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ABSTRACT

PERSONALIZED SCREENING POLICIES FOR CERVICAL CANCER
PREVENTION

MALEK EBADI

INDUSTRIAL ENGINEERING Ph.D DISSERTATION, JULY 2021

Dissertation Supervisor: Prof. Hans Frenk

Dissertation Co-advisor: Assoc. Prof. Raha Akhavan-Tabatabaei

Keywords: Cervical cancer screening, Optimal policy, Partially observable Markov
decision processes, POMDP, Cotesting, Cervical cytology, HPV-DNA testing

Since the introduction of the first cervical cancer screening method, i.e., Pap smear,
the disease burden has declined steadily and the outlook for women with cervical
cancer has improved significantly. However, the reduction in mortality and inci-
dence of the disease has not been uniform across the globe. While in the developed
countries the disease is under control, in many low resource settings, the disease
continues to inflict major health problems. Through organized screening programs,
the abnormal changes in cervical cells can be detected at earlier and more treatable
stages. Yet, determining the optimal frequency and type of screening test remains a
challenge for the policy makers who want to balance the benefits and costs. To over-
come this challenge, in many countries screening policies are presented in the form
of general guidelines that dictate the frequency for the whole population, regardless
of their risk profile. Essentially, since guidelines do not have the flexibility to address
the individual patient’s risk profile prior to a screening decision, they fail to distin-
guish between different types of patients. Recently, personalized medicine (PM) has
been adopted to answer this differentiation problem. Personalized medicine links
the disease condition of an individual to the risk profile which helps to design a tar-
geted treatment for a patient’s specific health condition. The application of PM has
recently been extended to the screening decisions for many cancer types including
cervical cancer.
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In this study, we propose a personalized partially observable Markov decision pro-
cess (POMDP) approach to address the questions regarding the screening type and
frequency at different ages for cervical cancer patients with different risk profiles.
As a sequential decision making tool, POMDPs provide a rich framework to study
further questions such as the impact of the patient’s risk profile and the false out-
comes of the screening tests on the screening decisions. Specifically, we propose two
POMDP models that incorporate the risk of the disease as well as the effect of test
characteristics on the screening decisions. The first model considers a reduced state
space with cotesting of cytology and HPV-DNA testing as a single combined test for
screening as opposed to waiting. This constitutes a small model which can be solved
exactly. The second model, uses cytology and HPV-DNA testing as two separate
decisions along with the wait decision. We also expand the state space of the model
for accurate representation of the natural history of the disease. Due to the large
size of this model, exact methods are not applicable, and we propose an approximate
solution method to solve the problem. Our results suggest that screening the whole
population with the same frequency leads to health disparities and that screenings
need to be tailored to the specific risk profile of the patients to improve the expected
quality adjusted life years (QALYs) of the patients. Our results also confirm that
screening programs will experience a paradigm shift towards HPV-DNA testing as
the standalone testing for cervical cancer in accordance with what is proposed in
the literature.
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ÖZET

SERVİKAL KANSER ÖNLENMESİNDE KİŞİSELLEŞTİRİLMİŞ TARAMA
POLİTİKALAR

MALEK EBADI

ENDÜSTRİ MÜHENDİSLİĞİ DOKTORA TEZİ, TEMMUZ 2021

Tez Danışmanı: Prof. Dr. Hans Frenk

Eş Danışmanı: Doç. Dr. Raha Akhavan-Tabatabaei

Anahtar Kelimeler: Serviks kanseri taraması, optimal politika, kısmen
gözlemlenebilir Markov karar süreçleri, POMDP, cotesting, servikal sitoloji,

HPV-DNA testi

Ilk serviks kanseri tarama testinin kullanıma sunulmasından bu yana, bu kanserin
hastalık yükü istikrarlı bir şekilde azalmıştır. Bununla birlikte, mortalite ve hastalık
insidansındaki azalma dünya genelinde eşit ölçüde olmamıştır. Gelişmiş ülkelerde
bu hastalık kontrol altındayken, birçok üçüncü dünya ölkeside büyük sağlık sorun-
ları yaratmaya devam ediyor. Organize tarama programları ile servikal hücrel-
erdeki anormal değişiklikler daha erken ve daha tedavi edilebilir aşamalarda tespit
edilebilir. Bununla birlikte, tarama testinin optimal sıklığını ve türünü belirlemek,
fayda ve maliyetleri dengelemek isteyen politika yapıcılar için bir zorluk olmaya
devam etmektedir. Bu zorluğun üstesinden gelmek için, birçok ülkede tarama
politikaları, risk altındaki nüfusa tarama testinin zamanı ve türü hakkında bilgi
içeren kılavuzlar biçiminde sunulmaktadır. Ancak kılavuzlar, tarama kararını etk-
ileyen önemli faktörleri ele alma esnekliğine sahip değildir ve bir tarama kararından
önce her bir hastanın risk profilini dikkate almamaktadır. Buna ek olarak, sağlık
hizmetlerinde, bireyin hastalık durumunu risk profiline bağlayan ve hastanın duru-
munun daha iyi anlaşılmasını sağlayan kişiselleştirilmiş tıbba yönelik yükselen bir
eğilim vardır. Kişiselleştirilmiş tıp kavramı, son zamanlarda rahim ağzı kanseri de
dahil olmak üzere birçok kanser türü için tarama kararlarını kapsayacak şekilde
genişletilmiştir.
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Bu çalışmada, serviks kanseri için tarama tipi ve aralığı ile ilgili soruları ele al-
mak için kişiselliştirilmiş kısmen gözlemlenebilir Markov karar süreci (POMDP)
yaklaşımını öneriyoruz. Sıralı karar verme aracı olarak, POMDP’ler, hastanın risk
profilinin etkisi ve tarama testlerinin yanlış hata oranlarının serviks kanseri için
tarama kararları üzerindeki etkisi gibi diğer soruları incelemek için zengin bir çerçeve
sağlar. Spesifik olarak, bu çalışmada test özelliklerinin tarama kararları üzerindeki
etkisinin yanı sıra hastalık riskini de içeren ve dolayısıyla kişiselleştirilmiş tıp alanına
katkıda bulunan iki POMDP modeli öneriyoruz. Önerilen ilk model, cotesting’i (cy-
tology ve HPV-DNA testlerini birlikte uygulanması) tarama için tek başına bir test
olarak kabul eder ve optimal çözüm metodları ile tarama politikaları elde etmek
için çözülür. İkinci modelde, tarama testleri olarak cytology ve HPV-DNA testleri
öngörülmüş ve modelin büyük olması nedeniyle yaklaşık bir çözüm yöntemi kul-
lanılır. Sonuçlarımız, tüm popülasyonu aynı sıklıkta taramanın sağlık eşitsizliklerine
yol açtığını ve taramaların hastaların spesifik risk profiline göre uyarlanması gerek-
tiğini göstermektedir. Literatürle uyumlu olarak, bu çalışma serviks kanseri için
tarama programlarının bağımsız test olarak HPV-DNA testine doğru yönelmesini
göstermiştir.
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1. INTRODUCTION

1.1 Chapter Overview

This chapter introduces the research area and outlines the rationale for the present
study. The chapter begins with an overview of the problem and presents motivation
of the research. Then, it highlights the scope of the research and introduces the
research questions explicitly. The chapter ends with an overview of the research
methodology and a chapter by chapter overview of the thesis.

1.2 Problem Statement and Motivation for This Research

Prevention and treatment of the cancers of any type impose huge financial costs
on the healthcare systems. Therefore, healthcare leaders and policy makers aim to
minimize the cancer cases using different preventive methods.

Cervical cancer is among the cancer types with high mortality, especially in low
resource settings. Globally, cervical cancer is the fourth most common cancer type
diagnosed among women (Buskwofie et al., 2020). In 2018, a total of 570000 new
cases of cervical cancer and 311,000 deaths linked to cervical cancer were reported
worldwide. During the next decade, the annual disease incidence and mortality rates
are expected to increase (Holmström et al., 2021).

Observed incidence rates of cervical cancer vary substantially across different pop-
ulations. In low- and middle- income countries, cervical cancer is ranked as the
second most common cancer type, accounting for approximately 85% of the new
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cases worldwide (Small Jr et al., 2017). A disproportionate fraction of reported
annual death due to cervical cancer is observed among medically under-served pop-
ulations that do not have proper access to healthcare services (i.e., vaccination and
regular screening), resulting in significant cancer health disparities. It is estimated
that 90% of the total deaths due to cervical cancer occurs in countries ranked low in
the Human Development Index. According to the World Health Organization’s pre-
dictions, by 2030, a 27% increase in cervical cancer mortality in low-income countries
will be realized (Sung et al., 2021).

Fortunately, the understanding of oncogenesis associated with the development of
cervical cancer has evolved over the years. It is now well established that an infection
with oncogenic Human papillomavirus types is closely associated with the malignant
transformation of cervical cells and development of cervical cancer. This has lead
to a variety of strategies to accelerate the elimination of cervical cancer as a public
health problem including preventive methods (Tulay & Serakinci, 2016).

Preventive methods against cervical cancer have been classified into three categories:
primary prevention, secondary prevention and tertiary prevention. Primary preven-
tion concerns prevention in the asymptomatic phase, where the aim is to prevent
the disease, and reduce the exposure to risk factors before their biological onset.
Immunization through vaccination is an example of primary preventive methods.
Secondary prevention refers to the prevention of clinical disease through early de-
tection prior to the emergence of symptoms that, if left undetected, would likely
become clinically important. Secondary prevention is often referred to as screening.
Tertiary prevention refers to preventing the progression of clinically manifested ex-
isting disease in those who are already affected by the disease. Tertiary prevention
aims to improve quality of life, reduce disability, and impact of complications by
providing treatment or rehabilitation (Burthold, 2007) .

In May 2018, the WHO announced a global plan of action to engage health insti-
tutions and mobilize resources to eliminate cervical cancer over the next decades
(Gultekin et al., 2019). One of the fundamental steps in the action plan is to estab-
lish vaccination programs combined with a high-quality surveillance and monitoring
system through screening. The complexity of operationalizing this call requires col-
laborative and interdisciplinary effort. While addressing the global health questions,
many important strategic and operational decisions have to be made. For exam-
ple, choosing between policy A or policy B, determining cost-effective interventions,
finding the optimal way to allocate a limited budget across multiple competing op-
tions, or deciding on the feasibility of a new intervention such as a vaccination pro-
gram, noting that many of these decisions require evaluation of long-term outcomes
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(Bradley et al., 2017).

The WHO’s call has been responded by the operations research (OR) community
in various ways ranging from studies covering the logistics related to the provision
of services, the allocation of resources or the operations of health facilities. Us-
ing advanced analytical methods (e.g. simulation, optimization, decision analysis),
OR community provides better understanding of complex systems and facilitates
decision-making. In the context of healthcare, OR is particularly useful for analyz-
ing complex global health issues due to its orientation towards improving efficiency,
cost-effectiveness and decision-making. Especially, in settings with limited resources
where the burden of disease is high and health systems are functioning poorly, the
impact of OR in improving healthcare performance and equity for communities
and populations is fundamental (Bradley et al., 2017; Myskja & Steinsbekk, 2020).
Therefore, we believe that this is a highly opportune time to harness the power of
data analytics and optimal control policies to design targeted approaches to address
the observed health disparity in medically-underserved populations and resource-
constrained settings in the context of cervical cancer.

Additionally, rapidly emerging new medical technology and advancement of genetic
medicine methodologies come with new questions for the research community that
require new set of techniques to handle the complexity accompanying them. Re-
cently, there is a tremendously increasing trend towards personalized medicine.
Among the healthcare community, there is a common agreement that the underlying
heterogeneity of disease evolution observed in many diseases suggests that strate-
gies for monitoring or preventing those diseases, must be tailored or personalized
to the individual’s unique physiological, biochemical, genomic, and behavioral pro-
file. Examples of personalized medicine include cell transplant therapies for certain
types of cancer and mutation-specific medicines to treat fibrosis and personalized
screening policies for many types of cancer (Goetz & Schork, 2018). This poses an-
other challenge/opportunity for OR researchers and policy makers alike to integrate
personalized interventions with healthcare decision making processes.

1.3 Scope of This Dissertation and Research Questions

The current research concentrates on the secondary preventive method (i.e., screen-
ing) against cervical cancer. Screening test is a tool for identification of women with
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early disease within a broad population and pursues the objective of diagnosing
the disease at a pre-symptomatic or early symptomatic stage, since at those stages
treatment has a higher chance of changing the natural pathway of the disease. Using
the test helps the decision maker to gain information about the real but unobserv-
able health state of the patients. Screening tests may also be further classified as
primary screening tests (such as Pap smears) or secondary diagnostic tests (such as
biopsy test) (Cassels, 2012; Croyle, 1995; Saquib et al., 2015; Wilson et al., 1966).
Secondary diagnostic tests are excluded from the scope of this research.

There are two commonly used primary screening tests, namely cytology testing and
HPV-DNA testing for cervical cancer. It is possible to conduct these two tests
simultaneously, also called cotesting. These tests are introduced and discussed in
detail in Chapter 2. Unfortunately, none of the primary screening tests for cervical
cancer are 100% accurate; these tests may produce false-negative or false-positive
results. In other words, using the test provides only partial information about the
hidden health state of the patient where tests with lower errors result in stronger
belief that the real state overlaps with the state that the test indicates. Hence,
decision makers need to consider the differences in test characteristics before making
an screening decision.

The effectiveness of screening increases with the frequency of screening rounds; when
the re-screen interval is short, abnormalities are less likely to escape detection. How-
ever, it is generally recognized that screening too frequently is linked to diminishing
returns (Bedell et al., 2020; Last & Breslow, 2012). An immediate question that
arises here is what should be the frequency of screenings? In many countries stan-
dards and guidelines are developed to specify the time and type of screening tests for
the population. For instance, the guidelines of the American Society for Colposcopy
and Cervical Pathology (ASCCP) state that women aged 21-20 need to undergo
cytology screening every 3 years and women aged 30-65 need to be screened with
HPV-DNA (or cotesting) every 5 years. Such guidelines are easy to understand and
implement by the practitioners but they also have shortcomings such as ignoring
the differences in risks of patients and ignoring the previous test results. In such a
setting, screening the whole population with the same frequency may result in over-
diagnosis of patients who do not need medical intervention and also under-treatment
of those who are screened late.

In light of the above discussion, we pose the personalized cervical cancer screening
decision process in terms of finding the series of actions, given the different obser-
vations that the screening tests produce over time. In addition, decisions must be
adjusted to the risk factors of the patients including risk of cancer and age of the
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patient at the time of screening and also capture the effect of the test character-
istics. It is nevertheless noteworthy that with increasing age of the patients, the
incidence rates of infection change and the disease evolves differently. Therefore,
the best action at the current age (screen with a specific test or wait until next
decision epoch) may not be the best action in the future. Decision making in such
a complex environment requires sophisticated modeling techniques that suit well to
the problem at hand and are able to address different aspects of the problem.

Specifically, the research questions addressed by this dissertation include: Given the
age and risk profile of the patient,

1.1 At what age screening must begin?

1.2 Which screening test must be conducted?

1.3 What is the optimal screening frequency? Given the previous screening results,
what should be the length of rescreen interval?

1.4 At which age screening should be stopped?

1.4 Conceptual Framework of This Research

Obviously, addressing these research questions and developing personalized model
for cervical cancer screening policy requires sequential decision making techniques.
Among the sequential decision making techniques, partially observable Markov de-
cision processes (POMDPs) have recently been suggested as a suitable model to
formalize the planning of personalized medical intervention and are increasingly be-
ing used particularly in screening and treatment decision-making. The applicability
domain of POMDPs in medical decision making arena is diverse; examples can be
seen in organ transplantation, epidemic control, drug infusion, diabetes, ischemic
heart disease, Parkinson’s disease and many cancers including colorectal, breast,
prostate, and cervical cancer. In addition to the POMDP models, cost effectiveness
analysis has been also a common approach in making a screening decision which is
a useful method to study the effect of implementing certain policies.

POMDPs provide a rich framework to model problems where there are two layers of
uncertainty; the first layer of uncertainty refers to the uncertainty of the underlying
state (i.e, real heath state of an individual) and the second layer of uncertainty
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refers to the action outcomes and the future state after taking an action. Such
models provide useful tools to handle inaccurate observations made after conducting
an action. Consequently, POMDP models are commonly used in cancer screening
context where the state of the cancer is unknown, the screening tests used to identify
the real health state are not perfectly accurate (i.e., the decision maker has a belief
of the real health state), and probabilistic transitions among the health states occur
over time.

We model the personalized screening decision making for cervical cancer as a finite-
horizon partially-observable Markov decision process (POMDP) framework, which
iteratively optimizes the choice of screening actions given the current information
including risk, prior observations, and age of the patient. In the current research,
we assume the patient perspective. From the patient’s point of view, the most
important factor to consider in screening decision making is the health outcome of
the decision. This perspective has the underlying assumption that, the screening
decision maker (i.e., physician) acts in the best interest of the individuals being
considered for screening. In this setting, for obvious reasons, evaluation of the
desirability of a decision is solely based on the desirability of the health outcomes.

Solving POMDP problems using the optimal solution methods is feasible for only
small problems, due to computational complexity inherent to such problems. For
large POMDP problems multiple approximate solution methods have been proposed
in the literature. The current study uses both optimal and approximate methods to
solve the POMDP models developed for screening decision making.

1.5 Contributions and Organization of This Dissertation

The contributions of this research study are as follows:

The models presented in this research promote the concept of personalized care
by providing patient-specific policies for cervical cancer screening in contrast to
the current practice of non-tailored guidelines. After giving the background of the
disease in Chapter 2, we provide a review of the approaches in the literature for
evaluating or designing policies for personalized disease prevention in Chapter 3 .

From a methodological point of view, the current research is the first study to ad-
dress cervical cancer screening as a partially observable Markov decision process
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(POMDP). In Chapter 4, we present our first proposed model for a personalized
optimal screening policy for cervical cancer. The proposed model in this chapter is
distinguished from the subsequent one in the screening test and solution method-
ology. Specifically, cotesting is the only screening test considered while due to the
small size of the problem, the model is solved using an optimal solution methodol-
ogy. Our results suggest that contrary to the guidelines, screening frequency varies
with the risk profile of the patient.

A second novelty of the current research is associated with the approximate so-
lution methods developed for solving complex POMDP problems. In Chapter 5
we introduce the second personalized cervical cancer screening where the screening
tests include cytology and HPV-DNA testing. Due to the large size of the prob-
lem, an approximate grid-based solution method is employed to solve the problem.
It is often the case that value at a nongrid point is required when computing the
value of a grid point. The proposed interpolation based classical methods in the
literature use linear programming for this purpose which restricts the grid size to
a few thousand points. This study employs Gaussian process regression method in
combination with the grid based solution method to make inference at those points.
While similar studies in the literature reported intractability of using a large grid
representation, Gaussian process regression approach enables using a finely meshed
grid and therefore, improved solution accuracy compared to the interpolation based
methods. Our results in this chapter shows that in line with the recent studies HPV-
DNA testing can be safely used as a stand-alone test. In addition to the screening
policy, a detailed discussion about the sensitivity of the model outputs with varying
parameters is provided.

However, the contributions presented in this study are not limited to the method-
ological approach. In addition to being able to solve a complex stochastic decision
process, our models provide patient specific screening policies as a function of the
patient’s risk. Moreover, our analysis can be adjusted to further study the possible
effect of socio-cultural factors that contribute to the development of infection and
disease. In this context, our model can produce screening policies for specific pa-
tient subgroups with potential health disparities. We expect the performance of the
screening policy to improve as a result.

Finally, the policies presented in this research can be framed into policy trees or
in more advanced forms such as spreadsheets or applications which are intuitive to
understand and hence, facilitate interpretation of the policies for both physicians and
patients. By this means, patients have a better understanding of their health and as
a consequence, they can be more involved in the process of shared decision-making.
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In Chapter 6 we provide further discussions about the strength and limitations of
our study and an outline of plans for future research in this area.

8



2. MEDICAL BACKGROUND

2.1 Chapter Overview

This chapter presents a synopsis of the cervical cancer, incidence and mortality
rates associated with it. It outlines the course of the disease development and the
importance of early detection. The chapter subsequently describes the preventive
methods including the primary prevention by vaccination, secondary prevention by
screening and tertiary prevention by treatment. In the screening section, along with
the contribution of the screening programs to the disease control, the role of the pop-
ulation level screening programs and the characteristics of different screening tests
are outlined. The chapter concludes by emphasizing the significance of personalized
screening.

2.2 Cervical Cancer

2.2.1 Cervical Cancer: State of the Art

With more than one million women suffering globally, cervical cancer (CC) continues
to be one of the most common cancer types among females. According to the
World Health Organization (WHO), cervical cancer is currently the fourth most
frequent cancer in women worldwide (Arbyn et al., 2020). Despite the medical and
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clinical advancements, the incidence and mortality of cervical cancer remains high.
Every year, more than half a million women are diagnosed with cervical cancer
and among the diseased population over 340000 cases result in death worldwide
(Cohen et al., 2019). In addition, the trend in the number of incidences and deaths
is constantly increasing. The estimates published by the WHO Cervical Cancer
Elimination Modelling Consortium (CCEMC) shows that the annual number of
new cases of CC is expected to rise from 570000 to 700000 between 2018 and 2030,
while the annual number of deaths is expected to increase from 311000 to 400000
(WHO, 2021b).

Cervical cancer occurs in the cervix. Inside and outside surface of the cervix (called
endocervix and ectocervix respectively) are covered by layers of skin-like cells. Cer-
vical cancer refers to the state when either type of these cells turns cancerous. More
precisely, the Squamous cells covering the ectocervix can cause squamous cell carci-
noma and the Glandular cells covering the endocervix can lead to adenocarcinoma.
Most of the cervical cancers occur in transformation zone where two cell types join
each other and they are mainly of squamous cell cervical cancer type (Wang et al.,
2020).

The main cause of cervical cancer is the change in genetic expression of cervical cells
caused by long-lasting infection of Human Papilloma Virus (HPV). Specifically, HPV
infected body produce certain type of proteins that turn off genes which have the
functionality of suppressing abnormal cell growth (Clark & Trimble, 2020; Wilson
et al., 2018).

Among several other risk cofactors, age of the patient at sexual debut and immunod-
eficiency play a major role in the etiology of cervical cancer (Martin-Hirsch & Wood,
2011; Rodríguez et al., 2008). In the vast majority of women younger than 25 years,
the transformation zone is placed on the ectocervix, causing the cervix to be more
exposed to potential HPV infections, while only less than 2% of adult females older
than 64 years continue to have this condition (Autier et al., 1996). Consequently,
younger females are at increased risk of HPV infections. Immunosuppression as-
sociated with human immunodeficiency virus (HIV) or acquired immunodeficiency
syndrome is another risk factor for HPV infection. Several studies demonstrate that
the prevalence of HPV is 5-8 folds higher among HIV-positive women, persistent
infections are more frequent resulting in an increased risk of pre-invasive cervical
lesions (Moscicki et al., 2019; Myers & Ahmed, 2018).
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2.2.2 Human Papilloma Virus

Clinical evidences have shown that nearly in all of the cervical cancers an infection
by HPV is present (Walboomers et al., 1999; Wilson et al., 2018). HPV targets
epithelial basal cells, and HPV-associated diseases are primarily transmitted through
sexual contact and in many cases, the infection with HPV occurs shortly after the
onset of sexual activity (Heitmann & Harper, 2012) with a peak incidence between
the age of 15 to 25 Eun & Perkins (2020).

HPV spans a wide range of strains (Jones et al., 2011). Very specific strains of
HPV are persistent in the body while the majority of the other strains are acute
(nonpersistent) and harmless (Alizon et al., 2017). It is known that 70% to 90% of
HPV cases, typically those caused by the low risk HPV types such as Types 6 and 11,
clear their infections naturally within a few years (Al-Daraji & Smith, 2009) and only
a portion of people infected with low risk HPV will develop clinical symptoms. These
symptoms are in form of skin warts or minor abnormalities which are spontaneously
eliminated by the immune system without any medical intervention (Alsaleh &
Gumel, 2014). Infection with high-risk HPV types, such as Types 16, 18, 31, 33,
35, 39, 45, 51, 52, 56, 58, 59, 68, 73 and 82, on the other hand, can persist for
many years, causing cell abnormalities, cervical intraepithelial neoplasia (CIN) and
cervical cancer (Elbasha et al., 2008). HPV Types 16 and 18 account for over 70%
of cervical cancer cases globally (WHO, 2021a). Furthermore, high-risk HPV types
cause pre-cancerous intraepithelial neoplasia in males, resulting in various cancers
such as anal and penile cancers (Anic & Giuliano, 2011; Elbasha & Dasbach, 2010).

2.2.3 Natural History of the Disease

The natural history of disease is represented as a sequence of transitions between
mutually-exclusive health states, where the health state of a woman is represented
by the states in natural history model. Figure 2.1 shows the natural history of
cervical carcinogenesis in an individual woman. Generally, health states are defined
to include HPV infection status (HPV- or HPV+), grade of cervical intraepithelial
neoplasia (CIN) and stage of cancer including local, regional and distant.

Depending on the extent and severity of dysplastic features, the spectrum of cervical
intraepithelial neoplasia (CIN) is traditionally divided into three histopathological
categories, namely: CIN1, CIN2 and CIN3. In CIN1 (mild dysplasia), cells with
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Figure 2.1 Natural history of cervical carcinogenesis. Source: Kim et al. (2008)

malignant changes are limited to the superficial layer of the cervical epithelium.
Most CIN1 lesions are likely to disappear without treatment. However, a small
percentage may progress to high-grade CIN, namely CIN2 (moderate dysplasia)
and CIN3 (server dysplasia, which sometimes are also known as cervical carcinoma
in situ). This high grade CIN is characterized by more severe dysplastic changes and
higher degree of epithelial basal cell involvement (Gravitt & Winer, 2017). The risk
of progression to carcinoma in situ and invasive cervical cancer increases significantly
with worsening CIN grades (Daling, 1996). However, there is controversy on whether
cancer and CIN3 are always preceded by stepwise transition from HPV infection into
CIN1 and then into CIN2. Despite studies which suggest that a persistent HPV
infection may lead to CIN3 or cancer without detectable low grade CIN (CIN1 and
CIN2), it is commonly accepted that the classical pathway of stepwise progression
is still valid (Bedell et al., 2020; Massad, 2008).

To ensure a uniform analysis and a consistent interlaboratory terminology for the
reporting of cervicovaginal cytology specimens, The Bethesda System (TBS) defined
a framework to use specific terminology for the cervical findings. According to ter-
minology of TBS, CIN1 findings are labled as low grade squamous intraepithelial
lesion (LSIL)) that reflects mostly transient HPV infection and associated cellular
alterations, whereas high grade squamous intraepithelial lesion (HSIL) is the termi-
nology introduced for histological abnormalities and high grade precancerous lesions
and encompasses CIN2 and CIN3 (Zhu et al., 2017).

Table 2.1 provides the description of the invasive cancer stages. According to clas-
sification systems defined by TBS, invasive cancer refers to a family of four stages
characterized by the severity and spread of abnormal cervical cells.
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Table 2.1 The stages of cervical cancer in the natural history model according to
TBS

No Cancer Precancerous Lesions Cancer

Stage1 Description Stage Description

No infection with
virus (HPV-)
HPV+, no CIN

CIN1
CIN2
CIN3 2

Lesion level 1
Lesion level 2
Lesion level 3

stage I Cancer is confined in the cervix
only.

stage
II Cancer has spread beyond the

cervix but has not spread to the
pelvic wall or to the lower third
of the vagina.

stage
III Cancer has spread to the lower

third of the vagina and/or may
have spread to the pelvic wall,
and/or has caused kidney injury.

stage
IV Cancer has spread to the blad-

der, rectum, or other parts of the
body.

1 CIN1, CIN2, CIN3 refer to cervical intraepithelial neoplasia stage 1, 2, 3.
2 In the literature, CIN3 is acknowledged to be identical to carcinoma insitu stage.

2.2.4 Significance of Early Detection

Cervical cancer has a long pre-clinical phase. A woman may be infected with HPV
without knowing it while the virus remains symptomatically nonexistent for several
years before it develops into cancer (Bennett et al., 2018). It is estimated that
approximately 10 to 20 years elapse from HPV infection until the changes in cells
genetic expression caused by the virus transform the cervix tissue to show the signs
of a pre-cancer stage, which may then progress to invasive cancer. During this
time a patient may feel perfectly healthy. Unfortunately, symptoms usually only
appear when the disease has already progressed to cancerous stages. However, early
abnormalities are easily treated and most of times the consequences of HPV infection
can be radically eliminated with minimally invasive interventions (Huh et al., 2015;
Kim et al., 2017; Landy et al., 2018).

The relatively long latency period from infection with the virus until the infected
cells becoming cancerous, creates a precious opportunity for diagnosis or to delay
the progression to invasive cancer by performing clinical interventions (Silkensen
et al., 2018). To this end, a regular and effective screening program is required to
detect abnormalities before they become cancerous. There is strong evidence that
the mortality of the disease has decreased sharply in the countries where regular
population-based screening programs are implemented. Correlational studies in the
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United States, Canada, and several European countries comparing cervical cancer
data over time have shown that even when using inaccurate tests, implementing
serial testing over decades contributes significantly to the reduction in the incidence
of invasive cervical cancer (Kessler, 2017; Massad, 2008). In addition, case-control
studies have shown that there is a strong negative association between screening and
invasive cancer. Whether screening by itself is the causative factor in this finding
requires evidence from randomized controlled trials. Nonetheless, a large body of
supportive evidence accumulated to date in the literature has promoted adoption of
a routine screening nationwide (Sasieni et al., 2009).

2.3 Preventive Methods

2.3.1 Primary Prevention: Vaccination

Primary preventive methods against CC include uptake of vaccine and deliver-
ing training/education to minimize the risky behavior of the individuals. Re-
cent advances have allowed the development of highly efficacious prophylactic vac-
cines for certain types of HPV. In particular, the Food and Drug Administration
(FDA) has approved the use of three anti-HPV vaccines, GlaxoSmithKline’s bivalent
(HPV16/18) Cervarix, as well as Merck’s quadrivalent (HPV 16/18, and nononco-
genic HPV 6/11) Gardasil4 and the nonavalent (HPV16/18/31/33/45/52/58) Gar-
dasil9, against some of the most common HPV types (Bedell et al., 2020; Institute,
2013; Kawana et al., 2012; Naud et al., 2011; Villa et al., 2006). After the October
2016 meeting of the Centers for Disease Control and Prevention (CDC) Advisory
Committee on Immunization Practices, the recommended schedule was changed to
vaccinating all boys and girls between the ages 9 and 14 with a series of two doses
of HPV vaccine, 6 months apart; individuals older than 15 and younger than 26 are
recommended to receive three doses of the vaccine (Foxx et al., 2018; Meites et al.,
2017).

The introduction of HPV vaccines has brought about significant changes in screen-
ing (Barroeta et al., 2017). Recommendation for HPV vaccination have a positive
impact on disease prevention, and herd immunity effects already being reported
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(e.g., free vaccination program in Australia that started in 2007 (Machalek et al.,
2017)). Hence, as vaccination rates increase across the nation (Karen Lewis, 2016;
Society, 2017), screening policies may be adjusted considering the reduced risk of
transmission, which may allow the transfer of resources from screening to HPV vac-
cination efforts, which should provide additional boost toward the Healthy People
2020 objective of increasing HPV vaccine completion rates for females ages 13-15
years to 80% (McGhee et al., 2017). therefore, effective prevention, control and
management of HPV-related diseases and in particular, cervical cancer must involve
comprehensive strategies that promote the combined application of vaccination as
the primary prevention and screening as the secondary prevention of cervical cancer.

2.3.2 Tertiary Prevention: Treatment

Not all of the lesions require treatment; CIN1 (LSIL) is often spontaneously resolved
via immune system and reverts back to the normal state without medical interven-
tion. One review found that approximately 62% of CIN1 regress in 24 months, 22%
persist as CIN 1, and 16% progress to CIN 3 (Vasef & Auerbach, 2019). There-
fore, for women with CIN1 close surveillance or observation rather than treatment
is recommended (Santesso et al., 2016; Zhu et al., 2017). However, CIN 2 and CIN3
(HSIL) are less likely to regress without appropriate treatment. Especially, lesions
associated with persistent high risk HPV strains have a higher risk of progression
to malignancy if left untreated (Insinga et al., 2007). One long-term retrospective
analysis demonstrated that, during a minimum follow-up period of 12 years, 71% of
women with CIN3 (carcinoma in situ) developed invasive cervical carcinoma (Wei-
dner et al., 2009).

Therefore, for women with CIN2 or CIN3 lesions, treatment with one of the standard
methods is required (Stanley, 2010). As a general practice, treatment methods
are personalized based on the patients’ age, fertility desires, the type of cancer
(squamous cell or adenocarcinoma), the exact location of CIN or cancer, and stage
of the cancer and colpopathologic findings (Khan & Smith-McCune, 2014).

Available treatments for CIN2 and CIN3 include excisional treatment (also called
cone biopsy) and ablative treatment. In excisional treatment, the abnormal tissue is
removed while in ablative treatment abnormal tissue are destroyed (Hu et al., 2019).

Excisional treatment includes:

• Loop electrosurgical excision procedure (LEEP) in which a thin wire with an
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electric current is used to remove the abnormal cells.

• Cold knife conization (CKC) in which using a scalpel, the physician removes
a cone-shaped piece of the cervix where the abnormal cells were found.

• Laser conization uses a carbon dioxide laser as a knife to make bloodless cuts
to remove the tissue.

Ablative treatment includes

• Cryotherapy in which the physician uses an instrument that freezes off the
abnormal tissue.

• Laser ablation in which high energy X-rays destroys abnormal tissue.

• Thermoablation in which extreme temperatures (thermal) are used to destroy
(ablate) cancer cells.

Currently, WHO recommends using cryotherapy for the treatment of CIN2-positive
patients in low-resource settings. Estimates of the cure rate varies depending on the
treatment method. Thermoablation has an estimated cure rate of 95% for CIN2-
positive. Cure rate of LEEP and cryotherapy for CIN2 and CIN3 range from 77-93%
(Bedell et al., 2020).

For treating invasive cancer (metastatic cervical cancer), depending on the stage of
the cancer and spread of malignancy, one of the standard treatment methods with
or without chemotherapy can be used. Complete removal of cervix (hysterectomy)
as a primary treatment for CIN2 or CIN3 is rarely recommended, but it is an
option for recurrent CIN, invasive cancer or incomplete treatment with excision or
ablation(Dolman et al., 2014; Martin-Hirsch et al., 2010; Santesso et al., 2016).

2.4 Cervical Cancer Screening

2.4.1 Significance of Cervical Cancer Screening

Preventive HPV vaccines even though very effective are not enough to prevent cer-
vical cancer. From the medical point of view, the uptake of HPV vaccine provides
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partial immunity against certain high risk strains of HPV. The fact that cervical
cancer is linked to many types of HPV while the available vaccines do not target all
known high-risk HPV types and there are significant problems with their adoption
imply that control and prevention efforts against HPV and cervical cancer will con-
tinue to involve screening protocols for the foreseeable future (Castle et al., 2012;
Polman et al., 2019; Schiffman et al., 2017).

In contrast to vaccination, screening helps to detect abnormalities or precancer in
apparently healthy asymptomatic population in order to prevent the development
of cervical cancer (Polman et al., 2019). There is now substantial and consistent
evidence that the incidence of the disease has decreased sharply in the countries
where regular population-based screening programs are implemented (Pileggi et al.,
2014). Evidence suggest that more than 50% of all new cervical cancers are in women
who have never been screened or have not been screened in the last 5 years(CDC,
2020). According to Bedell et al. (2020), only one screening after age 35 reduces
the risk of dying from cervical cancer by 70% and the same risk can be reduced by
more than 85% if screening is continued in every 5 years. Hence, screening should
remain unquestionably in practice to prevent the disease even for the women who
have received vaccination.

2.4.2 Importance of Screening in Poor Societies

Globally, screening is either not administered at all or ineffectively administered in
many resource-challenged regions of the world. Approximately 90% of the 270,000
deaths from cervical cancer in 2015 occurred in low- and middle-income countries
(LMIC) (Siegel et al., 2019). According to WHO, in low- and middle-income coun-
tries, the incidence of CC is approximately twice as high and the mortality rates
are nearly three times as high as those in high-income countries and the five-year
survival rate is significantly lower (55% versus 65%) (Gelband et al., 2016; WHO,
2021b). Moreover, in those countries, the burden of cervical cancer is significantly
(over ten-fold) greater than affluent countries (Lemp et al., 2020).

The observed differences among countries are the result of multiple factors, which
include both cultural and socio-economical elements that affect both the dynamics
of HPV epidemics as well as the effectiveness of surveillance actions. Contrary to
the developed countries where educational programs, effective guidelines and pre-
vention programs have decreased the incidence and mortality rates, many developing
countries due to the absence, or inadequate investment to offer screening program
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with wide enough coverage or to diagnose and treat CIN in women with positive
test result are still bearing very high costs for cervical cancer (Heller et al., 2018;
Nayar et al., 2018; Toliman et al., 2018; Vu et al., 2018). More specifically, in 2008,
the overall uptake of screening was reported 19% in low-income and middle-income
countries, compared with 63% in high-income countries. Disparity in vaccination
coverage is even worse; as of May 2020, national HPV vaccination programs have
been implemented in less than 30% of LMICs, compared with more than 80% in
high-income countries (Sung et al., 2021). In high-income countries by 2014, an es-
timated 33·6% of eligible individuals aged 10–20 years had received the full course
of the HPV vaccine, compared with 2·7% in LMICs (Bruni et al., 2016; Gaki-
dou et al., 2008; Simms et al., 2019). Consequently, in the absence of comprehensive
preventive methods in resource-poor settings, effective control and prevention mech-
anisms including patient-tailored screenings programs are promising in reduction of
the overall disease burden.

2.4.3 Cervical Cancer Screening Tests

Screening policies for cervical cancer generally use both primary and secondary
tests. Currently, there are four main primary screening tests used for cervical can-
cer screening: Visual inspection with acetic acid (VIA), Cytology screening (includ-
ing conventional Pap test and liquid-based cytology (LBC), molecular HPV-DNA
testing, and cotesting (Mustafa et al., 2016).

In VIA an acetic acid solution is applied to the cervix, which causes abnormal
tissue to change color. Although very unreliable, this method is still practiced in
many rural areas in less developed countries. In cervical cytology testing a smear
is collected from the endocervix for later analysis by microscope. Cervical cytology
checks for the presence of precancerous abnormalities (Aref-Adib & Freeman-Wang,
2016). HPV testing on the other hand, refers to a broad class of testing methods
which rely on identification of HPV viral DNA by analysis of the genetic material
obtained from a tissue smear (Leal Jr & Gulley, 2017). Specifically, qualitative
methods detect only the presence of HPV DNA; quantitative methods estimate the
viral load as the quantity of the virus in a given volume and some methods detect
the degree of integration of HPV into the host genome (Hartmann et al., 2016).

Co-testing, refers to the simultaneous application of cytology and HPV-DNA tests,
the two primary tests most commonly used worldwide. Selection of the appropri-
ate screening method depends on multiple attributes including age, prior screening
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records, availability of resources and test characteristics defined by its sensitivity
and specificity (Stumbar et al., 2019). Unfortunately, none of the primary screening
tests are perfectly accurate.

If during the primary screening tests any abnormality is found, a secondary diagnos-
tic (confirmatory) test is conducted. This procedure involves a magnifier tool called
Colposcope to detect the right location of the abnormal cells, followed by exami-
nation of a sample of tissues by a pathologist, called Biopsy. Secondary diagnostic
tests are used for triage purposes which includes the process of sorting the patients
based on their abnormal findings observed in the primary screening tests and hence,
their need for immediate medical treatment. Secondary diagnostic tests are known
to be almost perfectly accurate if the samples are adequately taken. Otherwise,
Biopsy might provide misleading results. A positive result on a secondary test leads
to the initiation of a treatment phase. Triage and management of colposcopy/biopsy
findings are outside the scope of this research.

2.4.4 Characteristics of the Screening Tests

Primary tests used in cervical cancer screening are not perfectly accurate. There-
fore, the choice of preferred screening test for any screening program among many
other factors, also depends on the test characteristics defined by the sensitivity and
specificity which in turn can be measured based on the number of false-positive and
false-negative test-outcomes. Screening outcomes are defined as false-negative (FN)
when an individual is misclassified as disease-free for the disease she/he is screened.
In contrast, screening outcomes are defined as false-positive (FP) when an individual
is misclassified as having a disease when in reality she/he is disease-free. There are
important potential adverse effects associated with errors in the interpretation of
screening tests. Individuals misclassified as FP may undergo unnecessary and costly
follow-up examinations and treatments and hence can suffer severe psychological
consequences, discomfort and anxiety (Maxim et al., 2014). However, false negative
diagnosis is of greater significance and can have serious health consequences since
the disease may progress to a more severe state until the next screening (Edoh et al.,
2018).

Sensitivity of a test refers to the probability of correctly detecting a positive individ-
ual, and specificity of a test refers to the probability of correctly detecting a healthy
person (Zhu et al., 2010).
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specificity(%) = TN

TN +FP

sensitivity(%) = TP

TP +FN

Precise data on the sensitivity and specificity of screening tests are lacking due to
methodological differences in the study design including the triage and the presumed
positive/negative thresholds. However, it is generally recognized that a cytology
test has a higher specificity but lower sensitivity compared to the HPV-DNA test-
ing (Johnson et al., 2019). Several recent meta-analysis studies have reported very
low sensitivity for a single Pap test, varying between 20-80%. Similar to the case
of Pap test, more recent liquid based cytology screening has also a low sensitivity
that ranges between 50 and 70%. Although reliable data are lacking, specificity is
probably greater than 90% (Ronco et al., 2014; Wang et al., 2020). In contrary
to cytology testing, the estimates of sensitivity for HPV-DNA testing are generally
more than 90% (Bedell et al., 2020; Kulasingam et al., 2002; Nanda et al., 2000).
Systematic reviews including 20 studies have reported a pooled sensitivity of 90.5%
(95% confidence interval, 88.1-92.6) and specificity of 55.1% (95% confidence inter-
val, 53.5-56.8). Two other systematic reviews have reported a range of 75.4% to
95.0%, for sensitivity and a range of 63.0% to 97.0% for specificity (Burger et al.,
2011; Macedo et al., 2019; Mustafa et al., 2016; Verdoodt et al., 2013).

Lower sensitivity of cytology test results in higher number of false negatives; hence,
missing many precancerous lesions. To compensate this shortcoming, if a standalone
cytology based screening is followed, more frequent screenings at shorter intervals
must be exercised to increase reassurance against precancers (Basu et al., 2017;
Ronco et al., 2016). Conversely, HPV-DNA testing is more sensitive and hence more
suitable to detect precancerous lesions which may be missed by cytology screening.
HPV testing also allows extending screening intervals longer than those by cytology
screening (Dijkstra et al., 2016; Kitchener et al., 2011). However, the increased sen-
sitivity of HPV testing comes at the cost of the twofold number of screen-positive
results compared to cytology testing (Benard et al., 2017), which subsequently in-
creases the cost by too many unnecessary follow-up tests and treatment (Demarco
et al., 2020; Tjalma, 2018; Wentzensen et al., 2016). Achieving a reasonable trade off
becomes even more challenging knowing that in many cases the precancerous lesions
which are missed by cytology and found by HPV testing are clinically important
(Castle et al., 2012). Therefore, in some countries, the guidelines recommend screen-
ing by HPV testing as an adjunct to cytology testing to maintain high sensitivity
at longer intervals.
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Ideally, primary screening tests should be highly sensitive so that the test does not
miss diseased individuals, and secondary diagnostic tests (such as biopsy) be highly
specific to rule out healthy patients that were wrongly classified by primary testing
as positive cases (Kim et al., 2008). In addition, the test characteristics create a
dilemma regarding the cost and benefit expected from selecting a certain primary
screening test. In communities where literally the majority of patients take regular
tests at regular intervals, the cost associated with a less specific test (such as for
instance HPV-DNA) outweighs the cost of a possible delayed treatment associated
with a less sensitive test (e.g. cytology). Hence, cytology is preferable. On the other
hand, in countries where patients take the tests in an unsystematic way, screening
with a highly sensitive test (HPV-DNA) reduces the chance of missing the disease
in patients who are falsely diagnosed as negative (Kulasingam et al., 2002; Ronco
& Rossi, 2018). Since neither test is dominant, many guidelines have included co-
testing in their recommendations to increase the chance of correct diagnosis.

2.4.5 Screening Guidelines

In many developed countries, the specifications of a routine screening programs
for the entire population are provided by the government or national health or-
ganizations in the form of guidelines. Guidelines are country specific and different
guidelines are designed for the needs of each country. For cervical cancer, there is no
common screening modality recommended by the guidelines in different countries.
Depending on the resources, countries exercise standalone cytology or standalone
HPV testing or cotesting. In some cases, the choice depends on the discretion of the
clinicians to decide on the favored approach (Ebell et al., 2018).

In the US, many national health organizations including the American Cancer So-
ciety (ACS), American Society for Colposcopy and Cervical Pathology (ASCCP),
American Society for Clinical Pathology (ASCP), and US Preventive Services Task
Force (USPSTF) provide screening guidelines. Table 2.2 summarizes the current
guidelines of US (Salina Zhang et al., 2019; Smith et al., 2019).

In 2020, the American Cancer Society (ACS) updated its previous recommendations.
According to the new guideline, individuals are strongly recommended to initiate
screening at age 25 years and preferably undergo primary HPV-DNA testing every 5
years until age 65; if HPV-DNA testing is not available, then they should be screened
with cotesting every 5 years or cytology alone every 3 years (Fontham et al., 2020).
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Table 2.2 Summary of screening guidelines

ASCCP USPSTF

POPULATION
RECOMMENDED
SCREENING METHOD
(updated 2015)4

MANAGEMENT OF
ABNORMAL SCREEN
RESULTS
(updated 2019) 5

RECOMMENDED
SCREENING METHOD
(updated 2018)6

MANAGEMENT OF
ABNORMAL SCREEN
RESULTS

Aged <21 y No screening No screening
Grade: D

Aged 21-29 y Cytology alone every 3 y if age<25 management
according to 2006,2012
ASCCP/ACS/ASCP1

guidelines 7and
if aged 25-65 management
according to 2019 risk
based consensus guidelines 9

Cytology alone every 3 y
Grade: A

Management according to
2006,2012 ASCCP/ACS/
ASCP guidelines 7,
2015 ASCCP/SGO2interim
guidelines 8

Aged 30-65 y
Cotesting every 5 y
Cytology alone every 3 y
HPV DNA every 5 year3

Cotesting every 5 y
Cytology alone every 3 y
HPV DNA every 5 y
Grade: A

Aged >65 y No screening if adequate
prior negative screens

No screening if adequate
prior negative screens
Grade: D

After hysterectomy No screening No screening
Grade: D

HPV vaccinated Same as unvaccinated Same as unvaccinated
1 American Society for Colposcopy and Cervical Pathology, American Cancer Society, American Society for Clinical Pathology
2 The Society of Gynecologic Oncology
3 Added after 2015 interim update
4,8 Huh et al. (2015); Saslow et al. (2012)
5,9 Perkins et al. (2020)
6 Curry et al. (2018)
7 Saslow et al. (2012); Wright Jr et al. (2007)

As the first basic step population-based screening has to identify the target pop-
ulation that should be screened (Dillner, 2019). Type of the screening, optimal
interval until re-screen and the ideal age to initiate and stop screening based on the
risk-benefit trade off analysis are the subsequent questions to answer. There is an
enormous ongoing research on the criteria for the selection of ideal candidates to
screen (Loud & Murphy, 2017). There is also debate among the health researchers
about the appropriate intervals for screening and acceptable risk thresholds (Smith
et al., 2019). Theoretically, an ideal screening interval for a population-based screen-
ing program must result in detecting all cases of treatable precancers allowing for
extremely few undetected invasive cancers. Creating such a delicate balance is cru-
cial in that screening too frequently will only detect many HPV infections with low
risk of progression into cancer, causing costly overtreatment. On the other hand,
screening too infrequently increases the possibility that a large number of precancers
develop into invasive cancers which otherwise could be prevented (Silver et al., 2016).
In many population-based screening programs, the recommended age to start under-
going routine screening is the age at which the cancer risk begins to rise. Screening
is stopped at an age at which there is no significant evidence that screening further
will improve the health outcome (Wentzensen et al., 2016).

2.4.6 Personalized Screening
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There are several advantages to following guidelines, including simplicity of imple-
mentation and effectiveness in reducing mortality. While guidelines create a distinct
advantage by reducing the disease burden in many countries, they also suffer from
several drawbacks. First, it is widely acknowledged that screening the whole pop-
ulation with the same intensive frequency is costly to the healthcare system and
requires considerable availability of diverse resources and infrastructure (Gelband
et al., 2016). Second, it must be recognized that the clinical understanding of cer-
vical cancer is not static, rather it is exposed to fast-paced changes with the new
emerging technologies (Smith et al., 2019). Consequently, the population based
guidelines very often evolve with the emergence of new data and evidence regarding
the natural history of the disease and the optimal screening strategies (Stumbar
et al., 2019). In the United States, since the introduction of the first guideline, the
guidelines have gone through several revisions (Silver et al., 2018). This creates
complexity and challenges to implement such guidelines in a context where a long
chain of patients, healthcare providers, clinicians, gynecologists as well as healthcare
payers have to continuously adapt to the frequent updates of the recommendations
from the multiple guidelines (Lees et al., 2016).

Recently, personalized medicine as an alternative to the guidelines has gained atten-
tion in the medical and public health community and is being incorporated into the
cancer screening programs. Ayer & Chen (2018) characterize personalized medicine
(PM) as interventions focused on individual patients in contrast to one-size-fit-all
population based guidelines. According to the authors, the differentiating charac-
teristics of PM is based on restricting the treatment to those who are more likely
to benefit from a particular intervention and leaving the rest out of intervention
scope. The primary objectives of PM among others include guidance with respect
to the selection of optimal intervention, avoid adverse effects, and minimizing the
overall healthcare cost. The current approaches in PM are classified as modeling
of the disease and artificial intelligence approaches. They further classify modeling
approaches into sequential decision making models and onetime decision models.
Other studies including the ones by (Konecny, 2015) and (Robertson & Ladabaum,
2019) address the required settings and the challenges to shift from population based
guidelines to personalized screening programs.

In 2020, ASCCP published personalized follow-up management for the patients al-
ready diagnosed with an abnormal result. Notice that the personalized follow-up
plan is implemented when the patient leaves the regular population level screen-
ing when an abnormal result is identified. In other words, patients with a normal
primary screening result need to continue regular screenings provided by the guide-
lines of primary screening. The personalized follow-up plan, identifies the current
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Figure 2.2 Management of abnormal results based on ASCCP clinical action thresh-
olds

and five-years future risk of developing cancer. As it is shown in Figure 2.2, the
immediate and future actions depends on the current and future risk. This type of
personalized plans are called risk-action threshold policies, in that the risk threshold
specifies the appropriate action to implement.

2.4.7 Conclusion

The primary objective of the current research is to develop personalized screening
policies for cervical cancer patients. The approach adopted in this thesis is similar to
that of ASCCP management plan to follow-up abnormal result. However, contrary
to the ASCCP that established followup policies for the patients already diagnosed
with abnormal findings, we aim to develop a personalized primary screening policy
for the asymptotic populations who are entitled to undergo routine screening checks.
Our proposed personalized cervical cancer screening model is characterized by its
ability to distinguish patients based on the individual attributes including risk of
cancer and age of the patient as well as other factors such as test characteristics
parameterized by sensitivity and specificity of the test.

Personalized screening for cervical cancer policy considers risk of cancer for each in-
dividual separately contrary to the guidelines that adopt policies based on the risk
for general population. Negative test results may imply longer rescreen interval and
positive tests may required more aggressive screenings. From the guidelines perspec-
tive, information encoded in a sequence of three negative test result is considered to
be equal to the information encoded in a single negative test as both cases lead to
a rescreen at a fixed interval length of, e.g., 5 years with cotesting. In contrast, the
records of the previous screening results are not marginalized under personalized
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screening plans which substantially account for the prominence of the personalized
models. Of course, this approach requires sophisticated risk estimation models that
can utilize gained information about the risk factors and convert that knowledge
into risk estimates. To implement this step we employ the proposed risk estimation
models in the literature.

Another distinctive feature of personalized policies relates to the fact that the deci-
sion maker can pick the appropriate screening tests based on the test performance
in cancer detection. As discussed in Section2.4.4, each screening test has its unique
characteristics with potentially dissimilar implications for the timing of the next
screening and choice of the future screening type. This research considers three
screening modalities, namely, cytology testing, HPV-DNA testing and cotesting as
the main primary screening tests against CC. It’s also worth noting that the current
evidence indicates no clinically important differences between conventional Pap test
and liquid-based cytology Curry et al. (2018). Therefore, this study uses cytology
testing as a reference to any of these cytology based testing methods.

Additionally, for the implementation of a personalized screening policy, it is of crucial
importance to develop models that are flexible enough to make use of the risk
information, test performance and other factors affecting the disease. Among the
promising methodologies, partially observable Markov decision process (POMDP)
provide a rich framework for sequential decision-making under partial information
that suits perfectly to the problem at hand. In the following section, we provide
a detailed review of methodologies that can be used for screening policy making
including POMDP models which we use in the current study for modeling and
analysis purposes of cervical cancer screening policies.
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3. REVIEW OF THE METHODOLOGIES FOR THE PLANNING

OF DISEASE PREVENTION

3.1 Chapter Overview

In recent years, numerous studies in the literature focused on the design and planning
of screening and treatment decision making problems for various types of diseases in-
cluding heart disease, cancer and diabetes using well suited simulation or sequential
decision making models. This chapter aims to present a review of the approaches
and discuss the various aspects of each approach used by authors in dealing with
such problems. Specifically, we first provide a review of the operations research ap-
plications in healthcare decision making and focus on two commonly used design and
planning approaches namely cost effectiveness studies and Markov decision process
(MDP) respectively. A generalization of MDP problems with partial observability
namely, partially observable Markov decision process (POMDP) has also been used
frequently in the literature since it fits well into the problem of screening decision
making where the screening tests are imperfect. We provide an extensive review of
such models in this chapter.

3.2 Overview of Medical Decision Making

The previous chapter established that the prospect of applying personalized inter-
ventions into cancer screening decision making problem is partly associated with
the suboptimality of the guidelines. According to Burthold (2007) guidelines are
generally premised on fundamental logical fallacies and unrealistic assumptions. As
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an alternative to the guidelines, personalized interventions are gaining more ground
especially in screening programs.

The problem of developing and evaluating screening policies has been addressed in
the literature in various ways. Güneş & Örmeci (2018) present a detailed analysis of
disease screening problems and operations research applications on different aspects
of the problem. Steimle & Denton (2017) provide a review of state-of-the-art models
and methods that have been applied to chronic diseases. Their study also includes a
tutorial about how to formulate and solve these problems emphasizing some of the
challenges specific to chronic diseases such as diabetes, heart disease, and cancer.

3.3 Cost-effectiveness Analysis

Many studies in the literature for different cancer types focus on cost-effectiveness
models. These models help to understand and evaluate different preventive policies
in terms of their health and economic consequences. Simulation models have been
developed as a useful tool for their ability to reproduce the natural history of the
disease. In many chronic diseases, the evolution of disease can be represented using
a Markov chain and in theory, one can devise many distinct screening policies and
compare/contrast them against the one in practice. Generally, by simulating the
process, cost effectiveness analysis focuses on the potential effect of certain decision
rules of the hypothesized policies on the health and cost outcomes.

Cost effectiveness analysis (CEA) has important applications in health policy around
the globe. Many countries including the UK, Australia, and Canada require eco-
nomic evaluations before approving new healthcare technologies or interventions.
CEA helps to compare the relative value of alternative strategies and identify those
that create high-value care. The need for CEA especially arises when different com-
peting policies exist. For instance, in the United States, the complexity created by
the possibility of choosing between various test combinations, screening frequencies,
and ages to switch from one screening strategy to another requires clear understand-
ing of the outcomes that following each strategy may bring about.

The outcomes of the CEA are usually summarized in cost-effectiveness ratios (CER),
where the costs in the numerator are related to a single measure of effectiveness in
the denominator. The effectiveness can be any pertinent clinical marker such as
life years gained (LYG). Incremental cost-effectiveness ratio (ICER) refers to the
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case when comparisons between two interventions are made. ICER indicates the
marginal health effect gained by spending dollars on a strategy compared to an
alternative one, and is expressed as cost per unit of effect. Cost-utility analysis
refers to the analysis of cost per one unit of an additional quality adjusted life year
(QALY) (Edoh et al., 2018; Kraemer, 2007). According to Weinstein et al. (1996),
QALY is the only approved benchmark for health outcomes recommended by the
U.S. Panel on Cost-Effectiveness in Health and Medicine. QALY varies between 0
and 1 where a QALY of 1 is equivalent with one year of perfect health and score of
0 equivalents death. For instance, 4 years lived with a quality of life (QOL) of 0.25
yields a QALY of 1 (Vergel & Sculpher, 2008).

Ayvaci et al. (2012) used an MDP framework for evaluating the cost-effectiveness
of breast cancer diagnostic decisions after an abnormal mammography where the
diagnostic decisions are subject to the budget constraints. Authors demonstrated
that the total expected QALYs improve as the level of funding increases, but with
diminishing returns in the allocated resources arguing that short-term follow-ups
are the immediate candidates for elimination when the resources are scarce. They
showed that contrary to the recommendations of USPSTF women at their 40’s need
to undergo mammography screenings, and the most benefits in terms of QALY
improvement can be achieved in this age group.

Li et al. (2014) developed a partially observable Markov chain (POMC) model in
order to assess the cost-effectiveness of colonoscopy screening strategies. In their
model, they estimated state transition probabilities based on longitudinal clinical
data from a specific population cohort. Their research answers multiple questions
including screening frequency, initial screening age, screening end age, and screening
compliance rate.

In the context of cervical cancer, policy making from the perspective of CEA has
been more common in the literature than other methodologies. Examples of system-
atic reviews of the literature in these streams include studies by Gervais et al. (2017);
Schiller-Frühwirth et al. (2017), and Koleva-Kolarova et al. (2015). According to
ASCCP guidelines for CC screening presented in Table 2.2, patients aged 21-29 are
recommended screening with cytology every 3 years. After age 30, they can switch
to HPV-DNA testing every 5 years. Using CEA, the cost and health consequences
of such transition can be studied. Specifically, Sawaya et al. (2019) considered the
cost-effectiveness of 12 cervical cancer screening strategies in the United States in-
cluding ASCCP guidelines. Authors concluded that for women aged 21-29 years
who are currently undergoing cytology screening every 3 years, continuing screening
every 3 years with cytology testing or switching to a low-cost HPV-DNA testing
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every 5 years after age 30 confers a reasonable balance of harms, benefits, and costs.

As the selected studies suggest, CEA primarily involves a comparison of intervention
options for health policy or medical decision making. Consequently, application of
the CEA methodology in sequential decision making has restrictions. A survey of
literature shows that the dominant methodology in modeling sequential decision
process has been Markovian models. In the remaining part of this chapter, we focus
on the Markovian models namely, MDP and POMDP models.

3.4 Planning Preventive Policies Using Markovian Models

Generally, preventive decisions are characterized by repeated choice paradigms.
Therefore, Markovian models are widely used by the researchers of medical decision
making to formulate and analyze the influence of different preventive actions. In
particular MDP and POMDP modeling approaches are commonly used. (PO)MDPs
are suitable frameworks for modeling sequential decision-making in situations where
the outcomes are partly uncertain such as the progression of the disease and partly
under the control of the decision maker through the decision to perform a certain
preventive action such as screening.

Schaefer et al. (2005) present an overview of MDP models in the context of medical
decisions including screening and treatment. Their study reviews selected applica-
tions of MDPs to a variety of medical decisions including treatment, screening, organ
transplantation and drug infusion decisions in the literature. Alagoz et al. (2010)
provide a review of MDP models applied to different chronic diseases and address
the challenges and opportunities of applying them for medical decision making.

Multiple examples of applying personalized MDP models that capture the general
characteristics of the patients including age, education or the disease specific char-
acteristics in different disease contexts can be found in the literature. Alagoz et al.
(2004) developed an MDP model to study the form of optimal policies for the timing
of living-donor liver transplantation. Authors argued that variations in individual’s
disease progression can lead to significant differences in the optimal policies for
identical patients in different disease groups, underlining the importance of patient
specific attributes in developing care plans.

Chhatwal et al. (2010) addressed the problem of follow-up for the women based on
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their abnormal mammography finding, where the decision process is designed to
include the mammographic features and demographic factors of the women under-
going screenings. They formulate the biopsy decision problem as a finite horizon
MDP and use a mammography Bayesian network to estimate the breast cancer risk
based on patient’s individual risk factors. Their optimal policy infers that the risk
threshold for biopsy in older patient should be higher than that of a younger patient.

As an extension to the the previous study, Burnside et al. (2012) addressed the
problem of optimal risk threshold to recommend breast biopsy by an MDP model
where the optimal biopsy threshold depends on the patient’s breast cancer risk. By
incorporating demographic risk factors and mammographic findings into a logistic
regression model, they estimate the patient’s cancer risk. Authors argued that 2%
is the optimal breast biopsy threshold for women of age between 42 and 75. For
patients younger than 42, biopsy thresholds are lower than for older patients. An-
other extension of the study by Chhatwal et al. (2010) can be found in Alagoz et al.
(2013) where the authors considered the eligible patients for short-interval follow-up
after an abnormal mammography finding. Similar to Burnside et al. (2012), they
maintained that the biopsy threshold increases with age, also confirming 2% risk as
the best threshold for a short term follow-up of breast cancer patients.

Denton et al. (2009) used an MDP model to optimize the starting time of cholesterol
lowering medication for patients with diabetes. This study has been taken further
by Mason et al. (2012) by introducing the adherence level of the patients to the
recommendations in the model. To study the influence of adherence on the optimal
timing of treatment initiation, the authors use an MDP model, in which 4 standard
thresholds of adherence in the literature define the so-called adherence states in the
Markov chain. The transitions among adherence states occur if a treatment phase
starts. The objective function in the MDP model includes both minimization of
expected total costs and maximization of expected QALYs. Their result show that
adherence-improving interventions can increase expected QALYs by as much as 1.5
years.

Yaylali & Karamustafa (2019) modeled obesity levels using an MDP model to ob-
serve the effect of obesity on cancer and mortality risks. Their gender-specific results
suggest that obese patients for all obesity levels should undergo surgery to improve
their health outcomes and to decrease cancer risk. Önen et al. (2019) addressed the
question of whether the population based screening for Alzheimer’s disease is neces-
sary. They formulate an MDP model whose objective function combines QALY and
costs. A numerical implementation of the MDP model showed that in the baseline
case, the optimal policy is not to employ a population-wide screening program.
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POMDPs have also been used for medical decision making. A survey of the recent
literature exhibits the rising trend in the usage of personalized POMDP frameworks
for medical decision making, and specifically for screening and treatment decisions
in different cancer types. While in the MDP models it is assumed that the outcome
of actions are perfectly observable to the decision maker, POMDP models are not
restricted to such assumptions. Consequently, in the settings where the action out-
comes are partially observable, such as the case of screening tests for cervical cancer,
POMDP models provide more realistic framework compared to MDP models.

In the literature, a plethora of papers have been put forward to develop policies for
disease prevention using POMDP framework. Vargas et al. (2015) studied optimal
treatment decisions for breast cancer and proposed a dynamic decision model to
determine optimal breast cancer treatment decisions that included both the impact
of overtreatment and the potential delay in cancer detection. Goulionis & Kout-
siumaris (2010) developed a POMDP model for the problem of treating patients
with early prostate cancer. They used a procedure that take advantage of special
problem structure, and provide optimal policies to stochastic and dynamic decisions
naturally arise in finding optimal disease treatment plans.

Consistent with the real world practice, Ibrahim et al. (2016) suggested a two stage
solution approach to the problem of personalized anticoagulation treatment of pa-
tients who are using warfarin. In the first stage, the physician gains inference about
the reaction behavior of the patient to warafin. They model this stage as a POMDP,
where the inference is achieved through the consecutive belief updates inherent in
POMDPs. The second stage involves, a phsycian’s decision about the optimal dose
to prescribe to a patient considering the patients sensitivity to warafin, which is mod-
eled as an MDP. They studied the required length of the initiation phase, and the
effect of the physician’s initial belief about the patient’s sensitivity on the length.
Their results show that, the risk reduction is higher when the initiation phase is
shorter. Their results suggest that the initial belief about the sensitivity has a
critical impacts on the required length for the initiation phase, such that higher
sensitivity results in lengthy initiation phase.

Gan et al. (2019) addressed the challenge of comparing treatment regiments for
opioid use disorder (OUD) using different wearable devices. They argue that the
contrary to the traditional urine test to evaluate the patient response to a treat-
ment option, wearable devices are more effective tests. The devices are assumed to
have yet noisy behaviour and patients are not complying to the treatments fully.
The decision maker is also subject to limited budget level. For such setting, they
construct a POMDP model with budget constraints to study the value of different
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devices in OUD treatment. Their result suggest that under a moderate budget level,
for patients with low or moderate adherence level wearable devices are valuable.

One of the early studies to use POMDP model to evaluate a screening policy is the
one by Maillart et al. (2008) to assess different policies of screening for breast cancer.
Authors formulated a POMDP model that incorporated age-based dynamics of the
breast cancer and the accuracy of the test results with mammography as the only
detection tool. They measured the value of a screening policy by lifetime mortality
risk of a patient under that particular policy. Using this metric, authors argued
that to achieve an efficient policy, screening should start relatively early in life and
continue relatively late regardless of the screening intervals adopted.

Zhang et al. (2012) addressed by a POMDP model the problem of policy making
for prostate cancer in an environment with two decision makers: patient and payer,
each having a different metric to evaluate the goodness of an intervention. From
the patient’s perspective, the metric is QALY and from the payer perspective, the
metric is cost. They combine the two angles in a so-called "societal perspective",
which concerns maximizing a net monetary benefit that combines the total cost of
a policy and the QALY weighted by the willingness-to-pay value.

Ayer et al. (2012) proposed a POMDPmodel to personalize mammography screening
decisions. They considered self detection or mammography as the two methods of
disease detection. In their model, 5 stages of the disease and a death state were
represented, and the age-dependent progression of the disease as well as the accuracy
of mammography tests were taken into account. Using patient’s perspective, their
model aims to maximize QALY. One important aspect of their study is that they
incorporate several personal risk characteristics of women in their model, making it
more realistic. They report promising results including reduction in the number of
mammograms and false results, and increase in the total QALY gain. Additionally,
the authors derived sufficient conditions that ensure the existence of a threshold
value for cancer risk over which it is optimal to conduct the mammogram. In a
similar study, Erenay et al. (2014) considered the problem of optimizing colonoscopy
screening for colorectal cancer prevention and surveillance, with a model that aims
at maximizing QALY throughout the patient lifetime.

Witteveen et al. (2018) addressed the problem of follow up screening tests for pa-
tients treated for breast cancer. They argue that optimal schedule is correlated
with age. To investigate the effect of age and decrease the number of unnecessary
follow-ups, they develop a POMDP model to determine optimal follow-up strategies
based on the cancer recurrence risk for patients in four different age groups. The
age effect is captured by risk prediction model. Their result showed that the highest
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recurrence risk is in the second year after diagnosis. Hence, more intensive follow-up
tests are scheduled afterwards. For patients younger than 50, they recommended
slightly more aggressive follow-up than the current schedule with five year inter-
vals. Their optimal policy also suggested less screenings for patients older than 50.
Similar to the study of Witteveen et al. (2018), Otten et al. (2017) addressed the
problem of reducing unnecessary follow ups for patients who are treated for breast
cancer. They maintained that the optimal follow-up policy depends on the personal
risk characteristics of a patient. Their result are confirming the results of the former
study about intensifying screenings at peak risky period.

Tomer et al. (2019) discussed the problem of rigorous biopsy screening mostly unnec-
essary for the low-risk prostate cancer patients who are enrolled in active surveillance
programs and undergo frequent screenings on fixed intervals. Due to complexities
associated with Biopsy testing, the adherence level to the scheduled screenings are
low and hence, the risk of undetected disease increase. To address this problem,
they develop personalized screening schedules. To target the right group of patients
and their schedule, they collect the information of antigen levels from the patient’s
historical data and their history of biopsy results. Their results suggest that if a
patient carries the risk of a slow growing PC, two less screening than the current
schedules should be conducted. For a faster growing cancer risk, one less than the
current schedules is recommended. For the case when the risk can not be predicted,
they recommend a hybrid approach.

Most of the studies in cancer screening planning assume that the patients are fully
complying with the screening recommendations. In reality, however, patients ex-
hibit heterogeneity in adhering to the prescriptions. An adherence issue arises when
patients undergoing screening tests are not showing up according to the scheduled
procedures. Personalized POMDPs are capable to incorporate heterogeneous be-
havior of the patient into decision making process. Examples of such studies include
works by Ayer et al. (2016) and Li et al. (2015). Ayer et al. (2016) develop a POMDP
model for planning breast cancer screening which incorporates the uncertainty about
patient adherence. They demonstrate that low adherence results in more aggressive
screening intervals. Study of Li et al. (2015) considers a setting where the patients
undergoing screening tests for colorectal cancer are not complying fully. Authors
suggested approach includes an adherence parameter that represents the individual
rate at which a patient complies with the recommendations. For different rates,
they propose the corresponding optimal policy. The results suggest more aggressive
screenings than the currently practiced guidelines for the patients with low compli-
ance. Both studies suggest that low adherence results in shorter screening intervals
and more aggressive screenings than those recommended by the current guidelines.
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Few studies have considered the potential effect of limited resources on the decision
process. Cevik et al. (2018) developed a constrained POMDP (CPOMDP) where
there is a budget restriction on the number of screenings which can be recommended.
They assume that one round of screening consumes one unit of budget. This way,
their budget constraint is transformed into the total number of screenings that can
be performed during a certain planning period. They study the impact of the
resource restriction in two settings: first for the patients within the same risk group,
where the resource is optimally allocated for different age groups. Second among the
patients from different risk groups. For the first setting their results demonstrate
that not always the limit number of resource is exhausted. Moreover, the resources
are used less intensively at lower age and more intensively as the patient gets older.
For the second setting, the result suggest more screening is assigned to average risk
(AR) patient versus high risk (HR) patient due to the difference in the corresponding
population size. Moreover, the proportion of the tests assigned to the HR patients
increases as the imposed limit becomes tighter.

The problem of policy making for cervical cancer screening at an individual level
was first addressed by Akhavan-Tabatabaei et al. (2017). In their study, the authors
developed an MDP model aiming at determining optimal screening policies for cer-
vical cancer prevention while minimizing a cost function that includes the cost of
prevention and treatment procedures, as well as the cost associated with loss of life
quality due to wrong decisions that delay screening. In the model, considering the
age of the patient, the most recent test result and diagnosis, and HPV contraction
risk, the authors obtain optimal policies to decide when and which screening test is
to be conducted. An important limitation is that the model relies on the assump-
tion that the tests are 100% accurate, thus not adjusting for the test characteristics
and the possibility of false result. Accounting for the sensitivity and specificity may
reduce the number of unnecessary follow-ups on the one hand, and the number of
missed opportunities to detect the disease early and initiate the treatment phase on
the other hand. The second limitation of the model is that only pap and colposcopy
tests are considered as methods of detection, while recently published guidelines by
different institutions recommend the use of both cytology and HPV-DNA tests as
primary detection tests.

The application of POMDPs to medical decision making is not a straightforward
task, primarily due to their high computational complexity (Schaefer et al., 2005).
The computational complexity of POMDPs is attributed to curse of dimensionality
and curse of horizon. Curse of dimensionality refers to the difficulty of solving prob-
lems with too many states and/or actions. Curse of horizon refers to the difficulty
of implementing iterative steps of dynamic programming as the horizon increases.
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In the past years, research community has made extensive efforts on the compu-
tational aspects of POMDP problems. Generally, the proposed solution methods
can be classified into exact and approximate solution methods where the exact algo-
rithms aim to efficiently compute optimal solutions and approximation algorithms
aim to compute larger and more complex problems.

Even though the exact solution algorithms provide optimal solutions, dynamic pro-
gramming step inherent to current exact algorithms require an intractable amount
of memory. Despite many attempts to make this process more efficient, the time and
space complexities of POMDP algorithms remain serious challenges. Therefore, use
of the exact methods has been restricted to problems with few states and actions. A
survey of studies using exact methods including studies by Ayer et al. (2012); Cevik
et al. (2018); Li et al. (2015); Otten et al. (2017,2) reveals that exact methods are
unable to handle problems with large state/action spaces. To bridge this limitation
of exact algorithms researchers have shown interest in approximate methods that
compromise optimality for reasons of tractability. Approximation algorithms can
operate with a limited memory for problems with too many state/actions, however,
they provide weak theoretical results.

3.5 Conclusions

This chapter has reviewed some of the studies that addressed decision making prob-
lems in connection with disease prevention. In the context of preventive methods
against different forms of cancer, several models have been developed, each asso-
ciated with strengths and limitations, and each equipped with features suited to
address different policy questions. Our review shows that along with the cost-
effectiveness and simulation models, a huge pool of studies in the literature have
used MDP or POMDP models as the general framework of analysis. Generally,
the popularity of personalized POMDP models relies on the power of these models
to reflect the real world. Since many chronic disease evolve with time, POMDP
models provide a suitable framework to reflect the disease progression/regression in
the state space of the model, while preventive actions can be utilized to change the
course of the disease.

This research employs a POMDP approach for personalized screening policy making
for cervical cancer. In Chapter 4 we propose a POMDP model where the screening
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action is considered to be only a cotesting test which is approved and recommended
by many of the US guideline organizations. We use a compact state space repre-
sentation where precancerous lesions of any grade are bundled into one state. Since
the state and action space are small, we use an exact solution algorithm to solve the
problem. In Chapter 5, we expand the state space and use a model with 10 states
and the screening actions are considered to be screening with cytology and HPV-
DNA tests. The expansion of the state space is primarily motivated by difference
in the progression and regression rates observed in the precancerous lesions states.
Since the problem size is large, we use an approximate solution method to solve the
problem.
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4. PERSONALIZED SCREENING POLICY WITH COTESTING

4.1 Chapter Overview

This chapter presents a personalized optimal screening policy for cervical cancer
where the screening action includes cotesting. It briefly introduces the problem
and subsequently provides details about the formulation of the model. The chapter
subsequently discuss the optimal solution algorithm used to solve the problem and
derive the optimal policy. The result section compares and contrasts the findings in
the POMDP model with the current practices and guidelines. Finally, it concludes
with a discussion of our findings and risk-QALY improvement trade-off.

4.2 Introduction

In recent years, after the approval of cotesting as a primary screening into a screening
policy, many countries have started to adapt it as the primary screening test. In the
US, following the 2003 approval of cotesting for routine screening by the US Food
and Drug Administration, cotesting gained more popularity among the patients.
One particular clinical trial in a private hospital showed that the usage of cotesting
increased from less than 10% in 2006 to 78% in 2013 (Silver et al., 2018). The shift
from cytology testing to cotesting was partially motivated by the lower degree of
assurance that a 3-year interval following a negative cytology testing can effectively
reduce cancer risk. Studies also suggest that, compared to a single round of cytology
testing, a single round of HPV-DNA testing more effectively reduces the incidence
of CC within 5 years and mortality within 8 years (Castle et al., 2012).
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Introduction of cotesting as the primary screening test has created controversy in
regard to the frequency and management of the findings. Studies have shown that
following a negative cotesting, the risk of cancer is twice as large at 5 years as
it is at 3 years (Kinney et al., 2015). Other studies however suggest that from a
cost effectiveness perspective, a 5-year screening interval for cotesting results in a
reasonable balance between benefits and harms while screening more frequently does
not substantially improve benefit but increases the number of screening tests and
follow-up interventions (USPSTF, 2018). Management of the cotesting results with
HPV-positive and cytology-negative which is the most common finding in cotesting
is also a matter of on-going debate among researchers and functions as a major
challenge to the widespread use of cotesting (Schiffman et al., 2011).

Even though, there are studies maintaining that the added sensitivity of cotesting
compared to HPV testing alone is minimal (Curry et al., 2018), evidence suggest
that cotesting offers more assurance and hence gained more popularity. Moreover,
such studies are based on observations from only a few screening outcomes (Whitlock
et al., 2011) and do not compare cotesting with HPV testing for more than 2 rounds
of screening (Salina Zhang et al., 2019). With regard to the aggressive follow-up
interventions associated with cotesting, few authors argued that there is little if
any concrete evidence indicating that colposcopy/biopsy procedures will increase
for women undergoing cotesting, if currently recommended cotesting guidelines are
followed (Nayar et al., 2018).

To better address the above mentioned challenges, we introduce in this chapter a
personalized model that can incorporate the cancer risk as well as test characteristics
to create a patient-tailored screening program. Since a number of studies address
the positive effect of applying cotesting as the primary screening test (Kinney et al.,
2011; Wright et al., 2015), we consider cotesting as the primary screening test for
the personalized screening programs.

The most similar studies in the literature to ours include the studies by Ayer et al.
(2012) and Akhavan-Tabatabaei et al. (2017). Our approach is similar to the former
study, but in a different disease context. The later study presents an MDP model
for cervical cancer screening policies in Colombia. Their optimal policy shows how
frequently patients in different age groups with different risk profiles must undergo
screening. Despite similarities in the context, our model differs in multiple aspects.
Our model addresses making screening decisions using a POMDP approach, which
is capable of incorporating the sensitivity and specificity of the screening tests. We
consider cotesting as the primary screening test whereas the intervention modality
in their study is cytology and colposcopy. Finally, in their model the intervention
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outcomes are measured in terms of monetary costs, while the objective function of
our POMDP model maximizes the quality-adjusted life years (QALY), which is a
measure of health outcome that varies between 0 and 1.

To the best of our knowledge, the present work is the first study to apply the POMDP
approach to cervical cancer screening, incorporating the patient’s risk characteristics
and history of screening into the decision making process. We implement our model
and compare the optimal policy against multiple real-world guidelines and scenarios
and present insights on the frequency of screenings and its relation to the risk and
QALY gain or loss.

4.3 Model Formulation

Over a certain period in a patient’s lifetime, the decision maker (e.g., physician)
aims to choose an optimal action from the feasible set of actions such that the
expected total reward is maximized. We model this problem as a discrete-time
finite horizon partially observable Markov decision process (POMDP) while at any
point in time, the state of the patient evolves according to the underlying Markov
chain. We model the natural history of the disease starting with the state of no-
cancer (NC), which represents all the possible cases when the patient is perfectly
healthy, has no HPV infection nor any cervical lesions. Newly infected patients
or patients with a persistent HPV infection may develop precancerous-lesions. We
denote the state of such patients with (PL). HPV infections/precancerous lesions
may regress to the healthy state or progress to a more severe disease state and
lead to invasive-cancer denoted by state (IC). The complete set of states and the
underlying Markov chain are depicted in Figure 4.1. We explain and motivate the
remaining states in the Markov chain while discussing the decision process in our
model. The decision process can be described as follows: in each of the decision
epochs in the planning horizon, for the patients in any of the states (NC), (PL) or
(IC), the decision maker faces a decision problem: either to test or wait. Consistent
with most of the guidelines, we assume that the planning horizon in our model starts
from age 21 and ends at age 69, and decisions are made annually. In many countries
21 is the earliest age to start screening for cervical cancer, and screening stops at age
69. We use t to denote the decision epochs and as a convention t = 0 corresponds
to age 21. We use N to denote the terminal age when the decision process ends (N
corresponds to t = 49 and age 70); the last decision will be made at N − 1, i.e., at
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t= 48.

At decision epoch t, if wait action is decided, the next decision will be made at t+1.
Otherwise, if cotesting is conducted and the result is negative, the patient waits
again until t+ 1. If the test is positive, a diagnostic test, i.e., biopsy (Bx), which
is assumed to be perfectly accurate, is conducted. Biopsy reveals the correct state
of the patient. If she has no cancer (state (NC)), the biopsy result will be negative.
If she has lesions (state (PL)), the biopsy will show precancerous lesions. Similarly,
if the patient has invasive cancer (state (IC)), the biopsy will show cancer. Those
patients whose biopsy results show either precancerous lesions or invasive cancer
enter the post-cancer states and start the corresponding treatment. We represent
the treatment states for precancerous lesions with (PoC1) and for invasive cancer
with (PoC2). For patients who undergo treatment, the follow up procedure includes
more aggressive screenings (Kocken et al., 2011). Hence, we assume that those
patients leave the decision process once they enter (PoC1) or (PoC2). In all states
(NC), (PL) and (IC) patients may die from noncancerous reasons. Additionally,
patients in state (IC) may die from cancer. An absorbing death state (DT) will
represent all such transitions. Figure 4.2 shows the decision process at epoch t.
The decision maker will face the same problem at t+ 1, t+ 2, . . . until the decision
horizon is reached (i.e., t = N). After a cotesting, the outcome of the test will
help us to gain information about the actual state of the patient. However, despite
its increased sensitivity compared to standalone cytology and HPV-DNA testing,
cotesting does not provide exact information about the state. That is, when the
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test outcome is positive, still there is little yet non-negligible chance that the test is
falsely alarming the existence of the disease, while in reality the patient is disease
free. Similarly, a negative test outcome does not provide 100% confidence against
the existence of the disease. As a result, even though the test outcome provides
good indication of the real state of the patient, the true state might be different
than the one revealed by the test. To account for this uncertainty caused by the
test performance, a common approach is assigning probabilities of occupying each
state accordingly. These probabilities form the so-called belief states, corresponding
to the partially observable states. For instance, a belief state bt = [0.9,0.065,0.035],
shows that the probability of being in state (NC) at a given time t is 0.90 (i.e.,
P (NC) = 0.9), the probability of being in (PL) is 0.065 (i.e., P (PL) = 0.065), and
the probability of being in (IC) is 0.035 (i.e., P (IC) = 0.035). It must be noted
that states (PoC1), (PoC2) and (DT) are observable states. The components of the
POMDP model are listed and described below.

State space: S = Sd ∪Sa including partially observable states Sd and absorbing
states Sa. where Sd = {NC,PL,IC} and, Sa = {PoC1,PoC2,DT}. For simplicity,
we use numbers 1, · · · ,6 to denote the states NC, PL, IC, PoC1, PoC2, and DT,
respectively.

Action space: A= {CT, W}, at ∈A denotes the action taken at time t. CT stands
for cotesting and W stands for waiting until the next decision epoch. Death and
post-cancer states are absorbing and no decision is associated with these states.

Observation space, Ω: is the set of all observations. After conducting an action
a, an immediate observation θ is received. We assume that cotesting will result in
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either a positive (CT+) or a negative (CT−) result. Hence, Ω = {θCT , θW} with
θCT = {CT−,CT+} and θW = ∅.

Transition function, Tt(s,s′,a,θ): defined by pa,θt (s′|s), which denotes the conditional
probability of ending up at state s′ at time t+ 1 given that at time t, the states is
s, action a is conducted and an immediate observation θ is obtained. Transition
probabilities vary with the age of the patient. Younger patients are more prone
to new infections, and at the same time the regression rate of the infections is
also higher at younger ages. With increasing age, the infection rate of the patient
decreases, but the progression rate of the persistent infections into invasive cancer
increases. Death due to both cancerous and noncancerous reasons occur at a higher
rate with the increasing age of the patient.

Observation function, O(θ,s,a): defined by ka(θ|s), which denotes the conditional
probability of observing an outcome θ upon taking an action a in state s. In cancer
screening, observation probabilities are determined by test sensitivity and specificity
(Otten et al., 2020). As an example, kCT (CT −|s= 1) is the probability of observing
a negative cotesting when the patient is disease free. This probability is equivalent
to the specificity of the test denoted by spec(CT ). We also use sens(CT,s) to
denote the sensitivity of the test in state s, noting that the sensitivity depends on
the state of the patient (Molani et al., 2019; Otten et al., 2020). Similarly, we use
the following relations to specify the observation probabilities in our model:

kCT (CT −|s= 1) = spec(CT ),

kCT (CT + |s= 1) = 1− spec(CT )

kCT (CT −|s= x) = 1− sens(CT,s) x ∈ {2,3}

kCT (CT + |s= x) = sens(CT,s) x ∈ {2,3}.

Sensitivity and specificity of screening tests may vary with age (Leinonen et al.,
2009); however, due to the lack of reliable data, we assume that they are independent
of age.

Belief space, B: which denotes the entire space of belief states.

B = {b ∈ R|Sd| : b(s) ≥ 0,∑s b(s) = 1}. Given three partially observable states 1,2
and 3 in our model, the belief space is a two-dimensional simplex (triangle), as
shown in Figure 4.3. Immediate rewards, rt(s,a,θ): which represents the reward of
being in a state s, taking an action a and receiving an observation θ. Consistent
with the literature, we reward the implementation of each action by its consequent
quality-adjusted life years (QALYs). Sonnenberg & Beck (1993) argued that on
average, transitions occur halfway through each decision epoch and proposed the
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half cycle correction method. In this method, it is assumed that if the patient dies
between two decision epochs, half the length of the cycle contributes to the expected
number of QALYs (Otten et al., 2020). By doing so the reward of action W is
obtained from rt(s,W,∅) = P (alive at t|s) + 0.5 ∗P (dies at t |s). While assigning
rewards for a screening test, it is common to incorporate the discomfort due to
medical interventions into the reward function (Ayer & Chen, 2018; Otten et al.,
2020). The calculation of rewards for action CT relies on the disutility score due to
the discomfort caused by conducting a cotesting and possibly disutility of a biopsy
test if cotesting turns out positive. Let ζ(a,θ)

t (s) be the disutility associated with
a screening action with outcome θ for the true health state s at time t, and ζBxt

denote the disutility of biopsy testing,

rt(s,CT,CT−) = rt(s,W,∅)− ζ(CT,CT−)
t (s) for s ∈ Sd

rt(s,CT,CT+) = rt(s,W,∅)− ζ(CT,CT+)
t (s)− ζBxt for s ∈ Sd

Lump sum rewards, Rt(s): denote the post treatment life expectancy. For patients
who have been treated for cervical cancer, the screening program of asymptomatic
population are not considered. For those patients, despite treatment, the risk of
developing a post-treatment recurrent cancer remains high. Those patients undergo
close surveillance with more frequent screenings every six months (Kocken et al.,
2012). Therefore, we assign a lump sum treatment reward in the absorbing states
4 and 5. Let et(s) denote the life expectancy of a patient in state s at time t. The
lump sum reward Rt(s) can be calculated by:

Rt(s) =

et(s) if s ∈ {4,5}

0 if s= 6

Terminal reward, rN (s): We define the terminating reward rN (s), s∈ S to represent
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the reward of ending up at state s ∈ S. Terminal rewards are equal to the life
expectancy of the patients at terminal time N . For t= 49,

rN (s) =

et(s) if s ∈ {1,2,3,4,5}

0 if s= 6

Belief update function, τ(b,a,θ): While the decision at time t was based on bt,
conducting action a and receiving test result θ provides new information to the
decision maker to make his decision at time t+ 1. For any belief state bt, after
performing an action and receiving the observation at time t, the updated belief
state at time t+ 1 denoted by bt+1 = τ(b,a,θ) can be calculated from the Bayesian
belief update:

(4.1) bt+1(s′) =



∑
s b(s)pa,θt (s′|s)∑

s
∑
s′ bt(s)pa,θt (s′|s)

if a=W

pCT,CT+
t (s′|1) if a= CT,θ = CT+∑

s bt(s)pa,θt (s′|s)ka(θ|s)∑
s
∑
s′ bt(s)pa,θt (s′|s)ka(θ|s)

if a= CT,θ = CT−

Figure 4.3 shows the belief space and updated belief state for each action and ob-
servation pair.

Value function, J∗t (b): represents the maximum total expected QALY at belief state
b at time t. If at time t, the patient is in one of the absorbing states with probability
one, then the value equals the lump sum reward of that state.

(4.2) J∗t (b) =



Rt(4) if bt(s) = [0,0,0,1,0,0]

Rt(5) if bt(s) = [0,0,0,0,1,0]

0 if bt(s) = [0,0,0,0,0,1]

Jt(b) if bt(s) = [b′|0,0,0] , b′ 6= [0,0,0]

where Jt(b) = max{JWt (b),JCTt (b)} and the boundary condition at the end of the
horizon is:

(4.3) JN (b) =
∑
s∈Sd

b(s)rN (s)

JWt (b) and JCTt (b) are computed using the following equations:
(4.4)
JWt (b) =

∑
s∈Sd

b(s)
(
rt(s,W,∅) +

∑
s′∈Sd

pW,∅t (s′|s)Jt+1(τ [b,w,∅])
)
, t= 1, · · · ,N −1
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JCTt (b) =
∑
s∈Sd

bt(s)
[
kCT (CT −|s)

(
rt(s,CT,CT−) +

∑
s′∈Sd

pCT,CT−t (s′|s).

Jt+1(τ [b,CT,CT−])
)]

+ bt(1)
[
kCT (CT + |1)

(
rt(1,CT,CT+) +

∑
s′∈Sd

pCT,CT+
t (s′|1).

Jt+1(τ [b,CT,CT+])
)]

+
3∑
s=2

bt(s)
[
kCT (CT + |s)

(
rt(s,CT,CT+) +

∑
s′∈Sd

pCT,CT+
t (s′|s)Rt+1(s)

)]
,

t= 1, · · · ,N −1

(4.5)

Defining The Value Function in Terms of Alpha Vectors and Solving The POMDP
Model:

The value functions given in Equations (4.4) and (4.5) can be computed using Bell-
man’s dynamic programming. One approach is the backward recursions of value
iteration (Hauskrecht, 2000). However, it should be noted that both equations are
defined over the belief simplex, B, which is a continuum with uncountably many
belief states. Hence, it is computationally intractable to use this method for com-
puting the value of each and every belief state in B. Furthermore, as it can be seen
from Figure 4.3, the number of action-observation histories grow exponentially with
the planning horizon; this problem is also known as the curse of history (Pineau
et al., 2003). Therefore, for POMDP problems, the classic dynamic programming
recursions have often been considered impractical (Krishnamurthy, 2015).

Sondik (1971) and Smallwood & Sondik (1973) were the first to explore the struc-
ture of the POMDP value function and showed that the optimal value function is
piecewise linear and convex (PWLC) in belief at every time t. This means that, for
any time t, the value function J∗t (b) can be represented using a finite set of |Sd|-
dimensional vectors (hyperplanes). Those vectors are called alpha vectors. Using
alpha-vector representation, the value iteration algorithm reduces to the computa-
tion of the alpha-vectors for every time t. In other words, instead of evaluating the
value function over a continuous space of belief states, one only needs to find the
set of vectors Γt = {αjt}

|Jt|
j=1, such that

(4.6) J∗t (b) = max
k
{
∑
s∈Sd

bt(s)αkt (s)} for some {α1
t ,α

2
t , . . . ,α

|Jt|}
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where each αjt is a vector of dimension |Sd|, i.e., αjt = [αjt (s)], s ∈ Sd. Equation (4.6)
infers that the value at a certain belief state bt is obtained by taking the maximum
of the dot product of bt with each vector in Γt. The merit of the algorithm is that
given Γt, we can generate the set of alpha vectors, which together constitute the
value function at time t+ 1, i.e., Γt+1 (Walraven & Spaan, 2019). Furthermore,
each alpha vector is associated with an action a(αjt ) ∈ A, and the reflection of each
optimal alpha vector over the belief space creates a partitioning over which the
action associated with the vector is the optimal action. For the belief state bt, the
value-maximizing alpha vector from the set Γt, denoted as αl

∗(b)
t can be obtained

from α
l∗(b)
t = argmaxk{

∑
s∈Sd

bt(s)αkt (s)}. The optimal policy π :B 7→A is a mapping
from belief bt ∈ B into an action at ∈A. The policy at bt is given by π(b) = a(αl

∗(b)
t ).

This implies that the set of alpha vectors encodes both the value and the optimal
policy (Porta et al., 2006).

An example of the PWLC value function with the optimal alpha vectors in two-
state POMDP is illustrated in Figure 4.4. The x-axis represents the belief space
over the core state space with two states s1 and s2. The belief space is a one-
dimensional unit interval and each point on the horizontal x-axis is a belief state.
The y-axis is the value of each belief state. The belief space is covered with five alpha
vectors, α1,α2,α3,α4, and α5, while only four vectors contribute to the optimal value
function. At any belief state bt, the optimal value J∗t (b) is the upper surface of four
vectors α1,α2,α3 and α5. We also use αl(b,a)

t to denote the value-maximizing alpha

𝛼1

𝛼3

𝛼2 𝛼5

𝛼4

𝑏(𝑠2) = 𝑃(𝑠2)=1 b

𝐽∗(𝑏)

𝑏(𝑠1) = 𝑃(𝑠1)=1

𝛼1

𝛼3

𝛼2 𝛼5

𝑏(𝑠1) 𝑏(𝑠2) 𝑏(𝑠1) 𝑏(𝑠2)

Figure 4.4 Alpha vectors over belief space in a two-state partially observable
Markov decision process (POMDP); bold segment of the alpha vectors constitute a
piecewise linear and convex (PWLC) value function. α4 is a redundant vector and

can be eliminated.

vector for a belief given an action a. We proceed to write αl(b,W )
t and αl(b,CT )

t .

(4.7) α
l(b,W )
t (s) = rt(s,W,∅) +

∑
s′∈Sd

pW,∅t (s′|s)αι(b,W,∅)t+1
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(4.8)

α
l(b,CT )
t (s) =



kCT (CT −|s)
(
rt(s,CT,CT−)+

∑
s′∈Sd

pCT,CT−t (s′|s)αι(b,CT,CT−)
t+1

))

+kCT (CT + |s)
(
rt(s,CT,CT+)+max

k

( ∑
s′∈Sd

pCT,CT+
t (s′|s)αkt+1

))
,s= 1

kCT (CT −|s)
(
rt(s,CT,CT−)+

∑
s′∈Sd

pCT,CT−t (s′|s)αι(b,CT,CT−)
t+1

)

+kCT (CT + |s)
(
rt(s,CT,CT+)+

∑
s′∈Sd

pCT,CT+
t (s′|s)Rt+1(s)

)
,s= 2,3

where
(4.9)

ι(b,a,θ) =



argmax
k

{ ∑
s∈Sd

b(s)
∑

s′∈Sd

pa,θt (s′|s)αkt+1

}
if (a,θ) = (W,∅),

argmax
k

{ ∑
s∈Sd

b(s)kat (θ|s)
∑

s′∈Sd

pa,θt (s′|s)αkt+1

}
if (a,θ) ∈

{
(CT,CT−),

(CT,CT+)
}
.

Multiple exact solution algorithms for POMDPs, including Sondik’s one-pass al-
gorithm (Sondik, 1971), Cassandra’s witness algorithm (Cassandra et al., 1994),
Monahan’s enumeration algorithm (Monahan, 1982), Cheng’s linear support algo-
rithm (Cheng, 1988), and Cassandra’s incremental pruning (Cassandra et al., 2013)
have been proposed in the literature. These solution methods differ mainly in the
way that they generate the alpha vectors at time t+1 given the set of alpha vectors
at time t. It can be seen from Equations (4.7) and (4.8) that alpha vectors at time
t are formed by a transformation of the vectors at time t+ 1. Smallwood & Sondik
(1973) showed that the transformation preserves the PWLC property of the value
function. To compute Equations (4.7) and (4.8), one needs to use Equation (4.9)
to find the optimal alpha vector at time t+ 1 for belief state bt. The well-known
algorithm of Monahan (1982) simplifies the solution procedure by generating all
possible alpha vectors instead of checking the maximizing alpha vector for every
pair of action and observation. Enumerating all the possible alpha vectors creates
a maximum of |A||Γt||Ω| vectors for Γt+1 (Braziunas, 2003). Of course, many of the
generated vectors are dominated by other vectors and are not useful. Therefore,
in the pruning phase, the algorithm eliminates the vectors that are not part of the
value function by checking whether there exists a belief point where that specific
vector is dominant or not. Such vectors are easily identified using a direct linear
programming (LP) approach. The most straightforward LP method introduced by
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Monahan (1982) is defined as: for αit,α
j
t ∈ Γt,

(4.10)

max σ

s.t.
∑
s∈Sd

bt(s)
(
αit(s)−α

j
t (s)

)
≥ σ, ∀j,αjt 6= αit∑

s∈Sd

bt(s) = 1,

bt(s)≥ 0, ∀s ∈ Sd

Other pruning methods including Lark’s filtering algorithm (White, 1991), Skyline
algorithm (Raphael & Shani, 2012) and accelerated pruning method (Walraven &
Spaan, 2017) can also be found in the literature.

For POMDP problems with a small set of states, actions and observations, Mona-
han’s algorithm is proven to be efficient, as implemented in studies by Ayer et al.
(2012) and Cevik et al. (2018) to solve the POMDP models for breast cancer screen-
ing policies and by Otten et al. (2017,2) to solve the POMDP model developed for
the follow up planning of the patients already treated for breast cancer. Li et al.
(2015) also applied this algorithm to solve their proposed POMDP model for the
colorectal cancer screening policies.

We also implement Eagle’s reduction (Eagle, 1984) phase, which is speeding up the
pruning phase by eliminating element-wise dominated vectors. In Figure 4.4, α4 is
not element-wise dominated by α2, but it is element-wise dominated by α1 and α3.
Hence, it can be eliminated from the set of alpha vectors.

The solution procedure is summarized in 1. Our model is coded in MATLAB,
and implemented on a machine with Intel(R) Core(TM)i7-8700 processor. We use
Gurobi to solve the linear programming problems.

4.4 Results

In this section, we present our computational examples and show how our proposed
decision making process is implemented. We then compare our results with the
recommendations of the guidelines and discuss the trade-offs. At the end of the
section, we also test the sensitivity of our results to the input parameters. The
sources of the input data used in our computational experiments are presented in
the Appendix A.
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Algorithm 1 Compact representation of solution method with Monahan’s algo-
rithms and Eagle’s reduction phase
2.1 Initialization: αN (s) = rN (s),∀s ∈ Sd, ΓN = {αN}
2.2 For t=N −1, until t= 0, do:
2.3 Apply Monahan’s enumeration phase: Generate all the possible alpha

vectors (using Equations (4.7) and (4.8), without trying to find the maxi-
mizing vector from t+ 1) and mark the generated vectors. Create the set
Γt = {α1

t ,α
2
t ,α

3
t , · · · ,α|Jt|}.

2.4 Apply Eagle’s reduction phase:
• For every marked vector αi in Γt, do
• Unmark the vector and check if there exists a vector αj s.t. αi ≤ αj ,∀s ∈
Sd, if so, remove αi from Γt.

2.5 Apply Monahan’s pruning phase:
• Mark the remaining vectors in Γt after Eagle’s reduction phase.
• For every marked vector in Γt, do
• Unmark the vector and use Equation (4.10) to check if LP has a solution
σ ≤ 0, if so, remove αi from Γt. Otherwise, there exists a belief state at
which αi is useful.

4.4.1 Optimal Belief-Based Screening Policy

We begin with an example that helps to illustrate how the optimal policy is generated
for any patient. Suppose a patient at age 21 with b0 = [0.99,0.0071,0.0029], meaning
that she has a 0.71% chance of being in state 2 and 0.29% chance of being in state
3. Based on her age and risk profile, she is expected to undergo screening at age
21. Determining the sequence of following actions throughout the patient’s lifetime
requires the knowledge of the current and subsequent action’s outcome. If the test
result is negative, b0 is accordingly updated with (a,θ) = (CT,CT−). The output
b1 is then multiplied by each alpha vector in the set of alpha vectors of t= 1 created
using the procedure explained in Algorithm 1 of Section 4.3. This procedure is
repeated for every t until the terminal decision epoch.

Under the POMDP policy, for a patient whose belief state at age 21 is b0 =
[0.99,0.0071,0.0029], nine screenings with cotesting are recommended throughout
her lifetime at ages 21, 25, 30, 35, 44, 49, 55, 63 and 67.

Patients who start late to screen are exposed to higher risks of lifetime cancer.
According to Table 4.1, a perfectly healthy patient with belief state b0 = [1,0,0]
at age 21 who has no history of screening ends with an increased risk of de-
veloping infections or lesions. Waiting until age 41 leads to the belief state
b20 = [0.714,0.251,0.035].

49



Table 4.1 Impact of starting late to screen on the health state of a 41 year old
patient who has been healthy at age 21.

Age bt(1) bt(2) bt(3)

21 1 0 0

22 0.971 0.026 0.003

23 0.944 0.050 0.006
...

...
...

...

41 0.714 0.251 0.035

Generating the optimal policy for a patient who was perfectly healthy at age 21, but
has not undergone any screening until age 41, is similar to those starting at age 21
with the only difference that the initial belief state of the patient at age 41 would
be equal to b20 = [0.714,0.251,0.035]. According to our POMDP policy, screening
for such a patient involves six cotestings. That is only one less than the screening
frequency for a low risk patient who starts screening at age 21.

High risk of cancer is not solely correlated with a late start of screening rounds.
Sexually active young patients are also subject to higher risks of new or persistent
infections. In this part, we aim to evaluate the impact of the patient’s initial risk
profile on the optimal screening policy. We consider three patients starting at age
21 with distinct risk profiles, i.e., low risk, medium risk and high risk. Their initial
belief vectors are as follows:

• Low risk patient: b0 = [0.995,0.0029,0.0021],

• Medium risk patient: b0 = [0.99,0.0071,0.0029],

• High risk patient: b0 = [0.75,0.2,0.05].

One of the risk measures introduced by the medical community of cervical cancer
is the risk of being in any of the states of severe cervical dysplasia (in-situ) and
invasive cancer, which together are referred to as CIN3+ risk. In our POMDP model
CIN3+ risk is equivalent to the belief of being in states 2 and 3. We also introduce
two additional measures of risk in our study: five-year and lifetime average risk of
cancer, which are the arithmetic means of the CIN3+ risks. Figure 4.5 illustrates
the difference in the 5-year average CIN3+ risks for three cohorts of patients with
low, medium and high risk.

Even though the initial CIN3+ risk between three groups is considerably different
(i.e., 0.005 for low risk, 0.01 for medium risk, and 0.25 for high risk patients), the
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observed gap in risk is not directly reflected on the number of screenings. That is,
25 times higher risk of cancer for a high risk patient compared to a medium risk
patient, leads to only 30% more screenings. Average re-screen interval length is
the longest for low risk patients. This observation can possibly be explained by the
higher length of the time which is required for the low risk patients to develop a large
enough risk of cancer to enter the screen-required zone. For each patient group, the
optimal age of screening is depicted in Figure 4.5. Our analysis also shows that for
the high risk patients, the lifetime average risk of cancer is considerably higher than
low risk patients. The impact of the patient’s risk profile on the screening schedule
and the lifetime average risk of cancer is summarized in Table 4.2.
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Figure 4.5 Five-year average risk of cancer for patients with different risk profiles.
Colored dots show the screening ages of each risk profile.

Table 4.2 Impact of the patient’s risk profile on the cancer risk and screening
schedule.

Risk Profile
Lifetime No.

of Screenings

Avg. Screening

Interval Length

Lifetime Avg.

Risk of Cancer

Low risk 7 6.86 0.0849

Medium risk 9 5.33 0.125

High risk 12 4 0.209
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4.4.2 Comparison of Multiple Policies and Guidelines

To evaluate the performance of our POMDP model, we compare its resulting optimal
policy with a set of static policies or guidelines.

No screening: The base case for our comparison is a patient with the same risk
of cancer as given in Section 4.4 who has performed no screening tests during her
lifetime and all of the actions are assumed to be a W action. We call this no
screening policy.

Modified US practice: represents a policy that recommends screening with cotesting
every five years. Screenings start at the age of 21 and end at age 65. We have
modified the US guidelines to make them comparable with our cotesting action,
since they start with cytology at age 21, repeating every three years until 30, and
shifting to cotesting until age 65 with cotesting repeated every 5 years.

Aggressive plan: In order to show that the policies with more frequent screening
do not necessarily improve the QALY, we define a screening policy called aggressive
plan. Under this plan, a patient is screened first at age 21 and repeats screening
every three years until age 66.

Alternative policy 1: In order to study the effect of age at which screenings are con-
ducted, we defined a static policy with the same number of screenings as suggested
by our optimal POMDP policy (i.e., nine screenings throughout the lifetime), but
distributed at equal intervals.

Alternative policy 2, and Alternative policy 3: Closely related to the real-world
scenarios in which patients start late to undergo screening, we defined two static
policies under which patients wait until age 41 and 51, respectively, to begin screen-
ing. Under Alternative policy 2, the patient starts screening at age 41 as her first
screening round and continues screening every 5 years until age 66. Under Alter-
native policy 3, the patient starts screening at age 51 as her first screening round
and continues screening every 5 years until age 66. Such patients carry a higher risk
of remaining undetected. Hence, their lifetime risk of cancer might be higher than
those who start early.

In the following part, the focus of the comparison analysis will be on both the
expected QALY gains under the POMDP policy with other practices and on the
lifetime risk of developing cancer under the POMDP policy with those of the other
static policies.
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QALY-Based Policy Comparison

To maximize the expected QALY gains throughout the patient’s lifetime, the
POMDP policy chooses optimal actions at every age of the patient. The sequence
of such actions for a specific patient is discussed in Section 4.4.1.

Under no screening, assuming that such a patient survives until age 70, we observe
that the expected QALY gain will be 56.346, whereas the POMDP policy creates
57.228 QALY gains, an approximate 1.57% increase relative to the no screening
policy. We also observe that Alternative policy 1 creates 57.05 QALYs and is out-
performed by POMDP policy. Aggressive plan with the highest screening frequency,
creates 57.156 QALYs, lower than that of POMDP policy. Table 4.3 presents the
expected QALY gain under various policies for a 21 years old patient.

Table 4.3 Comparison of performance across different policies for a 21 year old
patient with no test history.

Start
Age

Screen
Interval
Length

Screen
Rounds

Stop
Age

Exp.
False

Results

Exp.
QALY
Gain

Improve
In

QALY(%)

No screening - - 0 - 0 56.346 -
Modified US practice 21 5 10 66 0.18 56.119 0
Aggressive plan 21 3 16 59 0.252 57.156 1.4
Alternative policy 1 21 6 9 69 0.162 57.075 1.3
Alternative policy 2 40 5 6 66 0.108 57.004 1.18
Alternative policy 3 50 5 4 66 0.072 56.824 0.87
POMDP policy 23 variable 9 67 0.162 57.228 1.57

Comparison of Lifetime Cancer Risk across Different Policies

The POMDP model can also be used to study the risks associated with the current
guidelines or benchmark practices. Figure 4.6 illustrates the risk performance of
different policies considered. As expected, the risk of doing nothing and waiting is
outranking all the other policies. Therefore, Alternative policy 2 and Alternative
policy 3 accrue a higher risk until age 40 and 50, respectively, which start to decline
as soon as the screening begins. Compared to the other policies, including our
POMDP policy, Alternative policy 2 and Alternative policy 3 behave similar to
no screening and carry a significantly higher risk until the first screening round.
Moreover, one can conclude that Alternative policy 2 exposes the patient to a lower
lifetime cancer risk compared to Alternative policy 3 as it is observed in Figure 4.6,
yet there is not much risk difference between Alternative policy 2 and Alternative
policy 3 after age 52 until 70. In fact, two patients with the same initial risk, one
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following Alternative policy 2 and the other following Alternative policy 3 end up at
age 70 with the same risk even though in the latter case the patient starts screening
10 years later.
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Figure 4.6 Lifetime risk of cancer under different policies.

4.4.3 Sensitivity Analysis

In this section we analyze the model’s behavior with respect to different initial belief
states. In other words, this study aims to investigate how our personalized POMDP
model behaves while varying the initial belief. This can be interpreted as follows:
For a pool of patients at age 21 with different initial cancer risk, what will be the
life expectancy? To answer this question, we are looking at two sets of initial belief
points.

• Set 1: high risk patients who are 99% healthy and their invasive cancer risks
vary between 0.25% and 0.90%. This case is shown with a red line in Figure 4.7.

• Set 2: medium risk patients who are 99.3% healthy and their invasive cancer
risks vary between 0.05% and 0.70%. This case is shown with a blue line in
Figure 4.7.
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Figure 4.7 Quality adjusted life years (QALY) gained under different starting
belief points.

As it is shown in Figure 4.7, one intuitive interpretation is that healthier patients are
expected to gain more life expectancy under the POMDP model. For the patients
in Set 1, the higher the risk of invasive cancer, the lower the expected QALY gain.
The sudden drop in both graphs can be attributed to the age factor in QALY gain.
That is, younger patients on average are gaining more life expectancy up to a certain
age.

4.5 Discussion

“One size fits all” screening guidelines have recently been challenged by the newly
introduced personalized screenings. In this study, using a POMDP approach, we
developed a personalized screening policy for cervical cancer, which stratifies risk and
generates a policy to follow. We showed that our proposed POMDP policy compared
to the guidelines, in addition to being more patient representative, improves the life
expectancy of the patients. The objective function of our POMDP model maximizes
the quality adjusted life years (QALY), which indirectly includes the lifetime risk
of cancer as part of the life-quality of the patient. Excessive testing increases the
chance of false positive results, which in turn reduces the life quality of the patient
due to unnecessary follow ups. By maximizing QALY, we simultaneously reward
the lifetime cancer risk reduction and penalize the impact of false positive results.
Therefore, the proposed policy by our POMDP model balances the benefits of the
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testing and the disutility of excessive testing and hence, results in a slightly higher
lifetime cancer risk but increasing the overall life-quality of the patient.

Early screening and detection is critical to reducing the future cancer risk of the
patients. As we show by one instance, starting screening at the age of 21 versus
41 can relatively reduce the cancer risk while applying only one extra screening on
the patient in her lifetime. This highlights the impact of starting screening at an
early age on the healthcare system both in terms of effectiveness and costs. Our
analysis of the impact of the patient’s risk profiles on the screening frequency and
the five-year average risk of cancer shows that the screening frequencies are not
proportionate to the cancer risk.

One of the important observations made from our result is the lower QALY gain of
aggressive plans compared to the POMDP policy. Therefore, we can safely conclude
that performing more frequent screening does not necessarily lead to higher total
QALY gains. Such policies, besides being more costly, could be less reliable too.
Reliability of a policy is reduced when the policy results in a higher number of false
results. False results of the tests, namely false negative and false positive results are
crucial factors to consider while studying the performance of a specific policy and
they can be considered as the secondary performance measures. Our results suggest
that even though aggressive screening practices result in QALY close to that of the
POMDP model, this is achieved with the increase of false test results compared to
the POMDP policy.

Our analysis of lifetime risk exhibits that even though no policy is dominant in
reducing the lifetime risk, it is clear that the POMDP policy has a slightly higher
risk, which can be explained by the lower number of screening tests compared to most
of the practices considered. We observe that, as the screening interval gets longer,
the risk increases. Therefore, policies with longer screening intervals including the
POMDP policy create higher risks. Another important observation made in risk
analysis is that the policies that start their first screening later, end in relatively
similar risk when the patient reaches age 70. This is due to the fact that a test with
negative outcome hugely impacts our belief that the patient is healthy in reality.

A major issue that pervades most of the similar studies is the lack of reliable or
abundance of conflicting data. Post treatment survival rates for different treatment
types, which is common for cervical lesions and cervical cancer, are rarely studied in
the literature. It should be noted that an important aspect of the recommendations
obtained by a POMDP solution is how accurately a generated belief state represents
the state of the patient. In this regard, an important limitation of this study is
the lack of a risk estimation module similar to the Framingham Risk Score for
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cardiovascular disease or the Gail model for breast cancer.

Future research will consider the problem of a generative model for belief states,
which receives two types of inputs: the disease attributes and biomarkers specific
to HPV and cervical carcinoma, which altogether shape the body of knowledge of
the decision maker. Identifying pertinent biomarkers requires the assistance of a
cytopathologist, which will render a more reliable belief state if such information is
supplied to the generative model. The second type relates to the patient attributes.
The more such attributes are included, the more precise the belief estimates will
be. In addition, by taking over the role of the Bayesian belief update approach,
the generative model approach can remove the dependency on a pure probabilistic
update procedure.
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5. PERSONALIZED SCREENING POLICY WITH CYTOLOGY

AND HPV DNA TESTING

5.1 Chapter Overview

The previous chapter addressed personalized screening policies for cervical cancer
with cotesting. In this chapter, we focus our attention on the policies when the
screening includes cytology testing and HPV-DNA testing as two separate tests.
The chapter begins with an introduction to the problem and highlights the pro-
posed approach to address the research question. The chapter continues with model
formulation and presents a detailed review of the approximate solution methods. It
subsequently presents the parameterization of the model. The results section pro-
vides risk-action threshold policies and sensitivity analysis of the model parameters.
Finally, the chapter concludes with the implementation of the policy and provides
a discussion on the strengths and limitations of the model.

5.2 Introduction

Given the inherent deficiency of cytology testing in finding the positive cases of
cancer, HPV-DNA testing developed initially as an adjunct to cytology screening
and was used for triage of the patients with cytology positive. Since recently, the
guidelines of cervical cancer screening included either cytology or cotesting, and
HPV-DNA testing were not recommended as a standalone test. After the introduc-
tion of HPV-DNA test, many clinical trials attempted to study the significance of
this test that accordingly helped to improve the understanding of the performance
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of HPV testing. The data coming out of these studies were consistently showing
that HPV testing has a a higher sensitivity and reproducibility with increased neg-
ative predictive value compared to the cytology testing, thus leading to a scientific
and clinical interest in primary HPV-DNA testing as a method for cervical cancer
screening. In 2015, after the joint interim update of the ASCCP guidelines, HPV-
DNA has been added to many guidelines. Since then, many guidelines aligned their
recommendations to include HPV-DNA testing every 5 years and therefore, testing
for the presence of high-risk HPV has become an integral part of new screening
strategies (Lees et al., 2016; Maver & Poljak, 2020; Tota et al., 2017).

With emerging technologies and biomarkers, and the advancements in the molecular
techniques of high risk HPV testing, a number of studies maintain that cytology as an
adjunct test to HPV-DNA testing does not improve the performance of screening,
and suggest that cotesting/cytology can be safely replaced with standalone HPV
DNA testing. These studies suggest that the sensitivity of cytology testing is low
which is a drawback for population based screening aiming to find the most possible
cases of abnormalities. Adding to the challenge is the low specificity of HPV-DNA
testing. Since HPV infections are common and most of the infections are transient,
HPV-DNA testing has a higher false-positive rate compared to cytology testing, and
as a consequence, more women will be sent for additional but unnecessary followups
(Castle et al., 2018; Gupta et al., 2017; Ogilvie et al., 2017).

In addition to the type of screening test, there is a continuous search for the most
appropriate screening frequency if either test is employed, especially in low-resource
countries. The commercial availability of low-cost HPV-DNA test in some resource-
limited countries raised further question regarding whether implementing HPV-DNA
testing as a standalone test every five years provides the best safety against the can-
cer. To address these questions, we considered a setting where the screening includes
cytology and HPV-DNA testing as two separate tests. Similar to the previous chap-
ter, we aim to develop a personalized risk-tailored model for screening decisions that
can capture the differences in the test performance to find abnormalities. In the next
section, we provide the details of the proposed model.
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5.3 Model Formulation

The decision process in our model proceeds as follows. At every decision-epoch,
the physician (decision-maker) is faced with three options: screen the patient with
cervical cytology (referred as cytology), screen with HPV DNA testing or wait until
the next annual decision epoch. The decision of the physician is made based on the
patient’s current risk of cervical cancer. We also assume that both the patient and
the physician are risk neutral and that the patient will adhere to the decision made
by the physician. If the patient undergoes either of the two cervical screening tests,
the physician will examine the test results subsequently. If the result is negative,
she will return for screening next year. On the other hand, if the test result turns
out to be positive, it is followed up by a biopsy test. A biopsy test result may find
no abnormal cells, which means that HPV is not present and the patient is perfectly
healthy, meaning that the initial screening results have been false positive. Biopsy
may also find infection with HPV, abnormal cells (dysplasia) or cancer. Biopsy
results enable the oncologist to specify the grade of observed dysplasia, which may
be mild (CIN1), moderate (CIN2), or severe (CIN3). Hence, it is reasonable to
assume that biopsy can detect the exact health state of the patient. If the result
of the biopsy is CIN2, CIN3 or cancer, the woman starts treatment and quits the
decision process. Consequently, the patient continues the decision process after a
negative cytology or HPV-DNA test, a biopsy with no referral to treatment following
a positive cytology or HPV-DNA test, or a recommended Wait action. The decision
process ends either when the patient starts treatment following a biopsy with referral
to treatment or if she dies.

We formulate this problem as a discrete-time, finite horizon POMDP in which the
objective of the patient/physician is to maximize the patient’s total expected QALYs.
Next, we describe the notation used to build our model and the formal definition of
the POMDP model.

Decision epochs: t ∈ T = {0,1, . . . ,N} where N <∞. Time t= 0 corresponds to age
21 and the last decision will be made at age 69, at decision epoch N − 1 = 48. As
such, t = 0 represents age 21 and t = N represents age 70). The current guidelines
of USPSTF and ASCCP do not recommend screening for the patients below the age
of 21.

Core state space: S = Sd ∪Sa. Sd = {1,2,3,4,5,6} refers to the disease states at
which decision process continues and Sa = {7,8,9,10} to refer to the absorbing states
at which the decision process ends. st ∈ S represents the true health state at time

60



t. We define disease states in our model following the natural history models of
cervical cancer presented in the literature. In particular, disease states 1 through
6 represent healthy patient, infected with HPV, CIN1, CIN2, CIN3 and invasive
cancer, respectively. States 7, 8 and 9 are post-biopsy states in which the patient
receives treatment. Treatment begins if the screening test result is positive and the
diagnostic biopsy result denoted as BX ∈ {4,5,6}. Hence, states 7,8 and 9 represent
treatment states for disease states 4, 5 and 6, respectively. State 10 represents
death due to cancer or other causes. The threshold for the onset of treatment in
our model is CIN2. (Castle et al., 2007) argue that treating CIN2 provides an
additional margin of safety, even though it may result in over-treatment in some
cases. Women diagnosed with CIN1 will frequently undergo spontaneous regression
of the dysplasia without treatment. Therefore, monitoring for progression without
treatment is currently the standard practice and recommendation of the majority
of guidelines. The underlying Markov chain of our POMDP model is shown in
Figure 5.1. We remark that the disease states Sd are not directly observable to the
decision maker, whereas the absorbing states Sa are perfectly observable.

Action space: Ad = {W,C,H} whereW represents “Wait,” C represents “Cytology,”
H represents “HPV DNA” action. at ∈ Ad denotes the action taken at time t.

Observation space: Z denotes the set of observations where Z = ZW ∪ZC ∪ZH .
The notation zt ∈ Z represents the observation made at time t. Naturally, ZW = ∅.

Cervical cytology testing can find lesions or cancer. When performing a cytology,
the possible outcomes are: negative, atypical squamous cells of undetermined sig-
nificance (ASCUS), atypical glandular cells (AGC), CIN1, CIN2, CIN3, squamous
cell carcinoma (SCC) and adenocarcinoma (AC), where CIN1, CIN2 and CIN3 in-
dicates presence of lesions with different grades (CIN1 indicates LSIL and CIN2 and
CIN3 are collectively refered to as HSIL), and SCC and AC are advanced cancer
indicators. The HPV-DNA test is either negative (H-) or positive (H+).

Note that in the patients with abnormal cervical cytology, or ASCUS, is the most
common observed abnormality (Hasçiçek1 et al., 2018). However, administering
ASCUS result in standalone cytology testing lack uniformity. Current guidelines of
ACS/ASCCP/ASCP recommend routine screening or triage test in one year (Ismail
et al., 2020). For simplicity, we assume that NILM and ASCUS are negative cytology
results. Similarly, LSIL, ASC-H, AGC, HSIL and SCC are positive cytology results.
That is, ZC = {C−,C+} and ZH = {H−,H+}.

Observation probability: kat (z|s) denotes the probability of observing z at time t,
given that the core state is s ∈ Sd and action a is taken. That is, kat (z|s) = Pr{zt =
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Figure 5.1 Health state transitions in the natural history of the disease under
positive and negative outcome of the screening tests

z|st = s,at = a}. The observation probabilities are assumed to be stationary. We
assume HPV-DNA can detect existence of an infection with virus, as well as lesions
and cancer. Hence, an H+ in state 1 is a false positive. Cytology finds lesions or
cancer. A cytology result either in form of ASCUS or worse for women without
any histologic abnormalities is considered as a false positive Chuck (2010). In other
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words, a C+ in states 1 and 2 is a false positive. The sensitivity of cytology test
depends on the threshold at which the test result will be considered as positive.
Since we assumed the positivity threshold is set at ASC-H, the the sensitivity is
the probability of at least ASC-H de Kok et al. (2018). We define sens(a|s) and
spec(a|s) as the sensitivity and specificity of action a in state s at time t. Table 5.1
summarizes the observation model in our problem.

Table 5.1 Parameterization of observation probabilities for cytology and HPV DNA
testing

State (s) K(C−|s) K(C+|s) K(H−|s) K(H+|s)
1 spec(C|1) 1- spec(C|1) spec(H|1) 1- spec(H|1)
2 spec(C|2) 1-spec(C|2) 1-sens(H|2) sens(H|2)
3 1-sens(C|3) sens(C|3) 1-sens(H|3) sens(H|3)
4 1-sens(C|4) sens(C|4) 1-sens(H|4) sens(H|4)
5 1-sens(C|5) sens(C|5) 1-sens(H|5) sens(H|5)
6 1-sens(C|6) sens(C|6) 1-sens(H|6) sens(H|6)

Transition probability: pa,zt (s′|s) denotes the probability that the state of the patient
will be s′ at time t+ 1, given that her state is s at time t, action a is taken and
an immediate observation z is made. That is, pa,zt (s′|s) = Pr{st+1 = s′|st = s,at =
a,zt = z}. We assume that transition probabilities are time dependent and that
death due to cervical cancer may happen only after patient reached state 6. We also
assume that once invasive cancer develops, the disease does not regress. We define
qt and ut as the probabilities of all cause death and death due to cervical cancer
during period t, respectively. Using this notation, for all s ∈ Sd, a ∈ A, and t ∈ T ,
we have

(5.1) pa,zt (10|s) =

qt if s ∈ Sd\{6} ,

qt+ut if s= 6 .

Belief space: B(Sd) denotes the space of all probability distributions over the par-
tially observable disease state space, Sd. Any element of B(Sd) is called a belief state,
which is a six dimensional vector denoted by b. That is, bt = [bt(1), bt(2), . . . , bt(6)],
where bt(s) represents the conditional probability of occupying state s ∈ Sd at de-
cision epoch t given the initial belief b0 and the entire history experienced so far.
That is, bt(s) = Pr{st = s|It} for all s ∈ Sd, and accordingly, ∑s∈Sd

bt(s) = 1. To act
optimally in POMDPs, without the knowledge of the core state of the process, the
decision maker has to either record the entire history of action and observations or
use a sufficient statistics of the entire history.

63



The best known sufficient statistics for the history in POMDPs is the belief
state Bertsekas & DP (1976). The following result is also readily established. For
any fixed sequence of actions a1,a2, . . . ,aN ∈ A, the sequence of the belief states
{bt}Nt=0 is a Markov process. Therefore, bt can be viewed as the state of the discrete
time MDP (Sondik, 1971). In other words, POMDP is converted into a belief state
completely observable MDP problem. Furthermore, bt+1 can be computed from bt

using the Bayes’ rule.

Updated belief state: The function τt+1[bt,a,z] defines the updating of belief
states as a result of observations. We define τt+1[b,a,z] = [τt+1[b,a,z](s′)], where
τt+1[b,a,z](s′) represents the probability of occupying state s′ ∈ Sd at time t+ 1,
given that the decision maker’s belief about the patient’s health state was bt, ac-
tion taken was a ∈ A, and z ∈ Z was observed at time t. Throughout the text, we
interchangeably use bt+1 = τt+1[b,a,z] for simplicity.

If at =W , the updated belief state is the product of the probability that the patient
will transition at time t+1 to state s′ ∈ Sd given that at time t she is in any possible
state s ∈ Sd, and action W is taken. Then,

(5.2) τt+1[bt,a,z](s′) =
∑
s∈Sd

bt(s)pW,∅t (s′|s) for all s′ ∈ Sd .

If at = C or at = H, the updated belief state is the conditional probability
P (s′|s,b,a,z), which represents the probability of being in state s′ ∈ Sd at time
t+ 1, given that at time t there is a belief bt, action at ∈ A is taken, z ∈ Z is
observed and a transition from state s ∈ Sd to s′ ∈ Sd occurs.
(5.3)

τt+1[bt,a,z](s′) =



∑
s∈Sd

bt(s)Ka
t (z|s)pa,z

t (s′|s)∑
s∈Sd

bt(s)Ka
t (z|s) if (a,z) = (C,C−) or (H,H−)

pW,∅t (s′|1) if (a,z) = (C,C+) or (H,H+),BX = 1

pW,∅t (s′|2) if (a,z) = (C,C+) or (H,H+),BX = 2

pW,∅t (s′|3) if (a,z) = (C,C+) or (H,H+),BX = 3

The probability tree associated with the belief update procedure is given in Figure
B.2 in the Appendix B.

Immediate rewards: rt(s,a,z) denotes the expected reward of taking action a ∈ A
in state s ∈ Sd and getting an observation z ∈ Z at time t. Many of the studies
with focus on dynamic policy making for screening decisions use quality adjusted
life years (QALY) as the metric to quantify the quality-of-life gains from medical
interventions. In our model, we use QALYs to parametrize the immediate rewards.
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When the action is wait, we set the immediate reward as
(5.4)
rt(s,W,∅) = P (alive during t|s) + 0.5∗P (dies during t|s)− εt(s) , for s ∈ Sd ,

which is a slightly modified version of the approach used in (Ayer et al., 2012). The
term εt(s) can be regarded as the utility penalty for living with a virus, lesion or
cancer, depending on the state, s. Subtracting εt(s) can be justified as follows. qt
(the probability of non-cancer death) is the same in all the states s ∈ Sd\{6} while
obviously, the QALY of a patient is not the same as that of a patient in those states.
To account for this, we introduce a disutility parameter. εt(s).

(5.5) rt(s,W,∅) =

1−0.5qt− εt(s), if s= {1,2,3,4,5} ,

1−0.5(qt+ut)− εt(6), if s= 6 .

When the action is screening, the QALY scores are obtained from those of wait
action minus the disutility scores α(a,z)

t (s) and βt(s), where α(a,z)
t (s) represents the

disutility associated with taking action at = a with outcome zt = z when st = s and
βt(s) represents disutility of biopsy when st = s.

rt(s,C,C−) = rt(s,W,∅)−α(C,C−)
t (s), if (a,z) = (C,C−)(5.6)

rt(s,C,C+) = rt(s,W,∅)−α(C,C+)
t (s)−βt(s), if (a,z) = (C,C+)(5.7)

rt(s,H,H−) = rt(s,W,∅)−α(H,H−)
t (s), if (a,z) = (H,H−)(5.8)

rt(s,H,H+) = rt(s,W,∅)−α(H,H+)
t (s)−βt(s), if (a,z) = (H,H+)(5.9)

Lump sum rewards: Rt(s) denotes the reward obtained when entering an absorbing
state s ∈ Sa. Patients in s ∈ Sa\{10} have started treatment and regular screenings
are no longer a feasible action for them. Hence, we use a lump sum reward that rep-
resents the post treatment quality adjusted life expectancy (QALE) of the patients
from time t onward.

Terminal stage reward: RN (s) denotes the QALE of patients in state s ∈ S at time
N . Note that if the patient is in state s ∈ Sa at time N , post treatment QALE will
be used.

Order of events: The order in which these events occur are illustrated in Figure 5.2.
At the beginning of year t, a decision at ∈At is taken based on the current belief state
bt. Depending on the action chosen, z ∈ Z is observed and a health state transition
occurs during the year t. At the end of the year, the belief state is updated to
τ [b,a,z]. The solution of a POMDP is in form of a policy π : B 7→ A which maps
every belief state b∈B into an action a∈A. Executing a policy π(b) induces a value
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as t = t+ 1 and

bt+1 = τ [b,a,z]

Figure 5.2 Order of the events in the POMDP model

function V π(b) : B 7→ R which represents the expected total reward if starting from
belief state b the policy π is followed.

(5.10) V π(b) = Eπ
[ ∞∑
t=0

rt(bt,π(bt))|b0 = b
]

where rt(bt,π(bt)) =∑
s∈S rt(s,π(bt))bt(s). A policy π which maximizes V π is called

an optimal policy π∗. The optimal value function V ∗ maximizes Equation 5.10,
and satisfies the Bellman stochastic dynamic program. We proceed to write these
equations in our model.

Value function: V ∗t (bt) denotes the value function at belief state bt, which is the
optimal long-run average total QALYs a patient with bt is expected to live beyond
period t. We define the observable states using the following belief notation: b7 =
[0,0,0,0,0,0,1,0,0,0], b8 = [0,0,0,0,0,0,0,1,0,0], and b9 = [0,0,0,0,0,0,0,0,1,0].
Note that Rt(10) = 0 for t ≤ N . The value function at terminal stage N can be
expressed as follows.

(5.11) VN (bN ) =


∑
s bN (s)RN (s), ∀s ∈ Sd .∑
s b
i(s)RN (s), ∀s ∈ S, i ∈ {7,8,9} .

If a patient is in one of the absorbing states Sa, the state of the patient is completely
observable. Moreover, the patient is out of the screening decision process. Therefore,
the recursive dynamic programming iterations are not applied in those states. Then,
for absorbing observable states 7, 8, and 9, we have

(5.12) Vt(bi) =Rt(bi) , i ∈ {7,8,9} .

When the patient is not in an observable state, her state is represented by a belief
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state vector, bt, with the value function

(5.13) Vt(bt) =

max
{
VW
t (bt),V C

t (bt),V H
t (bt)

}
, t= 1,2, · · · ,N −1 .

max
{
V C
t (bt),V H

t (bt)
}
, t= 0 .

where

VW
t (bt) =

∑
s∈Sd

bt(s)
[
rt(s,W,∅) +

∑
s′∈S

pWt (s′|s)Vt+1(τt+1(bt,W,∅))
]

=
∑
s∈Sd

bt(s)
[
rt(s,W,∅) + (1−pWt (10|s))Vt+1(τt+1(bt,W,∅))

]
(5.14)

After a positive screening test (i.e., C+ or H+), for patients in states 4, 5 and
6, biopsy will determine the exact state and hence, the next state will also be
known. For instance, for a patient in state 4, the next state will be either 7 or
10. Therefore, (1−pa,a

+

t (10|4)) can be substituted with pa,a+
t (7|4). Note that value

of belief state corresponding to observable death state is zero. For screening test
actions a ∈ {C,H}, the expression V a

t (bt) is written as follows.

V a
t (bt) =

∑
s∈Sd

bt(s)ka(a−|s)
[
rt(s,a,a−) + (1−pa,a−t (10|s))Vt+1(τt+1(bt,a,a−))

]

+
3∑
s=1

bt(s)ka(a+|s)
[
rt(s,a,a+) + (1−pa,a

+

t (10|s))Vt+1(τt+1(bt,a,a+))
]

+bt(4)ka(a+|4)
[
rt(4,a,a+) +pa,a+

t (7|4)Vt+1(b7)
]

+bt(5)ka(a+|5)
[
rt(5,a,a+) +pa,a+

t (8|5)Vt+1(b8)
]

+bt(6)ka(a+|6)
[
rt(6,a,a+) +pa,a+

t (9|6)Vt+1(b9)
]
.(5.15)

The above defined POMDP model presents significant computational challenges. In
the next section, we describe the solution methodology we have used to obtain an
optimal age- and risk-dependent screening policy for cervical cancer.

5.4 Solution Methodology

In this section, we first briefly explain the existing optimal solution methods and
the complexity of using those methods on problems with large state space and then
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we present common approximate solution methods in the literature. We provide a
detailed discussion on the grid based solution method which we use in our problem to
break down the complexity of dealing with continuous belief space. Approximating
the value function over the discretized belief space requires the knowledge of the
value at non-grid points generated by the belief update function. In the final part of
this section, we explain the convex interpolation method and introduce our proposed
Gaussian process regression (GPR) method that helps to make such approximations.

5.4.1 Grid Based Approximate Solution

Exact solution methods for finite-horizon POMDP problems exploit the fact that
the value function is piecewise linear and convex in belief (Sondik, 1971) to generate
a finite set of hyperplanes over the belief simplex, resulting in a finite number of
regions over which the action associated with the hyperplane covering that region is
the optimal action. The hyperplanes at time t are used to generate hyperplanes at
time t+1 using dynamic programming (DP) iterations. Many of the exact value it-
eration methods differ in the way that this step is performed. Constructive methods
such as Sondik’s one-pass algorithm (Sondik, 1971), Cheng’s relaxed-region method
(Cheng, 1988) and Littman’s witness method (Littman, 1996) consider only useful
hyperplanes to generate hyperplanes at time t+ 1. On the other hand, enumera-
tive methods such as Monahan’s exhaustive method (Monahan, 1982) and Eagle’s
dominance-exhaustive method (Eagle, 1984) generate all possible combinations of
hyperplanes at time t+ 1 and prune the dominated ones. Constructive methods
use linear programming (LP) to find useful hyperplanes, and enumerative methods
use LP to prune the dominated ones. Both methods are subject to computationally
intensive LP problems when the size of the problem or the planning horizon is large.
Applications of such methods in the literature of health decision making can be
found in Ayer et al. (2012); Cevik et al. (2018); Li et al. (2015); Otten et al. (2020);
Witteveen et al. (2018) and Zhang et al. (2012).

In general, computing exact solutions for POMDP problems is cumbersome and
therefore, a great deal of efforts has been made to design approximate solution
methods for POMDP problems. Heuristic methods such as the most likely state
MDP method and the Q-MDP method rely on solving the underlying MDP problem
and ignoring partial observability (Spaan, 2012). Petousis et al. (2019) used Q-MDP
method to solve their POMDP model designed for lung cancer screening. Silver
& Veness (2010) introduced partially observable Monte-Carlo planning (POMCP),
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which combines a Monte-Carlo update of the agent’s belief state with a Monte-Carlo
tree search from the current belief state. Policy iteration methods, on the other
hand, generate an infinite-horizon policy in each iteration and iteratively improve the
generated policies. Such methods have been addressed in various studies including
Hansen (1998) and Poupart & Boutilier (2004).

More popular approximate solution methods include point-based and grid-based
approximation methods. Point-based value iteration (PBVI) method introduced by
Pineau et al. (2003) focuses on reachable belief states, which are successors of the
initial belief state b0 at some point of time. This method computes the hyperplanes
only for those reachable belief states and proceeds by expanding the initial set of
beliefs in every iteration. The procedure is repeated until either the solution reaches
the desired accuracy or the solution time reaches a limit.

In this study, we apply a grid based approximation method, and therefore, discuss
the method in details. The grid-based approximation method uses the idea of dis-
cretizing the continuous belief space into a finite number of points called grid points.
The value function is then calculated at the grid points using backward recursion,
rather than over the entire continuous belief state space. The value function at
non-grid points is approximated using the value function evaluations at the grid
points, via some interpolation method. Early applications of the method appear in
studies by Scarfet al. (1967) and Kakalik (1965). For a more complete discussion
of grid-based approximation methods, see (Lovejoy, 1991b; White, 1991).

A very simple gridding scheme is to divide the belief space into a certain number of
equidistant intervals. In the simplest case of a one dimensional state space, where
the domain Ω = (0,1) is an interval, a grid having the resolution of e will divide
the belief simplex into e equally-spaced intervals where each interval will have the
length ∆x= 1/e. Over a three-dimensional belief space, for example, the grid points
would be generated as shown in Figure 5.3. We define G and |G| to be the set of
grid points and the cardinality of the grid set, respectively. Let M = {1,2, . . . ,m}
denote the index set of G. We can write the set of grid points as G = {g1,g2, . . . ,gm}
given |G|=m.

Gridding methods that use the same set of grid points over all decision epochs are
called “fixed” gridding methods. In contrast, “variable” gridding methods update
the gridding scheme from one epoch to the next. Within each decision epoch, the
grids may be either uniform or nonuniform. Uniform grid has the same resolution
over the entire belief space. Selection of a gridding strategy depends on the applica-
tion and the objectives of meshing. Finely meshed grids obviously provide a better
approximation for the value function but at the cost of relatively high computational
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Figure 5.3 Grid point generation over a three-dimensional belief simplex using
different resolutions

time. A reasonable compromise is to use different grid resolutions in different regions
of the belief space, since typically, the belief trajectory only travels through a very
small subset of the entire belief space (Theocharous & Kaelbling, 2004). In order
to estimate the reachable belief space for a given initial belief distribution, Ahmadi
et al. (2019) propose a switched system representation for the belief evolutions of
POMDPs and use tools from control theory to overapproximate the reachable beliefs
in terms of sub-level sets of Lyapunov functions. Examples of recent application of
grid based approximation in the literature are Sandıkçı et al. (2013) and Cevik et al.
(2018). Sandıkçı et al. (2013) consider minimum bandwidth when searching for the
reachable belief states. Band belief vectors has the property that nonzero elements
appear consecutively. In other words, adjacent grid points are close to each other in
the consecutive one dimensional ordering as well. They argue that for a cancerous
patient, it is highly likely that the patient occupies two consecutive states rather
than otherwise. That is if the states are healthy, infected and cancerous, it is more
sensible to assume that higher belief scores are given to healthy and infected states
unless the patient is already diagnosed with cancer. Despite the reported success of
this approach in their specific problem, applying this method in our problem, due
to the minimal set of band points, was not feasible. Cevik et al. (2018) accumulate
the beliefs of not being healthy into one dimension and create a nonuniform grid
with higher resolutions assigned to healthier region. This approach resorts inten-
sively to the regions that are more reachable, and yet the possibility of having both
nonzero score for the other belief states are still considered. In their specific small
size problem with three partially observable states, this approach is shown to be
applicable. Unfortunately, this approach is again not computationally feasible for
our case. The dynamic programming algorithm requires that the value function at
all reachable belief states be computed for stage t before computing the value func-
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tion for stage t-1. Since the set of grid points may not include all of the reachable
belief states at a given stage, various approaches has been proposed to estimate the
value function at non-grid points using an interpolation of the the value function
evaluations at grid points. Interpolation methods include nearest neighbor approx-
imations, kernel regression methods, and using a convex combination or weighted
average (Hauskrecht, 2000). Using a convex combination mainly involves expressing
any non-grid belief point bt as a convex combination of the grid points in G, and
using the weights to obtain an estimate for the value function at bt. In addition to
that, the weighting procedure assigns nonzero weights to points which are far from
the point’s neighborhood. Zhou & Hansen (2001) suggested the use of the following
LP to obtain the best weights to approximate the value function.

min


|G|∑
j=1

λjVt(gj) :
|G|∑
j=1

λjg
j(s) = bt(s) ∀ s ∈ Sd,

|G|∑
j=1

λj = 1, 0≤ λj ≤ 1 ∀ j ∈M


But this approach still presents significant computational challenges as the number
of the grid points increases. Specifically, for a grid set of size above 3000 points,
solution time of the POMDP problem for the whole planning horizon using LP
method for finding interpolation weights can be in the order of several hours. Among
the studies in the literature, Cevik et al. (2018) and Sandıkçı et al. (2013) used this
method of interpolation, but with fewer than 1500 and 1000 grid points, respectively.

To limit the error in our computations, we wanted to significantly increase the
number of grid points. This required the use of more contemporary methodologies to
construct an approximation for the value function over the continuous belief space.
In the next section, we describe more details on the Gaussian process regression
models we used to solve the problem with almost 700,000 grid points.

5.4.2 Inference of Value At Non-Grid Points

Gaussian Process Regression (GPR) is a Bayesian method for statistical inference.
Before starting with GPR, we give a quick review of the linear regression with
Bayesian approach.
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5.4.3 Overview of Linear Regression With Bayesian Approach

Let D = {(xi,yi) : i = 1,2, · · · ,n} denote the set of n observations, where x and y

are real valued scalars. The objective is to create a model f(x) = β0 +β1x and use
it to make prediction of y∗ at a new input point x∗. Often, it is assumed that the
observed values y differ from the function values f(x) by additive noise ε, according
to the following relation, for i= 1,2, · · · ,n,

yi = f(xi) + εi

= β0 +β1xi+ εi

where we assume that the noise terms εi’s are independent and identically distributed
and εi ∼N (0,σ2

ε ). In matrix notation:

f(xi) = xᵀ
i w, and yi = xᵀ

i w + εi

where

xi =
 1
xi

 , w =
β0

β1


The matrices can be setup as,

y =


y1

y2
...
yn

 , X =


1 x1

1 x2
... ...
1 xn

 , w =
β0

β1

 , ε=


ε1

ε2
...
εn


Under the Bayesian approach, a prior distribution will be fitted over the unknown
parameters w.

p(w) =N (0,Σp),

where Σp denotes the covariance matrix of the weights w.

It can be shown that, the likelihood function is also Gaussian.

p(y|X,w) =N (Xᵀw,σ2
ε I),

where I = diag(1n) is an identity matrix of size n.
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Under the Bayes rule, the posterior distribution will be:

p(w|X,y)∝ p(y|X,w)p(w)

=N
(
w̄ = 1

σ2
ε

A−1X y,A−1
)

where AD×D = Σ−1
p +σ−2

ε X Xᵀ. Notice that, the posterior distribution is Gaussian
with mean w̄ and covariance matrix A−1.

Suppose using the n observations made for input x, (i.e., x1:n) and output y, (i.e.,
y1:n), we aim to predict the output y∗ for a new input point x∗. Given the inference
made for the weights w by posterior distribution, we can write posterior predictive
distribution for f∗ as,

p(f∗|x∗,X ,y) =
∫
p(f∗|x∗,w)p(w|X,y)dw

=N
(
f̄∗ = 1

σ2
ε

xᵀ
∗A−1X y,xᵀ

∗A−1x∗
)

Notice that the predictive distribution is also Gaussian where the predictive variance
is a quadratic form of x∗ with the posterior covariance matrix A−1, which indicates
that the predictive uncertainties increase with the magnitude of the test input x∗.
Finally, a good prediction for y∗ is the expected value of f∗ = y∗− ε∗ = f(x∗). By
choosing an appropriate basis function (polynomial or nonpolynomial), the model
can be modified to fit to the shape of the data.

5.4.4 Gaussian Process Regression

Gaussian process regression (GPR) is a Bayesian statistical approach used for learn-
ing functions and making inference when the shape of the function is unknown, or
the analytical evaluation of the function is costly.

Let D= {(xi,yi) : i= 1,2, · · · ,n} denote the set of n observations, where x∈X ⊂RD,
and y are real valued scalars. Let f : x 7→ R be a function from the input space to
the reals. Let XD×n = [x1,x2, · · · ,xn] and y = [y1,y2, · · · ,yn]ᵀ.

In GPR, we model the relationship between x and y as follows:

y = f(x) + ε.

Notice that in linear regression, we fitted distributions over weight parameters w.
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In GPR, a distributions over functions f(.) is fitted, where for any point x, the
function value at x denoted as f(x) is a random variable. In general, GPR relies
on the assumption that the prior probability distribution of a random vector is
multivariate normal, with a particular mean vector and covariance matrix.

Definition 5.1 A random function f : X 7→ R is a Gaussian process (GP) if for
any finite collection of input points X = {xi ∈ RD, i = 1, · · · ,n}, the corresponding
random vector f is multivariate Gaussian distributed.

f(x1)
...

f(xn)

∼ G


m(x1)

...
m(xn)

 ,

k(x1,x1) · · · k(x1,xn)

... . . . ...
k(xn,x1) · · · k(xn,xn)




This can be represented as,

f =
[
f(x1), · · · ,f(xn)

]ᵀ
∼ G(m(X),K(X,X))

Gaussian process is completely defined by its mean and covariance function. That
is, for any x ∈ X ,

f(x) ∼ GP(m(x),k(x,x′))

where
m(x) = E[f(x)]

cov[f(x),f(x′)] = E[(f(x)−m(x))(f(x′)−m(x′))]

Very often, the mean function is assumed to be constant, either zero or the mean of
the training dataset. Therefore, the model is fully controlled by covariances, where

cov[f(x),f(x′)] = k(x,x′)

Notice that, the covariance between the outputs is written as a function of the
inputs. This means that the kernel covariance function k(x,x′) defines the behavior
of the function values f(x) and f(x′) corresponding to the input points x and x′.
Any covariance kernel function works as long as it satisfies semi-positive definite
and symmetric property. However, any choice of the kernel covariance function,
implies certain underlying assumptions about the model. For example, ensuring
smoothness of the functions is an important aspect of the kernel choice, implying
that the similarity of the inputs is reflected in the similarity of the outputs. Squared
exponential kernel, also known as Radial Basis Function (RBF) is a commonly
used kernel function which ensures that the correlation between two points decays
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exponentially with the distance between them.

(5.16) k(x,x′) = σ2
f exp

−1
2

d∑
l=1

(x−x′)2

`2


This kernel function has two hyperparameters: signal variance, σ2

f , and lengthscale,
`. Obviously, the maximum allowable covariance is σ2

f , which is attained when
x = x′ implying perfect correlation between f(x) and f(x′). If x and x′ are further
away, then k(x,x′) will converge to 0. The length scale ` is an additional leverage
that controls how quickly the correlation between two points should decay as their
distance increases.

Sampling From a Gaussian Process

Even though in the function-space view, a random function represents a vector of
infinite size, in practice, drawing samples is conducted for only a finite set of points
by using a multivariate normal distribution with a covariance matrix generated by
the kernel function. By computing the covariance between all n points in X using
Equation 5.16, we can form the n×n covariance matrix K(X,X). By choosing prior
mean function m(x) = 0, we can then sample values of f at n inputs collected in X
from the GP by sampling from a multivariate normal distribution, f ∼G(0,k(X,X)),
where f =

[
f(x1), · · · ,f(xn)

]ᵀ
. Note that f is a sample of the function values and

not observations values as it is noise free. To sample observations y, an additional
and independent sample of the noise term ε must be added.

An example of such samples is shown in Figure 5.4, panel (a).
5/23/2021 Untitled4.ipynb - Colaboratory
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Figure 5.4 Prior and posterior using squared exponential kernel with `= 1 and
σf = 1. Panel (a) shows three functions randomly drawn from a GP prior. Panel
(b) shows three random functions drawn from the posterior, using 6 noise free

observations. The shaded area represents the 95% confidence region.
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Prediction Using Noise-free Observations

Suppose the n observations are noise free, that is D = {(X, f)} and our aim is to
make predictions for m new inputs collected in X∗. By definition, the joint prior
distribution of the training outputs, f , and the test outputs f∗ according to the prior
is  f

f∗

∼N
0,

K K∗

K∗ K∗∗


where K∗ =K(X,X∗) denotes the n×m matrix of the covariances evaluated at all
pairs of training and test points. Similarly K∗∗ denotes the m×m matrix of the
covariances between the test points. The conditional distribution

f∗|X∗,X, f ∼ G(K∗K−1f ,K∗∗−K∗K−1Kᵀ
∗ )

Prediction Using Noisy Observations

Suppose we have collected observationsD= {(X,y)} and we aim to make predictions
for new points X∗. Since the observations y and function values f∗ follow a joint
multivariate Gaussian distribution, we can write,y

f∗

∼N
0,

K+σ2
ε I K∗

K∗ K∗∗


Therefore, the conditional distribution

f∗|X,y,X∗ ∼ G
(
K(K+σ2

ε I)−1y,K∗∗−K∗(K+σ2
ε I)−1K

)
The best estimate for f∗ is the mean of this distribution:

f̄∗ = E[f∗|X,y,X∗] =K(K+σ2
ε I)−1y

and the uncertainty in our estimate is captured in its variance:

cov(f∗) =K∗∗−K∗(K+σ2
ε I)−1K

The covariance kernel function contains unknown hyper-parameters such as the
length-scale `, signal variance σ2

f , and noise variance σ2
ε . The values of these hyper-

parameters need to be inferred from the data. Tuning the hyper-parameters of the
covariance kernel function is done by maximizing the log marginal likelihood of the
observed data. Given the data D = {(X,y)} and hyper-parameters θ = (`,σ2

f ,σ
2
ε ),
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the log marginal likelihood is

logp(y|X, θ) =−1
2yᵀKyy−

1
2 log |Ky|−

n

2 log2π

where Ky =K(X,X)+σ2
ε I is the covariance matrix of the noisy output values y. A

gradient-based optimizer can be used to maximize the marginal likelihood.

In our model, we have a finite grid point set G = {x1,x2, . . . ,xn}⊂R6. We have made
observations of value function at the grid points, namely, f(x1),f(x2), · · · ,f(xn)
where f(x) is the continuous response vector. The goal is to predict the value of
the non-grid points using the already observed values at the grid points. We use
GP regression method to make these predictions, as defined in Algorithm 2. We
use MATLAB’s RegressionGP class to train a GPR model, (using fitrgp). Using the
trained model, we predict responses for new predictor data (using predict).

Algorithm 2 Grid Based POMDP Solution with GPR Predictions
3.1 Inputs: Transition and observation probabilities, rewards.
3.2 Output:Ṽt(g), t ∈ {0,1, · · · ,N},g ∈ G.
3.3 For t ← N down to 0
3.4 For all grid points g ∈ G

If t=N
Calculate VN (g) (Eq.: 5.11)

Else if t=N −1 : 1, then,
Update grid point belief for every (a,o), i.e., τ [g,a,o] (Eq.: 5.2, 5.3)
Obtain prediction Ṽt+1(τ [g,a,o]) using GPR
Calculate ṼW

t (g), Ṽ C
t (g), Ṽ H

t (g) (Eq.: 5.14, 5.15)
Calculate Ṽt(g) = max{ṼW

t (g), Ṽ C
t (g), Ṽ H

t (g)} (Eq.: 5.13)
Fit a GPR to obtain predictors Ṽt(b), for any belief state, b

Else
Follow steps 1 and 2 for t 6=N (lines 6,7). Obtain Ṽ C

t (g), Ṽ H
t (g) (Eq.:

5.15)
Calculate Ṽt(g) = max{Ṽ C

t (g), Ṽ H
t (g)} (Eq.: 5.13)

In our problem, the size of the state space does not permit using uniform grids with
reasonable resolution. Instead, we generated a finely-meshed grid in regions that
patients are most likely to occupy and a relatively sparse mesh over the remaining
regions of the belief state space. These regions were identified with a simulation
model. Using a pool of 100000 patients, we simulated the updating of belief states
using randomly selected actions and observations. The outcome of this simulation
provides an estimate of the reachable belief states during the planning horizon.

Finally, to ensure a sufficient grid resolution, we conducted a grid-convergence anal-
ysis, which indicated a convergence of the solutions for grid sizes above 440,000 grid
points. The results we present in the next sections were obtained using 691,025
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grid points at every iteration of the DP algorithm. The optimal objective function
value (optimal expected QALYs for a healthy patient at age 21) and its convergence
for different fixed grid sizes are shown in Figure 5.5. We solved our model using a
computer with Intel(R) Core(TM) i7−8700 CPU @ 3.20 GHz with 64 GB of RAM.
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Figure 5.5 Convergence of the optimal expected QALY for a healthy 21-year old
patient as a function of grid size

5.5 Parameterization of the Model

In this section, we present the sources of the parameters we used to obtain the opti-
mal screening policy given in the next section. Table B.1 presents a comprehensive
list of parameters and associated inputs and sources of the parameters.

The annual transition probabilities were collected from multiple sources with focus
on clinical cohort studies in the literature. In case of multiple inconsistent data,
we obtained an ensemble estimate from pooled weighted data. Monthly rates were
converted to annual and calibrated such that the sum of the probabilities of disease
regression, progression, persistence, and death is equal to one. Marcellusi (2017)
presents a detailed discussion about the calibration of transition probabilities in
Markov models. Campos et al. (2014) and Taguchi et al. (2020) present mathemat-
ical models for the parameterization of the model when the longitudinal data are
available. Gopalappa et al. (2018) present a general methodology for parameterizing
a Markov processes model for cancer onset and progression for the countries where
longitudinal cancer registry data are not available. Transition probabilities in our
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model are age-dependent. This assumption is consistent with observed higher pro-
gression of HPV infection and higher regression of neoplasia including CIN1, CIN2
and CIN3 at younger ages, and higher lesion progression rates at older ages (Man-
delblatt et al., 2002).

For the absorbing states we assume that pW,∅t (s′|s) = 1 if s′ = s∈ Sa, and zero other-
wise. When the test result is negative, transition probabilities follow pH,H−t (s′|s) =
pC,C−t (s′|s) = pW,∅t (s′|s) for s ∈ Sd and s′ ∈ S. For the case of a positive test, it
must be noted that biopsy result will determine the exact state. Practically, pa-
tients for whom the biopsy indicates their states as 2 or 3 are not treated. Even in
case of a treatment, according to Chuck (2010), the partial immunity against high
risk strains remains very low. Therefore, due to the recurrent nature of the disease,
it is reasonable to assume that those patients remain under the routine screening
program. That is, for s ∈ {1,2,3}, pC,C+

t (s′|s) = pC,C−t (s′|s), s′ ∈ Sd ∪{10}. For
states s ∈ {4,5,6}, the patient will transition into s′ ∈ {7,8,9} if she remains alive,
which happens with probability 1−pC,C+

t (10|s). Age-specific cancer incidence rates
were derived from Cancer Institute’s Surveillance, Epidemiology, and End Results
Program (SEER).

We use the observation model given in Table 5.1 to find the observation probabilities
required in our model. We calculate the sensitivity and specificity for both conven-
tional and liquid based cytology by taking the weighted average of values from most
recent studies using an ASCUS+ threshold. Observation probabilities expressed in
terms of sensitivity and specificity are highly variable in the literature and vary in
wide ranges. Therefore, we conduct an extensive study on the sensitivity of our
model results on those parameters. The observation probabilities used in our base
model as well as two scenarios constructed for sensitivity analysis are presented in
Table 5.2 in Section 5.6.

Consistent with the literature, we use quality-adjusted life year (QALY) as the
measure of rewards for each state. QALY captures both the length and quality of
life. Calculation of QALY is done by multiplying a health related quality of life
(hrQOL) score for a specific health state with the length of time spent in that state.
hrQOL is a generic measure of utility for residing in each health state where the
utility is a number between zero (worst health state, i.e., dead) and one (perfect
health state) (de Kok et al., 2018). It is important to note that, mainly in the
literature of cost effectiveness analysis, QALYs refer commonly to the total expected
quality adjusted life years. In our model, our interest is finding yearly basis QALY
scores. When only one year is considered, QALY is equivalent to the utility of being
in each heath state. As such, QALY represents the utility of living one year in each
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relevant health state.

Often, the utility/disutility data reported in the literature is conflicting and vary
widely (de Kok et al., 2018). The estimated disutilities for HPV-related health
outcomes are based on several sources in Balasubramanian et al. (2010); Chesson
et al. (2008); Conway et al. (2012); de Kok et al. (2018); Insinga et al. (2007); Mo
et al. (2017). For a perfectly healthy patient in state 1, it is reasonable to assume
that εt(1) = 0. For the disutility of CIN1, CIN2 and CIN3, we take the weighted
average of the values reported in the literature. For the disutility of the invasive
cancer, we use the average of local, regional, and distant cancer states. The reported
disutility of invasive cancer varies between 0.25 and 0.45 (Kulasingam &Myers, 2003;
Mo et al., 2017). For the base model, we select the following set of disutility scores.
ε0(s) = [0,0.02,0.1,0.13,0.14,0.35]. We assume that the health state disutilities εt(s)
are age-dependent. To model a gradual change, we assume they are increasing every
five years with 0.002 units for s ∈ {2,3,4,5,6}.

In addition to the disutility of living with an infection or lesion, we incorporated the
disutility of screening and disutility of a possible false result into our model. The
disutility of screening may arise from different sources including physical discomfort
during or after the screening procedure or psychological impact observed in forms
of anxiety and distress (Croyle, 1995; Maissi et al., 2005). As such, α(a,z)

t (s) encap-
sulates two types of disutilities. Disutility of discomfort due to screening itself, and
possible disutility due to side effects of a false test result. In the literature, it is com-
mon to express disutility of screening in terms of quality-adjusted days lost (QADL).
In the literature, the reported QADL due to the screening discomfort varies from
a few days up to three weeks. In our analysis, we specify it as ten days. In the
case of a false negative test, false reassurance and delayed treatment lead to disutil-
ity. However, there is no specific enumeration of such disutilities in the literature.
Therefore, in our analysis, we do not include disutility of a false negative. Some
analyses also include disutility associated with a positive screening test result (Kim
et al., 2008). For a false positive test, disutilities are mostly associated with severe
psychological impacts. The disutility of a false positive reported in the literature
varies between 0.02 and 0.048 (Balasubramanian et al., 2010). In our analysis, we
specify it as 0.0411. We also assume that QADL due to true positive is three days.

According to the literature, with increasing age, the risk and side-effects of biopsy
also become more harmful. Wang (2017) suggests that the disutility associated
with biopsy is inversely proportional to the age-specific EQ-5D scores. EQ-5D is a
utility-based measure of health status and is widely used in clinical and economic
evaluation of health care. These scores reflect varying negative impacts of biopsy
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on women’s health at different ages. For EQ-5D scores in case of a cervical cancer,
we use the estimates of Hanmer et al. (2006).

Several studies in the literature reported long term side effects of treating cervi-
cal cancer, including physical and psychological distress, and sexual disruptions
(Greimel et al., 2009; Sun et al., 2005; Wenzel et al., 2005). However, the literature
lacks specific quality adjusted life (QoL) loss due to such complications. In addition
to that, the patient in states s ∈ {7,8,9}, receive different treatment modalities,
making it more difficult to specify numeric disutilities for those states. Therefore,
we use the approach presented by Ayer et al. (2012). Using this method, we obtain
the age-specific mortality for patients treated for cervical cancer from the SEER
data, and we apply the method described by Arias et al. (2019) to convert the
post-treatment death probabilities into age-specific life expectancy. Note that this
approach is only taking the post-treatment life expectancy into account without
considering the quality of life spent in a possible imperfect health state.

The calculation of the terminal stage rewards, i.e., RN (s) for the states s ∈ {7,8,9}
follows the same method explained in lump sum reward section. For the states
s ∈ Sd, we multiply the life expectancy of the population at time N , i.e., 16.7 with
the disutility scores of the relevant health states, εN (s) to obtain the quality adjusted
life years lost for each health state s ∈ Sd. Finally, we subtract them from the age-
specific life expectancy of the population to obtain the age specific quality adjusted
life expectancy (QALE) for the relevant health states.

5.6 Results

In this section, we present the optimal risk-action thresholds for the optimal screen-
ing policy obtained for the parameter settings described above. In addition, we solve
the model under different assumptions for a sensitivity analysis.

5.6.1 Risk-Action Thresholds for an Optimal Screening Policy

Figure 5.6 depicts the optimal testing actions at the set of gridded belief states bt
such that the probability that the patient is healthy, bt(1) = 1− bt(5)− bt(6) and
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bt(2) = bt(3) = bt(4) = 0 for patients at ages 21, 34, 37, 54, 61 and 67. The x-axis in
Figure 5.6 corresponds to the probability of an existing in situ cancer, i.e., bt(5), and
the y-axis shows the probability of invasive cancer, i.e., bt(6). The regions colored
in dark blue correspond to the belief states where the optimal action is to wait and
the light blue regions correspond to the belief states where the optimal action is to
conduct an HPV DNA test. We see that the optimal actions at the plotted belief
states were only wait and HPV DNA test (more discussion on this observation is
included below).

The process of finding the optimal action for a given patient with a certain age
involves finding the belief state of the patient on the corresponding graph. Consider
a 21 year-old patient with an initial belief state, b0 = [0.865,0.135,0,0,0,0]. For this
patient, the optimal action is to wait since her cancer risk falls within the wait region
in Figure 5.6. Her updated risk in the next decision epoch (i.e., at age 22) using
Equation 5.2 will be b1 = [0.8834,0.1047,0.0119,0,0,0], which may possible yield a
different testing action. Progressing in this fashion, we find the next epoch with a
recommended testing action.
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Figure 5.6 Risk-action threshold for cervical cancer screening at different patient
ages

Figure 5.6 allows us to observe how the risk-action thresholds change as a function of
patient’s age. First, note that the testing threshold for invasive cancer risk, i.e., bt(6)
for bt(5) = 0, increases monotonically with age. This is intuitive since the disease
is only expected to get worse after this health state. In comparison, we see the
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risk-action threshold show more interesting behavior on the x-axis, which represents
the in situ cancer risk. The risk-action thresholds provided by the optimal screening
policy is a result of two types of behavior at different ages: (i) annual risk of infection,
(ii) probability of spontaneous regression of CIN1, CIN2 and CIN3 lesions versus
progression to invasive cancer. At younger ages, patients have a higher annual risk
of infection with HPV and probability of infections progressing to a low-grade lesion,
but they also enjoy a higher rate of spontaneous regression of lesions. As patients
age, the risk of infection goes down, but it becomes more likely for existing CIN2 or
CIN3 lesions to progress to invasive cancer. As a result of carefully considering the
trade-off between these two types of behavior, the optimal screening policy allows
us to avoid over-diagnosis (and consequently, over-treatment), which is an ongoing
issue discussed heavily in the literature (Esserman et al., 2013,1).

5.6.2 Sensitivity Analysis

Under what conditions does cytology become preferable?

The assumed parameters of our baseline model imply that cytology is rarely rec-
ommended under the optimal screening policy; among the plotted belief states in
Figure 5.6 cytology was never the recommended testing action.

Recent studies suggest that compared to cytology test, HPV testing finds more
cases of CIN3 or cancer (Schiffman & Solomon, 2013) and provides greater protection
against cervical cancer (Ronco et al., 2014). In addition, Grimes et al. (2020) argued
that HPV testing conducted every five years yielded lower cancer risk compared to
cytology test at every three years. In this regard, our POMDP model generates
screening actions that are consistent with the current literature.

However, it is widely recognized that cytology test is highly subjective and there is
a high variability in detection rates across hospitals. Studies suggest a considerable
proportion of diagnostic errors are attributed to laboratory error that are primarily
influenced by variations in the expertise and procedures of different cytopathology
laboratories (Last & Breslow, 2012). In one study the liquid based cytology spec-
imens were evaluated in four large regional US cytology laboratories in a routine
fashion. Despite the fact that the participants’ age and the prevalence of high risk
HPV positivity were similar between the laboratories, there was a 2.6-fold variation
in the percentage of cytology specimens that were diagnosed as abnormal at the
four laboratories. Same study suggested that in contrast to the large variability
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observed between laboratories in the performance of cervical cytology, variability in
the performance of HPV-DNA testing for the detection of CIN2+ is lower, where the
positive predictive value varied between 10 and 13.2 (Sørbye et al., 2017; Wright Jr
et al., 2014).

Additionally, it is important to note that the accuracy of HPV test depends highly
on the correct sampling of cells. Currently, precisely determined adequate amount
of cells required for DNA analysis has not been established. As a result, due to
the varying HPV loads in the collected samples, the sensitivity of the HPV testing
differs across various laboratories (Coutlée et al., 2005). In addition, HPV DNA
testing is currently more costly. Therefore, countries with lower cytology screening
cost prefer adoption of cytology as the primary screening test (de Kok et al., 2012).

The sensitivity analysis in this section considers such variations in the performance
of both cytology and HPV-DNA testing. A relevant question in such a setting would
be how much of a variation in the sensitivity and specificity of the cytology/HPV-
DNA test would cause cytology testing to be the preferable mode of testing. To
answer this question, we conducted a sensitivity analysis by varying the relevant
assumptions that we used in the baseline model solved above. Specifically, we defined
the following two scenarios.

• Scenario 1: for scenarios with lower accuracy (than baseline) of HPV DNA
testing, we assumed spec(H|1) = 0.820 and sens(H|2) = 0.899.

• Scenario 2: for scenarios with higher accuracy (than baseline) of cytology
testing, we assumed sens(C|3) = 0.803, sens(C|4) = 0.647, sens(C|5) = 0.649,
sens(C|6) = 0.704.

These scenarios are presented in Table 5.2 along with the sensitivity and specificity
parameters used in the baseline model. The values in red are the parameters changed
in comparison to the baseline model.

Table 5.2 Observation probabilities for Cytology and HPV DNA testing

Baseline Model Scenario 1 Scenario 2
s K(C−|s) K(C+|s) K(H−|s) K(H+|s) K(C−|s) K(C+|s) K(H−|s) K(H+|s) K(C−|s) K(C+|s) K(H−|s) K(H+|s)
1 0.895 0.105 0.835 0.165 0.895 0.105 0.820 0.180 0.895 0.105 0.835 0.165
2 0.875 0.125 0.085 0.915 0.875 0.125 0.101 0.899 0.875 0.125 0.085 0.915
3 0.213 0.787 0.106 0.894 0.213 0.787 0.106 0.894 0.197 0.803 0.106 0.894
4 0.366 0.634 0.127 0.873 0.366 0.634 0.127 0.873 0.353 0.647 0.127 0.873
5 0.364 0.636 0.156 0.844 0.364 0.636 0.156 0.844 0.351 0.649 0.156 0.844
6 0.310 0.690 0.201 0.799 0.310 0.690 0.201 0.799 0.296 0.704 0.201 0.799

Figure 5.7 and Figure 5.8 show the corresponding risk-action thresholds for Sce-
nario 1 and Scenario 2, respectively. Not surprisingly, we see that scenarios 1 and
2 result in cytology being the preferred mode of testing, albeit at a very small frac-
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tion of belief states. In particular, our sensitivity analysis shows that specificity of
cytology must be at least 0.90 so that cytology is an optimal action at age 21.
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Figure 5.7 Sensitivity analysis: risk-action threshold for scenario 1
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Figure 5.8 Sensitivity analysis: risk-action threshold for scenario 2

How does the optimal screening policy change with the use of cotesting
(i.e., testing both with HPV DNA and cytology)?

Cotesting is one of the recommended screening modalities by ASCCP and USPSTF
guidelines. With its improved sensitivity and specificity, it allows the patients to
undergo screening at longer intervals (Schiffman & Solomon, 2013). According to
both guidelines, cotesting is recommended at every five year interval. Both guide-
lines recommend HPV standalone testing every five years as well. Considering this
surprising fact, we aim to understand the extent to which cotesting improves the
performance of screening as a result of the increased sensitivity obtained through the
use of both tests. In our analysis, we select maximum of sensitivity and specificity
from either test as the sensitivity and specificity of cotesting, while the rewarding
structure of cotesting remains the same as HPV testing in the base model. The
result of this study for three ages namely 21, 48, and 67 is presented in Figure 5.9.

According to our results, compared to the base model, under the cotesting scenario,
testing region is slightly expanded meaning that over the newly expanded region,
patients with small risks who would have to wait under the base model should now
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undergo cotesting. This property of the cotesting is probably the cost of the addi-
tional accuracy that comes with conducting cytology and HPV tests simultaneously.
It is commonly accepted that a positive result in either arm leads to conducting col-
poscopy or biopsy (Grimes et al., 2020). Therefore, conducting cotesting for patients
without cytologic abnormalities who have positive HPV tests will lead to unneces-
sary follow ups for many cases in which HPV infection would be likely to clear
(Schiffman & Solomon, 2013). Similar to the base model, smaller expansion along
the y-axis implies that, the tolerance of the model against invasive risk is lower
compared to insitu cancer risk independent of the screening tests considered.
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Figure 5.9 Sensitivity analysis: risk-action threshold for cotesting

5.7 Discussion

The real implementation of a POMDP policy follows certain steps which we describe
them in detail in this section. In addition, the outcome of the implementation can
be measured using different performance measures, such as expected number of false
negatives/positives or expected number of screenings. In this section, we also explain
the simulation analysis which we conducted in order to evaluate the performance of
our POMDP model and compare it to the other guidelines or practices.

5.7.1 Risk Stratification and Patient’s Initial Belief, b0(s):

For generating a screening policy, it is important to know that whether a patient at
the time of visit has an oncogenic HPV infection, precancer lesions or cancer. To
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simplify the risk estimation for the patients following routine screening, we assume
that the probability of having lesions or cancer at the time of first visit is negligible.
Therefore, for such patients, we focus only on predicting the risk of an oncogenic
HPV infection. We define risk of infection as the probability that a woman at
the time of visit has already an oncogenic HPV infection or not. Quantifying such
risk depends on various demographic and behavioural variables as well as genetic
biomakers (Ley-Chavez & Higle, 2018). Collectively, such variables are called risk
factors which influence the probability of contracting an HPV infection. The known
demographic risk factors for HPV infection include age, education level, country of
birth, race, below poverty index, and marital status also being a smoker or not and
use of oral contraceptives. The known sexual behavior risk factors include age at
first intercourse, number of lifetime sex partners, number of recent sex partners, and
history of chlamydia, genital herpes, and genital warts (Kahn et al., 2007; Moscicki
et al., 2001; Sellors et al., 2003).

Several studies have addressed the problem of risk estimation for the cervical
cancer patients using the Statistical methods; examples can be found in Castle
et al. (2007); Cheung et al. (2017); Demarco et al. (2018) and Landy et al. (2018).
However, these studies focus on the cancer risk for the patients with an abnormal
test result. In order to calculate infection risk, we use the predictive logistic
regression model of Ley-Chavez & Higle (2018). Let X denote the event that
the patient is infected. We use Pt(X;ω) to denote the likelihood function of the
infection or simply risk for a given set of characteristics ω = {age, marital status,
below poverty index, and number of lifetime partners} at time t. Note that the risk
factors may vary during the patient’s lifetime. We define the following indicator
variables:
I1 = 1 if the patient’s age is 21−29 and 0, otherwise.
I2 = 1 if the patient’s age is 29−69 and 0, otherwise.
I3 = 1 if the patient is not married and not living with a partner and 0, otherwise.
I4 = 1 if the patient is below poverty index and 0, otherwise.
I5 = 1 if the patient’s lifetime number of partners if above 4 and 0, otherwise.

Pt(X;ω) can be computed as follows:

(5.17) Pt(X;ω) = 1
1 + e−y

where y =−1.88−1.094I1−1.29I2 + 0.541I3 + 0.621I4 + 0.577I5.
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Therefore, using Equation 5.17, the initial belief b0 can be approximated as

b0 = [1−Pt(X;ω),Pt(X;ω),0,0,0,0]

Table 5.3 shows the estimates of the initial belief for patients with different risk
factors. Among the cases considered, a patient who is bellow 29, is single and had
more than 4 partners has the highest risk.

Table 5.3 Initial belief based on patient’s risk factors

Patient Age Marital
Status

Below
Poverty Partners>4 Initial Belief, b0

1 21 Single False True [0.865,0.135,0,0,0,0]
2 25 Single False False [0.919,0.081,0,0,0,0]
3 27 Married False False [0.951,0.049,0,0,0,0]
4 43 Single False False [0.933,0.067,0,0,0,0]
5 56 Married False False [0.960,0.040,0,0,0,0]
6 65 Married True False [0.927,0.073,0,0,0,0]

5.7.2 Comparison with other guidelines and practices

We compared the base POMDP model against different set ups using various per-
formance metrics. Table 5.4 summarizes the result of the simulation analysis within
simulated populations of 100000 women. The simulation begins with 21-year-old
healthy patients. The health state transitions are randomly generated using age
dependent transition probabilities from our data. The outcome of each test result is
also generated randomly using the corresponding probability distributions of state
dependent test sensitivity and specificity. As it is shown in the table, in terms
of TQALY, base model achieves the highest value where the improvement over no
screening case and ASCCP guideline amounts to 5.9% and 4.29%. Patients under
the base policy are expected to undergo 14.7 screenings which is the highest amongst
the cases considered. Despite higher frequency of screenings in base model, cotesting
model achieves the minimal lifetime cancer risk, which is a direct consequence of
increased test accuracy, however, the disadvantage of cotesting is that the number
of false cytological results are higher. It can also be observed that cotesting model is
more advantageous in reducing the number of false positives, while ASCCP model
achieves the least number of false negatives, which can be related to the lower num-
ber of screenings compared to base model. The result of the optimal policy in our
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Table 5.4 POMDP vs current guideline: simulation of 100000 21-year-old healthy
-patients

No
screening

ASCCP
guideline

Base
model

Cotesting
model

Healthy patients Expected TQALYs 58.198 58.38 60.266 58.991
Avg. No. of screening - 9.102 14.71 12.756
Avg. lifetime risk of cancer 4.38% 0.4% 0.2% 0.1%
Avg. No. of False Negatives - 0.139 0.23 0.334
Avg. No. of False Positives - 1.22 1.36 0.924

1 On average 3.88 cytology testing is produced.

base case POMDP is presented in the Appendix B. It is important to note that the
policy obtained is different than those recommended by ASCCP guidelines in the
sense that POMDP policies are risk based policies whereas the ASCCP policies are
frequency based policies. According to our optimal policy, patients start the first
screening at age 31, assuming that the patient at age 21 is perfectly healthy. Re-
garding the screening intervals after age 30, our POMDP policy recommends more
aggressive screenings at smaller intervals than ASCCP guidelines.

5.7.3 Conclusion and Future Work

This chapter addressed the problem of identifying optimal screening actions as a
function of a patient’s age and current risk for cervical cancer using cytology and
HPV-DNA testing modalities. For the proposed personalized POMDP model, due
to the larder problem size, we used an approximate solution technique namely grid
based approximation method to solve the problem. We adopted Gaussian process
regression method for inference of unknown values. and showed that the method
can perform significantly faster compared to the other existing methods in the liter-
ature. Using the published studies in the literature, we calibrated our model to the
best available data on age-specific transition probabilities, test accuracy and QALY
scores. After solving our model, we conducted sensitivity analysis and compared
our model results with the current guidelines. Our results, in accordance with the
current practice and recommendations from the guidelines shows that the future of
the cervical cancer screening will be more leaned towards the HPV DNA testing
methods.

The screening policy can be launched on a mobile application or decision support
systems to facilitate the navigation as it has been recently done by ASCCP. The
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tables generated by ASCCP for the risk based follow up and management of patients
are easily read by the users using a simple app and website. This avoids complex-
ity in interpretations and facilitates patient’s involvement into the decision process
Chapman & Sonnenberg (2003).
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6. SUMMARY AND FUTURE RESEARCH

6.1 Summary of Findings

In this thesis, we developed a stochastic sequential decision making model to produce
screening policies for the patients exposed to the risk of cervical cancer. By includ-
ing patient’s characteristics such as age and current risk, our model contributes to
the body of literature in the field of personalized medicine and healthcare decision
making. Considering that the risk of the disease is high during a certain period of
patient’s lifetime, within this period, our model aims to inform the patient about
whether to screen or to wait until next year.

The sequentially made decisions are subject to two types of uncertainties: the un-
certainty about the health state of the patient when she visits a physician, and the
uncertainty about true outcome of the test. To model this problem, due to uncertain
nature of the health state and the unreliability linked to the test results, we used
a discrete time finite horizon POMDP model. The advantage of using this model
is that first, the decision maker does not need to record the history of the action
(i.e., test or wait) and observation (i.e., test negative or test positive) sequences.
Second, the model has the capability to use the disease specific information of the
patient such as age or risk factors, as well as the performance metrics of the test
used to screen the patient to make better decisions. Better decisions in our model
correspond to decisions which maximize the number of healthy-years that the pa-
tient is expected to live. More specifically, one year living a relatively poor health
state is not equal to one year living in perfectly healthy state. These differences are
reflected in the QALY metric. Through our POMDP model, using DP iterations,
we pick actions such that the expected total QALY values over the planning horizon
is maximized.
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Our results in Chapter 4 suggest that early screening and detection is critical to
reducing the future cancer risk. As we show by one instance, lifetime cancer risk
reduction due to early start to screening outweighs additional screenings required.
Our analysis of the impact of the patient’s risk profiles on the screening frequency
and the five-year average risk of cancer shows that the screening frequencies are
not proportionate to the cancer risk. For instance, 20% higher cancer risk does
not translate to the same percentage of increase in the screening frequencies. Addi-
tionally, we showed that performing more aggressive screenings does not necessarily
lead to higher total QALY gains which can be attributed to the fact that excessive
testing increases the chance of false positive results, which in turn reduces the life
quality of the patient due to unnecessary follow ups and decreases the reliability of
the policy. Our analysis of lifetime cancer risk exhibits that cancer risk is reduced
with the increase in the number of screenings. Consequently, the POMDP policy has
a slightly higher risk, which can be explained by the lower number of screening tests
compared to most of the practices considered. It is important to point out that, low
frequency implies that the screening interval are longer, and therefore, the cancer
risk increases meaning that the policies with longer screening intervals including the
POMDP policy lead to higher risks. Another important observation made in risk
analysis is that the policies that start their first screening later in time, end up in
relatively similar risk when the patient reaches the end of planning horizon. This
rather peculiar behavior can be attributed to the fact that a cotesting with negative
outcome hugely impacts our belief that the patient is healthy in reality.

In Chapter 5, we showed that screening with HPV-DNA testing outperforms cytol-
ogy testing. This is an important observation since many recent studies reported
that cytology testing will be replaced by the HPV-DNA testing in relatively short
time (Bhatla & Singhal, 2020; Fontham et al., 2020; Vale et al., 2021). Our re-
sults also suggest that, adding a cytology test as an adjunct to HPV-DNA testing
(cotesting) results in similar risk-action threshold policies. This implies that the
added value of conducting cotesting is negligible compared to HPV-DNA testing.
This finding suggest that the HPV-DNA testing can be safely used as a stand-alone
test without compromising from the patient’s quality adjusted life expectancy.

It is important to note that, our POMDP model can be easily manipulated to
address the sub-populations with health disparities or those linked with economic
or social disadvantage. Another advantage of the POMDP model is its flexibility
to consider settings in which the prevalence of the disease is different. In case of a
different infection rate for such special groups, the POMDP model can be adjusted
to include transition probabilities. This enables a more tailored screening plan and
therefore, more reliable policies for such sub-populations.
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Finally, the policies presented in this research can be framed into policy trees (as
shown in Figure B.3 in the appendix) or in more advanced forms such as spreadsheets
or applications which are intuitive to understand and hence, facilitate interpretation
of the policies for both physicians and patients. By this means, patients have a better
understanding of their health and as a consequence, they can be more involved in
the process of shared decision-making.

6.2 Limitations

While our model is useful for finding personalized screening decisions, it is important
to consider the limitations of our analysis. One limitation of our study is the diversity
of the required input data sources. The inputs in our numerical analysis are obtained
from various published studies in the literature. In addition, due to the complexity
of conducting longitudinal studies, long-term data about the health transitions and
activities of an individual are rarely available in the literature. The majority of the
studies reporting inputs are cross-sectional studies where the inputs are outcomes
of short-term observations. Therefore, it is necessary to carefully analyze the model
outputs. To do so, we conduct sensitivity analysis on the parameters of the model
including sensitivity and specificity values associated with the screening tests to
measure the robustness of the model performance. Another limitation of our study
is that we do not provide sensitivity analysis for the transition probabilities.

Furthermore, implementing national screening programs is a multifaceted problem
that will require among others resource availability, trained personnel, government
initiative to set up the framework, and aid of insurers and stakeholders. In a real
setting, some of these players may have discordant objectives. For instance, insurers
or third-party payers who intend to regulate the coverage with minimum cost, may
be unwilling to support a specific screening plan. Therefore, a crucial point to
acknowledge is that while in many developed countries, the cost is not much of a
concern for screening decision making, in many less developed countries, cost is still
an important factor for such decisions. One of the principles in the guidelines on the
principles and practice of screening for disease published by WHO in 1968 states
that the total cost of detecting a case should be economically balanced with the
medical expenditure as a whole. This principle clearly highlights the significance
of considering cost aspect of screening policies that can not be disregarded (Edoh
et al., 2018). It is therefore important to assess the model outputs when the cost of
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screening is also included as a parameter into the model.

6.3 Directions for Future Research

As a future work, this study can be extended in multiple ways. One is to explore
the possible existence of overdiagnosis/undertreatment and its effect on the patient’s
quality adjusted life expectancy. Due to the variations in the incidence rate of the
HPV among sub-populations of a community, it is likely that certain subgroups
receive unproportional screening or treatment compared to what is required. It
is well established that the incidence rate of the disease among populations with
insufficient access to healthcare services are significantly higher than those with
enough access to the medical resources. For example, in the United States, Hispanic
women have the highest cervical cancer incidence rate, which is considerably higher
than the national incidence rate. While this study uses the average incidence rate for
the whole population, it is important to acknowledge that subgroups representing
the incidence rates above or below the population average will not receive their best
possible screenings. Therefore, adjusting the POMDP model to account for such
differences leads to creating policies which fit best to the needs of subgroups with
their specific risk profiles.

Additionally, according to the literature, there is no consensus on whether treating
patients with cervical intraepithelial neoplasia of grade 2 (i.e., CIN2) is reasonable
or not. A number of studies have maintained that many of the CIN2 cases will
regress without the need for any treatment. It is therefore possible that treating
patients in state CIN2 may lead to overdiagnosis, while otherwise, they would have
regressed without treatment intervention. Hence, further analysis is required to
study the health outcome of one option against another.

As an extension to the current study, we also aim to address the possible effect of
the GPR errors on the optimal policy. Making predictions from a Gaussian pro-
cess regression model with known covariance function requires huge computational
power for the problems with too many data points, which is the case in this study.
In problems with the larger number of test points requiring Gaussian inference,
computing the inverse of the kernel covariance matrix becomes intractable. Many
attempts have been made to accelerate the computational process for the fitting
and especially for the kernel approximations. However, using kernel approximation
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methods increases fitting errors. Depending on the magnitude of the error, the
optimal decision may vary from one action to another, which accordingly impacts
the future actions. Therefore, we believe that it is required to study the potential
influence of fitting errors on the optimal policy, that will contribute to the richness
of the current study.
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APPENDIX A

Source of Inputs Used in Chapter Four

The primary source of inputs in our model is the literature of cervical cancer, which
is summarized in Table A.1.

Table A.1 Source of model parameters.

Parameter Source

State transitions JC et al. (2016), Campos et al. (2014)
Sensitivity and specificity of cotesting JC et al. (2016)
Probability of cancerous death JC et al. (2016)
Probability of noncancer death McLay et al. (2010)
Disutility of Biopsy Velanovich Velanovich (1995), Hanmer et al. (2006)
Survival rates SEER data Siegel et al. (2019)
Life expectancy SEER data Siegel et al. (2019)
Quality of life US life tables Arias et al. (2019)

Based on the method explained in Arias et al. (2019) and the US life tables, we
use the following terminating rewards in our calculations; rT (1) = 11, rT (2) = 11,
rT (3) = 9.75, rT (4) = 10, rT (5) = 10, rT (6) = 0. The method estimates the age-
specific life expectancy based on the current state and mortality rate. According to
the table, the life expectancy of a patient at age 69 who is in state 1 is 11 years.

For the cotesting action, we use the following scores as the disutility in our model.
One day for a negative test result, two weeks for a true positive test result and four
weeks for a false-positive test result. We assume the initial disutility of doing biopsy
is 2 weeks Ayer et al. (2012), which is increasing over time, meaning that disutility
of biopsy for older patients is higher. This is mainly due to the increased risk of
adverse side effects of biopsy in older ages. We assume that the disutility associated
with biopsy is inversely proportional to the age-specific EQ-5D scores, a utility-based
measure of health status widely used in clinical and economic evaluation of health
care. These scores reflect varying negative impacts of biopsy on women’s health
at different ages. We use the estimates of Hammer et al. Hanmer et al. (2006).
Table A.2 summarizes the age-specific EQ-5D scores and our estimates of disutility
of biopsy.

Similar to the approach proposed by Ayer et al. Ayer & Chen (2018), we use the
age-specific post cancer mortality rates from SEER data and apply the method
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described in Arias Arias et al. (2019) to calculate these rewards. The mortality
rate data in SEER is reported based on the cancer stage of localized, regional and
distant. According to our definition of states in our Markov chain, those stages
are part of our cancer state 3. Hence, we combine all those stages into one stage.
Table A.3 summarizes the data related to the test characteristics used in our model.

Table A.2 Age dependent disutility of biopsy.

Age Group 20–29 30–39 40–49 50–59 60–69 70–79 80–89

EQ-5D values 0.913 0.893 0.863 0.837 0.811 0.771 0.724
Disutility of biopsy (weeks) 2 2.04 2.12 2.18 2.25 2.37 2.52

Table A.3 Data related to test characteristics and observation probabilities.

Age Sens(CT,2)Sens(CT,3)
Specificity
CIN3+
Threshold

kCT (CT −|s) kCT (CT + |s)

States

1 2 3 1 2 3

21–69 0.625 0.991 0.991 0.991 0.375 0.009 0.009 0.625 0.991
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APPENDIX B

Uniform Grid Generation

Freudenthal algorithm, (Lovejoy, 1991a): Let S denote the set of states in
the Markov chain. Suppose |S| = n. Let q be any positive integer representing
the desired resolution. Form the set V of all vectors v such that v(1) = q and
v(1)≥ v(2)≥ ·· · ≥ v(n)≥ 0.

V can be represented as

V =
{
v ∈ In+|v(1)≥ v(2)≥ ·· · ≥ v(n)

}
It is easy to verify that the cardinality of set V, denoted as |V| is given by,

|V|=
(
q+n−1
n−1

)

Define the n×n nonsingular matrix

Q =



1 −1 0 0 0
0 1 −1 0 0
0 0 1 · · · 0 0

...
0 0 0 · · · −1 0
0 0 0 1 −1
0 0 0 0 1


Then, for any v ∈ V,

Qv = (v(1)−v(2),v(2)−v(3), · · · ,v(n−1)−v(n),v(n))

Let v′ = Qv. Form the set V′ of all vectors v′,

V′ =
{
v′ ∈ Iq+|q =

n∑
i

v′(i)
}

For any v′ ∈ V′, the grid point π = 1
qv
′, where π = (π(1),π(2), · · · ,π(n)).
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The set of all grid points Π formed in this way can be represented as,

Π = {π = 1
q
v′|v′ ∈ V′,

n∑
i

π(i) = 1,π(i)≥ 0}

Example:

As an illustration, consider the case when the MC has 3 states and the desired reso-
lution q = 2. The set V is composed of the vectors: v1 = (2,2,2)ᵀ,v2 = (2,2,1)ᵀ,v3 =
(2,2,0)ᵀ,v4 = (2,1,1)ᵀ,v5 = (2,1,0)ᵀ,v6 = (2,0,0)ᵀ.

Multiplying the 3×3 matrix

Q =


1 −1 0
0 1 −1
0 0 1



with the vectors v ∈ V, results in set V′ with the vectors: v′1 = (0,0,2)ᵀ,v′2 =
(0,1,1)ᵀ,v′3 = (0,2,0)ᵀ,v′4 = (1,0,1)ᵀ,v′5 = (1,1,0)ᵀ,v′6 = (2,0,0)ᵀ.

Therefore, the grid set Π has the following grid points obtained by multiplying
1/2 with the vectors v′ ∈ V′: π1 = (0,0,1)ᵀ,π2 = (0,0.5,0.5)ᵀ,π3 = (0,1,0)ᵀ,π4 =
(0.5,0,0.5)ᵀ,π5 = (0.5,0.5,0)ᵀ,π6 = (1,0,0)ᵀ. Notice that the set Π has the same
cardinality as V.

Figure B.1 illustrates the transformation of the vectors in set V into grid points in
set Π.

𝑥

𝑦

𝑧

(0,1,0)

(0,0,1)

(1,0,0)

(2,2,0)

(2,2,2)

(2,0,0)

(2,2,2)

(2,0,0) (2,2,0)

(1,0,0)

(1,0,0)(0,1,0)

Figure B.1 Uniform grid generation using Freudenthal algorithm.
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Figure B.2 Probability tree and decision process with actions wait (w), cytology
testing (C), and HPV-DNA testing (H).
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Source of Inputs Used in Chapter Five

Table B.1 Parameters used in the model and the sources

Parameter Base Score Source

Transition probabilities1

Progression from HL to IF Mandelblatt et al. (2002)
Bergeron et al. (2008)

20-24 years 0.088
25-34 years 0.059
35-49 years 0.050
50-64 years 0.034
65+ years 0.0053

Regression from IF to HL Kulasingam et al. (2012)
15-24years 0.7 Insinga et al. (2011)
25-29years 0.5
30-39years 0.25
40-49years 0.15
50+ years 0.05

Progression from IF to C1N Mandelblatt et al. (2002)
20-24 years 0.088
25-34 years 0.059
35-49 years 0.050
50-64 years 0.034
65+ years 0.0053

Regression from C1N to HL Bergeron et al. (2008)
12-24 years 0.4666 Insinga et al. (2011)
25–29 years 0.3333
30–39 years 0.2666
40–49 years 0.18
50+ years 0.0666

Regression from C1N to IF Mandelblatt et al. (2002)
20-24 years 0.088 Insinga et al. (2011)
25-34 years 0.059
35-54 years 0.050
50-64 years 0.034
65+ years 0.0053

Progression from C1N to C2N Bergeron et al. (2008)

continued
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Parameters used in the model and the sources

Parameter Base Score Source

16–34 years 0.0297
35+ years 0.1485

Progression from C1N to C3N Bergeron et al. (2008)
all 0.0301

Regression from C2N to HL Kulasingam et al. (2012)
20-24years 0.0213 Insinga et al. (2011)
25-29 years 0.0144
30+ years 0.015
Regression from C2N to IF Myers et al. (2000)
20-24years 0.0870
25-29 years 0.0939
30+ years 0.0933
Regression from C2N to C1N Kulasingam et al. (2012)
20-24 years 0.0213
25-29 years 0.0144
30+ years 0.015

Progression from C2N to C3N Bergeron et al. (2008)
16–34 years 0.0389
35–44 years 0.0797
45+ years 0.1062

Regression from C3N to HL Kulasingam et al. (2012)
20-24years 0.0087
25-29 years 0.0156
30+years 0.015
Regression from C3N to IF Myers et al. (2000)
20-24years 0.0496
25-29 years 0.0427
30+ years 0.0433
Regression from C3N to C1N Kulasingam et al. (2012)
20-24 years 0.0087
25-29 years 0.0156
30+ years 0.015

Regression from C3N to C2N Bergeron et al. (2008)
all 0.0135

Progression from C3N to IC Campos et al. (2014)

continued
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Parameters used in the model and the sources

Parameter Base Score Source

21 – 29 years 0.0464 Mandelblatt et al. (2002)
30 – 34 years 0.0557 Kulasingam et al. (2012)
35 – 39 years 0.0603 Armstrong & Guest (2020)
40 – 44 years 0.1299
45 – 49 years 0.1392
50 - 54 years 0.1488
55 - 59 years 0.1526
60 - 64 years 0.1614
65+ years 0.1697

Persistence 7 (?) Complementary prob.
Age- and sex-specific average
annual all-cause mortality Mandelblatt et al. (2002)
20–24 years 1.3 per 1000
25–29 years 1.6
30–34 years 1.6
35–39 years 1.9
40–44 years 2.5
45–49 years 3.6
50–54 years 2.5
55–59 years 7.2
60–64 years 11.6
65–69 years 17.5
70+ 69.5

Age-specific average annual
invasive cancer mortality
(% per year)2 Insinga et al. (2009)
15–29 years 16 per 100 Campos et al. (2014)
30–39 years 16.83
40–49 years 19.5
50–59 years 21.57
60–69 years 25.47
70+ 36.83

Sensitivity
Cytology Insinga et al. (2009)

Chuck (2010)

continued
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Parameters used in the model and the sources

Parameter Base Score Source

de Kok et al. (2012)
Mandelblatt et al. (2002)

C1N 0.787 Solomon et al. (2001)
C2N 0.634 de Kok et al. (2018)
C3N 0.636 Termrungruanglert et al. (2018)
IC 0.690 Pista et al. (2019)

HPV-DNA testing de Kok et al. (2018)
IF 0.915 Mandelblatt et al. (2002)
C1N 0.894 Pista et al. (2019)
C2N 0.873 Chuck (2010)
C3N 0.844 Solomon et al. (2001)
IC 0.799 Ley-Chavez (2012)

Specificity Ley-Chavez (2012)
Cytology Mandelblatt et al. (2002)
HL 0.895 Chuck (2010)
IF 0.875 de Kok et al. (2018)

HPV-DNA testing Ley-Chavez (2012)
Mandelblatt et al. (2002)

Chuck (2010)
de Kok et al. (2018)

HL 0.835
Disutilities

Health specific disutility εt(s)
IF 0.02
C1N 0.1 Marcellusi (2017)
C2N 0.113 Insinga et al. (2007)
C3N 0.13 Marcellusi (2017)
IC 0.2

False positive5 0.041
QADL6

Screening
Cytology 10 days
HPV DNA 10 days

True positive34 3 days
Biopsy Hanmer et al. (2006)

continued
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Parameters used in the model and the sources

Parameter Base Score Source

20-29 years, EQ-5D = 0.913 2 weeks
30-39 years, EQ-5D = 0.893 2.04 weeks
40-49 years, EQ-5D = 0.863 2.12 weeks
50-59 years, EQ-5D = 0.837 2.18 weeks
60-69 years, EQ-5D = 0.811 2.25 weeks
70-79 years, EQ-5D = 0.771 2.37 weeks

1 All transition probabilities in the table (except mortalities) are multiplied by (1
- annual probability of death), so that sum of the transition probabilities is 1.

2 Average of LCC, RCC and DCC which stand for local, regional and distant
cervical cancer respectively.

3 C− in states {3,4,5,6} or H− in states {2,3,4,5,6}
4 C+ in states {3,4,5,6} or H+ in states {2,3,4,5,6}
5 C+ in state {1,2} or H+ in state {1}
6 Quality adjusted days lost
7 (?) Persistence =

[
(1− (regression + progression)

]
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Graphical Representation of The Optimal Policy

Figure B.3 Policy obtained by POMDP model
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