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ABSTRACT 

DESIGN AND OPTIMIZATION OF END MILLS WITH SPECIAL GEOMETRIES 

FOR HIGH PRODUCTIVITY AND THEIR USE IN DIFFERENT APPLICATIONS 

 

 

 

FARAZ TEHRANIZADEH 

 

MANUFACTURING ENGINEERING PH.D. DISSERTATION, SEPTEMBER  2020 

 

Dissertation Supervisor: Prof. Dr. ERHAN BUDAK 

 

Machining processes, especially milling operation, are widely used in production due to 

high flexibility, quality, versatility, repeatability, precision and efficiency. The 

manufacturing industry is demanding shorter delivery times, competitive prices and higher 

product quality. In order to meet these requirements in a machining process, increased 

material removal rate (MRR), dimensional accuracy, limited form and surface tolerances 

during stable cutting conditions should be reached. In order to achieve these goals, lower 

cutting forces and stable cutting conditions are the significant constraints. In milling 

process, reduction in cutting forces and having stable cutting condition, improves the 

efficiency and part quality. For this purpose, it is important to be able to design the cutting 

tool geometry (end mill) with respect to the process mechanics, dynamics and geometrical 

properties. At this point, special tools can provide significant advantages. These tools are 

used rarely in industry for higher productivity purposes. Moreover, the design basis of 

special geometry tools is usually based on user experiments rather than process analysis in 

term of mechanics and dynamics. Recently, there are plenty of research works on 

enhancement of milling processes, higher productivity and optimization of cutting 

conditions. However, there are a few works focusing on the design and application of 

special geometry milling tools and there are significant gaps in this field.  
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The aim of this project is the development of design methodology and investigation of 

optimized geometry for special milling tools used in milling operations. The designed 

milling tools will be used in different kinds of milling operations and achievements will be 

presented within the study. 

In this study, the mechanics and dynamics of the special milling tools (serrated and crest 

cut end mill) will be investigated in detail. The developed models will be verified by 

experimental studies. Considering the results from all these models, the behavior of the 

tools in different conditions will be examined and efficient end mills will be designed by 

employing optimization methods. An important contribution of the study is the 

development of methods for optimizing the geometry of special milling tools. Thus, for 

any milling condition, a specific tool can be designed and implemented. With the models 

to be developed in this project, the possible problems regarding the special end mills can 

be predicted and more systematic and efficient solutions can be offered for each operation. 

Moreover, the application of the special end mills in different processes and operations 

such as robotic milling, turn-milling, and thin-wall machining will be investigated in this 

study. The adaption of the obtained models to these processes can be used to predict cutting 

forces and the stability of the operations. These models can be used to improve the 

efficiency and productivity of operations by selecting proper tools. 

 

Keywords:  

Special End Mills, Serrated End Mills, Crest-Cut End Mills, Cutting Forces, Chatter, 

Stability, Mechanics of Milling, Dynamics of Milling 
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ÖZET 

 

ÖZEL GEOMETRİLİ FREZE TAKIMLARININ YÜKSEK VERİMLİLİK İÇİN 

TASARIMI, OPTİMİZASYONU VE FARKLI UYGULAMALARDA KULLANIMI 

 

 

FARAZ TEHRANIZADEH 

 

ÜRETİM MÜHENDİSLİĞİ DOKTORA TEZİ, EYLÜL 2020 

 

Tez Danışmanı: Prof. Dr. ERHAN BUDAK 

 

Talaşlı imalat süreçlerinden olan frezeleme, yüksek esneklik, arttırılmış geometrik 

erişilebilirlik, tekrarlanabilirlik, hassasiyet, verimlilik ve çok yönlülük gibi avantajlarıyla 

çeşitli endüstrilerde yaygın kullanılan bir üretim sürecidir. İmalat sanayii daha kısa teslimat 

süreleri, rekabetçi fiyatlar ve yüksek ürün kalitesi talep etmeye devam etmektedir. Bu 

gereklilikleri yerine getirmek için frezeleme süreçlerinde yüksek Malzeme Kaldırma Oranı 

(MKO), hassas boyutsal doğruluk, düşük form ve yüzey toleransları kısıtları altında yüksek 

verimlilik elde edilmesi gereklidir. Bu hedef için en önemli sınırlamaların başında süreç 

sırasında ortaya çıkan yüksek kesme kuvvetleri ve tırlama titreşimleri gelmektedir. 

Frezeleme kuvvetlerinin azaltılması ve süreç kararlılığının arttırılması, imalat verimliliği 

ve parça kalitesinin arttırılmasını sağlayacaktır. Bu amaca ulaşabilmek için kesici takım 

geometrisinin ilgili sürecin mekanik, dinamik ve geometrik şartlarına göre tasarlanması 

büyük önem taşımaktadır. Bu noktada özel geometrili frezeleme takımları önemli 

avantajlar ve fırsatlar sunabilir. Endüstride bu yönde uygulamalar olsa da hem kısıtlıdır 

hem de süreçlerinin analiz ve modellemesi yoluyla tasarım yerine tecrübeye dayalı 

yöntemlerle tasarım esas alınmıştır. Günümüze kadar frezeleme süreçlerinin iyileştirilmesi, 

yüksek verimli kesme koşullarının bulunması için çok sayıda çalışma yapılmıştır ancak 

özel geometrili freze takımlarının tasarımı ve uygulanması konusundaki çalışmaların sınırlı 

kaldığı, literatürde ve uygulamada önemli boşluklar olduğu görülmektedir.  
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Önerilen bu projenin amacı, yüksek imalat performansına ulaşabilmek yolunda önemli bir 

potansiyele sahip özel geometrili frezeleme takımlarının eniyi tasarımı için yöntemler 

geliştirilmesidir. Tasarlanan takımlar, çeşitli frezeleme süreçlerinde uygulanarak elde 

edilen kazanımlar gösterilecektir.   

İlk adım olarak özel frezeleme takımlarının (kaba frezeleme ve crest-cut takımlar) 

mekaniği ve dinamiği detaylı bir şekilde incelenecektir. Geliştirilen modeller deneysel 

çalışmalarla doğrulanacaktır. Tüm bu modellerden elde edilen sonuçları kullanılarak 

takımların değişik koşullardaki davranışları incelenecektir ve eniyileme yöntemleri 

kullanarak verimli takımlar tasarlanacaktır. Önerilen projenin önemli bir özgün katkısı, bu 

takımların geometrilerinin eniyi tarasımı için yöntemlerin geliştirilecek olmasıdır. Böylece 

değişik frezeleme koşullarına uygun özel takımlar tasarlanabilecek ve uygulanabilecektir. 

Projede geliştirilecek olan modeller sayesinde özel takımların kullanılması sırasında ortaya 

çıkabilecek problemler de önceden tahmin edilebilecek ve değişik uygulamalar için daha 

sistematik ve verimli çözümler elde edilebilecektir. 

Ayrıca, bu çalışmada robotik frezeleme, torna frezeleme ve ince duvar işleme gibi farklı 

proses ve operasyonlarda özel parmak frezelerin uygulamaları araştırılacaktır. Elde edilen 

modellerin bu işlemlere uyarlanması, kesme kuvvetlerinin ve operasyonların kararlılığının 

tahmin edilmesinde kullanılabilir. Uygun takımlar elde edilen modellerin yardım ile 

seçilerek, operasyonların verimliliği artırılabilir. 

 

Anahtar Kelimeler:  

Özel Parmak Frezeler, Tırtıklı Parmak Frezeler, Crest-Cut Parmak Frezeler, Kesme 

Kuvvetleri, Chatter, Stabilite, Frezeleme Mekaniği, Frezeleme Dinamiği 
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1. INTRODUCTION 

Milling is one of the most important processes in the industry, used in different 

manufacturing sectors. The parts that can be made with milling operations include a wide 

variety of items. Milling can be used to create complex 3D parts in the automotive, 

aerospace, civil defense, medical, and energy industries, such as turbine engines, aircraft 

wing structures, and jet engine compressors. 

The efficiency of this process decreases due to vibrations and high cutting forces 

occurring during the operation. These issues can lead to decreased parts quality, reduced 

productivity, damage to the workpiece, cutting tool, and even the machine, and can also 

cause various problems that affect the process. Reducing cutting depths, feed rates, etc., 

are the general approaches for solving these problems, however, at the cost of reduced 

material removal rate (MRR) and productivity. On the other hand, the production industry 

in today’s competitive marketplace needs high-quality parts manufactured in shorter 

times at low costs. Therefore, decreasing MRR is not a satisfying solution to reduce 

cutting forces and avoid chatter vibrations in milling processes. In order to fill this gap 

and overcome the above problems. The use of special end mills can be an effective 

solution; however, special tools must be designed and selected properly, considering 

process conditions in order to decrease cutting forces and suppress chatter vibrations. The 

main idea and motivation behind this study is the development of methods to design and 

optimize special end mills to increase the performance in milling operations under 

different conditions.  

Cutting tools in milling operations have different geometrical properties such as pitch and 

helix angles, cutting edge profile, etc. Special end mills can be classified based on these 

geometrical characteristics in four main categories: 

• Variable pitch and/or helix end mills: end mills that have non-constant pitch 

angles, non-constant helix angles, or a combination of these. 

• Serrated end mills: cutting tools with wavy edges which have undulations on 

their flank faces. 
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• Crest-cut end mills: cutting tools with wavy edges due to undulations on their 

rake faces. 

• Hybrid end mills: combination of the tools listed above. 

 

  

(a) variable pitch tool (b) variable helix tool 

  

(c) serrated end mill (d) crest-cut tool 

 

Figure 1.1. Different types of special end mills 

This study mainly focuses on the modelling of mechanic and dynamic of the milling with 

crest-cut and serrated tools. Moreover, the effect of these tools geometry on their 

performance are analyzed, in order to provide helpful guidelines and information on the 

use and design of special end mills.  

 

The chapter of the thesis are organized as follow: 

The literature on milling geometry, milling force modeling, and chatter stability is 

reviewed in Chapter 2. When the method or approaches are used in the following 

chapters, detailed reviews are provided. 

The geometry, mechanics and dynamics of the milling using crest-cut  

In chapter 3, a geometric model is presented for crest-cut end mills to be used in the 

simulations. The mechanics of the process with crest-cut end mills is simulated and 

verified experimentally through force measurements. Later, the dynamics of the process 

are formulated and the stability diagrams are obtained using the semi-discretization 

method. The stability limit predictions are verified by chatter tests carried out at different 
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conditions. Then, the effects of the wave amplitude and length along the cutting edges on 

the stability limits are investigated for the first time in the literature. Based on the 

simulation results which are verified experimentally, guidelines are established for 

selection of crest-cut tool geometries for increased stability. 

In chapter 4, a method to analyze mechanics of milling with different types of serrated 

end mills is presented. Tools with variable helix or/and pitch with different serration 

geometries and different types of end mills are also considered in the investigation. The 

geometric model of the cutter and model of the mechanics of milling with these tools to 

predict cutting forces are presented and verified experimentally. In the proposed method 

a novel and accurate way to calculate the chip thickness is presented. For the first time in 

the literature, effects of serration wave geometry and cutting conditions on effectiveness 

of serrated tools are investigated resulting in optimized serration shapes for given milling 

conditions. As an important factor, effects of the phase shift direction on the serration 

waves are also investigated. Finally, chatter stability performance of the designed 

optimum serrated end mills is compared with standard end mills.  

The use of special end mills in various operations and processes is investigated in Chapter 

5. The use of variable pitch and crest-cut tools in robotic milling, as well as their potential 

benefits, are discussed in the first section of the chapter. In the following section, the 

stability simulation model for milling flexible plates with special end mills is presented, 

and the effect of each tool type is investigated. In the last section, the force model of the 

milling with serrated end mills is modified and applied to the turn-milling operation, and 

the simulation results are verified experimentally. 
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2. LITERATURE REVIEW 

Special end mills (like variable helix and/or pitch, serrated end mills, and crest-cut tools) 

are being used in industry relatively more often to improve the performance in milling 

operations. Tool manufacturers, on the other hand, are eager to expand their knowledge 

of these tools in order to produce unique characteristics that make them highly effective 

in the process. Studies and publications about special end mills, specially serrated and 

crest-cut tools, are limited, and there is a great gap in the modeling of the geometry, 

mechanics, and dynamics of these tools in the field.  

Mechanics and dynamics of milling with special end mills require inter-disciplinary 

solutions involving fundamental theories. These issues are described and cited in related 

sections of the dissertation. In this section, a brief literature review about the mechanics 

and dynamics of milling using special tools is presented to show the state-of-the-art.  

The first comprehensive and scientific work about metal cutting is published by Taylor 

(1907), which included different aspects of metal cutting processes. The next remarkable 

study in this area was done by Merchant (1944), introducing the first cutting process 

model. Following these pioneering studies in the field of metal cutting, numerous studies 

have been conducted to model metal cutting processes and forecasting different aspects 

of the process. Moreover, in the last decades, the number of studies on dynamics and 

stability of milling has significantly increased. These research efforts can be found in 

some basic textbooks in machining (Tobias 1965; Astakhov 1998; Koenigsberger and 

Tlusty 1967; Armarego and Brown 1969; Knight and Boothroyd 2019). Over time with 

the increasing use of machining in industry, in order to have efficient operations, the need 

for detailed study of machining processes has increased. Understanding details of metal 

cutting processes  along with new techniques and technologies in CAD/CAM, monitoring, 

and fault detection systems can increase the efficiency and productivity of the machining 

industry.  

 

 

 

 



13 

 

 

 Milling Force Models 

Prediction of milling forces has great importance in forecasting the torque and power 

needed for the process. Moreover, it helps process planners to determine deflections and 

errors during the operation in order to compensate or reduce them. Therefore, there is a 

need to model the mechanics of milling to predict forces during operation. Because of the 

large number of variables involved in milling geometry, empirical study of milling force 

necessitates a large amount of data. (Hastings, Mathew, and Oxley 1980; Kahles 1987). 

As a result, analytical and semi-analytical milling force prediction is critical. 

In initial works, the forces were predicted by only taking the geometry of the process into 

account (Sabberwal, A.J.P. 1961; Koenigsberger and Sabberwal 1961).  The analytical 

force model of Sabberwal and Koenigsberger was based on the assumption that is cutting 

force coefficients have exponential relation with chip thickness and can be obtained 

experimentally.  This method is known as the mechanistic model, which was used later 

in different studies of the milling process (Tlusty and MacNeil 1975; Devor, Kline, and 

Zdeblick 1980; Kline, DeVor, and Lindberg 1982; Fu, DeVor, and Kapoor 1984; Altintas, 

Spence, and Tlusty 1991). Another approach in the mechanistic model is considering the 

edge forces separately to eliminate their effects on the cutting force coefficients 

(Armarego and Epp 1970; Armarego and Whitfield 1985; Budak, Altintas, and Armarego 

1996).  

Budak et al. (1996) proposed the novel method. In this model, cutting force coefficients 

are determined using an experimentally obtained orthogonal cutting database. This 

method eliminates the necessity for the calibration of each tool geometry required in the 

mechanistic approach. Moreover, it can be utilized for the prediction of cutting forces 

with complex milling tool shapes. Non-constant edge shapes in special end mills result in 

variable local cutting angles (rake, oblique, chip flow, shear, and friction), which affect 

cutting force coefficients directly. The predicted milling force coefficients from 

orthogonal cutting data can be used to consider the effect of these differences on cutting 

forces in the suggested models (Budak, Altintas, and Armarego 1996) for any 

combination of these parameters. The cutting forces for ball end mills (Lee and Altintaş 

1996; Lazoglu and Liang 1997) and general milling cutters (Engin and Altintas 2001; 
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2001) were predicted using the orthogonal database and mechanistic model. 

In the present study, the method presented by Budak et al. (1996) is used to predict forces 

in different conditions. 

 

  Modeling of Chatter Stability 

Chatter is one of the major problems which appeared in machining operations. One 

hundred fourteen years ago, Taylor (1907) faced chatter problems and believed that it was 

the most obscure problem in machining. Moreover, he stated that it was probably 

impossible to find a way to predict stable cutting conditions. Arnold (1946) was the first 

one who explained the mechanism of chatter vibrations. He believed that self-inductive 

influence originates from the negative slope of cutting forces vs. cutting speed curve, 

which implies a negative damping coefficient in the equation of the motion. However, 

Hahn (1953) invalidated the theory of Arnold and illustrated that the relation between 

cutting force and cutting speed is not sufficient to explain the self-inductive behavior of 

chatter vibration. Later, other studies showed that the occurrence of the self-exciting 

chatter vibration was related to structural dynamics of machine tools and the vibration 

phase differences between two consecutive machined surfaces. Chatter is caused by the 

dynamic interaction between the machine tool and the workpiece during the chip 

generation process, according to the study conducted by Tlusty and Polacek (1963). They 

introduced the following basic equation according to their study in order to calculate the 

limit depth of cut (𝑎𝑙𝑖𝑚) for chatter stability considering cutting force coefficient (𝐾𝑠) and 

the real part of the transfer function of the structure (𝐺). 

  

𝑎𝑙𝑖𝑚 =  −
1

2𝐾𝑠𝑅𝑒[𝐺]𝑚𝑖𝑛
 

(2.1) 

 

Stability lobe diagrams were later found by Tlusty et al. (1967) by taking into account the 

effect of spindle speed on chatter stability limits. They pointed out the stable lobes 

(pockets) in high spindle speeds. These lobes have a significant effect on the machining 

industry because they make it possible to have stable operations with a high depth of cut 

and cutting speeds providing higher productivity.  
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In milling operation, directional coefficients are not constant and vary with time as the 

cutting tool rotates and has multiple cutting teeth. These periodically variable coefficients 

make milling stability complicated in comparison with orthogonal cutting. Due to this 

complexity, Tlusty et al. (1981) suggested that the best way to obtain SLDs (Stability lobe 

diagrams) is through time-domain simulations. Minis et al. (1990; 1993) used a numerical 

approach considering the Nyquist criterion to obtain stability limits. The first analytical 

approach to find stability lobe diagrams for milling operation was proposed by Budak et 

al. (1995; 1998a; 1998b). In this method, time-varying dynamic cutting force coefficients 

are approximated by their Fourier series components, and there is no need to use iterative 

numerical solutions to generate stability lobe diagrams which are obtained in a fast and 

reliable way.  

From the mathematics point of view,  regenerative chatter vibration can be formulated 

and solved using Delay Differential Equations (DDE). The major part of the methods and 

techniques used to analyze Ordinary Differential Equations (ODE) can be extended and 

utilized in DDE problems (Michiels and Niculescu 2007; Tamás Insperger and Stépán 

2011; Diekmann et al. 2012; Bellen and Zennaro 2007) as discussed before there are three 

main approaches to obtain stability lobe diagrams: frequency domain, time domain, and 

discrete-time methods.  Semi discretization method is one of the discrete-time based 

methods which is introduced by Insperger and Stepan (Tamás Insperger and Stépán 2002; 

2011). For stability analysis of delay differential equations with time-periodic 

coefficients, this method can be used. In this method, the past solution of the system is 

discretized and approximated by finite number of ODEs. Using this method, the system's 

principal period is divided into N discrete time increments. For these discrete time 

intervals, time dependent coefficient matrices are estimated with their average values and 

the system's infinite dimensional monodromy matrix is approximated by a finite matrix. 

According to Floquet theory, the system's stability is determined by the eigenvalues of 

the obtained approximated monodromy matrix. They also proposed the Full-

Discretization Method, which discretizes both delayed terms and current-time terms 

(Tamas Insperger 2010). 

When the system has multiple delays instead of a single one, an explicit equation for the 

chatter frequency and spindle speed cannot be obtained from eigenvalues equations, and 

the solution must be determined using numerical time domain or discrete-time solutions.  

In the case of the special end mills, these tools introduce multiple delays to the system 
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according to their non-uniform shapes. Therefore, they cannot be analyzed using 

frequency domain solutions. In this study, the Semi-Discretization method will be used 

to investigate chatter stability of milling using these special end mills and to extract 

stability lobe diagrams.  

  

 Special End Mills 

Modeling of mechanics and dynamics of the milling process is important for forecasting 

cutting forces during metal cutting, power and torque requirements, workpiece quality, 

and chatter vibrations. Selecting proper conditions for the process plays a significant role 

in achieving the desired part quality. One of the important factors is the cutting tool which 

can affect cutting forces and chatter stability during milling. Different special end mills 

are used in the milling process in order to reduce cutting forces and eliminate chatter. 

There have been several studies on the mechanics and dynamics of special end mills and 

their benefits in the literature. As a first and pioneer study in the field of special end mills, 

Slavicek (1965) demonstrated that variable pitch cutters can suppress chatter vibration in 

milling. He analyzed the effect of irregular tooth pitches where Tlusty’s chatter model 

(Tlusty and Polacek 1963) is extended to cutters with non-constant pitches. In this study, 

first the pitch selection criteria are defined, and it is demonstrated that the optimal pitch 

to improve the stability for a cutting speed depends on the chatter frequency. The results 

show that it is not possible to improve the stability in all speeds with specific pitch 

variation pattern. Opitz et al. (1966) investigated variable pitch end mills with two 

different pitch angles. Their simulation and test results illustrated significant 

improvement in the stability limit using tools with variable pitches. In his study, 

.Vanherck (1968) studied different pitch change patterns and produced simulation results 

showed the effect of pitch variation on the stability limit. By considering the results of 

these studies in 1960s the use of milling cutters with irregular pitch was accepted as an 

alternative solution for increasing chatter stability of milling processes. Tlusty et al. 

(1982; 1983) studied the influence of special end mills such as variable pitch and serrated 

tools on the process dynamics in the following years. Their methods are based on pure 

time domain simulations which are time consuming. Due to the pioneering studies 

showing clear advantages of special end mills, additional works have been carried out on 
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different types of special end mills such as variable helix and/or variable pitch and 

serrated end mills in the following years. Shirase et al. (1999) demonstrated that end mills 

with variable pitch angles can reduce surface error. Altintas et al. (1999) presented an 

analytical method for predicting stability lobes in milling with variable pitch end mills. 

In this study, time-varying directional coefficients were transformed to time-invariant 

constants. Moreover, multiple regenerative time delay for variable pitch cutters is 

considered in the formulations. It is hard to obtain optimal pitch variations for a given 

condition by simulating the stability for different pitch sets, especially using time-

consuming numerical time-domain solutions. Considering this problem, Budak (2003b; 

2003a) proposed an analytical design method for variable pitch end mills. In this study, 

between the stability limit and pitch angle variations, an explicit relationship is 

established, leading to a simple equation for determining optimal pitch angles. The 

efficiency of this method was illustrated in different industrial applications. The results 

of studies on variable pitch tools show the importance of these tools in improving the 

productivity of milling operations. However, these tools have some limitations. First of 

all, variable pitch tools can only increase chatter stability in a narrow spindle speed range 

considering the chatter frequency and tooth passing frequency. Moreover, if the tooth 

passing frequency is high compared to the frequency of the critical mode, the optimum 

pitch variation also becomes high resulting in overloading of some edges and difficulties 

in chip evacuation. On the other hand, for low tooth passing frequencies, the optimum 

pitch variation angle can be very small which may bring limitations in manufacturing of 

these tools depending on the achievable precision (Iglesias et al. 2019). 

Olgac and Sipahi (2007) adopted a mathematically novel paradigm to obtained the 

stability lobe diagrams analytically. This method is known as the Cluster Treatment of 

Characteristic Roots, CTCR. Turner et al. (2007) used average values of helix angle for 

calculating equivalent variable-pitch model of variable helix tools. Moreover, in this 

study, the optimum values for helix and pitch angles are obtained using evolutionary 

optimization algorithms. Dombovari and Stepan (2012) modeled chatter stability of 

variable helix end mills using the semi-discretization method and investigate the 

performance of these tools in different spindle speeds. Hayasaka et al. (2017) proposed a 

method to design and optimize variable helix end mills to suppress chatter vibration. Their 

novel method was verified by milling experiments. However, their method is applicable 

only on the end mills with high values of helix angles. The stability and dynamic behavior 
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of the variable pitch and helix tools were investigated by Çomak and Budak (2017). In 

this study, a new optimization method is proposed for variable pitch end mills by 

extending Budak’s (2003a; 2003b) original method considering chatter frequency 

variations with the introduction of varying tooth pitches.  

In the 2000s, serrated end mills were in the spotlight because of their significant effect on 

force reduction in the milling process. Enhancement of process stability was also 

demonstrated by Campomanes (202AD) in roughing process using serrated cutters with 

sinusoidal cutting edges. Merdol and Altintas (2002) studied the mechanics and dynamics 

of the serrated end mills with sinusoidal wave shape on edge. They fitted a cubic spline 

on the edge of the tool and used orthogonal to oblique cutting mechanics transformation 

in order to calculate the cutting forces. The experimentally tested model was able to 

predict cutting forces and stability lobes in the time domain. In the next years, they 

extended their model (2004) for calculating cutting forces of cylindrical and tapered end 

mills. Other works about the mechanics and dynamics of cutting with the serrated end 

mills were done in these years (Zhang et al. 2003; Junz Wang and Yang 2003) to improve 

the accuracy of the existing models with different methods. Later, Dombovari et al. 

(2010) analyzed the dynamics of serrated end mills by using the Semi-Discretization 

Method. In these studies, the effect of feed rate on stability limits is investigated, and 

results show that by increasing feed rate, stability limits are decreased as the material 

contact along with the serrated flutes increases. In the study of Hosseini et al. (2011), 

serrated cutting edges are modeled as a B-spline curve, proposing a new approach for 

calculating the chip thickness. Effects of serrations on milling forces and chatter stability 

of the process were investigated by Koca and Budak (2013). Grabowski et al. (2014) 

predicted cutting forces and stability limits for cylindrical end mills with sinusoidal 

serrations and showed that serration parameters have a significant impact on the stability 

limits.  

As another type of special end mills, crest-cut end mills have non-constant helix angles 

with harmonic variations along their axis, unlike variable helix tools, which have constant 

helix angles on each tooth. Considering the demonstrated performance of variable pitch 

and helix tools in chatter suppression by the previous research, crest-cut end mills which 

have both effects, i.e., variable pitch and helix, integrated into their cutting edges, have 

the potential to eliminate chatter vibrations in milling processes. However, these tools are 

not widely known, unlike other special end mills. Their application in the industry has 
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been very limited due to very few producers of these tools with no guidance available for 

their design and application. Due to the continuous changes of the delay in the 

regeneration caused by the periodic variations in helix and pitch angles along their cutting 

edges, these tools can improve the process stability substantially and in wider ranges if 

they are designed properly. Yet, the research on these tools has been very limited, and 

there is no information available for the design of wave geometry. The stability of crest-

cut tools was investigated by Dombovari et al. [21] for the first time in the literature by 

applying the semi-discretization method using distributed delays. The authors concluded 

that using these tools large stable lobes could be achieved at lower spindle speeds while 

they lose this effect at higher speeds [16]. As a technical brief to this article, Sanz et al. 

[22] used the previous model for investigating different case studies without experimental 

validations. In a recent study, T. M. Gomez et al. [23] extracted the geometry of crest-cut 

end mills using a 3D scanner and predicted their dynamic behavior using time-domain 

simulations. Although limited studies on serrated and crest-cut tools exist, they are all 

focused on analysis for a specific geometry. However, investigating the effect of the 

geometry of tools on the mechanics and dynamics of the process and choosing the best 

geometry of the tool for a specific application is a more critical issue. On this subject, 

there is a knowledge gap. Another important point to remember about special tools is that 

they can be used in other applications such as robotic and turn-milling processes. On this 

subject, no research has been done. These issues are the main motivations of this study. 

This thesis presents a model to predict the cutting forces and stability lobe diagrams of 

serrated and crest-cut end mills. Moreover, this study analyses the effect of the tool’s 

geometry on their performance and provides a guideline to select the proper tool shape. 

Furthermore, the application of special tools in robotic milling, thin-wall machining, and 

turn-milling process are investigated in the last chapter. 
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3. CREST-CUT END MILLS 

Crest-cut end mills are used to eliminate chatter vibrations during milling processes; 

however, they are not widely known and applied in the industry yet. These tools have not 

been investigated in detail, although they have been in the market for some time. Crest-

cut tools can affect the process positively if they are designed and applied properly. 

In this chapter, a geometric model is presented for crest-cut end mills. Moreover, the 

mechanics and dynamics of milling with crest-cut end mills are modeled and verified with 

experiments. Then, the effects of wavy edge shape on cutting forces and chatter stability 

limits are investigated, and the effectiveness of these tools in improving productivity is 

demonstrated. 

 Geometry of Crest-cut End Mills 

As illustrated in Figure 3.1, unlike normal milling tools, crest-cut end mills have wavy 

rake surfaces. These waves usually have sinusoidal shapes causing phase differences with 

subsequent cutting edges. As a result, the helix angle becomes variable along the cutting 

edges, where pitch angles between consecutive teeth also become variable along the tool 

axis (as shown in Figure 3.1 A-A section). As a result, crest-cut tools can improve the 

dynamic performance of the process provided that their geometry is selected properly 

(Dombovari, Altintas, and Stepan 2010). 

The first step in modeling milling with crest-cut end mills is defining the geometry of 

these tools. To that end, the tool is discretized into small disc elements along its axis, as 

shown in Figure 3.1. The position of each edge along the tool axis is calculated in addition 

to the local pitch and oblique angles that are obtained for each edge in every element. 

This is required due to the variation of oblique and pitch angles along the tool axis.   
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Figure 3.1. Wavy edge of crest-cut end mill and axial elements 

3.1.1. Wavy Edge Geometry 

In order to develop a mathematical model to represent the wavy cutting edges, the polar 

coordinates of an arbitrary point 𝒫𝑖,𝑗 defining the position in the ith axial element on the 

edge of the jth tooth are used. The angular position of each point (𝜑𝑖,𝑗) in polar coordinates 

is a function of the accumulated pitch and lag angles (𝜓𝑖,𝑗): 

𝜑𝑖,𝑗 = Θ𝑗 − 𝜓𝑖,𝑗         𝑗 = 1, 2,… . , 𝑁 (3.1) 

where Θ𝑗 is the accumulated pitch angle of the jth tooth which is the function of the 

nominal pitch angles (𝑝𝑗):  

{
 

 
Θ𝑗 = 0                           𝑗 = 1        

Θ𝑗 = ∑𝑝𝑛

𝑗−1

𝑛=1

           𝑗 = 2, … . , 𝑁 
   (3.2) 

As shown in Figure 3.2, the lag angle 𝜓𝑖,𝑗 is defined as the angle between the tip of tooth 

j and the point i on the same tooth and can be calculated by the following equation: 

𝜓𝑖,𝑗 = 2𝜋
𝑚𝑜𝑑(𝑑𝑖,𝑗  , 𝑃)

𝑃
 (3.3) 

where P is the perimeter of the tool. di,j is evaluated by conditional function in equation 

(3.4) which depends on the height of the edge including the straight part 𝑙𝑗. It is to be 

noted that, some of the existing crest-cut tools in the market contain a straight part 𝑙𝑗, as 

shown in Figure 3.2, for manufacturing convenience. 
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𝑑𝑖,𝑗  =

{
 
 

 
 (𝑅Θ𝑗) − 𝑧𝑖,𝑗 tan(𝛾𝑗)            𝑖𝑓

𝑧𝑖,𝑗

cos(𝛾𝑗)
≤ 𝑙𝑗

(𝑅Θ𝑗) + 𝑢𝑖,𝑗 −
𝐴𝑗

cos(𝛾𝑗)
      𝑖𝑓

𝑧𝑖,𝑗

cos(𝛾𝑗)
≥ 𝑙𝑗  

 (3.4) 

 

where 𝑅𝑡 is the radius of the end mill, zi,j is the axial height of the element, 𝛾𝑗is the helix 

angle of the jth tooth, 𝐴𝑗 is the amplitude of the edge wave of the jth tooth. 𝑢𝑖,𝑗 is calculated 

by solving the following implicit equation of rotated sine wave for the corresponding zi,j: 

 

𝑢𝑖,𝑗 cos(𝛾𝑗) + 𝑧𝑖,𝑗 sin(𝛾𝑗)

+ 𝜆𝑗sin [(
2𝜋

𝜆𝑗
) . ((−𝑢𝑖,𝑗 sin(𝛾𝑗) + 𝑧𝑖,𝑗 cos(𝛾𝑗))

+ 𝜃𝑗)] = 0 

(3.5) 

 

where 𝜆𝑗 is the wavelength on the jth edge whereas 𝜃𝑗  represents its phase shift starting 

from the tip, i.e., if the phase shift is zero the sine curve starts at the tooltip (last edge in 

Figure 3.2). 

 

Figure 3.2. Schematic and unfolded view of a sample crest-cut end mill. 

The position vector of each point on the cutting edge in Cartesian coordinates can be 

defined as follows: 

𝒫𝑖,𝑗 = (𝑅𝑡𝑐𝑜𝑠(𝜑𝑖,𝑗)) 𝑖 + (𝑅𝑡𝑠𝑖𝑛(𝜑𝑖,𝑗)) 𝑗 + 𝑧𝑖,𝑗 𝑘⃗⃗ (3.6) 
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3.1.2. Local oblique angle 

Because of the harmonically varying rake surfaces, the helix angle also varies along the 

cutting edges. Thus, a tooth assumes a different oblique angle within each axial element. 

The oblique angle has a significant effect on the cutting force coefficients (Brown and 

Armarego 1964; E. Budak, Altintaş, and Armarego 1996; Aksu, Çelebi, and Budak 2016). 

Therefore, the local oblique angle should be identified for each element along the cutting 

edges. By using the geometrical relationships, the oblique angle of the ith element on the 

jth tooth (𝜂𝑖,𝑗) can be calculated as follows, 

 

𝜂𝑖,𝑗 = tan−1(
𝑑𝑖+1,𝑗 − 𝑑𝑖,𝑗
𝑧𝑖+1,𝑗 − 𝑧𝑖,𝑗

) (3.7) 

 

As an example, the local oblique angle variation on one of the teeth of a crest-cut end mill 

with 16 mm diameter and different edge wave shapes are shown in Figure 3.3 for two 

different nominal helix angles. As can be seen, the local oblique angle oscillates around 

the nominal helix angle where the oscillation amplitude depends on the edge wave 

geometry as defined in Equations 5 - 7. For tools with smaller nominal helix angles, the 

minimum local oblique angles may become too small and even be negative (Figure 3.3) 

depending on the edge wave geometry.  

 

Figure 3.3. Local oblique angle variation along tool axis for crest-cut end mill 

𝛾 =  0 , 𝐴 = 1.2, 𝜆 = 1 
𝛾 = 20 , 𝐴 = 1.2, 𝜆 = 1 
𝛾 =  0 , 𝐴 = 0. , 𝜆 = 1 
𝛾 =  0 , 𝐴 = 1.2, 𝜆 =  0
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Moreover, harmonic variations of the edge profiles result in changes in pitch angles 

between subsequent cutting teeth at each axial height. Non-constant pitch angles affect 

the chip thickness in every element and should be calculated for each edge, individually: 

 

Δ𝜑𝑖𝑗 = 𝜑𝑖𝑗+1 −𝜑𝑖𝑗 (3.8) 

 

Local pitch angle (Δ𝜑𝑖,𝑗) variation for the first tooth of a 4-fluted crest-cut end mill with 

16mm diameter having different edge wave shapes and helix angles is shown in Figure 

3.4 along its axis. Unlike standard milling cutters, for crest-cut tools, pitch angles vary 

periodically along the tool axis due to wavy edges. In Figure 3.4, the local pitch angle 

variation for the considered crest-cut tool is illustrated (the constant pitch angle for the 

four teeth tool is 90˚ shown with a dashed line). As can be seen, the maximum and 

minimum pitch angles are not symmetrical about the nominal pitch angle due to the helix. 

On the other hand, for a crest-cut tool with zero helix angle, the variation of pitch angle 

along the tool axis is symmetrical about the nominal pitch angle.    

 

Figure 3.4. Local pitch angle variation along tool axis for crest-cut end mill 
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 Force Modelling of Crest-cut End Mills 

In this study, the linear edge force model (E. Budak, Altintaş, and Armarego 1996) is 

used in order to formulate milling forces. In order to determine cutting forces for each 

angular increment of the tool, differential forces in tool coordinates (Figure 3.5) are 

calculated in each axial element (i) on each tooth (j) for the rotational position (𝜑) in one 

full revolution of the cutting tool as follows:  

 

𝜑𝑖,𝑗(𝜙) =  𝜑𝑖,𝑗 + 𝜙 

𝑑𝐹𝑟(𝑖, 𝑗, 𝜙) = 𝑔 (𝜑𝑖,𝑗(𝜙)) [𝐾𝑟𝑒 +𝐾𝑟𝑐(𝑖, 𝑗)ℎ𝑖,𝑗(𝜙)]𝑑𝑧 

𝑑𝐹𝑡(𝑖, 𝑗, 𝜙) = 𝑔 (𝜑𝑖,𝑗(𝜙)) [𝐾𝑡𝑒 +𝐾𝑡𝑐(𝑖, 𝑗)ℎ𝑖,𝑗(𝜙)]𝑑𝑧 

𝑑𝐹𝑎(𝑖, 𝑗, 𝜙) = 𝑔 (𝜑𝑖,𝑗(𝜙)) [𝐾𝑎𝑐(𝑖, 𝑗)ℎ𝑖,𝑗(𝜙)]𝑑𝑧 

(3.9) 

 

where 𝐾𝑟𝑐 , 𝐾𝑡𝑐  and 𝐾𝑎𝑐 are the cutting force coefficients calculated using the oblique 

cutting force model together with the orthogonal cutting data (E. Budak, Altintaş, and 

Armarego 1996) considering local oblique angles in each element. 𝐾𝑟𝑒, 𝐾𝑡𝑒 and 𝐾𝑎𝑒 are 

the edge force coefficients which are usually identified from the cutting tests; however, 

they can also be predicted using thermo-mechanical models applied to the third zone 

(Erhan Budak et al. 2016). In the calculation of the force coefficient, the rake angle on 

the cutting edges is assumed to be constant; however, depending on the manufacturing 

process of these tools, it may also be variable along the cutting edges in some cases. In 

those cases, the local rake angle should be used in the calculation of the force coefficients 

(Tehranizadeh, Koca, and Budak 2019; Özlü, Ebrahimi Araghizad, and Budak 2020). 

𝑔(𝜑𝑖,𝑗(𝜙)) is a binary function which is equal to 1 when the element is in cut (i.e.  

𝜑𝑠𝑡𝑎𝑟𝑡 ≤ 𝜑𝑖,𝑗(𝜙) ≤ 𝜑𝑒𝑥𝑖𝑡  ()) and 0 otherwise. 𝜑𝑖,𝑗(𝜙) is the angular position of each 

point on the edge when the angle of the rotation for the tool is 𝜙. 𝑑𝑧 is the thickness of 

each axial element.  
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Figure 3.5. The schematic view of the milling with crest-cut end mill 

3.2.1. Chip Thickness Calculation 

As shown in Figure 3.5, Δ𝜑𝑖,𝑗 is different for each edge at a certain axial position and 

thus  ℎ𝑖,𝑗(𝜙) (chip thickness) can be defined as follows: 

ℎ𝑖,𝑗(𝜙) =
Δ𝜑𝑖,𝑗

2𝜋
 𝑁𝑓 sin (𝜑𝑖,𝑗(𝜙)) (3.10) 

where 𝑁 is the number of teeth, and 𝑓 is the nominal feed per tooth.  

 

3.2.2. Total Forces in x, y, and z Directions 

In order to calculate total forces, differential forces that come from each element on each 

edge should be summed up. Therefore, differential forces need to be transformed from 

tool coordinates (radial, tangential and axial) to machine coordinates (x, y, and z).    

Differential forces in x, y, and z directions can be calculated by using the differential 

forces in tool coordinates given by equation (3.13): 

 

𝜑𝑠𝑡𝑎𝑟𝑡

𝜑𝑒𝑥𝑖𝑡

Feed 
Direction

𝜑1

𝜑 

𝜑 

𝜑 

 

 

𝐹𝑟𝐹𝑡
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𝑑𝐹𝑥(𝑖, 𝑗, 𝜑) = −𝑑𝐹𝑟(𝑖, 𝑗, 𝜙) 𝑠𝑖𝑛 (𝜑𝑖,𝑗(𝜙)) −  𝑑𝐹𝑡(𝑖, 𝑗, 𝜙) 𝑐𝑜𝑠 (𝜑𝑖,𝑗(𝜙))  

𝑑𝐹𝑦(𝑖, 𝑗, 𝜑) =  −𝑑𝐹𝑟(𝑖, 𝑗, 𝜙) 𝑐𝑜𝑠 (𝜑𝑖,𝑗(𝜙)) +  𝑑𝐹𝑡(𝑖, 𝑗, 𝜙) 𝑠𝑖𝑛 (𝜑𝑖,𝑗(𝜙)) 

𝑑𝐹𝑧(𝑖, 𝑗, 𝜑) =  𝑑𝐹𝑎(𝑖, 𝑗, 𝜙) 

(3.11) 

 

The total forces in x, y, z directions for each rotation increment can be obtained by 

summation of the differential forces come from each element and edge at specified 

increment: 

 

𝐹𝑥(𝜑) =  ∑∑𝑑𝐹𝑥(𝑖, 𝑗, 𝜑)

𝑁

𝑗=1

𝑎

𝑖=0

 

𝐹𝑦(𝜑) =  ∑∑𝑑𝐹𝑦(𝑖, 𝑗, 𝜑)

𝑁

𝑗=1

𝑎

𝑖=0

 

𝐹𝑧(𝜑) =  ∑∑𝑑𝐹𝑧(𝑖, 𝑗, 𝜑)

𝑁

𝑗=1

𝑎

𝑖=0

 

 

(3.12) 

3.2.3. Experimental Verification of Force Model 

Several tests have been conducted to verify the proposed force model. Cutting forces with 

crest-cut end mills were measured during the tests performed on MAZAK 3-axis CNC 

machine using a 3 component Kistler dynamometer. The work-piece material was 

selected as Aluminum 7075-T6. The orthogonal cutting data of this material is obtained 

by the method introduced in (Ozlu, Budak, and Molinari 2009) and it is shown in Error! 

Reference source not found..  The experimental conditions and tool properties 

manufactured by KARCAN™ are shown in Table 3.2. Note that, since the wave shape of 

each tooth on the test cutters is similar, for the simplicity of expressions the wavelength 

and wave amplitude will be referred as 𝐴 and λ, respectively, in the following sections. 

Moreover, the straight parts of the edges are zero (𝑙𝑗=0) on the test tools. 
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Table 3.1. Material database for Al7075-T6 Alloy 

𝒯𝑠 = 297.1 + 1.1𝛼 

𝛽 = 18.8 +  .7ℎ + 0.007 𝑉𝑐 + 0.2 𝛼 

𝜙𝑐 = 24.2 +   .7ℎ + 0.00 𝑉𝑐 + 0. 𝛼 

𝐾𝑡𝑒 = 2 .4
𝑁

𝑚𝑚
 , 𝐾𝑟𝑒 =   .2

𝑁

𝑚𝑚
  

 

The comparison between experimental and simulation results is illustrated in Figure 3.6. 

As can be seen from the figure, there is a good agreement between the milling force 

predictions and the measurements.  

The comparison between experimental and simulation results is illustrated in Figure 3.6. 

As can be seen from the figure, there is a good agreement between the milling force 

predictions and the measurements.  

Unlike conventional milling tools, due to the presence of wavy edges, the periodic 

behavior of the cutting forces is distorted. This is due to the fact that, on each axial 

element of each tooth, the phase lag between the waves of teeth causes different chip 

thicknesses and the wavy shapes of edges  will have different start and exit angles and 

different tool-workpiece engagement. Therefore, the cutting forces of teeth 𝑗 and 𝑗 + 1 at 

the same angular position (position of edges at 𝜙 and 𝜙 + (
 𝜋

𝑁
) respectively) is different. 

Table 3.2. Tool and process parameters in cutting force experiments 

T
e
st

 N
o
. 

End Mill Parameters Process Parameters 

Tool 

Dia. 

(mm) 

No. of 

Teeth 

Helix 

Angle 

(Deg) 

Wave 

Shape 

(mm) 

Spindle 

Speed 

(RPM) 

Depth 

of Cut 

(mm) 

Width 

of Cut 

(mm) 

Feed 

(mm/rev.tooth) 

1 

16 

4 30 

𝐴= 1.2 

𝜆= 16 
4500 20 4 0.05 

2 
𝐴= 0.8 

𝜆= 16 
4500 10 8 0.1 

3 

12 

𝐴= 0.8 

𝜆= 15 
4500 15 3 0.025 

4 
𝐴= 0.5 

𝜆= 10 
4500 10 6 0.05 
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Figure 3.6. Measured and simulated milling forces for different conditions given in 

Table 3.2 

In order to have a detailed comparison, the RMS and peak value of predicted and 

experimental results are compared the difference between them are listed in Table 3.3. It 

is seen that the average discrepancy between the peak and RMS values are 11.16% and 

6.95%, respectively. 
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Table 3.3. Statical comparison of the prediction and experimental results. 

 RMS diff.% Peak diff.% 

𝑭𝒙 Test 1 1.9 11.8 

𝑭𝒚 Test 1 1.1 6.4 

𝑭  Test 1 14.7 13.9 

𝑭𝒙 Test 2 12.3 14.4 

𝑭𝒚 Test 2 1.1 7.9 

𝑭  Test 2 4.8 2.5 

𝑭𝒙 Test 3 5.4 17.3 

𝑭𝒚 Test 3 1.4 8.7 

𝑭  Test 3 11.7 5.6 

𝑭𝒙 Test 4 14.9 17.7 

𝑭𝒚 Test 4 <1 3.5 

𝑭  Test 4 13.2 24.2 

Average 6.9 11.1 

 

 

 Chatter Stability of Crest-cut End Mills 

In this section, the dynamics and stability of crest-cut end mills are investigated. As 

discussed in previous chapters, chatter vibration has a negative impact on the efficiency 

and quality of the milling process. Crest-cut tools can be used effectively to increase 

stability in the desired condition if tool parameters are selected properly considering the 

cutting condition.  

The milling process's stability is determined by the variable chip thickness, which is a 

function of present and previous vibration imprints left on the cutting surface. Due to the 

geometry of crest-cut end mills, pitch angles between teeth are not equal, and they are 

variable in each axial element (Figure 3.9). As a result, delay values between teeth at each 

axial height are different. Therefore, unlike normal end mills, multiple delays must be 

taken into account during the dynamic modeling of the milling with crest-cut tools. Crest-

cut end mills affect the dynamics of the process by applying perturbation in the 

regeneration mechanism, and they can be utilized to eliminate chatter vibration. 

Chatter stability of end mills with multiple delays can be solved using the Semi-
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Discretization method (Tamás Insperger and Stépán 2011). The first Order Semi-

Discretization method is used in this study to analyze the stability of the process. 

Furthermore, the stability model is verified with milling experiments.  

3.3.1. Semi Discretization Method for Delayed Differential Equations 

If the delayed differential equations (DDEs) have time-periodic coefficients, investigation 

of the eigenvalues of the infinite-dimensional monodromy operator is required in the 

stability analysis. In this case, in general, stability conditions cannot be given as closed-

form functions of system parameters, but numerical approximations can be used to obtain 

stability properties. Semi-Discretization method (SDM) is an efficient numerical method 

that provides a finite size matrix approximation of an infinite-dimensional monodromy 

matrix.  

One of the basic ideas of SDM is dividing the principal period of the system is into 

discrete time intervals. In SDM, delay terms in each discretization step are calculated 

approximately with constant values or higher order polynomials considering the order of 

the method. 

In the first step of the SDM, the principal period of the system (𝑇) should be divided to 

𝑚 (resolution) discrete-time intervals: 

Δ𝑡 =
𝑇

𝑚
 (3.13) 

 

Using the above equation, the length of each discrete time interval can be calculated.  

Considering a multiple delay time-periodic equation in the form found in the following 

equation: 

 

𝒙̇(𝑡) = 𝑨(𝑡)𝒙(𝑡) +∑𝑩𝒓(𝒕)𝒗(𝑡 − 𝜏𝑟(𝑡))

𝑁𝐷

𝑟=1

 

𝒗(𝑡) = 𝑫𝒙(𝑡) 

(3.14) 

 

In this equation, 𝑨(𝑡) ve 𝑩𝒓(𝒕) are time-dependent periodic coefficient matrices and 𝑁𝐷 

is the number of different delays in the system. For ease of use in the subsequent 

equations, for the representation of time-dependent terms in the formulation, the 
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following adjustments will be made. 

 

𝑋𝑖 ≡   𝑋(𝑡𝑖) 

𝑡𝑖 ≡ 𝑖Δ𝑡 
(3.15) 

 

The main point of SDM is approximating time-dependent coefficients with constant 

values for each time interval. Also, delayed terms are approximated by linear 

combinations of discrete delayed values. 

 

𝐴𝑖 =
1

Δ𝑡
∫ 𝐴(𝑡)𝑑𝑡

𝑡𝑖+1

𝑡𝑖

 

𝐵𝑟,𝑖 =
1

Δ𝑡
∫ 𝐵𝑟(𝑡)𝑑𝑡

𝑡𝑖+1

𝑡𝑖

                                 𝑖 = 1.2. , , , . 𝑝    .    𝑟 = 1.2. , , , . 𝑁𝐷 

𝜏𝑟.𝑖 =
1

Δ𝑡
∫ 𝜏𝑟(𝑡)𝑑𝑡

𝑡𝑖+1

𝑡𝑖

 

(3.16) 

 

Note that the non-delayed terms in the equations are left without any change.  

 

𝒙̇(𝑡) = 𝑨𝑖𝒙(𝑡) +∑𝑩𝑟.𝑖𝚪𝑟.𝑖
(𝒒)(𝑡 − 𝜏𝑟.𝑖)

𝑁𝐷

𝑟=1

.        𝑡 ∈ [𝑡𝑖. 𝑡𝑖+1) 

𝚪𝑟.𝑖
(𝒒)(𝑡 − 𝜏𝑟.𝑖) = ∑[ ∏

𝑡 − 𝜏𝑟.𝑖 − (𝑖 + 𝑙 − 𝑑𝑟𝑟.𝑖)ℎ

(𝑘 − 𝑙)ℎ

𝑞

𝑙=0.𝑙≠𝑘

]

𝑞

𝑘=0

𝒗𝑖+𝑘−𝑟𝑟.𝑖 

(3.17) 

 

In these equations, the delay term is Lagrange polynomial interpolation with the degree 

of q.  
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Figure 3.7. Approximation of the delayed term by polynomial of degree q (Tamás 

Insperger and Stépán 2011) 

 

The delay resolution is obtained by following equation: 

 

𝑑𝑟𝑟.𝑖 = 𝑖𝑛𝑡 (
𝜏𝑟.𝑖
Δ𝑡

+
𝑞

2
)                           𝑟 = 1,2, … ,𝑁𝐷 (3.18) 

 

In this equation, the 𝑖𝑛𝑡 function returns the integer part of the number. Thus, there are 

two approximation parameters: the period resolution 𝑚, which is the number of steps 

separating the fundamental period, and the order of the approximation of the delay term 

𝑞. The application of this method can be seen in Figure 3.7. 

Now, the approximated model given in (3.17) has an analytical solution over each time 

intervals. 

 

 

 𝑖+1 = 𝑃𝑖 𝑖 +∑∑𝑅𝑟,𝑖,𝑘𝑣𝑖+𝑘−𝑑𝑟𝑟,𝑖

𝑞

𝑘=0

𝑁𝐷

𝑟=1

 

𝑃𝑖 = 𝑒𝑨𝑖Δ𝑡 

𝑅𝑟,𝑖,𝑘 = ∫ 𝑒𝑨𝑖(𝑡𝑖+1−𝑠) [ ∏
𝑠 − 𝜏𝑟 − (𝑖 − 𝑙 − 𝑑𝑟𝑟,𝑖)Δ𝑡

(𝑘 − 𝑙)Δ𝑡

𝑞

𝑙=0   𝑙≠𝑘

]

𝑡𝑖+1

𝑡𝑖

𝐵𝑟,𝑖𝑑𝑠 

           = ∫ 𝑒𝑨𝑖(Δ𝑡−𝑠) [ ∏
𝑠 − 𝜏𝑟 − (𝑙 − 𝑑𝑟𝑟,𝑖)Δ𝑡

(𝑘 − 𝑙)Δ𝑡

𝑞

𝑙=0   𝑙≠𝑘

]

Δ𝑡

0

𝐵𝑟,𝑖𝑑𝑠 

(3.19) 
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Discrete map can be obtained as follow: 

 

 𝑖+1 = 𝑮𝑖 𝑖  

 𝑖 = (𝒚𝑖      𝒗𝑖−1    𝒗𝑖−  …  𝒗𝑖−𝑑𝑟𝑚𝑎𝑥
)
𝑇
  

                                                   1                             𝑑𝑟𝑟,𝑖 − 𝑞                       𝑑𝑟𝑟,𝑖                                   𝑑𝑟𝑚𝑎𝑥  

𝑮 =

[
 
 
 
 
  𝟎 ⋯ 𝟎 𝟎
𝑫 𝟎 ⋯ 𝟎 𝟎
𝟎 𝑰 ⋯ 𝟎 𝟎
⋮ ⋮ ⋱ ⋮ ⋮
𝟎 𝟎 ⋯ 𝑰 𝟎]

 
 
 
 

+∑

[
 
 
 
 
𝟎 𝟎 ⋯ 𝟎 𝑹𝒓, ,𝒒 ⋯ 𝑹𝒓, ,𝟎 𝟎 ⋯ 𝟎

𝟎 𝟎 ⋯ 𝟎 𝟎 ⋯ 𝟎 𝟎 ⋯ 𝟎
𝟎 𝟎 ⋯ 𝟎 𝟎 ⋯ 𝟎 𝟎 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝟎 𝟎 ⋯ 𝟎 𝟎 ⋯ 𝟎]

 
 
 
 𝑵𝑫

𝒓= 

 

𝑑𝑟𝑚𝑎𝑥 = max (𝑑𝑟𝑟,𝑖) 

(3.20) 

 

Here 𝑮  is the transition matrix connecting the states 𝑖 + 1 and 𝑖 in the time interval. 

Since we have discrete time intervals, the application in (3.19) is repeated 𝑚 times to 

obtain the monodromy matrix (𝚽). This matrix connects the initial state ( 0) to a state 

one principal period later ( 𝑝). 

 

 𝑝 = 𝚽 0 

𝚽 = 𝑮𝑝−1𝑮𝑝− …𝑮0 
(3.21) 

 

𝚽 is a finite-dimensional approximation of the actual system's infinite-dimensional 

operator. According to the Floquet theory, the eigenvalues of this matrix are used to 

analyze the system's stability. The system is unstable if the greatest eigenvalue of the 

monodromy matrix has an absolute value more than 1, at the stability limit if it is equal 

to 1, and stable if it is less than 1. 

First Order SDM: 

 

The structure of the transition matrix and the formulation of the first-order SDM will be 

presented in this section. At the end of this section, some important comments about 

applying the method to multiple delay milling processes will be explained. 
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Figure 3.8. Approximation of the lag term with the 1st order Lagrange polynomial 

(Tamás Insperger and Stépán 2011) 

 

Considering equations (3.17) and (3.18) for the first-order case (𝑞 = 1): 

 

𝚪𝑟.𝑖
(1)(𝑡 − 𝜏𝑟.𝑖) = 𝛽𝑟.𝑖.0(𝑡)𝒗(𝑡𝑖−𝑑𝑟𝑟.𝑖) + 𝛽𝑟.𝑖.1(𝑡)𝒗(𝑡𝑖−𝑑𝑟𝑟.𝑖) 

 

𝛽𝑟.𝑖.0(𝑡) =
𝜏𝑟.𝑖 + (𝑖 + 1 − 𝑑𝑟𝑟.𝑖)Δ𝑡 − 𝑡

Δ𝑡
 

 

𝛽𝑟.𝑖.1(𝑡) =
𝑡 − 𝜏𝑟.𝑖 − (𝑖 − 𝑑𝑟𝑟.𝑖)Δ𝑡

Δ𝑡
 

 

𝑑𝑟𝑟,𝑖 = 𝑖𝑛𝑡 (
𝜏𝑟.𝑖
Δ𝑡

+
1

2
) 

(3.22) 

 

For this situation,  

 

𝒙̇(𝑡) = 𝑨𝑖𝒙(𝑡) +∑𝑩𝑟.𝑖[𝛽𝑟.𝑖.0(𝑡)𝒗(𝑡𝑖−𝐷𝑅𝑟.𝑖) + 𝛽𝑟.𝑖.1(𝑡)𝒗(𝑡𝑖−𝑑𝑟𝑟.𝑖)]

𝑁𝐷

𝑟=1

         

∀𝑡 ∈ [𝑡𝑖. 𝑡𝑖+1) 

𝒗(𝑡𝑖) = 𝑫𝒙(𝑡𝑖) 

(3.23) 
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Over an interval of time, the solution is calculated from the next equations: 

 

𝒙𝑖+1 =  𝑖𝒙𝑖 +∑(𝑹𝑟.𝑖.0𝒗𝑖−𝑑𝑟𝑟.𝑖 + 𝑹𝑟.𝑖.1𝒗𝑖+1−𝑑𝑟𝑟.𝑖)

𝑁𝐷

𝑟=1

 

 𝑖 = 𝑒𝑨𝑖Δ𝑡  

𝑹𝑟.𝑖.0 =  ∫
𝜏𝑟.𝑖 + (1 − 𝑑𝑟𝑟.𝑖)Δ𝑡 − 𝑠

Δ𝑡
𝑒𝑨𝑖(Δ𝑡−𝑠) 𝑑𝑠𝑩𝑟.𝑖

ℎ

0

 

𝑹𝑟.𝑖.1 =  ∫
𝑠 − 𝜏𝑟.𝑖 + 𝑑𝑟𝑟.𝑖Δ𝑡

Δ𝑡
𝑒𝑨𝑖(Δ𝑡−𝑠) 𝑑𝑠𝑩𝑟.𝑖

ℎ

0

 

(3.24) 

 

If 𝐴𝑖
−1 exists, integrals are calculated by the next equations. 

 

𝑹𝑟.𝑖.0 =  [𝐴𝑖
−1 +

1

Δ𝑡
(𝐴𝑖

− − (𝜏𝑟.𝑖 + (1 − 𝑑𝑟𝑟.𝑖)Δ𝑡)𝐴𝑖
−1)(𝐼 − 𝑒𝐴𝑖Δ𝑡)]𝑩𝑟.𝑖 

𝑹𝑟.𝑖.1 =  [−𝐴𝑖
−1 +

1

Δ𝑡
(−𝐴𝑖

− + (𝜏𝑟.𝑖 − 𝑑𝑟𝑟.𝑖Δ𝑡)𝐴𝑖
−1)(𝐼 − 𝑒𝐴𝑖Δ𝑡)]𝑩𝑟.𝑖 

(3.25) 

 

For this situation transition matrix, 𝑮 , can be calculated as follow: 

 

                                                              1                 𝑑𝑟𝑟,𝑖 − 1       𝑑𝑟𝑟,𝑖                       𝑑𝑟𝑚𝑎𝑥 

𝑮𝑖 =

[
 
 
 
 
  𝟎 ⋯ 𝟎 𝟎
𝑫 𝟎 ⋯ 𝟎 𝟎
𝟎 𝑰 ⋯ 𝟎 𝟎
⋮ ⋮ ⋱ ⋮ ⋮
𝟎 𝟎 ⋯ 𝑰 𝟎]

 
 
 
 

+∑

[
 
 
 
 
𝟎 𝟎 ⋯ 𝟎 𝑹𝒓, , 𝑹𝒓, ,𝟎 𝟎 ⋯ 𝟎

𝟎 𝟎 ⋯ 𝟎 𝟎 𝟎 𝟎 ⋯ 𝟎
𝟎 𝟎 ⋯ 𝟎 𝟎 𝟎 𝟎 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝟎 𝟎 𝟎 𝟎 ⋯ 𝟎]

 
 
 
 𝑁𝐷

𝑟=1

 
(3.26) 

 

The monodromy matrix can be obtained using 𝑮𝑖and the size of this matrix will be 

(2𝑑𝑟𝑚𝑎𝑥 + 4) × (2𝑑𝑟𝑚𝑎𝑥 + 4). 

The accuracy of the method is strongly dependent on the resolution (𝑚), and higher values 

of 𝑚 result in a larger size of the monodromy matrix. The size of the transition and 

monodromy matrices has a very significant effect on the computational cost of the 

method. Because, to approximate the infinite-dimensional monodromy matrix to a finite 
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matrix, the transition matrix is calculated and multiplied 𝑚 times. Also, calculating 

eigenvalues for the larger size of the monodromy matrix is more difficult. Therefore, the 

𝑚 value affects the calculation time, and this issue should be taken into account. 

 

3.3.2. Chatter Stability  

The milling system's dynamics will be modeled in this part, taking into account dynamic 

chip thickness, dynamically changing milling forces, and the milling system's structural 

properties. The milling model is represented in this study using two orthogonal degrees 

of freedom systems in the x and y process directions (Figure 3.9).  

 

𝑚𝑥 ̈(𝑡) + 𝑐𝑥 ̇(t) + 𝑘𝑥 (𝑡) = 𝐹𝑥(𝑡) 

𝑚𝑦 ̈(𝑡) + 𝑐𝑦 ̇(t) + 𝑘𝑦 (𝑡) = 𝐹𝑦(𝑡) 
(3.27) 

 

In these equations, 𝑚𝑥, 𝑚𝑦, 𝑐𝑥, 𝑐𝑦, 𝑘𝑥 ve 𝑘𝑦 determine the modal mass, modal damping, 

and modal stiffness values in the   and   directions, respectively.  ̈(𝑡),  ̈(𝑡),  ̇(t), 

 ̇(t),  (𝑡) and  (𝑡) are vibration acceleration, velocity, and displacement in the   and   

directions, respectively. 𝐹𝑥(𝑡) and  𝐹𝑦(𝑡) are the milling forces in the x and y directions. 

Equation (3.28) can be rewritten as follows: 

 

 ̈(𝑡) + 2𝜉𝑥𝜔𝑛𝑥  ̇(𝑡) + 𝜔𝑛𝑥
  (𝑡) =

𝐹𝑥(𝑡)

𝑚𝑥
 

 ̈(𝑡) + 2𝜉𝑦𝜔𝑛𝑦 ̇(𝑡) + 𝜔𝑛𝑦
  (𝑡) =

𝐹𝑦(𝑡)

𝑚𝑦
 

(3.28) 

 

Here  𝜔𝑛𝑥, 𝜔𝑛𝑦 , 𝜉𝑥 and 𝜉𝑦  represent the damping ratio and natural frequency of the 

system's most dominant vibration mode in the   and   directions. 
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Figure 3.9. Two degrees of freedom milling dynamic system   

 

The chip thickness varies periodically under the effect of previous vibration marks left on 

the surface and the present vibrations of the cutting teeth. As a result, the milling system 

must be considered as a delayed dynamic system. The following equations consider the 

influence of these vibrations on chip thickness: 

 

ℎ𝑖,𝑗(𝜙) = [Δ sin (𝜑𝑖,𝑗
(𝜙)) + Δ cos (𝜑𝑖,𝑗

(𝜙))] 

Δ =  (𝑡) −  (𝑡 − 𝜏𝑖,𝑗) 

Δ =  (𝑡) −  (𝑡 − 𝜏𝑖,𝑗) 

(3.29) 

 

where the time-dependent vibration amplitude differences in the x and y directions are 

denoted by Δ  and Δ , respectively. At each axial height, 𝜏𝑖,𝑗 shows the delay time 

between teeth 𝑗 and 𝑗 + 1. For each angular position of cutting teeth, the effect of 

vibrations on dynamic chip thickness is taken into account by considering their 

components in the chip thickness direction.  

Considering equation (3.29), dynamic milling forces can be obtained by following 
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equations: 

 

𝑑𝐹𝑥(𝑖, 𝑗, 𝜑) =  − 𝐾𝑟𝑐[Δ sin(𝜑𝑗) + Δ cos(𝜑𝑗)] sin (𝜑𝑖𝑗(𝜑))

− 𝐾𝑡𝑐[Δ sin(𝜑𝑗) + Δ cos(𝜑𝑗)] cos (𝜑𝑖𝑗(𝜑)) 

𝑑𝐹𝑦(𝑖, 𝑗, 𝜑) =  − 𝐾𝑟𝑐[Δ sin(𝜑𝑗) + Δ cos(𝜑𝑗)] cos (𝜑𝑖𝑗(𝜑))

+ 𝐾𝑡𝑐[Δ sin(𝜑𝑗) + Δ cos(𝜑𝑗)] sin (𝜑𝑖𝑗(𝜑)) 

(3.30) 

 

Since the geometry of crest-cut tools brings multiple time delays to the system, this issue 

should be taken into account in the model, and the obtained equations will be solved by 

the Semi-Discretization method. Also, in the formulation, crest-cut tools with variable 

pitch and/or helix tools are considered. And the effect of non-constant nominal pitch and 

helix angles will be investigated.  

Since the delay varies along the tool axis for each tooth due to the geometry of the crest-

cut end mills, their values must be calculated for each tooth and axial position. At certain 

axial position i, the delay for the tooth number j, 𝜏𝑖,𝑗, can be determined using the local 

pitch angle Δ𝜑𝑖,𝑗 (Equation (3.8)) and the spindle speed 𝛺 as follows: 

𝜏𝑖,𝑗 =
 0Δ𝜑𝑖,𝑗  

2𝜋𝛺
 

(3.31) 

 

After determining the delay for each tooth and element, the number of discrete points that 

cover each time delay (𝜏𝑖,𝑗) is obtained as follow (Tamás Insperger and Stépán 2002): 

 

𝐷𝑖,𝑗 = 𝑖𝑛𝑡 (
𝜏𝑖,𝑗
ℎ

+
1

2
) 

𝒓 = 𝑢𝑛𝑖𝑞𝑢𝑒(𝐷𝑖,𝑗)        ∀𝑖 = 1: 𝑧 𝑎𝑛𝑑 ∀𝑗 = 1:𝑁 

𝑁𝐷 = 𝑠𝑖𝑧𝑒(𝒓) 

(3.32) 

 

The coefficients of dynamic displacement differences in the   and   coordinates are 

generated by rearranging the dynamic milling forces (equation (3.11)) as follows:  
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𝑑𝐹𝑥(𝑖, 𝑗, 𝑡) = ∆  (𝑎𝑥𝑥(𝑖, 𝑗, 𝑡)) + ∆ (𝑎𝑥𝑦(𝑖, 𝑗, 𝑡)) 

𝑑𝐹𝑦(𝑖, 𝑗, 𝑡) = ∆ (𝑎𝑦𝑥(𝑖, 𝑗, 𝑡)) + ∆ (𝑎𝑦𝑦(𝑖, 𝑗, 𝑡)) 
(3.33) 

 

To take into account the geometry of the crest-cut tools in these equations, directional 

coefficients are calculated for all cutting teeth at each 𝑧 level. 

 

𝑎𝑥𝑥(𝑖, 𝑗, 𝑡, 𝐷𝑖,𝑗) = 𝑔(𝜑𝑖,𝑗(𝑡)) (𝑠𝑖𝑛(𝜑𝑖,𝑗(𝑡))(−𝑠𝑖𝑛(𝜑𝑖,𝑗(𝑡))𝐾𝑟𝑐 − 𝑐𝑜𝑠(𝜑𝑖,𝑗(𝑡))𝐾𝑡𝑐))𝑑𝑧 

𝑎𝑥𝑦(𝑖, 𝑗, 𝑡, 𝐷𝑖,𝑗) = 𝑔(𝜑𝑖,𝑗(𝑡)) (cos (𝜑𝑖,𝑗(𝑡))(−sin (𝜑𝑖,𝑗(𝑡))𝐾𝑟𝑐 − cos (𝜑𝑖,𝑗(𝑡))𝐾𝑡𝑐))𝑑𝑧 

𝑎𝑦𝑥(𝑖, 𝑗, 𝑡, 𝐷𝑖,𝑗) = 𝑔(𝜑𝑖,𝑗(𝑡)) (𝑠𝑖𝑛(𝜑𝑖,𝑗(𝑡))(−cos (𝜑𝑖,𝑗(𝑡))𝐾𝑟𝑐 − sin (𝜑𝑖,𝑗(𝑡))𝐾𝑡𝑐)) 𝑑𝑧 

𝑎𝑦𝑦(𝑖, 𝑗, 𝑡, 𝐷𝑖,𝑗) = 𝑔(𝜑𝑖,𝑗(𝑡)) (cos (𝜑𝑖,𝑗(𝑡))(−𝑐𝑜𝑠(𝜑𝑖,𝑗(𝑡))𝐾𝑟𝑐 − sin (𝜑𝑖,𝑗(𝑡))𝐾𝑡𝑐)) 𝑑𝑧 

(3.34) 

 

Here, 𝑎𝑥𝑥(𝑖, 𝑗, 𝑡, 𝐷𝑖,𝑗) represents the directional coefficient of the axial element 𝑖 on each 

tooth (𝑗) at time 𝑡 in 𝑋𝑋 direction. These coefficients are grouped according to the delay 

value of the corresponding element and tooth 𝐷𝑖𝑗. 𝜑𝑖,𝑗(𝑡) is the angular position of each 

element on each tooth at time 𝑡 and it can be obtained by the following equation: 

 

𝜑𝑖𝑗𝑡 =
 0𝑡

Ω
2𝜋 + 𝜑𝑖𝑗  (3.35) 

 

Considering obtained relations, equation (3.28) can be rewritten as follows: 

 

{
 ̈(𝑡) + 2𝜁𝑥𝜔𝑛𝑥  ̇(𝑡) + 𝜔𝑛𝑥

   (𝑡)

 ̈(𝑡) + 2𝜁𝑦𝜔𝑛𝑦  ̇(𝑡) + 𝜔𝑛𝑦
   (𝑡)

}     

=

[
 
 
 
 
𝜔𝑛𝑥
 

𝑘𝑥
0

0
𝜔𝑛𝑦
 

𝑘𝑦 ]
 
 
 
 

∑ [[𝐷𝐶𝑟(𝑡)] [
 (𝑡) −  (𝑡 − 𝜏𝑟)

 (𝑡) −   (𝑡 − 𝜏𝑟)
]]

𝑟=𝑁𝐷

𝑟=1

 

(3.36) 

 

𝐷𝐶𝑟(𝑡) matrix includes direction coefficient and the elements of 𝐷𝐶𝑟(𝑡) are given below: 
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𝐷𝐶𝑟,𝑡 =∑∑[
𝑎𝑥𝑥(𝑖, 𝑗, 𝑡, 𝑟) 𝑎𝑥𝑦(𝑖, 𝑗, 𝑡, 𝑟)

𝑎𝑦𝑥(𝑖, 𝑗, 𝑡, 𝑟) 𝑎𝑦𝑦(𝑖, 𝑗, 𝑡, 𝑟)
]

𝑁

𝑗=1

𝑧

𝑖=1

  (3.37) 

 

In the next step, the system (equation (3.36)) is transformed into the form of (Tamás 

Insperger and Stépán 2002):  

 

𝐗̇(𝑡) = 𝑳(𝑡)𝐗(𝑡) + ∑ 𝑹𝒓(𝑡)𝑿(𝑡 − 𝜏𝑟)

𝑟=𝑁𝐷

𝑟=1

 

𝐗(𝑡) = {

 (𝑡)

 (𝑡)

 ̇(𝑡)

 ̇(𝑡)

}  

(3.38) 

 

In this equation 𝑳(𝑡) and 𝑹𝒓(𝑡) are time dependent periodic coefficient matrices: 

 

𝑳(𝑡) = [
𝟎

𝑴−1𝑫𝑪𝑡 − 𝑫
𝑰
𝑪
] 

𝑹𝒓(𝑡) = [
𝟎

𝑴−1𝑫𝑪𝑟,𝑡

𝑰
𝟎
] 

𝑴−1 =

[
 
 
 
 
𝜔𝑛𝑥
 

𝑘𝑥
0

0
𝜔𝑛𝑦
 

𝑘𝑦 ]
 
 
 
 

 

𝑫 = [
𝜔𝑛𝑥
 0

0 𝜔𝑛𝑦
 ] 

𝑫𝑪𝒕 = ∑ 𝑫𝑪𝑟,𝑡  

𝑟=𝑁𝐷

𝑟=1

 

𝑪 = [
−2𝜁𝑥𝜔𝑛𝑥 0

0 −2𝜁𝑦𝜔𝑛𝑦 
] 

(3.39) 

 

𝑳(𝑡) matrix has the contributions of all directional coefficients in time 𝑡 and it is 

independent of delay labels. On the other hand, only direction coefficients labeled 𝑟 affect 
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the 𝑹𝒓(𝑡) matrix. 

Stability analysis of Equation (3.38) is done by the first-order Semi-Discretization 

method. In this method, as discussed in previous sections, the stability of the system is 

analyzed with an approximate monodromy matrix according to Floquet Theory. The 

solution at each time step depends on the state of the system in the previous time step 

(Tamás Insperger and Stépán 2002). 

 𝑢+1 = 𝑩𝑢 𝑢 

 𝑢 =

(

 
 
 
 

𝑿𝑢

𝑿𝑢−1.
.
.

𝑿𝑢−𝑚+1

𝑿𝑢−𝑚 )

 
 
 
 

  

(3.40) 

 

where, 

 

                                                        1                    𝐷𝑅𝑟,𝑖 − 1     𝐷𝑅𝑟,𝑖                              𝐷𝑅 

𝑩𝑢 =

[
 
 
 
 
𝒆𝑳𝒖𝚫𝒕 𝟎 ⋯ 𝟎 𝟎
𝑰 𝟎 ⋯ 𝟎 𝟎
𝟎 𝑰 ⋯ 𝟎 𝟎
⋮ ⋮ ⋱ ⋮ ⋮
𝟎 𝟎 ⋯ 𝑰 𝟎]

 
 
 
 

+∑

[
 
 
 
 
0 0 ⋯ 0 𝑹𝑟,𝑢,1 𝑹𝑟,𝑢,0 0 ⋯ 0

0 0 ⋯ 0 0 0 0 ⋯ 0
0 0 ⋯ 0 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 0 0 ⋯ 0]

 
 
 
 𝑁𝐷

𝑟=1

 

𝑹𝑟,𝑢,0 = (𝑳𝑢
−1 +

1

ℎ
(𝑳𝑢

− − (𝜏𝑟,𝑢 − (𝑟𝑟 − 1)Δ𝑡)𝑳𝑢
−1)(𝐼 − 𝒆𝑳𝒖Δ𝑡))𝑹𝑟,𝑢 

𝑹𝑟,𝑢,1 = (−𝑳𝑢
−1 +

1

ℎ
(−𝑳𝑢

− + (𝜏𝑟,𝑢 − 𝑟𝑟Δ𝑡)𝑳𝑢
−1)(𝐼 − 𝒆𝑳𝒖Δ𝑡))𝑹𝑟,𝑢 

Δ𝑡 =
𝑇

𝑚
 

𝑇 =
 0

𝛺
 

(3.41) 

 

State matrices 𝑳(𝑡) and 𝑹𝒓(𝑡) depend on time-varying matrices 𝑫𝑪𝒕 and 𝑫𝑪𝒓,𝒕 that can 

be evaluated in each time interval (𝑢). The time-varying milling process can be simulated 
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by solving a set of discrete recursive equations in each time interval. Since the process is 

periodic in 𝑇, it is sufficient to solve the equations in 𝑚 (number of time steps) time 

interval. 

The system's stability can be assessed by considering m intervals in the tool rotation 

period T, as shown below.: 

 𝑖+𝑚 = 𝚽  𝑖  (3.42) 

 

In line with the Floquet theory, if at least one eigenvalue of the transition matrix (𝚽) has 

a module greater than one, there will be chatter in the system. The system will be critically 

stable if the greatest module is one and stable if all of the modules are less than one 

(Tamás Insperger and Stépán 2004). 

3.3.3. Experimental Verification of Stability Model 

In this part, chatter tests will experimentally verify the stability model presented to the 

crest cutting tools. DMU 75 5-axis machining center is used to milling of a Al7075-T6 

prismatic block. A microphone is set as close to the cuttings area and the recorded sound 

data are analyzed using LabVIEW software to capture the sound spectrum of chatter tests. 

Prior to the tests, a hammer test is used to acquire the modal characteristics of the tool-

holder-spindle assembly at the tool tip, and stability analysis is performed using these 

parameters. (Figure 3.10). CUT PRO® software was used for the hammer test.  
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Figure 3.10. Hammer test before the stability experiments with crest-cut tools 

The modal parameters obtained for the system are shown in Table 2. 

 

Table 3.4. Modal parameters of the system used in the chatter test of the crest-cut tool 

𝝎𝒏𝒙 (𝑯 )  𝒌𝒙(𝑵 𝒎) 𝜻𝒙% 𝝎𝒏𝒚(𝑯 ) 𝒌𝒚(𝑵 𝒎) 𝜻𝒚% 

711 2.65e7 3.08 509 2.41e7 4.37 

 

The geometrical parameters of the crest-cut end mill used in the chatter tests are disclosed 

in Table 3.  

 

Table 3.5. Crest-cut end mill parameters in the chatter test  

𝑹 𝑵   𝝀 𝑨 𝒍 

8 mm 4 30˚ 16 mm 1.2 mm 0 

 

The schematic and unfolded view of the used end mill is shown in Figure 3.11. 
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Figure 3.11. Schematic and unfolded view of the tool used in chatter tests 

Half immersion milling with 0.025 mm/(rev-tooth) feed was applied in the chatter tests. 

The predicted stability diagram, together with the chatter test results, are shown in  Figure 

3.12. The stability diagram for a similar standard end mill is also given in the same figure, 

illustrating a substantial stability limit increase with the crest-cut tool. Furthermore, as it 

can be seen from the figure, instead of classical stability lobes for standard milling tools, 

crest-cut end mills provide much larger stability regions due to different delays introduced 

to the system as they disrupt regeneration mechanisms. Considering this advantage, crest-

cut tools provide wider and higher stable regions in certain speed ranges improving 

productivity significantly. In higher spindle speeds, on the other hand, since the 

wavelength of vibrations is increased, the stabilizing effect of the crest-cut tools is 

reduced. These effects will be discussed in section 5 in detail.  
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Figure 3.12. Stability lobes and chatter test results for crest-cut end mill 

In Figure 3.13, the sound spectrums and the machined surface pictures for stable and 

unstable cases (cases A, B, C, and D in see Figure 3.12) are presented. For the unstable 

cases (B and C), the chatter marks appear at 5000 RPM and 3000RPM at 7.5 mm and 

12.5mm axial cutting depth, respectively, as shown in Figure 3.13. The sound spectrum 

is captured by the microphone during the cutting experiment. For case B, the 

corresponding tooth passing frequency is 𝜔𝑇 =     𝐻𝑧, while the chatter frequency 𝜔𝑐 

with higher amplitude is shown around the natural frequency of the system. 
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Figure 3.13. Sound Spectrum and cut surface of the different cases 

Similarly, the photographs of the cut surface and the sound spectrums are also illustrated 

for the stable conditions (case A and D) in Figure 3.13. It is seen that for these cases the 

chatter marks are eliminated, and a clean surface is produced. The sound spectrums show 

only the tooth passing frequency and its harmonics with no indication of chatter.   

Based on the above experimental validation, it can be concluded that the proposed model 

can be used effectively to predict chatter stability limits accurately for crest-cut end mills. 

The model is also used to investigate the stability of crest-cut tools with different 

wavelengths and wave amplitudes, and the results are presented in the next section.  

 

 Stability Analysis Based on Crest-cut Tools Geometry 

As shown in the previous section (see Figure 3.12), crest-cut end mills demonstrate much 

better performance in terms of absolute and maximum stability limits compared to 

standard end mills. Since the wavy geometry of the cutting edge is the main reason for 

the increased stability, the effects of the wavelength and wave amplitude should be 

investigated in detail. For this purpose, another crest-cut end mill with different 

geometrical parameters is used to show these effects on stability lobe diagrams. In this 

case study, the diameter and length of the tool, as well as the tool-holder assembly 

conditions, are taken as the ones in Section 3.3.3 to achieve similar modal parameters 
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given in Table 3.2. The comparison between simulation and test results is shown in Figure 

3.14. 

 

Figure 3.14. Comparison of two different crest-cut end mill 

In this study, the stability lobe diagram for the second tool with geometrical parameters 

(𝐴=2, 𝜆=25) is validated by experiments and compared with the results obtained in 

Section  3.3.3. As shown in Figure 3.14, different crest-cut end mills behave differently 

on each point of the stability lobe diagram. Therefore, for a specific cutting condition, the 

selection of proper crest-cut tool wave shapes is crucial. 

3.4.1. Effects of Edge Wave Shape on Chatter Stability 

In this section, the effects of edge wave shape on stability lobe diagrams are investigated 

and the results are discussed. The simulations are performed using the tool dynamic 

properties and cutting conditions given in section 3.3.3. In the first step, the effects of the 

wavelength on the stability lobe diagrams are investigated with the illustrated results in 

Figure 3.15. In these simulations, the edge wave amplitude (𝐴) was kept constant as 1mm. 

In order to complement these results with the effects of the edge wave amplitude on the 

stability limits, stability lobe diagrams with different wave amplitudes (with the constant 
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edge wavelength of 20mm) are shown in Figure 3.16. 

 

 

 

Figure 3.15. Stability lobe diagrams for different edge wavelengths  

 

Figure 3.16. Stability lobe diagrams for different edge wave amplitudes  
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10, 1 , 20 𝑚𝑚, are close to each other they are significantly different for longer 

wavelengths of 𝜆 = 2 ,  0 𝑚𝑚. Based on these simulations, it can be deduced that higher 

stable cutting depths can be achieved with smaller wavelengths, however, they cannot be 

increased further after a certain minimum wavelength. Stability lobe diagrams remain 

similar for 𝑤𝑙 values between minimum and a specific value since the generated local 

pitch variations between two consequent teeth are repeated regardless of the number of 

engaged waves at the maximum stable depth of cut. Accordingly, if the wavelength 

becomes greater than the specific value, some of the pitch variations and as a result, some 

of the delays are eliminated and the stability limits decreases. Hence, for very large 

𝜆 values the pitch variations become negligible as the number of the introduced delays to 

the system decreases and the crest-cut tool tends to behave like standard end mills. 

The simulation results in Figure 3.16 indicate that the variation of wave amplitudes does 

not only change the stability limits but also shifts the lobes toward higher spindle speeds 

significantly. It is observed that, although the stability limit is increased, the lobe shift 

provides a higher stable depth of cuts even in the spindle speed values where the limits 

for the standard tool are at their minimum. As a result, by choosing the proper wave 

geometry of crest-cut end mills, it is possible to reach a higher depth of cuts at desired 

spindle speeds. Simulation results also show that by increasing the spindle speed, the 

wave amplitude of the crest-cut edges should also be increased to obtain higher stability 

limits. It is known that the chatter wavelengths increase with the spindle speed (E. Budak 

2003b). Therefore, low values of wave amplitude on the edge may not be sufficient to 

eliminate the phase shift between two consecutive chatter marks at higher spindle speeds. 

For instance, as shown in Error! Reference source not found.,  the tools with a wave 

amplitude of 0.5 mm and 1 mm lose their effectiveness after 2750 rpm and 4250 rpm, 

respectively. On the other hand, tools with 1.5mm and 2 mm of edge wave amplitudes 

are effective up to much higher spindle speeds due to their ability to eliminate the phase 

shift between chatter marks at these speeds. Therefore, like variable pitch end mills, in 

order to eliminate chatter in a specific spindle range, the amplitude should be large enough 

considering the ratio of chatter and tooth passing frequencies (𝑟𝜔 =
𝜔𝑐

𝜔𝑇
). For smaller 

ratios, larger wave amplitudes should be selected to increase stability. 

The results obtained in this section prove that the selection of the geometrical parameters 

of crest-cut tools is vital in order to achieve high chatter-free MRR. Further, it is deduced 
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that the wave amplitude and wavelength must be selected according to the target cutting 

conditions. 

 

3.4.2. Selection of Optimal Geometry for Crest-cut Tools 

Similar to variable-pitch end mills, crest-cut tools present important opportunities to 

achieve high stability limits by tuning their geometry for a specific spindle speed. In order 

to determine the optimum crest-cut wave shape for a target spindle speed, simulations can 

be used, as explained in this section. To demonstrate the procedure, three different spindle 

speeds (3000, 4000, and 5000 RPM) are selected for which the maximum stability limits 

with different edge-wave shapes are calculated (Figures 3.19a, 3.20a, 3.21a). The optimal 

design is selected as the one which provides the highest stability limit. To investigate the 

performance of the optimal crest-cut tools, their stability diagrams are compared with a 

standard milling tool and a variable-pitch end mill having optimum pitch variation tuned 

according to the method proposed by (E. Budak 2003a) as presented in Figures 14b, 15b, 

and 16b.  In all simulations, the same dynamics properties given in Table 3.2 are used.  

Results show that optimal crest-cut end mills provide higher stability limits at the target 

spindle speed in comparison to optimum variable-pitch end mills. Another important 

feature of the optimized crest-cut tools is their high stability zones compared to the tuned 

variable-pitch end mills, as shown in Figures 3.19b, 3.20b, 3.21b.  

According to the (a) parts of these figures, it is seen that for 3000 RPM, and 5000 RPM 

spindle speeds, the optimum wave amplitudes are 1mm and 1.5mm, respectively. This 

confirms the reasoning discussed in the previous section that the optimum wave 

amplitude is increased with increased spindle speed. 
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Figure 3.17. Stability limit of crest-cut end mill with different shapes b) comparison of 

optimum crest-cut end mill (𝑤𝑎=1mm, 𝑤𝑙=22mm) and variable pitch tool in 3000 rpm 

 

Figure 3.18. a) Stability limit of crest-cut end mill with different shapes b) comparison 

of optimum crest-cut end mill (𝑤𝑎=1.3mm, 𝑤𝑙=31mm) and variable pitch tool in 4000 

rpm  
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Figure 3.19. a) Stability limit of crest-cut end mill with different shapes b) comparison 

of optimum crest-cut end mill (𝑤𝑎=1.5mm, 𝑤𝑙=20mm) and variable pitch tool in 5000 

rpm  

According to the obtained results, optimum crest-cut end mills can increase the stability 

limits and performance of the process at the desired spindle speed. Despite their relatively 

higher production time compared to standard end mills, crest-cut milling tools can reduce 

machining times substantially by increasing stable MRR. Moreover, it is deduced that 

crest-cut tools provide a much wider stable zone in the vicinity of desired spindle speed 

whereas narrow stable ranges are possible with variable pitch tools. This advantage makes  

crest-cut tools more robust against variations in chatter frequency and spindle speed.  

Different modes of tool, part and spindle assemblies may exist or emerge during the 

process based on the cutting location; however they cannot be suppressed by variable 

pitch tools as they are designed for a target chatter frequency. Furthermore, dynamics of 

the workpiece may also change due mass removal, especially in thin-walled structures (E 

Budak and Kops 2000; Erhan Budak et al. 2012). The chatter frequency changes resulting 

from such issues can be tolerated more effectively by crest-cut tools because of their wide 

stable ranges. Additionally, manufacturers prefer to use cutting tools in different 

operations under different cutting conditions. Optimized variable pitch tools designed for 

a specific spindle speed may perform even worse than standard end mills at different 

spindle speeds (Iglesias et al. 2019) whereas crest-cut tools can be used in a wider range 

of speeds. This advantage of crest-cut tools provides an opportunity for their use under 

different process conditions. 
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 Conclusions 

The present study investigates the mechanics and dynamics of milling with crest-cut end 

mills. The effectiveness of the crest-cut tools in improving the stability of milling 

processes is analyzed. Results show that these tools can provide significant improvements 

in terms of process stability. The specific contributions and conclusions of the study are 

listed as follows. 

• Milling forces are predicted and confirmed with experimental results. Considering 

cutter-workpiece engagement and local cutting force coefficients, accurate cutting 

force predictions are obtained. Unlike standard milling tools, crest-cut end mills 

produce non-periodic cutting forces. 

• The milling process stability with crest-cut tools is analyzed using the semi-

discretization method, and the obtained results are verified experimentally for the 

first time in the literature. It is demonstrated that higher process stability can be 

obtained by crest-cut tools compared to standard and variable pitch milling tools.  

•  The stability diagrams obtained for crest-cut tools show several different 

characteristics. The most important one is the substantially enlarged stable regions 

compared to classical relatively narrow stability lobes offered by standard milling 

tools.  

• As another novel part of the study, the effects of the crest-cut wave shape on the 

stability limits are investigated. Results show that the wave amplitude has a strong 

effect on cutting dynamics behavior and each wave amplitude is effective at a 

specific spindle speed range. Having the ability to disrupt the regeneration 

mechanism, higher values of wave amplitude result in higher stability limits at the 

conditions where the 𝑟𝜔 is low. However, the manufacturing of high wave 

amplitudes on edges is hindered by dimensional limitations.  

• As the edge wavelength in crest-cut tools increases, the number of delays 

introduced to the system decreases. Therefore, the effectiveness of crest-cut tools 

reduces and the stability limit approaches to those of a standard endmill. On the 
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other hand, higher wavelengths provide a wider range of the producible wave 

amplitudes in manufacturing of these tools. In order to overcome this dilemma, 

the proposed model can be used to select the proper wavelength. 

• The results show that the amplitude of the waves on the edges is a more important 

parameter. The wavelength selection can be made after choosing optimal wave 

amplitude considering the dimensional limitations in manufacturing the crest-cut 

tools. 

• It is observed that, at a specific spindle speed, the optimal crest-cut tool 

demonstrates a higher stability limit compared to the standard end mill.  

Furthermore, the peak and absolute stability limits for the optimal crest-cut tools 

are higher than those of the tuned variable-pitch tools at the vicinity of the speed 

selected for tuning. 

In summary, this study reveals the way that the shape of the wavy edges in crest-cut 

tools affects the stability of the process. Using effective crest-cut end mills designed 

and selected by the proposed guideline can significantly improve the process stability 

in the desired cutting conditions. One of the major limitations which can be solved in 

future studies is generation of a method to design an optimum edge shape quantitively. 

The new outcomes of this study are expected to open new possibilities for the research 

community and industry to develop high-performance crest-cut end mills that can 

improve productivity further.  
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4. SERRATED END MILLS 

Serrated end mills offer reduced milling forces, increased chatter stability and superior 

chip breaking ability once they are designed and employed properly. Although serrated 

end mills are often used in industry, the literature on these tools is quite limited compared 

to standard milling tools. In this chapter, a method to analyze mechanics and dynamics 

of milling with different types of serrated end mills will be presented. Tools with variable 

helix or/and pitch with different serration geometries and different types of end mills are 

also considered in the investigation. In the first step, the geometric model of the cutters 

will be defined mathematically and different parameters of the tools are extracted from 

the model. Then model of the mechanics of milling with these tools to predict cutting 

forces are presented and verified experimentally. In the proposed method a novel and 

accurate way to calculate the chip thickness is presented. For the first time in the literature, 

effects of serration wave geometry and cutting conditions on effectiveness of serrated 

tools are investigated resulting in optimized serration shapes for given milling conditions. 

As an important factor, effects of the phase shift direction on the serration waves are also 

investigated. In the last step, chatter stability analysis will be investigated. Because of the 

multiple delays which existing in the system, semi discretization method will be used to 

obtain stability lobe diagrams. The chatter stability model will be verified experimentally 

and then it will be used for comparing performance of the designed optimum serrated end 

mills with standard end mills.  

 

 

 Geometry of Serrated End Mills 

In this section, a general geometric model for commonly used serrated end mills is 

presented. The proposed model for the mechanics and dynamics of these tools is based 

on the geometrical model introduced here. 

The models considered in this study include cylindrical and tapered end mills, ball end 
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mills and round end mills with circular, sinusoidal and trapezoidal serration wave forms. 

These forms are chosen since most of the serration types used in industry can be 

represented by these wave forms. Moreover, tools with variable helix or/and pitch are 

also covered. In the geometry model, the tool is discretized along its axis as shown in 

Figure 1 and the cutting geometry is calculated for each axial element. 

 

 

Figure 4.1. Axial elements of the end mill 

4.1.1. Discretized End Mill Envelope Geometry  

In this study, as shown in the Figure 4.2, the tool envelope is defined by four parameters. 

These parameters can define different shapes of serrated end mills (cylindrical and 

tapered end mills with flat, ball and round noses) which are used in industry.  

To define general tool geometry, the tool radius as well as the angular position of each 

cutting edge in each element should be determined. The angular position of the first edge 

at the tip of the tool is taken as the reference, i.e. is assumed to be zero, and the angular 

position of the edge j at the tip of the tool are defined with respect to the first edge as 

follows: 
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Figure 4.2. Tool envelop parameters for different types of end mills  

 

𝑝𝑡(𝑗) = ∑ 𝑝𝑠

𝑠=𝑗−1

𝑠=1

 (4.1) 

 

where ps is the pitch angle of the tooth s. 

4.1.2. Case1: Cylindrical End Mills 

For these tools, the radius is constant along the tool axis. Then, the angular position of 

element i on the tooth j (𝜑𝑖𝑗) can be calculated as follows: 

 

𝜑𝑖𝑗 = 𝑝𝑡(𝑗) −
𝑡𝑎𝑛( 𝛾𝑗)

𝑅
(𝑧𝑖 − 𝑧𝑡) + 𝜑𝑡𝑗 (4.2) 

 

where 𝜑𝑡𝑗  is the starting angular position of each edge in cylindrical part of the tool and 

is equal to 𝑝𝑡(𝑗) (if the tool tip is flat). 𝑧𝑡 is the height of the first element in cylindrical 

section of the tool. It is equal to zero if the tool tip is flat and equal to BH when it has 

round tip. 𝛾𝑗  is the helix angle of the jth tooth, 𝑅 is the radius of the tool and 𝑧𝑖 is the height 

End Mill:
β=0, Rb=BH=0

Ball End Mill:
β=0, Rb=BH=R

Round End Mill:
β=0, Rb>R, BH≠0
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of element i.  

4.1.3. Case 2: Tapered End Mills 

For these tools, the radius varies along the tool axis due to the taper angle and can be 

represented as follows: 

 

𝑅𝑖 = (𝑧𝑖 − 𝑧𝑡) 𝑡𝑎𝑛( 𝛽) + 𝑅 (4.3) 

 

where 𝑅 is the minimum radius of the tool’s tapered part and 𝛽 is the taper angle. 𝑧𝑡 is 

axial position of the first element on the tapered part of the end mill and equal to BH and 

it is zero when tool does not have ball or round nose. 

To define the angular position of each cutting edge in an axial element, the tapered end 

mills are categorized in two group as constant lead with varying helix and constant helix 

with varying lead. 

For constant helix tools, the angular position of edge j on element i is defined as follows: 

 

𝜑𝑖𝑗 = 𝑎𝑗 𝑙𝑛( 1 + 𝑏(𝑧𝑖 − 𝑧𝑡)) + 𝜑𝑡𝑗  (4.4) 

 

where, 

 

𝑎𝑗 =
𝑡𝑎𝑛( 𝛾𝑗)

𝑠𝑖𝑛( 𝛽)
 (4.5) 

𝑏 =
𝑡𝑎𝑛( 𝛽)

𝑅𝑚𝑖𝑛
 (4.6) 

 

For tapered end mills with constant lead, on the other hand, the angular position of each 

edge on the element i can be defined as follows: 

𝜑𝑖𝑗 = 𝑐𝑗(𝑧𝑖 − 𝑧𝑡) + 𝜑𝑡𝑗 (4.7) 

 

where, 
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𝑐𝑗 =
𝑡𝑎𝑛( 𝜂𝑗)

𝑅𝑚𝑖𝑛
 (4.8) 

𝜂𝑗 = 𝑡𝑎𝑛−1(
2𝜋𝑅𝑚𝑖𝑛

𝐿𝑗 𝑐𝑜𝑠( 𝛽)
 )  (4.9) 

 

𝐿𝑗  is the lead of the jth tooth. 

 

4.1.4. Case 3: Ball and Round End Mills 

If the tool nose is not flat, the angular position and the radius of the tool at each height of 

the ball end part can be calculated by the following equations: 

 

𝑅𝑖 = √𝑅𝑏
 − (𝑅𝑏 − 𝑧𝑖)  (4.10) 

𝜑𝑖𝑗 =
𝑧𝑖
𝑅𝑖
𝑡𝑎𝑛( 𝛾𝑗) + 𝑃𝑡(𝑗) (4.11) 

 

where 𝑅𝑏 is tool ball nose radius. 

 

4.1.5. Local Radius  

The teeth of the serrated end mills have wavy flank surfaces and waves on consecutive 

teeth have phase difference. In addition, due to the serrations, tool radius of each edge 

varies along the tool axis harmonically (Figure 4.1). Therefore, the contacts between tool 

edges and workpiece are not continuous along the depth of cut, and each tooth is engaged 

with the material in certain axial heights as shown in Figure 4.3. Consequently, the contact 

length between the workpiece and the cutter is less than the nominal axial depth of cut. 

This can be considered as the main reason for reduced cutting forces in milling with 

serrated tools.  
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Figure 4.3. Engagement of cutting teeth and workpiece, and the marks left on the cut 

surface 

Local radii depend on the serration wave forms such as circular, sinusoidal and 

trapezoidal. These shapes with different parameters can cover most of the serration forms 

which are currently used in the industry.  

4.1.6. Sinusoidal Serration  

This serration type includes sine waves with amplitude A and wave length of WL: 

 

 
 

(a) (b) 

Figure 4.4. a) Parameters of sinusoidal serration b) Serration angle definition 

Considering the effect of the wave shape on the local radius, for sinusoidal serrated tools 

the local radius of tooth j on the element i can be obtained as follows: 

Workpiece
Removed Material
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𝑅𝑖𝑗 = 𝑅𝑖 − 𝐴(1 − 𝑠𝑖𝑛(𝜓𝑖𝑗)) (4.12) 

𝜓𝑖𝑗 = 2𝜋(
𝑙𝑖𝑗
𝑊𝐿

) − 𝑝𝑠𝑗 (4.13) 

 

where 𝜓𝑖𝑗  shows the angular position of the element i on the jth tooth on serration. 𝑝𝑠𝑗 

represents the phase shift which is the starting angle of the jth tooth wave at tip of the tool. 

Moreover, 𝑙𝑖𝑗 shows the jth cutting edge length from the serration starting point until 

element i which depends on the shape of the tool. For cylindrical end mills it can be 

determined as follows: 

 

𝑙𝑖𝑗 =
𝑧𝑖

𝑐𝑜𝑠( 𝛾𝑗)
 (4.14) 

 

For tapered end mills, the cutting edge length is calculated by using arc length formulation 

(Ortín 2010)  for the tapered end mills with constant helix as follows: 

 

 

Figure 4.5. Local radius variation along axis for end mill with sinusoidal serration 

 

𝑙𝑖𝑗 = √𝑡𝑎𝑛( 𝛽) + (
𝑡𝑎𝑛( 𝛾𝑖)

𝑐𝑜𝑠( 𝛽)
) (𝑧𝑖 − 𝑧𝑡) (4.15) 
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By using the same approach as used for the tapered end mills with the constant lead, the 

cutting edge length can be obtained as follows: 

𝑙𝑖𝑗 =
1

2 𝑡𝑎𝑛 𝛽
[𝜈√

1

𝑐𝑜𝑠 𝛽
+
𝑡𝑎𝑛 𝜂𝑗

 𝜈 

𝑅𝑚𝑖𝑛
 

+
𝑅𝑚𝑖𝑛

𝑐𝑜𝑠 𝛽 𝑡𝑎𝑛 𝜂𝑗
𝑙𝑛(

𝜈 𝑡𝑎𝑛 𝜂𝑗 +√
𝑅𝑚𝑖𝑛
 

𝑐𝑜𝑠 𝛽
+𝑡𝑎𝑛 𝜂𝑗 𝑣 

𝑅𝑚𝑖𝑛
)] − 𝑙0𝑖𝑗  

(4.16) 

where, 

𝜈 = 𝑅𝑚𝑖𝑛 + 𝑡𝑎𝑛𝛽(𝑧𝑖 − 𝑧𝑡) (4.17) 

 

𝑙0𝑖𝑗 =
𝑅𝑚𝑖𝑛

2 𝑡𝑎𝑛𝛽
[√

1

𝑐𝑜𝑠 𝛽
+ 𝑡𝑎𝑛 𝜂𝑗  

                          +
1

𝑐𝑜𝑠 𝛽 𝑡𝑎𝑛 𝜂𝑗
𝑙𝑛( 𝑡𝑎𝑛 𝜂𝑗 + √

1

𝑐𝑜𝑠 𝛽
+ 𝑡𝑎𝑛 𝜂𝑗 )] 

(4.18) 

 

The schematic views of the different tool types with sinusoidal serrations are illustrated 

in Figure 4.6. 

   

(a) (b) (c) 

 

Figure 4.6. Schematic view of serrated (a) Flat end mill (b) Tapered end mill (c) 

Tapered ball end mill with sinusoidal serration 
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4.1.7. Circular Serration 

Circular serration is defined by two circular sections as shown in Figure 4.7. 

 

 

Figure 4.7. Parameters of circular serration waves 

Local radius for the ith element on the jth tooth with circular serration type can be obtained 

by the following steps. One full serration wave length can be calculated by the following 

equation:  

 

𝜆1 = 2√𝐴1(2𝑅1 − 𝐴1) 

𝜆 = 2√𝐴 (2𝑅 − 𝐴 ) 

𝜆 = 𝜆1 + 𝜆  

(4.19) 

 

the parameters in this equation are illustrated in Figure 4.7.  

The position, of the cutting edge in the ith element on the jth tooth along the serration wave 

can be obtained by following equation: 

 

𝜓𝑖𝑗 = 𝑙𝑖𝑗 − (
𝑝𝑠𝑗
2𝜋

𝜆) 

 = 𝑅𝑒𝑚(
𝜓𝑖𝑗

𝜆
) 

(4.20) 

 

where lij is cutting edge length till ith element which defined by equations (4.14), (4.15) or 
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(4.16) regarding end mill type. By considering the position of the element on the wave 

the local radius can be obtained by the formulations: 

 

𝑖𝑓  {

 < 𝜆1 2 
 ≥ 𝜆1 2  

 < 𝜆1 + 𝜆  2
 ≥ 𝜆1 + 𝜆  2

   →    

𝑋 =  
𝑋 = 𝜆1 −  
𝑋 =  − 𝜆1
𝑋 = 𝜆 −  

 

𝑖𝑓  ≤ 𝜆1 

𝑅𝑖𝑗 = 𝑅𝑖 + (√𝑅1
 − (𝜆1 2 − 𝑋) − 𝑅) 𝑐𝑜𝑠( 𝜆𝑗) 

𝑖𝑓  > 𝜆1 

𝑅𝑖𝑗 = 𝑅𝑖 − (√𝑅 
 − (𝜆  2 − 𝑋) + 𝐴1 − 𝐴 + 𝑅 ) 𝑐𝑜𝑠( 𝜆𝑗)    

(4.21) 

 

 

 

Schematic view of the end mill and the change of its radius along the tool axis is shown 

in Figure 4.8. 

 

 

Figure 4.8. Schematic view of the end mill with circular serration 

4.1.8. Trapezoidal Serration Form 

Serrated end mills with trapezoidal wave form are also used in industry. The wave 

geometry is shown in Figure 4.9. 
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Figure 4.9. Parameters of trapezoidal serration waves 

 

The local radius for the ith element on the jth tooth with trapezoidal serration type can be 

calculated by the following equations. Parameters for this equation are defined on the 

Figure 4.9. 

 

𝜆1 = 𝑅1 𝑐𝑜𝑠 𝛼 , 𝜆 = (𝐴 − (𝑅1 + 𝑅 ) (1 − 𝑠𝑖𝑛 𝛼)) 𝑡𝑎𝑛 𝛼 

𝜆 = 𝑅 𝑐𝑜𝑠 𝛼 , 𝜆 = 𝐿1,  𝜆5 = 𝑅 𝑐𝑜𝑠 𝛽 

𝜆6 = (𝐴 − (𝑅 + 𝑅 ) (1 − 𝑠𝑖𝑛 𝛽)) 𝑡𝑎𝑛 𝛽 

𝜆7 = 𝑅 𝑐𝑜𝑠( 𝛽) 

 𝜆8 = 𝐿  

 𝜆 = ∑𝜆𝑖

8

𝑖=1

 

(4.22) 

The position of the ith element on the jth tooth on the serration wave can be determined by 

equation (4.23). 

 

𝜓𝑖𝑗 = 𝑙𝑖𝑗 − (
𝑝𝑠𝑗
2𝜋

𝜆) 

 = 𝑅𝑒𝑚(
𝜓𝑖𝑗

𝜆
) 

(4.23) 

By taking into account the position of the element on the serration wave the local radius 

of the ith element on the jth tooth can be calculated by following equations: 
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𝑖𝑓   ≤ 𝜆1      →   {

𝑋 =  

𝑅𝑖𝑗 = 𝑅𝑖 − 𝐴 + 𝑅1 − √𝑅1
 − 𝑋  

𝑖𝑓  ≤ ∑𝜆𝑖

 

𝑖=1

→ {
𝑋 =  − 𝜆1

𝑅𝑖𝑗 = 𝑅𝑖 − 𝐴 + 𝑋 𝑐𝑜𝑡 𝛼 + 𝑅1(1 − 𝑠𝑖𝑛 𝛼) 

𝑖𝑓  ≤ ∑𝜆𝑖

 

𝑖=1

→ 

{
 
 

 
 𝑋 =  −∑𝜆𝑖

 

𝑖=1

𝑅𝑖𝑗 = 𝑅𝑖 − 𝑅 +√𝑅 
 − (𝑋 − 𝑅 𝑐𝑜𝑠 𝛼) 

 

𝑖𝑓   ≤ ∑𝜆𝑖

 

𝑖=1

→  𝑅𝑖𝑗 = 𝑅𝑖  

𝑖𝑓   ≤ ∑𝜆𝑖

5

𝑖=1

→ 

{
 
 

 
 𝑋 =  −∑𝜆𝑖

 

𝑖=1

𝑅𝑖𝑗 = 𝑅𝑖 − 𝑅 +√𝑅 
 − 𝑋 

 

𝑖𝑓  ≤ ∑𝜆𝑖

6

𝑖=1

→ 

{
 
 

 
 𝑋 =  −∑𝜆𝑖

5

𝑖=1

𝑅𝑖𝑗 = 𝑅𝑖 − 𝐴 + ((𝑅 + 𝑅 ) (1 − 𝑠𝑖𝑛 𝛽). . .

        . . . 𝑡𝑎𝑛 𝛽 −  ) 𝑐𝑜𝑡 𝛽 + 𝑅 ( 1 − 𝑠𝑖𝑛 𝛽)

 

𝑖𝑓  ≤ ∑𝜆𝑖

7

𝑖=1

→ 

{
 
 

 
 𝑋 =  −∑𝜆𝑖

6

𝑖=1

𝑅𝑖𝑗 = 𝑅𝑖 − 𝐴 + 𝑅 . . .

           . . . −√𝑅 
 − (𝑋 − 𝑅 𝑐𝑜𝑠 𝛽) 

 

𝑖𝑓   ≤ ∑𝜆𝑖

8

𝑖=1

→ 𝑅𝑖𝑗 = 𝑅𝑖 − 𝐴 

(4.24) 

 

4.1.9. Edge Point Position Vectors 

The position vector 𝑃⃗⃗𝑖𝑗 defines the location of point i, on the jth edge at level zi, in 

Cartesian coordinates (Figure 4.10). This vector can be calculated by converting polar 

coordinates to Cartesian ones: 
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𝑃⃗⃗𝑖𝑗 = (𝑅𝑖𝑗 𝑐𝑜𝑠 𝜑𝑖𝑗)𝑖 + (𝑅𝑖𝑗 𝑠𝑖𝑛𝜑𝑖𝑗)𝑗 + 𝑧𝑖 𝑘⃗⃗⃗⃗ ⃗⃗ ⃗ (4.25) 

 

   

Figure 4.10. Axial immersion angle and position vector of element i on the jth edge 

 

4.1.10.  Axial immersion angle 

Since differential force directions are dependent on axial immersion angle, 𝜅𝑖𝑗, 

determining this angle is a significant part of force calculations. The immersion angle is 

the angle between the tool edge tangent vector and the unit vector 𝑛⃗⃗𝑖𝑗 which is directed 

toward edge along tool radius in x-y plane as shown in Figure 4.10. 

Due to the high number of elements in the axial direction, a vector connecting two ends 

of each element (𝜏𝑖𝑗) on the cutting edge is a good approximation for the tangent vector 

in that element. Axial immersion angle can be obtained by dot product of these vectors 

as follows:  

 

𝜏𝑖𝑗 = 𝑃⃗⃗𝑖+1𝑗 − 𝑃⃗⃗𝑖𝑗 

𝑛⃗⃗𝑖𝑗 = (𝑐𝑜𝑠 𝜑𝑖𝑗)𝑖 + (𝑠𝑖𝑛𝜑𝑖𝑗)𝑗 

𝜅𝑖𝑗 = 𝑐𝑜𝑠−1( 
𝜏𝑖𝑗 .  𝑛⃗⃗𝑖𝑗

|𝜏𝑖𝑗||𝑛⃗⃗𝑖𝑗|
 ) 

(4.26) 

𝑃𝑖𝑗 𝑛𝑖𝑗

𝜏𝑖𝑗

𝜅𝑖𝑗

 
 

𝑧
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Variation of the axial immersion angle for the one tooth of serrated end mill with 

sinusoidal serration (𝑊𝐿 = 2𝑚𝑚, 𝐴 = 0.2 𝑚𝑚) is demonstrated in Figure 4.11. 

 

 

Figure 4.11. Variation of axial immersion angle (κ) along tool axis 

 

4.1.11.  Local rake and oblique angles 

Serration geometry of the tool results in variable rake, 𝛼𝑖𝑗, and oblique, 𝛾𝑖𝑗 , angles along 

the cutting edges (Figure 4.12). Even if helix angle is zero, the existence of rake angle 

results in local non-zero oblique angles in some elements. Also because of presence of 

the helix angle, rake angle changes along cutting edge and the local values vary between 

negative and positive values in each portion of serration wave. The variation of these 

angles affects the chip removal mechanisms and should be considered in analyzing 

mechanics of milling. It is a known fact that increased rake angle affects the shearing 

mechanism positively. This tendency can be taken advantage of when selecting or 

designing serrated end mills. However, in order to take advantage of this, cutting edge 

strength must also be considered, as cutting edge strength diminishes as the rake angle 

increases. Moreover, variation of these angles affects cutting force coefficients which 

have significant role in calculation of cutting forces. Therefore, for each tooth in each 

axial element, the local cutting angles should be calculated.  

The local rake, ij, and oblique, ij, angles for each tooth on each element can be obtained 
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using the 3D geometrical relationships as follows: 

 

𝛼𝑖𝑗 = 2(𝑠𝑖𝑛−1( 𝑐𝑜𝑠( 𝑐𝑖𝑗 −𝛽) 𝑠𝑖𝑛( 𝛼𝑗 2)) + 𝑠𝑖𝑛−1( 𝑠𝑖𝑛( 𝑐𝑖𝑗 −𝛽) 𝑠𝑖𝑛( 𝛾𝑗 2))) (4.27) 

𝛾𝑖𝑗 = 2(𝑠𝑖𝑛−1( 𝑠𝑖𝑛( 𝑐𝑖𝑗 −𝛽) 𝑠𝑖𝑛( 𝛼𝑗 2)) − 𝑠𝑖𝑛−1( 𝑐𝑜𝑠( 𝑐𝑖𝑗 −𝛽) 𝑠𝑖𝑛( 𝛾𝑗 2))) (4.28) 

where αj and γj are the global rake and helix angles of the jth tooth. β is taper angle and cij 

is used to make equation simpler and it can be calculated by equation (4.29): 

𝑐𝑖𝑗 = 𝑡𝑎𝑛−1(
𝑅𝑖+1𝑗 − 𝑅𝑖+1𝑗

𝑑𝑧
) (4.29) 

 

 

Figure 4.12. Local rake and oblique angles on the serration wave for each element 

 

The variation of the rake angle along the cutting edge of a sample end mill which has 

circular serration is illustrated as an example in the Figure 4.13. Helix and rake angle of 

the tool are 30 and 5 degree respectively. As shown in Figure 4.13, local rake varies 

between 30 and -30 degree. 
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Figure 4.13. Local rake angle variation along end mill cutting edge 

 

 Force Model of Serrated End Mills 

Linear edge force model (E. Budak, Altintaş, and Armarego 1996) is used in this study to 

formulate milling forces. First step in the calculation procedure is obtaining differential 

forces in axial, radial and tangential directions (Figure 4.14), for each tooth on each axial 

element at any angular position of a cutting tool:  

 

𝑑𝐹𝑎(𝑖, 𝑗) = 𝑔(𝜑𝑖𝑗)[𝐾𝑎𝑒(𝑖, 𝑗) + 𝐾𝑎𝑐ℎ𝑖𝑗(𝜑𝑖𝑗)]𝑑𝑏 

𝑑𝐹𝑟(𝑖, 𝑗) = 𝑔(𝜑𝑖𝑗)[𝐾𝑟𝑒(𝑖, 𝑗) + 𝐾𝑟𝑐ℎ𝑖𝑗(𝜑𝑖𝑗)]𝑑𝑏 

𝑑𝐹𝑡(𝑖, 𝑗) = 𝑔(𝜑𝑖𝑗)[𝐾𝑡𝑒(𝑖, 𝑗) + 𝐾𝑡𝑐ℎ𝑖𝑗(𝜑𝑖𝑗)]𝑑𝑏 

(4.30) 

 

where 𝑔(𝜑𝑖𝑗) is a step function which is zero when the tooth is not in cut, i.e. if 𝜑𝑖𝑗 is not 

between 𝜑𝑠𝑡𝑎𝑟𝑡 and 𝜑𝑒𝑥𝑖𝑡, and is equal to one when the tooth is in cut, i.e. 𝜑𝑖𝑗  is between 

𝜑𝑠𝑡𝑎𝑟𝑡 and 𝜑𝑒𝑥𝑖𝑡. 𝐾𝑎𝑐, 𝐾𝑟𝑐  and 𝐾𝑡𝑐  are the cutting force coefficients in axial, radial and 

tangential directions, respectively, whereas 𝐾𝑎𝑒, 𝐾𝑟𝑒  and 𝐾𝑡𝑒  are the edge cutting force 

coefficients in 3 orthogonal directions. These coefficients can be determined using 

orthogonal cutting data base and oblique cutting transformation (E. Budak, Altintaş, and 

Armarego 1996). Geometrical parameters of the tool such as oblique and rake angles 
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influence cutting coefficients. Because of local rake and oblique angles variation along 

cutting edges, these coefficients have to be calculated for each edge on every axial and 

angular positions separately. The elemental axial depth, 𝑑𝑏, is defined by following 

equation: 

 

sin( )ij

dz
db


=  (4.31) 

 

hij(φij) is the uncut chip thickness for the ith element of the jth tooth and it is calculated at 

each rotational step.  

 

 

Figure 4.14. Differential cutting forces in axial, radial and tangential direction 

 

4.2.1. Uncut Chip Thickness Calculation 

Uncut chip thickness should be calculated in a direction which is perpendicular to the 

cutting edge. In previous studies this issue was not considered and some assumptions 

were used to simplify the problem (Tehranizadeh and Budak 2017; S. D. Merdol and 
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Altintas 2004; Dombovari, Altintas, and Stepan 2010; Hosseini, Moetakef-Imani, and 

Kishawy 2011; Koca and Budak 2013). Therefore, a new method has been developed to 

calculate the chip thickness accurately. In this method the interface of the tool and 

workpiece is found and these areas are considered as chip areas. These chip areas are 

divided considering elemental disks which are defined in previous sections. While 

constructing these differential chip areas, 2 main issue is considered: 1) Differential chip 

areas should not intersect each other. 2) In each element, the chip area is constructed in a 

direction where the chip thickness becomes perpendicular to the edge. To meet these 

requirements the following steps should be taken (Figure 4.15):  

1. To find the chip thickness for each edge on each element the shape of the workpiece 

surface which remained after cutting by the previous teeth should be calculated for 

tooth j at each axial height i in each angular position (line marked with number 1 in 

Figure 4.15). The formulas used for this step are: 

𝑊( 𝑖, 𝑗, 𝜑𝑖𝑗) = 𝑚𝑎 {
0
𝑚𝑖𝑛{𝑅𝑖𝑚 − 𝑘𝑓𝑡 𝑠𝑖𝑛(𝜑𝑖𝑗)}

}  

𝑚 = {
𝑘 − 𝑗                    𝑖𝑓    𝑘 − 𝑗 > 0
𝑘 − 𝑗 + 𝑁𝑡          𝑖𝑓    𝑘 − 𝑗 ≤ 0

 

𝑘 = 1,2. . , 𝑁𝑡

 

(4.32) 

 

2. Based on the serration shape of the in-cut tooth and the surface of the workpiece (step 

1) the chip areas are constructed for each edge at each angular position (areas between 

tool and workpiece in Figure 4.15). The thickness of this area in each axial element 

(H) can be determined from the following: 

 

𝐻(𝑖, 𝑗, 𝜑𝑖𝑗) = 𝑅𝑖𝑗 −𝑊(𝑖, 𝑗, 𝜑𝑖𝑗) (4.33) 

3. In order to prevent the intersection of differential chip areas for different elements, 

the total chip area is divided into different regions based on the changes in slope and 

curvature of the serration wave (dash line which marked with number 3 in Figure 

4.15). In the circular serration all of the perpendicular lines to the edges pass through 

the origin and they are not intersecting each other. Therefore, there is no need to divide 

the chip area in a circular serration type.  
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4. In each region, intersection of the line perpendicular to the cutting edge with the limits 

of that region and previously machined surface (areas which marked as number 4 in 

Figure 4.15) is calculated. The intersection of two lines L1 and L2 (O) can be calculated 

by using following equation: 

 

𝑂𝑥 =
( 1  −  1  )(  −   ) − ( 1 −   )(    −     )

( 1 −   )(  −   ) − ( 1 −   )(  −   )
 

 (4.34) 

𝑂𝑦 =
( 1  −  1  )(  −   ) − ( 1 −   )(    −     )

( 1 −   )(  −   ) − ( 1 −   )(  −   )
 

where 𝑶𝒙 and 𝑶𝒚 are the coordinates of point 𝑂 In equation (4.34) each of lines L1 

((x1,y1),(x2,y2)) and L2 ((x3,y3),(x4,y4)) is defined by two point. After calculating 

intersection of perpendicular lines to edge j at each height i with limits of that region 

(𝑈𝑖𝑗) and previously machined surface (𝑆𝑖𝑗), chip thickness for any element is defined 

by the following equation 

ℎ(𝑖, 𝑗, 𝜑𝑖𝑗) = 𝑚𝑖𝑛

{
 
 

 
 |𝑃𝑖𝑗 − 𝑈𝑖𝑗| + |𝑃𝑖+1𝑗 − 𝑈𝑖𝑗|

2
|𝑃𝑖𝑗 − 𝑆𝑖𝑗| + |𝑃𝑖+1𝑗 − 𝑆𝑖𝑗|

2 }
 
 

 
 

 

(4.35) 

 

 

Figure 4.15. Steps of chip thickness calculations 

Workpiece

End-mill

1 2

3

4

Pij

Vij

Uij

x
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Some examples for different types of serrations and chip thickness calculations are shown 

in Figure 4.16.  

  
 

(a) (b) (c) 

Figure 4.16. Chip thickness calculations for different types of serrations. 

a) Sinusoidal b) Circular c) Trapezoidal 

4.2.2. Total Forces in x, y and z Directions 

The differential forces in x, y and z directions as a function of differential forces in tool 

coordinates, can be derived as follows: 

 

𝑑𝐹𝑥 = −𝑑𝐹𝑟 𝑠𝑖𝑛(𝜑𝑖𝑗) 𝑠𝑖𝑛( 𝜅𝑖𝑗) 

          −𝑑𝐹𝑡 𝑐𝑜𝑠(𝜑𝑖𝑗) − 𝑑𝐹𝑎 𝑐𝑜𝑠( 𝜅𝑖𝑗) 𝑠𝑖𝑛(𝜑𝑖𝑗) 

𝑑𝐹𝑦 = −𝑑𝐹𝑟 𝑐𝑜𝑠(𝜑𝑖𝑗) 𝑠𝑖𝑛( 𝜅𝑖𝑗) 

            +𝑑𝐹𝑡 𝑠𝑖𝑛(𝜑𝑖𝑗) − 𝑑𝐹𝑎 𝑐𝑜𝑠( 𝜅𝑖𝑗) 𝑐𝑜𝑠(𝜑𝑖𝑗) 

𝑑𝐹𝑧 = 𝑑𝐹𝑟 𝑐𝑜𝑠( 𝜅𝑖𝑗) − 𝑑𝐹𝑎 𝑠𝑖𝑛( 𝜅𝑖𝑗) 

(4.36) 

To determine the total forces in x, y and z directions in each angular step the sum of 

differential forces from all elements and teeth should be calculated. 

𝐹𝑥(𝜑) =∑∑𝑑𝐹𝑥(𝑧, 𝑗)

𝑁𝑡

𝑗=1

𝑎

𝑧=0

 

𝐹𝑦(𝜑) = ∑∑𝑑𝐹𝑦(𝑧, 𝑗)

𝑁𝑡

𝑗=1

𝑎

𝑧=0

 

𝐹𝑧(𝜑) =∑∑𝑑𝐹𝑧(𝑧, 𝑗)

𝑁𝑡

𝑗=1

𝑎

𝑧=0

 

(4.37) 

 



76 

 

4.2.3. Experimental Verification 

To verify the proposed model some experiments were carried out to obtain the cutting 

forces in the milling process with serrated end mills. These tests were conducted on the 

MAZAK 3-axis CNC machine with Kistler Piezo-Dynamometer. The work-piece 

material was selected as Aluminum 7075 (Figure 4.17).  

 

 

Figure 4.17. Setup of experiments   

The experimental conditions and tool properties manufactured by KARCAN™ are shown 

in Table 4.1. Figure 4.18 demonstrates the comparison of experimental and simulation 

results where a good agreement is observed between them. 

Table 4.1. Tool and process parameters in experiments.  

Test 

No. 

Tool Parameters Process Parameters 

Tool Type 
Tool 

Dia. 

Cutting 

Angles 

Serration 

Type 

Serration Parameters 

(mm) 

Spindle 

Speed 

Depth 

of Cut 

Width 

of Cut 
Feed 

1 End Mill 12mm 

α=5̊ 

λ=30 ̊ Trapezoidal 

L1=0.3, L2=0.2 

A=0.5, α=β=45̊ 

R1=R2=R3=R4=0.2 

1200 

rev/min 
15mm 3mm 

0.1 

mm/tooth 

2 End Mill 12mm 

α=5̊ 

λ=30 ̊ Sinusoidal 
A=0.5 

WL=2 

1200 

rev/min 
5mm 3mm 

0.15 

mm/tooth 

3 End Mill 12mm 

α=5̊ 

λ=30 ̊ Circular 
R1=R2=0.5 

A1=A2=0.3 

1200 

rev/min 
15mm 3mm 

0.1 

mm/tooth 

4 

Tapered 

Ball End 

Mill 

Min 

12mm 

β= 3̊ 

α=6̊ 

lead=100

mm 

Sinusoidal A=0.25 

WL=2 

1200 

rev/min 
40mm 1mm 

0.05 

mm/tooth 
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(a) (b) 

  

(c) (d) 

Figure 4.18. Comparison of measured and simulated cutting forces in experimental and 

simulation results for different conditions given in Table 1: a) 1, b) 2, c) 3 and d) 4 

 

 

 Serration Parameters Effects on The Cutting Forces and Optimization 

The simulation results show that serration parameters have significant role on the milling 

forces. As a simple instance the effect of sinusoidal serration wave parameters on the 

maximum Fxy was investigated. In these sample simulations axial depth of cut, radial 

depth of cut and feed rates are chosen as 10mm, 5mm and 0.1mm/(rev.tooth) respectively. 

The end mill with sinusoidal serration has 10mm diameter and rotates in 1500rpm. The 

effect of the wave length in two different wave amplitude on the milling forces is shown 

in the Figure 4.19. This shows that Fxy (resultant force of Fx and Fy) changes between 
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1800N to 800N by using different serration parameters. This figure illustrates the 

importance of the proper design of serration parameters. In addition, it shows that 

parameters have no predictable effect on the maximum resultant force. 

 

 

Figure 4.19. Maximum Fxy for different sinusoidal serration shapes 

 

4.3.1. Effects of Local Rake and Oblique Angles 

Along serrated cutting edges, rake and oblique angles vary. It is well known that 

increasing the rake angle has a good effect on the shearing process. As a result, it is better 

to use the portion of the cutting edges with the greatest positive rake angles. This situation 

can be controlled by choosing the phase shift direction between the serration waves of the 

consecutive teeth. If the serration wave phase difference between two consecutive teeth 

is positive, the tool has teeth with forward phase shift and it has reverse phase shift if this 

difference is negative. These two types of phase shift can be distinguished by looking at 

the directions of the flute and the serration spirals. If they have the same direction (Figure 

4.20-a), e.g. both right hand, then the sections with lower rake angles remove the material 

resulting in higher cutting force coefficients. On the other hand, if their directions are 

opposite, the sections with higher positive rake angles (Figure 4.20-b) remove the 

material resulting in lower cutting force coefficients. This comparison shows the 
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importance of the serration wave generation on milling tools during their production. 

 

 

Figure 4.20. Serrated end mill with a) forward phase shift b) reverse phase shift and its 

engagement with workpiece 

 

4.3.2. Experimental Verification of the Effect of Phase Shift Direction 

The effect of phase shift direction on mechanics of milling with serrated tools was 

explained in the previous section. Milling tests were performed with custom made 

serrated end mills to verify this effect. Two different end mills were used in the tests. The 

parameters shown in Table 4.2 are common for both tools. 
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Table 4.2. Tool parameters for tests of phase shift effect 

Tool 

No. 

Tool Parameters 

Tool 

Type 

Tool 

Dia. 

Cutting 

Angles 

Serration 

Type 

Serration Parameters 

(mm) 
Phase shift Direction 

1 

End Mill 12mm 

α=5̊ 

λ=30̊ Circular 
R1=R2=0.5 

A1=A2=0.3 

Forward 

2 Reverse 

 

Tool 1 has right hand tool helix and right-hand serration spiral resulting in portions with 

small or even negative rake angle that engaged with the material being cut. On the other 

hand, Tool 2 has right hand tool helix but left-hand serration spiral resulting in portions 

with higher rake angles engaged with the material being cut. 

To demonstrate the effect of phase shift direction on milling processes with serrated 

cutting tools, milling tests were carried out where the resulting milling forces were 

measured. Milling tests were carried out on a Mazak 3-Axis machine tool using a Kistler 

table type dynamometer on which Al7075 block was mounted. 

Axial depth of cut of 15mm and radial depth of cut of 3mm were used in all experiments 

while the feed per tooth was varied between 0.05–0.1 mm/rev.tooth and spindle speed 

was kept the same as 1800 RPM where the milling mode was down-milling. 

 

  

(a) (b) 

Figure 4.21. Comparison of milling forces for Tool 1 and Tool 2 (Table 4.2) with 

ft=0.05mm/tooth in a) x and b) y direction 

 

Significant difference can be observed between Tool 1 and Tool 2 in terms of Fy and Fz 

forces even with low feeds while maintaining almost the same average Fx shown in Figure 
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4.21 and the same trend is seen in Figure 4.22. However, with the increasing feed per 

tooth, the difference between the forward and reverse phase shift is increased as well. 

Higher reduction of the cutting forces by using Tool 2 is the result of more engagement 

between the serrated edge and the work material. When the contact area between the tool 

and the material increases, the parts of the edge which have higher positive rake angles 

engage in the process more reducing cutting forces.  

 

  

(a) (b) 

Figure 4.22. Comparison of milling forces for Tool 1 and Tool 2 (Table 4.2) with 

ft=0.1mm/tooth in a) x and b) y direction 

 

4.3.3. Optimization of Serration Wave Parameters 

As mentioned in the previous section, the shape of the tool edge serration has significant 

role on the cutting forces and it can be reduced by choosing proper geometrical 

parameters. There are two ways to find the optimum design for the tool serration wave in 

different conditions. The optimum serration can be found by simulating all possible 

conditions and find the best design by comparison of solutions. It is obvious this method 

is time consuming and it is not efficient. Another procedure is using optimization 

algorithms (like evolutionary algorithms) which search the solution space in a much smart 

way and as result they find optimum solutions faster than first method. In this study, 

genetic algorithm (GA) is used to optimize serration wave shape parameters to decrease 

milling forces. GA is a method which increases the quality of the solutions by evolution 

of the population by using natural genetic operators like crossover and mutation. By 
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considering these natural rules, chromosomes with higher quality produce more offspring 

than the less fit ones. As a result, new generations are more compatible with the objective 

function (Ahn 2006).  

For defining the problem, cutting tool and milling process parameters such as radius of 

cutter, feed rate, radial depth of cut, axial depth of cut etc. are introduced to the algorithm. 

Moreover, the range of variation for each serration parameter like amplitude and wave 

length is specified. Following these steps, algorithm runs GA for three serration types 

separately and chooses the best solution among optimum results of each serration.  

 

4.3.4. Genetic Algorithm 

The flowchart of the algorithm used in this study is presented in Figure 4.23. The first 

step in solving any problem with GA is representation of solutions in the form of 

chromosomes. In this study chromosomes are defined as strings and lengths of these 

strings depend on features of wave shapes. 

 

 

Figure 4.23. Genetic algorithm flowchart 

In the next step, the algorithm should generate the initial population. The initial 
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population can be produced by two ways: random procedure and systematic procedure. 

Obtained initial population with particular method decreases process time of algorithm 

but it may cause the algorithm to be trapped at local optimums. Therefore, in this study 

the initial chromosomes are selected randomly among the feasible ones using the range 

of parameters. Then, the population should be sorted according to the fitness value of 

each chromosome. The objective function, 𝐹(𝑢), can be defined as any weighted 

combination of the average or maximum forces in different directions (𝐹𝑥 , 𝐹𝑦, 𝐹𝑧 , 𝐹𝑥𝑦) and 

weights can be set according to desire of the problem. Fitness of chromosome u will be 

calculated by scaling the objective function follows: 

 

𝑓(𝑢) = 𝑒 𝑝[
−𝛿 × 𝐹(𝑢)

𝑊𝐶
] (4.38) 

 

In equation above, 𝛿 is a scale factor, 𝐹(𝑢) is the value of the objective function for the 

uth chromosome and 𝑊𝐶 is the result of worst chromosome in the population. After 

sorting the population according to the fitness values, chromosomes are selected for 

crossover and mutation operations by the roulette wheel rule. By using the roulette wheel 

rule better chromosomes have more chance to participate in crossover and mutation 

functions.  

Crossover function exchanges information between the chromosomes. In the proposed 

algorithm, single point crossover is used. Cut point is determined randomly on 

chromosomes of parents and genes before this point are exchanged between parents. 

The mutation function selects some genes on the chromosome and changes their values 

to other feasible ones. This operator helps algorithm to search different areas of solution 

space and prevents being stuck in local optimums.  

Finally, the new offspring which were produced by the mutation and crossover functions 

(80% of new generations are obtained by the crossover and the remaining 20% are 

generated by the mutation function) as well as the previous generation are sorted 

according to the fitness values of chromosomes. Then, the fittest chromosomes are chosen 

as the new generation. This algorithm is continued iteratively till the results converge to 

a specific solution. 
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4.3.5. Results of Optimization  

To show the effectiveness of the presented algorithm, it was implemented in MATLAB 

R2018a®. Some samples have been selected to evaluate the efficiency of the end mills 

which were designed by the proposed GA algorithm. In these cases, optimum tools were 

designed for different situations and force simulation results of these tools were compared 

with normal end mills and standard serrated end mills (which were available in market). 

The cutting tools in these instances had 4 flutes and the diameter of the tools was 12mm. 

In addition, Rake and helix angles of the end mills were 5̊ and 30̊ respectively. The 

serration wave of standard serrated end mill was sinusoidal where amplitude is 0.5 mm 

and wavelength is 2mm. In Table 4.3 different conditions for the simulations and 

corresponding optimum serrated end mill with sinusoidal serration type are presented. 

Table 4.3. Process and corresponding optimum end mill parameters 

Sim 

No. 

Optimum Tool Parameters Process Parameters 

Tool 

Type 

Tool 

Dia. 

Cutting 

Angles 

Serration 

Type 

Serration 

Parameters (mm) 

Spindle 

Speed 

Depth 

of Cut 

(a) 

Width 

of Cut 

(b) 

Feed 

1 

End 

Mill 

 

12mm 

 

α=5̊ 

λ=30̊ 

 

Sinusoidal 
A=0.4 

WL=7.75 

2000 

rev/min 

45 

mm 
3mm 

0.025 

mm/tooth 

2 Sinusoidal A1=0.3 

WL=5.5 

2000 

rev/min 

45 

mm 
3mm 

0.2 

mm/tooth 

3 Circular 
A1=A2=0.4 

R1=R2=3 

2000 

rev/min 

45 

mm 
1mm 

0.025 

mm/tooth 

4 
Trapezoidal L1=2, L2=2.5 

A=0.35, α=β=45 ̊

R1=R2=R3=R4=0.2 

2000 

rev/min 

45 

mm 
1mm 

0.2 

mm/tooth 

 

As shown in Figure 4.24-a, there is about 45-55% reduction in maximum value of Fxy by 

using optimum serrated tool in comparison with normal end mills. Moreover, optimum 

designed tools have about 15% better performance in terms of cutting forces against 

standard serrated end mill. The reasons for this improvement will be explained in the 

sections that follow. It can be observed in Figure 4.24-b that the drop in milling forces is 

not as drastic for higher feed rate values as it is for lower feed rate values. Moreover, in 

some situations, such as in the case of simulation 2, improper selection of serration wave 

parameters may even result in higher cutting forces in comparison with a normal end mill. 
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When a standard serrated tool, which has a forward phase shift, is used in high feed rate 

values, edge forces will not decrease significantly. On the other hand, some portions of 

the tool with lower or negative values of effective rake angle will be in the cut which 

increases the cutting force. As a result, while cutting with standard serrated end mills in 

high feed rates, the average of milling forces is higher than in normal end mills. In 

simulation 2 as illustrated in Figure 4.24-b, by using optimum serration wave shape 

cutting forces are reduced. But it is worth mentioning that, even if the phase direction of 

standard serrated tool changes, while all other serration wave parameters are kept the 

same, cutting forces will decrease significantly (Figure 4.25-a). As discussed in the 

previous section, phase shift direction is significant when higher values of feed rate are 

used. In this condition, the parts of the tool which have higher values of effective rake 

angle are engaged with the workpiece (Figure 4.25-b).  

 

  

(a) (b) 

  

(c) (d) 

Figure 4.24. Force Simulation Results for optimum, standard serrated and normal end 

mills for different conditions given in Table 3: a) 1, b) 2, c) 3 and d) 4 
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(a) (b) 

Figure 4.25. Difference between a) cutting forces and b) cutting areas in milling with serrated 

tools having forward and backward phase shifts. 

The width of cut affects the uncut chip thickness for a given milling process, because uncut 

chip thickness depends on radial immersion angle of the tool. When greater values of width of 

cut are used, maximum uncut chip thickness will be increased and in this situation effectiveness 

of serrated tools is decreased. It is the reason behind more of the force reduction when serrated 

tools are used in comparison with normal end mills in last two simulations.  

The optimum tool is the best solution for the specified cutting condition. In addition, it can be 

considered as a near optimum solution for a range of cutting parameters, which are close to the 

specified condition.  

Another essential point to note is that while comparing the optimization results for different 

serration types, it is discovered that each serration geometry type converges to almost the same 

objective function value. For example, the optimum circular and trapezoidal serration wave 

types in simulation 1 (Table 4.3) result in similar milling forces to the ones with the optimal 

sinusoidal serration. Geometrical parameters for these tools are given in Table 4.4 whereas the 

cutting forces are illustrated in Figure 4.26.  Thus, similar force reduction, and thus similar 

performance increase can be achieved with different serration types provided that their 
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geometric parameters are optimized. Moreover, the results show that, independent from the 

serration type, two most important parameters in serration geometry, namely the length and the 

amplitude of the optimum wave shapes are very similar.  

 

Table 4.4. Optimum tools with different serration types for same condition 

Optimum Tool Parameters Process Parameters 

Tool 

Type 

Tool 

Dia. 

Cutting 

Angles 

Serration 

Type 

Serration Parameters 

(mm) 

Spindle 

Speed 

Depth of 

Cut (a) 

Width of 

Cut 

(b) 

Feed 

End 

Mill 

 

12mm 

 

α=5̊ 

λ=30̊ 

 

Sinusoidal 
A=0.4 

WL=7.75 
2000 

rev/min 

 

45 mm 

 

3mm 

 

0.025 

mm/tooth 

 

Circular 
A1=A2=0.4 

R1=R2=5.25 

Trapezoidal L1=1.2, L2=1.2 

A=0.4, α=β=60 

R1=R2=R3=R4=0.75 
 

 

 

  

(a) (b) 

Figure 4.26. Cutting forces with the optimum tools having different serration types 

given in Table 4.4 a) x and b) y direction 

 

4.3.6. Efficiency of Optimization in Different Conditions 
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and depends on the cutting parameters. Therefore, prediction of efficiency of the optimum 

becomes an important issue. DOE method is used to investigate the efficiency of 

optimized serrated end mills in different cutting situations. The difference between 

cutting forces of optimum serrated and normal end mills, in x-y direction, is considered 

as the response function. The response is analyzed by considering depth of cut, width of 

cut and feed rate in 3, 5 and 5 levels, respectively. The main and interaction effects of 

these factors are illustrated in Figure 4.27 and Figure 4.28 respectively. 

 

 

Figure 4.27. Plots of cutting condition parameters main effects on the efficiency of the 

optimization 

 

 

Figure 4.28. Plots of cutting condition parameters interaction effects on the efficiency of 

the optimization 

By decreasing the depth of cut, due to the lower engaged cutting-edge length, the number 



89 

 

of in-cut serration waves is decreased. This will result in varying material removal rate 

for different edges and unbalanced cutting forces. This issue is much more significant in 

higher feed values. An example of this situation is illustrated in Figure 4.29. As it is shown 

in the figure, cutting forces for each tooth vary significantly and maximum of cutting 

forces for serrated end mill is higher than the value for a normal tool.  

The optimization algorithm in low depth of cuts proposed serration waves with lower 

wave lengths, to avoid unbalanced forces. This means less reduction of cutting forces in 

lower depths of cut in comparison with higher depths. Therefore, the efficiency of the 

optimum serrated tools will be more obvious in higher depths of cut (Figure 4.27). 

 

 

Figure 4.29. Unbalanced Force in cutting low depth of cut with high serration wave 

length 

As discussed in the previous section, the efficiency of the serrated end mills is dependent 

on the uncut chip thickness and they are much more effective in cutting with low uncut 

chip thickness values. This is due to the fact that when the thickness of the uncut chip 

rises, a larger portion of the serrated edge becomes immersed in the material. As a result, 

total contact length increases, or, to put it another way, total contact length does not 

decrease as much as it does when feed rates are lower. As a result, in line with our 

expectation, the main effect plot of feed rate for effectiveness of serrated end mills is 

decreasing function (Figure 4.27 and Figure 4.28).  

The average of uncut chip thickness is maximum in the half immersion cuttings (in our 

case 6 mm of width of cut). Therefore, as illustrated in Figure 4.27 the main effect of the 
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width of cut on efficiency of serrated end mill is minimum in 6mm. 

4.3.7. Effects of Cutting Parameters on Optimum Serration Shape 

In this section based on the optimization results, effects of cutting parameters on optimum 

serration wave shape is studied. The aim of this section is providing some 

recommendations for choosing the best tool among available tools for desired cutting 

processes. Therefore, effects of the depth of cut and feed rate are investigated on optimum 

values of main parameters of the serration waves. The radial depth of cut is not 

considered, because it affects maximum chip thickness and its effects are similar to that 

of feed rate. In order to analyze these effects, DOE method is used. Wavelength and 

amplitude of optimum serration shape is considered as the response function. The 

response is analyzed by taking depth of cut and feed rate into account in 3 and 5 levels, 

respectively. Figure 4.30 shows the main and interaction effects of factors on the serration 

wave shape.  

 

  

(a) (b) 

  

(c) (d) 

Figure 4.30. Main and interaction effects of cutting parameters on serration wave shape 

Results show that, in low depth of cuts as discussed before low wave lengths are preferred 
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to avoid unbalanced forces. In high depths higher values of the wavelength are used. This 

is because, by using greater wave lengths, the contact length and thus the edge forces are 

decreased. Moreover, high values of wave lengths result in higher tool life as stress 

concentration is reduced on the cutting edges. 

For low feed rates, high values of wave lengths are chosen as an optimum solution to 

decrease the contact length. But for high feed rates, this reduction is not significant (as 

discussed in previous section). Therefore, lower values of wave lengths are chosen as 

optimum solution which has more drastic changes in local rake values and this is the 

dominant phenomenon in force reduction.  

Finally, the amplitude of the serration waves should be proportional to wave length. Using 

high amplitudes with low wavelengths increases the contact length. Moreover, it results 

in high stress concentration on the tool edge. However, choosing low amplitudes with 

high wavelengths decrease the effectiveness of the local cutting angles. 

 

 Chatter Stability of Serrated End Mills  

In this section, dynamic behaviors of the end mill with optimal serration shape (which is 

optimized considering cutting forces), standard serrated tools and regular end mill are 

compared. Milling operation stability is based on dynamically variable chip thickness, 

which is a consequence of both present and previous vibration marks left on the cut 

surface. The milling system is considered as two orthogonal degree of freedom to analyze 

stability as shown in Figure 4.31.  

Because of the presence of multiple delay in the system as discussed in previous chapter, 

First Order Semi Discretization method  (Tamás Insperger and Stépán 2011) and time-

averaged coefficient matrices (Sims, Mann, and Huyanan 2008) are used in analyzing 

chatter stability of serrated end mills. Required changes for the method applied to serrated 

end mills (Koca 2012) and this method is used to investigate the effect of optimization on 

the stability limits. 
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Figure 4.31. Two orthogonal degree of freedom system and dynamic chip thickness 

  

The modal parameters given in Table 4.5 are used to compare the tools in terms of chatter 

stability. 

Table 4.5. Modal parameters of the investigated system 

𝝎𝒏𝒙 

(rad/ sec) 

𝒎𝒙 

(kg) 
𝜻𝒙 

𝝎𝒏𝒚 

(rad/ sec) 

𝒎𝒚 

(kg) 
𝜻𝒚 

693*2  0.8409 %2.503 689*2 𝜋 0.9372 %2.947 

  

The comparison of the tools stability behavior are shown in Figure 4.32. In this 

simulations Al7075 is chosen as workpiece material and the process is quarter immersion 

down milling with 0.05 mm/(rev.tooth) of feed rate.  

As it can be seen from Figure 4.32, the optimal serrated end mill, because of the effective 

depth of cut reduction, shows much better stability performance over the standard serrated 

and normal end mill.  
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(a) (b) 

Figure 4.32. Comparisons of stability diagrams (ft=0.05mm/tooth) a) 3000-8000 RPM 

b) 8000-21000 RPM 

 

In Figure 4.33 stability diagrams obtained for higher feed rate (0.15mm/tooth) are shown. 

Because of the increasement in the feed per tooth, the effectiveness of serration waves 

decreases (Figure 4.27). But optimized serrated end mills still have higher stability limits 

compared to the standard serrated and normal end mills.  

 

  

(a) (b) 

Figure 4.33. Comparisons of stability diagrams (ft=0.15mm/tooth) a) 3000-8000 RPM 

b) 8000-21000 RPM 

In Figure 4.34, three different optimized serrated forms are compared for the same given 

milling scenario with 0.05mm/rev.tooth of feed rate. It is shown that if the serration 

geometry is optimized, the same amount of stability increase can be achieved regardless 

of the wave type. 
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Figure 4.34. Stability comparison of different optimized serration profiles 

 

 Conclusions 

Present chapter investigates mechanics and dynamics of milling with serrated end mills. 

In order to decrease cutting forces, optimum tools are designed by using GA. Results 

show that these tools have lower cutting forces and higher stability limits in comparison 

with standard serrated tools. The specific contributions and conclusions are listed in the 

following.  

• For the first time in the literature, different types of end mills (normal, ball nose, 

round nose and tapered end mills with constant or variable pitch and/or helix angles) with 

various serration types are modeled.  

• Milling forces are modeled and verified experimentally. Chip thickness and 

cutting force coefficients (considering local cutting angles) are calculated in an accurate 

way which has resulted in accurate force predictions.   

• The effects of serration geometry and phase shift on the local rake and oblique 

angles, and cutting forces are discussed and demonstrated. It is demonstrated that the 

serration phase shift has a very strong effect on the cutting mechanics and the forces, and 

thus has to be selected correctly. Results show the phase shift direction of serrations may 

change the cutting forces up to 35%.  

• Different serration waveforms are optimized to minimize milling forces for 

various cutting conditions. It is demonstrated that cutting forces can be reduced 
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significantly using optimum serration geometry against standard ones available in the 

market. Experimental and simulation results illustrate that optimum tool can reduce 

cutting forces up to 30% in comparison with standard serrated tools. Furthermore, it is 

shown that, very similar performance increase, i.e. force reduction, can be achieved with 

all serration types if their parameters are optimized. This result is important as it allows 

flexibility in selection of the wave form considering issues such as tool manufacturing, 

surface quality, wear etc.  

• The effect of serration geometry on the dynamics of milling process is explained, 

and it is shown that in addition to cutting force reduction, the optimized serrated end mills 

achieve better performance over standard serrated end mills in terms of chatter stability, 

as well. It is shown that, the stability limit of optimized tool can be as high as 3 times that 

of standard serrated end mills at certain speeds. It is also illustrated that; the same amount 

of stability increase can be obtained regardless of the wave type for optimized serrated 

tools.  

In summary, optimization of the serrated tools considering their dynamic behavior can 

improve their performance significantly. In future works, the outcomes of this study can 

be used in similar processes such as turn-milling. These tools can also be used to enhance 

robotic milling where reduction of cutting forces and improvement of stability are 

important role due to low rigidity of robots. In future studies, similar approaches can be 

used in investigating mechanics and dynamics of other special milling cutters such as 

crest-cut tools for their optimization. 
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5. APPLICATION OF SPECIAL TOOLS IN DIFFERENT PROCESSES 

 Special End Mills in Robotic Milling 

 

In robotic milling, unlike normal milling, the dynamic modes from the machine have low 

frequencies and high amplitudes. Due to the high vibration amplitudes, the fluctuation in 

cutting forces increases to very high levels during chatter, which damages the part surface, 

tool surface, spindle, and robot axes. Therefore, the application of special end mills in 

robotic milling can be a solution to avoid chatter vibration during the process. 

As can be seen in the stability diagrams simulations and experimental verifications 

performed for robotic milling (Cordes, Hintze, and Altintas 2019), the curve showing 

stable cutting conditions consists of the curve representing the common stable cutting 

depth obtained by cutting tool and robot modes. For example, as illustrated in Figure 5.1, 

there are four curves that construct stability lobe diagrams which consist of stability limits 

obtained for different tool and robot modes, and the global stability lobe diagram is the 

common stability limits of all modes. Considering the results, the stability diagram is 

divided into different areas in terms of the active mode.   

 

 

Figure 5.1 Stability diagram for the robotic milling system 



97 

 

 

 

 

Moreover, another study (Gonul, Sapmaz, and Tunc 2019) shows that robot vibration 

frequencies will not change significantly in a sample milling process by changing the 

position of arms. Therefore, it can be said that cutting tools designed according to the 

relevant vibration modes can be used as a valid and reasonable solution for a wide area 

where the robot will work.  

Special end mills such as variable pitch end mills are used in order to suppress chatter 

vibration during the milling process. Because of the low natural frequencies in robot 

modes, the wavelength of the undulations left on the surface (Figure 3.9), which are a 

function of the cutting speed and the vibration frequency, is large. This issue should be 

considered in the design and application of the special end mills; otherwise, they cannot 

affect the process positively. 

In this chapter, optimum variable pitch tools will be designed to increase chatter stability 

where robot modes are active and affect stability limits. 

 

5.1.1. Optimization of Variable Pitch Tools for Robotic Milling 

In this section, non-constant pitch end mills are designed using the optimization method 

proposed by Budak (E. Budak 2003a; 2003b). Optimized end mills stability diagrams 

extracted by semi-discretization method including multiple delays introduced in section 

3.3, and the stability limits of the optimized tools will be compared with normal end mills. 

As discussed in previous chapters, the main difference in the stability analysis of end 

mills with variable pitch angles is that the delay between the inner and the outer waves is 

different for each edge (𝜀𝑗). 

 

𝜀𝑗 = 𝜔𝑐𝑇𝑗                            𝑗 = 1,2… , 𝑁 (5.1) 

 

In the proposed optimization method by Budak (E. Budak 2003a; 2003b), the directional 

coefficients are obtained by the average value of the pitch angles to simplify formulations. 
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The characteristic equation for normal end mills (E. Budak and Altintaş 1998a)  can be 

used for the variable pitch end mills with necessary changes according to the following 

equation: 

𝛬 = 
1

4𝜋
𝑎𝐾𝑡∑(1 − 𝑒𝑖𝜔𝑐𝑇𝑗)

𝑁

𝑗=1

 (5.2) 

Using Equation (5.2), the stability limit can be determined as: 

 

𝑎𝑙𝑖𝑚 =  
−4𝜋

𝐾𝑡
 

𝛬

𝑁 − ∑ cos (𝜔𝑐𝑇𝑗)
𝑁
𝑗=1 + 𝑖∑ sin (𝜔𝑐𝑇𝑗)

𝑁
𝑗=1

 (5.3) 

 

Stability limit is a real number, and eigenvalue can be complex. Therefore, the 

denominator  of equation (5.3) should be equal to zero: 

 

𝑁 −∑cos(𝜔𝑐𝑇𝑗)

𝑁

𝑗=1

= ∑sin(𝜔𝑐𝑇𝑗)

𝑁

𝑗=1

 
𝛬𝑅

𝛬𝐼
 (5.4) 

 

Considering equation (5.4), the stability limit can be obtained as: 

 

𝑎𝑙𝑖𝑚 =  
−4𝜋

𝐾𝑡
 

𝛬𝐼

∑ sin (𝜔𝑐𝑇𝑗)
𝑁
𝑗=1

 (5.5) 

 

This equation shows that in order to maximize the stability limit, the absolute value of the 

denominator should be minimized, and the main idea behind this method is based on this 

relation. The denominator can be stated as follow: 

 

𝑆 = ∑sin(𝜀𝑗)

𝑁

𝑗=1

= sin(𝜀1) + sin(𝜀 ) +⋯+ sin(𝜀𝑗) (5.6) 

 

Due to pitch variation, the phase angle is different for each tooth and can be obtained by 
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the following equation: 

 

𝜀𝑗 =  𝜀1 + Δ𝜀𝑗       (𝑗 = 2,… ,𝑁) (5.7) 

where Δ𝜀𝑗 is the phase difference between tooth j and first tooth corresponding to the 

difference in the pitch angles between these teeth. 

The number of vibration waves (n) in one cutter revolution can be calculated by the 

following equation: 

 

𝑛 =
𝜔𝑐

Ω
 (5.8) 

where Ω is the spindle speed (rad/sec). 𝜃 is defined as the corresponding immersion angle 

for one full vibration wave and calculated by: 

 

𝜃 =
2𝜋

𝑛
=
2𝜋Ω

𝜔𝑐
 (5.9) 

Therefore, the pitch angle variation Δ𝑃 corresponding to Δ𝜀 can be obtained by: 

 

Δ𝑃𝑗 =
𝜃

2𝜋
Δ𝜀𝑗 =

Ω

𝜔𝑐
Δ𝜀𝑗 (5.10) 

According to the mentioned equations, pitch variation can change the value of the 𝑆 in 

equation (5.6), and this value can be minimized by selecting the proper value of pitch 

variation.  

Improvement in the stability using variable pitch tools over standard end mills can be 

investigated by the ratio of the stability limits.  The stability limit for the normal end mill 

is calculated by the following equation: 

 

𝑎𝑙𝑖𝑚𝑛𝑜𝑟𝑚
= −

4𝜋

𝐾𝑡

𝛬𝐼

𝑁sin (𝜔𝑐𝑇)
 (5.11) 

Therefore, the stability ratio between normal and variable pitch end mill calculated by: 
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𝑟 =
𝑎𝑙𝑖𝑚𝑣𝑝

𝑎𝑙𝑖𝑚𝑛𝑜𝑟𝑚

=
𝑁sin (𝜔𝑐𝑇)

∑ sin (𝜔𝑐𝑇𝑗)
𝑁
𝑗=1

=
𝑁sin (𝜔𝑐𝑇)

𝑆
 (5.12) 

There are many solutions to the minimization of 𝑆. For example, for an even number of 

teeth, assuming Δ𝜀𝑗 = 𝜋𝑗, the value of the 𝑆 becomes zero. This can easily be applied by 

using linear or alternating pitch variation in normal milling where natural frequencies are 

high enough.  

For linear pitch alternation (𝑃0, 𝑃0 + Δ𝑃, 𝑃0 + 2Δ𝑃, … ), the value of the 𝑟 can be 

calculated for different values of the 𝜀1 and teeth number, which is illustrated in Figure 

5.2-Figure 5.4.  

 

 

Figure 5.2. 𝑟 value for 2-flute end mill with linear pitch variation 
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Figure 5.3. 𝑟 value for 3-flute end mill with linear pitch variation 

 

Figure 5.4. 𝑟 value for 4-flute end mill with linear pitch variation 

According to Figure 5.2, for the tools with two teeth, the optimum value for the Δ𝜀  is 

equal to 𝜋. Also, as it is illustrated in Figure 5.3, there are two optimums Δ𝜀 value for 

tools with 3 teeth and they are equal to 
 𝜋

 
,
 𝜋

 
. These values for the tool with 4 teeth are 

equal to 
𝜋

 
, 𝜋,

 𝜋

 
, as demonstrated in Figure 5.4. 

But the main problem in robotic milling is that natural frequencies are low, and because 

of this issue, the number of vibrations is low, too (equation (5.8)).  Therefore, the scaling 

factor between Δ𝜀 and Δ𝑃 in equation (5.10) is higher than the value of this factor in 

normal milling. As a result, pitch variations calculated by these solutions generally are 
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very high and they are not applicable in robotic milling. Therefore, feasible values for Δ𝜀 

are calculated considering maximum value for Δ𝑃 which determined by tool 

manufacturer considering manufacturing limitations. Moreover, in the determination of 

the maximum pitch variation the changes in the chip thicknesses for each edge should be 

considered. 

 

Δ𝜀𝑚𝑎𝑥 =
2𝜋

𝜃
Δ𝑃𝑚𝑎𝑥 =

𝜔𝑐

Ω
Δ𝑃𝑚𝑎𝑥 (5.13) 

 

According to equation (5.13), Δ𝜀𝑚𝑎𝑥 has direct and inverse relationship with chatter 

frequency and spindle speed, respectively. Optimization in each situation using this 

method is possible when Δ𝜀𝑚𝑎𝑥 is higher than at least one of the optimum values of Δ𝜀 

which obtained for different tools. For example, consider a situation where the natural 

frequency is 40Hz, and the maximum pitch variation is 30 degrees for a tool with two 

cutting edges. In this situation, for different desired spindle speeds, we have different 

scenarios: 

• Δ𝜀𝑚𝑎𝑥 ≤ Δ𝜀𝑜𝑝𝑡    

Ω ≥  𝜔𝑐

Δ𝑃𝑚𝑎𝑥

Δ𝜀𝑜𝑝𝑡
 

If spindle speed is equal to 800 rpm, calculated Δ𝜀𝑚𝑎𝑥 (2𝜋  ) is lower than 

Δ𝜀𝑜𝑝𝑡 (𝜋) and the feasible area is not covered optimum point (Figure 5.5). In this 

situation, it is not possible to suppress chatter vibration in robot mode with a 

variable pitch tool. 
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Figure 5.5. Feasible area for choosing pitch variation in 800 rpm for the 2-flute tool 

with the natural frequency of 40Hz 

 

• Δ𝜀𝑚𝑎𝑥 ≥ Δ𝜀𝑜𝑝𝑡    

Ω ≥  𝜔𝑐

Δ𝑃𝑚𝑎𝑥

Δ𝜀𝑜𝑝𝑡
 

If spindle speed is equal to 400 rpm, calculated Δ𝜀𝑚𝑎𝑥 (4𝜋  ) is greater than 

Δ𝜀𝑜𝑝𝑡 (𝜋) and the feasible area is covered optimum point (Figure 5.6). In this 

situation, chatter vibration in robot mode can be suppressed with a variable pitch 

tool. By decreasing spindle speed feasible area for Δ𝜀 (green area) is increased, 

and we will have a wider range to find optimum pitch variation. 

2𝜋  
Δ𝜀𝑚𝑎𝑥
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Figure 5.6. Feasible area for choosing pitch variation in 400 rpm for the 2-flute tool 

with the natural frequency of 40Hz 

 

5.1.2. Case Study   

As a case study, the robot with modal parameters presented in Table 5.1 is investigated, 

and optimum tools for different situations are designed. Moreover, stability limits for 

designed tools will be analyzed with the method which is presented in previous chapters. 

 

Table 5.1 Model parameters of the robot 

 𝝎𝒏 (rad/sec) 𝑲 (N/m) %𝜻 

𝒙 direction 19.88 3.65e6 0.81 

𝒚 direction 17.8 2.31e6 1.76 

 

5.1.2.1. Design of Optimum End Mill with 4 Teeth 

 

For the cutting tool with four edges, the minimum value of the Δ𝜀𝑜𝑝𝑡 is equal to 
𝜋

 
. In 

addition, the maximum feasible pitch variation is determined as 30 degrees. By 

considering these issues and modal parameters of the robot, the range of the spindle speed 

which can be suppressed by the tool can be obtained by the following equation as 0-350 

4𝜋  
Δ𝜀𝑚𝑎𝑥
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RPM: 

Ω𝑚𝑎𝑥 = 𝜔𝑐

Δ𝑃𝑚𝑎𝑥

Δ𝜀𝑜𝑝𝑡
 (5.14) 

 

Optimal pitch variations for each spindle speed are calculated and illustrated in the 

following figure. 

 

 

Figure 5.7. Optimum pitch variation for each spindle speed using the 4-flute end mill 

 

In order to verify these results, stability limits are obtained with SDM, which is presented 

in section 3. The stability lobes for the given condition in Table 5.1 for half immersion 

milling of AL7075 using four flute normal end mill with 30˚ helix angle is shown in 

Figure 5.8. 
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Figure 5.8. Stability lobes for normal end mill with four cutting edge 

 

The stability lobe diagram for the variable pitch tool, which was designed for 150rpm 

(Δ𝑃 = 12.  ), is shown in Figure 5.9. This figure shows that in 150 rpm, the stability 

limit increases by five times in comparison with the normal end mill.  

 

Figure 5.9. Stability lobes for variable pitch 4-flute end mill optimized for 150RPM 

 

The stability lobe diagram for the variable pitch tool, which is optimized for 350rpm 
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(Δ𝑃 =  0 ), is demonstrated in Figure 5.10. This figure shows that in 350rpm the stability 

limit increased to a five of its former value with normal end mills. Moreover, the results 

show that pitch variation not only affects the stability limit on the desired spindle speed 

and increases the average value of the limits in its neighborhood.  

 

Figure 5.10. Stability lobes for variable pitch 4-flute end mill optimized for 350RPM 

 

5.1.2.2. Design of Optimum End Mill with 3 Teeth 

 

For the 3-flute cutting tool, the minimum value of the Δ𝜀𝑜𝑝𝑡 is equal to 
 𝜋

 
. In addition, 

the maximum feasible pitch variation is considered 40 degrees. The range of the spindle 

speed which can be suppressed by the tool is calculated by equation (5.14) as 0-350 rpm. 

Optimal pitch variations for each spindle speed are obtained and shown in Figure 5.11. 
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Figure 5.11. Optimum pitch variation for each spindle speed using the 4-flute end mill 

The stability lobe diagram for the variable pitch tool with three edges, which was designed 

for 130rpm (Δ𝑃 = 14.  ), is shown in Figure 5.12. This figure shows that using the 

optimum variable pitch tool at 130rpm increases the stability limit by 600% in 

comparison with the normal end mill.  

 

Figure 5.12. Stability lobes for variable pitch 3-flute end mill optimized for 130RPM 

The stability lobe diagram for the variable pitch tool, which is optimized for 200 RPM 

(Δ𝑃 = 22.  ), is demonstrated in Figure 5.13. According to this figure, in 200 RPM, the 

stability limit increases from 0.12mm to 0.65mm in comparison with the normal end mill.  
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Figure 5.13. Stability lobes for variable pitch 3-flute end mill optimized for 200RPM 

The results show that it is possible to suppress chatter vibration in robot modes for low 

spindle speeds where the range of feasible spindle speed depends on the chatter frequency 

and maximum value of the possible pitch variation (Figure 5.14).  

 

 

Figure 5.14. Variation of the optimum pitch for each spindle speed in different chatter 

frequencies 

 

Moreover, in robotic milling at low spindle speeds using cutters with higher diameters 
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can improve the dynamic performance of the process. The use of tools with larger 

diameters makes it possible to manufacture higher pitch variations on the tool due to 

higher free spaces available between edges. In addition, the larger diameter of the tool 

makes it possible to cut with low spindle speeds when higher cutting speeds are needed.  

 

5.1.3. Application of The Crest-cut End Mills in Robotic Milling 

As illustrated in previous chapters, crest-cut end mills can improve the dynamic 

performance of the milling processes. The effect of the use of these tools in the dynamics 

of robotic milling will be investigated in this section. The conditions which are used in 

section 5.1.1 (half immersion milling of AL7075 using four flute end mill with 30˚ helix 

angle) are repeated here with different crest-cut tools, and the results were compared with 

normal end mills.  

 In Figure 5.15, the effect of the crest-cut tools on the stability limits for the condition 

described in section 5.1.1 and Table 5.1 is illustrated. 

 

 

Figure 5.15. Stability lobes for crest-cut end mills with different wave amplitudes (half 

immersion) 
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As shown in the figure, the crest-cut end mill affects the stability limits in very low spindle 

speed. The reason is that robotic milling in a given condition is stable in a very low depth 

of cuts and the variation of edge shape is not significant in this area. Therefore, crest-cut 

tools act like variable pitch end mill (if there is not linear part at the beginning of the 

edges) with small pitch variation. According to Figure 5.14, low pitch variations do not 

affect the process with low natural frequencies, or the effects are only significant in low 

values of spindle speed.  

In order to increase the effect of crest-cut end mills, the cutting conditions are changed, 

and the width of cut decreased to 0.1 of the tool diameter. As a result, stable cutting depths 

and the effect of edge shape variation should be increased. 

 

  

 

Figure 5.16. Stability lobes for crest-cut end mills with different wave amplitudes (0.1 

immersion) 

As shown in Figure 5.16, using crest-cut end mills is more significant in the low width of 

cuts, and we can increase the range of spindle speed for improvement. However, they do 

not affect all the areas where the robot modes are active.  

These results show that in robotic milling, using the crest-cut end mills does not make an 

advantage for half immersion conditions where the stable depth of cuts is low. By 
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decreasing the width of cut, we can obtain higher stable depths, and greater part of the 

tool is engaged in the process. Therefore wavy part of edges can affect the stability 

diagram. While the affected spindle speed range is not wide enough and we cannot 

increase the stability limits for all the areas where robot mode is active.  To sum up, using 

crest-cut end mills are effective in robotic milling when the process has low radial depth 

of cuts (like profiling) and spindle speeds; otherwise, these tools do not have any 

advantage against normal end mills. It is worth mentioning that all of these results are for 

the area where robot modes are active; otherwise, all of the results for normal milling in 

chapter 3 are valid for robotic milling as well.  

  

 

 Application of Special Tools in Thin Wall Machining 

Flexible structure milling is in high demand in the machining sector, especially in the 

aeronautic and aerospace industries (Yang et al. 2016; Wan, Zhang, and Huang 2013). 

This part investigates the milling of the highly flexible cantilevered Ti6Al4V plates. This 

section's results can be used in a variety of industries, including jet engine manufacturers 

who produce blisks, impellers, and turbine blades using multi-axis milling procedures. 

The production time of these part are very high and increasing the productivity of these 

operations results in consuming time and money.  

As discussed before, in normal milling, workpiece dynamics are frequently overlooked 

since their contribution is insignificant in comparison to that of the cutting tool, 

particularly for long slender end mills (Ioannis Minis et al. 1990; Altintaş and Budak 

1995; E. Budak, Ozturk, and Tunc 2009). Therefore, the flexibility of the end mill is 

dominant during the roughing process of the thin walls, and the results obtained in the 

previous sections can be used in this stage.  On the other hand,  the flexibility of the 

structure (workpiece) is dominant in the finishing step, and the tool can be assumed rigid 

(Figure 5.17)(E. Budak and Altintaş 1998b).   

In this section, the effect of using special end mills on the machining of the thin-walls is 

studied, and the variation of the stability lobe diagrams is investigated.  
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Figure 5.17. Simplified model of the thin wall machining 

 

5.2.1. Case Study: Thin-wall milling 

In this section, a thin-wall (cantilever plate) of Ti6Al4V with the dimension of the 

1 0 ×  0 ×  𝑚𝑚 is used in simulations to extract stability lobe diagrams. The results of 

the FEM analysis, which was done to calculate modal parameters of the thin-wall are 

shown in Figure 5.18.  

 

 

Figure 5.18. FEM results of the modal analysis of the thin-wall a)1st mode b)2nd mode 

According to the obtained results by the FEM analysis, modal parameters and FRF of the 
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thin-wall is obtained in its corner as follow (in the calculation the value of the 𝜁 is assumed 

as 5%). According to the obtained results, there are two main and dominant mode in the 

system (Table 5.2).  

 

Figure 5.19. Frequency response function of thin-wall and its real and imaginary parts 

 

Table 5.2. Modal parameters of the thin-wall 

 𝝎𝒏 (Hz) 𝑲 (N/m) 

 𝒔𝒕 𝒎𝒐 𝒆 902 8.073e05 

 𝒏  𝒎𝒐 𝒆 1174 5.60e05 

 

The plate is down-milled by a four fluted, 30° helical end mill. 4 different tools whose 

properties are illustrated in Table 3.3 are used in simulations. The first end mill is a typical 

end mill. The second and third ones are variable pitch tools optimized for 2700 RPM (85 

m/min, which is recommended for cutting of Ti6Al4V) considering the first and second 

mode of the thin-wall, respectively, using the method presented in (E. Budak 2003a). The 

last tool is semi-crest-cut end mill which was selected considering the discussions in 

section 3.5. 
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Table 5.3. Crest-cut end mill parameters in the chatter test  

𝐍𝐨. 𝐓𝐲𝐩𝐞 𝐑𝐭 𝐍𝐭 𝛄 ∆𝐏 𝐰𝐥 𝐰𝐚 

1 Standard 

5 mm 
 

4 30˚ 

- - - 

3 Semi-crest-cut - - - 

4 Variable Pitch 9˚ - - 

5 Variable Pitch 7˚ 2 mm 15 mm 

 

 

The obtained stability diagram for the standard end mill (Tool 1) is shown in the following 

figure for each mode of the plate. 

 

 

Figure 5.20. Stability diagram for the standard end mill (Tool 1 of Table 3.3) 

As shown in Figure 5.20, the second mode is dominant, and according to the diagram, the 

maximum stable cut using the standard end mill is about 0.3 mm. 

In the following figures, the stability of the process using two optimum variable pitch end 

mills are illustrated. Figures show the stability lobe diagram using optimized tools for the 

first and second modes at 2700 RPM, respectively.  
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Figure 5.21. Stability diagram for the variable pitch end mill (Tool 2 of Table 3.3) 

 

Figure 5.22. Stability diagram for the variable pitch end mill (Tool 3 of Table 3.3) 

 

The results show that the variable pitch tool considering the second mode is much better 

performance in terms of stability. Because the second mode, as demonstrated in Figures 

5.19 and 5.20, is the dominant mode in the corner of the thin-wall plate. The stability limit 

using Tool 3 is about 0.85 mm. 
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Figures 5.24 and 5.25 show the stability limits using semi crest-cut tool (Tool 4) 

considering both modes.  

 

Figure 5.23. Stability diagram for the semi-crest-cut tool (Tool 4) – 1st mode 

 

Figure 5.24. Stability diagram for the semi-crest-cut tool (Tool 4) – 2nd mode 

The results show that, in spite of other tools, the first mode is the dominant mode for 

stability in the study range. The stability lobe diagrams at each speed have multiple 

margins, and the stability condition changes after each margin. This interesting 

observation motivates us to look into the results in a much wider range. The obtained 
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stability lobe diagrams shows the great potential of using semi-crest-cut end mills in thin-

wall machining. 

 

Figure 5.25. Stability diagram for the semi-crest-cut tool (Tool 4) – 1st mode  

 

Figure 5.26. Stability diagram for the semi-crest-cut tool (Tool 4) – 2nd mode 

The process is almost stable for depths between 2mm and 8mm at 2000 RPM – 3500 

RPM, according to the obtained results, and the process can be done in all of these areas 
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from a stability viewpoint. The maximum axial depth of the cut can, however, be limited 

by machinability, cutting forces, tool, and workpiece deflections. 

The main reason for this improvement is that by increasing the axial depth of cut, different 

parts of the wavy edges are engaged in the cut, effectively disrupting the regenerative 

chatter mechanism. 

 

 

 Application of Serrated End Mills on Turn-Milling Process 

The geometric models of serrated tools were detailed in-depth in chapter 4, and the 

mechanics of these tools were investigated for the 3-axis milling process. The geometry 

and mechanics of the turn-milling process with standard tools were examined in detail by 

Berenji et al. (Rahimzadeh Berenji et al. 2019). These two models are combined in order 

to predict the cutting forces of the turn-milling process with serrated tools. In the 

following parts, the necessary changes in the formulation of chapter 4 will be discussed. 

5.3.1. Force Calculation of Turn-Milling with Serrated Tools 

As discussed in chapter 4, chip thickness calculation has great importance in the 

prediction of the cutting forces, and its calculation should be modified considering the 

kinematics of the turn-milling process. The interface between the tool and the workpiece 

is identified in this approach, and this interface is accepted as the chip area. The element-

shaped discs mentioned in the preceding sections are used to split these chip regions into 

parts.  The method described in 4.2.1 is used to divide chip areas with some modifications. 

Equation  (4.32) is modified as follow considering the formulation in (Rahimzadeh 

Berenji et al. 2019): 

 

𝑊(𝑖, 𝑗, 𝜑𝑖𝑗)

= max {

0

min {𝑅𝑖𝑚 +
𝑘(2𝜋𝑛𝑤)

𝑛𝑡𝑁 cos(𝛽) cos(𝜃𝑥)
. (𝑅𝑤 − 𝑎𝑝 + 𝑖. 𝑑𝑧)}

}

  

 

(5.15) 
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𝑚 = {
𝑘 − 𝑗 𝑖𝑓 𝑘 − 𝑗 > 0

𝑘 − 𝑗 +𝑀 𝑖𝑓 𝑘 − 𝑗 ≤ 0
  𝑘 = 1,2, … ,𝑀 

 

Moreover,  the depth of cut is changed in each angular position, and it should be 

calculated in each angular step: 

 

𝑎𝑝𝑟(𝜑𝑖𝑗) = √𝑅𝑤
 − (𝑅𝑡 sin(𝜑𝑖𝑗 + 𝜃𝑥) + 𝑒)

 
− (𝑅𝑤 − 𝑎𝑝) (5.16) 

 

Then, for each element at each axial height, the differential forces are computed. 

 

𝑑𝐹𝑎(𝑖, 𝑗, 𝜑) = 𝑞(𝜑𝑖𝑗). 𝑔(𝜑𝑖𝑗)[𝐾𝑎𝑒 + 𝐾𝑎𝑐(𝑖, 𝑗)ℎ𝑖𝑗(𝜑𝑖𝑗)]𝑑𝑧  

𝑑𝐹𝑟(𝑖, 𝑗, 𝜑) = 𝑞(𝜑𝑖𝑗). 𝑔(𝜑𝑖𝑗)[𝐾𝑟𝑒 +𝐾𝑟𝑐(𝑖, 𝑗)ℎ𝑖𝑗(𝜑𝑖𝑗)]𝑑𝑧  

𝑑𝐹𝑡(𝑖, 𝑗, 𝜑) = 𝑞(𝜑𝑖𝑗). 𝑔(𝜑𝑖𝑗)[𝐾𝑡𝑒 +𝐾𝑡𝑐(𝑖, 𝑗)ℎ𝑖𝑗(𝜑𝑖𝑗)]𝑑𝑧  

(5.17) 

 

The 𝑔(𝜑𝑖𝑗) function in the following formula returns 1 when the element is between start 

and exit angle, and it is 0 when it is not cut. At each element's angular location, the 𝑞(𝜑𝑖𝑗) 

function takes the values 1 when cutting and 0 when not cutting, according to the 

permissible chip height stated in Equation (5.16). In the next step, these differential forces 

are transferred to tool coordinates, and the total forces can be obtained by summing up 

differential forces in tool coordinate (Equations (4.36) and (4.37)). 

 

5.3.2. Experimental Verification 

Experiments were carried out on the Mori Seiki NTX2000 CNC machine using a rotary 

dynamometer to validate the proposed force model of turn-milling with serrated end mills 

(Figure 5.27). The tool and workpiece material used in the force measurement 

experiments was carbide and AL7075, respectively. The serration type of the tool was a 

trapezoid, and the geometrical parameters are indicated in Table 5.4. 
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Figure 5.27. The experiment setup for validating the force model of  turn-milling with 

serrated tools  

 

Table 5.4. The geometrical parameters of the end mill used in experiments 

Type of Tool Tool Dia. 
Cutting 

Angles 

Serration 

Type 

Serration Wave 

Parameters 

Endmill 16mm 
𝛼 =  ̊ 

𝜆 =  8˚ 
Trapezoidal 

𝐿1 = 0.7, 𝐿2 = 0.  

𝐴 = 0. , 𝛼 = 𝛽 =  0 

𝑅1 = 𝑅2 = 𝑅 = 𝑅4 = 0.  

 

Experiments at similar cutting speeds and different eccentricity and feed rates were 

performed to validate the proposed model (Table 5.5). The proposed force model and the 

experiments in the Figures have a high degree of agreement. At various eccentricity and 

feed values, the proposed model yields a satisfactory fit.  
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Table 5.5. Cutting parameters of experiments 

Test Dt Dw Vc nt nw aw F e 

1 

16 mm 

 

122 

mm 

 

200 

m/min 

 

3979 

RPM 

 

8 

RPM 

 

3 mm 
24 

mm/min 
4 mm 

2 3 mm 
24 

mm/min 
2 mm 

3 6 mm 
48 

mm/min 
4 mm 

 

 

 

Figure 5.28. Comparison between test results and simulations 

 

 Conclusions 

In this chapter, the application of the special end mills and their effectiveness in robotic 

milling, thin-wall machining, and turn-milling process are investigated. The specific 

contributions and conclusions are listed in the following. 
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• Variable pitch tools have a positive impact on the robotic milling process, 

increasing stability limits and productivity. However, because of the low natural 

frequency of the robots' structure and manufacturing limitations for variable pitch 

tools, these tools are only effective at low spindle speeds. As a result, in operations 

involving tools with larger diameters (like face milling), the use of the tools is 

recommended. This recommendation is based on the fact that in constant cutting 

speed, larger diameter tools correspond to lower spindle speeds; additionally, as 

the tool diameter increases, the manufacturing limitation of variable pitch tools 

decreases. 

• Pitch variations produced by crest cut end mills are insufficient to affect the 

stability limit of the robotic milling process due to the low natural frequencies of 

the robot's structure. As a result, these tools are not recommended to use in robotic 

milling to diminish chatter vibrations at low frequencies. 

• Semi-crest-cut tools can increase the stability limits in the milling of thin walls. 

These tools introduce new stable areas after unstable axial heights by engaging 

the larger parts of the wavy edges in cut, and this phenomenon results in disrupting 

the chatter mechanism. 

• Turn-milling forces with serrated tools are predicted and confirmed with 

experimental results. Considering cutter-workpiece engagement and local 

cutting force coefficients, accurate cutting force predictions are obtained. 
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