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ABSTRACT

DESIGN AND OPTIMIZATION OF END MILLS WITH SPECIAL GEOMETRIES
FOR HIGH PRODUCTIVITY AND THEIR USE IN DIFFERENT APPLICATIONS

FARAZ TEHRANIZADEH

MANUFACTURING ENGINEERING PH.D. DISSERTATION, SEPTEMBER 2020

Dissertation Supervisor: Prof. Dr. ERHAN BUDAK

Machining processes, especially milling operation, are widely used in production due to
high flexibility, quality, versatility, repeatability, precision and efficiency. The
manufacturing industry is demanding shorter delivery times, competitive prices and higher
product quality. In order to meet these requirements in a machining process, increased
material removal rate (MRR), dimensional accuracy, limited form and surface tolerances
during stable cutting conditions should be reached. In order to achieve these goals, lower
cutting forces and stable cutting conditions are the significant constraints. In milling
process, reduction in cutting forces and having stable cutting condition, improves the
efficiency and part quality. For this purpose, it is important to be able to design the cutting
tool geometry (end mill) with respect to the process mechanics, dynamics and geometrical
properties. At this point, special tools can provide significant advantages. These tools are
used rarely in industry for higher productivity purposes. Moreover, the design basis of
special geometry tools is usually based on user experiments rather than process analysis in
term of mechanics and dynamics. Recently, there are plenty of research works on
enhancement of milling processes, higher productivity and optimization of cutting
conditions. However, there are a few works focusing on the design and application of

special geometry milling tools and there are significant gaps in this field.



The aim of this project is the development of design methodology and investigation of
optimized geometry for special milling tools used in milling operations. The designed
milling tools will be used in different kinds of milling operations and achievements will be
presented within the study.

In this study, the mechanics and dynamics of the special milling tools (serrated and crest
cut end mill) will be investigated in detail. The developed models will be verified by
experimental studies. Considering the results from all these models, the behavior of the
tools in different conditions will be examined and efficient end mills will be designed by
employing optimization methods. An important contribution of the study is the
development of methods for optimizing the geometry of special milling tools. Thus, for
any milling condition, a specific tool can be designed and implemented. With the models
to be developed in this project, the possible problems regarding the special end mills can
be predicted and more systematic and efficient solutions can be offered for each operation.
Moreover, the application of the special end mills in different processes and operations
such as robotic milling, turn-milling, and thin-wall machining will be investigated in this
study. The adaption of the obtained models to these processes can be used to predict cutting
forces and the stability of the operations. These models can be used to improve the

efficiency and productivity of operations by selecting proper tools.

Keywords:
Special End Mills, Serrated End Mills, Crest-Cut End Mills, Cutting Forces, Chatter,
Stability, Mechanics of Milling, Dynamics of Milling



OZET

OZEL GEOMETRILI FREZE TAKIMLARININ YUKSEK VERIMLILIK ICIN
TASARIMI, OPTIMIZASYONU VE FARKLI UYGULAMALARDA KULLANIMI

FARAZ TEHRANIZADEH

URETIM MUHENDISLIGI DOKTORA TEZI, EYLUL 2020

Tez Danigmani: Prof. Dr. ERHAN BUDAK

Talaghh imalat siireglerinden olan frezeleme, yiiksek esneklik, arttirilmis geometrik
erisilebilirlik, tekrarlanabilirlik, hassasiyet, verimlilik ve ¢ok yonliiliikk gibi avantajlariyla
cesitli endiistrilerde yaygin kullanilan bir iiretim siirecidir. Imalat sanayii daha kisa teslimat
streleri, rekabetci fiyatlar ve ylksek Urln kalitesi talep etmeye devam etmektedir. Bu
gereklilikleri yerine getirmek i¢in frezeleme siireglerinde yiiksek Malzeme Kaldirma Orani
(MKO), hassas boyutsal dogruluk, diisiik form ve yiizey toleranslar1 kisitlar1 altinda yiiksek
verimlilik elde edilmesi gereklidir. Bu hedef i¢in en 6nemli sinirlamalarin basinda siire¢
sirasinda ortaya ¢ikan yiliksek kesme kuvvetleri ve tirlama titresimleri gelmektedir.
Frezeleme kuvvetlerinin azaltilmasi ve siire¢ kararliliginin arttirilmasi, imalat verimliligi
ve parg¢a kalitesinin arttirilmasini saglayacaktir. Bu amaca ulasabilmek i¢in kesici takim
geometrisinin ilgili siirecin mekanik, dinamik ve geometrik sartlarina gore tasarlanmasi
bliylik 6nem tasimaktadir. Bu noktada 6zel geometrili frezeleme takimlari onemli
avantajlar ve firsatlar sunabilir. Endiistride bu yonde uygulamalar olsa da hem kisithdir
hem de siireglerinin analiz ve modellemesi yoluyla tasarim yerine tecriibeye dayali
yontemlerle tasarim esas alinmistir. Giiniimiize kadar frezeleme siire¢lerinin iyilestirilmesi,
yiiksek verimli kesme kosullarinin bulunmasi i¢in ¢ok sayida ¢alisma yapilmistir ancak
0zel geometrili freze takimlarinin tasarimi ve uygulanmasi konusundaki ¢aligmalarin sinirh

kaldig, literatiirde ve uygulamada 6nemli bosluklar oldugu goriilmektedir.
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Onerilen bu projenin amaci, yiiksek imalat performansina ulasabilmek yolunda &nemli bir
potansiyele sahip 6zel geometrili frezeleme takimlarinin eniyi tasarimi i¢in yontemler
gelistirilmesidir. Tasarlanan takimlar, gesitli frezeleme siireglerinde uygulanarak elde
edilen kazanimlar gosterilecektir.

Ilk adim olarak &zel frezeleme takimlarmin (kaba frezeleme ve crest-cut takimlar)
mekanigi ve dinamigi detayli bir sekilde incelenecektir. Gelistirilen modeller deneysel
caligmalarla dogrulanacaktir. Tiim bu modellerden elde edilen sonuglar1 kullanilarak
takimlarin degisik kosullardaki davranislari incelenecektir ve eniyileme yontemleri
kullanarak verimli takimlar tasarlanacaktir. Onerilen projenin &nemli bir 6zgiin katkis1, bu
takimlarin geometrilerinin eniyi tarasimi i¢in yontemlerin gelistirilecek olmasidir. Boylece
degisik frezeleme kosullarina uygun 6zel takimlar tasarlanabilecek ve uygulanabilecektir.
Projede gelistirilecek olan modeller sayesinde 6zel takimlarin kullanilmasi sirasinda ortaya
cikabilecek problemler de 6nceden tahmin edilebilecek ve degisik uygulamalar i¢cin daha
sistematik ve verimli ¢cozumler elde edilebilecektir.

Ayrica, bu ¢alismada robotik frezeleme, torna frezeleme ve ince duvar isleme gibi farkh
proses ve operasyonlarda 6zel parmak frezelerin uygulamalar1 arastirilacaktir. Elde edilen
modellerin bu iglemlere uyarlanmasi, kesme kuvvetlerinin ve operasyonlarin kararliliginin
tahmin edilmesinde kullanilabilir. Uygun takimlar elde edilen modellerin yardim ile

secilerek, operasyonlarin verimliligi artirilabilir.

Anahtar Kelimeler:
Ozel Parmak Frezeler, Tirtikli Parmak Frezeler, Crest-Cut Parmak Frezeler, Kesme

Kuvvetleri, Chatter, Stabilite, Frezeleme Mekanigi, Frezeleme Dinamigi
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1. INTRODUCTION

Milling is one of the most important processes in the industry, used in different
manufacturing sectors. The parts that can be made with milling operations include a wide
variety of items. Milling can be used to create complex 3D parts in the automotive,
aerospace, civil defense, medical, and energy industries, such as turbine engines, aircraft
wing structures, and jet engine compressors.

The efficiency of this process decreases due to vibrations and high cutting forces
occurring during the operation. These issues can lead to decreased parts quality, reduced
productivity, damage to the workpiece, cutting tool, and even the machine, and can also
cause various problems that affect the process. Reducing cutting depths, feed rates, etc.,
are the general approaches for solving these problems, however, at the cost of reduced
material removal rate (MRR) and productivity. On the other hand, the production industry
in today’s competitive marketplace needs high-quality parts manufactured in shorter
times at low costs. Therefore, decreasing MRR is not a satisfying solution to reduce
cutting forces and avoid chatter vibrations in milling processes. In order to fill this gap
and overcome the above problems. The use of special end mills can be an effective
solution; however, special tools must be designed and selected properly, considering
process conditions in order to decrease cutting forces and suppress chatter vibrations. The
main idea and motivation behind this study is the development of methods to design and
optimize special end mills to increase the performance in milling operations under
different conditions.

Cutting tools in milling operations have different geometrical properties such as pitch and
helix angles, cutting edge profile, etc. Special end mills can be classified based on these

geometrical characteristics in four main categories:

e Variable pitch and/or helix end mills: end mills that have non-constant pitch
angles, non-constant helix angles, or a combination of these.
e Serrated end mills: cutting tools with wavy edges which have undulations on

their flank faces.



e Crest-cut end mills: cutting tools with wavy edges due to undulations on their
rake faces.

e Hybrid end mills: combination of the tools listed above.

(a) variable pitch tool (b) variable helix tool

) .-
~s &

—

(c) serrated end mill (d) crest-cut tool

Figure 1.1. Different types of special end mills

This study mainly focuses on the modelling of mechanic and dynamic of the milling with
crest-cut and serrated tools. Moreover, the effect of these tools geometry on their
performance are analyzed, in order to provide helpful guidelines and information on the

use and design of special end mills.

The chapter of the thesis are organized as follow:

The literature on milling geometry, milling force modeling, and chatter stability is
reviewed in Chapter 2. When the method or approaches are used in the following
chapters, detailed reviews are provided.

The geometry, mechanics and dynamics of the milling using crest-cut

In chapter 3, a geometric model is presented for crest-cut end mills to be used in the
simulations. The mechanics of the process with crest-cut end mills is simulated and
verified experimentally through force measurements. Later, the dynamics of the process
are formulated and the stability diagrams are obtained using the semi-discretization

method. The stability limit predictions are verified by chatter tests carried out at different
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conditions. Then, the effects of the wave amplitude and length along the cutting edges on
the stability limits are investigated for the first time in the literature. Based on the
simulation results which are verified experimentally, guidelines are established for
selection of crest-cut tool geometries for increased stability.

In chapter 4, a method to analyze mechanics of milling with different types of serrated
end mills is presented. Tools with variable helix or/and pitch with different serration
geometries and different types of end mills are also considered in the investigation. The
geometric model of the cutter and model of the mechanics of milling with these tools to
predict cutting forces are presented and verified experimentally. In the proposed method
a novel and accurate way to calculate the chip thickness is presented. For the first time in
the literature, effects of serration wave geometry and cutting conditions on effectiveness
of serrated tools are investigated resulting in optimized serration shapes for given milling
conditions. As an important factor, effects of the phase shift direction on the serration
waves are also investigated. Finally, chatter stability performance of the designed
optimum serrated end mills is compared with standard end mills.

The use of special end mills in various operations and processes is investigated in Chapter
5. The use of variable pitch and crest-cut tools in robotic milling, as well as their potential
benefits, are discussed in the first section of the chapter. In the following section, the
stability simulation model for milling flexible plates with special end mills is presented,
and the effect of each tool type is investigated. In the last section, the force model of the
milling with serrated end mills is modified and applied to the turn-milling operation, and

the simulation results are verified experimentally.
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2. LITERATURE REVIEW

Special end mills (like variable helix and/or pitch, serrated end mills, and crest-cut tools)
are being used in industry relatively more often to improve the performance in milling
operations. Tool manufacturers, on the other hand, are eager to expand their knowledge
of these tools in order to produce unique characteristics that make them highly effective
in the process. Studies and publications about special end mills, specially serrated and
crest-cut tools, are limited, and there is a great gap in the modeling of the geometry,
mechanics, and dynamics of these tools in the field.

Mechanics and dynamics of milling with special end mills require inter-disciplinary
solutions involving fundamental theories. These issues are described and cited in related
sections of the dissertation. In this section, a brief literature review about the mechanics
and dynamics of milling using special tools is presented to show the state-of-the-art.
The first comprehensive and scientific work about metal cutting is published by Taylor
(1907), which included different aspects of metal cutting processes. The next remarkable
study in this area was done by Merchant (1944), introducing the first cutting process
model. Following these pioneering studies in the field of metal cutting, numerous studies
have been conducted to model metal cutting processes and forecasting different aspects
of the process. Moreover, in the last decades, the number of studies on dynamics and
stability of milling has significantly increased. These research efforts can be found in
some basic textbooks in machining (Tobias 1965; Astakhov 1998; Koenigsberger and
Tlusty 1967; Armarego and Brown 1969; Knight and Boothroyd 2019). Over time with
the increasing use of machining in industry, in order to have efficient operations, the need
for detailed study of machining processes has increased. Understanding details of metal
cutting processes along with new techniques and technologies in CAD/CAM, monitoring,
and fault detection systems can increase the efficiency and productivity of the machining

industry.
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2.1. Milling Force Models

Prediction of milling forces has great importance in forecasting the torque and power
needed for the process. Moreover, it helps process planners to determine deflections and
errors during the operation in order to compensate or reduce them. Therefore, there is a
need to model the mechanics of milling to predict forces during operation. Because of the
large number of variables involved in milling geometry, empirical study of milling force
necessitates a large amount of data. (Hastings, Mathew, and Oxley 1980; Kahles 1987).
As a result, analytical and semi-analytical milling force prediction is critical.

In initial works, the forces were predicted by only taking the geometry of the process into
account (Sabberwal, A.J.P. 1961; Koenigsberger and Sabberwal 1961). The analytical
force model of Sabberwal and Koenigsberger was based on the assumption that is cutting
force coefficients have exponential relation with chip thickness and can be obtained
experimentally. This method is known as the mechanistic model, which was used later
in different studies of the milling process (Tlusty and MacNeil 1975; Devor, Kline, and
Zdeblick 1980; Kline, DeVor, and Lindberg 1982; Fu, DeVor, and Kapoor 1984; Altintas,
Spence, and Tlusty 1991). Another approach in the mechanistic model is considering the
edge forces separately to eliminate their effects on the cutting force coefficients
(Armarego and Epp 1970; Armarego and Whitfield 1985; Budak, Altintas, and Armarego
1996).

Budak et al. (1996) proposed the novel method. In this model, cutting force coefficients
are determined using an experimentally obtained orthogonal cutting database. This
method eliminates the necessity for the calibration of each tool geometry required in the
mechanistic approach. Moreover, it can be utilized for the prediction of cutting forces
with complex milling tool shapes. Non-constant edge shapes in special end mills result in
variable local cutting angles (rake, oblique, chip flow, shear, and friction), which affect
cutting force coefficients directly. The predicted milling force coefficients from
orthogonal cutting data can be used to consider the effect of these differences on cutting
forces in the suggested models (Budak, Altintas, and Armarego 1996) for any
combination of these parameters. The cutting forces for ball end mills (Lee and Altintas

1996; Lazoglu and Liang 1997) and general milling cutters (Engin and Altintas 2001,
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2001) were predicted using the orthogonal database and mechanistic model.
In the present study, the method presented by Budak et al. (1996) is used to predict forces
in different conditions.

2.2. Modeling of Chatter Stability

Chatter is one of the major problems which appeared in machining operations. One
hundred fourteen years ago, Taylor (1907) faced chatter problems and believed that it was
the most obscure problem in machining. Moreover, he stated that it was probably
impossible to find a way to predict stable cutting conditions. Arnold (1946) was the first
one who explained the mechanism of chatter vibrations. He believed that self-inductive
influence originates from the negative slope of cutting forces vs. cutting speed curve,
which implies a negative damping coefficient in the equation of the motion. However,
Hahn (1953) invalidated the theory of Arnold and illustrated that the relation between
cutting force and cutting speed is not sufficient to explain the self-inductive behavior of
chatter vibration. Later, other studies showed that the occurrence of the self-exciting
chatter vibration was related to structural dynamics of machine tools and the vibration
phase differences between two consecutive machined surfaces. Chatter is caused by the
dynamic interaction between the machine tool and the workpiece during the chip
generation process, according to the study conducted by Tlusty and Polacek (1963). They
introduced the following basic equation according to their study in order to calculate the
limit depth of cut (a,;,,,) for chatter stability considering cutting force coefficient (K;) and

the real part of the transfer function of the structure (G).

R 2.1)
tm ZKsRe[G]min

Stability lobe diagrams were later found by Tlusty et al. (1967) by taking into account the
effect of spindle speed on chatter stability limits. They pointed out the stable lobes
(pockets) in high spindle speeds. These lobes have a significant effect on the machining
industry because they make it possible to have stable operations with a high depth of cut
and cutting speeds providing higher productivity.
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In milling operation, directional coefficients are not constant and vary with time as the
cutting tool rotates and has multiple cutting teeth. These periodically variable coefficients
make milling stability complicated in comparison with orthogonal cutting. Due to this
complexity, Tlusty et al. (1981) suggested that the best way to obtain SLDs (Stability lobe
diagrams) is through time-domain simulations. Minis et al. (1990; 1993) used a numerical
approach considering the Nyquist criterion to obtain stability limits. The first analytical
approach to find stability lobe diagrams for milling operation was proposed by Budak et
al. (1995; 1998a; 1998b). In this method, time-varying dynamic cutting force coefficients
are approximated by their Fourier series components, and there is no need to use iterative
numerical solutions to generate stability lobe diagrams which are obtained in a fast and
reliable way.

From the mathematics point of view, regenerative chatter vibration can be formulated
and solved using Delay Differential Equations (DDE). The major part of the methods and
techniques used to analyze Ordinary Differential Equations (ODE) can be extended and
utilized in DDE problems (Michiels and Niculescu 2007; Tamas Insperger and Stepan
2011; Diekmann et al. 2012; Bellen and Zennaro 2007) as discussed before there are three
main approaches to obtain stability lobe diagrams: frequency domain, time domain, and
discrete-time methods. Semi discretization method is one of the discrete-time based
methods which is introduced by Insperger and Stepan (Tamas Insperger and Stépan 2002;
2011). For stability analysis of delay differential equations with time-periodic
coefficients, this method can be used. In this method, the past solution of the system is
discretized and approximated by finite number of ODEs. Using this method, the system's
principal period is divided into N discrete time increments. For these discrete time
intervals, time dependent coefficient matrices are estimated with their average values and
the system's infinite dimensional monodromy matrix is approximated by a finite matrix.
According to Floquet theory, the system's stability is determined by the eigenvalues of
the obtained approximated monodromy matrix. They also proposed the Full-
Discretization Method, which discretizes both delayed terms and current-time terms
(Tamas Insperger 2010).

When the system has multiple delays instead of a single one, an explicit equation for the
chatter frequency and spindle speed cannot be obtained from eigenvalues equations, and
the solution must be determined using numerical time domain or discrete-time solutions.
In the case of the special end mills, these tools introduce multiple delays to the system
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according to their non-uniform shapes. Therefore, they cannot be analyzed using
frequency domain solutions. In this study, the Semi-Discretization method will be used
to investigate chatter stability of milling using these special end mills and to extract
stability lobe diagrams.

2.3. Special End Mills

Modeling of mechanics and dynamics of the milling process is important for forecasting
cutting forces during metal cutting, power and torque requirements, workpiece quality,
and chatter vibrations. Selecting proper conditions for the process plays a significant role
in achieving the desired part quality. One of the important factors is the cutting tool which
can affect cutting forces and chatter stability during milling. Different special end mills
are used in the milling process in order to reduce cutting forces and eliminate chatter.
There have been several studies on the mechanics and dynamics of special end mills and
their benefits in the literature. As a first and pioneer study in the field of special end mills,
Slavicek (1965) demonstrated that variable pitch cutters can suppress chatter vibration in
milling. He analyzed the effect of irregular tooth pitches where Tlusty’s chatter model
(Tlusty and Polacek 1963) is extended to cutters with non-constant pitches. In this study,
first the pitch selection criteria are defined, and it is demonstrated that the optimal pitch
to improve the stability for a cutting speed depends on the chatter frequency. The results
show that it is not possible to improve the stability in all speeds with specific pitch
variation pattern. Opitz et al. (1966) investigated variable pitch end mills with two
different pitch angles. Their simulation and test results illustrated significant
improvement in the stability limit using tools with variable pitches. In his study,
.Vanherck (1968) studied different pitch change patterns and produced simulation results
showed the effect of pitch variation on the stability limit. By considering the results of
these studies in 1960s the use of milling cutters with irregular pitch was accepted as an
alternative solution for increasing chatter stability of milling processes. Tlusty et al.
(1982; 1983) studied the influence of special end mills such as variable pitch and serrated
tools on the process dynamics in the following years. Their methods are based on pure
time domain simulations which are time consuming. Due to the pioneering studies

showing clear advantages of special end mills, additional works have been carried out on
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different types of special end mills such as variable helix and/or variable pitch and
serrated end mills in the following years. Shirase etal. (1999) demonstrated that end mills
with variable pitch angles can reduce surface error. Altintas et al. (1999) presented an
analytical method for predicting stability lobes in milling with variable pitch end mills.
In this study, time-varying directional coefficients were transformed to time-invariant
constants. Moreover, multiple regenerative time delay for variable pitch cutters is
considered in the formulations. It is hard to obtain optimal pitch variations for a given
condition by simulating the stability for different pitch sets, especially using time-
consuming numerical time-domain solutions. Considering this problem, Budak (2003b;
2003a) proposed an analytical design method for variable pitch end mills. In this study,
between the stability limit and pitch angle variations, an explicit relationship is
established, leading to a simple equation for determining optimal pitch angles. The
efficiency of this method was illustrated in different industrial applications. The results
of studies on variable pitch tools show the importance of these tools in improving the
productivity of milling operations. However, these tools have some limitations. First of
all, variable pitch tools can only increase chatter stability in a narrow spindle speed range
considering the chatter frequency and tooth passing frequency. Moreover, if the tooth
passing frequency is high compared to the frequency of the critical mode, the optimum
pitch variation also becomes high resulting in overloading of some edges and difficulties
in chip evacuation. On the other hand, for low tooth passing frequencies, the optimum
pitch variation angle can be very small which may bring limitations in manufacturing of
these tools depending on the achievable precision (Iglesias et al. 2019).

Olgac and Sipahi (2007) adopted a mathematically novel paradigm to obtained the
stability lobe diagrams analytically. This method is known as the Cluster Treatment of
Characteristic Roots, CTCR. Turner et al. (2007) used average values of helix angle for
calculating equivalent variable-pitch model of variable helix tools. Moreover, in this
study, the optimum values for helix and pitch angles are obtained using evolutionary
optimization algorithms. Dombovari and Stepan (2012) modeled chatter stability of
variable helix end mills using the semi-discretization method and investigate the
performance of these tools in different spindle speeds. Hayasaka et al. (2017) proposed a
method to design and optimize variable helix end mills to suppress chatter vibration. Their
novel method was verified by milling experiments. However, their method is applicable
only on the end mills with high values of helix angles. The stability and dynamic behavior
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of the variable pitch and helix tools were investigated by Comak and Budak (2017). In
this study, a new optimization method is proposed for variable pitch end mills by
extending Budak’s (2003a; 2003b) original method considering chatter frequency
variations with the introduction of varying tooth pitches.

In the 2000s, serrated end mills were in the spotlight because of their significant effect on
force reduction in the milling process. Enhancement of process stability was also
demonstrated by Campomanes (202AD) in roughing process using serrated cutters with
sinusoidal cutting edges. Merdol and Altintas (2002) studied the mechanics and dynamics
of the serrated end mills with sinusoidal wave shape on edge. They fitted a cubic spline
on the edge of the tool and used orthogonal to oblique cutting mechanics transformation
in order to calculate the cutting forces. The experimentally tested model was able to
predict cutting forces and stability lobes in the time domain. In the next years, they
extended their model (2004) for calculating cutting forces of cylindrical and tapered end
mills. Other works about the mechanics and dynamics of cutting with the serrated end
mills were done in these years (Zhang et al. 2003; Junz Wang and Yang 2003) to improve
the accuracy of the existing models with different methods. Later, Dombovari et al.
(2010) analyzed the dynamics of serrated end mills by using the Semi-Discretization
Method. In these studies, the effect of feed rate on stability limits is investigated, and
results show that by increasing feed rate, stability limits are decreased as the material
contact along with the serrated flutes increases. In the study of Hosseini et al. (2011),
serrated cutting edges are modeled as a B-spline curve, proposing a new approach for
calculating the chip thickness. Effects of serrations on milling forces and chatter stability
of the process were investigated by Koca and Budak (2013). Grabowski et al. (2014)
predicted cutting forces and stability limits for cylindrical end mills with sinusoidal
serrations and showed that serration parameters have a significant impact on the stability
limits.

As another type of special end mills, crest-cut end mills have non-constant helix angles
with harmonic variations along their axis, unlike variable helix tools, which have constant
helix angles on each tooth. Considering the demonstrated performance of variable pitch
and helix tools in chatter suppression by the previous research, crest-cut end mills which
have both effects, i.e., variable pitch and helix, integrated into their cutting edges, have
the potential to eliminate chatter vibrations in milling processes. However, these tools are
not widely known, unlike other special end mills. Their application in the industry has
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been very limited due to very few producers of these tools with no guidance available for
their design and application. Due to the continuous changes of the delay in the
regeneration caused by the periodic variations in helix and pitch angles along their cutting
edges, these tools can improve the process stability substantially and in wider ranges if
they are designed properly. Yet, the research on these tools has been very limited, and
there is no information available for the design of wave geometry. The stability of crest-
cut tools was investigated by Dombovari et al. [21] for the first time in the literature by
applying the semi-discretization method using distributed delays. The authors concluded
that using these tools large stable lobes could be achieved at lower spindle speeds while
they lose this effect at higher speeds [16]. As a technical brief to this article, Sanz et al.
[22] used the previous model for investigating different case studies without experimental
validations. In a recent study, T. M. Gomez et al. [23] extracted the geometry of crest-cut
end mills using a 3D scanner and predicted their dynamic behavior using time-domain
simulations. Although limited studies on serrated and crest-cut tools exist, they are all
focused on analysis for a specific geometry. However, investigating the effect of the
geometry of tools on the mechanics and dynamics of the process and choosing the best
geometry of the tool for a specific application is a more critical issue. On this subject,
there is a knowledge gap. Another important point to remember about special tools is that
they can be used in other applications such as robotic and turn-milling processes. On this
subject, no research has been done. These issues are the main motivations of this study.
This thesis presents a model to predict the cutting forces and stability lobe diagrams of
serrated and crest-cut end mills. Moreover, this study analyses the effect of the tool’s
geometry on their performance and provides a guideline to select the proper tool shape.
Furthermore, the application of special tools in robotic milling, thin-wall machining, and

turn-milling process are investigated in the last chapter.
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3. CREST-CUT END MILLS

Crest-cut end mills are used to eliminate chatter vibrations during milling processes;
however, they are not widely known and applied in the industry yet. These tools have not
been investigated in detail, although they have been in the market for some time. Crest-
cut tools can affect the process positively if they are designed and applied properly.

In this chapter, a geometric model is presented for crest-cut end mills. Moreover, the
mechanics and dynamics of milling with crest-cut end mills are modeled and verified with
experiments. Then, the effects of wavy edge shape on cutting forces and chatter stability
limits are investigated, and the effectiveness of these tools in improving productivity is

demonstrated.

3.1. Geometry of Crest-cut End Mills

As illustrated in Figure 3.1, unlike normal milling tools, crest-cut end mills have wavy
rake surfaces. These waves usually have sinusoidal shapes causing phase differences with
subsequent cutting edges. As a result, the helix angle becomes variable along the cutting
edges, where pitch angles between consecutive teeth also become variable along the tool
axis (as shown in Figure 3.1 A-A section). As a result, crest-cut tools can improve the
dynamic performance of the process provided that their geometry is selected properly
(Dombovari, Altintas, and Stepan 2010).

The first step in modeling milling with crest-cut end mills is defining the geometry of
these tools. To that end, the tool is discretized into small disc elements along its axis, as
shown in Figure 3.1. The position of each edge along the tool axis is calculated in addition
to the local pitch and oblique angles that are obtained for each edge in every element.

This is required due to the variation of oblique and pitch angles along the tool axis.
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A-A Section

Figure 3.1. Wavy edge of crest-cut end mill and axial elements

3.1.1. Wavy Edge Geometry

In order to develop a mathematical model to represent the wavy cutting edges, the polar
coordinates of an arbitrary point P; ; defining the position in the i"" axial element on the
edge of the j™ tooth are used. The angular position of each point (¢; ;) inpolar coordinates
is a function of the accumulated pitch and lag angles (; ;):

;=0 —¢;; j=12,...,N (3.1)
where ©; is the accumulated pitch angle of the j™ tooth which is the function of the
nominal pitch angles (p;):

0,=0 j=1

j-1
ejzzpn j=2,...,N
n=1

As shown in Figure 3.2, the lag angle v; ; is defined as the angle between the tip of tooth

(3.2)

j and the point i on the same tooth and can be calculated by the following equation:

mod(di,j , P)

Wiy = 2 (3.3)

where P is the perimeter of the tool. dijis evaluated by conditional function in equation

(3.4) which depends on the height of the edge including the straight part [;. It is to be
noted that, some of the existing crest-cut tools in the market contain a straight part [;, as

shown in Figure 3.2, for manufacturing convenience.
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where R, is the radius of the end mill, zijis the axial height of the element, y;is the helix
angle of the j" tooth, A; is the amplitude of the edge wave of the j"" tooth. u; j is calculated

by solving the following implicit equation of rotated sine wave for the corresponding zi:

u; j cos(y;) + 2 sin(y;)
2T
+ Ajsin K % > (( u;;sin(y;) + z;j cos(y;)) (3.5)

+9]-)l=0

where 4; is the wavelength on the j" edge whereas 6; represents its phase shift starting

from the tip, i.e., if the phase shift is zero the sine curve starts at the tooltip (last edge in

Figure 3.2).
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Figure 3.2. Schematic and unfolded view of a sample crest-cut end mill.

The position vector of each point on the cutting edge in Cartesian coordinates can be

defined as follows:

Pj= (thos(<pi,j))i’+ (Rtsin(<pi,j))j’+ Zl-,jl_c) (3.6)
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3.1.2. Local oblique angle

Because of the harmonically varying rake surfaces, the helix angle also varies along the
cutting edges. Thus, a tooth assumes a different oblique angle within each axial element.
The oblique angle has a significant effect on the cutting force coefficients (Brown and
Armarego 1964; E. Budak, Altintas, and Armarego 1996; Aksu, Celebi, and Budak 2016).
Therefore, the local oblique angle should be identified for each element along the cutting
edges. By using the geometrical relationships, the oblique angle of the i" element on the

j"tooth (n; ;) can be calculated as follows,

dit1,j — di;
My = tan~ (C———=) 3.7
v Ziv1,j — Zij &)

As an example, the local oblique angle variation on one of the teeth of a crest-cut end mill
with 16 mm diameter and different edge wave shapes are shown in Figure 3.3 for two
different nominal helix angles. As can be seen, the local oblique angle oscillates around
the nominal helix angle where the oscillation amplitude depends on the edge wave
geometry as defined in Equations 5 - 7. For tools with smaller nominal helix angles, the
minimum local oblique angles may become too small and even be negative (Figure 3.3)

depending on the edge wave geometry.
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Figure 3.3. Local oblique angle variation along tool axis for crest-cut end mill
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Moreover, harmonic variations of the edge profiles result in changes in pitch angles
between subsequent cutting teeth at each axial height. Non-constant pitch angles affect

the chip thickness in every element and should be calculated for each edge, individually:
Apij = @ijr1 — Pij (3.8)

Local pitch angle (A(pi, j) variation for the first tooth of a 4-fluted crest-cut end mill with
16mm diameter having different edge wave shapes and helix angles is shown in Figure
3.4 along its axis. Unlike standard milling cutters, for crest-cut tools, pitch angles vary
periodically along the tool axis due to wavy edges. In Figure 3.4, the local pitch angle
variation for the considered crest-cut tool is illustrated (the constant pitch angle for the
four teeth tool is 90° shown with a dashed line). As can be seen, the maximum and
minimum pitch angles are not symmetrical about the nominal pitch angle due to the helix.
On the other hand, for a crest-cut tool with zero helix angle, the variation of pitch angle

along the tool axis is symmetrical about the nominal pitch angle.
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Figure 3.4. Local pitch angle variation along tool axis for crest-cut end mill
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3.2. Force Modelling of Crest-cut End Mills

In this study, the linear edge force model (E. Budak, Altintas, and Armarego 1996) is
used in order to formulate milling forces. In order to determine cutting forces for each
angular increment of the tool, differential forces in tool coordinates (Figure 3.5) are
calculated in each axial element (i) on each tooth (j) for the rotational position (¢) in one

full revolution of the cutting tool as follows:

i) = @;;+¢

dF(),9) = 9(9:(®)) [Kre + Kre (i Dhi ()] dz
dF (i, ®) = 9 (91(@)) [Kee + Kee G Dy ()] dz
dFy(i,j,$) = 9 (91;(#) ) [Kac (i, Dhi(@)]dz

(3.9)

where K,., K;. and K, are the cutting force coefficients calculated using the oblique
cutting force model together with the orthogonal cutting data (E. Budak, Altintas, and
Armarego 1996) considering local oblique angles in each element. K., K;. and K, are
the edge force coefficients which are usually identified from the cutting tests; however,
they can also be predicted using thermo-mechanical models applied to the third zone
(Erhan Budak et al. 2016). In the calculation of the force coefficient, the rake angle on
the cutting edges is assumed to be constant; however, depending on the manufacturing
process of these tools, it may also be variable along the cutting edges in some cases. In
those cases, the local rake angle should be used in the calculation of the force coefficients
(Tehranizadeh, Koca, and Budak 2019; Ozli, Ebrahimi Araghizad, and Budak 2020).

9(@;;(¢)) is a binary function which is equal to 1 when the element is in cut (i.e.
Ostart < 01,j(P) < @exie () and 0 otherwise. ¢; ;(¢) is the angular position of each

point on the edge when the angle of the rotation for the tool is ¢. dz is the thickness of

each axial element.
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Figure 3.5. The schematic view of the milling with crest-cut end mill

3.2.1. Chip Thickness Calculation

As shown in Figure 3.5, Ag; ; is different for each edge at a certain axial position and

thus h; ;(¢) (chip thickness) can be defined as follows:

h;j(¢) =

where N is the number of teeth, and f is the nominal feed per tooth.

Ag; :
o Nf sin (9, (¢)) (3.10)

3.2.2. Total Forces in X, y, and z Directions

In order to calculate total forces, differential forces that come from each element on each
edge should be summed up. Therefore, differential forces need to be transformed from
tool coordinates (radial, tangential and axial) to machine coordinates (x, y, and z).

Differential forces in X, y, and z directions can be calculated by using the differential

forces in tool coordinates given by equation (3.13):
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dE(i,j, @) = =dF,(i,j, ) sin (¢1,;(9)) = dF.(i,j, ®) cos (:;(9))
dF, (i, j, @) = —dF, (i j, ¢) cos (91;($)) + dF(i,j, ®) sin (@;;(¢)) (3.11)
sz(ifj' (P) = dFa(i'j' d))

The total forces in X, y, z directions for each rotation increment can be obtained by
summation of the differential forces come from each element and edge at specified

increment:
a N
F(@) = ) > dR(ij¢)
i=0 j=1
a N
E(p) = ZZdFy(i,j, ®)
ke (3.12)

3.2.3. Experimental Verification of Force Model

Several tests have been conducted to verify the proposed force model. Cutting forces with
crest-cut end mills were measured during the tests performed on MAZAK 3-axis CNC
machine using a 3 component Kistler dynamometer. The work-piece material was
selected as Aluminum 7075-T6. The orthogonal cutting data of this material is obtained
by the method introduced in (Ozlu, Budak, and Molinari 2009) and it is shown in Error!
Reference source not found.. The experimental conditions and tool properties
manufactured by KARCAN™ are shown in Table 3.2. Note that, since the wave shape of
each tooth on the test cutters is similar, for the simplicity of expressions the wavelength
and wave amplitude will be referred as A and A, respectively, in the following sections.

Moreover, the straight parts of the edges are zero (I;=0) on the test tools.
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Table 3.1. Material database for AI7075-T6 Alloy

T, =2971+ 11«
p =188+ 6.7h + 0.0076V, + 0.26
¢, = 24.2 + 36.7h + 0.005V, + 0.3cx

N N
Kte = 234% JKTe = 352%

The comparison between experimental and simulation results is illustrated in Figure 3.6.
As can be seen from the figure, there is a good agreement between the milling force
predictions and the measurements.

The comparison between experimental and simulation results is illustrated in Figure 3.6.
As can be seen from the figure, there is a good agreement between the milling force
predictions and the measurements.

Unlike conventional milling tools, due to the presence of wavy edges, the periodic
behavior of the cutting forces is distorted. This is due to the fact that, on each axial
element of each tooth, the phase lag between the waves of teeth causes different chip
thicknesses and the wavy shapes of edges will have different start and exit angles and

different tool-workpiece engagement. Therefore, the cutting forces of teeth j and j + 1 at

the same angular position (position of edges at ¢ and ¢ + (27”) respectively) is different.

Table 3.2. Tool and process parameters in cutting force experiments

End Mill Parameters Process Parameters
o
z Tool Helix Wave Spindle Depth Width
2 Dia. '#gét?]f Angle Shape Speed of Cut of Cut (mm /Ir::\?(tjooth)
= (mm) (Deg) (mm) (RPM) | (mm) (mm) :
1 T2 a0 | 20 4 0.05
16 _
2 //‘1: &’g 4500 10 8 0.1
4 30 :
3 ‘:‘1: (1’58 4500 15 3 0.025
12 A; 0.5
4 1= 10 4500 10 6 0.05
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Figure 3.6. Measured and simulated milling forces for different conditions given in
Table 3.2

In order to have a detailed comparison, the RMS and peak value of predicted and
experimental results are compared the difference between them are listed in Table 3.3. It

is seen that the average discrepancy between the peak and RMS values are 11.16% and
6.95%, respectively.
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Table 3.3. Statical comparison of the prediction and experimental results.

RMS diff.% Peak diff.%
F, Test1 1.9 11.8
Fy Test1 1.1 6.4
F, Test1 14.7 13.9
F, Test2 12.3 14.4
F, Test 2 1.1 7.9
F, Test 2 4.8 2.5
F, Test 3 5.4 17.3
F, Test3 14 8.7
F, Test3 11.7 5.6
F, Test4 14.9 17.7
F, Test4 <1 3.5
F, Test4 13.2 24.2
Average 6.9 11.1

3.3. Chatter Stability of Crest-cut End Mills

In this section, the dynamics and stability of crest-cut end mills are investigated. As
discussed in previous chapters, chatter vibration has a negative impact on the efficiency
and quality of the milling process. Crest-cut tools can be used effectively to increase
stability in the desired condition if tool parameters are selected properly considering the
cutting condition.

The milling process's stability is determined by the variable chip thickness, which is a
function of present and previous vibration imprints left on the cutting surface. Due to the
geometry of crest-cut end mills, pitch angles between teeth are not equal, and they are
variable in each axial element (Figure 3.9). As a result, delay values between teeth at each
axial height are different. Therefore, unlike normal end mills, multiple delays must be
taken into account during the dynamic modeling of the milling with crest-cut tools. Crest-
cut end mills affect the dynamics of the process by applying perturbation in the
regeneration mechanism, and they can be utilized to eliminate chatter vibration.

Chatter stability of end mills with multiple delays can be solved using the Semi-
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Discretization method (Tamas Insperger and Stépan 2011). The first Order Semi-
Discretization method is used in this study to analyze the stability of the process.
Furthermore, the stability model is verified with milling experiments.

3.3.1. Semi Discretization Method for Delayed Differential Equations

If the delayed differential equations (DDESs) have time-periodic coefficients, investigation
of the eigenvalues of the infinite-dimensional monodromy operator is required in the
stability analysis. In this case, in general, stability conditions cannot be given as closed-
form functions of system parameters, but numerical approximations can be used to obtain
stability properties. Semi-Discretization method (SDM) is an efficient numerical method
that provides a finite size matrix approximation of an infinite-dimensional monodromy
matrix.

One of the basic ideas of SDM is dividing the principal period of the system is into
discrete time intervals. In SDM, delay terms in each discretization step are calculated
approximately with constant values or higher order polynomials considering the order of
the method.

In the first step of the SDM, the principal period of the system (T) should be divided to

m (resolution) discrete-time intervals:

At = — (3.13)
m

Using the above equation, the length of each discrete time interval can be calculated.
Considering a multiple delay time-periodic equation in the form found in the following

equation:

Np
x(t) = A@D)x(0) + Z B, (®)v(t -7, (1)) (3.14)

v(t) = Dx(t)

In this equation, A(t) ve B,.(t) are time-dependent periodic coefficient matrices and Ny,
is the number of different delays in the system. For ease of use in the subsequent

equations, for the representation of time-dependent terms in the formulation, the
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following adjustments will be made.

X, = X(t;)

‘ ‘ (3.15)
The main point of SDM is approximating time-dependent coefficients with constant
values for each time interval. Also, delayed terms are approximated by linear
combinations of discrete delayed values.

tive

1
A = A—tj A(t)dt
ti

tiva
1
B,; = A—tf B.(t)dt i=12.,,,.p . r=12.,,,.Np (3.16)
ti
ti+1
Tri = a7 . 7, (t)dt
Note that the non-delayed terms in the equations are left without any change.
Np
(O = 4x(© + ) BT Pt =10, teltiti)
- (3.17)

T
G [ (i +1—dr.)h
— T . — l — 'r' .
F‘lf?) (t - T‘l"l) = Z [ H = (k _ l)h _ vi+k_rr,i
1=0.

In these equations, the delay term is Lagrange polynomial interpolation with the degree

of .
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Figure 3.7. Approximation of the delayed term by polynomial of degree q (Tamas

Insperger and Stépan 2011)

The delay resolution is obtained by following equation:

dr,; = int (

Tp

Ly g) r=12..,Np

At 2

(3.18)

In this equation, the int function returns the integer part of the number. Thus, there are

two approximation parameters: the period resolution m, which is the number of steps

separating the fundamental period, and the order of the approximation of the delay term

q. The application of this method can be seen in Figure 3.7.

Now, the approximated model given in (3.17) has an analytical solution over each time

intervals.

ND ¢

Xiy1 = Pix; + Z Z Ry i kVitk-ar,,

Pi — eAiAt

tit1

Ryix = f e

t
At

:fe

0

q .
At 1—5) [ S—T, — (l -1 - drm-)At
1=0 1%k

A;(At-s)

r=1k=0

(k= DAt

q
[ S—T, — (l — drm-)At B, ds

(k= DAt

=0 l#k
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Discrete map can be obtained as follow:

z;1=G;z;

T
Z; = (}’i Vi-1 Vi .. vi—drmax)

1 dr,;—q dr,; ATyax
P, 0 - 0 O 0 0 -~ 0 Ry - Ryip 0 -
D o0 - 00 Z&loo -0 o0 o o .. of (20
Gi=|0 I 00+200 0 0 0O 0 - 0
N r=1]: : E
lo 0 — 1 ol lo o 0 o 0 o o)

AT, = max (dry;)

Here G; is the transition matrix connecting the states i + 1 and i in the time interval.
Since we have discrete time intervals, the application in (3.19) is repeated m times to
obtain the monodromy matrix (®). This matrix connects the initial state (z,) to a state

one principal period later (z,).

z, = ¥z,
(3.21)
(I) = Gp—le—Z GO
@ is a finite-dimensional approximation of the actual system's infinite-dimensional
operator. According to the Floquet theory, the eigenvalues of this matrix are used to
analyze the system's stability. The system is unstable if the greatest eigenvalue of the
monodromy matrix has an absolute value more than 1, at the stability limit if it is equal

to 1, and stable if it is less than 1.

First Order SDM:

The structure of the transition matrix and the formulation of the first-order SDM will be
presented in this section. At the end of this section, some important comments about

applying the method to multiple delay milling processes will be explained.
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Figure 3.8. Approximation of the lag term with the 1st order Lagrange polynomial
(Tamaés Insperger and Stépan 2011)

Considering equations (3.17) and (3.18) for the first-order case (q = 1):

[‘T(P (t —Tri) = Brio (t)v(ti—drr_i) + ﬁr.i.l(t)v(ti—drr_i)

Tri + (l +1- d?’r.l’)At —t

.Br.i.o (t) = At
(3.22)
t—1,.;, — (i —dr-)At
,37,_1-_1 (t) — T.1l At r.i
T.; 1
dr,; = int (ﬁ + 5)
For this situation,

Np
x(t) = A;x(0) + Z B, i[Brio®v(ti-pr,,) + Bria(Ov(ti—ar.,)]

=t (3.23)

vt € [t;.tipq)
v(t;) = Dx(t;)
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Over an interval of time, the solution is calculated from the next equations:

Np
Xip1 = Pix; + Z(Rr.i.ovi—drr_i + Rr.i.lvi+1—drr_i)
r=1
Pi — eAiAt
h. _ , _ (3.24)
o At
h
S —T,.; +dr. At
Rr.i.1 _ j r.LAt r.i eAi(At_S) dSB”-
0
If A7? exists, integrals are calculated by the next equations.
-1 1 -2 -1 AjAt
Rr.i.O = Ai + A_t(Ai - (Tr.i + (1 - drr.i)At)Ai )(I —et ) Br.i
1 (3.25)
Reis = [—A7" + (477 + (1 — dr 8T - %29 B,
For this situation transition matrix, G;, can be calculated as follow:
1 dr.; —1 dry; dlmax
P, © 00 0 0 0 R.i;y Ro O 0
D 0 0 of Xfo o 0 0 0 0 0 (3.26)
Gi=10 I 0 0|+ 0 0 0 0 0 0 0
: r=1 : : : : : :
l0 0 I 0J l0 0 0 0 0 0 0J

The monodromy matrix can be obtained using G;and the size of this matrix will be
(2drpax +4) X QRdpe, + 4).

The accuracy of the method is strongly dependent on the resolution (m), and higher values
of m result in a larger size of the monodromy matrix. The size of the transition and
monodromy matrices has a very significant effect on the computational cost of the

method. Because, to approximate the infinite-dimensional monodromy matrix to a finite
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matrix, the transition matrix is calculated and multiplied m times. Also, calculating
eigenvalues for the larger size of the monodromy matrix is more difficult. Therefore, the

m value affects the calculation time, and this issue should be taken into account.

3.3.2. Chatter Stability

The milling system's dynamics will be modeled in this part, taking into account dynamic
chip thickness, dynamically changing milling forces, and the milling system's structural
properties. The milling model is represented in this study using two orthogonal degrees
of freedom systems in the x and y process directions (Figure 3.9).

My X () + cyx(t) + kex(t) = E(t) (3.27)
m,y(t) + ¢, y(t) + kyy(t) = E,(¢)

In these equations, m,, m,,, cy, ¢y, k, Ve k,, determine the modal mass, modal damping,
and modal stiffness values in the x and y directions, respectively. ¥(t), y(t),x(t),
y (1), x(t) and y(t) are vibration acceleration, velocity, and displacement in the x and y
directions, respectively. F,(t) and F,(t) are the milling forces in the x and y directions.

Equation (3.28) can be rewritten as follows:

x(t) + fownxx(t) + wrzlxx(t) = Fx(t)
My (3.28)
E
J(6) + 28w,y v (1) + w2, y(t) = ()
y

Here wyy, wyy, & and &, represent the damping ratio and natural frequency of the

system's most dominant vibration mode in the x and y directions.
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Figure 3.9. Two degrees of freedom milling dynamic system

The chip thickness varies periodically under the effect of previous vibration marks left on
the surface and the present vibrations of the cutting teeth. As a result, the milling system
must be considered as a delayed dynamic system. The following equations consider the

influence of these vibrations on chip thickness:

i (@) = [dxsin (9,,(@)) + dy cos (0,;9) )]
Ax = x(t) — x(t — ‘L'l-,j) (3.29)

Ay =y(@®) —y(t —1;))

where the time-dependent vibration amplitude differences in the x and y directions are
denoted by Ax and Ay, respectively. At each axial height, 7;; shows the delay time
between teeth j and j + 1. For each angular position of cutting teeth, the effect of
vibrations on dynamic chip thickness is taken into account by considering their
components in the chip thickness direction.

Considering equation (3.29), dynamic milling forces can be obtained by following
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equations:

dF.(i,j, ) = — K..[Axsin(¢;) + Ay cos(¢;)] sin ((p,] ((p))

— Kio[Ax sin(g;) + Ay cos(¢;)] cos ((pl] (p)
: (3.30)

dF,(i,j,¢) = — K,.[Axsin(¢;) + Ay cos(¢;)] cos ((pl] (p)

+ Ko [Ax sin(g;) + Ay cos(¢;)] sin ((pl] ((p))

Since the geometry of crest-cut tools brings multiple time delays to the system, this issue
should be taken into account in the model, and the obtained equations will be solved by
the Semi-Discretization method. Also, in the formulation, crest-cut tools with variable
pitch and/or helix tools are considered. And the effect of non-constant nominal pitch and
helix angles will be investigated.

Since the delay varies along the tool axis for each tooth due to the geometry of the crest-
cut end mills, their values must be calculated for each tooth and axial position. At certain

axial position i, the delay for the tooth number j, 7; ;, can be determined using the local

pitch angle Ag; ; (Equation (3.8)) and the spindle speed {2 as follows:

Y = om0

After determining the delay for each tooth and element, the number of discrete points that

cover each time delay (z; ;) is obtained as follow (Tamas Insperger and Stépan 2002):

Tj 1
DU mt(h +2>

r= unique(Di,j) Vi=1l:zand Vj = 1:N (3.32)

Np = size(r)

The coefficients of dynamic displacement differences in the x and y coordinates are

generated by rearranging the dynamic milling forces (equation (3.11)) as follows:
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dF,(i,j,t) = Ax (@4 (i), 1) + Ay (@2y (0.1, ))
(3.33)

dFy(i,j, ) = Ax (ay,(i,j, ) + Ay (ay, (i), D))

To take into account the geometry of the crest-cut tools in these equations, directional

coefficients are calculated for all cutting teeth at each z level.

axx (i), 6, D1 5) = g(@i;@®)) (sin(ey i) (=sin(ep; j () Kre — COS((pi,j(t))Ktc)) dz
cos (¢ ;(£))(—sin (@ ; (£))Kyc — cos ((pi,j(t))Ktc)) dz
sin(@; ;(£))(—cos (¢; () Ky — sin (¢; (t))Ktc)) dz

cos (¢, j(0))(—cos(g; j () Ky — sin ((pi,j(t))Ktc)) dz

@y (i, t, Dy ) = 991 (D) (3.34)

ayx(i,,t, D) = g(i ()

ayy (i), t, Dy ;) = gy ;(D))

Here, a,(i,j,t,D; ;) represents the directional coefficient of the axial element i on each
tooth (j) at time t in XX direction. These coefficients are grouped according to the delay
value of the corresponding element and tooth D;;. ¢; ;(t) is the angular position of each

element on each tooth at time t and it can be obtained by the following equation:

60t
Pije = TZN + @y (3.35)

Considering obtained relations, equation (3.28) can be rewritten as follows:

{at‘(t) + 20, Wy X(8) + iy x(t)}
() + 28,0y, y(£) + wiy, y(t)

[@nx 1rn (3.36)
% x(6) = x(t = 7,) |
:ll T P L o |

ky

DC,(t) matrix includes direction coefficient and the elements of DC,.(t) are given below:
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z N
Ay (0, t,7)  ax, (i, ), t, T
be,, zzz (), t, 1) ay(@jtr) (3.37)

L Ay (L), t,1)  ayy, (), t,7)

In the next step, the system (equation (3.36)) is transformed into the form of (Tamés
Insperger and Stépan 2002):

r=Np

X(t) = LOX(0) + Z R, (DX(t —1,)

x(t) (3.38)
y(t)
x(t)
y(t)

X(t) =
In this equation L(t) and R,.(t) are time dependent periodic coefficient matrices:

L(®) = [M—luoct -D é]

o 1
RO = [yipc,, o

0
k
M=
0 Dny
X (3.39)
D_lw%x 0]
10 w?
ny
r=Np
DCt = Z Dcr,t
r=1
e[ L0
0 28,y

L(t) matrix has the contributions of all directional coefficients in time t and it is

independent of delay labels. On the other hand, only direction coefficients labeled r affect
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the R,.(t) matrix.

Stability analysis of Equation (3.38) is done by the first-order Semi-Discretization
method. In this method, as discussed in previous sections, the stability of the system is
analyzed with an approximate monodromy matrix according to Floquet Theory. The
solution at each time step depends on the state of the system in the previous time step

(Tamés Insperger and Stépan 2002).

Z,41 =Byzy,

Xu
X, _
v (3.40)
zZ, =
\Xu—m+1/
Xu—m
where,
1 DR.;—1 DR, DR
elvdt 0 0 0 0 0 0 Rr,u,l Rr,u,o 0 0
I 0 0 o] &&lo o 0 0 0 0 0
B,=| 0 1 0 o+ 0 0 0 0 0 0 0
: : N r=1y: . : : : ORI
|_0 0 --- 1 ()J |_00...0 0 0 o -- OJ
-1 1 -2 -1 L, At
Rr,u,O = Lu +E(Lu - (Tr,u - (Tr - 1)At)Lu )(I —em ) Rr,u
(3.41)
1
Rr,u,l = <_L1:1 + E(—LZZ + (Tr,u - rrAt)Lal)(I - eLuAt)> Rr,u
T
At = —
m
60
N

State matrices L(t) and R,.(t) depend on time-varying matrices DC, and DC,., that can

be evaluated in each time interval (u). The time-varying milling process can be simulated
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by solving a set of discrete recursive equations in each time interval. Since the process is
periodic in T, it is sufficient to solve the equations in m (number of time steps) time
interval.
The system's stability can be assessed by considering m intervals in the tool rotation
period T, as shown below.:

Zivm =D z; (3.42)

In line with the Floquet theory, if at least one eigenvalue of the transition matrix (d) has
amodule greater than one, there will be chatter in the system. The system will be critically
stable if the greatest module is one and stable if all of the modules are less than one
(Tamas Insperger and Stépan 2004).

3.3.3. Experimental Verification of Stability Model

In this part, chatter tests will experimentally verify the stability model presented to the
crest cutting tools. DMU 75 5-axis machining center is used to milling of a Al7075-T6
prismatic block. A microphone is set as close to the cuttings area and the recorded sound
data are analyzed using LabVIEW software to capture the sound spectrum of chatter tests.
Prior to the tests, a hammer test is used to acquire the modal characteristics of the tool-
holder-spindle assembly at the tool tip, and stability analysis is performed using these

parameters. (Figure 3.10). CUT PRO® software was used for the hammer test.
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Figure 3.10. Hammer test before the stability experiments with crest-cut tools

The modal parameters obtained for the system are shown in Table 2.

Table 3.4. Modal parameters of the system used in the chatter test of the crest-cut tool

Wy (Hz) Ky (N/m) $x% wny(Hz)  ky(N/m) $y%
711 2.65e7 3.08 509 2.41e7 4.37

The geometrical parameters of the crest-cut end mill used in the chatter tests are disclosed
in Table 3.

Table 3.5. Crest-cut end mill parameters in the chatter test

R N Y 1 A l

8 mm 4 30° 16 mm 1.2 mm 0

The schematic and unfolded view of the used end mill is shown in Figure 3.11.
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Figure 3.11. Schematic and unfolded view of the tool used in chatter tests

Half immersion milling with 0.025 mm/(rev-tooth) feed was applied in the chatter tests.
The predicted stability diagram, together with the chatter test results, are shown in Figure
3.12. The stability diagram for a similar standard end mill is also given in the same figure,
illustrating a substantial stability limit increase with the crest-cut tool. Furthermore, as it
can be seen from the figure, instead of classical stability lobes for standard milling tools,
crest-cut end mills provide much larger stability regions due to different delays introduced
to the system as they disrupt regeneration mechanisms. Considering this advantage, crest-
cut tools provide wider and higher stable regions in certain speed ranges improving
productivity significantly. In higher spindle speeds, on the other hand, since the
wavelength of vibrations is increased, the stabilizing effect of the crest-cut tools is

reduced. These effects will be discussed in section 5 in detail.
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Figure 3.12. Stability lobes and chatter test results for crest-cut end mill

In Figure 3.13, the sound spectrums and the machined surface pictures for stable and
unstable cases (cases A, B, C, and D in see Figure 3.12) are presented. For the unstable
cases (B and C), the chatter marks appear at 5000 RPM and 3000RPM at 7.5 mm and
12.5mm axial cutting depth, respectively, as shown in Figure 3.13. The sound spectrum
is captured by the microphone during the cutting experiment. For case B, the
corresponding tooth passing frequency is w; = 333 Hz, while the chatter frequency w,

with higher amplitude is shown around the natural frequency of the system.
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Figure 3.13. Sound Spectrum and cut surface of the different cases

Similarly, the photographs of the cut surface and the sound spectrums are also illustrated
for the stable conditions (case A and D) in Figure 3.13. It is seen that for these cases the
chatter marks are eliminated, and a clean surface is produced. The sound spectrums show
only the tooth passing frequency and its harmonics with no indication of chatter.

Based on the above experimental validation, it can be concluded that the proposed model
can be used effectively to predict chatter stability limits accurately for crest-cut end mills.
The model is also used to investigate the stability of crest-cut tools with different

wavelengths and wave amplitudes, and the results are presented in the next section.

3.4. Stability Analysis Based on Crest-cut Tools Geometry

As shown in the previous section (see Figure 3.12), crest-cut end mills demonstrate much
better performance in terms of absolute and maximum stability limits compared to
standard end mills. Since the wavy geometry of the cutting edge is the main reason for
the increased stability, the effects of the wavelength and wave amplitude should be
investigated in detail. For this purpose, another crest-cut end mill with different
geometrical parameters is used to show these effects on stability lobe diagrams. In this
case study, the diameter and length of the tool, as well as the tool-holder assembly

conditions, are taken as the ones in Section 3.3.3 to achieve similar modal parameters
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given in Table 3.2. The comparison between simulation and test results is shown in Figure
3.14.
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Figure 3.14. Comparison of two different crest-cut end mill

In this study, the stability lobe diagram for the second tool with geometrical parameters
(A=2, 2=25) is validated by experiments and compared with the results obtained in
Section 3.3.3. As shown in Figure 3.14, different crest-cut end mills behave differently
on each point of the stability lobe diagram. Therefore, for a specific cutting condition, the

selection of proper crest-cut tool wave shapes is crucial.

3.4.1. Effects of Edge Wave Shape on Chatter Stability

In this section, the effects of edge wave shape on stability lobe diagrams are investigated
and the results are discussed. The simulations are performed using the tool dynamic
properties and cutting conditions given in section 3.3.3. In the first step, the effects of the
wavelength on the stability lobe diagrams are investigated with the illustrated results in
Figure 3.15. In these simulations, the edge wave amplitude (4) was kept constant as 1mm.
In order to complement these results with the effects of the edge wave amplitude on the

stability limits, stability lobe diagrams with different wave amplitudes (with the constant
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edge wavelength of 20mm) are shown in Figure 3.16.
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Figure 3.15. Stability lobe diagrams for different edge wavelengths
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Figure 3.16. Stability lobe diagrams for different edge wave amplitudes

In Figure 3.15, the stability lobe diagrams of crest-cut end mills having different
wavelengths are compared with the stability diagram of the standard end. It can be seen

from the figure that although the stability limits for smaller wavelengths, i.e., 1 =
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10,15,20 mm, are close to each other they are significantly different for longer
wavelengths of A = 25, 30 mm. Based on these simulations, it can be deduced that higher
stable cutting depths can be achieved with smaller wavelengths, however, they cannot be
increased further after a certain minimum wavelength. Stability lobe diagrams remain
similar for wl values between minimum and a specific value since the generated local
pitch variations between two consequent teeth are repeated regardless of the number of
engaged waves at the maximum stable depth of cut. Accordingly, if the wavelength
becomes greater than the specific value, some of the pitch variations and as a result, some
of the delays are eliminated and the stability limits decreases. Hence, for very large
A values the pitch variations become negligible as the number of the introduced delays to
the system decreases and the crest-cut tool tends to behave like standard end mills.

The simulation results in Figure 3.16 indicate that the variation of wave amplitudes does
not only change the stability limits but also shifts the lobes toward higher spindle speeds
significantly. It is observed that, although the stability limit is increased, the lobe shift
provides a higher stable depth of cuts even in the spindle speed values where the limits
for the standard tool are at their minimum. As a result, by choosing the proper wave
geometry of crest-cut end mills, it is possible to reach a higher depth of cuts at desired
spindle speeds. Simulation results also show that by increasing the spindle speed, the
wave amplitude of the crest-cut edges should also be increased to obtain higher stability
limits. It is known that the chatter wavelengths increase with the spindle speed (E. Budak
2003b). Therefore, low values of wave amplitude on the edge may not be sufficient to
eliminate the phase shift between two consecutive chatter marks at higher spindle speeds.
For instance, as shown in Error! Reference source not found., the tools with a wave
amplitude of 0.5 mm and 1 mm lose their effectiveness after 2750 rpm and 4250 rpm,
respectively. On the other hand, tools with 1.5mm and 2 mm of edge wave amplitudes
are effective up to much higher spindle speeds due to their ability to eliminate the phase
shift between chatter marks at these speeds. Therefore, like variable pitch end mills, in

order to eliminate chatter in a specific spindle range, the amplitude should be large enough

Wc

considering the ratio of chatter and tooth passing frequencies (ra, = w—). For smaller
T

ratios, larger wave amplitudes should be selected to increase stability.
The results obtained in this section prove that the selection of the geometrical parameters

of crest-cut tools is vital in order to achieve high chatter-free MRR. Further, it is deduced
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that the wave amplitude and wavelength must be selected according to the target cutting

conditions.

3.4.2. Selection of Optimal Geometry for Crest-cut Tools

Similar to variable-pitch end mills, crest-cut tools present important opportunities to
achieve high stability limits by tuning their geometry for a specific spindle speed. In order
to determine the optimum crest-cut wave shape for a target spindle speed, simulations can
be used, as explained in this section. To demonstrate the procedure, three different spindle
speeds (3000, 4000, and 5000 RPM) are selected for which the maximum stability limits
with different edge-wave shapes are calculated (Figures 3.19a, 3.20a, 3.21a). The optimal
design is selected as the one which provides the highest stability limit. To investigate the
performance of the optimal crest-cut tools, their stability diagrams are compared with a
standard milling tool and a variable-pitch end mill having optimum pitch variation tuned
according to the method proposed by (E. Budak 2003a) as presented in Figures 14b, 15b,
and 16b. In all simulations, the same dynamics properties given in Table 3.2 are used.
Results show that optimal crest-cut end mills provide higher stability limits at the target
spindle speed in comparison to optimum variable-pitch end mills. Another important
feature of the optimized crest-cut tools is their high stability zones compared to the tuned
variable-pitch end mills, as shown in Figures 3.19b, 3.20b, 3.21b.

According to the (a) parts of these figures, it is seen that for 3000 RPM, and 5000 RPM
spindle speeds, the optimum wave amplitudes are Imm and 1.5mm, respectively. This
confirms the reasoning discussed in the previous section that the optimum wave

amplitude is increased with increased spindle speed.
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Figure 3.17. Stability limit of crest-cut end mill with different shapes b) comparison of
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According to the obtained results, optimum crest-cut end mills can increase the stability
limits and performance of the process at the desired spindle speed. Despite their relatively
higher production time compared to standard end mills, crest-cut milling tools can reduce
machining times substantially by increasing stable MRR. Moreover, it is deduced that
crest-cut tools provide a much wider stable zone in the vicinity of desired spindle speed
whereas narrow stable ranges are possible with variable pitch tools. This advantage makes
crest-cut tools more robust against variations in chatter frequency and spindle speed.
Different modes of tool, part and spindle assemblies may exist or emerge during the
process based on the cutting location; however they cannot be suppressed by variable
pitch tools as they are designed for a target chatter frequency. Furthermore, dynamics of
the workpiece may also change due mass removal, especially in thin-walled structures (E
Budak and Kops 2000; Erhan Budak et al. 2012). The chatter frequency changes resulting
from such issues can be tolerated more effectively by crest-cut tools because of their wide
stable ranges. Additionally, manufacturers prefer to use cutting tools in different
operations under different cutting conditions. Optimized variable pitch tools designed for
a specific spindle speed may perform even worse than standard end mills at different
spindle speeds (Iglesias et al. 2019) whereas crest-cut tools can be used in a wider range
of speeds. This advantage of crest-cut tools provides an opportunity for their use under

different process conditions.
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3.5. Conclusions

The present study investigates the mechanics and dynamics of milling with crest-cut end

mills. The effectiveness of the crest-cut tools in improving the stability of milling

processes is analyzed. Results show that these tools can provide significant improvements

in terms of process stability. The specific contributions and conclusions of the study are

listed as follows.

Milling forces are predicted and confirmed with experimental results. Considering
cutter-workpiece engagement and local cutting force coefficients, accurate cutting
force predictions are obtained. Unlike standard milling tools, crest-cut end mills
produce non-periodic cutting forces.
The milling process stability with crest-cut tools is analyzed using the semi-
discretization method, and the obtained results are verified experimentally for the
first time in the literature. It is demonstrated that higher process stability can be
obtained by crest-cut tools compared to standard and variable pitch milling tools.
The stability diagrams obtained for crest-cut tools show several different
characteristics. The most important one is the substantially enlarged stable regions
compared to classical relatively narrow stability lobes offered by standard milling
tools.
As another novel part of the study, the effects of the crest-cut wave shape on the
stability limits are investigated. Results show that the wave amplitude has a strong
effect on cutting dynamics behavior and each wave amplitude is effective at a
specific spindle speed range. Having the ability to disrupt the regeneration
mechanism, higher values of wave amplitude result in higher stability limits at the
conditions where the r,, is low. However, the manufacturing of high wave
amplitudes on edges is hindered by dimensional limitations.
As the edge wavelength in crest-cut tools increases, the number of delays
introduced to the system decreases. Therefore, the effectiveness of crest-cut tools
reduces and the stability limit approaches to those of a standard endmill. On the
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other hand, higher wavelengths provide a wider range of the producible wave
amplitudes in manufacturing of these tools. In order to overcome this dilemma,
the proposed model can be used to select the proper wavelength.

e The results show that the amplitude of the waves on the edges is a more important
parameter. The wavelength selection can be made after choosing optimal wave
amplitude considering the dimensional limitations in manufacturing the crest-cut
tools.

e It is observed that, at a specific spindle speed, the optimal crest-cut tool
demonstrates a higher stability limit compared to the standard end mill.
Furthermore, the peak and absolute stability limits for the optimal crest-cut tools
are higher than those of the tuned variable-pitch tools at the vicinity of the speed

selected for tuning.

In summary, this study reveals the way that the shape of the wavy edges in crest-cut
tools affects the stability of the process. Using effective crest-cut end mills designed
and selected by the proposed guideline can significantly improve the process stability
in the desired cutting conditions. One of the major limitations which can be solved in
future studies is generation of a method to design an optimum edge shape quantitively.
The new outcomes of this study are expected to open new possibilities for the research
community and industry to develop high-performance crest-cut end mills that can

improve productivity further.

55



4. SERRATED END MILLS

Serrated end mills offer reduced milling forces, increased chatter stability and superior
chip breaking ability once they are designed and employed properly. Although serrated
end mills are often used in industry, the literature on these tools is quite limited compared
to standard milling tools. In this chapter, a method to analyze mechanics and dynamics
of milling with different types of serrated end mills will be presented. Tools with variable
helix or/and pitch with different serration geometries and different types of end mills are
also considered in the investigation. In the first step, the geometric model of the cutters
will be defined mathematically and different parameters of the tools are extracted from
the model. Then model of the mechanics of milling with these tools to predict cutting
forces are presented and verified experimentally. In the proposed method a novel and
accurate way to calculate the chip thickness is presented. For the first time in the literature,
effects of serration wave geometry and cutting conditions on effectiveness of serrated
tools are investigated resulting in optimized serration shapes for given milling conditions.
As an important factor, effects of the phase shift direction on the serration waves are also
investigated. In the last step, chatter stability analysis will be investigated. Because of the
multiple delays which existing in the system, semi discretization method will be used to
obtain stability lobe diagrams. The chatter stability model will be verified experimentally
and then it will be used for comparing performance of the designed optimum serrated end

mills with standard end mills.

4.1. Geometry of Serrated End Mills

In this section, a general geometric model for commonly used serrated end mills is
presented. The proposed model for the mechanics and dynamics of these tools is based
on the geometrical model introduced here.

The models considered in this study include cylindrical and tapered end mills, ball end
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mills and round end mills with circular, sinusoidal and trapezoidal serration wave forms.
These forms are chosen since most of the serration types used in industry can be
represented by these wave forms. Moreover, tools with variable helix or/and pitch are
also covered. In the geometry model, the tool is discretized along its axis as shown in
Figure 1 and the cutting geometry is calculated for each axial element.

Figure 4.1. Axial elements of the end mill

4.1.1. Discretized End Mill Envelope Geometry

In this study, as shown in the Figure 4.2, the tool envelope is defined by four parameters.
These parameters can define different shapes of serrated end mills (cylindrical and
tapered end mills with flat, ball and round noses) which are used in industry.

To define general tool geometry, the tool radius as well as the angular position of each
cutting edge in each element should be determined. The angular position of the first edge
at the tip of the tool is taken as the reference, i.e. is assumed to be zero, and the angular
position of the edge j at the tip of the tool are defined with respect to the first edge as

follows:
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Figure 4.2. Tool envelop parameters for different types of end mills
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s=j—-1

pe(j) = z Ds (4.1)
s=1
where psis the pitch angle of the tooth s.

4.1.2. Casel: Cylindrical End Mills

For these tools, the radius is constant along the tool axis. Then, the angular position of

element i on the tooth j (¢;;) can be calculated as follows:

0y =)~ 42y g 42)

where ¢,; is the starting angular position of each edge in cylindrical part of the tool and

is equal to p,(j) (if the tool tip is flat). z, is the height of the first element in cylindrical
section of the tool. It is equal to zero if the tool tip is flat and equal to BH when it has

round tip. y; is the helix angle of the j" tooth, R is the radius of the tool and z; is the height
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of element i.

4.1.3. Case 2: Tapered End Mills

For these tools, the radius varies along the tool axis due to the taper angle and can be

represented as follows:

Ri = (Zi - Zt) tan(ﬁ) + R (43)

where R is the minimum radius of the tool’s tapered part and S is the taper angle. z; is
axial position of the first element on the tapered part of the end mill and equal to BH and
it is zero when tool does not have ball or round nose.

To define the angular position of each cutting edge in an axial element, the tapered end
mills are categorized in two group as constant lead with varying helix and constant helix
with varying lead.

For constant helix tools, the angular position of edge j on element i is defined as follows:

@ij = a; In(1+ b(z; — 2¢)) + @y (4.4)
where,
tan(y;)
aj = W (45)
_ tan(B)
b = R (4.6)

For tapered end mills with constant lead, on the other hand, the angular position of each

edge on the element i can be defined as follows:

@ij = cj(z; — 2¢) + @y (4.7)

where,
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_ tan(nj)

Rmin
ZaniTL

n; = tan_l(m

) (4.9)

L; is the lead of the j™ tooth.

4.1.4. Case 3: Ball and Round End Mills

If the tool nose is not flat, the angular position and the radius of the tool at each height of
the ball end part can be calculated by the following equations:

R; = \[sz — (Rp — 7;)? (4.10)

Z.
®ij = R—litan(yj) + P.(j) (4.11)

where R,, is tool ball nose radius.

4.1.5. Local Radius

The teeth of the serrated end mills have wavy flank surfaces and waves on consecutive
teeth have phase difference. In addition, due to the serrations, tool radius of each edge
varies along the tool axis harmonically (Figure 4.1). Therefore, the contacts between tool
edges and workpiece are not continuous along the depth of cut, and each tooth is engaged
with the material in certain axial heights as shown in Figure 4.3. Consequently, the contact
length between the workpiece and the cutter is less than the nominal axial depth of cut.
This can be considered as the main reason for reduced cutting forces in milling with

serrated tools.
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Figure 4.3. Engagement of cutting teeth and workpiece, and the marks left on the cut

surface

Local radii depend on the serration wave forms such as circular, sinusoidal and
trapezoidal. These shapes with different parameters can cover most of the serration forms

which are currently used in the industry.

4.1.6. Sinusoidal Serration

This serration type includes sine waves with amplitude A and wave length of WL.:

WL :
0 /2 i 3n/2 27

(@) (b)

Figure 4.4. a) Parameters of sinusoidal serration b) Serration angle definition

Considering the effect of the wave shape on the local radius, for sinusoidal serrated tools

the local radius of tooth j on the element i can be obtained as follows:
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L

where 1;; shows the angular position of the element i on the j™ tooth on serration. ps;
represents the phase shift which is the starting angle of the j™ tooth wave at tip of the tool.
Moreover, [;; shows the j" cutting edge length from the serration starting point until

element i which depends on the shape of the tool. For cylindrical end mills it can be
determined as follows:

Zj

- cos(yj)

lij (4.14)

For tapered end mills, the cutting edge length is calculated by using arc length formulation
(Ortin 2010) for the tapered end mills with constant helix as follows:

10.5 : \ : : : :
\ -------- 1%t Tooth =-=-2"9 Tooth - = 3" Tooth —4'" Tooth

Radius (mm)

0 0.5 1 1.5 2 25 3

Axial Height (mm)

Figure 4.5. Local radius variation along axis for end mill with sinusoidal serration

tan(y;)
cos(p)

li; = Jtan(ﬁ)z + ( )2 (z; — z,) (4.15)
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By using the same approach as used for the tapered end mills with the constant lead, the

cutting edge length can be obtained as follows:

1 1 tann; *v?
lij = [V + 2
2tanf cos? B R

min

oz (4.16)
R vtann; + \[CO?ZmIB +tann;? v?
+ cos? B tann, In( Riin )] = loij
where,
vV = Ryin + tanB(z; — z;) (4.17)
loij = Z}EZZLﬂ [\/60:2 B + tanm;®
(4.18)

1 1
— In(t . — 4+t .2
+coszﬁtannj n( ann]-l_\/coszﬁ-l_ ann;*)]

The schematic views of the different tool types with sinusoidal serrations are illustrated

in Figure 4.6.

(a) (b) (©)

Figure 4.6. Schematic view of serrated (a) Flat end mill (b) Tapered end mill (c)

Tapered ball end mill with sinusoidal serration
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4.1.7. Circular Serration

Circular serration is defined by two circular sections as shown in Figure 4.7.

A3

Figure 4.7. Parameters of circular serration waves

Local radius for the i element on the j" tooth with circular serration type can be obtained
by the following steps. One full serration wave length can be calculated by the following

equation:

A =2{A; (2R, — Ay)
A=A+,

the parameters in this equation are illustrated in Figure 4.7.
The position, of the cutting edge in the i element on the j" tooth along the serration wave

can be obtained by following equation:

pS;
Vi =Ly — G-

Yij
T)

(4.20)
x = Rem(

where lijis cutting edge length till i element which defined by equations (4.14), (4.15) or
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(4.16) regarding end mill type. By considering the position of the element on the wave

the local radius can be obtained by the formulations:

U x<t+4,02 7 X=x—-1,

Rij = Ri + ( R% - (/11/2 —X)Z - R) COS(A]')

if x>24

Rij =R — ( |[R3 = (A2/2 = X)? + Ay — Az + R;) cos(4))

Schematic view of the end mill and the change of its radius along the tool axis is shown

in Figure 4.8.
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Figure 4.8. Schematic view of the end mill with circular serration

4.1.8. Trapezoidal Serration Form

Serrated end mills with trapezoidal wave form are also used in industry. The wave

geometry is shown in Figure 4.9.
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L2

Figure 4.9. Parameters of trapezoidal serration waves

The local radius for the i element on the j™ tooth with trapezoidal serration type can be
calculated by the following equations. Parameters for this equation are defined on the
Figure 4.9.

A =Rycosa, 1, =(A— (R +R,) (1 —sina))tana
A3 =R,cosa, A, =L;, As =R3cosf
Ae=(A—=(R3+Ry) (1 —sinf))tanp

Ay = Ry cos(p) (4.22)
Ag =L,
8
A= A
i=1

The position of the i element on the j™ tooth on the serration wave can be determined by
equation (4.23).

Yij = lij — (%/1)
; (4.23)
x = Rem(%)

By taking into account the position of the element on the serration wave the local radius

of the i element on the j™ tooth can be calculated by following equations:
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X=x

[ <
foxsho = {RijzRi—A+R1— /Rf—XZ

2

. X=x—A1

lfxsz/li - {Rij =R, —A+Xcota+ R(1 —sina)
i=1

2
3 X=X—ZAL
ifXSZAi* i=1
i=1

Rij=R;—R, +\[R§ — (X — R, cos a)?

4
i=1

4
5 X=x— Z i
if x< Z’li S = (4.24)
i=1

Rij =Ri—R3+ /Rg—XZ

( 5

6 sz—ZAi
ifxszaﬁ < =
i=1 RU = Ri —A+ ((R3 +R4) (1 —Sln,B)
\ .tanfB —x)cot B+ Ry(1 —sinp)

r 6

] X=X—Z/1i

. i=1

lfoZ/li_’ <RU:RL_Iél-I_Rll-
i=1

\ ...—\/RZ—(X—R4COS,6’)2

8
lf XSZALQ Rl]:Rl_A
i=1

4.1.9. Edge Point Position Vectors

The position vector ﬁij defines the location of point i, on the j" edge at level z, in

Cartesian coordinates (Figure 4.10). This vector can be calculated by converting polar

coordinates to Cartesian ones:
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ﬁij = (R;j cos ;)T + (R;; sing;;)j + z k (4.25)

Figure 4.10. Axial immersion angle and position vector of element i on the j" edge

4.1.10. Axial immersion angle

Since differential force directions are dependent on axial immersion angle, «;;,
determining this angle is a significant part of force calculations. The immersion angle is
the angle between the tool edge tangent vector and the unit vector 7;; which is directed
toward edge along tool radius in x-y plane as shown in Figure 4.10.

Due to the high number of elements in the axial direction, a vector connecting two ends
of each element (7;;) on the cutting edge is a good approximation for the tangent vector
in that element. Axial immersion angle can be obtained by dot product of these vectors

as follows:

Tij = Piy1j — Py

;= (cos ;) )T+ (sing;;)]
ij ( (Pl]) ( (pu)] (4.26)
_1, Gij - Nij
Kii = cos Y ———=
0= R T
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Variation of the axial immersion angle for the one tooth of serrated end mill with

sinusoidal serration (WL = 2mm, A = 0.25mm) is demonstrated in Figure 4.11.
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Figure 4.11. Variation of axial immersion angle (k) along tool axis

4.1.11. Local rake and oblique angles

Serration geometry of the tool results in variable rake, a;;, and oblique, y;;, angles along
the cutting edges (Figure 4.12). Even if helix angle is zero, the existence of rake angle
results in local non-zero oblique angles in some elements. Also because of presence of
the helix angle, rake angle changes along cutting edge and the local values vary between
negative and positive values in each portion of serration wave. The variation of these
angles affects the chip removal mechanisms and should be considered in analyzing
mechanics of milling. It is a known fact that increased rake angle affects the shearing
mechanism positively. This tendency can be taken advantage of when selecting or
designing serrated end mills. However, in order to take advantage of this, cutting edge
strength must also be considered, as cutting edge strength diminishes as the rake angle
increases. Moreover, variation of these angles affects cutting force coefficients which
have significant role in calculation of cutting forces. Therefore, for each tooth in each
axial element, the local cutting angles should be calculated.

The local rake, «ij, and oblique, yj, angles for each tooth on each element can be obtained
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using the 3D geometrical relationships as follows:

a;j = 2(sin"'(cos(c¢;; — B) sin(a;/2)) + sin~'(sin(c;j — B) sin(y;/2))) (4.27)
vij = 2(sin™'(sin(c;; — B) sin(a;/2)) — sin"*(cos(c;; — B) sin(y;/2)))  (4.28)

where ; and y; are the global rake and helix angles of the j* tooth. # is taper angle and cj
is used to make equation simpler and it can be calculated by equation (4.29):

Riy1j — Ritqj

¢y = tanH (=) (4.29)

1% ith
. ' element kth
i —— ~ element |

Figure 4.12. Local rake and oblique angles on the serration wave for each element

The variation of the rake angle along the cutting edge of a sample end mill which has
circular serration is illustrated as an example in the Figure 4.13. Helix and rake angle of
the tool are 30 and 5 degree respectively. As shown in Figure 4.13, local rake varies
between 30 and -30 degree.
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Figure 4.13. Local rake angle variation along end mill cutting edge

4.2. Force Model of Serrated End Mills

Linear edge force model (E. Budak, Altintas, and Armarego 1996) is used in this study to
formulate milling forces. First step in the calculation procedure is obtaining differential
forces in axial, radial and tangential directions (Figure 4.14), for each tooth on each axial

element at any angular position of a cutting tool:

dF,(i,)) = 9(0ij)[Kae (i) + Kachij (@i)]db
dF.(i,)) = g(@ip[Kre (@, )) + Krchij(pi)]db (4.30)
dF,(i,)) = g(@i))[Kee (i, )) + Kechij(pi)]db

where g(¢;;) is astep function which is zero when the tooth is not in cut, i.e. if ¢;; is not
between @gyq,¢ and @y, and is equal to one when the tooth is in cut, i.e. ¢;; is between
Qstart ANA @it Kqer Ko and K, are the cutting force coefficients in axial, radial and
tangential directions, respectively, whereas K., K, and K,, are the edge cutting force
coefficients in 3 orthogonal directions. These coefficients can be determined using
orthogonal cutting data base and oblique cutting transformation (E. Budak, Altintas, and

Armarego 1996). Geometrical parameters of the tool such as oblique and rake angles
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influence cutting coefficients. Because of local rake and oblique angles variation along
cutting edges, these coefficients have to be calculated for each edge on every axial and
angular positions separately. The elemental axial depth, db, is defined by following

equation:

dz

do=——
sin(x;)

(4.31)

hij(pij) is the uncut chip thickness for the i element of the j™ tooth and it is calculated at

each rotational step.

‘ feed
direction
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“‘ o 1 \ |
| | I
‘\\ @ [":;" y < / \ <
= Y 1)
p '9 ; | /
K /

Figure 4.14. Differential cutting forces in axial, radial and tangential direction

4.2.1. Uncut Chip Thickness Calculation

Uncut chip thickness should be calculated in a direction which is perpendicular to the
cutting edge. In previous studies this issue was not considered and some assumptions
were used to simplify the problem (Tehranizadeh and Budak 2017; S. D. Merdol and
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Altintas 2004; Dombovari, Altintas, and Stepan 2010; Hosseini, Moetakef-Imani, and
Kishawy 2011; Koca and Budak 2013). Therefore, a new method has been developed to
calculate the chip thickness accurately. In this method the interface of the tool and
workpiece is found and these areas are considered as chip areas. These chip areas are
divided considering elemental disks which are defined in previous sections. While
constructing these differential chip areas, 2 main issue is considered: 1) Differential chip
areas should not intersect each other. 2) In each element, the chip area is constructed in a
direction where the chip thickness becomes perpendicular to the edge. To meet these
requirements the following steps should be taken (Figure 4.15):

1. To find the chip thickness for each edge on each element the shape of the workpiece
surface which remained after cutting by the previous teeth should be calculated for
tooth j at each axial height i in each angular position (line marked with number 1 in
Figure 4.15). The formulas used for this step are:

W(i,j, q’ij) = max {min{Rim — kfe sin( ‘pij)}}
4.32
(k- i k-j>0 -

k=12..,N,

2. Based on the serration shape of the in-cut tooth and the surface of the workpiece (step
1) the chip areas are constructed for each edge at each angular position (areas between
tool and workpiece in Figure 4.15). The thickness of this area in each axial element

(H) can be determined from the following:

H(,j, i) = Ry = W(LJ, @) (4.33)

3. In order to prevent the intersection of differential chip areas for different elements,
the total chip area is divided into different regions based on the changes in slope and
curvature of the serration wave (dash line which marked with number 3 in Figure
4.15). In the circular serration all of the perpendicular lines to the edges pass through
the origin and they are not intersecting each other. Therefore, there is no need to divide

the chip area in a circular serration type.
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4.

In each region, intersection of the line perpendicular to the cutting edge with the limits
of that region and previously machined surface (areas which marked as number 4 in
Figure 4.15) is calculated. The intersection of two lines L1 and L (O) can be calculated
by using following equation:

_ (x1Y2 — ¥1X2) (X3 — X4) — (X1 — X2)(X3Ys — Y3X4)

O (X —x2) (V3 —Ya) — (V1 — ¥2) (X3 — X4)

(4.34)
_ (X1Y2 = ¥1%2) (V3 — Ya) — (V1 — Y2) (X3Ys — Y3X4)
(X1 —x2) (V3 —¥a) — 1 — ¥2) (x3 — X4)

Oy

where 0, and 0,, are the coordinates of point O In equation (4.34) each of lines L.
((x1,y1),(x2,y2)) and L2 ((x3,y3),(xa,ys)) is defined by two point. After calculating
intersection of perpendicular lines to edge j at each height i with limits of that region
(U;;) and previously machined surface (S;;), chip thickness for any element is defined

by the following equation

|Py = Uyj| + |Piyaj — Uy
2

Pij = Syj| + |Prsaj — Sy
2

(4.35)
h(i,j, (pl-j) = min |

Workpiece

End-mill

Figure 4.15. Steps of chip thickness calculations
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Some examples for different types of serrations and chip thickness calculations are shown

in Figure 4.16.

ey '
_ S~ ’
a) (b) (©)

(

Figure 4.16. Chip thickness calculations for different types of serrations.

a) Sinusoidal b) Circular ¢) Trapezoidal

4.2.2. Total Forcesin X, y and z Directions

The differential forces in x, y and z directions as a function of differential forces in tool

coordinates, can be derived as follows:

dF, = —dF,. sin(@;;) sin(k;;)
—dF; cos(@;;) — dF; cos(k;j) sin(@;;)
dF, = —dF,. cos( ;) sin(k;;) (4.36)
+dF; sin(@;;) — dF; cos(k;j) cos(@;;)
dF, = dF,. cos(k;;) — dFg sin( k;j)

To determine the total forces in x, y and z directions in each angular step the sum of

differential forces from all elements and teeth should be calculated.

a Nt
Fp) = ) > dR(2))
z=0 j=1
a Nt
R@) =) ) R (437)
z=0j=1

a

Nt
E(p) =) Y dE(2))

z=0 j=1

75



4.2.3. Experimental Verification

To verify the proposed model some experiments were carried out to obtain the cutting
forces in the milling process with serrated end mills. These tests were conducted on the
MAZAK 3-axis CNC machine with Kistler Piezo-Dynamometer. The work-piece
material was selected as Aluminum 7075 (Figure 4.17).

Figure 4.17. Setup of experiments

The experimental conditions and tool properties manufactured by KARCAN™ are shown
in Table 4.1. Figure 4.18 demonstrates the comparison of experimental and simulation

results where a good agreement is observed between them.

Table 4.1. Tool and process parameters in experiments.

Tool Parameters Process Parameters
Test
Tool Cutting Serration Serration Parameters | Spindle Depth | Width
No. Tool Type . Feed
Dia. Angles Type (mm) Speed of Cut | of Cut
=5 - -
1 End Mill | 12 : e e 20 g 3 o
nd Mi mm A=30° ; - —fA— mm mm
Trapezoidal A=0.5, 0=p=45 rev/min mm/tooth
R1=R2=R3=R4=0.2
a=5
. A=05 1200 0.15
2 End Mill 12mm A=30 Sinusoidal v . 5mm 3mm
WL=2 rev/min mm/tooth
=3 1200 0.1
3 | EndMill | 12mm 2=30 Gircular R1=R2=0.5 | 15mm | 3mm '
A1=A2=0.3 rev/min mm/tooth
Tapered Min a=6
. . A=0.25 1200 0.05
4 Ball End 12mm lead=100 Sinusoidal - . 40mm 1mm
. WL=2 rev/min mm/tooth
Mill p=3 mm
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Figure 4.18. Comparison of measured and simulated cutting forces in experimental and

simulation results for different conditions given in Table 1: a) 1, b) 2,c) 3and d) 4

4.3. Serration Parameters Effects on The Cutting Forces and Optimization

The simulation results show that serration par