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ABSTRACT

CONSTRAINTS FROM INFLATION AND BLACK-HOLES ON EMERGENT
GRAVITY THEORIES

İLİM İRFAN ÇİMDİKER

PHYSICS M.Sc. THESIS, JULY 2021

Thesis Supervisor: Prof. DURMUŞ ALİ DEMİR

Keywords: emergent gravity, induced gravity, inflation, black-hole, f(R)

In this work, we study the inflationary dynamics and the static spherically symmet-
ric black hole solutions on induced gravity theories. Inflation is the central paradigm
for explaining the isotropy and homogeneity of the observed universe, whereas in-
duced gravity theories arise from the matter loops and can be qualified as natural.
Proposed exact black hole solutions can be a testbed for these induced gravity the-
ories with the help of future observations of Event Horizon Telescope (EHT) and
Laser Interferometer Gravitational-wave Observatory (LIGO).
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ÖZET

ENFLASYONUN VE KARA DELİK ÇÖZÜMLERİNİN KENDİLİĞİNDEN
OLUŞAN KÜTLE ÇEKİM KURAMLARINDAKİ KISITLAMALARI

İLİM IRFAN ÇİMDİKER

FİZİK BÖLÜMÜ YÜKSEK LİSANS TEZİ, MAYIS 2021

Tez Danışmanı: Prof. Dr. DURMUŞ ALİ DEMİR

Anahtar Kelimeler: kütle çekim, zuhur, enflasyon, kara delik

Bu çalışmanın amacı kendiliğinden oluşan kütle çekim kuramlarında enflasyon di-
namiğini ve zamanla değişmeyen küresel simetrik karadelik çözümlerini ortaya çıkar-
maktır. Enflasyon, gözlemlenen evrenin eşyönlülüğünü ve tektürelliğini açıklayan
ana örneklemdir. Aynı zamanda kendiliğinden meydana gelen kütle çekim kuram-
ları, madde ilmeklerinden ortaya çıktığından dolayı doğal olarak kabul edilebilirler.
Bu çalışmada ortaya koyduğumuz kara delik çözümleri, gelecekte Event Horizon
Telescope (EHT) ve Laser Interferometer Gravitational-wave Observatory (LIGO)
deneylerinin yardımı ile modifiye teoriler için test edilebilir bir alan sunmaktadır.
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1. INTRODUCTION

General Relativity (GR) is one of the most successful theories of modern physics
(Will (2014)). The GR addresses gravity not as a force but a resulting act of curved
space-time. Einstein came to the said theory through straightforward yet profound
thought experiments via the help of the rich expressions of geometry.

While the GR may be one of the most understood and most robust theories in the
literature, it is not without imperfections. The most prominent obstacle for the GR
is that it is incompatible with Quantum Field Theory (QFT) (Macias & Camacho
(2008)). Unification of GR and Standart Model (SM) is a stubborn problem that
many have tried but remained futile (Dyson (2013); ’t Hooft & Veltman (1974)).

The canonical idea was to quantize the gravity directly (Schulz (2014)); however, the
inability to get a Fourier mod from a linearized gravity and the absence of a spin-
two scalar graviton in the standard model makes this preposition unsatisfactory at
best(Carlip (2001)). On the other hand, the current experimental methods cannot
probe the energy levels that string theory proposes(Schwarz (2007)).

One can also accomplish this unification via Induced Gravity (or Emergent Grav-
ity). Originally Induced Gravity was proposed by Sakharov (Sakharov (1967); Visser
(2002)), which treats gravity not as a fundamental but rather as an emergent phe-
nomenon induced by one-loop effects of QFT; hence it is called Induced Gravity
(IG). There are also attempts to induce gravity from thermodynamics (Verlinde
(2017)). In general, these theories have the gravitational scale emerge from the said
matter loops or other physical aspects. Also, a novel idea called Symmergent Grav-
ity(SG) takes this idea as a base and incorporates gravity into the SM via restoring
the broken gauge symmetry(Demir (2021,1)). Just as in Sakharov’s IG, space-time
elasticities as geometry emerges from the action(Demir (2019)).

Both Sakharov’s IG and SG contains quadratic terms of the scalar curvature. Con-
trary to the commonly used R in the Einstein-Hilbert action, IG and the SG contain
linear R and quadratic R2 terms. The quadratic scalar curvature is usually consid-
ered as a quantum correction to the Einstein-Hilbert(EH) action. Hence, actions of
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these theories can be considered an f(R) theory at its core (Capozziello & De Lau-
rentis (2011); De Felice & Tsujikawa (2010); Sotiriou & Faraoni (2010)).

It is also well known that f(R) theories are equivalent to Brans-Dicke type Scalar-
Tensor theories. It can be reduced to an EH action plus a canonical scalar action
with the help of a conformal rescaling, i.e. passing from the Einstein frame to the
Jordan frame. One can observe this in Starobinsky’s inflationary model (Starobinsky
(1980b)).

Inflation is the primary paradigm that solves the enigmatic horizon and flatness
problems (Guth (1981); Linde (1982)) whose constraints are well defined by Planck
Cosmic Microwave Background (CMB) results(Akrami & others (2020)). Starobin-
sky’s model, an R+R2 model, introduces a scalar mode called "inflaton", a single
field that rolls slowly. The quadratic curvature term dominates the linear one in the
early universe; thus, inflationary dynamics arise. While in the low curvature limit,
linear R ends the inflation. Since both IG and SG have similar higher curvature
forms, the inflation (Çimdiker (2020)) and Black-Hole(BH) solutions and results
from Event Horizon Telescope (EHT) (Akiyama & others (2019)) should constrain
these frameworks. Thus in this thesis, the aim is to designate these constraints via
the help of Starobinsky’s inflationary model and the BH solutions.

The plan of this thesis will be as follows;

In chapter two, we will briefly introduce the General Theory of Relativity. We will
give background information on space-time geometry, and then we will delve into
Action formalism.

Since both IG and SG actions are f(R) functions, chapter three will be about the
f(R) theories and their applications. Again, we will use the Action formalism to
obtain the equations of motions of a general function f(R). Also, we will look
upon the frameshift from the Einstein to Jordan frame and introduce the concept
of conformal transformation to see the resemblance between the f(R) theories and
scalar-tensor theories. Moreover, at the end of the chapter, we will introduce the
inflationary dynamics.

We also want to utilize the BH solutions of higher curvature theories to see the result
in the underlying QFT. Thus we will reserve the fourth chapter for BH dynamics in
Einstein Gravity and f(R) theories. First, we will introduce the Spherically Sym-
metric solutions to Einstein gravity. Then we will briefly explain the thermodynamic
properties of such solutions. In the end, we will generalize these to the f(R) theories.

In chapter five, we will introduce the IG and SG to the reader. We will briefly derive
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their actions. We will see the relationship between gravity and the underlying QFT.

Furthermore, in the sixth chapter, we will use the dynamics obtained from chapters
three and four and see their effects on the said emergent gravity theories. Finally,
we conclude our thesis in chapter seven.

We will use the east coast (−,+,+,+) metric through this thesis except Chapter
five, where we will utilize the west coast one to match it with other particle physics
manuscripts. Also we will take h̄ and c to be 1 except otherwise stated.
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2. Introduction to General Relativity

2.1 Gravity

Why do apples fall? It is maybe one of the first vital questions that dazzle many
intellectuals for centuries. Aristotle thought that every element of nature had some
inner affinity to be with its related. Hence, a falling rock would fall because stones
tend to be with other stones, or air would rise since this was their natural tendency.
On the other hand, a geocentric method of epicycles introduced by Ptolemy de-
scribed the motion of the heavenly bodies accurately. After that, Copernicus paved
a path to a heliocentric system. Measurements of Tycho Brahe and the analysis of
Kepler further improved this idea by showing that the orbits of these bodies were
ellipses rather than circles all along. However, none of these ideas was explaining the
fundamental question of why apples fall. Only Newton came up with the brilliant
idea that apples, Sun, and earth obey the same law.

Newton’s ideas were relatively straightforward. All matter attracts each other via
the help of an action at a distance. The force is proportional to the inverse square of
the distance between these elements, and there exists a charge-like quantity called
mass which creates this attractive force. There also exists a constant, namely New-
ton’s constant which clears up the units. Force is always along the path between
the masses.

(2.1) F =GN
m1m2
r2 r̂

It is practical, elegant, and it makes sense. By the 19th century, field notation has
taken its part in physics. The idea was that charged particles produce a field that
influences all the surroundings and exists throughout the space. Via this notation,
the particles could pull and push one another with the help of the field itself, thus
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creating a medium for a local transaction for forces. Nobody thought of these
fields as literal beings; they were bookkeeping devices for the physicists. However,
the ingenious physicist James Clark Maxwell changed the trajectory of physics by
taking these fields as literal. Maxwell constructed his ideas by incorporating the
electric and magnetic fields into two sides of a single coin. Also, it turned out
that the propagation of the interaction between two body moves with a particular
limiting speed was a recently measured value of the speed of light. However, the
cosmic speed limit shown by Maxwell was nonexistent in the old Galilean relativity.
In 1905 Einstein introduced the idea of Special Relativity(SR), where he assumed
the followings;

1.1 The laws of physics are the same in all Galilean frames.

1.2 There is a cosmic speed limit for a causal connection in all Galilean frames
independent of the observer’s motion, which happens to be the speed of light.

Here Galilean frames are non-rotating, non-accelerating so-called inertial frames. It
is important to note that the speed limit of special relativity is the limit of causality
which means that two events that happen at specific space and time coordinates can
not affect each other immediately. Event A can cause Event B via a propagating
mediator, which must obey this speed limit. Since Electro-Magnetic(EM) quanta
photon is a massless particle, it can and should travel at the boundary of this limit.
Later publishing the idea of SR, Einstein was mainly concerned with incorporating
gravity into his novel idea of relativity. After eight years of search for a partic-
ular relativistic gravitation theory, in 1915, Einstein achieved this by relating the
curvature of a 4-dimensional merged space-time to the energy and matter content.

In flat geometry, two bodies that are comoving parallel to each other stay parallel.
However, in curved geometry, things are different. Imagine a 3-dimensional sphere
S2 and two point particles with a velocity vector parallel to each other. The vectors
start parallel but, with some time, they will lose this parallelity. The distance
between these two objects will change too. The main observation is that in a curved
geometry, two objects can be seen as attracted to each other even though there is
no force to be seen anywhere. Hence we can conclude from this thought experiment
that "Gravitation" may not be a force but could be a manifestation of 4-dimensional
curved geometry.
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Figure 2.1 Vectors on S2.

2.2 Fundamentals

Since we will try to describe gravity as elasticization of a four-dimensional space-
time by a matter content, an object which contains some information about the
matter should somehow be correlated to an object that shows us the geometry of
space-time. Let us review what we know so far.

From SR, we know that space and time are a composite body that can be called
space-time. Let us start with a formal definition of space-time and see how it behaves
in a more general term.

" Space-time is a four-dimensional differentiable manifold that is equipped
with a semi-Riemannian metric that is nondegenerate everywhere. "

The concept of a manifold is a continuous space of points that may be flat or
curved (or even can have holes in it) globally. However, locally it can be considered
as flat. These small flat patches construct a global may be curved manifold. A
differentiable manifold is a space that is differentiable continuously; hence one
can do calculus on it.

In this construct, there exists an infinitesimal interval that is invariant from an
observer to observer, which is called space-time interval or line element that can be

6



Figure 2.2 Representation of a curved manifold

written as

(2.2) ds2 = dt2−dx2−dy2−dz2

One can see that space and time are on the same footing with a relative minus sign
on the space part. Let us generalize this relation as

(2.3) ds2 = gµνdx
µdxν

We will use the Einstein summation convention throughout this work; thus, there
will be a hidden sum for all indices, in this case, µ and ν. The second rank tensor
gµν is called the metric tensor or loosely metric where this object defines the inner
product. In flat space, it is called Minkowski metric, ηµν which can be shown as

ηµν =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣
(2.4)
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The metric imposes geometry in GR. Space-time should be flat in empty space,
but also it should be curved when there exists an energy content nearby. Hence in
such cases, the metric will have dynamic entries. In 3-dimensions, we expect the
inner product or norm of a vector to be positive or, formally, we expect them to be
positive definite. The relative minus sign for the space part imposes a relaxation
on this constraint. So that the norm of a vector in this particular manifold (space-
time) can have either positive or negative values, such manifolds can be called semi-
Riemannian pointing to this relaxation. Also, the metric g that is equipped to the
manifold should be smooth, symmetric, and nondegenerate that is any map g→ g′

where g is a bilinear form, and g′ is the dual of it, is an isomorphism.

In a flat space, parallel lines stay parallel. These straight lines are also the shortest
distances between the selected two points on the line. The shortest distance between
the two points is called geodesic, which may or may not be a straight line. For
example, in a curved space embedded in a flat space, geodesics do not need to
stay parallel. Lines both converge or diverge depending on the curvature of the
selected area. Thus even though no force acts on a selected two body that moves in
geodesics, the bodies can cross path at some point. Thus we can say that gravity is
not a force; it is a manifestation of the curvature of space-time. (Landau & Lifschits
(1975); Wald (1984)) However, to see this effect, we need to know how derivative
works on a construct such as space-time. Consider a vector A which can be written
explicitly with its basis as Aµeµ. To take the derivative, we need to use the Leibniz
rule as,

(2.5) ∂A

∂xν
= ∂Aµ

∂xν
eµ+Aµ

∂eµ
∂xν

For an ordinary flat space, the basis vector does not need to change. Thus the
derivative of the basis yields null. However, in curved space, this is not the case.
The derivative of the basis vector is another vector that can be written as a linear
combination of the basis vectors with a weighted coefficient as

(2.6) ∂eµ
∂xν

= Γλµνeλ

Coefficients Γ are called Christoffel symbols or connections (components of the con-
nection concerning local coordinates.). Physically it can be considered as a cor-
rection term that makes the derivative operator covariant. Rewriting (2.5) using
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connection we obtain

(2.7) ∂A

∂xµ
=
(
∂Aλ

∂xµ
+ ΓλµνAν

)
eλ

The expression without the basis vector is what we define as a covariant derivative
of a vector, in this case, vector A, which can be explicitly written as

(2.8) ∇µAλ = ∂Aλ

∂xµ
+ ΓλµνAν

The connection is not a tensor, and it can exist without defining a metric on a
manifold. In general, these connections without a metric definition are called affine
connections. However, to do GR, we need a Riemannian manifold. Thus we need to
introduce a metric to the manifold, and we can also demand some properties from
the connection itself. The two things we apriori define can be shown as follows;

2.1 Torsion freeness: the connection is symmetric in the lower two indices, that is
Γλµν = Γλνµ.

2.2 Metric compatibility: Covariant derivative of the metric zero on the manifold
everywhere, that is ∇ρgµν = 0.

These definitions allow us to define a unique connection that is called the Levi-Civita
connection, which can be written as

(2.9) Γλµν = 1
2g

λσ(∂µgσν +∂νgσµ−∂σgµν)

This object helps us to transfer some data along a curve on a manifold. It connects
two points on a patch to do some iterations or predictions about the relationship
between the two points. As said before, the connection does not need to be a function
of a metric. One can easily define a connection without equipping the manifold with
a metric; hence do some calculus on the said manifold. This Levi-Civita connection
is a particular case. To construct a general theory of relativity, we need a Levi-Civita
connection.

Next, we need to define an object to measure how curved a manifold is. This
curvature, however, should be calculable on the manifold itself. Think of inventing
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Figure 2.3 From open sets to Riemannian manifolds

a measurement to show that the earth is curved and try to prove it by only doing
some calculations. No satellite images or space travels are allowed. To do this, we
can introduce an operation called vector transportation. On flat surfaces, when we
transport a vector pointing out to a specific direction along a close loop, it would
not change its direction. However, in curved space, that is not the case. A vector in
the equator pointing to the north pole can be parallel transported along a path to
change its direction by full π/2 degrees. Hence just by transporting vectors on it,
we can tell something about the curvature of the manifold.(Schutz (1985)) We can
do this operation by introducing the following commutation relation,

[∇µ∇ν ]Aρ =∇µ∇νAρ−∇ν∇µAρ(2.10)

Here we are taking a vector Aρ and take the derivative of it in two distinct directions
in sequence on a loop. If this object yields null, then we can conclude that the vector
did not change its direction along the path. However, if this quantity changed
along the path, we can relate this quantity to the manifold’s curvature. Further
unwrapping this quantity gives
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[∇µ∇ν ]Aρ = Aλ∂µΓλνρ−Γλνρ∂µAλ−Γσµρ(∂νAσ−ΓλνσAλ)

Aλ∂νΓλµρ+ Γλµρ∂νAλ+ Γσνρ(∂µAσ−ΓλµσAλ)(2.11)

After renaming indices and collecting similar terms, we get

[∇µ∇β]Aν = (∂βΓαµν−∂νΓαµβ + ΓαλβΓλµν−ΓαλνΓλµβ)Vα(2.12)

The only quantity that can raise the null result is the tensorial quantity in the
parenthesis. It can be seen that it has four indices that can be compactly written
in the form,

[∇µ∇β]Aν =RαµβνVα(2.13)

where our new tensorial quantity reads

(2.14) Rαµβν = ∂βΓαµν−∂νΓαµβ + ΓαλβΓλµν−ΓαλνΓλµβ

This object is called the famous Riemann tensor. It is a tensor field that is used to
express the curvature of a Riemannian Manifold. It is the central piece of general
relativity. Further contracting the α and β indices yields the Ricci Tensor Rµν
which is the trace of Riemannian tensor and beyond contracting Ricci Tensor with
a dynamic metric gives Ricci Scalar or Scalar curvature R.

These objects can be differentiated between them by following interpretations. Rie-
mann tensor Rαµβν is a rank four tensor that holds all of the information about an
object in free fall. It gives information about the size and shape change of an object
that moves in a geodesic. Where Ricci Tensor Rµν is a second rank tensor, has fewer
components; thus, it only gives a rate about the volume change of an object. Lastly,
Ricci scalar R is a scalar (thus rank zero). It can only give a comparative number
about the difference of the volume of an object concerning a reference object in flat
space.
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2.3 Action Formalism in Metric Theory

Like a classical field theory, Einstein’s field equations can be derived through the
principle of least action. All systems in physics try to minimize a function that is
called action, that is

δS = δ
∫
d4xL= 0(2.15)

L is called the Lagrangian density or lagrangian that, when minimized, could give
the equation of motions of a given system.(Carroll (2019)) For gravity, one can select
any lagrangian in 4-dimensional space to produce a theoretical model as long as it
is covariant. The most convenient and easy one would be the following.

L=
√
−gR(2.16)

Where R is the scalar curvature and g is the determinant of the metric gµν . Scalar
curvature can be obtained by contracting Ricci tensor with the metric as

R = gµνRµν = gµνRαµαν(2.17)

By selecting the lagrangian as in Eq.(2.16) and taking the dynamic metric gµν as an
independent field, in the absence of matter, we can write the so-called EH action as
follows;

(2.18) S =
M2
pl

2

∫
d4x
√
−gR

Mpl is Planck mass which can be taken as 1/
√

8πGN in literature and is around
2.4× 1018 GeV in mass-scale where GN is Newton’s constant. The dynamics of
this action can be obtained by considering the variation of the action. In metric
formalism, the dynamic metric is the only independent variable, hence taking the
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variation with respect to metric will yield the equations of motion. Let us do so by
varying the action in Eq.(2.18) with respect to metric gµν

(2.19) δS =
M2
pl

2

∫
d4x{Rδ

√
−g+

√
−g(gµνδRµν +Rµνδg

µν)}

The last term, δgµν , is the expected and the required version of the variation. Vari-
ation should be taken from the volume element √−g and the Ricci Tensor Rµν to
the metric. The first thing to do is to vary the volume element. We can use the
well-known matrix identity for it as

(2.20) δ
√
−g =−1

2
√
−ggµνδgµν

Also, the variation of the Ricci tensor Rµν yields the well known Palatini identity.

(2.21) δRµν =∇λ(δΓλµν)−∇ν(δΓλλµ)

where the variation of the connection can be calculated as

(2.22) δΓσµν =−1
2{gλµ∇ν(δgλσ) +gλν∇µ(δgλσ)−gµαgνβ∇σ(δgαβ)}.

Using the variation of the Levi-Civita connection, we can easily shape the variation
of the Ricci tensor as desired. Using Eq.(2.22) one can write;

(2.23)
∫
d4x
√
−ggµνδRµν =

∫
d4x
√
−g∇σ[(gµν∇σ(δgµν)−∇λ(δgσλ)]

The right-hand side of the Eq.(2.23) is a four-dimensional volume integral of di-
vergence, particularly a surface term. Stoke’s theorem states that at infinity, this
term will vanish. Thus there will be no contribution from the variation of the Ricci
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tensor. In the end, variation of the gravitational action yields;

(2.24) δS =
M2
pl

2

∫
d4x
√
−g{Rµν−

1
2gµνR}δg

µν

Now that the variation of the gravitational action has been written out, we can also
define a matter action that connects matter fields to geometry. Let us define the
following variational identity.

(2.25) Tµν =− 2√
−g

δSM
δgµν

Tµν is the energy-momentum tensor that describes the energy, pressure, and shear
properties of a given object. By defining such identity, the variation of the total
action would take the form.

δST = δS+ δSM = 0(2.26)

thus the equation of motion for the total action, i.e. the Einstein-Hilbert action,
can be written as;

(2.27) Gµν =Rµν−
1
2gµνR = 1

M2
pl

Tµν

Eqs.(2.27) is generally known as Einstein’s field equations which are sets of ten
differential equations, and Gµν is known as Einstein tensor. The left-hand side of
the equation describes the dynamics of the system’s geometry, whereas the right-
hand side delivers the distribution of matter.
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3. Introduction to f(R) Theories

3.1 Action formalism in f(R) theories

Even though general relativity makes perfectly sensible and provable predictions on
many occasions, corrections can provide substantial benefits. It helps build up a toy
theory that can probe riddles that are yet to be unrevealed. Such correction terms
can be added directly to the EH action to produce a new model. Selecting a function
of R instead of a linear one would result in a higher-order action. Such theories
are called f(R) theories.(Sotiriou & Faraoni (2010)) f(R) theories can be used to
produce models for Dark Matter, Dark energy, Inflation(De Felice & Tsujikawa
(2010)). This section will provide sufficient background for f(R) gravity needed to
work with inflationary dynamics. These theories come from the generalization of
the EH action (2.18) that is scalar curvature R becomes a linear analytic function
of R as

S =
M2
pl

2

∫
d4x
√
−gf(R)(3.1)

Here scalar curvature R is a function of the connection that may be or not related
to a metric. In a standard way, the connection is generally taken to be a Levi-
Civita one that is a function of a metric gµν . Therefore, taking variation with
respect to metric leads to the metric formalism of the f(R) gravity. Moreover,
Palatini (Bastero-Gil, Borunda & Janssen (2009)) and Metric-Affine (Shimada, Aoki
& Maeda (2019); Vitagliano, Sotiriou & Liberati (2011))formalisms approach the
f(R) action by distinguishing the connection and metric, taking both constructs as
separate things. In this way, one can obtain two equations of motions obtained via
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varying for both connection and the metric. Doing this generally yields the same
results in bare cases. However, in borderline situations, this may differ the outcome.

In this section, we will use the general metric formalism. As done in the action
formalism of the EH action, we can vary Eq.(3.1) with respect to metric to obtain
the equation of motions. In the absence of matter, variation of the mentioned action
will be in the form.

δS =
∫
d4x

(
δ
√
−g f(R) +

√
−g δf(R)

)
(3.2)

which can be unwrapped as

δS =
∫
d4xδ

√
−g f(R) +

∫
d4xf ′(R)(gµνδRµν +Rµνδg

µν)(3.3)

where the prime denotes the derivative with respect to the argument, in this case,
R. We can see this action as the sum of three actions as

S1 =
∫
d4xf(R)δ

√
−g(3.4)

S2 =
∫
d4xf ′(R)gµνδRµν(3.5)

S3 =
∫
d4xRµνδg

µν(3.6)

S = S1 +S2 +S3(3.7)

We need to take the variations of the quantities, which can be taken directly from
the variation of the Einstein-Hilbert action. Via using (2.20, 2.21, 2.22) we can take
the variation of the Riemann tensor as

δRµν =∇ρ[
1
2g

λρ(∇µδgλν +∇νδgλµ−∇λδgµν)]

−∇ν [12g
ρλ(∇µδgλρ+∇ρδgµλ−∇λδgµρ)](3.8)

which is equivalent to
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δRµν = 1
2(∇λ∇µδgλν +∇ρ∇νδfµρ−gλρ∇ν∇µδgλρ−∇λ∇λδgµν)(3.9)

Notice that in the EQ.(3.3), derivatives that come from Palatini identity would not
create a divergence for a 4-dimensional volume. We generally have a good idea about
healing the surface terms in the EH case where f(R) = R (Chakraborty (2017)).
However, the f(R) version have terms that do not gather into a total divergence.
Hence the variation of the Riemann tensor can not be integrated by parts in this
method. Thus let us contract this variation with the metric while noting that.

δgµν =−gµλgνρδgλρ(3.10)

results in

gµνδRµν = gκσ�δg
κσ−∇κ∇σδgκσ(3.11)

where the � operator is the 4-dimensional Laplacian or D’Alembertian operator.
The variation of the action S2 becomes

δS2 =
∫
d4x[gµν�f ′(R)−∇µ∇νf ′(R)]δgµν(3.12)

where the variation of the total action S would yield

δS =
∫
d4x[f ′(R)Rµν−

1
2gµνf(R) + (gµν�−∇µ∇ν)f ′(R)]δgµν(3.13)

In the absence of matter, this results in the following equation of motion.

f ′(R)Rµν−
1
2gµνf(R) + (gµν�−∇µ∇ν)f ′(R) = 0(3.14)

Eqs.(3.14) are fourth-order partial differential equations since R already contains
the second derivative of the metric. Also, we can write the trace of the (3.14) in the
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presence of matter as

f ′(R)R−2f(R) + 3�f ′(R) = 2
M2
pl

T(3.15)

T is the trace of the energy-momentum tensor; it is easy to see that for the f(R) =R

case Eqs. (3.14) reduces to Einstein’s field equations. The extra term gµν�−∇µ∇ν
vanishes while f ′(R) = 1. However, other than that case, this new term creates an
energy surge to the system, and the equation of motion can be manipulated to a
more convenient form that is

Gµν = 2
M2
plf
′(R)(T (M)

µν +T (E)
µν )(3.16)

where we compactified the extra terms to an effective energy-momentum tensor
which can be explicitly written as

2
M2
pl

T (E)
µν = gµν

(f(R)−f ′(R)R)
2 +∇µ∇νf ′(R)−gµν�f ′(R)(3.17)

Notice that T (E)
µν is conserved under covariant derivative i.e. ∇µT (E)

µν = 0. Hence con-
tinuity equation holds for both matter and effective stress-energy tensor. 2

M2
pl
f ′(R)

becomes the new gravitational scale for the effective theory.

Also, on this basis, we can use Friedman-Robertson-Walker(FRW) metric, which is

ds2 = gµνdx
µdxν =−dt2 +a2(t)dx2(3.18)

where the scalar curvature R for this metric becomes

R = 12H2 + 6Ḣ(3.19)

H is the hubble parameter which is H = ȧ/a where dot represents a derivative with
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respect to time. H = 2.13×10−42 GeV is the value for our universe(Abbott & others
(2018); Akramiet al. (2020)).

In the presence of matter, we can add a term to action (3.1) to yield an energy-
momentum tensor as in done in (2.26). For a dust model Tµν can be written as

Tµν =

∣∣∣∣∣∣∣∣∣∣∣∣

−ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

∣∣∣∣∣∣∣∣∣∣∣∣
(3.20)

ρ is the energy density, and P are the pressure. With the FRW metric in hand, we
can write down the field equations (3.14) as

3f ′(R)H2 = 1
2(f ′(R)R−f(R))−3H ∂

∂t
f ′(R) + 2

M2
pl

ρ(3.21)

−2f ′(R)Ḣ = ∂2

∂t2
f ′(R)−H ∂

∂t
f ′(R) + 2

M2
pl

(ρ+P )(3.22)

3.2 Equivalence of f(R) Theories with Scalar Tensor Theories

In metric formalism, an f(R) action can be transformed into a scalar-tensor theory
(Flanagan (2003)) with an effective scalar potential. To do this, let us introduce a
new field κ and, in the absence of matter, and write the following action.

S =
M2
pl

2

∫
d4x
√
−g[f(κ) +f ′(κ)(R−κ)](3.23)

If we vary this action with respect to κ, we get the following eom

f ′′(κ)(R−κ) = 0(3.24)
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Now observe the following. Provided that f ′′(κ) is not null, then κ reduces to R
dynamically. Hence action (3.23) is equialent to f(R) action (3.1). Now define a
scalar degree of freedom Λ as

Λ = f ′(κ)(3.25)

Action (3.23) becomes

S =
∫
d4x
√
−g

M2
pl

2 ΛR−U(Λ)
(3.26)

where potential U(Λ) can be defined as

U(φ) =
M2
pl

2 (κ(Λ)Λ−f(κ(Λ))(3.27)

Hence theory became a scalar-tensor theory. This theory is equivalent to Brans-
Dicke type theories(Lu, Wu, Yang, Liu & Zhao (2018)), where Brans-Dicke action
can be written as

S =
∫
d4x
√
−g

[
Λ
2R−

λ

2Λ∇
ρΛ∇ρΛ−U(Λ)

]
(3.28)

λ is the Brans-Dicke parameter; in general, f(R) theories in metric formalism can
be considered equivalent to Brans-Dicke type Scalar Tensor theory with parameter
λ= 0 (Brans & Dicke (1961); O’Hanlon (1972)).

3.3 Transformation of a Connection

Suppose we have two manifolds (M,Q) and (M,R) that is equipped with Lorentzian
metrics Q and R respectively. Since the metric Q is Lorentzian, and it is conserved
with respect to covariant derivative, we can write the connection on (M,Q) as
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QΓλµν = 1
2(Q−1)λρ(∂µQνρ+∂νQρλ−∂ρQµν)(3.29)

We can add and subtract the following quantities as

QΓλµν = 1
2(Q−1)λρ(∂µQνρ+∂νQρλ−∂ρQµν)−2RΓλµνQλρ+ 2RΓλµνQλρ−

RΓλµρQλν +RΓλµρQλν−RΓλνρQλµ+RΓλνρQλµ(3.30)

Which can than compactified into

QΓλµν = 1
2(Q−1)λρ{(∂µQνρ−RΓλµνQλρ−RΓλµρQλν)

+(∂νQµρ−RΓλρνQλµ−RΓλµνQλρ)

−(∂ρQµν−RΓλρµQλν−RΓλρνQλµ) + 2RΓλνµQλρ}

(3.31)

Now notice that the impressions inside the parentheses are nothing but the covariant
derivatives of the connections with respect to the metric R. Thus we can write.

QΓλµν = RΓλµν + ∆λ
µν(3.32)

Where the quantity ∆ becomes

∆λ
µν = 1

2(Q−1)λρ(R∇µQνρ+R∇νQρµ−R∇ρQµν)(3.33)

3.4 Conformal Transformation and Frame Shift

A scalar-tensor theory Lagrangian can be expressed in two different conformal
frames: Einstein and Jordan frames (Faraoni, Gunzig & Nardone (1999); Maeda
(1989); Magnano & Sokolowski (1994)). Basically, in the Jordan frame, we have a
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scalar field that couples to the scalar curvature. This form can be changed to a scalar
curvature added to a scalar field. We can use a conformal transformation to shift
from Jordan’s frame to Einstein frame to get to this form.(Odintsov & Oikonomou
(2015); Postma & Volponi (2014)) Consider the following metric transformation.

ĝµν = e2ωgµν(3.34)

Where e2ω is the conformal factor and hat represents the objects in the Einstein
frame. The quantities we are looking forward to transforming are Riemann ten-
sor, Ricci tensor and scalar curvature. To do this, first, we need to transform the
Riemann Tensor. We can use Eqs. (3.32,3.33) to transform Riemann tensor as

Rαβµν = ∂µ(Γ̂αβν + ∆α
βν)−∂ν(Γ̂αβµ+ ∆α

βµ) +

(Γ̂γβν + ∆γ
βν)(Γ̂αγµ+ ∆α

γµ)− (Γ̂γβµ+ ∆γ
βµ)(Γ̂αγν + ∆α

γν)(3.35)

Here Γ̂ is the new connection in the Einstein frame. Notice that partial derivatives
already hitting the transformed coefficients, and from the multiplications, we will
get the standard Riemann Tensor in the new frame beside some extra terms. Eq.
(3.35) can be unwrapped to the following form

Rαβµν = R̂αβµν +∂µ∆α
βν−∂ν∆α

βµ+ ∆α
γν∆γ

βµ−∆γ
βν∆α

γµ+

Γ̂γβν∆α
γµ+ Γ̂αγµ∆γ

βν− Γ̂γβµ∆α
γν− Γ̂αγν∆γ

βµ(3.36)

Again we get terms that can be compactly written as covariant derivatives in the
Einstein frame that is ∇̂ as

∇̂µ∆α
βν = ∂µ∆α

βν + Γ̂αµγ∆γ
βν− Γ̂γβµ∆α

γν− Γ̂γµν∆α
βγ(3.37)

∇̂ν∆α
βµ = ∂ν∆α

βµ+ Γ̂ανγ∆γ
βµ− Γ̂γβν∆α

γµ− Γ̂γµν∆α
βγ(3.38)

where Riemann tensor (3.36) becomes
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Rαβµν = R̂αβµν + ∇̂µ∆α
βν−∇̂ν∆α

βµ+ ∆α
γµ∆γ

βν−∆γ
βµ∆α

γν(3.39)

For clarity, we can list up the tensorial quantity ∆’s as

∆α
γµ = δαγ ∇̂µω+ δαµ∇̂γω− ĝγµ∇αω(3.40)

∆γ
βν = δγβ∇̂νω+ δγν ∇̂βω− ĝβν∇γω(3.41)

∆λ
αβ = δλα∇̂βω+ δλβ∇̂αω− ĝαβ∇λω(3.42)

∆γ
βµ = δγβ∇̂µω+ δγµ∇̂βω− ĝβµ∇γω(3.43)

∆α
γν = δαγ ∇̂νω+ δαν ∇̂γω− ĝγν∇αω(3.44)

Where we can write the Riemann tensor explicitly as

Rαβµν = R̂αβµν + δαβ ∇̂µ∇̂νω+ δαν ∇̂µ∇̂βω− ĝβν∇̂µ∇̂αω

−δαβ ∇̂µ∇̂νω− δαµ∇̂ν∇̂βω+ ĝβµ∇̂ν∇̂αω

+δαβ ∇̂µω∇̂νω+ δαν ∇̂µω∇̂βω− ĝβν∇̂µω∇̂αω

+δαµ∇̂βω∇̂νω+ δαµ∇̂νω∇̂βω− δαµ ĝβν∇̂γω∇̂γω

−ĝβµ∇̂νω∇̂αω− ĝµν∇̂βω∇̂αω+ ĝβν∇̂µω∇̂αω

−δαβ ∇̂µω∇̂νω− δαν ∇̂µω∇̂βω+ ĝβν∇̂µω∇̂αω

−δαµ∇̂βω∇̂νω− δαν ∇̂βω∇̂µω+ ĝµν∇̂βω∇̂αω

+ĝβµ∇̂νω∇̂αω+ δαν gβµ∇̂ρω∇̂ρω− ĝβµ∇̂νω∇̂αω

(3.45)

After dealing with the cancelling terms, we can tidy up and write the Riemann
tensor compactly.

Rαβµν = R̂αβµν + (δαν ∇̂µ∇̂βω− δαµ∇̂ν∇̂βω)− (ĝβν∇̂µ∇̂αω− ĝβµ∇̂ν∇̂αω)

+(δαµ∇̂βω∇̂νω− δαν ∇̂βω∇̂µω)− (ĝµβ∇̂νω∇̂αω− ĝνβ∇̂µω∇̂αω)

−(δαµ ĝβν∇̂ρω∇̂ρω− δαν ĝβµ∇̂ρω∇̂ρω)(3.46)
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We can take the trace of the (3.46) to obtain the Ricci tensor.

Rµν = R̂µν−2∇̂µ∇̂νω− ĝµν∇̂ρ∇̂ρω+ 2∇̂µω∇̂νω−2ĝµν∇̂ρω∇̂ρω(3.47)

Lastly, contracting both sides with the metric in Jordan frame that is gµν , keeping in
mind that the right-hand side needs the metric ĝµν we can get the scalar curvature.

gµνRµν =R = e2ω{R̂−6∇̂ρ∇̂ρω−6∇̂ρω∇̂ρω}(3.48)

Now let us rewrite the Scalar tensor action (3.28) in the Einstein frame noting that
volume element changes as

√
−g =

√
−ĝe−4ω(3.49)

The action becomes

S =
∫
d4x
√
−g

M2
pl

2 Λe−2ω(R̂−6∇̂ρ∇̂ρω−6∇̂ρω∇̂ρω)− e−4ωU

(3.50)

Now to model the action as a function that is linear in R we need the following Λ
choice, which can be considered valid for Λ> 0

Λ≈ e2ω(3.51)

to make the action (3.50) canonical let us introduce a new scalar definition (i.e.
scalaron (Starobinsky (1980a,8))) that is

√
3
2 logΛ = Φ

Mpl
(3.52)

which changes omega to the form
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ω = Φ√
6Mpl

(3.53)

and our action reduces to its canonical form

S =
∫
d4x
√
−g

M2
pl

2 R̂− 1
2∂ρΦ∂

ρΦ−V (Φ)
(3.54)

where the potential for the new scalar field Φ can be written as

V (Φ) = U(Φ)
Λ2 =

M2
pl (κ(Λ)Λ−f(κ(Λ))

2Λ −→
M2
plf
′(R)R−f(R)

2(f ′(R))2(3.55)

Hence, we obtain an action with a scalar Lagrangian with kinetic and potential
terms added to the scalar curvature, EH action.

3.5 Friedmann Equations

In a broader sense, the universe can be considered isotropic and homogeneous. Every
direction in the universe looks the same, and every point in the universe can be
considered identical on a large scale. We can see this in the cosmic microwave
background, ancient background radiation around 2.7K (Akramiet al. (2020)). We
can construct an isotropic and homogeneous metric using this presumption to solve
the Einsteins Field equations. Such a metric can be constructed as follows,

ds2 =−dt2 +a(t)2dx2(3.56)

Here a(t) is a time-dependent function called the scale factor of the universe, and
dx is the spatial part of the metric. Since we hold no apriori assumptions about the
universe’s expansion, this should be a valid proposition.
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The connections for this metric can be calculated as follows;

Γtrr = aȧ(3.57)

Γtθθ = aȧr2(3.58)

Γtφφ = aȧr2 sin2 θ(3.59)

Γrtr = ȧ

a
(3.60)

Γrθθ =−r(3.61)

Γrφφ =−r sin2 θ(3.62)

Γθtθ = ȧ

a
(3.63)

Γθrθ = 1
r

(3.64)

Γθφφ = sinθ cosθ(3.65)

Γφθφ = ȧ

a
(3.66)

Γφrφ = 1
r

(3.67)

Γφθφ = cotθ(3.68)

Furthermore we can calculate the ricci scalar as

R = 6(2H2 + Ḣ)(3.69)

where H = ȧ/a is the Hubble parameter where its current value is around 2.13×
10−42GeV .

From the field equations (3.21,3.22) we can calculate the Friedmann equations for
any given f(R) as

3f ′(R)H2 = (f ′(R)R−f(R))
2 −3H ˙f ′(R) +K2ρM(3.70)

−2f ′(R)Ḣ = ¨f ′(R)−H ˙f(R) +K2(ρM +PM )(3.71)

.
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3.6 Inflation

In cosmology, Inflation is the theory of cosmic exponential acceleration in the early
universe(Kalara, Kaloper & Olive (1990); Vázquez, Padilla & Matos (2018)). The
conjectured inflationary epoch existed from the 10−36 to the 10−32 seconds. In
theory, in this epoch, the universe expanded to 1026 of its Planck period size; hence
it stayed homogeneous among its bulk (Hwang & Noh (2001); Mukhanov & Chibisov
(1981); Starobinsky (1979)).

Let us consider the form of function f(R) as

f(R) =R+ ξRn(3.72)

where both ξ and n are positive definite. From field equations (3.21,3.22) we get

3(1 +nξRn−1)H2 = (n−1)
2 ξRn−3n(n−1)ξHRn−2Ṙ(3.73)

In the inflationary epoch, the quantum corrections will be much more significant
from the linear EH term (Starobinsky (1981); Vilenkin (1985)). Thus higher-order
curvature terms will dominate the action. Thus in this epoch, we can make the
following assumption.

f ′(R) = 1 +nξRn−1� 1→ f ′(R)≈ nξRn−1(3.74)

Thus (3.73) yields

H ≈

√
n−1
6n (R−6nH Ṙ

R
)(3.75)

In the early epoch, Hubble evolves slowly; thus following assumptions are valid.
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Ḣ

H2 � 1 and Ḧ

HḢ
� 1(3.76)

These furthermore reduce the scalar curvature and its time derivative to the follow-
ings.

R = 6(2H2 + Ḣ)(3.77)

Ṙ = 6(4HḢ+ Ḧ)(3.78)

Thus (3.75) reduces to

Ḣ

H2 ≈
n−2

2n2−3n+ 1 =−ε(3.79)

where ε is constant. We can see that for n = 2 ε reduces to 0. Thus for the most
trivial correction to the EH term, in the early epoch where f ′(R)� 1 the H stays
constant. The inflation continues until this parameter becomes around the order of
unity.

Let us elaborate on such a form of f(R). Starobinsky’s model of f(R) is the most
simplistic correction to the EH action, which is a quadratic one. It can be written
as

f(R) =R+ 1
6m2

φ

R2(3.80)

Where mφ is a constant on the dimension of mass. The field equations for such a
function can be calculated as

Ḧ− Ḣ2

2H + 1
2m

2
φH =−3ḢH(3.81)

R̈+ 3HṘ+m2
φR = 0(3.82)

In the first era again, Ḧ and Ḣ can be neglected, which yields.
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H ≈Hin−
m2
φ

6 (t− tin)(3.83)

Expansion continues until the slow roll parameter ε reaches unity where in this case

ε≈
m2
φ

6H2(3.84)

Also since the inflation is an exponential increase in Hubble we can define the number
of e-foldings as

N =
∫ tf

ti
Hdt(3.85)

at the end of the inflation where (3.84) iterates tf ≈ ti+6Hi/m
2
φ. N can be aproxi-

mated as

N ≈ 3H2
i

m2
φ

(3.86)

From the CMB temperature anisotropies, we constrain the constantmφ to be around
1013 GeV, and in order to solve the horizon and flatness problems, we need to have
the N > 70.

Also, this model corresponds to a scalar-tensor theory in Einstein frame via a redef-
inition of curvature. By using (3.52), we can define the scalar field of Starobinsky’s
as

Φ =
√

3
2Mpl logf ′(R) =

√
3
2Mpl log

1 + R

3m2
φ

(3.87)

which have a field potential as

U(Φ) =
3m2

φM
2
pl

4

1− exp−
√

2
3

Φ
Mpl

2

(3.88)

Inflation can be observed in this frame where Φ/Mpl� 1 where the field potential
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stays constant and rolls slowly (Barrow & Cotsakis (1988)). In the late universe,
however, the field oscillates around zero.
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4. Spherical Symmetry and Black Holes

4.1 Spherically Symmetric Solutions of Einstein Gravity

To obtain a spherically symmetric solution to EH action, we can use the Schwarzchild
metric that is

ds2 =−B(r)dt2 + dr2

B(r) + r2(dθ2 + sin2 θdφ2)(4.1)

r is the parametrised radial coordinate, θ and φ represents the angular coordinates
and A(r) is the radial function that will be identified later on. In order to find the
lapse function B(r), one can solve the field equations in the vacuum that is Gµν = 0.
The non zero Levi Civita connections can be calculated as
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Γtrt = Γttr = B′

2B(4.2)

Γrtt = BB′

2(4.3)

Γrrr = B′

2B(4.4)

Γrθθ = rB(4.5)

Γrφφ = rB sin2 θ(4.6)

Γθrθ = Γθθr = 1
r

(4.7)

Γθφφ =−cosθ sinθ(4.8)

Γφrφ = Γφφr = 1
r

(4.9)

Γφφθ = Γφθφ = cosθ
sinθ(4.10)

Furthermore, the scalar curvature can be calculated by contracting the Ricci scalar
with the metric as

Rµνg
µν =R = A′′(r)r2 + 4A′r+ 2A−2

r2(4.11)

The first two equations of the field equations, the time and radial component yield
the same results. These equations emerges a constant in length dimension as a
result.

G00 = 0→ A2

r2

( 1
A

)′
+ 1
r2 (1−A) = 0(4.12)

G11 = 0→−A
′

r
+ 1
r2 (1−A)(4.13)

A(r) = 1− C
r

(4.14)

The constant C can be found out by taking the Newtonian limit of the Einstein
equations that are taking the small metric perturbation about a flat metric as
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gµν = ηµν +hµν where η is the Minkowski metric and the h is the non-relativistic
perturbation that yields C = 2GNM , where M is the mass of the spherical object.
We can see that the metric blows up at two radial coordinates. One is the centre,
and the other one is r = 2GNM . These are two singularities of this metric. We
can also see that the metric turns in to a flat one at infinity. That is, the metric is
asymptotically flat. The singularities are taking the attention here since, generally
speaking, we expect the "infinities" to be absent from any physically meaningful
theory. When we take a trace of a curvature tensor, we also know that we lose
some information about its physical implications. The tensor that holds the most
information about the curvature of the system is the Riemann tensor; however, to
calculate field equations, we already have taken its trace. So maybe we can think
that some information about the identity of these singularities has gone away. To
counter this, we can calculate the Kretschmann scalar that is the contraction of two
Riemann tensors, which yields.

RαβγλRαβγλ = 48G2
NM

2

r6(4.15)

Here we can see that the only singularity in the Kretschmann scalar at the centre
that is r = 0 is the only essential singularity. But what about r = 2GNM? It is
called the horizon, which is not an essential singularity but a coordinate singularity.
We can project the metric to a different one to this singularity to vanish. However,
one can look at the killing vectors of this system to identify this radius as a horizon.
Since the fastest information carrier on this manifold is a photon, one can find the
killing vectors to see this radius is the last line of a photon escape limit. On the
horizon, a piece of existing information cannot reach an outside observer. Thus we
can make the following definition.

A spherically symmetric object containing an essential singularity at its centre con-
tained by a coordinate singularity is called a black hole.

Physically this means that after a particle that travels to this object passes its
horizon, its only direction will be the essential singularity on the centre. It cannot
send any signal to the outside; however, it will travel as it is. From an outside
observer, however, the object will be frozen on the surface of this object since the
only information that remains from it is on the entry point.
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4.2 Photon Sphere

To see the effects of a BH on a particle, we need to see the solution of its geodesic
equation. As said, every object moves in a geodesic since gravity itself is not a force
in GR. To do that, let us look for a stable orbit for a photon around a BH.

A BH has spherical symmetry. Thus for a photon, all axis for a circular photon orbit
will be equivalent. This also means that the photon will travel without changing
its radial coordinate, i.e. dr = 0. Also, we can take the initial rotation plane as a
reference that makes dθ = 0. Since dS is also zero for a photon, we can write the
regular Schwarzschild metric as

(
1− 2GNM

r

)
dt2 = r2 sin2 θdφ2(4.16)

Rearranging gives

dφ

dt
= 1
r sinθ

√
1− 2GNM

r
(4.17)

Also, we can solve the geodesic equation for the radial part that is

d2r

dτ2 + Γrµνυµυν = 0(4.18)

Since r and θ is constant derivatives with respect the proper time will also yield
null. Thus we can easily solve the (4.18) with the given connections (4.2-4.10) as

(
dφ

dt

)2
= 2GNM
r3 sin2 θ

(4.19)

which gives the following for the θ = π/2 equatorial plane

r = 3GNM(4.20)
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On this radial distance from the singularity, photons tend to create a circular orbit
around the BH. We can see that it is larger than the horizon as rps = 3/2rh. A
free-falling object that crosses the photon sphere from the outside must spiral into
the BH. From the inside, however, the maximum an object can do is to flow into
infinity or fall into the BH again (Mishra, Chakraborty & Sarkar (2019)).

4.3 Shadow

To see the effects of a BH on a particle, we need to see the solution of its geodesic
equation. As said, every object moves in a geodesic since gravity itself is not a force
in GR. To do that, let us look for a stable orbit for a photon around a BH.

A BH has spherical symmetry. Thus for a photon, all axis for a circular photon orbit
will be equivalent. This also means that the photon will travel without changing
its radial coordinate, i.e. dr = 0. Also, we can take the initial rotation plane as a
reference that makes dθ = 0. Since dS is also zero for a photon, we can write the
regular spherically-symmetric metric as

gµνdx
µdxν =−A(r)dt2 +B(r)dr2 +D(r)(dθ2 + sin2 θdφ2(4.21)

And we can also write the Lagrangian as

L(x, ẋ) = 1
2gµν ẋ

µẋν(4.22)

and it takes the form

L(x, ẋ) =−A(r)ṫ2 +B(r)ṙ2 +D(r)(θ̇2 + sin2 θ φ̇2)(4.23)

Now let us look to the BH directly from the equatorial plane. That is let us take
θ = π/2. From t and φ components of the Euler-Lagrange equation, we will get two
equations of motions or, in this case, constants of motions as
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C1 = A(r)ṫ(4.24)

C2 =D(r)φ̇(4.25)

Now if we consider massles particles where gµν ẋµẋν = 0 and

−A(r)ṫ2 +B(r)ṙ2 +D(r)φ̇2 = 0(4.26)

we can write down the orbit equation for lightlikke geodesics with the newly obtined
constants of motions., that is

(
dr

dφ

)2
= D(r)
B(r)

(
D(r)C2

1
A(r)C2

2
−1

)
(4.27)

We see that constant C2/C1 acts as an impact parameter b of the orbit equation.
So at the turning point of the light ray trajectory, we expect to have dr/dφ= 0, let
us call this turning point rt, and at rt limit, we get the following relations.

C2
2

C2
1

= D(rt)
A(rt)

= 1
b2

(4.28)

To conventionalise, we can introduce a weighted function h(r) as

h2(r) = D(r)
A(r) → b= h(R)(4.29)

Thus our orbit equation becomes

(
dr

dφ

)2
= D(r)
B(r)

(
h2(r)
h2(R) −1

)
(4.30)

Now to obtain an angular radius of shadow, we will assume a far away static observer
at the coordinate ro where we will obtain the trajectory of the light rays as
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cotα =
√
grr
√
gφφ

dr

dφ

∣∣∣∣∣
r=ro

=

√
B(r)√
D(r)

dr

dφ

∣∣∣∣∣
r=ro
→ sin2α = h2(rt)

h2(ro)
(4.31)

At the limit where the turning point is the photon sphere, we naturally get the
angular radius of the BH as

sinα = h(rps)
h(ro)

(4.32)

Therefore for considerable distances, we can calculate the shadow of a BH as

Rs = ro sinα = ro
h(rps)
h(ro)

(4.33)

Rs is called the shadow radius of the Blackhole. A faraway observer will catch the
outgoing photons from the photon sphere with this impact parameter. We saw that
photons forming a circular orbit around a BH would be far from the actual horizon.
A photon approach from infinity either fall into the BH or slingshot back to the
infinity from the photon sphere. These deflected photons will have their trajectories
bent. A faraway observer thus will see an illuminated ring that is bigger than its
horizon and photon radius. The inner black region is called the shadow of the BH.
This darkness in the celestial sphere can be observed via any methods from far.
Thus, it is interesting to calculate the exact radius of a shadow (Luminet (1979);
Perlick & Tsupko (2021); Synge (1966)).

for example, in a Schwarzchild space-time, we have

A(r) = 1
B(r) = 1− 2M

r
, D(r) = r2(4.34)

Thus
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h2(r) = r2

1− 2M
r

(4.35)

rph = 3M(4.36)

Rs = 3
√

3M(4.37)

Shadow Radius is larger than the photon sphere radius as well as the BH itself.

Figure 4.1 Shadow of a BH. It is the observed trajectory of photons that originates
from the photon sphere to a faraway observer. It is bigger than both the photon
sphere and the BH itself.

4.4 Entropy and Temprature

Entropy can be thought as randomness of energy dispersal in a system. If we throw
an apple on a BH, it will fall obviously, but after it passes the horizon, one can not
perceive any information about the apple other than its mass, its charge and its
spin. The outer region can only influence these three properties of the BH; other
information should be not reachable. This is famously known as Bekenstein’s No
Hair theorem (Bekenstein (1973)). The information loss is a bit problematic for

38



physics, especially quantum mechanics. As well known from a given wave function,
one can extract the future and pass of the given object. There exist a solution to
this problem. We know that the horizon 2GNM is only dependent on M , and since
nothing can escape a BH, its mass and, therefore, its surface area can only increase
just as entropy. So one can relate the entropy to the surface area of the BH. As we
know, the surface area of the BH is nothing but the surface of a spherical shell with
the Schwarzschild radius that is

A= 4πr2
h = 16πG2

NM
2(4.38)

Let us look at the differential of this area. One can get

dA= 32πG2
NMdM(4.39)

We also know that entropy is related to the heat change divided by temperature as

dS = δQ

T
= dE− δW

T
→ dS = dE

T
, δW = 0(4.40)

We can take the BH at rest and take its energy as E =M . Thus we expect to have
the form as dM = T × dS on the area function. We can see that this is unit wise
consistent with it as

dM = 1
8πGNM

× 1
4GN

dA(4.41)

Thus we can heuristically define a temperature and an Entropy for a given BH. With
natural units written, they can be defined as

TH = h̄c3

8πGNkBM
(4.42)
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S = kBc
3A

4h̄GN
(4.43)

TH is called the Hawking radiation, and S is the Bekenstain entropy of the BH. kB
is the usual Boltzman constant, and h̄ is the reduced Planck constant.

4.5 Physical Properties of the Black Holes in f(R) Gravity

For a given function f(R), one can obtain the shadow radius, temperature and
entropy in the same way. The lapse function B(r) will depend on the solutions of
the field equations. We can get the following equations for the equations of motion
in (4.2-4.10) as

2FB′′+ 2B′F ′−2BF ′′− 4
r
BF ′+ 4

r2F (1−B) = 0,(4.44)

2FB′′+ 2B′F ′+ 6BF ′′− 4
r
BF ′+ 4

r2F (1−B) = 0,(4.45)

2FB′′+ 2B′F ′+ 2BF ′′− 4
r
BF ′+ 4

r2F (1−B) = 0(4.46)

Here, subtracting any two equations of (4.44), (4.45) and (4.46) from each other
yields BF ′′ = 0. Thus it leads consistently to the linear solution

F [R(r)] = a+ br(4.47)

with a and b undetermined constants.

One can then solve the Einstein equations with the condition that function f(R)
satisfies the (4.44-4.46)(Addazi, Capozziello & Odintsov (2021)). Then one can
calculate the shadow as

(4.48) R2
s =

r2
p

B(rp)
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Where rp is the photon sphere for a given theory. Also, the temperature can be
generalised as

(4.49) T = B′ (r+)
4π .

where r+ is the outer horizon of any BH. Furthermore the Entropy yields

(4.50) S (r+) = 1
4GN

Ahf ′[R (r+)],

where the Area can be calculated as

(4.51) Ah = 4πr2
+.

In general, there is no constraint on the function f(R) that comes from the ther-
modynamics other than the first derivative needs to be positive (Peralta & Jorás
(2020)) since otherwise, it will result in negative entropy values. It is also important
to note that for any f(R) theory, this condition needs to be satisfied to not bother
with ghosts in theory.
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5. Emergent Gravity Theories

In the introduction part, we saw that the theory of GR sits on two assumptions.
One is that space-time is a pseudo-Riemannian manifold. The other is the Einsteins
equivalence principle. From these apriori assumptions, we can write a general action
that contains the curvature to obtain specific field equations. The idea to induce
gravity is to make these field equations emerge from an underlying QFT. This sec-
tion will look at two emergent theories: Sakharov’s idea of inducing the geometry
from one-loop effective action (Sakharov (1967); Visser (2002)), and the other is
Symmergent Gravity, which is a novel idea that gravity emerges by restoring broken
gauge symmetries(Demir (2017,1,2,1,1)). This chapter will exclusively use the west
coast metric (+,−,−,−) for convenience with other particle physics texts. However,
in the next chapter, we will return to the east coast metric, which will weigh the
scalar curvature with a relative minus sign.

5.1 Sakharov’s Induced Gravity

Let us start with a Lorentzian manifold. On this manifold, the metric will be
considered as a classical background. Then consider the one-loop corrections to the
effective action of this theory for a minimally coupled scalar field.

S =−1
2 logdet[∇2 +m2 + cR] =−1

2 Trlog[∇2 +m2 + cR](5.1)

If we consider a difference of the action with a dynamic field and the background
metric, we will get
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Sg−Sĝ =−1
2 Trlog

[
∇2

g +m2 + cRg
∇2
ĝ +m2 + cRĝ

]
(5.2)

Then we can use the identity

log
[
α

β

]
=
∫ ∞

0

dx

x
[e−βx− e−αx](5.3)

to get

Sg−Sĝ = 1
2 Tr

∫ ∞
0

ds

s
[e−s(∇

2
g+m2+cR)− e−s(∇

2
ĝ+m2+cRĝ)](5.4)

where we used the Schwinger’s proper time formalism. Now since this is a Ultra-
Violet(UV) divergent quantity let us use a UV cutoff such that

1
2 Tr

∫ ∞
0

ds

s
...→ 1

2 Tr
∫ ∞

Λ−2

ds

s
...(5.5)

And then use the heat kernel expansion up to order of O(s2)

e−s(∇
2
g+m2+cR) =

√
−g

(4πs)2 [C[0g] +C[1g]s+C[2g]s
2 +O(s4)](5.6)

where C[ig]’s are the i’th Hemidew coefficents on the metric g where up to second
order of s can be written as

C[0g] = 1(5.7)

C[1g] = κ1Rg−m2(5.8)

C[2g] = κ2CαβγλC
αβγλ+κ3RαβR

αβ +κ4R
2
g +κ5∇2Rg−κ1m

2Rg + 1
2m

4(5.9)
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Then by using(5.5) and (5.6) we can integrate (5.4) as

1
2 Tr

∫ ∞
Λ−2

ds

s

√
−g−

√
−ĝ

(4πs)2

(
C[0g]−C[0ĝ]

)
→ 1

32π2 Tr
(
C[0g]−C[0ĝ]

) Λ4

2(5.10)

1
2 Tr

∫ ∞
Λ−2

ds

s

√
−g−

√
−ĝ

(4πs)2 s
(
C[1g]−C[1ĝ]

)
(5.11)

→ 1
32π2 Tr

(
C[1g]−C[1ĝ]

)
Λ2

1
2 Tr

∫ ∞
Λ−2

ds

s

√
−g−

√
−ĝ

(4πs)2 s2
(
C[2g]−C[2ĝ]

)
(5.12)

→ 1
32π2 Tr

(
C[2g]−C[2ĝ]

)
log

(
Λ2

m2

)

the orders of s3 however, will reduce to the order of Λ−2 hence will yield a finite
value which will be suppressed by Λ hence the total difference between the actions
can be written as

Sg−Sĝ = 1
32π2 str[[C[0g]−C[0ĝ]]

Λ4

2 + [C[1g]−C[1ĝ]]Λ2(5.13)

+[C[2g]−C[2ĝ]] log
(

Λ2

m2

)
] +O(Λ−2)

We can unwrap this by using the Hemidew coefficients and collect the geometric
terms out as

∫
d4x
√
−g[−K1−K2R+K3CαβγλC

αβγλ+K4R
2](5.14)

where

K1 =K1cl−
1

32π2 str[Λ
4

2 −m
2Λ2 + m4

2 log
(

Λ2

m2

)
] +O(Λ−2)(5.15)
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K2 =K2cl−
1

32π2 str[κ1Λ2−m2 log
(

Λ2

m2

)
] +O(Λ−2)(5.16)

K3 =K3cl+
1

32π2 str[κ̄2 log
(

Λ2

m2

)
] +O(Λ−2)(5.17)

K4 =K4cl+
1

32π2 str[κ̄4 log
(

Λ2

m2

)
] +O(Λ−2)(5.18)

Here we see that K1 acts as a cosmological constant, and K2 acts as the Newtons
gravitational constant. However, constants K3 and K4 brings probes a new gravita-
tional physics sector.

The original idea of the Sakharov was to make one loop dominate the classical
contributions and observing the dominant terms as

K1 ≈−
1

64π2 str[I]Λ4 , str[I]≈= 0→K≈ 0(5.19)

lim
Λ→Mpl

K2 ≈ lim
Λ→Mpl

− 1
32π2 str[κ1]Λ2 , str[κ1] =−1→K2 ≈

M2
pl

32π2(5.20)

which yields an approximate Gravitational constant and a very small cosmological
constant. Thus if we ignore the contributions from K3 and K4 we would get the
standard EH action.

5.2 Symmergent Gravity

Symmergent Gravity is a novel and another type of emergent gravity framework
that starts from the standard model action and emerges curvature as an affine one.
The standard model action can be written as
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S = Stree(η,F) +Slog(η,F , log (Λw/Λu))

+So(η∆2) + +SH(η∆2) +SV (η,∆2)(5.21)

where η is the flat metric, Λu is the UV scale, ∆2 = Λ2
u − Λ2

w is the UV-
Electroweak(EW) gap. F represents all field with energies lower than EW scale.
Stree is the tree level contrubitions Slog represents logarithmic corrections, So and
SH stands for vacuum and Higgs sector respectively and SV represents gauge sector
below the EW scale. We can unwrap the SM action as follows.

So =−
∫
d4x
√
η[(2c̄oΛ2

w +
∑

(c̄Fm2
F ))∆2 + c̄o∆4](5.22)

SH =−
∫
d4x
√
ηc̄H∆2H†H(5.23)

SV =
∫
d4x
√
ηc̄V ∆2 Tr[VµV µ](5.24)

where H, and Vµ are the slow fields of the associated sector and parameters c̄i are
so-called Wilson coefficients or loop factors.

Unlike Sakharov’s idea, SG uses Eddington’s solution (Azri (2015); Demir (2014))
which can be represented as

∫
d4x

√
−det

[ R
∆2

]
(5.25)

yields the following equation of motion dynamiccally,

Rµν = ∆2gµν(5.26)

The UV-EW gap (Peskin & Schroeder (1995)) can be mapped to an affine connection
(Azri (2015)) if our volume element is represented by (5.25). Thus the space-time
elasticises dynamically. Now let us do the followings

3.1 map flat metric ηµν to dynamic one gµν
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3.2 map uv-ew gap ∆2
µν to an affine curvature Rµν

Hence on a manifold M(g,Γ) that is equipped with the metric gµν and an affine
connection Γλµν the standart model action can be written as

S [g,Γ,φ,υ] =
∫
d4x
√
−g{−QµνRµν (Γ) + 1

16co (gµνRµν (Γ))2

−cvRµν (gΓ)υµυν}+Sm [g, gΓ,φ,υ](5.27)

where the disformal metric Qµν can be defined as follows

Qµν =
(
M̄2

2 + 1
8cog

αβRαβ (Γ) + 1
4cφφ

2
)
gµν− cvυµυν(5.28)

All the loop factors and the fields extended to a new physics sector beyond the
standard model to properly induce gravity. Rµν(gΓ) is metric curvature that depends
on Levi-Civita connection gΓ. Matter action Sm [g, gΓ,φ,υ] is independent of both
curvature and affine connection . M can be considered as the apparent gravitational
scale where it emerges from the combinations of slow fields and EW scale as

co
2 Λw +

∑ 1
4cfm

2
f →

M̄2

2(5.29)

here F also extends to designated NP sector as F → f . The well known metrical
theory of gravitation is dependent on the metrical connection or Levi Civita con-
nection. This connection depends on the metric, and we can define a Ricci tensor
that depends on the Levi-Civita connection to describe the curvature. Here in the
disformal metric Qµν however we define an affine curvature that depends on a sym-
metric affine connection Γ that does not have to resemble a metric connection gΓ,
i.e. it does not have to depend on a metric. However, variation of action (5.27)
with respect to affine connection yields the metricity condition that is the disformal
metric is conserved with respect to the covariant derivative.

(5.30) gΓλµν = 1
2g

λρ (∂µgνρ+∂νgρµ−∂ρgµν)

This allows us to connect two different connection, affine and metric, via the follow-
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ing relation.

Γλµν = gΓλµν + ∆λ
µν(5.31)

where ∆λ
µν is a symmetric tensor field and can be shown as

∆λ
µν = 1

2(Q−1)λρ(∇µQνρ+∇νQµρ−∇ρQµν)(5.32)

Also it is important to note that covariant derivatives ∇ of ∆λ
µν correspond to

the Levi-Civita connection gΓλµν . We can furthermore use this to relate the affine
curvature to the metrical one with following

Rµν (Γ) =Rµν (gΓ) +∇λ∆λ
µν−∇ν∆λ

µλ+ ∆γ
µν∆λ

γλ−∆γ
µλ∆λ

γν(5.33)

or explicitly, we can write

Rµν (Γ) =Rµν (gΓ) + 1
2(Q−1)αλ[∇α∇µQλν +∇α∇νQλµ−∇α∇λQµν−∇ν∇µQλα]

+1
4(Q−1)αρ(Q−1)λκ[∇µQαλ∇νQρκ−2∇αQρκ(∇µQλν +∇νQλµ−∇λQµν)

+∇κQρα(∇µQλν +∇νQλµ−∇λQµν) + 2∇κQνρ(∇αQµλ−∇λQµα)](5.34)

The affine curvature R inside the disformal metric Qµν is suppressed by M̄2 in
(5.28), where one can write the inverse of it by expanding it in powers of M̄2 as

(5.35) (Q−1)µν = 2
M̄2

[(
1− co

4M̄2 g
αβRαβ (Γ)− cφ

2M̄2φ
2
)
gµν + 2cv

M̄2υ
µυν

]

Thus we can say that double inverses in (5.34) that contain Planck masses in
O(M−4) suppress the contributions from the single derivatives of the disformal met-
ric. Thus up to first order, we can write

Rµν (Γ) = Rµν (gΓ) + 1
M̄2 [∇λ∇µQλν +∇λ∇νQλµ−∇λ∇λQµν
−∇ν∇µQλλ] +O(M−4)(5.36)

48



We can also take the trace of the affine curvature as

gµνRµν (Γ) =R (gΓ) + 1
M̄2

[
2∇α∇βQαβ−2∇α∇αQββ

]
+O(M−4)(5.37)

We need to integrate the affine curvature out of the action to see the final contribu-
tion from it. To do that, we calculate the following contraction.

QµνRµν (Γ) = M̄2

2 gµνRµν (gΓ) + co
8

(
gαβRαβ (Γ)

)
gµνRµν (gΓ)

+cφ
4 φ

2gµνRµν (gΓ)− cvυµυνRµν (gΓ) +O(M−2)(5.38)

If we integrate by parts the total derivatives and thus remove the boundary terms,
up to first order, we can write our action as

S [g,φ] =
∫
d4x
√
−g

{
−(M̄

2

2 + cφ
4 φ

2)R (gΓ)− co
8 R

2 (gΓ)
}

+Sm [g, gΓ,φ,υ](5.39)

We can see that in order to correct EH action to emerge, the apparent mass scale
should be mapped as follows

M̄2

2 + cφ
4 〈φ

2〉 →
M2
pl

2(5.40)

Which reduces the action to

S[g] =
∫
d4x
√
−g

{
−M

2
pl

2 R (gΓ)− co
8 R

2 (gΓ)
}

+Sm [g, gΓ,φ,υ](5.41)

Which is a R+R2 f(R) action. Standard EH action can be obtained when the
coefficient co = 0 where co is a loop induced quantity (Demir (2021)) that can be
written as
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co = 1
64π2 (nf −nb)(5.42)

where nf and nb represents the numbers of degrees of freedom inside the underlying
QFT. In a semi super symmetric case where nb = nf we get the standart EH action
from the SG.
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6. Implications

This chapter will look at the implications of inflation and the spherically symmet-
ric solutions in both induced gravity and symmergent gravity. Both theories have
quadratic curvature terms that can be bounded with inflationary and spherically
symmetric solutions. We will use the solutions that we obtained in Chapter 4 and
5 and look at the implications of these results.

6.1 Sakharov’s Induced Gravity

Action (5.14) gives us an R+R2 model that can create an inflationary field, as we
discussed in chapter 4. In order to look at the inflationary aspect of this action, we
can use an FRW metric that nullifies the Weyl contribution. Linear and quadratic
scalar curvatures are the only contributions that remain. We get the following action
after crossing out the Weyl and Cosmological constant terms (where the cosmological
constant is already tiny).

∫
d4x
√
−g

 M2
pl

32π2R+K4R
2

(6.1)

Let us cast out the Planck mass out and obtain the functional f(R)

f(R)S =
R+ 32π2K4

M2
pl

R2

(6.2)

The action of the Starobinsky inflation is in the same form that is
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f(R) =R+ 1
6m2R

2(6.3)

Where constant m in mass-scale drives the inflation, which we called the scalaron or
inflaton. The coefficient of the quadratic scalar curvature in Sakharov’s action is also
in the inverse mass square scale. Thus Sakharov’s action also can create inflation.
Thus we can map the two quadratic coefficients to each other. This constrains the
loop-coefficient as

32π2K4
M2
pl

→ 1
6m2(6.4)

CMB temperature anisotropies constrain the scalar field mass m to be around 1013

GeV. So we can see that the loop-coefficient is constrained by

K4 = 5×109 numerically(6.5)

If we write down the loop coefficient explicitly, we get

K4 =K4cl+
1

32π2 str[κ̄4 log
(

Λ2

m2

)
] +O(Λ−2)(6.6)

We can see that the main contributions to this number should come from clas-
sical one since the classical contribution is expected to dominate the logarithmic
correction. Furthermore, To look at the implications of the spherically symmetric
solutions, we should calculate the lapse function B(r) from the equations of motions.
We find the B(r) as

B(r) = 1− 2GNM
r

+ r2(1−a)
6144GNK4π3(6.7)

We set the integration constant to 2GNM as we expect it to behave like a
Schwarzschild solution in the low curvature limit.
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Figure 6.1 Dependence of the horizon rh on the quadratic-curvature coefficient K4.
The Induced Gravity solution (IG, the red curve) nears the Schwarzschild solution
(SC, the black curve) for large values of K4, but deviates from it significantly for
small values of K4

We can see that the lapse function B(r) yields a not asymptotically flat metric.
So we expect non-physical solutions away from the centre. Also, high values of
K4 reduces the lapse function to Schwarzschild one. In Fig.6.1 as the value of K4

increases, it gradually and asymptotically approaches the value of the Schwarzschild
horizon.

Also, we can see that the sign of the loop factor K4 significantly alters the horizon.
Negative values give rise to a double horizon, whereas positive values give only one.
In Fig.6.2 one can see that Sakharov’s action have the horizon at Schwarzschild radii
for small values of K4.

The singularities that are eminent on the metric are not needed to be real singulari-
ties. They can be either an absolute singularity or a coordinate singularity that the
latter can vanish via a coordinate transformation. In order to see that whether the
singularity is absolute or not, we should calculate the Kretschmann scalar for the
action (6.1). The Kretschman scalar for Sakharov’s action is found to be

K =RαβγλRαβγλ = 48G2
NM

2

r6 + (−1 +a)2

1572864 π2G2
NK2

4
(6.8)

As limr→∞ we can see that only singularity is at the centre.
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Figure 6.2 The lapse function B(r) as a function of r for M = a = 0.5 (M in grav-
itational units) and for Schwarzschild solution (SC, the black curve) and for the
induced gravity with K4 = +1 (blue curve) and K4 =−1 (red curve). The zeros of
these curves give the event horizon of the corresponding BH.
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Figure 6.3 Hawking temperature T versus r= rh for the Schwarzschild (black curve),
K4 = 1 (blue curve) and K4 =−1 (red curve) at a= 0.5 and 2GNM = 1.

Next, we can calculate the Hawking temperature of the Induced gravity BH via the
following.

T = GM

2πr2 + r(1−a)
1288GK4π4(6.9)
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Figure 6.4 Hawking temperature T versus K4 for a= 0.5 and 2GNM = 1. Black line
represents the Schwarzschild case.

We again see that the high values of the loop factor would yield temperature around
Schwarzschild temperature. From Fig.6.3 We can see that hawking temperature
increases with the horizon radius. Negative values of K4, however, reaches a negative
temperature at high radius values. In Fig.6.4 we also can see that for large values
of K4 IG reduces to the Schwarzschild temperature.

Entropy, on the other hand, depends on the horizon radius rh. We can calculate the
entropy for IG as

S = aπr2
h

GN
(6.10)

In Fig.6.5 one can see that as the horizon radius increases, IG have more surface
entropy than a Schwarzschild BH. We can also calculate the shadow of the BH in
induced gravity as

R = 96
√

6π3/2

√√√√− G2
NK4M2

9(a−1)GNM2−2048K4π3(6.11)

In Fig.6.6 as K4 increases shadow approaches to the Schwarzschild value asymptot-
ically. Around an inflationary mass value, the IG still differs from SC by a small
margin. This could be a testbed for both the IG and inflation.
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Figure 6.5 Bekenstein-Hawking entropy S versus r= rh for the Schwarzschild (black
curve) and induced gravity (red curve) BH solutions for K4 = 1 and 2GNM = 1.
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Figure 6.6 Shadow radius versus K4 at a = 0.5 and 2GNM = 1, with black line
standing for the Schwarzschild solution.
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Figure 6.7 Shadow radius for Schwarzschild (black), K4 = 1 (blue), and K4 = −1
(red) BH solutions at a= 0.5 and 2GNM = 1.

6.2 Symmergent Gravity

SG also has a quadratic scalar curvature. We can write the action as

S =
∫
d4x
√
−g

M
2
pl

2 R (Γ)− co8 R
2 (Γ)

(6.12)

where we excluded the matter action from it. Furthermore we can identify the
functional f(R) of this action by casting out the placnk mass as follows

f(R) =
R− co

4M2
pl

R2

(6.13)
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again we can map the quadratic coefficient of the SG to Starobinsky’s model as

− co
4M2

pl

→ 1
6m2(6.14)

co is directly bound to the underlying QFT via the following relation

co = 1
64π2 (nf −nb)(6.15)

Thus scalar mass m can constraint this number and degrees of freedom of the under-
lying QFT. We can calculate the required difference between the degrees of freedom
of bosons of fermions via this relation. Thus the relation yields nb−nf ≈ 3×1013.
Already at one loop, we expect many new fields in the non identified NP sector.
These new fields can drive the inflation if the new scalar fields do not behave like
Higgs; however, if they behave like Higgs, we should not expect an inflationary sce-
nario from these new fields. These new fields can also represent Dark matter since
they do not need to interact with the SM. Next, we can calculate the lapse function
for SG as

B(r) = 1 + C

r
+ r2(a−1)

24πGN co
(6.16)

with the integration constant C. again we can assume that C = −2GNM where
M is the total mass within the spherically symmetric mass distribution around the
origin. In general, the radius r = rh at which B(rh) = 0 gives the event horizon:

rh = h

(18)1/3 −
(18)1/3c1

3h(6.17)

where

h= ((12c31 + 81c22)1/2−9c2)1/3(6.18)

with c1 = 1/A, c2 = C/A, A= (a−1)/(24πGNco).

Depicted in Fig. 6.8 we can see that negative values of co give the physical results.
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Figure 6.8 Dependence of the horizon rh on the quadratic-curvature coefficient co.
The symmergent gravity solution (SG, the red curve) nears the Schwarzschild so-
lution (SC, the black curve) for negative co (when the underlying QFT has more
bosons than fermions) but deviates from it significantly for positive co (when the
underlying QFT has more fermions than bosons).

The SG solution approaches the Schwarzschild value as co decreases in negative
value (when the underlying QFT has more fermions than bosons) but deviates sig-
nificantly from it for positive values (when the underlying QFT has more bosons
than fermions). Also shown in Fig.6.9, sign of co directly affects the lapse func-
tion B(r). If the underlying QFT has more (less) bosons than fermions, then B(r)
increases (decreases) with r.

In Fig.6.9, each B(r) intersects the horizontal axis at the radius giving its hori-
zon. Here, positive value co = 0.2 (blue curve) generates two horizons: the inner
horizon (r = r−) and outer horizon (r = r+). Negative value co = −0.2 (red curve)
leads to one horizon. Black curve represents the Schwarzschild horizon for rh = 1.
Furthermore the Kretschman scalar for SG reads

RαβδγR
αβδγ = B′′2r4 + 4B′2r2 + 4 (B−1)2

r4 = 48G2
NM

2

r6 + (a−1)2

24πG2
Nc

2
o

(6.19)

Again we see that the only absolute singularity at the centre. The Hawking tem-
perature T of a BH at the horizon yields
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Figure 6.9 The lapse function B(r) as a function of r for M = a= 0.5 (M in gravi-
tational units) and for Schwarzschild solution (SC, the black curve) and for the SG
with co = +0.2 (blue curve) and co = −0.2 (red curve). The zeros of these curves
give the event horizon of the corresponding BH.

T = kh
2π = GNM

8r2
h

+ (1−a)rh
192πcoGN

(6.20)

whose variation with rh is plotted in Fig. 6.10 and variation with co is plotted in
Fig. 6.11. As seen from the plot, Hawking temperature increases (decreases) with
r+ for co =−1 (co = 1). Positive co values yields negative temprature values which
is unphysical. As co reduces however it aproaches to schwarzchild temprature.

The Bekenstein-Hawking entropy is given by

(6.21) S (rh) = 1
4GN

Ah(rh)F (rh)

where Ah = 4πr2
h is the horizon area, and F (rh) = a as found in (4.47) so that the

entropy is

(6.22) S = aπr2
h

GN

which depends on co through horizon radius. Its variation with rh is depicted in
Fig. 6.12, where it is seen that growth of the entropy with rh is controlled by the
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Figure 6.10 Hawking temperature T versus r = rh for the Schwarzschild (black
curve), co = 1 (blue curve) and co =−1 (red curve) at a= 0.5 and 2GNM = 1.
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Figure 6.11 Hawking temperature T versus co for a = 0.5 and 2GNM = 1. Black
line represents the Schwarzschild case.

parameter a.

we can also calculate the shadow of a BH on symmergent framework as

R = 6
√

6π

√√√√ coG2
NM

2

9(a−1)G2
NM

2 + 8πco
(6.23)
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Figure 6.12 Bekenstein-Hawking entropy S versus r= rh for the Schwarzschild (black
curve) and SG (red curve) BH solutions for co = 1 and 2GNM = 1.

In Fig. 6.14 we can see the shadow cast for a BH in SG for various values of co.
Positive values of loop contributions cast larger shadows, whereas negative values
decrease them. This can be a testbed for the SG framework.
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Figure 6.13 Shadow radius for Schwarzschild (black), co = 1 (blue), and co = −1
(red) BH solutions at a= 0.5 and 2GNM = 1.
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Figure 6.14 Shadow radius versus co at a = 0.5 and 2GNM = 1, with black line
standing for the Schwarzschild solution.
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7. Conclusion

In this modest work, we tried to describe the implications of inflation and the black
hole solutions on the emergent gravity theories. Emergent gravity theories explain
gravity not as a fundamental force but rather as an emergent phenomenon. They
naturally contain quadratic scalar curvature terms besides linear ones. These kinds
of actions are called f(R) action for f(R) theories, and these theories can be used to
describe inflationary dynamics of the universe and many more. Generally, quadratic
curvature describes the inflationary nature, whereas linear curvature ends the infla-
tionary phase. The well defined Starobinsky inflationary model is also a quadratic
curvature model with the same form as the emergent gravity theories. We described
that to induce the inflation from Sakharov’s induced gravity where gravity is gener-
ated from the effective action; the quadratic coefficient should be around 5×109 that
needs to be induced from the classical contributions. On the other hand, a novel
framework called symmergent gravity also induces gravity from loop contributions
while restoring broken symmetries holds the same form. The quadratic coefficient
of the symmergent gravity directly describes the underlying QFT’s degrees of free-
doms of bosons and fermions. To induce inflation, the underlying QFT should have
more bosonic degrees of freedoms than fermions. That is, the difference between
them needs to be around 3×1013. This vast number of new fields does not need to
interact with the standard model. Thus they can also represent dark matter.

Furthermore, we looked at the spherically symmetric solutions of these theories.
Quadratic curvature actions yield non asymptotically flat lapse function, which can
be described as a Schwarzschild part plus a suppressed correction terms to the
physical terms such as the horizon, temperature and entropy.

The loop contribution in Sakharov’s induced gravity K4 resides in the denominators
of the contribution. As the loop contribution increases, results tend to behave like
Schwarzschild solutions physical effects. The theory has higher temperature and
lower entropy values. As contribution increases, the shadow of the black hole also
increases significantly.
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Theory Function f(R) B(R) correction T Correction

IG R+ 32π2K4
M2
pl

R2 r2(1−a)
6144GNK4π3

r(1−a)
1288GNK4π4

SG R− co
M2
pl4
R2 r2(a−1)

24πGN cO
(1−a)rh

192πcOGN

Table 7.1 Lapse function and temprature corrections of the Sakharov’s induced grav-
ity and symmergent gravity to the schwarzchild solution.

Symmergent gravity’s loop contribution also behave like Sakharov’s. To avoid ghosts
and unphysical results such as negative temperatures, co need to be negative. As
it increases, the theory tends to behave as Schwarzschild. Such a black hole would
have a higher temperature and lower horizon entropies. Positive values of the loop
contribution give larger shadow cast values, whereas negative values have more
minor. This can be a significant test bed for this theory as the current event horizon
telescope would enlighten us about whether there exists a difference between the
theoretical shadow and the observed one.

66



BIBLIOGRAPHY

Abbott, T. M. C. et al. (2018). Dark Energy Survey Year 1 Results: A Precise H0
Estimate from DES Y1, BAO, and D/H Data. Mon. Not. Roy. Astron. Soc.,
480 (3), 3879–3888.

Addazi, A., Capozziello, S., & Odintsov, S. (2021). Chaotic solutions and black hole
shadow in f(R) gravity. Phys. Lett. B, 816, 136257.

Akiyama, K. et al. (2019). First M87 Event Horizon Telescope Results. I. The
Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875, L1.

Akrami, Y. et al. (2020). Planck 2018 results. X. Constraints on inflation. Astron.
Astrophys., 641, A10.

Azri, H. (2015). Eddington’s gravity in immersed spacetime. Class. Quant. Grav.,
32 (6), 065009.

Barrow, J. D. & Cotsakis, S. (1988). Inflation and the Conformal Structure of Higher
Order Gravity Theories. Phys. Lett. B, 214, 515–518.

Bastero-Gil, M., Borunda, M., & Janssen, B. (2009). The Palatini formalism for
higher-curvature gravity theories. AIP Conf. Proc., 1122 (1), 189–192.

Bekenstein, J. D. (1973). Black holes and entropy. Phys. Rev. D, 7, 2333–2346.
Brans, C. & Dicke, R. H. (1961). Mach’s principle and a relativistic theory of

gravitation. Phys. Rev., 124, 925–935.
Capozziello, S. & De Laurentis, M. (2011). Extended Theories of Gravity. Phys.

Rept., 509, 167–321.
Carlip, S. (2001). Quantum gravity: A Progress report. Rept. Prog. Phys., 64, 885.
Carroll, S. M. (2019). Spacetime and Geometry. Cambridge University Press.
Çimdiker, I. I. (2020). Starobinsky inflation in emergent gravity. Phys. Dark Univ.,

30, 100736.
Chakraborty, S. (2017). Boundary Terms of the Einstein–Hilbert Action. Fundam.

Theor. Phys., 187, 43–59.
De Felice, A. & Tsujikawa, S. (2010). f(R) theories. Living Rev. Rel., 13, 3.
Demir, D. (2017). Naturalizing Gravity of the Quantum Fields, and the Hierarchy

Problem.
Demir, D. (2019). Symmergent Gravity, Seesawic New Physics, and their Experi-

mental Signatures. Adv. High Energy Phys., 2019, 4652048.
Demir, D. (2021). Emergent Gravity as the Eraser of Anomalous Gauge Boson

Masses, and QFT-GR Concord. Gen. Rel. Grav., 53 (2), 22.
Demir, D. A. (2014). Riemann-Eddington theory: Incorporating matter, degravi-

tating the cosmological constant. Phys. Rev. D, 90 (6), 064017.
Demir, D. A. (2015). A Mechanism of Ultraviolet Naturalness.
Demir, D. A. (2016). Curvature-Restored Gauge Invariance and Ultraviolet Natu-

ralness. Adv. High Energy Phys., 2016, 6727805.
Dyson, F. (2013). Is a graviton detectable? Int. J. Mod. Phys. A, 28, 1330041.
Faraoni, V., Gunzig, E., & Nardone, P. (1999). Conformal transformations in clas-

sical gravitational theories and in cosmology. Fund. Cosmic Phys., 20, 121.
Flanagan, E. E. (2003). Higher order gravity theories and scalar tensor theories.

Class. Quant. Grav., 21, 417–426.
Guth, A. H. (1981). The Inflationary Universe: A Possible Solution to the Horizon

67



and Flatness Problems. Phys. Rev. D, 23, 347–356.
Hwang, J.-c. & Noh, H. (2001). f(R) gravity theory and CMBR constraints. Phys.

Lett. B, 506, 13–19.
Kalara, S., Kaloper, N., & Olive, K. A. (1990). Theories of Inflation and Conformal

Transformations. Nucl. Phys. B, 341, 252–272.
Landau, L. D. & Lifschits, E. M. (1975). The Classical Theory of Fields, volume

Volume 2 of Course of Theoretical Physics. Oxford: Pergamon Press.
Linde, A. D. (1982). A New Inflationary Universe Scenario: A Possible Solution

of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole
Problems. Phys. Lett. B, 108, 389–393.

Lu, J., Wu, Y., Yang, W., Liu, M., & Zhao, X. (2018). The solutions and the effects
of Brans-Dicke field in the GBD theory.

Luminet, J. P. (1979). Image of a spherical black hole with thin accretion disk.
Astron. Astrophys., 75, 228–235.

Macias, A. & Camacho, A. (2008). On the incompatibility between quantum theory
and general relativity. Phys. Lett. B, 663, 99–102.

Maeda, K.-i. (1989). Towards the Einstein-Hilbert Action via Conformal Transfor-
mation. Phys. Rev. D, 39, 3159.

Magnano, G. & Sokolowski, L. M. (1994). On physical equivalence between nonlinear
gravity theories and a general relativistic selfgravitating scalar field. Phys. Rev.
D, 50, 5039–5059.

Mishra, A. K., Chakraborty, S., & Sarkar, S. (2019). Understanding photon sphere
and black hole shadow in dynamically evolving spacetimes. Phys. Rev. D,
99 (10), 104080.

Mukhanov, V. F. & Chibisov, G. V. (1981). Quantum Fluctuations and a Nonsin-
gular Universe. JETP Lett., 33, 532–535.

Odintsov, S. D. & Oikonomou, V. K. (2015). Bouncing cosmology with future
singularity from modified gravity. Phys. Rev. D, 92 (2), 024016.

O’Hanlon, J. (1972). Intermediate-range gravity - a generally covariant model. Phys.
Rev. Lett., 29, 137–138.

Peralta, C. D. & Jorás, S. E. (2020). Thermodynamics of f(R) Theories of Gravity.
JCAP, 06, 053.

Perlick, V. & Tsupko, O. Y. (2021). Calculating black hole shadows: review of
analytical studies.

Peskin, M. E. & Schroeder, D. V. (1995). An Introduction to quantum field theory.
Reading, USA: Addison-Wesley.

Postma, M. & Volponi, M. (2014). Equivalence of the Einstein and Jordan frames.
Phys. Rev. D, 90 (10), 103516.

Sakharov, A. D. (1967). Vacuum quantum fluctuations in curved space and the
theory of gravitation. Dokl. Akad. Nauk Ser. Fiz., 177, 70–71.

Schulz, B. (2014). Review on the quantization of gravity.
Schutz, B. F. (1985). A FIRST COURSE IN GENERAL RELATIVITY. Cam-

bridge, UK: Cambridge Univ. Pr.
Schwarz, J. H. (2007). String theory: Progress and problems. Prog. Theor. Phys.

Suppl., 170, 214–226.
Shimada, K., Aoki, K., & Maeda, K.-i. (2019). Metric-affine gravity and inflation.

Phys. Rev. D, 99, 104020.
Sotiriou, T. P. & Faraoni, V. (2010). f(R) Theories Of Gravity. Rev. Mod. Phys.,

68



82, 451–497.
Starobinsky, A. (1980a). A new type of isotropic cosmological models without sin-

gularity. Physics Letters B, 91 (1), 99–102.
Starobinsky, A. A. (1979). Spectrum of relict gravitational radiation and the early

state of the universe. JETP Lett., 30, 682–685.
Starobinsky, A. A. (1980b). A New Type of Isotropic Cosmological Models Without

Singularity. Phys. Lett. B, 91, 99–102.
Starobinsky, A. A. (1981). NONSINGULAR MODEL OF THE UNIVERSE WITH

THE QUANTUM GRAVITATIONAL DE SITTER STAGE AND ITS OB-
SERVATIONAL CONSEQUENCES. In Second Seminar on Quantum Gravity.

Synge, J. L. (1966). The Escape of Photons from Gravitationally Intense Stars.
Mon. Not. Roy. Astron. Soc., 131 (3), 463–466.

’t Hooft, G. & Veltman, M. J. G. (1974). One loop divergencies in the theory of
gravitation. Ann. Inst. H. Poincare Phys. Theor. A, 20, 69–94.

Vázquez, J. A., Padilla, L. E., & Matos, T. (2018). Inflationary Cosmology: From
Theory to Observations.

Verlinde, E. P. (2017). Emergent Gravity and the Dark Universe. SciPost Phys.,
2 (3), 016.

Vilenkin, A. (1985). Classical and Quantum Cosmology of the Starobinsky Infla-
tionary Model. Phys. Rev. D, 32, 2511.

Visser, M. (2002). Sakharov’s induced gravity: A Modern perspective. Mod. Phys.
Lett. A, 17, 977–992.

Vitagliano, V., Sotiriou, T. P., & Liberati, S. (2011). The dynamics of metric-affine
gravity. Annals Phys., 326, 1259–1273. [Erratum: Annals Phys. 329, 186–187
(2013)].

Wald, R. M. (1984). General Relativity. Chicago, USA: Chicago Univ. Pr.
Will, C. M. (2014). The Confrontation between General Relativity and Experiment.

Living Rev. Rel., 17, 4.

69


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Introduction to General Relativity
	Gravity
	Fundamentals
	Action Formalism in Metric Theory

	Introduction to f(R) Theories
	Action formalism in f(R) theories
	Equivalence of f(R) Theories with Scalar Tensor Theories
	Transformation of a Connection
	Conformal Transformation and Frame Shift
	Friedmann Equations
	Inflation

	Spherical Symmetry and Black Holes
	Spherically Symmetric Solutions of Einstein Gravity
	Photon Sphere
	Shadow
	Entropy and Temprature
	Physical Properties of the Black Holes in f(R) Gravity

	Emergent Gravity Theories
	Sakharov's Induced Gravity
	Symmergent Gravity

	Implications
	Sakharov's Induced Gravity
	Symmergent Gravity

	Conclusion
	BIBLIOGRAPHY



