period 4. We will reproduce this result.

Theorem 2.0.3. Let

„k,b(z) = kz + b

z
,

where k,b œ Qú
. The map „k,b(z) cannot have more than four points of exact period

4.

Proof. If we factorize �ú
4(z), we get

(2.6) �ú
4(z) = �4(z) ·�4(z)

where
�4(z) = b

2
k +2bz

2 +2bk
2
z

2 +kz
4 +k

3
z

4,
�4(z) = b

4
k

5 + b
3
z

2 + b
3
k

2
z

2 + 2b
3
k

4
z

2 + 4b
3
k

6
z

2 + b
2
kz

4 + 3b
2
k

3
z

4 + 4b
2
k

5
z

4 +
6b

2
k

7
z

4 + bk
4
z

6 +2bk
6
z

6 +4bk
8
z

6 +k
9
z

8.
We claim that �4(z) does not have a rational root. Suppose that �4(z) = 0 for some
z œ Q. First let us substitute z

2 = t in �4(z) = 0, then we get

b
4
k

5 +(1+k
2 +2k

4 +4k
6)tb3 +(k+3k

3 +4k
5 +6k

7)t2
b
2 +(k4 +2k

6 +4k
8)t3

b+k
9
t
4 = 0.

If we change coordinates by using t = t1b, and divide this equality by b
4, this yields

k
5 +(1+k

2 +2k
4 +4k

6)t1 +(k +3k
3 +4k

5 +6k
7)t2

1 +(k4 +2k
6 +4k

8)t3
1 +k

9
t
4
1 = 0.

Since k œ Qú, a = k
≠1 exists. Multiplying last equality by a

9 gives us

a
4 +(a9 +a

7 +2a
5 +4a

3)t1 +(a8 +3a
6 +4a

4 +6a
2)t2

1 +(a5 +2a
3 +4a)t3

1 + t
4
1 = 0.

Now, if we change coordinates by using t1 = t2a and multiply the equality by a
≠4,

we finally get

(2.7) 1+(a6 +a
4 +2a

2 +4)t2 +(a6 +3a
4 +4a

2 +6)t2
2 +(a4 +2a

2 +4)t3
2 + t

4
2 = 0.

Note that the fact that �4(z) has a rational root implies that Equation (2.7) has a
rational root. But we will see that this doesn’t happen. If we solve this equality in
t2, solutions are
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s1 = 1
4(≠4≠2a

2
≠a

4)+ 1
4a

2Ô
4+a4 ≠

Ú
8a2+4a4+2a6+a8≠ (8a4+4a6+2a8+a10)Ô

4+a4

2
Ô

2 ,

s2 = 1
4(≠4≠2a

2
≠a

4)+ 1
4a

2Ô
4+a4 +

Ú
8a2+4a4+2a6+a8≠ (8a4+4a6+2a8+a10)Ô

4+a4

2
Ô

2 ,

s3 = 1
4(≠4≠2a

2
≠a

4)≠
1
4a

2Ô
4+a4 ≠

Ú
8a2+4a4+2a6+a8+ (8a4+4a6+2a8+a10)Ô

4+a4

2
Ô

2 ,

s4 = 1
4(≠4≠2a

2
≠a

4)≠
1
4a

2Ô
4+a4 +

Ú
8a2+4a4+2a6+a8+ (8a4+4a6+2a8+a10)Ô

4+a4

2
Ô

2 .

First let us consider s1. To be able to have s1 œ Q, we need to have

1
4a

2
Ò

4+a4 ≠

Ú
8a2 +4a4 +2a6 +a8 ≠

(8a4+4a6+2a8+a10)Ô
4+a4

2
Ô

2
œ Q.

Let
Ô

4+a4 = q, and

Ú
8a2+4a4+2a6+a8≠ (8a4+4a6+2a8+a10)Ô

4+a4
Ô

2 = B. Suppose that

(2.8) 1
4a

2
q ≠

B

2 = C

for some C œ Q. It turns out that q and B are both rational or both irrational.
Suppose q œ Q and B /œ Q. Using q œ Q in Equality (2.8) implies that B œ Q, a
contradiction. Similarly, q /œ Q and B œ Q also leads a contradiction. Now, we will
show that having q and B both irrational is also not possible, so that our only case
is q and B are both rational. Suppose q /œ Q. Note that, we have q

2
œ Q. If we

rearrange Equality (2.8) in terms of q, we get

(2.9) 1
4a

2
q ≠C = 1

2

ı̂ıÙ1
2

A

q2 · (a4 +2a2)≠
a2 · q2 · (a4 +2a2)

q

B

.

If we take square of the both sides of the Equality (2.9), and rearrange, we get

1
16a

4
q

2 +C
2

≠
1
8q

2(a4 +2a
2) = q · (1

2a
2
C ≠

1
8a

2(a4 +2a
2)).

Since C,a,q
2

œ Q, we get q œ Q, a contradiction.

Now, since in Equality (2.8) we want to have C œ Q, we must have
Ô

4+a4 = q for
some q œ Q+. If we take a

2 = s and rearrange this equality then we get

(q

2)2
≠ (s

2)2 = 1.
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So we have, q = 2(m2+1)
m2≠1 and s = 4m

m2≠1 for some m œ Q\{0,≠1,1}. We also want to
have,

(2.10)

Ú
8a2 +4a4 +2a6 +a8 ≠

(8a4+4a6+2a8+a10)Ô
4+a4

Ô
2

= B

for some B œ Q.
If we use

Ô
4+a4 = q and a

2 = s, and rearrange Equality (2.10) we get,

(8s+4s
2 +2s

3 + s
4)(q ≠ s

q
) = 2B

2
.

Now, if we write q and s in terms of m, this yields

16
(m≠1)2(m+1)4 · (m2 +2m≠1)(m2 +1)m = B

2

At this point, we have to investigate whether the hyperelliptic curve defined by

(2.11) y
2 = (m2 +2m≠1)(m2 +1)m

has rational points except for m œ {0,≠1,1}, or not. LMFDB [6] tells us this hyper-
elliptic curve does not have any rational points except for m = 0,≠1,1. Note that
for s2, we have the same result. If we consider s3 and s4 by taking

Ò
4+a4 = q and

Ú
8a2 +4a4 +2a6 +a8 + (8a4+4a6+2a8+a10)Ô

4+a4
Ô

2
= B,

we see that q and B must be both rational as before. If we parametrize
Ô

4+a4 = q

taking a
2 = s as before, and express q and s in terms of m, we get

16
(m≠1)4(m+1)2 · (m2 +2m≠1)(m2 +1)m = B

2
.

But this gives the same hyperelliptic curve defined by Equation (2.11). Therefore,
in the factorization of �ú

4(z) in Equation (2.6), �4(z) does not give any rational
root, and this implies that to investigate period 4 points of „k,b(z), it is enough to
concentrate on the roots of the factor �4(z) of the dynatomic polynomial �ú

4(z).
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3. Simultaneous Rational Periodic Points of —(z) and „k,b(z)

Let —(z) = z
2 + c and „k,b(z) = kz + b/z where k,b,c œ Q with k,b are nonzero. In

this chapter, we find families (k,b,c) for some parameter p which is periodic point
for —(z) and „k,b(z). Let us share our results in the following table:

Table 3.1 Simultaneous Rational Periodic Points of „k,b(z) and —(z)

„k,b(z) Periodic Points PL —(z) Periodic
Points PL

q+p
p z ≠

qp
z p,≠p 1 z

2 +p≠p
2

p,1≠p 1
q≠p

p z ≠
qp
z p,≠p 2 z

2 +p≠p
2

p,1≠p 1
2q

q2≠1z ≠
p2(q2+1)
q(q2≠1)z

p,p/q,≠p,≠p/q 4 z
2 +p≠p

2
p,1≠p 1

q+p
p z ≠

qp
z p,≠p 1 z

2
≠(p2 +p+1) p,≠p≠1 2

q≠p
p z ≠

qp
z p,≠p 2 z

2
≠(p2 +p+1) p,≠p≠1 2

2q
q2≠1z ≠

p2(q2+1)
q(q2≠1)z

p,p/q,≠p,≠p/q 4 z
2
≠(p2 +p+1) p,≠p≠1 2

q+p·
p·

z ≠
qp·
z p· ,≠p· 1 z

2 + c· p· 3
q≠p·

p·
z ≠

qp·
z p· ,≠p· 2 z

2 + c· p· 3
2q

q2≠1z ≠
p2

· (q2+1)
q(q2≠1)z

p· ,p· /q,≠p· ,≠p· /q 4 z
2 + c· p· 3

where:
c· = ≠

·
6 +2·

5 +4·
4 +8·

3 +9·
2 +4· +1

4·2(· +1)2 ,

p· œ {
·

3 +2·
2 + · +1

2·(· +1) ,
·

3
≠ · ≠1

2·(· +1) ,≠
·

3 +2·
2 +3· +1

2·(· +1) },

and PL is abbreviation of period length for the periodic points. This table arises
from the following theorem:

Theorem 3.0.1. Let —(z) = z
2 +c and „k,b(z) = kz2+b

z where k,b,c œ Q with k,b are

nonzero. Let m denote the period length of a periodic point of —(z). Let n denote the

period length of a periodic point of „k,b(z). Suppose m œ {1,2,3} and n œ {1,2,4}.

Let p œ Qú
be simultaneous periodic point of —(z) and „k,b(z). Then we have three
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families of one parameter maps in which k and b are in one of the following forms:

(k,b) = (q +p

p
,≠qp) for q œ Q\{0,≠p} :

In this case, p,≠p are the only rational fixed points of „k,b.

(k,b) = (q ≠p

p
,≠qp) for q œ Q\{0,p} :

In this case, (p,≠p) is the only 2-cycle of „k,b.

(k,b) = ( 2q

(q2 ≠1) ,≠
(q2 +1)

q · (q2 ≠1)p
2) for q œ Q\{0,≠1,+1} :

In this case, (p,
p
q ,≠p,≠

p
q ) is the only 4-cycle of „k,b.

Once we prove the following nine propositions, this theorem will immediately follow.

Proposition 3.0.2. Intersection of rational fixed points of —(z) and „k,b(z) is

nonempty if and only if k, b, and c are of the form:

(3.1) k = q +p

p
,

(3.2) b = ≠qp,

(3.3) c = p≠p
2
,

for some p,q œ Q such that p ”= 0, and q /œ {0,≠p} where p is a rational fixed point

of —(z) and „k,b(z).

Proof. If we take k,b,c as in the given form, we easily see that p is a rational fixed
point of —(z) and „k,b(z). Now, suppose —(z) has a rational fixed point. We know
that —(z) has a rational fixed point if and only if c = 1/4 ≠ fl

2 for some fl œ Q. In
this case, there are exactly two, 1/2+fl and 1/2≠fl, unless fl = 0, in which case they
coincide [12].
Case 1 : Suppose 1/2+fl is a rational fixed point of „k,b(z). So we want to have

�ú
1(1/2+fl) = 0
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that is,
(k ≠1)(1/2+fl)2 + b = 0.

Such a fl satisfies the following equation,

(k ≠1)/4+ b+(k ≠1)fl+(k ≠1)fl2 = 0.

where fl ”= ≠1/2. In this case, fl has the following form,

(3.4) fl = 1≠k ±2
Ô

b≠ bk

2(≠1+k) ,

whenever k ”= 1. Since fl is rational, we must have

(3.5)
Ô

b≠ bk = q

for some q œ Q+. Now using Equation (3.4) and (3.5) we see that our fixed point is
of the form,

(3.6) 1
2 +fl = ±q

k ≠1 .

From Equation (3.6), we get

(3.7) k = ±2q +2fl+1
2fl+1 .

If we take squares of the both sides of the Equality (3.5), and if we use Equality
(3.7), we get

b = ûq · (1+2fl)
2 .

Hence, if —(z) and „k,b(z) have the same rational fixed point 1
2 +fl, then k, b, and c

are of the form

k = 2q +2fl+1
2fl+1 ,

b = ≠q · (1+2fl)
2 ,

c = 1
4 ≠fl

2
,

for some fl, q œ Q such that fl ”= ≠
1
2 , and q ”= 0.

Case 2: Suppose 1/2≠fl is a fixed rational point of „k,b(z). So we want to have

�ú
1(1/2≠fl) = 0
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that is,
(k ≠1)(1/2≠fl)2 + b = 0.

Such a fl satisfies the following equation,

(k ≠1)/4+ b≠ (k ≠1)fl+(k ≠1)fl2 = 0.

where fl ”= 1/2. In this case, fl has the following form,

fl = ≠1+k ±2
Ô

b≠ bk

2(≠1+k) ,

whenever k ”= 1. Since fl is rational, we must have
Ô

b≠ bk = q for some q œ Q. If we
proceed as before, we see that if 1/2≠fl is a rational fixed point of —(z) and „k,b(z),
then k, b, and c are of the form

k = 2q ≠2fl+1
≠2fl+1 ,

b = ≠q · (1≠2fl)
2 ,

c = 1
4 ≠fl

2
,

for some fl, q œ Q such that fl ”= 1
2 and q ”= 0. Replacing fl by ≠fl for k,b, and c,

we get the same parametrization as in case 1. Substituting fl = p ≠ 1/2 in case 1
completes our proof.

Example 3.0.3. Let us take p = 3/2 and q = 1 in Proposition 3.0.2. By Equalities

(3.1), (3.2), and (3.3) we get,

—(z) = z
2

≠
3
4 ,

„k,b(z) = 5z

3 ≠
3
2z

.

Hence,
3
2 is a rational fixed point of —(z) and „k,b(z).

Proposition 3.0.4. Intersection of rational fixed points of —(z) and rational period

2 points of „k,b(z) is nonempty if and only if k, b, and c are of the form:

(3.8) k = q ≠p

p
,
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(3.9) b = ≠qp,

(3.10) c = p≠p
2
,

for some p,q œ Q such that p ”= 0, and q /œ {0,p} where p is a rational fixed point of

—(z) and a rational exact period 2 point of „k,b(z).

Proof. Suppose rational fixed points 1/2+fl and 1/2≠fl of —(z) are roots of �ú
2(z) =

(k2 +k)z2 +kb.
Case 1: Suppose 1/2 + fl is a root of �ú

2(z) = (k2 + k)z2 + kb where fl ”= ≠1/2. This
means,

(3.11) (k2 +k)(1
2 +fl)2 +kb = 0.

If we solve Equation (3.11) in fl we get

fl =
≠(1+k)±2

Ò
≠b(1+k)

2(1+k) ,

whenever k ”= ≠1. Since fl œ Q, we must have
Ò

≠b(1+k) = q for some q œ Q+. This
yields

(3.12) 1
2 +fl = ±q

1+k
.

If we rearrange Equality (3.12), we get

k = ±2q ≠2fl≠1
2fl+1 .

Using k with
Ò

≠b(1+k) = q, we also have

b = ûq · (1+2fl)
2 .

Hence, if 1
2 +fl is a rational fixed point of —(z) and a period 2 point of „k,b(z), then

k, b, and c are of the form

k = 2q ≠2fl≠1
2fl+1 ,
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b = ≠q · (1+2fl)
2 ,

c = 1
4 ≠fl

2
,

for some fl, q œ Q such that fl ”= ≠
1
2 and q ”= 0. Using these k and b, we get

„k,b(
1
2 +fl) = ≠(1

2 +fl) ”= 1
2 +fl,

as fl ”= ≠1/2. Therefore, 1
2 + fl is a fixed point of —(z) and an exact period 2 point

of „k,b(z) for k, b, and c as above. Substituting fl = p≠1/2 gives the result.

Case 2: Suppose 1/2 ≠ fl is a root of �ú
2(z) = (k2 + k)z2 + kb where fl ”= 1/2. If we

proceed, as in previous case, we see that if 1
2 ≠fl is a rational fixed point of —(z) and

a rational period 2 point of „k,b(z), then k, b, and c are of the form

k = 2q +2fl≠1
1≠2fl

,

b = ≠q · (1≠2fl)
2 ,

c = 1
4 ≠fl

2
,

for some fl, q œ Q such that fl ”= 1
2 and q ”= 0. Clearly, this parametrization is equiv-

alent to previous one.

Example 3.0.5. Let us take p = 3 and q = 1
2 in Proposition 3.0.4. By Equalities

(3.8), (3.9), and (3.10) we get,

—(z) = z
2

≠6,

„k,b(z) = ≠
5z

6 ≠
3
2z

.

Hence, 3 is a rational fixed point of —(z) and a rational exact period 2 point of

„k,b(z).

Proposition 3.0.6. Intersection of rational fixed points of —(z) and rational period

4 points of „k,b(z) is nonempty if and only if k, b, and c are of the form:

(3.13) k = 2m

m2 ≠1 ,
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(3.14) b = ≠
p

2
· (m2 +1)

m(m2 ≠1) ,

(3.15) c = p≠p
2
,

where p œ Qú
and m œ Q \ {0,±1}. In this case p is a rational fixed point of —(z)

and a rational exact period 4 point of „k,b(z).

Proof. Suppose rational fixed points 1/2+fl and 1/2≠fl of —(z) are roots of �4(z) =
b
2
k +2bz

2 +2bk
2
z

2 +kz
4 +k

3
z

4.

Case 1: Suppose 1/2+fl is a root of �4(z) = b
2
k +2bz

2 +2bk
2
z

2 +kz
4 +k

3
z

4 where
fl ”= ≠1/2. This means,

(3.16) b
2
k +2b(1/2+fl)2 +2bk

2(1/2+fl)2 +k(1/2+fl)4 +k
3(1/2+fl)4 = 0.

If we solve Equation (3.16) in fl we get

fl1 = 1
2

Q

ca≠1≠

ı̂ıÙ1+ ≠4b≠k ≠4bk2 ≠k3 ≠4
Ô

b2 + b2k2

k +k3

R

db ,

fl2 = 1
2

Q

ca≠1≠

ı̂ıÙ1+ ≠4b≠k ≠4bk2 ≠k3 +4
Ô

b2 + b2k2

k +k3

R

db ,

fl3 = 1
2

Q

ca≠1+
ı̂ıÙ1+ ≠4b≠k ≠4bk2 ≠k3 ≠4

Ô
b2 + b2k2

k +k3

R

db ,

fl4 = 1
2

Q

ca≠1+
ı̂ıÙ1+ ≠4b≠k ≠4bk2 ≠k3 +4

Ô
b2 + b2k2

k +k3

R

db .

If we rearrange these solutions, without loss of generality we get our possible solu-
tions in fl:

(3.17) fl1 = 1
2

Q

ca≠1≠

ı̂ıÙ≠4b · (1+k2 +
Ô

1+k2)
k · (1+k2)

R

db ,
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(3.18) fl2 = 1
2

Q

ca≠1≠

ı̂ıÙ≠4b · (1+k2 ≠
Ô

1+k2)
k · (1+k2)

R

db ,

(3.19) fl3 = 1
2

Q

ca≠1+
ı̂ıÙ≠4b · (1+k2 +

Ô
1+k2)

k · (1+k2)

R

db ,

(3.20) fl4 = 1
2

Q

ca≠1+
ı̂ıÙ≠4b · (1+k2 ≠

Ô
1+k2)

k · (1+k2)

R

db .

First let us consider fl1. Let

(3.21) s =
ı̂ıÙ≠4b · (1+k2 +

Ô
1+k2)

k · (1+k2) ,

where s ”= 0, and

(3.22) q =
Ò

1+k2.

Since fl1 œ Q, we need to have s œ Q. But then, this yields q œ Q by Equality (3.21).
Now using Equality (3.22), we have

(3.23) q = m
2 +1

m2 ≠1 ,

(3.24) k = 2m

m2 ≠1 ,

for some m œQ\{0,±1}. Now, using Equations (3.23) and (3.24) in Equation (3.21),
we get

b = ≠
s

2
· (m2 +1)

4m(m2 ≠1) .

By Equations (3.17) and (3.21) we also have,

1
2 +fl1 = ≠

s

2 .

Therefore, if ≠
s
2 is fixed point of —(z) and period 4 point of „k,b(z), then k, b and c
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are of the form
k = 2m

m2 ≠1 ,

b = ≠
s

2
· (m2 +1)

4m(m2 ≠1) ,

c = ≠

A
s

2 +2s

4

B

,

where s œ Qú and m œ Q\ {0,±1}. Using these k and b, we will show that ≠s/2 is
a rational exact period 4 point for „k,b. Let us make some calculations:

„k,b(≠
s

2) = ≠
s

2m
,

„
2
k,b(≠

s

2) = s

2 ,

„
3
k,b(≠

s

2) = s

2m
,

„
4
k,b(≠

s

2) = ≠
s

2 .

Note that ≠s/2 ”= ≠s/2m as m ”= 1 and ≠s/2 ”= s/2 as s ”= 0. Therefore ≠s/2 is a
rational exact period 4 point for „k,b. As an equivalent result, if p is a rational fixed
point of —(z) and a rational exact period 4 point of „k,b(z) then k, b, and c are of
the form

k = 2m

m2 ≠1 ,

b = ≠
p

2
· (m2 +1)

m(m2 ≠1) ,

c = p≠p
2
,

where p œ Qú and m œ Q \ {0,±1}. If we consider Equation (3.19) we get exactly
the same parametrization. Let us investigate what Equation (3.18) gives us:
Let

t =
ı̂ıÙ≠4b · (1+k2 ≠

Ô
1+k2)

k · (1+k2) ,

where t ”= 0, and
q =

Ò
1+k2.
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Since fl2 œ Q, we need to have t œ Q. But then, this yields q œ Q by Equation (3.18).
Note that, we have the same parametrizations for q and k as in Equations (3.23)
and (3.24). So we get,

b = ≠
t
2

·m(m2 +1)
4(m2 ≠1)

where t œ Qú and m œ Q\ {0,±1}. If we proceed as before, we see that if t is fixed
point of —(z) and period 4 point of „k,b(z) then k, b, and c are of the form

k = 2m

m2 ≠1 ,

b = ≠
t
2

·m(m2 +1)
(m2 ≠1) ,

c = t≠ t
2
,

where t œ Qú and m œ Q \ {0,±1}. But in this parametrization, replacing m by
≠1/m gives the same parametrization as before.

Case 2: Suppose 1/2≠fl is a root of �4(z) = b
2
k +2bz

2 +2bk
2
z

2 +kz
4 +k

3
z

4 where
fl ”= 1/2. This means,

(3.25) b
2
k +2b(1/2≠fl)2 +2bk

2(1/2≠fl)2 +k(1/2≠fl)4 +k
3(1/2≠fl)4 = 0.

If we solve Equation (3.25) in fl we get

fl1 = 1
2

Q

ca1≠

ı̂ıÙ≠4b · (1+k2 +
Ô

1+k2)
k · (1+k2)

R

db ,

fl2 = 1
2

Q

ca1≠

ı̂ıÙ≠4b · (1+k2 ≠
Ô

1+k2)
k · (1+k2)

R

db ,

fl3 = 1
2

Q

ca1+
ı̂ıÙ≠4b · (1+k2 +

Ô
1+k2)

k · (1+k2)

R

db ,

fl4 = 1
2

Q

ca1+
ı̂ıÙ≠4b · (1+k2 ≠

Ô
1+k2)

k · (1+k2)

R

db .

Proceeding as in Case 1, we get the same parametrization.
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Example 3.0.7. Let us take m = 2 and p = 2 in Proposition 3.0.6. By Equalities

(3.13), (3.14), and (3.15) we get,

—(z) = z
2

≠2,

„k,b(z) = 4z

3 ≠
10
3z

.

Hence, p = 2 is a rational fixed point of —(z) and a rational exact period 4 point of

„k,b(z).

Proposition 3.0.8. Intersection of rational period 2 points of —(z) and rational

fixed points of „k,b(z) is nonempty if and only k, b, and c are of the form:

(3.26) k = q +p

p
,

(3.27) b = ≠qp,

(3.28) c = ≠(p2 +p+1),

for some for some p œ Q\{0,≠1/2} and q œ Q\{0,≠p} where p is a rational period

2 point of —(z) and a rational fixed point of „k,b(z).

Proof. Suppose —(z) has a rational point of period 2. We know that —(z) has a
rational point of period 2 if and only if c = ≠3/4≠‡

2 for some ‡ œ Qú. In this case,
there are exactly two, ≠1/2+‡ and ≠1/2≠‡. [12]

Case 1 : Suppose ≠1/2 + ‡ is a rational fixed point of „k,b(z) where ‡ ”= 1/2. We
want to have

�ú
1(≠1/2+‡) = 0

that is,
(k ≠1)(≠1/2+‡)2 + b = 0.

Such a fl satisfies the following equation,

(k ≠1)/4+ b≠ (k ≠1)‡ +(k ≠1)‡2 = 0,
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where ‡ ”= 1/2. In this case, ‡ has the following form,

‡ = ≠1+k ±2
Ô

b≠ bk

2(≠1+k) ,

whenever k ”= 1. Since ‡ is rational, we must have

Ô
b≠ bk = q,

for some q œ Q. As a result, if ≠
1
2 + ‡ is a rational period 2 point of —(z) and a

rational fixed point of „k,b(z), then k,b and c are of the form,

k = 2q +2‡ ≠1
2‡ ≠1 ,

b = ≠q · (≠1+2‡)
2 ,

c = ≠
3
4 ≠‡

2
,

for some ‡, q œQ such that ‡ œQ\{0,1/2} and q ”= 0. Now, it is enough to substitute
‡ = p+1/2.

Case 2 : Suppose ≠1/2 ≠ ‡ is a rational fixed point of „k,b(z) where ‡ ”= 0. In this
case, ‡ has the following form,

‡ = 1≠k ±2
Ô

b≠ bk

2(≠1+k) ,

whenever k ”= 1. Hence, if ≠
1
2 ≠‡ is a rational period 2 point of —(z) and a rational

fixed point of „k,b(z), k,b and c are of the form,

k = 2q +2‡ +1
2‡ +1 ,

b = ≠q · (1+2‡)
2 ,

c = ≠
3
4 ≠‡

2
,

for some ‡, q œ Q such that ‡ œ Q \ {0,≠1/2} and q ”= 0. Substituting ≠‡ in place
of ‡, and ≠q in place of q, we get the same parametrization as in previous case.

Example 3.0.9. Let us take p = 1/2 and q = 1 in Proposition 3.0.8. By Equalities
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(3.26), (3.27), and (3.28) we get,

—(z) = z
2

≠
7
4 ,

„k,b(z) = 3z ≠
1
2z

.

Hence,
1
2 is a rational period 2 point of —(z) and a rational fixed point of „k,b(z).

Proposition 3.0.10. Intersection of rational period 2 points of —(z) and „k,b(z) is

nonempty if and only if k, b, and c are of the form:

(3.29) k = q ≠p

p
,

(3.30) b = ≠qp,

(3.31) c = ≠(p2 +p+1),

for some p œ Q\{0,≠1/2} and q œ Q\{0,p} where p is a rational period 2 point of

—(z) and „k,b(z).

Proof. Suppose rational period 2 points ≠1/2+‡ and ≠1/2≠‡ of —(z) are roots of
�ú

2(z) = (k2 +k)z2 +kb where ‡ ”= 0.
Case 1: Suppose ≠1/2+‡ is a root of �ú

2(z) = (k2 +k)z2 +kb where ‡ œQ\{0,1/2}.
This means,

(3.32) (k2 +k)(≠1
2 +‡)2 +kb = 0.

If we solve Equation (3.32) in ‡, then we get

‡ =
1+k ±2

Ò
≠b(1+k)

2(1+k) ,

whenever k ”= ≠1. Since ‡ œ Q, we must have
Ò

≠b(1+k) = q for some q œ Q+. This
yields

(3.33) ≠
1
2 +‡ = ±q

1+k
.
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If we rearrange Equality (3.33), then we get

k = ±2q ≠2‡ +1
2‡ ≠1 .

Using
Ò

≠b(1+k) = q and Equality (3.33), we also have

b = ûq · (≠1+2‡)
2 .

Hence, if ≠
1
2 + ‡ is a rational period 2 point of —(z) and „k,b(z), then k, b, and c

are of the form

k = 2q ≠2‡ +1
2‡ ≠1 ,

b = ≠q · (≠1+2‡)
2 ,

c = ≠
3
4 ≠‡

2
,

for some ‡, q œ Q such that ‡ œ Q\{0,
1
2} and q ”= 0. Note that, we have

„k,b(≠
1
2 +‡) = ≠(≠1

2 +‡) ”= ≠
1
2 +‡,

as ‡ ”= 1/2. We also have,

—(≠1
2 +‡) = ≠

1
2 ≠‡ ”= ≠

1
2 +‡,

as ‡ ”= 0. Therefore, ≠
1
2 + ‡ is a rational exact period 2 point of —(z) and „k,b(z)

for k, b, and c as above. Substituting ‡ = p+1/2 completes this case.

Case 2: Suppose ≠1/2 ≠ ‡ is a root of �ú
2(z) = (k2 + k)z2 + kb where ‡ œ Q \

{0,≠1/2}. This means,

(3.34) (k2 +k)(≠1
2 ≠‡)2 +kb = 0.

If we solve Equation (3.34) in ‡, then we get

‡ =
≠(1+k)±2

Ò
≠b(1+k)

2(1+k) ,

whenever k ”= ≠1. So, if ≠
1
2 ≠‡ is a rational period 2 point of —(z) and „k,b(z), then
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k, b, and c are of the form
k = 2q ≠2‡ ≠1

2‡ +1 ,

b = ≠q · (1+2‡)
2 ,

c = ≠
3
4 ≠‡

2
,

for some ‡, q œQ such that ‡ œQ\{0,≠
1
2} and q ”= 0. As before, this parametrization

is equivalent to previous one.

Example 3.0.11. Let us take p = 1 and q = ≠1 in Proposition 3.0.10. By Equalities

(3.29), (3.30), and (3.31) we get,

—(z) = z
2

≠3,

„k,b(z) = ≠2z + 1
z

.

In this case, 1 is a rational exact period 2 point of —(z) and „k,b(z).

Proposition 3.0.12. Intersection of rational period 2 points of —(x) and rational

period 4 points of „k,b(x) is nonempty if and only if k, b, and c are of the form:

(3.35) k = 2m

m2 ≠1 ,

(3.36) b = ≠
p

2
· (m2 +1)

m(m2 ≠1) ,

(3.37) c = ≠(p2 +p+1),

where p œ Q \ {0,≠1/2} and m œ Q \ {0,±1}. In this case, p is a rational exact

period 2 point of —(z) and a rational exact period 4 point „k,b(z).

Proof. Suppose rational period 2 points ≠1/2+‡ and ≠1/2≠‡ of —(z) are roots of
�4(z) = b

2
k +2bz

2 +2bk
2
z

2 +kz
4 +k

3
z

4 where ‡ ”= 0.

Case 1: Suppose ≠1/2+‡ is a root of �4(z) = b
2
k+2bz

2 +2bk
2
z

2 +kz
4 +k

3
z

4 where
‡ œ Q\{0,1/2}. This means,

(3.38) b
2
k +2b(≠1/2+‡)2 +2bk

2(≠1/2+‡)2 +k(≠1/2+‡)4 +k
3(≠1/2+‡)4 = 0.
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If we solve Equation (3.38) in ‡ we get

‡1 = 1
2

Q

ca1≠

ı̂ıÙ1+ ≠4b≠k ≠4bk2 ≠k3 ≠4
Ô

b2 + b2k2

k +k3

R

db ,

‡2 = 1
2

Q

ca1≠

ı̂ıÙ1+ ≠4b≠k ≠4bk2 ≠k3 +4
Ô

b2 + b2k2

k +k3

R

db ,

‡3 = 1
2

Q

ca1+
ı̂ıÙ1+ ≠4b≠k ≠4bk2 ≠k3 ≠4

Ô
b2 + b2k2

k +k3

R

db ,

‡4 = 1
2

Q

ca1+
ı̂ıÙ1+ ≠4b≠k ≠4bk2 ≠k3 +4

Ô
b2 + b2k2

k +k3

R

db .

If we rearrange these solutions, without loss of generality we get our possible solu-
tions in ‡:

(3.39) ‡1 = 1
2

Q

ca1≠

ı̂ıÙ≠4b · (1+k2 +
Ô

1+k2)
k · (1+k2)

R

db ,

(3.40) ‡2 = 1
2

Q

ca1≠

ı̂ıÙ≠4b · (1+k2 ≠
Ô

1+k2)
k · (1+k2)

R

db ,

(3.41) ‡3 = 1
2

Q

ca1+
ı̂ıÙ≠4b · (1+k2 +

Ô
1+k2)

k · (1+k2)

R

db ,

(3.42) ‡4 = 1
2

Q

ca1+
ı̂ıÙ≠4b · (1+k2 ≠

Ô
1+k2)

k · (1+k2)

R

db .
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First let us consider ‡1. Let

(3.43) s =
ı̂ıÙ≠4b · (1+k2 +

Ô
1+k2)

k · (1+k2) ,

where s ”= 0,1, and

(3.44) q =
Ò

1+k2.

Since ‡1 œ Q, we need to have s œ Q. But then, this yields q œ Q by Equality (3.43).
Now using Equality (3.44), we have

(3.45) q = m
2 +1

m2 ≠1 ,

(3.46) k = 2m

m2 ≠1 ,

for some m œQ\{0,±1}. Now, using Equations (3.45) and (3.46) in Equation (3.43),
we get

b = ≠
s

2
· (m2 +1)

4m(m2 ≠1) .

By Equations (3.39) and (3.43) we also have,

≠
1
2 +‡1 = ≠

s

2 .

Therefore, if ≠
s
2 is a rational period 2 point of —(z) and a rational period 4 point

of „k,b(z), then k, b, and c are of the form

k = 2m

m2 ≠1 ,

b = ≠
s

2
· (m2 +1)

4m(m2 ≠1) ,

c = ≠
(s2

≠2s+4)
4 ,

where s œ Q \ {0,1} and m œ Q \ {0,±1}. Since we have exactly the same
parametrization for k and b as in Proposition 3.0.6, we can easily conclude that
≠s/2 is an exact period 4 point for „k,b(z). As an equivalent result, if p is a rational
exact period 2 point of —(z) and a rational exact period 4 point of „k,b(z), then k,
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b, and c are of the form

k = 2m

m2 ≠1 ,

b = ≠
p

2
· (m2 +1)

m(m2 ≠1) ,

c = ≠(p2 +p+1),

where p œ Q\{0,≠1/2} and m œ Q\{0,±1}. We also have,

—(p) = ≠p≠1 ”= p,

as p ”= ≠
1
2 . Hence p is a rational exact period 2 point of —(z). Note that if we

consider Equation (3.41) we get exactly the same parametrization. Now let us
consider Equation (3.40). Let

t =
ı̂ıÙ≠4b · (1+k2 ≠

Ô
1+k2)

k · (1+k2) ,

where t ”= 0,1, and
q =

Ò
1+k2.

Since ‡2 œ Q, we need to have t œ Q. But then, this yields q œ Q by Equation (3.40).
Note that, we have the same parametrizations for q and k as in Equations (3.45)
and (3.46). So we get,

b = ≠
t
2

·m(m2 +1)
4(m2 ≠1)

where t œ Q\{0,1} and m œ Q\{0,±1}. If we proceed as before, we see that if t is
a rational period 2 point of —(z) and a rational period 4 point of „k,b(z) then k, b,
and c are of the form

k = 2m

m2 ≠1 ,

b = ≠
t
2

·m(m2 +1)
(m2 ≠1) ,

c = ≠(t2 + t+1),

where t œ Q \ {0,≠1/2} and m œ Q \ {0,±1}. Replacing m by ≠1/m gives the
previous parametrization. Note that if we consider Equation (3.42), then we get the
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same parametrization as well.

Case 2: This case gives the same parametrizations as in previous case.

Example 3.0.13. Let us take m = 3 and p = ≠1 in Proposition 3.0.12. By Equalities

(3.35), (3.36), and (3.37) we get,

—(z) = z
2

≠1,

„k,b(z) = 3z

4 ≠
5

12z
.

In this case, p = ≠1 is a rational exact period 2 point of —(z) and a rational exact

period 4 point of „k,b(z).

Proposition 3.0.14. Let

x1 = ·
3 +2·

2 + · +1
2·(· +1) ,

x2 = ·
3

≠ · ≠1
2·(· +1) ,

x3 = ≠
·

3 +2·
2 +3· +1

2·(· +1) ,

be period 3 points of —(z) where · œ Q, · ”= ≠1,0. Then, if xi is rational fixed point

of „k,b(z), then k, b, and c are of the form

(3.47) b = q ·x
2
i ,

(3.48) k = 1≠ q,

(3.49) c = ≠
·

6 +2·
5 +4·

4 +8·
3 +9·

2 +4· +1
4·2(· +1)2 ,

where q œ Q\{0,1} and · œ Q\{≠1,0} with i = 1,2,3.

Proof. Suppose —(z) has a rational point of period 3. By Poonen [12], —(z) has a
rational point of period 3 if and only if

c = ≠
·

6 +2·
5 +4·

4 +8·
3 +9·

2 +4· +1
4·2(· +1)2 ,
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for some · œ Q, · ”= ≠1,0. In this case, there are exactly three,

x1 = ·
3 +2·

2 + · +1
2·(· +1) ,

x2 = ·
3

≠ · ≠1
2·(· +1) ,

x3 = ≠
·

3 +2·
2 +3· +1

2·(· +1) ,

and these are cyclically permuted by —(z).

Case 1 : Suppose x1 is a rational fixed point of „k,b(z). So we want x1 to be the
root of the dynatomic polynomial �ú

1(z) = (k ≠1)z2 + b, that is, we want to have

±

Û
b

1≠k
= ·

3 +2·
2 + · +1

2·(· +1) ,

where k ”= 0,1, and b ”= 0. If we rearrange this equality we get

b

1≠k
= (·3 +2·

2 + · +1)2

4·2(· +1)2 .

Therefore, b and k are of the form

b = q ·
(·3 +2·

2 + · +1)2

4·2(· +1)2 ,

k = 1≠ q,

for some q œ Q\{0,1} and · œ Q\{≠1,0}.

Case 2: Suppose x2 is a rational fixed point of „k,b(z). Proceeding as in previous
case, we get

b = q ·
(·3

≠ · ≠1)2

4·2(· +1)2 ,

k = 1≠ q,

for some q œ Q\{0,1} and · œ Q\{≠1,0}.

Case 3: Suppose x3 is a rational fixed point of „k,b(z). Proceeding as before, we get
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b = q ·
(·3 +2·

2 +3· +1)2

4·2(· +1)2 ,

k = 1≠ q,

for some q œ Q\{0,1} and · œ Q\{≠1,0}.

Setting xi = p and replacing q by ≠q/p gives the result for Theorem 3.0.1.

Example 3.0.15. Let us take · = 1 and q = 16. Then x1 = 5/4, x2 = ≠1/4, and

x3 = ≠7/4. By Proposition 3.0.14; x1, x2 and x3 are rational period 3 points of

—(z) = z
2

≠29/16.

Moreover, x1 = 5
4 is a rational fixed point of

„k,b(z) = ≠15z + 25
z

,

x2 = ≠
1
4 is a rational fixed point of

„k,b(z) = ≠15z + 1
z

,

x3 = ≠
7
4 is a rational fixed point of

„k,b(z) = ≠15z + 49
z

.

Proposition 3.0.16. Let

x1 = ·
3 +2·

2 + · +1
2·(· +1) ,

x2 = ·
3

≠ · ≠1
2·(· +1) ,

x3 = ≠
·

3 +2·
2 +3· +1

2·(· +1) ,

be period 3 points of —(z) where · œ Q, · ”= ≠1,0. Then, if xi is a rational period 2
point of „k,b(z), then k, b, and c are of the form

b = ≠q ·x
2
i ,
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k = q ≠1,

c = ≠
·

6 +2·
5 +4·

4 +8·
3 +9·

2 +4· +1
4·2(· +1)2 ,

where q œ Q\{0,1} and · œ Q\{≠1,0}.

Proof. Suppose rational period 3 points x1,x2 and x3 of —(z) are roots of �ú
2(z) =

(k2 +k)z2 +kb.

Case 1: Suppose x1 is a root of �ú
2(z) = (k2 +k)z2 +kb. So we want to have

±

Û
≠b

k +1 = ·
3 +2·

2 + · +1
2·(· +1) .

where k ”= 0,≠1, and b ”= 0. If we rearrange this equality we get

b

k +1 = ≠(·3 +2·
2 + · +1)2

4·2(· +1)2 .

Therefore, k and b are of the form

b = ≠q ·
(·3 +2·

2 + · +1)2

4·2(· +1)2 ,

k = q ≠1,

for some q œ Q\{0,1} and · œ Q\{≠1,0}. Note that, in this case

„k,b

A
·

3 +2·
2 + · +1

2·(· +1)

B

= ≠
·

3 +2·
2 + · +1

2·(· +1) ”= ·
3 +2·

2 + · +1
2·(· +1) ,

as (·3 + 2·
2 + · + 1) ”= 0 for any · œ Q. Therefore x1 is a rational exact period 2

point of „k,b(z).

Case 2: Suppose x2 is a root of �ú
2(z) = (k2 + k)z2 + kb. Proceeding as in previous

case, k and b are of the form

b = ≠q ·
(·3

≠ · ≠1)2

4·2(· +1)2 ,

k = q ≠1,
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for some q œ Q\{0,1} and · œ Q\{≠1,0}. Note that, in this case

„k,b

A
·

3
≠ · ≠1

2·(· +1)

B

= ≠
·

3
≠ · ≠1

2·(· +1) ”= ·
3

≠ · ≠1
2·(· +1) ,

as (·3
≠ · ≠1) ”= 0 for any · œ Q. Therefore x2 is a rational exact period 2 point of

„k,b(z).

Case 3: Suppose x3 is a root of �ú
2(z) = (k2 +k)z2 +kb. We get

b = ≠q ·
(·3 +2·

2 +3· +1)2

4·2(· +1)2 ,

k = q ≠1,

for some q œ Q\{0,1} and · œ Q\{≠1,0}. In this case,

„k,b

A

≠
·

3 +2·
2 +3· +1

2·(· +1)

B

= ·
3 +2·

2 +3· +1
2·(· +1) ”= ≠

·
3 +2·

2 +3· +1
2·(· +1) ,

as (·3 + 2·
2 + 3· + 1) ”= 0 for any · œ Q. Therefore x3 is a rational exact period 2

point of „k,b(z).

Setting xi = p and replacing q by q/p gives the result for Theorem 3.0.1.

Example 3.0.17. Let us take · = 1/2 and q = 9. Then x1 = 17/12, x2 = ≠11/12,

and x3 = ≠25/12. By Proposition 3.0.16; x1, x2 and x3 are rational period 3 points

of —(z) = z
2

≠421/144.

Moreover, x1 = 17
12 is a rational exact period 2 point of

„k,b(z) = 8z ≠
289
16z

,

x2 = ≠
11
12 is a rational exact period 2 point of

„k,b(z) = 8z ≠
121
16z

,

x3 = ≠
25
12 is a rational exact period 2 point of

„k,b(z) = 8z ≠
625
16z

.
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Proposition 3.0.18. Let

x1 = ·
3 +2·

2 + · +1
2·(· +1) ,

x2 = ·
3

≠ · ≠1
2·(· +1) ,

x3 = ≠
·

3 +2·
2 +3· +1

2·(· +1) ,

be period 3 points of —(z) where · œ Q, · ”= ≠1,0. Then, if xi is a period 4 point of

„k,b(z), then k and b are of the form,

k = 2m

m2 ≠1 ,

b = ≠x
2
i ·

(m2 +1)
m(m2 ≠1) ,

where m œ Q\{0,±1}.

Proof. Suppose rational period 3 points x1,x2 and x3 of —(z) are roots of �4(z) =
b
2
k + 2bz

2 + 2bk
2
z

2 + kz
4 + k

3
z

4 where b and k are nonzero. First of all, let us find
the roots of �4(z). The roots of �4(z) are of the form,

z1 = ≠

ı̂ıÙ
≠

b

k +k3 ≠
bk2

k +k3 ≠

Ò
b2(1+k2)
k +k3 ,

z2 =
ı̂ıÙ

≠
b

k +k3 ≠
bk2

k +k3 ≠

Ò
b2(1+k2)
k +k3 ,

z3 = ≠

ı̂ıÙ
≠

b

k +k3 ≠
bk2

k +k3 +

Ò
b2(1+k2)
k +k3 ,

z4 =
ı̂ıÙ

≠
b

k +k3 ≠
bk2

k +k3 +

Ò
b2(1+k2)
k +k3 .

For b > 0, we have the following general structure,

z
ú
1,2 = ±

ı̂ıÙ≠b

k

A

1+ 1
Ô

1+k2

B

,

z
ú
3,4 = ±

ı̂ıÙ≠b

k

A

1≠
1

Ô
1+k2

B

.

44



Since for b < 0, we also have the same structure; for a nonzero b, the roots of �4(z)
have the above general structure.
Now, suppose x1 = z

ú
1,2. Then we get,

x1 = ±

ı̂ıÙ≠b

k

A

1+ 1
Ô

1+k2

B

.

Taking square of both sides of this equality yields,

(3.50) x
2
1 = ≠b

k

A

1+ 1
Ô

1+k2

B

.

Since x1 œ Q, we must have

(3.51)
Ò

1+k2 = q,

for some q œ Qú. Therefore, we get

(3.52) q = m
2 +1

m2 ≠1 ,

(3.53) k = 2m

m2 ≠1 ,

for some m œ Q\{0,±1}. If we use, Equalities (3.51), (3.52), and (3.53) in Equality
(3.50), we get

b = ≠x
2
1 ·

(m2 +1)
m(m2 ≠1) .

Note that taking k and b as above we get,

„k,b(x1) = x1
m

,

„
2
k,b(x1) = ≠x1,

„
3
k,b(x1) = ≠

x1
m

,

„
4
k,b(x1) = x1.

Since x1 ”= 0, and m œ Q \ {0,±1}, x1 is a rational exact period 4 point of „k,b(z).
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Note that setting x1 = p and replacing m by q gives the result for Theorem 3.0.1.

If we suppose x1 = z
ú
3,4, and apply the same process we get the same parametrization

for k, and the following parametrization for b:

b = ≠x
2
1 ·

m(m2 +1)
(m2 ≠1) ,

for some m œ Q \ {0,±1}. Substituting ≠1/m in place of m, we get the previous
parametrization for b.

Example 3.0.19. Let us take · = ≠1/2 and m = 2. Then x1 = ≠7/4, x2 = 5/4,

and x3 = ≠1/4. By Proposition 3.0.18; x1, x2 and x3 are rational period 3 points

of —(z) = z
2

≠29/16.

Moreover, x1 = ≠
7
4 is a rational exact period 4 point of

„k,b(z) = 4z

3 ≠
245
96z

,

x2 = 5
4 is a rational exact period 4 point of

„k,b(z) = 4z

3 ≠
125
96z

,

x3 = ≠
1
4 is a rational exact period 4 point of

„k,b(z) = 4z

3 ≠
5

96z
.

Now we will try to answer the following question: Can we find the triples (k,b,c)
such that — and „k,b satisfy the following: There exists a rational periodic point p

such that
|Orb—(p)flOrb„k,b

(p)| > 2.

With the following proposition we see that the answer is positive.

Proposition 3.0.20. Let —(z) and „k,b(z) as before. Suppose that possible period

lengths of rational points of —(z) are 1,2, or 3, besides the period length of a rational

periodic point of „k,b is either 1,2, or 4. If there exists a rational periodic point s

such that

|Orb—(s)flOrb„k,b
(s)| > 2,

then the triples (k,b,c) are in one of the following forms:

(k,b,c) =
A

2s(s+1)
2s+1 ,≠

s(s+1)[s2 +(s+1)2]
2s+1 ,≠(s2 + s+1)

B
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(k,b,c) =
A

≠
2s(s+1)

2s+1 ,
s(s+1)[s2 +(s+1)2]

2s+1 ,≠(s2 + s+1)
B

where s œ Q\{0,≠1/2,≠1}, and Orb—(s)flOrb„k,b
(s) = {s,≠s≠1},

(k,b,c) =
A

2m

m2 ≠1 , ≠x
2
1 ·

(m2 +1)
m · (m2 ≠1) ,≠

·
6 +2·

5 +4·
4 +8·

3 +9·
2 +4· +1

4·2(· +1)2

B

where m = ±
·3+2·2+·+1

·3≠·≠1 , and Orb—(s) fl Orb„k,b
(s) = {x1(·),x2(·)} with s œ

{x1(·),x2(·)},

(k,b,c) =
A

2m

m2 ≠1 , ≠x
2
1 ·

(m2 +1)
m · (m2 ≠1) ,≠

·
6 +2·

5 +4·
4 +8·

3 +9·
2 +4· +1

4·2(· +1)2

B

where m = ±
·3+2·2+·+1
·3+2·2+3·+1 , and Orb—(s) fl Orb„k,b

(s) = {x1(·),x3(·)} with s œ

{x1(·),x3(·)},

(k,b,c) =
A

2m

m2 ≠1 , ≠x
2
2 ·

(m2 +1)
m · (m2 ≠1) ,≠

·
6 +2·

5 +4·
4 +8·

3 +9·
2 +4· +1

4·2(· +1)2

B

where m = û
·3≠·≠1

·3+2·2+3·+1 , and Orb—(s) fl Orb„k,b
(s) = {x2(·),x3(·)} with s œ

{x2(·),x3(·)}, and

x1(·) = ·
3 +2·

2 + · +1
2·(· +1)

x2(·) = ·
3

≠ · ≠1
2·(· +1)

x3(·) = ≠
·

3 +2·
2 +3· +1

2·(· +1)
for some · œ Q, · ”= ≠1,0. Moreover, cardinality of the set

Orb—(s)flOrb„k,b
(s)

cannot be more than 2.

Proof. Case 1: Suppose s is a rational period 2 point of — and „k,b. So we have the
following cycles

(s,≠s≠1) and (s,≠s)
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for — and „k,b, respectively. But

≠s≠1 ”= ≠s.

In this case, the cardinality of the intersection is 1.

Case 2: Suppose s is a rational period 2 point of — and a rational period 4 point of
„k,b. So we have the following cycles

(s,≠s≠1) and
3

s,
s

m
,≠s,≠

s

m

4

for — and „k,b, respectively. We have,

≠s≠1 = s

m
if and only if m = ≠

s

s+1 , and

≠s≠1 = ≠
s

m
if and only if m = s

s+1 .

Hence,
|{s,≠s≠1}fl{s,

s

m
,≠s,≠

s

m
}| = 2, with

(k,b,c) =
A

2m

m2 ≠1 ,≠s
2

·
(m2 +1)

m · (m2 ≠1) ,≠(s2 + s+1)
B

,

where m = ≠
s

s+1 or m = s
s+1 . This yields the following triples:

(k,b,c) =
A

2s(s+1)
2s+1 ,≠

s(s+1)[s2 +(s+1)2]
2s+1 ,≠(s2 + s+1)

B

,

(k,b,c) =
A

≠
2s(s+1)

2s+1 ,
s(s+1)[s2 +(s+1)2]

2s+1 ,≠(s2 + s+1)
B

.

where s œ Q\{0,≠1/2,≠1}.

Case 3: Suppose —(z) has a rational point of period 3. Then, —(z) has a rational
point of period 3 if and only if

c = ≠
·

6 +2·
5 +4·

4 +8·
3 +9·

2 +4· +1
4·2(· +1)2 ,

for some · œ Q, · ”= ≠1,0. In this case, there are exactly three,

x1 = ·
3 +2·

2 + · +1
2·(· +1) ,
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x2 = ·
3

≠ · ≠1
2·(· +1) ,

x3 = ≠
·

3 +2·
2 +3· +1

2·(· +1) ,

and these are cyclically permuted by —(z) [12]. Suppose x1 is a rational period 2
point of „k,b(z). Now consider, {x1,x2,x3} fl {x1,≠x1}. Since · ”= 0,≠1, we get
≠x1 ”= x2, and ≠x1 ”= x3. Considering x2 and x3 to be the period 2 points of „k,b

give the same result: The cardinality of the intersection is 1, for this case.

Case 4: Suppose x1 is a rational period 4 point of „k,b(z). Consider,

{x1,x2,x3}fl{x1,
x1
m

,≠x1,≠
x1
m

},

for k = 2m

m2 ≠1 , b = ≠x
2
1 ·

(m2 +1)
m · (m2 ≠1) .

We know that the cases ≠x1 = x2 and ≠x1 = x3 are not possible. Note also that

x2 = x1
m

and x3 = ≠
x1
m

;

cannot happen simultaneously. Therefore

|{x1,x2,x3}fl{x1,
x1
m

,≠x1,≠
x1
m

}| = 2,

if the following cases hold:

x2 = x1
m

if and only if m = ·
3 +2·

2 + · +1
·3 ≠ · ≠1 ,

x2 = ≠
x1
m

if and only if m = ≠
·

3 +2·
2 + · +1

·3 ≠ · ≠1 ,

x3 = ≠
x1
m

if and only if m = ·
3 +2·

2 + · +1
·3 +2·2 +3· +1 ,

x3 = x1
m

if and only if m = ≠
·

3 +2·
2 + · +1

·3 +2·2 +3· +1 .

Suppose x2 is a rational period 4 point of „k,b(z). Consider,

{x1,x2,x3}fl{x2,
x2
m

,≠x2,≠
x2
m

},

for k = 2m

m2 ≠1 , b = ≠x
2
2 ·

(m2 +1)
m · (m2 ≠1) .
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We know that the cases ≠x2 = x1 and ≠x2 = x3 are not possible. Note also that

x1 = x2
m

and x3 = ≠
x2
m

;

cannot happen simultaneously. Therefore

|{x1,x2,x3}fl{x2,
x2
m

,≠x2,≠
x2
m

}| = 2,

if the following cases hold:

x1 = x2
m

if and only if m = ·
3

≠ · ≠1
·3 +2·2 + · +1 ,

x1 = ≠
x2
m

if and only if m = ≠
·

3
≠ · ≠1

·3 +2·2 + · +1 ,

x3 = x2
m

if and only if m = ≠
·

3
≠ · ≠1

·3 +2·2 +3· +1 ,

x3 = ≠
x2
m

if and only if m = ·
3

≠ · ≠1
·3 +2·2 +3· +1 .

Suppose x3 is a rational period 4 point of „k,b(z). Consider,

{x1,x2,x3}fl{x3,
x3
m

,≠x3,≠
x3
m

},

for k = 2m

m2 ≠1 , b = ≠x
2
3 ·

(m2 +1)
m · (m2 ≠1) .

We know that the cases ≠x3 = x1 and ≠x3 = x2 are not possible. Note also that

x1 = x3
m

and x2 = ≠
x3
m

;

cannot happen simultaneously. Therefore

|{x1,x2,x3}fl{x3,
x3
m

,≠x3,≠
x3
m

}| = 2,

if the following cases hold:

x1 = x3
m

if and only if m = ≠
·

3 +2·
2 +3· +1

·3 +2·2 + · +1 ,

x1 = ≠
x3
m

if and only if m = ·
3 +2·

2 +3· +1
·3 +2·2 + · +1 ,

x2 = x3
m

if and only if m = ≠
·

3 +2·
2 +3· +1

·3 ≠ · ≠1 ,
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x2 = ≠
x3
m

if and only if m = ·
3 +2·

2 +3· +1
·3 ≠ · ≠1 .

Note that from these twelve m’s we get only six „k,b s. More precisely, taking
m = xi/xj for

k = 2m

m2 ≠1 , b = ≠x
2
i ·

(m2 +1)
m · (m2 ≠1) , and

taking m = ≠xj/xi for

k = 2m

m2 ≠1 , b = ≠x
2
j ·

(m2 +1)
m · (m2 ≠1) .

give the same „k,b(z).

Example 3.0.21. For each triple in Proposition 3.0.20, taking following values

respectively, we get the following maps and cycles:

Take s = 3. Then, for

—(z) = z
2

≠13 and „k,b(z) = 24z

7 ≠
300
7z

,

we have the following cycles, respectively:

(3,≠4) and (3,≠4,≠3,4)

For

—(z) = z
2

≠13 and „k,b(z) = ≠
24z

7 + 300
7z

,

we have the following cycles, respectively:

(3,≠4) and (3,4,≠3,≠4)

Take · = 2. Then, for

—(z) = z
2

≠
301
144 and „k,b(z) = 95z

168 ≠
18335
24192z

,

we have the following cycles, respectively:

319
12 ,

5
12 ,≠

23
12

4
and

319
12 ,

5
12 ,≠

19
12 ,≠

5
12

4
.

For

—(z) = z
2

≠
301
144 and „k,b(z) = ≠

95z

168 + 18335
24192z

,
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we have the following cycles, respectively:

319
12 ,

5
12 ,≠

23
12

4
and

319
12 ,≠

5
12 ,≠

19
12 ,

5
12

4
.

For

—(z) = z
2

≠
301
144 and „k,b(z) = ≠

437z

84 + 194465
12096z

,

we have the following cycles, respectively:

319
12 ,

5
12 ,≠

23
12

4
and

319
12 ,

23
12 ,≠

19
12 ,≠

23
12

4
.

For

—(z) = z
2

≠
301
144 and „k,b(z) = 437z

84 ≠
194465
12096z

,

we have the following cycles, respectively:

319
12 ,

5
12 ,≠

23
12

4
and

319
12 ,≠

23
12 ,≠

19
12 ,

23
12

4
.

For

—(z) = z
2

≠
301
144 and „k,b(z) = 115z

252 ≠
31855
36288z

,

we have the following cycles, respectively:

319
12 ,

5
12 ,≠

23
12

4
and

3 5
12 ,≠

23
12 ,≠

5
12 ,

23
12

4
.

For

—(z) = z
2

≠
301
144 and „k,b(z) = ≠

115z

252 + 31855
36288z

,

we have the following cycles, respectively:

319
12 ,

5
12 ,≠

23
12

4
and

3 5
12 ,

23
12 ,≠

5
12 ,≠

23
12

4
.
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4. Simultaneous Rational Periodic Points of „k1,b1 and „k2,b2

The aim of this chapter is to characterize rational periodic points of „k,b and to
find families (k1, b1,k2, b2) for some parameters related to common rational periodic
points of the maps „k1,b1(z) and „k2,b2(z) where

„k1,b1(z) = k1z + b1
z

,„k2,b2(z) = k2z + b2
z

with k1, b1,k2, b2 œ Qú
.

Furthermore, we will find four tuples (k1, b1,k2, b2) such that „k1,b1 and „k2,b2 satisfy
the following: There exists a rational periodic point p such that

|Orb„k1,b1
(p)flOrb„k2,b2

(p)| > 2.

The following theorem gives the characterization of rational periodic points of „k,b(z)
for periods 1, 2, and 4.

Theorem 4.0.1. Let p œ Qú
be a periodic point of „k,b(z). Suppose that possible

period lengths of rational points of „k,b is either 1,2, or 4. Then we have three

families of one parameter maps in which (k,b) is in one of the following forms:

(k,b) = ((1≠ s),(s ·p
2)) for some s œ Q\{0,1} :

In this case, p,≠p are the only rational fixed points of „k,b.

(k,b) = ((s≠1),(≠s ·p
2)) for some s œ Q\{0,1} :

In this case, (p,≠p) is the only 2-cycle of „k,b.

(k,b) = ( 2s

(s2 ≠1) ,≠
(s2 +1)

s · (s2 ≠1)p
2) for some s œ Q\{0,±1} :

In this case, (p,
p
s ,≠p,≠

p
s) is the only 4-cycle of „k,b. In particular, there are in-

finitely many „k,b(z) sharing the same rational periodic point p.
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Proof. Let p œ Qú be a rational fixed point of „k,b(z). We want p to be a root of the
dynatomic polynomial �ú

1(z) = (k ≠1)z2 + b. So, we need to have

±

Û
b

1≠k
= p,

where k œ Q\{0,1}, b œ Qú, that is,

b

1≠k
= p

2
.

Hence, if p is a rational fixed point of „k,b(z), then k and b are of the form

b = s ·p
2
,

k = 1≠ s,

for some s œ Q\{0,1}.

Let p œ Qú be a rational period 2 point of „k,b(z). Now, we want p to be a root of
the dynatomic polynomial

�ú
2(z) = (k2 +k)z2 +kb.

So, we need to have

±

Û
≠b

1+k
= p

where k œ Q\{0,≠1}, b œ Qú, that is,

≠b

1+k
= p

2
.

Hence, if p is a period 2 point of „k,b(z), then k and b are of the form

b = ≠s ·p
2
,

k = s≠1,

for some s œ Q\{0,1}. In this case, we have

„k,b(p) = ≠p.

Since p ”= 0, p ”= ≠p. This means p is a rational exact period 2 point of „k,b(z).
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Let p œ Qú be a rational period 4 point of „k,b(z). Now, we want p to be a root
of �4(z) = b

2
k + 2bz

2 + 2bk
2
z

2 + kz
4 + k

3
z

4. As we mentioned earlier, the roots of
�4(z) have the following general structure,

z
ú
1,2 = ±

ı̂ıÙ≠b

k

A

1+ 1
Ô

1+k2

B

,

z
ú
3,4 = ±

ı̂ıÙ≠b

k

A

1≠
1

Ô
1+k2

B

,

where b and k are nonzero. So, we have two cases, either p = z
ú
1,2 or p = z

ú
3,4. Taking

q =
Ô

1+k2, we have the same parametrizations for q and k as in Equations (3.52)
and (3.53). Now if p = z

ú
1,2, we have

p = ±

ı̂ıÙ≠b

k

A

1+ 1
Ô

1+k2

B

.

If we take q and k as in Equations (3.52) and (3.53) in this equation, we get

p
2 = ≠b

(m2
≠1)m

(m2 +1) ,

where m œ Q\{0,±1}. If p = z
ú
3,4, we have

p = ±

ı̂ıÙ≠b

k

A

1≠
1

Ô
1+k2

B

.

If we take q and k as in Equations (3.52) and (3.53) in this equation, we get

p
2 = ≠b

(m2
≠1)

m(m2 +1) ,

where m œ Q \ {0,±1}. Therefore, if p is a period 4 point of „k,b(z), then k and b

have one of the following forms; either

k = 2m

m2 ≠1 ,

b
ú = ≠p

2
·

(m2 +1)
m(m2 ≠1) ,

or
k = 2m

m2 ≠1 ,
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(4.1) b
úú = ≠p

2
·
m(m2 +1)
(m2 ≠1) ,

where m œ Q \ {0,±1}. Replacing m by ≠1/m in Equality (4.1), we get b
ú. Note

that using k and b
ú, we get

„k,b(p) = p

m
,

„
2
k,b(p) = ≠p,

„
3
k,b(p) = ≠

p

m
,

„
4
k,b(p) = p.

Since m œ Q \ {0,±1}, we guarantee that p is a rational exact period 4 point of
„k,b(z).

The following table in which we see families (k1, b1,k2, b2) such that the maps
„k1,b1(z) and „k2,b2(z) having a simultaneous rational periodic point p is an im-
mediate corollary of Theorem 4.0.1 where

„k1,b1(z) = k1z + b1
z

,„k2,b2(z) = k2z + b2
z

with k1, b1,k2, b2 œ Qú
.

Table 4.1 Simultaneous Rational Periodic Points of „k1,b1 and „k2,b2

(k1, b1) Periodic
Points L (k2, b2) Periodic

Points L

(1≠ s1, s1 ·p
2) p,≠p 1 (1≠ s2, s2 ·p

2) p,≠p 1
(s1 ≠1,≠s1 ·p

2) p,≠p 2 (s2 ≠1,≠s2 ·p
2) p,≠p 2

( 2s1
s2

1≠1 ,≠
p2(s2

1+1)
s1(s2

1≠1)) p,
p
s1

,≠p,≠
p
s1

4 ( 2s2
s2

2≠1 ,≠
p2(s2

2+1)
s2(s2

2≠1)) p,
p
s2

,≠p,≠
p
s2

4

(1≠ s1, s1 ·p
2) p,≠p 1 (s2 ≠1,≠s2 ·p

2) p,≠p 2
(1≠ s1, s1 ·p

2) p,≠p 1 ( 2s2
s2

2≠1 ,≠
p2(s2

2+1)
s2(s2

2≠1)) p,
p
s2

,≠p,≠
p
s2

4

(s1 ≠1,≠s1 ·p
2) p,≠p 2 ( 2s2

s2
2≠1 ,≠

p2(s2
2+1)

s2(s2
2≠1)) p,

p
s2

,≠p,≠
p
s2

4

Note that L denotes the period length of the periodic points in the table.

Remark 4.0.2. Let p be a rational fixed point of „k1,b1(z) and „k2,b2(z). Then,

k1, b1,k2 and b2 are as in the table for some s1, s2 œ Q \ {0,1}. Note that s1 ”= s2
implies that k1 ”= k2 and b1 ”= b2.
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Example 4.0.3. Let p = 4
5 be a rational fixed point of „k1,b1(z) and „k2,b2(z). Let

us take s1 = 25
8 and s2 = 50. Then, we get

„k1,b1 = ≠
17z

8 + 2
z

, „k2,b2 = ≠49z + 32
z

with cyles

(4
5),(≠4

5).

Remark 4.0.4. Let p be a rational fixed point of „k1,b1(z) and a rational exact

period 2 point of „k2,b2(z). Then, k1, b1,k2 and b2 are as in the table for some

s1, s2 œ Q \ {0,1}. In this case, k1 ”= k2 or b1 ”= b2. Suppose not, that is, suppose

k1 = k2 and b1 = b2. Then, we get

(4.2) 1≠ s1 = s2 ≠1,

(4.3) s1 ·p
2 = ≠s2 ·p

2
.

Since p ”= 0, by Equation (4.3) we get s1 = ≠s2. Using this in Equation (4.2) yields

2 = 0, a contradiction.

Example 4.0.5. Let p = 2
3 be a rational fixed point of „k1,b1(z) and a rational exact

period 2 point of „k2,b2(z). Let us take s1 = 9
2 and s2 = 9. Then, we get

„k1,b1 = ≠
7z

2 + 2
z

with cycles (2
3),(≠2

3),

„k2,b2 = 8z ≠
4
z

with the cyle (2
3 ,≠

2
3).

Remark 4.0.6. Let p be a rational fixed point of „k1,b1(z) and a rational exact period

4 point of „k2,b2(z). Then, k1, b1,k2 and b2 are as in the table where s1 œ Q\ {0,1}

and s2 œ Q \ {0,±1}. In this case, k1 ”= k2 or b1 ”= b2. Suppose on the contrary.

Then,

1≠ s1 = 2s2
s2

2 ≠1 ,

s1 ·p
2 = ≠p

2
·

(s2
2 +1)

s2(s2
2 ≠1) .

Using these equalities together yields

1≠
2s2

(s2
2 ≠1) = ≠

(s2
2 +1)

s2(s2
2 ≠1)

57



and we get s2 = ±1. This contradicts with the choice of s2.

Example 4.0.7. Let p = 3
2 be a rational fixed point of „k1,b1(z) and a rational exact

period 4 point of „k2,b2(z). Let us take s1 = 8 and s2 = 2. Then, we get

„k1,b1 = ≠7z + 18
z

with cycles (3
2),(≠3

2),

„k2,b2 = 4z

3 ≠
15
8z

with the cycle (3
2 ,

3
4 ,≠

3
2 ,≠

3
4).

Remark 4.0.8. Let p be a rational exact period 2 point of „k1,b1(z) and „k2,b2(z).
Then, k1, b1,k2 and b2 are as in the table for some s1, s2 œ Q \ {0,1}. In this case,

s1 ”= s2 implies that k1 ”= k2 and b1 ”= b2.

Example 4.0.9. Let p = 3 be a rational exact period 2 point of „k1,b1(z) and

„k2,b2(z). Let us take s1 = ≠1 and s2 = 2. Then, we get

„k1,b1 = ≠2z + 9
z

, „k2,b2 = z ≠
18
z

with the cycle

(3,≠3).

Remark 4.0.10. Let p be a rational exact period 2 point of „k1,b1(z) and a rational

exact period 4 point of „k2,b2(z). Then, k1, b1,k2 and b2 are as in the table where

s1 œ Q\{0,1} and s2 œ Q\{0,±1}. In this case, k1 ”= k2 or b1 ”= b2. Suppose on the

contrary. Then,

s1 ≠1 = 2s2
s2

2 ≠1 ,

≠s1 ·p
2 = ≠p

2
·

(s2
2 +1)

s2(s2
2 ≠1) .

Using these equalities together yields

1+ 2s2
s2

2 ≠1 = (s2
2 +1)

s2(s2
2 ≠1)

and we get s2 = ±1. This contradicts with the choice of s2.

Example 4.0.11. Let p = ≠
2
5 be a rational exact period 2 point of „k1,b1(z) and a

rational exact period 4 point of „k2,b2(z). Let us take s1 = 25
2 and s2 = 1

3 . Then, we

get

„k1,b1 = 23z

2 ≠
2
z

, with the cycle (≠2
5 ,

2
5),

„k2,b2 = ≠
3z

4 + 3
5z

with the cyle (≠2
5 ,≠

6
5 ,

2
5 ,

6
5).

58



Remark 4.0.12. Let p be a rational exact period 4 point of „k1,b1(z) and „k2,b2(z).
Then, k1, b1,k2 and b2 are as in the table where s1, s2 œ Q \ {0,±1}. In this case,

s1 ”= s2 implies that k1 ”= k2 or b1 ”= b2. Suppose k1 = k2 and b1 = b2. Then, we get

(4.4) s1
s2

1 ≠1 = s2
s2

2 ≠1 ,

(4.5) (s2
1 +1)

s1(s2
1 ≠1) = (s2

2 +1)
s2(s2

2 ≠1) .

By Equation (4.4), we get s1 = s2 or s1s2 = ≠1. Now, let us use s1s2 = ≠1 in

Equation (4.5). This gives us s1 = ±1, s2 = ±1, but this is not the case by the

choice of s1, s2.

Example 4.0.13. Let p = 3
5 be a rational exact period 4 point of „k1,b1(z) and

„k2,b2(z). Let us take s1 = 2 and s2 = ≠2. Then, we get

„k1,b1 = 4z

3 ≠
3

10z
with the cycle (3

5 ,
3
10 ,≠

3
5 ,≠

3
10),

„k2,b2 = ≠
4z

3 + 3
10z

with the cyle (3
5 ,≠

3
10 ,≠

3
5 ,

3
10).

The following proposition gives conditions on the four tuples (k1, b1,k2, b2) such that
there exists a rational periodic point p such that

|Orb„k1,b1
(p)flOrb„k2,b2

(p)| > 2.

Proposition 4.0.14. Let

„k1,b1(z) = k1z + b1
z

, „k2,b2(z) = k2z + b2
z

.

with k1, b1,k2, b2 œ Qú
. Suppose that possible period lengths of „k1,b1 and „k2,b2 are

either 1,2, or 4. If there exists a rational periodic point p such that

|Orb„k1,b1
(p)flOrb„k2,b2

(p)| > 2,

then we have the following four tuples (k1, b1,k2, b2):

(k1, b1,k2, b2) = (s1 ≠1,≠s1 ·p
2
, s2 ≠1,≠s2 ·p

2),
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for some distinct s1, s2 œ Q\{0,1} where

Orb(„k1,b1)(p)flOrb(„k2,b2)(p) = {p,≠p}.

(k1, b1,k2, b2) =
A

s1 ≠1,≠s1 ·p
2
,

2s2
(s2

2 ≠1) ,≠p
2

·
(s2

2 +1)
s2(s2

2 ≠1)

B

,

for some s1 œ Q\{0,1}, and s2 œ Q\{0,±1} where

Orb(„k1,b1)(p)flOrb(„k2,b2)(p) = {p,≠p}.

(k1, b1,k2, b2) =
A

2s1
(s2

1 ≠1) ,≠p
2

·
(s2

1 +1)
s1(s2

1 ≠1) ,
2s2

(s2
2 ≠1) ,≠p

2
·

(s2
2 +1)

s2(s2
2 ≠1)

B

,

where s1, s2 œ Q\{0,±1} and

Orb(„k1,b1)(p)flOrb(„k2,b2)(p) = {p,≠p} for s1 ”= ±s2.

(k1, b1,k2, b2) =
A

2s1
(s2

1 ≠1) ,≠p
2

·
(s2

1 +1)
s1(s2

1 ≠1) ,≠
2s1

(s2
1 ≠1) ,p

2
·

(s2
1 +1)

s1(s2
1 ≠1)

B

,

where s1 œ Q\{0,±1} and

Orb(„k1,b1)(p)flOrb(„k2,b2)(p) = {p,p/s1,≠p,≠p/s1} for s1 = ≠s2.

Moreover, |Orb„k1,b1
(p)flOrb„k2,b2

(p)| = 4 implies that „k1,b1 = ±„k2,b2.

Proof. Case 1:: Suppose p is a rational period 2 point of „k1,b1 and „k2,b2 . Then we
have the following cycle for „k1,b1 and „k2,b2 :

(p,≠p).

In this case, we have

(k1, b1,k2, b2) = (s1 ≠1,≠s1 ·p
2
, s2 ≠1,≠s2 ·p

2),

for some distinct s1, s2 œ Q\{0,1}. Hence,

|Orb(„k1,b1)(p)flOrb(„k2,b2)(p)| = 2.

Case 2: Suppose p is a rational period 2 point of „k1,b1 and a rational period 4 point
of „k2,b2 . Then we have the following cycles for „k1,b1 and „k2,b2 , respectively:

(p,≠p),(p,
p

s2
,≠p,≠

p

s2
).
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In this case, we have

(k1, b1,k2, b2) =
A

s1 ≠1,≠s1 ·p
2
,

2s2
(s2

2 ≠1) ,≠p
2

·
(s2

2 +1)
s2(s2

2 ≠1)

B

,

for some s1 œ Q\{0,1}, and s2 œ Q\{0,±1}. Hence,

|Orb(„k1,b1)(p)flOrb(„k2,b2)(p)| = 2.

Case 3: Suppose p is a rational period 4 point of „k1,b1 and „k2,b2 . Then for

(k1, b1) = ( 2s1
(s2

1 ≠1) ,≠p
2

·
(s2

1 +1)
s1(s2

1 ≠1)), and

(k2, b2) = ( 2s2
(s2

2 ≠1) ,≠p
2

·
(s2

2 +1)
s2(s2

2 ≠1)),

where s1, s2 œ Q\{0,±1}, we have the following cycles for „k1,b1 and „k2,b2 , respec-
tively:

(p,
p

s1
,≠p,≠

p

s1
),(p,

p

s2
,≠p,≠

p

s2
).

If s1 = ±s2, then
|Orb(„k1,b1)(p)flOrb(„k2,b2)(p)| = 4.

Otherwise,
|Orb(„k1,b1)(p)flOrb(„k2,b2)(p)| = 2.

Example 4.0.15. Using the four tuples in Proposition 4.0.14, respectively, we get

the following maps and cycles: Fix p = 3
5

Take s1 = 25, s2 = 50. Then „k1,b1 and „k2,b2 have the following cycle

(3
5 ,≠

3
5),

where

„k1,b1(z) = 24z ≠
9
z

, „k2,b2(z) = 49z ≠
18
z

.

Take s1 = 25, s2 = 1/3. Then „k1,b1 and „k2,b2 have the following cycles, respectively

(3
5 ,≠

3
5), (3

5 ,
9
5 ,≠

3
5 ,≠

9
5)

where

„k1,b1(z) = 24z ≠
9
z

, „k2,b2(z) = ≠
3z

4 + 27
20z

.
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Take s1 = ≠1/3, s2 = 1/3. Then „k1,b1 and „k2,b2 have the following cycles, respec-

tively

(3
5 ,≠

9
5 ,≠

3
5 ,

9
5), (3

5 ,
9
5 ,≠

3
5 ,≠

9
5)

where

„k1,b1(z) = 3z

4 ≠
27
20z

, „k2,b2(z) = ≠
3z

4 + 27
20z

.

Take s1 = 2, s2 = 1/3. Then „k1,b1 and „k2,b2 have the following cycles, respectively

(3
5 ,

3
10 ,≠

3
5 ,≠

3
10), (3

5 ,
9
5 ,≠

3
5 ,≠

9
5)

where

„k1,b1(z) = 4z

3 ≠
3

10z
, „k2,b2(z) = ≠

3z

4 + 27
20z

.

Proposition 4.0.16. Let

S = {„k1,b1(z),„k2,b2(z), . . . ,„km,bm(z),—1(z),—2(z), . . . ,—n(z)}

where

„ki,bi(z) = kiz + bi

z

for all i œ {1,2, . . . ,m}, and

—j(z) = z
2 + cj

for all j œ {1,2, . . . ,n}. Suppose that possible period lengths of rational points of

—j(z)’s are 1,2, or 3, and the period length of rational periodic points of „ki,bi(z)’s
are either 1,2, or 4. Assume every element of S share the same rational periodic

point. Then, m can be chosen arbitrarily large, but n is at most 3.

Proof. First part of the proposition is clear. So it is enough to show that n is at
most 3. Let q œ Q.

Suppose q is a rational fixed point of —(z) = z
2 +c. Then c is 1

4 ≠fl
2 for some fl œ Q.

In this case q is either 1/2+fl or 1/2≠fl [12], so that fl is either q≠1/2 or ≠(q≠1/2).
In each case, we get one c.

Suppose q is a rational exact period 2 point of —(z) = z
2 + c. Then c is ≠

3
4 ≠‡

2 for
some ‡ œ Qú. In this case q is either ≠1/2 + ‡ or ≠1/2 ≠ ‡ [12], so that ‡ is either
q +1/2 or ≠(q +1/2). But in each case, we get one c.

Suppose q is a rational exact period 3 point of —(z) = z
2 + c. Then,
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c = ≠
·

6 +2·
5 +4·

4 +8·
3 +9·

2 +4· +1
4·2(· +1)2 ,

for some · œ Q\{≠1,0}. In this case q is one the following xi’s:

x1 = ·
3 +2·

2 + · +1
2·(· +1) ,

x2 = ·
3

≠ · ≠1
2·(· +1) ,

x3 = ≠
·

3 +2·
2 +3· +1

2·(· +1) ,

where · œ Q\{0,≠1} [12]. First suppose that

q = ·
3 +2·

2 + · +1
2·(· +1) .

Then, we get
·

3 +(2≠2q)·2 +(1≠2q)· +1 = 0.

This means · is a root of the following polynomial:

(4.6) x
3 +(2≠2q)x2 +(1≠2q)x+1.

We want to see whether this polynomial can have a rational root other than · , or
not. We know that for other roots x1,x2 of this polynomial we have

x1 +x2 = 2q ≠2≠ ·, x1 ·x2 = ≠1/·.

Therefore x1 and x2 satisfy the following quadratic polynomial:

x
2 +(· +2≠2q)x≠

1
·

.

This polynomial has rational roots if and only if the discriminant

(· +2≠2q)2 + 4
·

,

is a square in Q. Using q in terms of · , this is if and only if

·
4 +6·

3 +7·
2 +2· +1

·2(· +1)2
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is a square in Q. Now, consider the elliptic curve defined by

·
4 +6·

3 +7·
2 +2· +1 = y

2
.

There is an implementation for Theorem 0.0.3 [17] in the software Magma [3] that
allows us to find rational points on this elliptic curve. Using Magma [3] one can
check that (0,1),(0,≠1),(≠1,1),(≠1,≠1), and the two points at infinity are the only
rational points on the elliptic curve. Since · ”= 0,≠1, the discriminant cannot be a
square in Q, so that from this case we get one c.

Suppose that

q = ·
3

≠ · ≠1
2·(· +1) .

Then, we get
·

3
≠2q·

2
≠ (1+2q)· ≠1 = 0.

This means · is a root of the following polynomial:

(4.7) x
3

≠2qx
2

≠ (1+2q)x≠1.

Let x1 and x2 be other roots of this polynomial. They should satisfy the following
quadratic polynomial:

x
2 +(· ≠2q)x+ 1

·
.

This polynomial has rational roots if and only if the discriminant

(· ≠2q)2
≠

4
·

,

is a square in Q. Using q in terms of · , this is if and only if

·
4

≠2·
3

≠5·
2

≠2· +1
·2(· +1)2

is a square in Q. Consider the elliptic curve defined by

·
4

≠2·
3

≠5·
2

≠2· +1 = y
2
.

Similarly, using Magma [3] one can check that (0,1),(0,≠1),(≠1,1),(≠1,≠1), and
the two points at infinity are the only rational points on the elliptic curve. Hence
from this case again we get one c.

Now, suppose that

q = ≠
·

3 +2·
2 +3· +1

2·(· +1) .
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Then, we get
·

3 +(2+2q)·2 +(3+2q)· +1 = 0.

This means · is a root of the following polynomial:

(4.8) x
3 +(2+2q)x2 +(3+2q)x+1.

Let x1 and x2 be other roots of this polynomial. They should satisfy the following
quadratic polynomial:

x
2 +(· +2+2q)x≠

1
·

.

This polynomial has rational roots if and only if the discriminant

(· +2+2q)2 + 4
·

,

is a square in Q. Using q in terms of · , this is if and only if

·
4 +2·

3 +7·
2 +6· +1

·2(· +1)2

is a square in Q. Consider the elliptic curve defined by

·
4 +2·

3 +7·
2 +6· +1 = y

2
.

Using Magma [3] one can check that (0,1),(0,≠1),(≠1,1),(≠1,≠1), and the two
points at infinity are the only rational points on the elliptic curve. Once again, we
get one c. This completes our proof.
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5. Further Investigation of Periodic Points of „k,b(z)

In this chapter, we will prove a mild analogue of Baker and De Marco’s following
theorem:

Theorem 5.0.1. [1] Let d > 2 be an integer. Fix c1, c2 œ C. The set of t œ C such

that both c1 and c2 are preperiodic for z
d + t is infinite if and only if c

d
1 = c

d
2.

Main theorem of this chapter is as follows:

Theorem 5.0.2. Suppose a,b œ Q are periodic points of

„t1,t2(z) = t1 · z + t2
z

where (t1, t2) œ (Qú
◊Qú). Suppose that possible period lengths of „t1,t2(z) is either

1,2, or 4. Then, there exists infinitely many rational pairs (t1, t2) such that a and b

are both rational periodic points of „t1,t2(z) if and only if a
2 = b

2
.

Before we start proving this theorem we need a further investigation of periodic
points of the map „k,b(z)

Proposition 5.0.3. Let „k,b(z) = kz + b
z with k,b œ Qú

. If „k,b has two distinct

rational periodic points q1, q2 with period lengths 1, 2, respectively, then

„k,b(z) = ≠q
2
2 ≠ q

2
1

q2
2 ≠ q2

1
z + 2q

2
1q

2
2

(q2
2 ≠ q2

1)z .

Proof. Suppose q1, q2 are rational periodic points of „k,b(z) with exact periods 1 and
2, respectively. Then, by Theorem 4.0.1, we have

(5.1) b = s1 · q
2
1 = ≠s2 · q

2
2, and

(5.2) k = 1≠ s1 = s2 ≠1,
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for some s1, s2 œ Q\{0,1}. Using Equalities (5.1) and (5.2) together, we get

b = 2q
2
1q

2
2

(q2
2 ≠ q2

1) ,

k = ≠q
2
2 ≠ q

2
1

q2
2 ≠ q2

1
.

The following proposition was proved by Manes ([7], Proposition 10). We reproduce
the proof.

Proposition 5.0.4. Let „k,b(z) = kz + b
z where k,b œ Qú

. Then,

• „k,b(z) cannot have periodic points with exact period 1 and exact period 4.

• „k,b(z) cannot have periodic points with exact period 2 and exact period 4.

Proof. Suppose p and r are rational periodic points of „k,b(z) with period length 1
and 4, respectively. Then,

k = (1≠ s1) = 2s2
(s2

2 ≠1) ,

b = (s1 ·p
2)) = ≠

(s2
2 +1)

s2 · (s2
2 ≠1)r

2
,

for some s1 œ Q\{0,1} and s2 œ Q\{0,±1}. From these equalities, we get

s
2
2 ≠2s2 ≠1

s2
2 ≠1 ·p

2 = ≠
s

2
2 +1

s2 · (s2
2 ≠1) · r

2
.

This yields

(p

r
)2 = ≠

s2(s2
2 +1)(s2

2 ≠2s2 ≠1)
s2

2(s2
2 ≠2s2 ≠1)2 .

If we can show that there is no rational point on the hyperelliptic curve defined by
the equation

(5.3) y
2 = ≠x(x2 +1)(x2

≠2x≠1)

where x œ Q\{0,±1}, we are done for the first part. Equation (5.3) defines a genus
2 curve. LMFDB [6] tells us there isn’t any rational point on the curve except for
x = 0,≠1,1.

Suppose p and r are rational periodic points of „k,b(z) with period length 2 and 4,
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respectively. Then,
k = (s1 ≠1) = 2s2

(s2
2 ≠1) ,

b = ≠(s1 ·p
2)) = ≠

(s2
2 +1)

s2 · (s2
2 ≠1)r

2
,

for some s1 œ Q\{0,1} and s2 œ Q\{0,±1}. From these equalities, we get

s
2
2 +2s2 ≠1

s2
2 ≠1 ·p

2 = s
2
2 +1

s2 · (s2
2 ≠1) · r

2
.

This yields

(p

r
)2 = s2(s2

2 +1)(s2
2 +2s2 ≠1)

s2
2(s2

2 +2s2 ≠1)2 .

We will show that there is no rational point on the hyperelliptic curve defined by
the equation

(5.4) y
2 = x(x2 +1)(x2 +2x≠1)

where x œ Q\{0,±1}. But if we replace x by ≠x in Equation (5.3), we get the same
curve. So again we don’t have any rational point on the curve defined by Equation
(5.4) except for x = 0,±1.

Now let us prove Theorem 5.0.2

Proof. We already know that supposing a
2 = b

2, we can find infinitely many rational
pairs (t1, t2). Now, suppose that there exists infinitely many rational parameters
(t1, t2) such that a and b are both rational periodic points of „t1,t2(z). By proposition
5.0.3 and 5.0.4, a and b cannot have distinct period lengths. Now, if a and b both
have period length 1, or period length 2 then by theorem 4.0.1, we have a = ≠b, this
yields a

2 = b
2. Suppose a and b both have period length 4, then by theorem 4.0.1

a,b œ {p,
p

s
,≠p,≠

p

s
},

for some s œ Q\{0,±1}. If a = p and b = ≠p, or a = p/s and b = ≠p/s we are done.
From the cases a = p, b = p/s; a = p, b = ≠p/s; a = ≠p, b = p/s; and a = ≠p, b = ≠p/s,
we get s = ±a/b. But these give only two rational pairs (t1, t2), contradicting to our
assumption.
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