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ABSTRACT

PREDICTING SUPPLY CURVE OF ELECTRICITY IN AN INTRA-DAY
MARKET USING STATE-SPACE MODELS AND SEQUENTIAL MARKOV

CHAIN MONTE CARLO METHODS

MOHAMMAD KHALAFI

Industrial Engineering, Master’s Thesis, July 2021

Thesis Supervisor: Asst. Prof. Dr. Sinan Yıldırım

Keywords: Monte Carlo methods, Electricity market, Hidden Markov models,
Sequential Markov chain Monte Carlo, Supply curve

In a free market, the price of a commodity is based on the relation between demand
and supply. There is no exception in the case of the electricity market. Power com-
panies use various load forecasting techniques to predict how much supply will be
needed for a particular amount of demand. In the market equilibrium where demand
and supply curves intersect, the price of a given commodity is realized. However,
due to the special characteristics of the electricity market, daily and hour-by-hour
prediction of the electricity price is more important. In this study, we will predict
the daily supply curve of the electricity market in Turkey. These predictions are for
each hour of the day. We have developed a hidden Markov model (HMM) to predict
the supply curve in an intra-day market. The most popular approaches in dealing
with the hidden Markov models or state-space models are sequential Monte Carlo
methods (SMC) which are called particle filtering methods. However, in the case of
high-dimensionality, standard particle filtering algorithms fail and are not efficient.
In our article, the latent variables of the model are approximated by a sequential
Markov chain Monte Carlo (SMCMC) method, which is an innovation in load fore-
casting, especially when dealing with a high-dimensional problem. We propose two
different kernels for our algorithm to sample from the target distribution. Moreover,
we use an expectation-maximization (EM) algorithm to update the hyperparame-
ters of the model, such as the variances of latent variables and observations in our
hidden Markov model.
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ÖZET

DURUM-UZAY MODELLERİ VE SIRALI MARKOV ZİNCİRİ MONTE CARLO
YÖNTEMLERİ KULLANILARAK BİR GÜN İÇİ PİYASADA ELEKTRİK ARZ

EĞRİSİNİN TAHMİN EDİLMESİ

MOHAMMAD KHALAFI

Endüstri Mühendisliği, Yüksek Lisans Tezi, Haziran 2021

Tez Danışmanı: Asst. Prof. Dr. Sinan Yıldırım

Anahtar kelimeler: Monte Carlo yöntemleri, Elektrik piyasası, Saklı Markov
modelleri, Sıralı Markov chain Monte Carlo, Arz eğrisi

Serbest piyasada, bir malın fiyatı arz ve talep arasındaki ilişkiye dayanır. Elek-
trik piyasasında bir istisna yoktur. Enerji şirketleri, belirli bir talep miktarı için ne
kadar arzın gerekli olacağını tahmin etmek için çeşitli yük tahmin teknikleri kul-
lanır. Talep ve arz eğrilerinin kesiştiği piyasa dengesinde, belirli bir malın fiyatı
gerçekleşir. Ancak elektrik piyasasının kendine has özelliklerinden dolayı elektrik
fiyatının günlük ve saatlik tahmini daha önemlidir. Bu çalışmada Türkiye elektrik
piyasasının günlük arz eğrisi tahmini yapılacaktır. Bu tahminler günün her saati
içindir. Bir gün içi piyasada arz eğrisini tahmin etmek için bir saklı Markov Modeli
geliştirdik. Saklı Markov Modelleri veya Durum-Uzay modelleri ile ilgili en popüler
yaklaşımlar, parçacık filtreleme yöntemleri olarak adlandırılan Sıralı Monte Carlo
yöntemleridir. Ancak yüksek boyutluluk durumunda standart parçacık filtreleme
algoritmaları başarısız olur ve verimli olmaz. Makalemizde, Modelin saklı değişken-
leri, özellikle yüksek boyutlu bir problemle uğraşırken yük tahmininde bir yenilik
olan Sıralı Markov chain Monte Carlo yöntemi ile tahmin edilmektedir. Algorit-
mamızın hedef dağılımdan örneklenmesi için iki farklı çekirdek öneriyoruz. Ayrıca,
saklı Markov modelimizde saklı değişkenlerin varyansları ve gözlemler gibi modelin
hiper parametrelerini güncellemek için bir beklenti-maksimizasyon algoritması kul-
lanıyoruz.
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1. INTRODUCTION AND LITERATURE REVIEW

Electricity price prediction has increasingly become one of the fundamental aspects
for the companies to set their strategies. Despite some differences in electricity pric-
ing, the nature of load forecasting stems from the relationship between supply and
demand curves. These two curves are not necessarily dependent on each other, and
multiple factors can affect each curve. Some factors that can influence the demand
and supply of electricity can be temperature, prices of other energy resources, life
quality of the population, solar radiation, wind speed, level of technology in the
energy and electricity industry, and special days. The way these factors cause the
demand and supply is not the same. For example, on holidays, electricity generation
slows down, but the energy demand may increase.

In this thesis, we will focus on the daily supply curve of electricity for each hour. In
the electricity market, the supply curve is obtained by summating the supply curves
of different energy sources. We can mention some energy resources: solar power,
wind energy, fossil fuels, thermal energy, steam turbines, tidal energy. In this study,
we have broken down the supply curve of energy into six different resources. We
developed a piece-wise linear function for each resource where each source’s supply
curve depends on some latent variables in a hidden Markov model. The latent
variables of the HMM are approximated by a sequential Markov chain Monte Carlo
algorithm. An expectation-maximization algorithm estimates the hyperparameters
of the model.

1.1 Scope of the research and contribution

As we will discuss in the literature review, most of the works in electricity price
forecasting (EPF) are done using artificial neural networks (ANN). However, to the
best of our knowledge, we are using a novel method in dealing with load forecasting

1



problems. In addition, our model uses many parameters that capture the character-
istics of the electricity supply curve. These factors can contribute to better resource
prediction. However, having a lot of factors can cause some problems. To tackle
these problems, we incorporated an SMCMC method which can reduce these issues
in the approximation. Moreover, we presented two different approaches in our SM-
CMC algorithm. In the first approach, we use Metropolis-Hastings (MH) moves for
the updates of the algorithm, and in the second approach, we use a combination of
Gibbs and MH moves in our algorithm steps. We will mention some of the related
works that tend to predict the price of electricity by using various methods. Just a
few of them use a prediction based on Monte Carlo methods, and none of them used
an SMCMC method where the dimensionality of the model is high. In the following,
we will elaborate on some of the popular techniques that are used for EPF.

The rest of the thesis is organized as follows: In Chapter 2, we will give an overview
on Monte Carlo methods. In Chapter 3, we will introduce the hidden Markov
models and some of the approaches to approximate the latent variables. Chapter 4
will discuss the model which we developed for the supply curve as the summation
of supplies from 6 different resources and a constant value which will be added to
that summation. In this chapter, we will also mention the results for two different
scenarios, and lastly, we will state our conclusion about the thesis and related future
researches on this subject in Chapter 5.
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1.2 Literature review

1.2.1 Time frame

Load forecasting is the predicting of electrical power required to meet the short-term,
medium-term or long-term demand. The forecasting helps the utility companies in
their operation and management of the supply to their customers. In the literature
electricity price forecasting is broken into three categories:

• long-term forecasting

• mid-term forecasting

• short-term forecasting

Long-term forecasting is aimed for planning purposes [Hong, 2014]. Spatial load fore-
casting determines how the electricity market will develop and is used for transmis-
sion and distribution planning. After companies’ focus on operational performance,
short-term forecasting started to grow gradually [Hong et al., 2020]. Besides, due
to the difference between the electricity market and other commodities, short-term
forecasting has a particular interest for the companies. Unlike the other commodi-
ties, the electricity market spot price is a day-ahead market and is not continuous.
The reason behind this is that the system operators require advance notice to make
sure that the schedule is feasible [Weron, 2014]. In the literature, there are some
works related to mid-term forecasting. Compared to the short-term electricity mar-
ket clearing price (MCP), there have been few works for the mid-term forecasting
(from one month to 6 months) of electricity MCP. The main difference between
short-term forecasting and mid-term forecasting is that in the latter one, we cannot
use the trends from the immediate past, while it is the case in short-term forecasting.
However, in the midterm forecasting of the electricity MCP, because of the unavail-
ability of data from the immediate past, locating the peak prices becomes extremely
difficult [Yan & Chowdhury, 2015]. As we mentioned earlier, the short-term frame-
work is much more extensive than other time frames in the probabilistic approach.
One of the popular papers that concentrates on short-term load forecasting is Hong
[2010] where the techniques, the variables being used, and the representative work
being done by several major research groups are discussed. In the long-term time
frame, we can allude to other works such as Hong et al. [2013] where we can see
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a linear regression model for a short-term time frame augmented with a macroe-
conomic indicator in a probabilistic approach. The results showed that the models
based on hourly data had smaller forecasting errors than those found on monthly or
daily data.

To sum up, due to the regulation and the particular structure of the electricity
market, price forecasting has attracted much interest, and most of the work has
been done in the short-term time frame.

1.2.2 Energy resources prediction

The most critical resources in our model to generate electricity are wind, solar
radiation, hydro, coal (imported, domestic), and gas.

To investigate wind power, we have to study wind speed as a dominant factor.
One paper that takes the irregularity of the wind speed into account and presents
the forecasting techniques for the wind speed, such as statistical methods, ANN
approaches, and hybrid techniques for different time frames is Soman et al. [2010].
Moreover, there is another paper about wind power prediction focused on short-term
forecasting for three decades. In this paper, the two schools of thought (statistical
and physical) are used simultaneously [Costa et al., 2008]. As we mentioned before,
wind power had been studied in two different approaches. These approaches are
statistical and physical. However, in recent papers, these two approaches have been
considered together. ANN, as one of the popular approaches, has been used again
for the wind power prediction in the electricity market [Filik & Filik, 2017]. Time
series analysis and Kalman filter algorithm are another approaches to estimate wind
speed [Pan et al., 2008].

The significant improvement in solar power estimation started in early 2010. Inman
et al. [2013] provide a comprehensive study of solar forecasting and provides some
successful applications of solar forecasting methods for both the solar resource and
the power output of solar plants. Camera-based or satellite-based data are used for
solar prediction in works such as Hammer et al. [1999]; Jang et al. [2016]; Lorenz
et al. [2004]. Filik et al. [2017] used a polynomial model and minimum least square
optimization method for predicting solar power for three different parts of the day
(Morning, noon, night). In the literature, there are other approaches such as time
series or fuzzy methods to predict the solar power [He et al., 2019; Jang et al., 2016].
However, the most common approach to forecast solar energy is ANN again [Prema
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& Rao, 2015].

The next resource that is taken into account in our study is hydropower. This re-
source has a significant role in the electricity market of the countries that do not have
abundant petroleum and natural gas resources. In Turkey, due to the high potential
for using hydropower, it has attracted a lot of attention [Yuksek et al., 2006]. Mon-
teiro et al. [2013] proposes a novel method named H4C for hydropower estimation
for small hydropower plants. Statistical approaches are used to estimate hydro-
electric power. For example, AR, ARIMA, and ARIMAX bivariate approaches are
utilized in hydroelectric power application [Barzola-Monteses et al., 2019]. Johnsen
[2001] uses hydro inflow, snow, and temperature conditions to explain spot price
formation. Since the significant resource for electricity production is hydropower in
Scandinavia, much of the studies have been there. Vehviläinen & Pyykkönen [2005]
created a stochastic multi-factor model that takes into account the hydro flow and
snow-pack developments.

The spot price in the electricity market depends on many factors such as temper-
ature, winds speed, solar radiation and snow level. The other factor that plays a
significant role in electricity price forecasting concerns fuel-related factors such as
gas price and coal supply, including imported coal and domestic coal. The fuel-
related factors are the factors where the regulations play a more important role and
depend on how the regulations are acting in the market. This factors are mostly
considered as fuel price and its impact on electricity prices [Aggarwal et al., 2009;
Fan et al., 2007; Li et al., 2005].

1.2.3 Modeling approaches

To start with, we want to consider two main papers, Weron [2014] and [Hong et al.,
2020], for our classification of the approaches. Therefore, here is our outline for the
classification:

a. Multi-agent and fundamental approaches: These two categories are dif-
ferent. However, since they are less popular than other approaches, we merged
them into one category. Multi-agent approaches mainly consist of agent-based
simulation methods. The agents (companies) interact with each other to come
to an equilibrium in supply and demand. Fundamental (structural) methods
describe the price dynamics by modeling the impacts of significant physical
and economic factors on the price of electricity.
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b. Reduced-form (quantitative, stochastic) models: They characterize the
overall statistical characteristics of electricity prices over time, focusing on
derivative valuation and risk analytics.

c. Statistical and probabilistic approaches: They involve the direct appli-
cation of statistical techniques in the electricity market. Moreover, they use
econometric models in the context of electricity price forecasting.

d. Computational intelligence techniques: They combine elements of learn-
ing, evolution, and fuzziness to create approaches capable of adapting to com-
plex dynamic systems. Machine learning and deep learning methods are some
examples of these techniques.

1.2.3.1 Multi-agent and fundamental models

Multi-agent approaches are typically used for long-term and mid-term EPF. Equi-
librium approaches may be viewed as generalizations of cost-based models with
strategic bidding assumptions.The Nash-Cournot framework and supply function
equilibrium are examples of these approaches. On the other hand, the increasingly
popular adaptive agent-based simulation techniques can address features of elec-
tricity markets that static equilibrium models ignore. Agent-based computational
economics has become a widely accepted approach to solving both theoretical and
practical problems in energy economics [Guerci et al., 2010; Sensfuß et al., 2007;
Kowalska-Pyzalska et al., 2014].

Agent-based simulations present many flexible tools where this feature can be con-
sidered an advantage and a disadvantage at the same time. We consider this freedom
as a weakness because it needs all the assumptions in the simulation to be justified.

Fundamental models try to capture the primary physical and economic relationships
present in the production and trading of electricity. Besides, other approaches such
as non-linear programming and dynamic programming approaches use these fun-
damental factors in their EPF [Gonzalez et al., 2011; Karakatsani & Bunn, 2008;
Kristiansen, 2012].
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1.2.3.2 Reduced-form approaches

These approaches aim to capture the main features of the daily electricity market
rather than having an accurate prediction for each hour. Reduced-form models
generally do not forecast hourly prices precisely. Still, they are expected to recover
the main characteristics of electricity spot prices, most of the time at the daily time
scale. Such models provide a simplified yet reasonably realistic picture of the price
dynamics and are commonly used for derivatives pricing and risk analysis [Benth
et al., 2008; Eydeland & Wolyniec, 2002].

1.2.3.3 Statistical and probabilistic approaches

Reduced-form models are good at derivatives valuation and risk analytics. How-
ever, a model’s simplicity can be a serious drawback. Statistical methods forecast
the current price by previous or current values of exogenous factors, typically con-
sumption and production figures, or weather variables in additive or multiplicative
forms. Statistical models are attractive because some physical interpretation may
be attached to their components, which is interesting for the system operators and
engineers.

Probabilistic forecasts can be mentioned in the forms of distributions, intervals,
etc. Generally, these approaches are done by point forecasts which are discussed
in Gneiting [2011]. Among all of the resources used in electricity production, wind
forecasting is the pioneer in using a probabilistic approach. To summarize the
popular models in the context of statistical and probabilistic methods, we can refer
to the regression models, autoregressive (AR) time series models, ARX time series
models, GARCH models. Since our model uses a statistical approach, we will delve
into this approach in the following section in a more specific manner.
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1.2.3.4 Computational intelligence approaches

Recent developments in artificial intelligence (AI) and machine learning (ML) ap-
proaches have made this field more popular than before. Expert systems, ANN, and
genetic algorithms are some examples of these approaches [Metaxiotis et al., 2003].
Machine learning techniques allow us to use a large amount of data in our decision
processes. In energy and electricity, these algorithms and methods will enable us
to predict when we need more power and give us this chance to adapt our energy
policies. Various ML and AI algorithms such as reinforcement learning and deep
learning have been adopted in energy forecasting. Each of these methods has some
advantages and disadvantages. For example, the deep learning methods require a
lot of time and are much more complex than the regression method. Moreover,
deep learning methods are dependent on the computational power and the amount
of collected data. Support vector regression is utilized to perform classifications
in datasets whose output variable is continuous. Kavaklioglu [2011] developed a
method based on support vector regression to predict the consumption of energy in
Turkey. It made a model of each variable such as gross national product, imports
and exports and used them to produce consumption prediction values. Another
popular algorithm discussed in the energy market context is the k-nearest neigh-
borhood due to its simplicity in problems, especially in high-dimensional situations.
Random forest and Gaussian process regression are other examples of using Machine
learning techniques in energy forecasting. The most important strength of using a
computational intelligence approach is their ability to handle non-linearity in which
they are better than statistical models.

1.2.4 A dynamic supply-demand model for EPF

A similar work to this study has been done in the statistical model context in
Buzoianu et al. [2005]. In this paper, the electricity price is predicted based on the
principle of supply and demand equilibrium. The model is a nonlinear non-Gaussian
HMM. The supply and demand curves are a function of some explanatory variables
and some unknown variables which are assumed to be the latent variables of the
HMM. It was also assumed that supply and demand curves were not observable but
the prices and quantities traded were. The data used for the model is the California
electricity market from 1998 to 2000, which includes the “California power crisis” in
which we experienced extremely high prices. The approach for parameter estimation
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stems from particle filter methods that fit the data suitably expect during the crisis
period. Supply and demand curves are functions of the explanatory variables for a
quantity with a vector of parameters in a Markov process. The paper considers a
state-space model in which the supply and demand curves are the latent variables.
Quantities and prices at equilibrium are the observed variables in the model. Since
the number of parameters in the model that need to be estimated is not much (9
parameters), a simple particle filter algorithm using weighted samples is working fine
(the during-crisis data, which is out of the scope of our discussion here). However, in
our model, we are dealing with a high-dimensional model. The number of parameters
to estimate is much more (approximately 30 parameters). Therefore, the simple
particle filter techniques are not working as well as the California electricity market.
In this thesis, we will propose a sequential Markov chain Monte Carlo algorithm to
remedy this problem.
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2. MONTE CARLO METHODS

2.1 Introduction

Monte Carlo methods are a set of computational algorithms which use random
samples from a given distribution to solve a mathematical or statistical problem.
Here are the main steps in Monte Carlo methods:

a. Generating a finite number of independent and identically distributed (i.i.d)
random numbers followed from a given distribution with a probability density
or mass function π(x).

X(1),X(2), ...,X(N) i.i.d∼ π(x).

b. Calculating the expectation of a general function in the domain of the gener-
ated random numbers. This expectation can be approximated by the average
of realized values of the function.

(2.1) Eπ(ϕ(X)) =
∫
X
ϕ(x)π(x)dx≈ 1

N

N∑
i=1

ϕ(X(i))

One can show that Monte Carlo methods give us an unbiased estimation of
Eπ(ϕ(X)). Moreover, it almost surely converges to the real expectation, and the
variance of the estimation decreases as the sample size increases.

In some cases, we can generate random numbers from the target distribution π, using
exact sampling methods such as composition methods, transformation methods,
inversion, and rejection sampling. However, sometimes, π is unknown, or drawing
samples from π is challenging and expensive. In that case, we resort to approximate
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sampling methods, among which the most popular ones are known as Markov chain
Monte Carlo (MCMC) methods.

2.2 Markov chain Monte Carlo

Markov chain Monte Carlo methods are the most common class of methods for
approximate sampling from complex distribution. The core idea behind MCMC
methods is to construct an ergodic Markov chain whose stationary distribution is
the target distribution π(x) from which we want to sample. If we run an MCMC
algorithm long enough, its Markov chain eventually converges to the target distri-
bution π. In the following sections, we will elaborate on some of the most popular
MCMC algorithms, including Metropolis-Hastings and Gibbs methods.

2.2.1 Metropolis-Hastings

The most commonly used MCMC algorithm in the literature is the Metropolis-
Hastings. This algorithm was first introduced in Metropolis et al. [1953] and later
on, Hastings [1970] developed it in more general context. A single iteration of MH
is as follows:

In MH, we need a Markov transition kernel q(·|x) to generate the proposal values.

We propose x′ based on the previous sample Xt−1 = x. This proposed value follows
from a transition density q(·|x) which is accepted as Xt = x′ with the following
probability:

α(x,x′) = min
{

1, π(x′)q(x|x′)
π(x)q(x′|x)

}
x,x′ ∈ X

If the proposal is not accepted we stick to the previous sample and set Xt = x.
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In Algorithm 1, we will present the MH algorithm.

Algorithm 1: Metropolis-Hastings algorithm
1 Begin with an initial value as x0 ∈ X
2 for t= 1, . . . ,T do
3 Sample x′ ∼ q(x′|xt−1)
4 Set xt = x′ with probability: α(x,x′); else set xt = xt−1

One can prove that the stationary distribution of this algorithm is indeed π. In the
literature, there are many approaches in terms of choosing the proposal distribution.
For example, one can select a proposed sample independent of the previous sample.
Another approach is to use a random walk distribution for proposing new samples.
In the literature, there are some works in which we can use an adaptive proposal
distribution in MH algorithm [Haario et al., 2001; Griffin & Walker, 2013].

2.2.2 Gibbs sampling

Another popular in MCMC algorithm is the Gibbs sampling. When the random
variable which we are sampling has more than one dimension, MH sampling is not a
efficient method. The idea behind the Gibbs sampling is that one can sample each
component of the random variable X ∈ X d once at a time by using the low dimen-
sional conditional distribution of π. In other words, we are using πk(·|x1:k−1,xk+1:d)
to sample Xk ∈ X at a time where πk(·|x1:k−1,xk+1:d) is the full conditional dis-
tribution of the k’th component. After sampling from all the components of the
random variable, we can move to the next iteration in the algorithm. In Algorithm
2, we present the Gibbs sampling algorithm.

Algorithm 2: Gibbs sampling method
1 Begin with an initial value
2 for t= 1, . . . ,T do
3 for k = 1, . . . ,d do
4 xt,k ∼ πk(·|x1:k−1,xk+1:d)
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2.2.3 Metropolis-Hastings within Gibbs sampling

One of the most effective sampling approaches in the context of MCMC which cap-
tures advantages of both methods(MH and Gibbs) is Metropolis-Hastings within
Gibbs sampling. If we cannot obtain πk(·|x1:k−1,xk+1:d) one can use an MH move
that targets this conditional density. In Algorithm 3 we show the Metropolis-
Hastings within Gibbs sampling algorithm.

Algorithm 3: Metropolis-Hastings within Gibbs sampling
1 Begin with an initial value
2 for t= 1, . . . ,T do
3 for k = 1, . . . ,d do
4 update xt−1,k to obtain xt,k using an MH move that targets πk(·|x1:k−1,xk+1:d)

2.3 Bayesian framework

In the Bayesian inference context, we are primarily interested in finding a good
approximation of our posterior distribution p(x|y). Once we have a suitable approx-
imation of our posterior distribution, we can identify other quantities of interest
such as posterior mean, etc.

Consider two random variables X,Y , which are conditionally related to each other.
For example, in hidden Markov models, X can be our latent variables, and Y is
the observations. According to the Bayes theorem, one can construct the posterior
distribution as follows:

(2.2)

p(x|y) = p(x,y)
p(y)

= p(y|x)×p(x)
p(y)

∝ p(y|x)×p(x)

In the Bayesian setting, we call p(y|x) likelihood, p(x) prior and p(y) evidence. In
other words, likelihood is the probability distribution of our data given our unknown
parameters, and the prior is an assumption about the distribution of unknown vari-
ables. Sometimes, the posterior distribution is intractable, therefore we need to use
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Monte Carlo methods to handle it.
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3. HIDDEN MARKOV MODELS AND PARTICLE FILTERING

3.1 Introduction

We can allude to hidden Markov models as a modification of Markov chains. In
addition to the Markovian relationship between the variables, we have observed
variables that depend on our Markov chain. In many cases, we do not have access
to the variables of our Markov chain. We call these variables latent varibles or
hidden variables. Therefore, to estimate our hidden variables, we have to rely on our
observations. In signal processing, image processing, intrusion and fraud detection
and speech recognition [Picone, 1990; Mor et al., 2021; Nefian & Hayes, 1998],HMMs
are one of the main modeling approaches. Moreover, we can see HMM applications
in bioinformatics, finance, and weather forecasting in the literature [Krogh et al.,
1994; Zhang, 2004; Khiatani & Ghose, 2017].

In this thesis, we focus on first-order hidden Markov models, which are the most
common models in the context of HMM. In first-order hidden Markov model, each
latent variable is dependent only on the previous latent variable, and the observa-
tions are conditionally independent given the latent variables. Figure 3.1 shows the
relations between the latent variables and the observations in a first-order hidden
Markov model.
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Figure 3.1 A scheme of a general hidden Markov model (frist order HMM)

3.2 Mathematical formulation

Suppose {Xt}t≥1 be a homogeneous Markov chain defined in space X . Assume the
initial value X1 ∼ η1 and the state transition density is f(xt|xt−1). Moreover, there
is another process in which we obtain our observations {Yt}t≥1. In first-order HMM
we assume that Yt conditioned on all other random variables of the model only
depends on Xt and follows g(yt|xt). Hence, the stochastic process {Xt,Yt}t≥1 forms
the hidden Markov model. Due to the structure of the HMM one can write the joint
probability density as follows:

(3.1) p(x1:n,y1:n) = η1(x1)
n−1∏
t=1

f(xt+1|xt)
n∏
t=1

g(yt|xt)

One of the important distributions in HMM is called the full posterior distribution.
This distribution refers to the probability of observing latent variables x1:n given
the observations y1:n up to time n. Using the Bayes theorem one can write the
following:

(3.2)
p(x1:n|y1:n) = p(x1:n,y1:n)

p(y1:n)

= η1(x1)∏n−1
t=1 f(xt+1|xt)

∏n
t=1 g(yt|xt)∫

p(x1:n,y1:n)dx1:n
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3.3 Posterior distribution in HMM

In a Bayesian framework, we are interested in calculating the posterior distributions
in a HMM. In particular, we are interested in calculating the following:

(3.3) p(x1:t′|y1:n) :=

p(x1:n|y1:n)∏n′τ=n+1 f(xτ |xτ−1) n′ ≥ n∫
X p(x1:n|y1:n)dxn′+1:n n′ ≤ n

In the following, we will delve into three different cases in Bayesian optimal filtering
based on sampling from the posterior distribution with respect to n.

3.3.1 Filtering, smoothing and prediction

In theory, the ideal approach that enables us to answer many quantities of interests
in HMM is to identify p(x1:n′|y1:n). This distribution will give us all the needed in-
formation on the model. Nevertheless, due to computational complexity and other
reasons, this distribution is hard to obtain. Sometimes, it suffices to consider the
marginal posterior of a random latent variable Xt and we are interested in calculat-
ing the marginal posterior distribution p(xt|y1:n). In the literature there are three
main cases for calculating posterior distribution p(xt|y1:n) with respect the relative
position of t and n.

In the first case, if t≤ n the identifying p(xt|y1:n) is called smoothing, if t= n then
obtaining p(xt|y1:n) is called filtering and if t ≥ n calculating p(xt|y1:n) is called
prediction.
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3.3.1.1 Forward calculation of filtering and prediction densities

Suppose the filtering posterior at step 1 is calculated as the following:

p(x1|y1) = η1(x1)g(y1|x1)∫
η1(x1)g(y1|x1)dx1

The rest of the filtering and prediction densities can be obtained in a forward manner
by recursion as

(3.4)
p(xt|y1:t−1) =

∫
p(xt,xt−1|y1:t−1)dxt−1

=
∫
f(xt|xt−1)p(xt−1|y1:t−1)dxt−1

As one can observe, the prediction density can be calculated by knowing the fil-
tering distribution from the previous step. Now, we aim to calculate the filtering
distribution at step t. We have the filtering distribution as

(3.5)
p(xt|y1:t) = p(xt,y1:t)

p(y1:t)

= g(yt|xt)p(xt|y1:t−1)
p(yt|y1:t−1)

Note that p(yt|y1:t−1) does not depend on xt so it can be treated as a normalizing
constant which can also be written as

p(yt|y1:t−1) =
∫
g(yt|xt)p(xt|y1:t−1)dxt

The above equation can be used in calculating the evidence and predictive density
with respect to Yn+1. These two equations (3.4) (3.5) can be used recursively to
obtain the filtering and predictive distribution up to time n. In the literature, these
two related steps are called forward filtering and prediction.

Moreover, to alleviate the computational complexity of the algorithms that aim to
track the posterior, some revised methods have been developed [Douc et al., 2011;
Fearnhead et al., 2010]. Tracking the required posteriors can be broken into two main
categories: first, tracking the exact posteriors in finite state-space models or in lin-
ear Gaussian HMMs and second, approximating the posterior using computational
methods. Among popular methods for tracking the exact posterior distribution,
one can refer to Viterbi algorithm, Kalman filtering and forward filtering backward
sampling (FFBS) methods.
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3.4 Sequential Monte Carlo

Sequential Monte Carlo methods are a set of algorithms or approaches that aim to
approximate a sequence of distributions {πn}n≥1. SMC methods first were intro-
duced in Liu & Chen [1998]. Let us assume Xi ∼ πi for i = {1, ...,n} and ϕn is a
real valued function on domain of {Xn}n≥1 with respect to πn. Now we want to
calculate the following quantity of interest:

(3.6) Eπn [ϕn(x1:n)] =
∫
πn(x1:n)ϕn(x1:n)dx1:n

As one can see, the computation complexity increases by n. Therefore, the usual
MCMC methods cannot handle the problem. The main focus of SMC approaches is
to approximate this expectation. In state-space models, particle filtering approaches
are one of the popular methods to track the posterior density. Like what we discussed
in MCMC methods, there are similar approaches in SMC. Among these methods, we
can mention sequential importance sampling (SIS) methods , sequential importance
sampling resampling (SISR) methods. In the literature, there are some approaches
when it comes to the resampling step in SMC methods.

3.4.1 Sequential importance sampling

Importance sampling in Monte Carlo methods is based on sampling from an instru-
mental distribution q(x) instead of our target distribution π and weight the samples
as the following:

(3.7) w(x) :=


π(x)
q(x) q(x) 6= 0

0 q(x) = 0

Therefore, if we want to calculate Eπ(ϕ(X)) where X ∼ π, we can simply calculate
Eq(ϕ(X)w(X)) where X ∼ q. The key factor in importance sampling is to choose
the instrumental distribution such a way that it is close to the target distribution.

Likewise, in SIS one can use the similar approach and weight the samples as wn(x) =
πn(x1:n)
qn(x1:n) . However, it is really expensive to sample from the whole sample path x1:n

and approximate πn by using qn for each n ≥ 1. Consequently, it is necessary to
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reconstruct the instrumental distribution as follows:

qn(x1:n) = q(x1)∏n

t=2q(xt|x1:t−1)

Now we can reform the weights in recursive form:

(3.8)

wn(x1:n) = πn(x1:n)
qn(x1:n)

= πn(x1:n)πn−1(x1:n−1)
qn(x1:n)πn−1(x1:n−1)

= πn(x1:n)πn−1(x1:n−1)
qn−1(x1:n−1)q(xn|x1:n−1)πn−1(x1:n−1)

= wn−1(x1:n−1) πn(x1:n)
πn−1(x1:n−1)q(xn|x1:n−1)

In some cases, we do not have πn(x1:n) and consider it as πn(x1:n) = π̂n(x1:n)
C where

the constant is unknown. Hence by replacing the πn(x1:n) with π̂n(x1:n) we have to
normalize the weights. The self-normalized weights for N samples are

(3.9) W (i)
n = wn(x(i)

1:n)∑N
i=1wn(x(i)

1:n)

Most of the time, the proposal distribution only depends on the last sample, not the
whole sample path up to n−1. In the literature, there are some works in terms of
choosing the best proposal distribution. Del Moral et al. [2006] showed the optimum
proposal distribution in terms of reducing the variance is:

(3.10) qopt(xn|x1:n−1) = πn(xn|x1:n−1) = πn(x1:n)∫
πn(x1:n)dxn

One of the main problems of SIS methods is an issue called weight degeneracy. As
we discussed, the best proposal distribution is the target distribution, and the closer
these two distributions are to each other, the better performance we will have in
sampling. However, if our proposal is not closed to the target distribution, we will
end up with a few samples with high wights, and the rest of the samples will have
negligible weights. Eventually, just one of the samples will have a high weight ≈ 1,
and the rest’s weight will be ≈ 0. To handle this problem, we have to develop a
modification to make a resampling step in our SIS. This approach is called sequential
importance sampling resampling.
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3.4.2 Sequential importance sampling resampling

Roughly speaking, the sequential importance sampling resampling approach creates
an equally weighted distribution by the weighted distribution which SIS generates.
Suppose we have obtained X

(i)
1:n−1 with a array of weights such as W (i)

n−1 for i =
1, ...,N . These samples are replaced by X̃(i)

1:n−1, i = 1, . . . ,N with equal weights and
are drawn from X

(i)
1:n−1, i= 1, . . . ,N as follows:

P(X̃(j)
1:n−1 =X

(i)
1:n−1) =W

(i)
n−1 i, j = 1, . . . ,N

As one can observe, this corresponds to N draws from a multinomial distribu-
tion whose probability vector is Wn−1 = (W (1)

n−1,W
(2)
n−1, ...,W

(N)
n−1). This is called

multinomial resampling. After doing the resampling step we will sample X(i)
n ∼

q(X(i)
n |X̃(i)

1:n−1) and continue as in SIS.

Although SISR reduces the weight degeneracy problem, it produces another problem
which is similiar to weight degeneracy. After a while, the algorithm leads to generate
many copies of the highly weighted samples. Eventually, we are left with one sample
to approximate our target distributions. This problem is called path degeneracy.
Moreover, Since we are introducing another sampling step, it creates more variance.
In the literature, there have been some works to solve this problem to some extent.
Doucet et al. [2006] uses an efficient way called block sampling to reduce the effect
of path degeneracy. Moreover, we can mention alternative methods to standard
multinomial sampling such as residual sampling, stratified sampling, and adaptive
sampling methods [Fearnhead et al., 2013].

3.5 Sequential Monte Carlo in hidden Markov models

In section 3.4, we discussed SMC to track a sequence of distributions in general.
We introduced SIS and SISR as two main popular SMC methods to track stochastic
processes. One of the main applications of SMC methods in the literature is related
to HMM models. In this section, we will show the application of SMC approach
in HMM. Note that although there is a difference between state-space model and
hidden Markov model in the literature [Fahrmeir & Tutz, 2001], we use these two
terms as equivalent to each other.
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Kalman filtering approaches are among the most popular methods to identify the
posterior distribution when the state-space model is considered linear-Gaussian.
However, it fails if we ignore the assumption that there is a linear relationship
between the variables. In literature, there have been some attempts to modify
the Kalman filtering approach to deal with non-linearity, such as extended Kalman
filtering (EKF), which was first introduced in Kopp & Orford [1963]. EKF linearizes
a nonlinear model. One flaw of this approach is the error related to the degree of
non-linearity in the model. Unscented Kalman filter (UKF) is another approach
which was presented by Julier & Uhlmann [1997]. UKF is similar to EKF in terms
of using a linear Gaussian to approximate the latent Markov chain. However, this
time a minimal set of carefully chosen sample points are used for the sampling and
approximates the nonlinear HMM. This approach can also be used in the artificial
neural network when there is non-linearity in the model [Wan & Van Der Merwe,
2000]. Besides, there has been some other modification in Kalman filtering called
discriminative Kalman filtering (DKF). It enables us to have faster performances and
also is easier to implement when the observation’s dimensionality is greater than that
of latent variable [Burkhart et al., 2016]. However, due to the deterministic nature,
all these methods are deficient in a high degree of non-linearity. On the other hand,
SMC methods have a good performance in highly nonlinear models compared to the
deterministic models.

In the following, we will show how SMC methods can be applied to HMM. According
to the structure of HMM, one can show that the filtering path of latent variables
given the observation up to time t can be reformulated as a recursive equation. In
other words, we can consider p(x1:n|y1:n) as:

(3.11)
p(x1:n|y1:n) = p(x1:n,y1:n)

p(y1:n)

= f(xn|xn−1)g(yn|yn−1)p(x1:n−1|y1:n−1)
p(yn|y1:n−1)

Now let us consider our target distribution to be p(x1:n|y1:n)

πn(x1:n) = p(x1:n|y1:n) n≥ 1

There are many options for choosing the proposal density. For example one can
assume that the proposed particle is only dependent to the last latent variable
q(xt|xt−1) = f(xt|xt−1) (bootstrap filtering) [Gordon et al., 1993]. Another option
is to choose the proposal distribution independent from the other variables but the
observations q(xt) = p(xt|yt) when the observations provide significant information
about the latent variables (independent particle filter) [Lin et al., 2005]. A more
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sophisticated way to construct the proposal distribution is to choose q(x1:n|y1:n)n≥1

is as follows:

q(x1:n|y1:n)n≥1 = p(x1|y1)
n∏
t=2

q(xt|xt−1,y1:n) = p(x1|y1)
n∏
t=2

q(xt|xt−1,y1:t)

In the literature we use q(xt|xt−1,yt) instead of q(xt|xt−1,y1:t). Therefore, the pro-
posal distribution and can be simplified as

q(x1:n|y1:n) = p(x1|y1)
n∏
t=2

q(xt|xt−1,yt) n= 1, . . .

According to the (3.8) Since our target distribution is the filtering path distribution
we can show the incremental weights as:

(3.12)

πn(x1:n)
πn−1(x1:n−1)q(xn|x1:n−1) = p(x1:n|y1:n)

p(x1:n−1|y1:n−1)q(xn|xn−1,yn)

= p(x1:n,y1:n)p(y1:n−1)
p(x1:n−1y1:n−1)p(y1:n)q(xn|xn−1,yn)

= p(x1:n,y1:n)
p(x1:n−1y1:n−1)p(yn|y1:n−1)q(xn|xn−1,yn)

= f(xn|xn−1)g(yn|xn)
p(yn|y1:n−1)q(xn|xn−1,yn)

Since calculating the conditional evidence p(yn|y1:n−1) is expensive and its density
is free of xn, we can use the self normalized version of incremental weights.

(3.13) wn|n−1(xn|xn−1,yn) = f(xn|xn−1)g(yn|xn)
q(xn|xn−1,yn)

In Algorithm 4, we present the SISR algorithm also known as the particle filter, for
a generic HMM

23



Algorithm 4: SISR (particle filtering) for HMM
1 for i= 1, . . . ,N do
2 Begin with an intial sample X(i)

1 ∼ q(x1) and calculate the initial weight

w1(x(i)
1 ) = η1(x(i)

1 )g(x(i)
1 |Y1 = y1)

q(x(i)
1 |Y1 = y1)

3 for i= 1, . . . ,N do
4

W
(i)
1 = w1(x(i)

1 )∑N
i=1w1(x(i)

1 )

5 for t= 2,3, . . . ,n do
6 Resample from X

(i)
1:t−1 for i= 1,2, ...,N based on their weights W i

t and
obtain X̃(i)

1:t−1 with equal wights 1
N

7 for i= 1, . . . ,N do
8 Sample X(i)

t ∼ q(x
(i)
t |x̃

(i)
1:t−1)

wt(x(i)
1:t) = 1

N

f(x(i)
t |x

(i)
t−1)g(yt|x(i)

t )
q(x(i)

t |x
(i)
t−1,yt)

for i= 1, . . . ,N do
9 Calculate the self-normalized weight as (3.9)

W
(i)
t = wt(x(i)

1:t)∑N
i=1wt(x

(i)
1:t)
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3.6 Sequential Markov chain Monte Carlo methods

As discussed previously, the most popular method to approximate the filtering dis-
tribution in non-linear non-Gaussian state-space models is SMC method or particle
filtering. However, in some cases, such as dealing with high-dimensional models, this
algorithm fails. The curse of dimensionality can be seen in a wide range of prob-
lems, such as weather forecasting. In these situations, we can use alternatives such
as sequential Markov chain Monte Carlo methods. The literature results for these
algorithms are promising and can be considered an alternative to standard SMC
approaches. In the literature, there are some methods to alleviate the curse of di-
mensionality in state-space models. For example, one can apply a simple MH move
on each particle after the resampling step. Another alternative is to break down
the state-space model into a set of subspaces and do an SMC algorithm on each
subspace. This approach is called block sequential importance sampling resampling
(BSISR) [Doucet et al., 2006]. Furthermore, there are other methods called space-
time particle filter (STPF) which, unlike the standard particle filtering algorithms,
aim to move through space and time rather than just time [Beskos et al., 2014]. In
recent years another promising method that seeks to remedy the problems that stem
from SMC methods is called sequential Markov chain Monte Carlo [Septier & Pe-
ters, 2015]. It is important to note that, unlike the usual resample-move approaches,
we do not use importance sampling or resampling steps in sequential Markov chain
Monte Carlo methods [Septier et al., 2009]. The main reason that standard SMC
methods fail in high-dimensional problems is weight degeneracy. In other words,
we see poor performance of SMC approaches in high-dimensional problems for the
same reason we observe inefficiency in dealing with issues with large time horizons.
This weight degeneracy can be expressed as a quantity called effective sample size
which can be defined as follows:

(3.14) ESSn = 1∑N
j=1(W (j)

n )2

In SMCMC methods, we use an MCMC kernel to target the distribution πn(x1:n)
which is usually the full posterior distribution. Since we do not have the exact full
posterior πn(x1:n) = p(x1:n|y1:n), we approximate it by π̃n(x1:n). One can express
the approximation to target distribution as follows:
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(3.15) π̃n(x1:n) = p(x1:n|y1:n)∝ g(y1:n|x1:n)f(xn|x1:n−1)π̂n(x1:n−1)

where π̂n(x1:n−1) is

(3.16) π̂n−1(x1:n−1) = 1
N

M+N∑
j=M+1

δ
X

(j)
n−1,1;n−1

dx1:n−1

Note that in (3.16) {X(j)
n−1,1;n−1}M+N

j=M+1 denotes to the last N particles which are
drawn from the approximation of target density π̃n(x1:n−1) at time n−1.

The first M particles in SMCMC are generated during the burning time of the
algorithm and will be discarded at the end of sampling. The SMCMC algorithm
can be presented in Algorithm 5:

Algorithm 5: SMCMC in HMM
1 for i= 1, . . . ,M +N do
2 Begin with an intial sample X(i)

1,1 ∼K1(X(i−1)
1,1 )

3 for n= 2,3, . . . do
4 for i= 1, . . . ,N +M do
5 Sample X(i)

n,1:n ∼ Kn(X(j−1)
n,1:n ) where K1 is the MCMC kernel of

invarient distribution π̃n(x1:n−1) as mentioned in (3.15)

To summarize Algorithm 5, one can say at the first step, we can sample from the
initial distribution π1(x1:n) using the kernel K1. At iteration n we generate M +N

particles using the kernel Kn. At the end of nth iteration, we discard M particles
and keep the last N particles for approximating the filtering distribution:

p(xn|y1:n) = 1
N

M+N∑
j=M+1

δ
X

(j)
n,n
dxn−1

Note that the approximation of target distribution converges to the real target dis-
tribution:

π̃n(x1:n−1)→ πn(x1:n−1) As π̂n−1(x1:n−1)→ πn−1(x1:n−1)

Although there are some innovations in terms of choosing MCMC kernel [Septier
& Peters, 2015], in the literature, most of the MCMC kernels used are based on
Metropolis-Hasting updates. However, we show a combined kernel consisting of MH
move and Gibbs sampling method in this study. The following section introduce a
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non-linear non-Gaussian model and use an SMCMC algorithm to target the filtering
distribution. First, we will use MH kernels as our MCMC kernel, and secondly, we
will use an MH-based kernel and Gibbs-based kernel as our MCMC kernel.

3.6.1 A non-linear non-Gaussian state-space model

This section will show four different scenarios for a non-linear, non-Gaussian state-
space model for different levels of non-linearities. These four methods are:

• Standard sequential Monte Carlo method

• Resample move approach: In this method, we make a MH move after resam-
pling step in our SMC algorithm

• Sequential Markov chain Monte Carlo method using composition of Gibbs and
MH sampling as the MCMC Kernel

• Sequential Markov chain Monte Carlo method using MH sampling as MCMC
Kernel

3.6.1.1 Model formulation

First, let us present the latent Markov chain {Xn}n≥1 as follows:

(3.17) Xn = Xn−1
2 + 25Xn−1

1 +X2
n−1

+ 8cos(1.2n) + en

where en ∼N (0,σ2
x)

The observation stochastic process {Yn}n≥1 is as the following:

(3.18) Yn =Xn+ en where en ∼N (0,σ2
y)
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3.6.1.2 Results for SMC method

Table 3.1 Model, algorithm parameters and performance measures n=500

Parameters and Performance measures Exper 1 Exper 2 Exper 3 Exper 4
σ2
x 10 10 10 10
σ2
y 10 10 10 10
n 100 100 100 100
N 100 1000 10000 100000

adjusted R2 0.9240 0.9442 0.9540 0.8557
MSE 6.2794 6.59425 5.1276 4.6590
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Figure 3.2 Non-linear non-Gaussian
Model using SMC n=100 and N=100
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Figure 3.3 Non-linear non-Gaussian
Model using SMC n= 100 and N = 1000
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Figure 3.4 Non-linear non-Gaussian
Model using SMC n= 100 andN = 10000
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Figure 3.5 Non-linear non-Gaussian
Model using SMC n = 100 and
N = 100000
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3.6.1.3 Results for SMC using resample move approach

Table 3.2 Model, algorithm parameters and performance measures n=100

Parameters and Performance measures Exper 1 Exper 2 Exper 3 Exper 4
σ2
x 10 10 10 10
σ2
y 10 10 10 10
n 100 100 100 100

Number of MH moves 10000 10000 1000 100
N 100 1000 10000 100000
σ2
q 1 1 1 1

adjusted R2 0.9273 0.9447 0.9540 0.8558
MSE 6.0125 6.5242 5.1240 4.6569
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Figure 3.6 Non-linear non-Gaussian
Model using SMC n = 100 andN = 100
(Resample Approach)
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Figure 3.7 Non-linear non-Gaussian
Model using SMC n = 100 and N = 1000
(Resample Approach)
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Figure 3.8 Non-linear non-Gaussian
Model using SMC n= 100 and N = 10000
(Resample Approach)
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Figure 3.9 Non-linear non-Gaussian
Model using SMC n = 100 and
N = 100000 (Resample Approach)

As it can be observed from the results, since we are dealing with a model with a high
degree of non-linearity, the algorithm’s performance degrades. Now let us discuss
the non-linearity Model in the sequential Markov chain Monte Carlo context.
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3.6.1.4 SMCMC using Gibbs and MH sampling

In this section, we will not use the resampling step. Instead, we will use an MCMC
kernel to sample from the filtering distribution up to n= 100. In SMCMC, one of the
most important factors to good performance is choosing the proposal distribution
close to the target distribution. In highly non-linear models having a poor choice of
proposal distribution will result in bad performance. In the following, we will show
the results for SMCMC with a kernel that is composed of Gibbs and MH updates

Table 3.3 Model, algorithm parameters and performance measures n=100

Parameters and Performance measures Exper 1 Exper 2 Exper 3 Exper 4
σ2
x 10 10 10 10
σ2
y 10 10 10 10
n 100 100 100 100
M 1000 10000 15000 20000
N 100 1000 1500 2000
σ2
q 1 1 1 1

adjusted R2 0.8736 0.9548 0.9397 0.9421
MSE 7.1232 4.7218 4.4470 4.3015
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Figure 3.10 Non-linear non-Gaussian
Model using SMCMC n = 100,M = 1000
and N = 100

0 10 20 30 40 50 60 70 80 90 100

time step

-15

-10

-5

0

5

10

15

20

25

30

X

actual value

estimated value

Figure 3.11 Non-linear non-Gaussian
Model using SMCMC n= 100,M = 10000
andN = 1000
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Figure 3.12 Non-linear non-Gaussian
Model using SMCMC n= 100,M = 15000
and N = 1500
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Figure 3.13 Non-linear non-Gaussian
Model using SMCMC n= 100, m= 20000
and N = 2000

3.6.1.5 SMCMC using just MH sampling

Table 3.4 Model, algorithm parameters and performance measures n=100

Parameters and Performance measures Exper 1 Exper 2 Exper 3 Exper 4
σ2
x 10 10 10 10
σ2
y 10 10 10 10
n 100 100 100 100
M 1000 10000 15000 20000
N 100 1000 1500 2000
σ2
q 1 1 1 1

adjusted R2 0.9003 0.9087 0.9379 0.9413
MSE 7.7144 4.8850 4.5843 4.4712
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Figure 3.14 Non-linear non-Gaussian
Model using SMCMC n = 100,M = 1000
and N = 100
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Figure 3.15 Non-linear non-Gaussian
Model using SMCMC n= 100,M = 10000
and N = 1000
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Figure 3.16 Non-linear non-Gaussian
Model using SMCMC n= 100,M = 15000
and N = 1500
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Figure 3.17 Non-linear non-Gaussian
Model using SMCMCn= 100, M = 20000
and N = 2000

One can observe as we increase the number of particles, the performance of the
algorithm improves (3.1) (3.2) (3.3) (3.4). As discussed earlier, SMCMC models
are better choices if we are dealing with highly non-linear, high-dimensional models.
The first reason is that they can act better in terms of accuracy when the model
becomes high-dimensional. The second reason is that the computational complexity
of the usual remedies of SMC models such as resample approach is such that they
can not handle high-dimensional problems. Therefore, choosing alternatives such as
SMCMC can be a good decision. in previous example, we have the hyperparame-
ters vector Θ = (σ2

x,σ
2
y ,µinitial,σ

2
initial) in (3.17) and (3.18). In the real-life problems

discussed in Chapter 4, we do not have information about the hyperparameters of
the model. Therefore we need to use a hyperparameter estimation method to ap-
proximate them. In our model, we use expectation-maximization method, which is
one of the most popular methods in state-space models to approximate the hyper-
parameters of the model. We will mention the EM algorithm to give an overview of
how we are going to approximate the hyperparameters in a hidden Markov model

3.7 Expectation-maximization algorithm

When we have missing or hidden variables in our data, the usual parameter
estimation approaches such as maximum likelihood estimation are not work-
ing. Therefore, we have to use other techniques that can estimate the hyper-
parameters of our model. Expectation-maximization algorithms are one of the
most popular methods to approximate hyperparameters through a two-phase it-
erative algorithm. These methods can be used in the hidden Markov model
based on the fact that finding the likelihood pθ(y1:n) is challenging to obtain.
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Algorithm 6: General expectation maximization algorithm
1 begin with a initial hyper parameter vector θ0 for t= 1, . . . ,T do
2 do the expectation step as the following:

Eθt−1(logpθ(x1:n,y1:n)|y1:n)

do the maximization step as follows:

θt = argmax
θ
Eθt−1(logpθ(x1:n,y1:n)|y1:n)

Now let us focus of the case where our joint distribution is has an exponential.
For exponential families, the expectation step reduces to calculating the posterior
expectation of some additive summary statistics of the form [Dempster et al., 1977]

S(X1:n,Y1:n) =
n∑
t=1

s(xt−1,xt,yt)

Consequently, the maximization step reduces to a function of those posterior ex-
pectations. In the rest of the thesis, we will introduce the application of SMCMC
methods in the electricity market. We will present our model on the daily supply
curve of electricity for each our of the day. And lastly, we will mention the results
for using SMCMC predict the supply curve.

33



4. PROBLEM DEFINITION AND RESULTS

4.1 Model

As we discussed before, we propose a supply curve as the summation of supplies from
different resources. These supply curves are a function of some of the explanatory
factors and their coefficients for each time step. Moreover, since the coefficients
are changing over time, the supply curves change over time. Since we deal with a
non-linear model, the standard models of sequential monte Carlo are not efficient
enough. Therefore, Markov chain Monte Carlo is a suitable method for modeling

In the following, we will delve into the details of the model and the summation of
supply curves from the different sources that shape the total supply curve:

4.1.1 A dynamic supply model

For each time step, combine several supply curves (quantity vs price) St,1, . . . ,St,K
together: Let the inverse of the aggregate supply curve be S:

(4.1) St(p) = St,0 +
K∑
k=1

St,k(p), p ∈ (0,pmax).

Now we present a simple piece-wise function for each of the supply curves of re-
sources St,k(·). We assume there is a minimum and maximum supply that a given
resource can provide. Let the minimum and maximum quantities that can be sup-
plied by source k be qt,k and Qt,k, respectively. Given those variables, we model
St,k as a linear function between the points (bt,k, qt,k) and (et,k,Qt,k), where bt,k is
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the minimum price for the source to supply and et,k is the minimum price for the
maximum quantity, so that mt,k = (Qt,k− qt,k)/(et,k− bt,k) is the slope of the line.
To the left of the line, St,k is 0 since the source does not supply for prices smaller
than bt,k. To the right of the line, St,k is constant and has a value Qt,k, which is the
maximum amount the source can supply. Putting all those in mathematical terms,
we have:

(4.2) St,k(p;βt,k) =


0, for p < bt,k

qt,k +mt,k(p− bt,k), for bt,k < p < et,k

Qt,k, for p≥ et,k

the function βt,k = (bt,k, et,k, qt,k,Qt,k) to indicate the parameters of St,k.

The function βt,k is itself defined as a function of some explanatory variables, or fac-
tors, and this function is defined through a dk×1 vector of time-varying parameters,
which we will denote as xt,k ∈ X dk for some dk ≥ 0. Let

zt = (zt,1, . . . , zt,I) ∈ RI , t≥ 1

note the vector of I ≥ 1 explanatory variables at time t and the set Ak ∈⊆ {1, . . . , I}
have the indices of those explanatory variables that have an impact on βt,k. Further-
more, let the function ϕk : R|Ak|×X dk 7→ [0,∞)4 be such that, given the parameter
vectors at time for xt,k ∈ X dk , for k = 1, . . . ,K, the critical points of the supply
functions are determined as

(4.3) βt,k = ϕk(zt,Ak
,xt,k), k = 1, . . . ,K.

where zt,Ak
= (zi : i ∈ Ak) is the subvector formed by those elements of zt,k whose

indices are in Ak. The specific forms of ϕk, proposed to model the supply curve in
the Turkish electricity market is given in the following Section 4.1.2.
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4.1.2 HMM for the relation between the supply and latent variables

The explanatory variables zt,k are observed, whereas the time-varying latent param-
eters xt,k are unknown. The observed supply curves are also observed. We want to
predict the supply curves of the future, for example, the supply curves of the next day
for each hour. For prediction, the explanatory variables for the next step are either
available or can be predicted with high accuracy. That is why the task of prediction
of the supply curves of the following time steps requires tracking xt,k’s as well as
predicting xt′,k for t′ > t. Once xt′,k is predicted, the supply curve can be predicted
by using the relation in (4.3). Therefore, we formulate the problem as tracking the
parameters xt,k given the supply curves as the observed variables(pt,1,Yt,1).

Let us combine the parameters xt,k of K sources from time t into a single vector as

xt := (xt,1, . . . ,xt,K) ∈ Rd.

where d= d1 + . . .+dK .

We propose a hidden Markov model for modelling the supply curves in time. The
hidden variables of HMM are {Xt}t≥1 with the following transition

(4.4) xt = xt−1 +vt, vt ∼N (0,Σ)

where Σ is a d×d covariance matrix. The variable xt, combined with the explanatory
variables zt, gives the lead to the critical points of supply curves as in (4.3).

By ‘observed supply curves’, we refer to a collection of (price, quantity) pairs, of
size nt,

(pt,1,Yt,1), . . . ,(pt,nt ,Yt,nt)

Note pt,i is the price, and Yt,i is the quantity offered at that price for the i’th pair.
We assume that, given xt, each Yt,i is independent and a noisy version of the supply
curve in (4.1) calculated at p= pt,i,

(4.5) Yt,i =
K∑
k=1

St,k(pi;βt,k) +wt,i, wt,i ∼N (0,σ2
y), i= 1, . . . ,nt.

where βt,k = ϕk(zt,Ak
,xt,k) is the critical points of the supply curves of source k.

Therefore, we have constructed the relationship between latent variables and the
observations, which are the supply quantities. Now let us focus on the specific
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structure of our model used for the electricity supply curve in Turkey. We are using
six main resources that provide the supply. These resources are as the following:
(i) solar, (ii) wind, (iii) domestic coal, (iv) imported coal, (v) gas, and (vi) hydro.
Therefore, K = 6. The following table illustrates the relationship between each of
those explanatory variables and the resources. These variables are: (i) temperature,
(ii) precipitation, (iii) snow level, (iv) cloud cover, (v) wind speed, (vi) solar radia-
tion, (vii) gas price, (viii) imported coal price (in TL), and (ix) domestic coal price.
Hence, in total we have a vector zt ∈ R9 of 9 explanatory variables at each time.
Note that we also have the calendar effect in our data; however, it does not affect
the model. Moreover, we express the explicit model that captures the supply curve
of each of the six resources. These explicit models show how the explanatory and
latent variables from the supply curve.

Table 4.1 Relation matrix sources of supply and the explanatory variables.

Relation Symbol Solar Wind Dom. coal Imp. coal Gas Hydro
Temperature T 1
Precipitation PC 1
Snow level SL 1
Cloud cover CC 1
Wind Speed WS 1

Solar Radiation SR 1
Gas Price GP 1

Imported Coal Price (TL) ICP 1
Domestic Coal Price DCP 1

Table 4.1 shows the relation matrix between the sources of supply and the explana-
tory variables. A 1 for a (factor, source) pair indicates that the corresponding factor
is involved in the modelling of the supply curve for the corresponding source.

The specific forms of the functions ϕk, showing the explanatory variables and pa-
rameters with the critical points of the supply curves, are given below.
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Table 4.2 Functions for the critical points of the supply curves for the sources (time
index is dropped for brevity)

Source qk Qk bk ek

Solar 0 qk +SR2xsolarsr2 +SRxsolarsr + (100−CC)xsolarsr 0 0
Wind 0 qk +WSxwindws 0 0

Domestic coal xdcmin qk +xdcbase DCPxdcmult bk +xdcslope(Qk− qk)
Imported coal xicmin qk + ICP−x

ic
icpxicbase ICPxicmult bk +xicslopesk(Qk− qk)

Gas xgasmin qk + (xgastemp)T<−4GP−x
gas
gp xgasbase GPxgasmult bk +xgasslope(Qk− qk)

Hydro xhydmin qk + (PCxhydpc +SLxhydsl ) xhydmult bk +xhydslope(Qk− qk)

All parameters are non-negative except xsolart,sr . and xsolart,sr2 . Furthermore, we also have

0< xgast,temp < 1, t= 1, . . . ,n.

4.2 Application of SMCMC in supply curve

As we discussed earlier, SMCMC does not weigh the particles. Instead, it generates
N equally weighted particles using MCMC moves. Given N particles from time
t−1, which is denoted by

X
(i)
t−1,1:t−1 =

(
X

(i)
t−1,1, . . . ,X

(i)
t−1,t−1

)
, i= 1, . . . ,N,

the algorithm generates a total ofM+N samples X̃(1)
t , . . . , X̃

(N+M)
t for the posterior

distribution π(x1:t−1) = p(x1:t−1|y1:t−1), using an MCMC kernel Kπ̃t that targets the
distribution π̃t defined as

π̃t(x1:t)∝
1
N

N∑
j=1

δ
X

(j)
t−1,1:t−1

(dx1:t−1)ft(xt−1,dxt)gt(xt,yt).

The distribution π̃t is simply the particle approximation of πt(x1:t) = p(x1:t|y1:t).
Since the MCMC kernel needs some time to converge to its invariant distribution,
particles during a certain initial phase are discarded, and the remaining particles
are treated as samples from the posterior πt. We let M and N be the numbers of
particles discarded and kept, which explains the M +N samples. Therefore, the
particles that are kept are:

X
(i)
t,1:t = X̃

(M+i)
t , i= 1, . . . ,N.
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Algorithm 7: Sequential MCMC for supply
1 for t= 1, . . . ,T do
2 Initialize X(0)

t based on X(N)
t−1,1:t−1.

3 Set X̃(0)
t,1:t = (X(0)

t ,X
(N)
t−1,1:t−1).

4 for i= 1, . . . ,M +N do
5 Update X̃(i)

t,1:t ∼Kπ̃t(X̃
(i−1)
t,1:t , ·)

6 for i= 1, . . . ,N do
7 Set X(i)

t,1:t = X̃
(M+i)
t,1:t .

4.2.1 Choices for the MCMC kernel

One choice for the kernel Kπ̃t is a succession of two MCMC kernels or one MCMC
kernel for updating xt and a GIBBS move for updating the first t− 1 components
x1:t−1

Kπ̃t =K(2)
π̃t
K(1)
π̃t

where K(1)
π̃t

updates the first t−1 components x1:t−1 while fixing xt and the second
once, K(2)

π̃t
, updates xt while fixing xt,1:t−1.

We describe a pair of choices for K(1)
π̃t

and K(2)
π̃t

.

• K(1)
π̃t

: Suppose the current sample is x1:t. Fixing xt, propose x1:t−1 from
1
N

∑N
i=1 δX(i)

t−1,1:t−1
(dx1:t−1), that is, propose among X

(1)
t−1,1:t−1, . . . ,X

(N)
t−1,1:t−1

uniformly. If the proposed value is X(j)
t−1,1:t−1, accept it with probability

(4.6) min

1,
ft(X(j)

t−1,t−1,xt)
f(xt−1,xt)


Another approach for K(1)

π̃t
is that instead of proposing x1:t−1 uniformly,

we choose x1:t−1 from the particle cloud based on the transition probabil-
ity. Unlike the previous approach we have to consider ft(X(j)

t−1,t−1,xt) for all
X

(1)
t−1,1:t−1, . . . ,X

(N)
t−1,1:t−1 and choose the particles with respect to that proba-

bility. This approach is called Gibbs move.

• K(2)
π̃t

: Suppose the current sample is x1:t. Fixing x1:t−1, propose xt with a ran-
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dom walk proposal by x′t∼ q(·|x1:t−1). Accept proposed value with probability

min
{

1, ft(xt−1,x′t)gt(x′t,yt)q(xt|x1:t−1)
f(xt−1,xt)g(xt,yt)q(x′t|x1:t−1)

}

4.3 EM algorithm for hyperparameter estimation

As we discussed in chapter 3, in real-life problems, we do not have the hyperpa-
rameter vector of the model. In this specific model, our hyperparameter vector is
θ = (Σ,σ2

y) where Σ is the covariance matrix of the latent variables.For simplicity,
we assume this matrix is diagonal. When the hyperparameter vector has many el-
ements having a method to approximate them seems necessary. In our model, we
are using exponential families as the proposed distributions. Therefore one can use
sufficient statistics for the EM algorithm. In the following, we will show sufficient
statistics. To avoid confusion, we need to mention that these statistics are different
from the supply functions, and we use a similar notation for both of them.

(4.7)

S1,i(x1:n) =
n∑
t=1

x2
t,i, i= 1, . . . ,dx

S2,i(x1:n) =
n∑
t=1

x2
t−1,i, i= 1, . . . ,dx

S3,i(x1:n) =
n∑
t=1

xtxt−1,i, i= 1, . . . ,dx

S4,i(x1:n,y1:n) =
n∑
t=1

nt∑
i=1

[yt,i− ŷt,i]2 .

note that ŷt,i =∑K
k=1St,k(pi;βt,k).
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4.4 Data

As we mentioned earlier, forecasting in the electricity market context usually falls
into the short-term category. It is the case in our study as well. There is an auction
for the electricity prices in the electricity market where the retailers and suppliers
submit a price-quantity pair schedule for each hour of the following day. These
schedules are gathered into a supply and demand curve to establish the equilibrium
point, which is the supply and demand curve intersection. In our model, we used the
data provided by Technix GİP. The Data is comprised of hour-by-hour supply-
price curves from 21/01/2020 to 29/2/2020. In figure 4.1, we show some of the
supply-price curves for 24 hours.
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Figure 4.1 Supply-price curve for 24hours of a given day(21/1/2020)

Moreover, we need to point out that we had two different approaches to consider the
calendar effect in our model. In one of them, we use a parameter xsourcet,calendar effect to
apply the calendar effect; another approach is to split the data into three different
categories in terms of calendar effect:

• Weekdays

Tuesday, Wednesday, Thursday

• Weekends and holidays

Saturday, Sunday and any other public holiday

• Transition days which connect weekdays and weekends
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Monday, Friday

Since we want to reduce the components of the latent variables vector, the latter
approach makes more sense.

Moreover, In order to construct the functions ϕk we need to include the explanatory
variables or zt,k. In 4.2, you can see the explanatory variables for transition days.
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Figure 4.2 Explanatory variables for the transition days consist of 11 days or 264
hours

In the following section, we will state the results for each of those day categories.
These predictions are going to the classified as two different kernels we chose for
updating t− 1 components (x1:t−1). The first kernel for updating x1:t−1 is an MH
kernel where we choose one particle from the particle cloud and accept it with
probability (4.6). Another kernel for updating the previous particles is to choose
particles from the particle cloud proportional to the transition probability

X
(j)
t−1,1:t−1 ∼ ft(X

(j)
t−1,t−1,xt)
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4.5 Results

4.5.1 Results based on MH kernel for updating t−1 components

Before running the expectation-maximization algorithm, we run a simple MCMC
algorithm to have a good initial value used in our EM algorithm. The following
section will illustrate our results and explain how we used the data to get these
results.

4.5.1.1 Results for transition days

We used data of 2 days in the transition days category to make an initialization
using a simple MCMC algorithm. After initialization, we used data of 10 days
for the main algorithm that includes the EM step. In this stage, we run the EM
algorithm 100 times with fewer particles (1000) to have a convergence in terms of
our variances, and after this step, we run the algorithm with 1 EM iteration and
more particles (10000). In 4.3, 4.4 ,4.5 and 4.6 we show the explanatory variables
and predictions for the transition days.
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Figure 4.3 Explanatory variables of the last Friday
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Figure 4.4 hour-by-hour prediction of the last Friday
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Figure 4.5 Explanatory variables of the last Monday
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Figure 4.6 hour-by-hour prediction of the last Monday

4.5.1.2 Results for weekdays

We used three days in the weekdays category to make an initialization using a
simple MCMC algorithm. After initialization, we used data of 15 days for the main
algorithm that includes the EM step. In this stage, we run the EM algorithm 100
times with fewer particles to have a convergence in terms of our variances, and after
this step, we run the algorithm with 1 EM iteration and more particles.

In the figures 4.7,4.8,4.9 and 4.10, we illustrate explanatory variables and predictions
for three days of weekdays using the observed latent variable. As we discussed before,
the prediction for each hour of a given day is based on the data of the same hour from
the previous day. For example, to predict the supply curve at 10 pm on Tuesday,
we are using the data and variables of Thursday. (Note that we use the data of
Tuesday, Wednesday, and Thursday in the weekdays category).
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Figure 4.7 Explanatory variables of the last Tuesday
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Figure 4.8 hour-by-hour prediction of the last Tuesday
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Figure 4.9 Explanatory variables of the last Wednesday
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Figure 4.10 hour-by-hour prediction of the last Wednesday
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Figure 4.11 Explanatory variables of the last Thursday
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Figure 4.12 hour-by-hour prediction of the last Thursday

4.5.1.3 Results for weekends and holidays

As we mentioned before, we will predict the supply curve for weekends and holidays
in this category. According to the calendar, we did not have a public holiday in that
part of the year. We used two days to initialize the MCMC algorithm and ten days
to run the EM algorithm with 100 iterations. In figures 4.13, 4.14, 4.15 and 4.16 we
show the explanatory variables and predictions for the weekends and holidays.
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Figure 4.13 Explanatory variables of the last Sunday
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Figure 4.14 hour-by-hour prediction of the last Sunday
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Figure 4.15 Explanatory variables of the last Saturday
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Figure 4.16 hour-by-hour prediction of the last Saturday

4.5.2 Results Based on Gibbs kernel for updating t−1 components

In the figures 4.17, 4.18, 4.19 and 4.20, we demonstrate the explanatory variables
and predictions of last Friday and Monday of the Data using Gibbs move.

4.5.2.1 Results for the transition days
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Figure 4.17 Explanatory variables of the last Friday
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Figure 4.18 hour-by-hour prediction of the last Friday using Gibbs move
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Figure 4.19 Explanatory variables of the last Monday
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Figure 4.20 hour-by-hour prediction of the last Monday using Gibbs move
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4.5.2.2 Results for weekdays

Figures 4.21, 4.22, 4.23, 4.24, 4.25 and 4.26 show the explanatory variables and
predictions for the weekdays using Gibbs move.
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Figure 4.21 Explanatory variables of the last Tuesday
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Figure 4.22 hour-by-hour prediction of the last Tuesday using Gibbs move
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Figure 4.23 Explanatory variables of the last Wednesday
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Figure 4.24 hour-by-hour prediction of the last Wednesday using Gibbs move
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Figure 4.25 Explanatory variables of the last Thursday
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Figure 4.26 hour-by-hour prediction of the last Thursday using Gibbs move

4.5.2.3 Results for weekend and holidays

Figures 4.27, 4.28, 4.29 and 4.30, show the explanatory variables and predictions for
the weekends and holidays using Gibbs move.

55



0 5 10 15 20 25

4

6

8

10

12
temperature

0 5 10 15 20 25

0

0.05

0.1

0.15

0.2
precipitation

0 5 10 15 20 25

0

0.005

0.01

0.015

snow level

0 5 10 15 20 25

40

50

60

70

80
cloud cover

0 5 10 15 20 25

1.5

2

2.5

3

3.5
wind speed

0 5 10 15 20 25

0

100

200

300

400
solar radiation

0 5 10 15 20 25

0.5

1

1.5

2

2.5

3
gas price

0 5 10 15 20 25

403.5

404

404.5

405

405.5

406
ICP

0 5 10 15 20 25

179

179.5

180

180.5

181
DCP

Figure 4.27 Explanatory variables of the last Sunday
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Figure 4.28 hour-by-hour prediction of the last Sunday using Gibbs move
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Figure 4.29 Explanatory variables of the last Saturday
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Figure 4.30 hour-by-hour prediction of the last Saturday using Gibbs move

As one can observe from the figures 4.8,4.22,4.26 the predictions are not good at
some hours, such as 1 PM and 2 PM. We believe it is the case since some variances of
the latent variables have not converged yet. Moreover, since these flawed estimations
happen where the solar radiation increases, we suspect the model cannot predict the
supply provided by solar energy. Another reason that we assume solar power is not
predicted accurately because we can see an upward shift in the predictions (Note
that solar source provides a constant supply value). Furthermore, we believe another
reason that may cause some poor predictions for some hours is the high variances
of some latent variables. To improve the predictions, we can correct the model, run
the algorithm for more iterations (for example, 100 EM iterations) and provide more
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data from the supply curves on the ground that we only use the data of 40 days of
the year.

In the last chapter we will make a conclusion and discuss the results. Moreover
we have provided some accuracy measures for each hours of the prediction in the
appendix.
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5. CONCLUSION AND DISCUSSION

5.1 Conclusion

Electricity price prediction has increasingly become one of the fundamental aspects
for the companies to set their strategies. Despite some differences in electricity pric-
ing, the nature of load forecasting stems from the relationship between supply and
demand curves. These two curves are not necessarily dependent on each other, and
multiple factors can affect each curve. Some factors that can influence the demand
and supply of electricity can be temperature, prices of other energy resources, life
quality of the population, solar radiation, wind speed, level of technology in the
energy and electricity industry, and special days. The way these factors cause the
demand and supply is not the same. For example, on holidays, electricity generation
slows down, but the energy demand may increase.

In this study, we proposed a sequential Markov chain Monte Carlo algorithm to pre-
dict the hour-by-hour supply curve of the electricity market in Turkey. Moreover, we
used many factors such as temperature, precipitation, and other factors to capture
the supply curve. We discussed that due to the high dimensionality of the model,
SMC approaches are inefficient for the prediction, and the SMCMC algorithm can
be a remedy for this problem. In our thesis, we used two different methods in the
SMCMC context as the following. In one approach, we used a kernel that uses MH
updates, and in another one, we used a combination of Gibbs and MH updates to
do SMCMC. The novel approach used in this thesis is not studied in the literature
where we use particle filtering for a high-dimensional model in the electricity market.
However, we need to use more powerful computational tools for the convergence of
some latent variables. Since some of the latent variables had high variance, we had
problems in predicting. However, One can observe that the algorithm has a good
performance in most of the hours.
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5.2 Future studies

Since electricity price prediction is the ultimate goal of the study, one should model
the demand curve as well. In the future, we can use a similar approach to predict the
demand curve too and predict the price. Moreover, to improve the performance, we
can use other algorithms in the literature, such as SMC2. As one can observe, we
have poor performance in some hours, which stems from the model. For example, we
should construct a better model for some resources like solar energy. Furthermore,
some other resources provide electricity that can be mention in the study.
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APPENDIX A

Performance measures of Model prediction Using MH kernel for updating
t−1 components

Table A.1 Adjusted R2 for each hour of the last week of data

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
0 0.7695 0.9866 0.9465 0.9280 0.7830 0.9881 0.9833
1 0.8699 0.9664 0.9404 0.9883 0.8316 0.9768 0.9714
2 0.8977 0.9979 0.9571 0.9937 0.8921 0.9664 0.9874
3 0.9460 0.9880 0.8848 0.9284 0.9238 0.8494 0.9512
4 0.9376 0.9700 0.9502 0.9966 0.8926 0.8942 0.9825
5 0.9640 0.9940 0.9455 0.9679 0.9232 0.9317 0.9842
6 0.9609 0.9962 0.9481 0.9945 0.9384 0.8908 0.9813
7 0.9844 0.9910 0.9284 0.9775 0.9250 0.7305 0.9738
8 0.9974 0.9780 0.6856 0.8484 0.9349 0.5883 0.9851
9 0.9887 0.9929 0.8648 0.9015 0.8758 0.6898 0.7117
10 -1.6548 0.9549 0.8373 0.8904 -23.6482 0.7601 0.9875
11 0.9803 -0.7001 0.7881 -1.8988 0.6088 -0.0479 0.8331
12 0.6270 -1.7187 0.7538 0.1260 -7.0377 0.9208 0.8119
13 0.5891 -9.0504 0.7523 -1.1184 -0.3892 0.9631 0.8136
14 -0.4368 0.8172 0.8688 0.7196 -8.8157 0.9696 0.4792
15 -2.3309 -5.5502 0.7279 -0.6206 -13.4933 0.2402 0.9760
16 0.9751 0.5661 0.8488 0.5190 0.9785 0.9532 0.9717
17 0.6023 -4.1092 0.8668 -1.0959 -0.3163 0.8603 0.9545
18 0.7319 0.9276 0.9325 0.8088 0.3191 0.2443 0.1521
19 0.6466 0.8473 0.9395 0.8409 0.1521 0.9373 0.9710
20 0.6188 0.8994 0.9151 0.8727 0.1905 0.9857 0.9513
21 0.5708 0.9351 0.8921 0.9765 0.1657 0.9404 0.9927
22 0.5455 0.9398 0.9441 0.9432 0.5001 0.7778 0.9587
23 0.6236 0.9607 0.9284 0.9337 0.7954 0.6160 0.9027
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Performance measures of Model prediction Using Gibbs kernel for up-
dating t−1 components

Table A.2 Adjusted R2 for each hour of the last week of data

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
0 0.7878 0.9631 0.9437 0.9434 0.8029 0.6201 0.0481
1 0.8333 0.9799 0.9226 0.9898 0.8707 0.7136 0.4533
2 0.9136 0.9830 0.9613 0.9795 0.9023 0.9810 0.9314
3 0.9405 0.9963 0.9625 0.9629 0.9556 0.9834 0.5788
4 0.8914 0.9741 0.9456 0.9886 0.9411 0.9743 0.8155
5 0.9425 0.9674 0.9477 0.9835 0.9722 0.9900 0.4506
6 0.9321 0.9635 0.9252 0.9487 0.9690 0.9010 0.6997
7 0.9439 0.9923 0.9263 0.9904 0.9863 0.7052 -0.6983
8 0.8718 0.9959 0.7883 0.9051 0.9865 0.6310 -0.8407
9 0.5153 0.9903 0.4992 0.3345 0.9795 0.7353 -0.2989
10 -4.9817 -0.1464 -0.1816 -1.1928 0.9530 -0.3595 -0.1851
11 -2.2285 -1.4854 0.7779 -1.2111 0.9049 -0.0933 -0.4018
12 -6.2286 -51.8967 0.2873 -11.8171 0.8294 0.8351 0.0879
13 -4.3192 -8.3169 0.6666 -0.3514 0.9271 0.5455 0.4879
14 -1.7077 -7.2073 0.7947 -1.3311 0.9057 0.9194 -0.9082
15 -5.5480 -0.3389 0.8305 0.5192 0.6736 -0.2799 -5.8008
16 -1.2343 0.9393 0.9020 0.9175 0.8659 0.9859 0.0900
17 -0.5774 0.2216 0.9171 0.6791 0.6445 0.9414 0.1696
18 0.3182 0.3294 0.9329 0.5191 0.6717 0.7062 0.2080
19 0.2094 0.7715 0.9395 0.6309 0.6874 0.3717 0.1705
20 0.1932 0.8672 0.9250 0.9634 0.6238 -0.1227 0.1529
21 0.1620 0.8521 0.9217 0.8029 0.7119 -0.0998 0.2865
22 0.6986 0.9465 0.9438 0.9652 0.6166 0.9261 0.3789
23 0.7984 0.9391 0.9501 0.9615 0.6518 0.7575 0.5566
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