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ABSTRACT

NANOELECTRONICS AND SPINTRONICS WITH DIRAC MATERIALS: SPIN
PROPERTIES OF GRAPHENE, TOPOLOGICAL INSULATORS, AND WEYL

SEMIMETALS

ALI ASGHARPOUR

Physics Ph.D Dissertation, December 2020

Dissertation Supervisor: Prof. Dr. İnanç Adagideli

Keywords: Mesoscopic and nanoscale systems, Dirac materials, Graphene,
Topological insulators, Weyl semimetals, Spintronics, Valleytronics, Spin-orbit

coupling

Dirac materials are a class of condensed matter systems in which the relativistic
Dirac equation describes the dynamics of charge carriers. In this thesis, we inves-
tigate various quantum transport phenomena in these exotic materials, particularly
graphene, topological insulators, and Weyl semimetals, as well as propose spintron-
ics and valleytronics applications. We also focus on spin-orbit coupling induced by
adatoms on graphene, and we explore how valley and spin degrees of freedom in-
teract with each other in the presence of deposited adatoms. We hence investigate
methods to convert valley currents into extractable and measurable spin currents,
which is pivotal in designing spin- and valleytronics devices. Furthermore, we study
current-induced spin accumulation effect at the surfaces of three-dimensional topo-
logical insulators (3DTIs), and we show how to extract these spins into topologically
trivial materials commonly used in electronic devices. We find that, unlike the cor-
responding conventional effect in two-dimensional electron gases, the mixing of the
electron and hole degrees of freedom at the TI surface allows for additional meth-
ods of spin manipulation. In particular, we expose a way to use electrical gate
potentials to locally manipulate spins in regions smaller than the spin precession
length, the conventional length over which the spins can be manipulated. We devise
a new scheme for spin manipulation based on the admixture of the electron and hole
degrees of freedom at TI surfaces. Next, we study hyperfine interactions between
nuclear spins and itinerant electrons at 3DTIs surfaces. We find that hyperfine inter-
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actions induce elastic backscattering processes through spin-flip transitions between
the surface states at each plane of a 3DTI in addition to forward scattering through
intra-transitions within the surface states. Moreover, we find additional forward
scattering processes for the edges of crystals that are not in the growth direction.
Finally, we study Weyl heterostructures between opposing chiralities which can be
obtained by shifting the nodes with specific chirality in opposing directions in mo-
mentum space. We find a new magnetoelectric effect in Weyl semimetal junctions,
similar to the giant magnetoresistance effect in ferromagnets. We thus introduce
a new chirality-valve device and investigate the robustness of this effect against
the presence of nonmagnetic and magnetic impurities in junctions based on Weyl
semimetals.
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ÖZET

DIRAC MALZEMELERİ İLE NANOELEKTRONİK VE SPİNTRONİK:
GRAFEN, TOPOLOJİK YALITKAN VE WEYL YARI METALLERİNİN

ÖZELLİKLERİ

ALI ASGHARPOUR

Fizik Doktora Tezi, Aralık 2020

Tez Danışmanı: Prof. Dr. İnanç Adagideli

Anahtar Kelimeler: Mezoskopik ve nano ölçekli sistemler, Dirac malzemeleri,
Grafen, Topolojik Yalıtkanlar, Weyl yarı metalleri, Spintronik, Vaditronik,

Spin-yörünge etkileşimi

Dirac malzemeleri, yük taşıyıcılarının dinamiklerinin göreceli Dirac denklemi tarafın-
dan tanımlandığı sistemlerden oluşan bir yoğun madde sınıfıdır. Bu tezde bu egzotik
malzemelerde, özellikle grafen, topolojik yalıtkanlar ve Weyl yarı metallerinde
görülen çeşitli kuantum taşınım olaylarını araştırıyor ve bu malzemeler için bazı
spintronik ve vaditronik uygulamaları öneriyoruz. Ayrıca grafen üzerinde adatom-
ların neden olduğu spin-yörünge etkileşimine odaklanıyor ve vadi ve spin serbestlik
derecelerinin birikmiş adatomlar varlığında birbirleriyle nasıl etkileştiğini araştırıyo-
ruz. Bu nedenle, spin ve vaditronik cihazlarının tasarımında çok önemli olan vadi
akımlarını malzeme dışına çıkarılabilir ve ölçülebilir spin akımlarına dönüştürmek
için yöntemler araştırıyoruz. Ayrıca, üç boyutlu topolojik yalıtkanların yüzeylerinde
akım ile indüklenmiş spin akümülasyonunu inceliyoruz ve bu spinleri elektronik ci-
hazlarda yaygın olarak kullanılan sıradan (topolojik olmayan) malzemelere nasıl
çıkaracağımızı gösteriyoruz. İki boyutlu elektron gazlarındaki geleneksel etkiden
farklı olarak, elektron ve deşik serbestlik derecelerinin topolojik yalıtkan yüzeyinde
karışmasının yeni spin kontrol etme yöntemlerine izin verdiğini buluyoruz. Özellikle,
spinlerin kontrol edilebileceği konvansiyonel uzunluk olan spin-presesyon uzunluğun-
dan daha küçük bölgelerde, spinleri yerel olarak elektronik kapı potansiyellerini
ile kontrol etmenin bir yöntemini gösteriyoruz. Böylece, topolojik yalıtkan yüzey-
lerindeki elektron ve deşik serbestlik derecelerinin karışımına dayanan spin kontrolü
için yeni bir şema tasarlıyoruz. Daha sonra nükleer spinler ve üç boyutlu topolojik
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yalıtkan yüzeylerinde bulunan serbest elektronların arasındaki aşırı ince (hyperfine)
etkileşimleri inceliyoruz. Aşırı ince etkileşimlerin, yüzey durumları içindeki geçişler
boyunca ileri saçılmaya ek olarak, üç boyutlu topolojik yalıtkan yüzeyinin her bir
yüzünün kuantum durumları arasında spin çevirme geçişleri yoluyla elastik geri
saçılma sürecini indüklediğini buluyoruz. Ayrıca, kristallerin büyüme yönünde ol-
mayan yüzlerinde bulunan kuantum durumları için ek bir ileri saçılma mekanizması
buluyoruz. Son olarak, momentum uzayında Weyl noktaların ters yönlere kaydırıl-
ması suretiyle kiralite işareti değiştirilen melez Weyl yapılarını inceliyouz. Weyl yarı
metal bağlantı noktalarında, ferromıknatıslardaki dev manyetodirenç etkisine ben-
zer şekilde yeni bir manyeto-elektrik etkisi buluyoruz. Böylelikle, yeni bir kiralite-
valf aygıtı tasarlıyoruz ve Weyl yarı metallerine dayalı bu aygıtlarda manyetik ve
manyetik olmayan safsızlıkların varlığına karşı bu etkinin sağlamlığını araştırıyoruz.
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lator ẑ Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

APPENDIX F: Crystal Structure and Atomic Orbitals . . . . . . . . . . . . . . . 108

APPENDIX G: Further Details about Hyperfine Interactions Calcu-
lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
G.1. Linear Combination of Atomic Orbitals Method for Bi2Se3 Family

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
G.2. Hyperfine Interaction Calculations via Linear Combination of Atomic

Orbitals Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

APPENDIX H: Details on Hyperfine Interaction Coefficients . . . . . . . 116

xii



LIST OF FIGURES

Figure 3.1. Illustration of the graphene lattice (left) and the band struc-
ture (right). A and B denote different sublattices. a and b are two
primitive vectors of the Bravais lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.2. (a) Schematic of a zigzag nanoribbon graphene with L= 40a
and W = 67

√
3a/6, where a is the magnitude of the primitive vector

along x̂ direction (a= ax̂). (b) Band structure of a the system shown
in panel (a) in quantum spin Hall phase. Parameters used are λSO =
0.06 t and λR = λν = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.3. Energy bands for a zigzag strip shown in Fig. 3.2(b) in (a)
the quantum spin Hall phase λν = 0.15 t and (b) the insulating phase
λν = 0.5 t. Parameters used are λSO = 0.08 t, and λR = 0.06 t. The
edge states on a given edge cross at ka= π. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.4. (a) 〈Sz〉 denotes spin polarization in a zigzag nanoribbon
graphene. (b) Charge current density and (c) z-component of the
spin current density in a zigzag nanoribbon graphene. Parameters
used are L= 20a, W = 67

√
3a/6, λSO = 0.06 t, and λR = λν = 0. . . . . . 22

Figure 3.5. Spin and valley conductances in a clean zigzag nanoribbon
graphene with L= 20a and W = 67

√
3a/6.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.6. (a) Zigzag strip with an adatom impurity (green circle). (b)
Spin conductance and (c) valley polarization of the system shown in
panel (a). (d) The z-component of the spin conductance in addition
to valley polarization for zigzag nanoribbon graphene with a Rashba
impurity due to the presence of an adatom. Parameters used are
L= 20a, W = 11

√
3a, t= 1, λR = 0.1, and λSO = λν = 0.. . . . . . . . . . . . . 25

xiii



Figure 3.7. (a) Zigzag strip with an adatom impurity in the center of a
hexagon in the middle of the scattering region. (b) Spin conduc-
tance and (c) valley polarization of the system shown in panel (a).
Parameters used are L = 20a, W = 67

√
3a/6, t = 1, λR = 0.1, and

λSO = λν = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 3.8. (a) Zigzag strip with an adatom impurity on the carbon atom

located on sublattice A. (b) Spin conductance and (c) valley polariza-
tion of the system shown in panel (a). Parameters used are L= 20a,
W = 67

√
3a/6, t= 1, λR = 0.1, and λSO = λν = 0. . . . . . . . . . . . . . . . . . . . . 26

Figure 3.9. (a) Zigzag strip with an adatom impurity on the carbon atom
located on the sublattice B. (b) Spin conductance and (c) valley po-
larization of the system shown in panel (a). Parameters used are
L= 20a, W = 67

√
3a/6, t= 1, λR = 0.1, and λSO = λν = 0. . . . . . . . . . . 27

Figure 3.10. (a) Zigzag strip with two adatom impurities on the carbon
atoms located on the sublattices A. (b) Spin conductance and (c)
valley polarization of system shown in panel (a). Parameters used
are L= 20a, W = 67

√
3a/6, t= 1, λR = 0.1, and λSO = λν = 0. . . . . . . 27

Figure 3.11. (a) Zigzag strip with two adatom impurities on the carbon
atoms located on the sublattices B. (b) Spin conductance and (c)
valley polarization of the system shown in panel (a). Parameters
used are L= 20a, W = 67

√
3a/6, t= 1, λR = 0.1, and λSO = λν = 0. . 28

Figure 3.12. (a) Zigzag strip with two adatom impurities on the carbon
atoms located on the sublattices B and A. (b) Spin conductance and
(c) valley polarization of the system shown in panel (a). Parameters
used are L= 20a, W = 67

√
3a/6, t= 1, λR = 0.1, and λSO = λν = 0. . 28

Figure 3.13. Spin conductance and valley conductance for a zigzag strip
with L= 100a and W ' 48.16

√
3a averaged over 1000 configurations

with particular adatom densities: (a) 0.1, b) 0.2, and c) 0.3. Spin
conductance and valley polarization fluctuations for the same systems
with the same order of mentioned adatom densities: (d) 0.1, (e) 0.2,
and (f) 0.3. Parameters used are t= 1, λR = 0.1, and λSO = λν = 0. . . 29

Figure 4.1. (Color online) Slab of a topological insulator (green), current
biased with Ibias. The induced spin accumulation at the boundaries
can be injected into a side contact (blue). A gate potential Vgate can
be tuned to control the spin polarization of the spin injected current. 33

xiv



Figure 4.2. Surface spin polarization of a 3D topological insulator
nanowire. (a) Sketch of a 3D topological insulator nanowire at-
tached to two semi-infinite leads. (b) 〈Sy〉 and (c) 〈Sz〉 denote the
spatial profile of the averaged spin polarization (averaged over 1000
disorder configurations) along cross sections, oriented in the x̂ di-
rection and marked as the blue rectangle in panel (a). Parameters
used are L = 30a, W = 30a, H = 20a, HSP = 10a, U0 = 0.5eV, and
EF = 0.15eV, which is in the bulk gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 4.3. Average ratios (a) (〈Sz〉/d〈n〉/dx)−ŷ and (b) (〈Sy〉/d〈n〉/dx)+ẑ
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1. INTRODUCTION

The scope of this thesis is the charge, spin, and valley transport in materials where
the Dirac equation describes charge carriers dynamics. Specifically, we focus on
graphene, three-dimensional (3D) topological insulators, and Weyl semimetals. We
extend the existing transport theories for each material to include coherent spin
and valley dynamics in confined or bulk structures. We use numerical methods for
systems under consideration and study new transport phenomena and their possible
applications.

Purpose of this Thesis

The main objective of this thesis is to investigate the quantal dynamics and inter-
actions of internal quantum degrees of freedom such as charge, spin, and valley in
Dirac materials. Since the Dirac equation describes the charge carriers dynamics,
these materials feature richer transport phenomena than conventional semiconduc-
tors where the quantal dynamics is well-described by an effective Schrödinger-like
equation. Our goal is to search for these new transport phenomena and study them.
In particular. we follow on (1) Converting valley currents to spin currents and vice
versa by introducing adatoms on graphene. Spin-polarized currents interact with
the spin-orbit or exchange field, and they can be measured or read with phenom-
ena such as inverse spin Hall effect (SHE) or with ferromagnetic probes. Although
there are various theoretical proposals to induce valley currents, practical propos-
als to measure them have not been put forward, to best of our knowledge. The
valley degree of freedom interact mainly with potentials that are concentrated in
a very narrow space (comparable to the lattice spacing) as well as the armchair
edges. Adatoms adhering to the graphene provide such potential. Adatoms de-
posited on graphene also induce spin-orbit interactions, hence showing potential to
interact with both the valley and the spin currents. We focus on how valley currents
and spin currents interact with adatoms and how valley currents can be converted
into readable or measurable spin currents, bypassing an important milestone to de-
sign spin and valley-dynamics based devices. To achieve this, the development of a
quantum transport theory that includes spin-valley interaction in graphene and the
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utilization of quantum transport simulations, including adatom and spin-orbit ef-
fects, are studied. (2) Gate-controlled spin extraction from 3D topological insulator
surfaces. An applied charge current induces spin accumulation on the surface of
a 3D topological insulator. Manipulation of such spin accumulation typically re-
quire magnetic fields and lengthscales larger than the spin precession length. In
this thesis, we find a mechanism in topological insulators that allows for local and
all-electrical control of current generated spins with applied gates. The mechanism
is based on the fact that the surface (edge) of three-dimensional (two-dimensional)
topological insulators feature both electron- and hole degrees of freedom as well
as spin-orbit coupling. We study the current-induced spins at the surfaces of 3D
topological insulators and show how to extract these spins into topologically trivial
materials commonly used in electronic and spintronics devices. We find that unlike
the corresponding effect in two-dimensional electron gases (2DEGs) with Rashba
spin-orbit interaction, the mixing of the electron and hole degrees of freedom at the
topological insulator surface allows for additional spin manipulation methods. (3)
Studying hyperfine interaction in Bi-based 3D topological insulators. The interac-
tion between electron and nuclear spins, namely the hyperfine interaction, plays an
essential role for ensemble spin dephasing and single spin decoherence of localized
electrons. Furthermore, the hyperfine interaction enables us to study how to cou-
ple electron and nuclear spins controllably in spintronics devices. Expressions for
different kinds of hyperfine interactions for surface states of 3D topological insu-
lators are derived for the most common Bi-based 3D topological insulator models
in this thesis. We extend our model to include the mixing of s-like orbital states
with p-like orbitals such contributions can be important since s-like orbital states’
contribution to hyperfine interaction is much stronger than p-like orbitals. Our cal-
culations are general in the sense that they can be applied to any material within the
Bi2Se3 family. (4) Magnetoelectric effect in Weyl semimetal nanowires. The three-
dimensional version of graphene is a gapless system called Weyl semimetal. These
systems typically require that either time-reversal symmetry or inversion symmetry
is broken. The Dirac nodes can be split in the momentum space leading to (at least)
two Weyl nodes of opposite chirality. These nodes (valleys), which can be shifted
in the momentum space through different perturbations, can be annihilated in pairs
if two nodes of opposite chirality overlap and gap out. Each Weyl node can be
viewed as a magnetic monopole in momentum space. One can envision to use these
properties to introduce different applications in the spintronics field. In this thesis,
we study transport in various Weyl semimetal heterostructures in which the nodes
with specific chirality are modulated. We find a new magnetoelectric effect in our
systems that introduces a new giant magnetoresistance (GMR) type device, where
manipulating chiralities can manipulate the charge transport. We also investigate
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the robustness of this effect in the presence of magnetic and nonmagnetic disorder.

Contents of this Thesis

The thesis is organized in the following way:

In chapter 2, we briefly overview the Hamiltonians we focus on and review con-
cepts that we will use in this thesis particularly required symmetries for protecting
Dirac points and perturbations generating a finite gap for specific Dirac materi-
als: graphene, topological insulators, and Weyl semimetals. We also overview some
spintronics and valleytronics applications of these materials.

In chapter 3, we study the effect of adatom induced spin-orbit coupling on the band
structure of graphene. We use numerical simulations to present current-induced
spin accumulation at the edges of graphene nanowires with enhanced spin-orbit
coupling. We also study the effect of a single adatom located at different sublattices
on the spin and valley conductance. Then we focus on our main result, namely how
valley currents transform into spin currents and vice versa by introducing adatoms
in graphene. We also study how we can use these to design spin-valley converter
devices for spintronics and valleytronics fields.

In chapter 4, we investigate the extraction of electrically-induced spins from the
surface of topological insulators into adjoining topologically trivial materials con-
ventionally used in electronics devices. We adopt an effective Hamiltonian applicable
to a family of bismuth-based 3D topological insulator materials and consider a de-
vice geometry in which a topologically trivial side pocket is attached to various faces
of a 3D topological insulator quantum wire. We show that it is possible to extract
current-induced spin accumulation into these topologically trivial side pockets. We
further study how this spin extraction depends on the geometry and material pa-
rameters and find that electron-hole degrees of freedom can be utilized to control
the polarization of the extracted spins by an applied gate voltage.

In chapter 5, we study the hyperfine interactions between the electron and nuclear
spin in materials belonging to the Bi2Se3 family. We utilize the effective Hamiltonian
presented for such materials with the basis states including p-like symmetry states
predominantly; hence, the dipole-dipole-like coupling and the electron-orbital to
nuclear-spin coupling are significant hyperfine interactions. We also consider the
possibility of s-orbital-mixing with less contribution to the states close to the Fermi
energy, leading to the Fermi contact interaction which is the strongest one among
all hyperfine interactions. We find effective expressions for hyperfine interactions
for surface states of different planes of any 3D topological insulator materials in
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the Bi2Se3 family. We investigate coupling of nuclear spin and inter-transition or
intra-transition of surface states regarding surfaces of a 3D topological insulator
crystal.

In chapter 6, we focus on Weyl semimetals for which either inversion symmetry or
time-reversal symmetry is intact. We numerically and analytically study layered
Weyl semimetal structures and expose an GMR-like effect. In particular we show
that manipulating chiralities of Weyl points leads to blocking or unblocking the
charge current. We also check this effect in dirty systems by introducing nonmag-
netic and magnetic impurities. This magnetoelectric effect provides us to design a
new chirality-valve device for electronics and valleytronics applications.

Lastly, in Chapter 7, we briefly outline our results in this thesis and discuss possible
future directions.
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2. OVERVIEW

Paul Dirac introduced the Dirac equation in the 1920s [1] to combine Einstein’s
special theory of relativity and quantum mechanics. In high energy physics, the
quantal dynamics of relativistic fermions conform to the Dirac equation. For a free
particle, the Dirac equation can be written as [2]

ih̄
∂ψ

∂t
= (cα ·p+βmc2)ψ, (2.1)

where p = −ih̄∇ is the momentum operator, m is the particle mass, c is the light
speed, and ψ is a four-component spinor. Here α and β form an algebra of anti-
commuting 4×4 matrices and are given by

αi =
 0 σi

−σi 0

 , β =
σ0 0

0 −σ0

 , (2.2)

where σi for i = x,y,z are the Pauli matrices, σ0 denotes a 2× 2 identity matrix,
and 0 denotes a 2× 2 null matrix. This equation, which was originally intended
to describe the relativistic behavior of the electron, predicted the antimatter for
electron, named positron, as well as confirming electron spin. When kinetic energy
dominates over rest mass (cp�mc2), the particle behaves ultrarelativistically and
the energy spectrum becomes linear. In this limit, two components of the upper and
the lower parts of ψ decouple, and become an eigenstate of the chirality operator,

Λ = σ ·p
p

, (2.3)

where σ is the vector of Pauli matrices, with eigenvalues Λ = ±1. The eigenstates
of the chirality operator are called the right-handed and the left-handed particles in
which (pseudo)spin and momentum are parallel and antiparallel, respectively. At
low energies, the right- and left-handed particles are also decoupled, provided that
the particles are massless, m= 0. Although the electrons have a nonzero mass, the
effective mass of carriers is sometimes negligible due to the complex environment of
solids where charge carriers interact with each other and nuclei. Then the dynamics
of the charge carriers of certain materials can also satisfy an effective Dirac equation.
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In some cases, electronic band structure of solids host two linear band crossings at a
single point, called Dirac point, around which we can apply Dirac Hamiltonian for
the massless quasiparticles with an (emergent) chirality,

H =±vF (σ ·p), (2.4)

where we have Fermi velocity, vF , instead of the speed of light. This is called a Dirac
semimetal. It is also possible to separate the Dirac cones in momentum space using
strain or magnetization. Then the resulting material is called a Weyl semimetal.
In this chapter, we briefly survey Dirac/Weyl material properties and review some
recent work related to these materials, particularly on the fundamental concepts in
section 2.1 as well as the spintronics and valleytronics applications in section 2.2.

2.1 Dirac Materials

There has been a recent increase of experimental and theoretical interest in Dirac
materials owing to their novel properties and their potential for applications. Exam-
ples of these materials in two-dimensions include graphene [3–6], topological insula-
tor materials (such as HgTe and Bi2Se3) [7–10], MoS2 [11], silicene [12], etc. In 3D
we have 3D Dirac semimetal materials (like Cd3As2) [13–16], Weyl semimetal ma-
terials such as TaAs [16–18], etc. The list of these materials is increasing every day.
The search for new Dirac and Weyl materials and studying their quantum properties
are subjects at the frontier of condensed matter physics research. In conventional
semiconductor materials, electrons obey the Schrödinger equation with (approxi-
mately) quadratic energy-momentum dependence. In contrast, the charge carriers
dynamics in these new materials is determined with Dirac equation albeit with a
different light-velocity constant. Hence, it becomes possible to observe analogs of
relativistic, high energy effects in condensed matter systems at low energies. Apart
from being interesting from a basic physics perspective, investigating these effects
can pave the way for developing new devices with possible commercial applications.

In the rest of this section, we review some basic concepts such as effective Hamil-
tonian, symmetries needed to protect Dirac points, the effect of perturbations, etc.,
for specific Dirac materials, namely graphene, topological insulator materials, and
Weyl semimetal materials.
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2.1.1 Graphene

Graphene, a single layer of carbon atoms with a honeycomb structure, is perhaps
the most well-known two-dimensional (2D) Dirac material [3]. There are two carbon
atoms which represents different sublattices in each unit cell. In the vicinity of the
Fermi level, the two linearly touching bands are mainly from carbon pz orbitals that
form π bands with adjacent atoms. Dirac points are present in momentum space at
two distinct points: valleys K and K ′. The effective Hamiltonian around the Dirac
points conforms to the following equation [3, 16],

Hgraphene = vF (τzσxpx+σypy)s0, (2.5)

where p = (px,py) is the momentum of the particle in two dimensions, τi are the
Pauli matrix in the valley space, s0 is the unit matrix in the spin space, and σi

are the Pauli matrices in the pseudo-spin (sublattice) space. Here s0 indicates that
there are two copies of Dirac cones at each valley.

The fundamental symmetries in graphene are inversion symmetry, P = σxτx, sub-
lattice symmetry, C = σz, time-reversal symmetry, T = τxKc (for spinless system)
with Kc the complex conjugate operator. Inversion symmetry means k→−k and
exchanges sublattices in the real space: H(−k) = PH(k)P−1; sublattice (chiral)
symmetry just interchanges sublattices A and B: −H(k) = CH(k)C−1; and with-
out considering the spin degree of freedom, the time-reversal symmetry operator
in real space is just a complex conjugation operator: H∗(−k) = T H(k)T −1. In
both time-reversal and inversion symmetries, τx is the real operator that maps one
valley to the other one. By breaking either sublattice symmetry or time-reversal
symmetry in graphene, we can generate a gap, which manifests as a mass term in
the Dirac equation. For example, a σz term preserves time-reversal symmetry but
breaks sublattice symmetry as well as inversion symmetry, leading to a gap and
drives the system to a quantum valley Hall insulator [19]. The source of this term
can theoretically be an interaction of graphene with a specific substrate, which can
be modeled as a different staggered potential. Intrinsic spin-orbit coupling, which is
proportional to τzσzsz term, can also open a gap. It only breaks sublattice symme-
try and couples real spin to the pseudospin, and drives the system to the quantum
spin Hall phase where the spin is locked to the momentum. However, spin-orbit
strength is very weak for carbon atoms and consequently for graphene. On the
other hand, there are some other 2D graphene-like materials such as silicene, ger-
manene, stanene, and phosphorene [20–22] which all have higher spin-orbit strength
since they are heavier elements and have buckled lattice structures. A substrate,
adatoms, or an external electric field can break the inversion symmetry and generate
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Rashba spin-orbit coupling, having the form (σxτzsy−σysx). This interaction splits
spin bands but does not cause any gap in the system. The other source of topolog-
ical gaps can be the next-nearest neighbor hopping introduced by Haldane, which
leads to a quantum anomalous Hall insulator [23]. Finite-size confinement is another
example of generating a finite energy gap due to breaking translational symmetry
causing momentum quantization. Any other term corresponding to the coupling
between valleys results in translational symmetry breaking and can produce a gap,
e.g., Kekule dimerization. For further discussions of these different gapped phases
of graphene-like materials, we refer the reader to the literature [24].

2.1.2 Topological insulators

Topological insulators, another example of Dirac materials, have recently attracted
considerable interest [10]. Topological insulators are band insulators that contain
topologically protected extended states at the edges. Since these modes are topo-
logically protected, they are not expected to be affected by weak disorder. The
effective Hamiltonian of topological insulator materials with keeping only the four
bands closest to the Fermi level is expressed as follows:

HTI = vF (ε(k) ·σ)τz +mkτx, (2.6)

where σi are the Pauli matrices in the spin space and τi denote the Pauli matrices
in the orbital space. We note that with the association of αi = σiτz, β = τx; and if
εi(k) = tsin(kia) and mk = m0 +∑

j t
′(3− cos(kja)), we recover the Dirac equation

(2.1) as k→ 0. In this approximation, vF and m0 take the place of the speed of
light and the rest energy of the particle, respectively. The Hamiltonian of many
different systems such as Bi2Se3 can be brought to this form. When the Fermi
level is zero and m0 > 0, a bandgap is present in the system and the system is in a
trivial insulator phase, which is similar to the vacuum. When the mass parameter
is negative, m0 < 0, the system passes through a quantum phase transition from
the normal dielectric or insulator vacuum to the topological insulator phase. In this
phase, there is a bandgap in the bulk of the system and topologically conserved
quantum states on the surface of the system.

Surface states of a topological insulator, which are effective in two dimensions, are
depicted by a 2D Dirac equation similar to graphene. The effective surface Hamil-
tonian for surface states is,

Hsurface = vF (p ·σ) = vF (pxσx+pyσy), (2.7)
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where p= (px,py) is the particle momentum (in two dimensions) which is parallel to
the surface, and σi are the Pauli matrices in the spin space. Similarly, 2D topological
insulators (some of which are also referred to as quantum spin Hall insulators)
have edge states the Hamiltonian of which is governed by the one-dimensional (1D)
Dirac equation. Surface (edge) states of the 3D (2D) topological insulators, where
the number of Dirac cones on the topological insulators boundaries are odd, are
robust to weak nonmagnetic impurity disorder [25,26]. Note that Kramer’s theorem
implies two counterpart edge or surface states with opposite spin and momentum at
the same energy unless the time-reversal symmetry is broken. Hence, backscattering
is suppressed because there is no available state for counter-propagating mode with
the same spin. While spin-orbit coupling in topological insulators preserves the
time-reversal symmetry, several types of perturbations like an out-of-plane magnetic
field, proximity to magnetic materials, and magnetic impurities can be introduced
to break the time-reversal symmetry and open a gap in the surface states of the
topological insulators. The confinement effect can also generate a gap analogous to
graphene.

2.1.3 Weyl semimetals

Stable band crossings have been known to occur in three dimensions, and if one can
tune chemical potential near the vicinity of crossing points (namely 3D Dirac points)
without the presence of other bands, the result is a 3D Dirac material with a linear
Dirac spectrum. In this case the mass parameter in Eq. (2.6) is zero, m0 = 0, and
the particles are described by massless Dirac equation, which is a 3D generalization
of graphene. However, in this case the valleys are located at the same point, not
at two different momentum points as they are in the graphene. The valleys can
be separated from each other through either breaking inversion symmetry by strain
or time-reversal symmetry by the Zeeman field or magnetic exchange interaction.
Hamiltonian with broken time-reversal symmetry and inversion symmetry can be
written in this form:

H = vF (ε(k) ·σ)τz +mkτx+λτz +β ·σ, (2.8)

where nonzero λ breaks inversion symmetry and nonzero βi breaks time-reversal
symmetry. If the valleys are separated in this way, increasing the mass parameter
m0 has a value different from zero, or adding any other perturbation can not create
a bandgap in the system, a long as its strength is less than a critical value. This
phase of the system consists of massless particles of opposite chirality, known as
Weyl fermions. The phase is called "Weyl semimetal". The effective Hamiltonian
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around each valley is

H±Weyl =±vF (p ·σ) = vF (pxσx+pyσy +pzσz), (2.9)

where ± denotes the chirality of crossing points (Weyl points). The most important
difference of this equation from graphene is the momentum of the particle which has
components in three-dimensions, p = (px,py,pz). We can easily open the band gap
in graphene by applying a perturbation (e.g., staggered potential). On the contrary,
this type of perturbation can only shift the position of the two Weyl points in
momentum space and can not open a bandgap in Weyl semimetals, unless the Weyl
points annihilate each other.

Wan et al. proposed the first "Weyl semimetal" candidate based on their first-
principle calculations for the material Y2Ir2O7. They identified 24 Weyl points
and topological Fermi arcs on the surface in the semimetal phase [27]. Since then,
there has been extensive experimental research on finding Weyl fermions in different
materials [28–30] which had succeeded recently [18, 31–33]. As mentioned above,
Weyl semimetal requires nondegenerate bands that can be obtained by breaking
either time-reversal symmetry or inversion symmetry. These symmetries also put
a constraint on the number of Weyl points. Breaking time-reversal symmetries
lead to at least two Weyl points (minimum number based on fermion doubling
theorem), and lack of inversion symmetry results in at least four Weyl points. When
both symmetries coexist, the system is in a 3D Dirac semimetal phase where there
are at least a pair of crossing points in the momentum space, two Weyl points
with opposite chiralities. Also, Weyl materials occur in basic layered structures,
including topological and trivial insulators [28] other than the adjustment of the
crystal parameters. Moreover, at the transition point of topological and trivial
insulators, we may either have 3D Dirac semimetals [34] or Weyl semimetals. Weyl
points can only be annihilated in pairs of opposite chirality: once formed, one can
only destroy a Weyl point by annihilating it (gapping it out) together with its partner
having opposite chirality. This can be achieved by either breaking translational
symmetry to allow scattering among Weyl cones or merging two Weyl points with
opposite chirality in the momentum space.

The topological structure of the Weyl cones can be described mathematically as
follows: The Berry curvature is defined as Ωn(k) =∇k×An, where An is a k-space
gauge potential, called Berry connection, for the band indexed n. Berry curvature
can be viewed as a magnetic field in the momentum space. It becomes singular for
a Weyl point, Ω(k) =±k/2k3, therefore, Weyl points behave as monopoles. Hence,
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we can define Chern number as a topological invariant for a 3D Weyl point,

NS = 1
2π

∮
S

Ω(k) ·dσ, (2.10)

where S is a closed surface in momentum space enclosing the Weyl point. The
Chern number NS = ±1 for a Weyl point, where +1(−1) corresponds to the Weyl
points chirality, that behaves as a source (sink) in the momentum space. Since the
total flux must vanish for a crystal, the number of Weyl points are always even, also
known as the fermion doubling theorem. In other words, periodicity guarantees that
the intersection of any two bands occurs at an even number of points.

Fermi arc is one of the exotic physical consequences that arises from the Weyl
semimetals’ topological bandstructure. Unexpectedly at the surface of a Weyl
semimetal, the Fermi surface does not form a closed loop. Instead, separate Fermi
arcs located at opposing surfaces are present, and the reason is described briefly
as follows: Consider a Weyl semimetal with a single pair of Weyl points. At the
Fermi level, we have surface states in addition to the states associated with the bulk
Weyl points. Unlike well-defined surface states for momenta away from the Weyl
points because of no other bulk excitations available, surface states terminate at
Weyl points and form an arc between two Weyl points at the surface. The Fermi arc
surface states can also be described by noting that the Weyl points are Berry flux
monopoles: Consider a 2D momentum space surface located between Weyl points
and another located outside. There will be a non-zero net flux through these planes.
Therefore, the Chern numbers corresponding to each 2D momentum space plane
differ by one. Hence, (at least) one surface has a non-zero Chern number. Planes
with non-zero Chern number can be described as 2D quantum Hall states in which
chiral edge states cross the Fermi level. We arrive at a Fermi arc linking the two
Weyl points by adding together the edge states of all potential 2D momentum space
surfaces.

2.2 Applications of Dirac Materials

Dirac and Weyl materials have attracted great interest not only for rich underlying
physics but also for their high potential for nanoelectronics applications. Spin and
valley degrees of freedom, as well as their interactions in Dirac materials, have un-
veiled new avenues towards spintronics and valleytronics applications [12,16,35–46].
The creation, detection, and manipulation cycle of spins and valleys are fundamental
necessities for spintronics and valleytronics, respectively. Having these possibilities
open the gate to a future electronics with high speed data transfer, low energy con-
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sumption and low power dissipation, etc. In this section, we briefly overview the
utilization of graphene, topological insulators, and Weyl semimetals in spintronics
and valleytronics fields.

2.2.1 Graphene

Graphene is one of the promising materials for spintronics and valleytronics appli-
cations where spin, pseudospin, and valley are alternatives to charge degrees of free-
dom used for electronic transport. Research on graphene spintronics applications
was started when spin injection and detection in a single graphene layer system
were demonstrated in 2007 [47]. Long spin coherence time is expected because of
weak spin-orbit coupling of electrons and insignificant interaction between electrons
spin and nuclear spins (hyperfine interaction) in graphene. Moreover, high mobility
in graphene leads to a long spin-diffusion length. Thus, very high-efficiency spin
transport and diffusion distances exceeding 100 microns have been obtained [48].
Therefore, graphene with weak spin-orbit interaction and long spin-relaxation time
is ideal for spin-conserver, spin transistor, and memory applications in the spintron-
ics field. Unlike these promising developments, experimental results for the spin
lifetime were much shorter than expected: the expected spin lifetime at the mi-
crosecond level was found to be in the order of tens of nano-seconds [49,50]. Recent
theoretical research has shown that the adatoms on graphene can locally strengthen
the spin-orbit interactions [51], and this mechanism explains the reduction of a spin
lifetime. Adatoms [52, 53] similar to interaction with substrate [54], or applying an
electric field [55–57] can enhance spin-orbit interaction, critical for the emergence of
the SHE [58]. Graphene with enhanced spin-orbit coupling exhibits quantum SHE
(QSHE), spin-polarized dissipationless states at the edges. Thus, graphene can be
utilized for spin-polarized currents detection at elevated temperatures (even room
temperature) because of its high mobility [59]. Graphene can also be utilized in
complex spintronics devices such as reconfigurable logic gate [60].

In analogy with spintronics, it is possible to manipulate the valley leading to an al-
ternative quantum transport field, valleytronics. In graphene, the definite chirality
of valleys interacts differently with external perturbations and enables polarizing val-
leys at the same energy level by breaking the inversion symmetry [19,61–63]. Similar
to the SHE, we can have the valley Hall effect where valley current and polariza-
tion can be induced and controlled in graphene by an in-plane electric field [19].
Circularly polarized light [64] and valley-dependent Zeeman field [65] also induce
and control valley polarization. The use of zigzag edge nanoribbons has provided
promising theoretical recommendations for injecting valley polarized currents. How-
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ever, manipulation and measurement of these currents are still challenging, although
there has been experimental progress towards valley manipulation recently [45]. Af-
ter creating valley polarization, one needs to manipulate them to be utilized for
information storage and processing. Devices that allow transmitting of only one
valley species, named valley filter devices, can be introduced for valley manipu-
lation, and it is first proposed in graphene [66]. The other approaches have also
been used to filter valleys in graphene, such as irradiation [67], line defects [68]
strain engineering [69, 70], or the proposed valley polarized quantum anomalous
Hall phase [71, 72]. In proposed valley filters, both valleys coexist and inter-valley
scattering caused by disorder is one of the most critical obstacles for controlling po-
larization [73]. This issue is recently resolved by proposing a perfect valley filter at
the boundary between two topological domains, quantum valley Hall with inversion
symmetry broken and quantum anomalous Hall with time-reversal symmetry bro-
ken. Specific realizations of this perfect filter in a single layer and bilayer graphene
are suggested [74]. Moreover, spin and valley can be mixed in graphene via inducing
spin-orbit coupling by ripples, the substrate, or adatoms. This paves the way for
utilizing spins to manipulate valley-spins and vice versa.

2.2.2 Topological insulators

Strong spin-orbit coupling and dissipationless spin-polarized counter-propagating
edge states in two dimensions and topologically protected surface states in three
dimensions make topological insulators promising candidates as spin-generators for
spintronics applications [35, 42]. Graphene has also shown the QSHE effect, al-
though this effect is weak for applications due to low spin-orbit interaction strength
in graphene. A significant development in this area was achieved in 2006 by demon-
strating the QSHE effect in HgCdTe quantum wells, which exhibited strong spin-
orbit interaction [75]. Moreover, the current-induced spin accumulation effect can
be found in topological insulator surface states due to the spin-momentum locking.
Hence, topological insulators can also be used as a spin generator or charge-to-spin
converter. The current-induced spin accumulation effect can also be utilized in het-
erostructures consisting of a topological insulator and a magnet in the way that spin
accumulation on surfaces or edges of topological insulators can exert a spin-transfer
torque onto the adjacent magnet to control magnetization [76]. Amazingly, spin ac-
cumulation in topological insulators has a much larger magnitude compared to those
produced in trivial materials. Spin-to-charge conversion is also possible through spin
pumping, spin-polarized tunneling [77], etc., on the topological insulators surfaces.
In a 2D magnetic topological insulator, spin polarized chiral edge states can be uti-
lized to generate and filter spin polarized currents [78]. Besides, introducing strain
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to the bulk of Weyl, Dirac materials, or thin films also enables transition between
the trivial and quantum spin Hall phases, proposing a piezo-topological transistor
device [79]. An all-electric spin polarization rotator device is also introduced based
on topological spin-helical edge states in 2D topological insulators and ferromagnetic
contacts [80].

In short, topological insulators are efficient spin-current generator, accumulator,
and filter. Utilizing topological insulators also enables us to efficiently manipu-
late spins and magnets of adjacent materials. Accordingly, various potential spin-
tronics devices utilizing topological insulators have been proposed based on recent
experimental results such as nonvolatile spintronic memory, [76, 81, 82] spin cur-
rent/accumulation source [83–88], efficient spin detectors/spin-to-charge convert-
ers [89–93] and rechargeable spin battery [94]. Fast speed, low power consumption,
and low heat dissipation are features of these devices.

2.2.3 Weyl semimetals

Weyl semimetals have recently attracted great attention and offer a new perspective
for the next generation of spintronics and valleytronics devices [16,61,95–97]. While
unintentional bulk doping is an obstacle in topological insulators for generating spin
currents, there is no such concern in Weyl semimetals. Moreover, Weyl semimetals
manifest a large Berry curvature and spin-orbit coupling [17], which results in a large
intrinsic SHE that can be tailored to generate and detect spin currents. Although
charge conductivity is low in these materials, the spin Hall angle, describing the
conversion efficiency between charge currents and pure spin currents, is larger than
other typical spin Hall systems. The presence of a Fermi arc is another distinct
feature of Weyl semimetals with spintronics potential: Due to the spin-orbit coupling
in Weyl semimetals, Fermi arcs can be nearly fully spin-polarized (up to 80% [98]).

Weyl semimetals host valleys making them also good candidates for valleytronics
applications. The chiral anomaly effect in Weyl semimetals gives a charge imbal-
ance, or valley polarization, between Weyl points, resulting in negative magnetore-
sistance [99,100] that induces nonlocal transport and optical features [101,102]. As
mentioned above, Weyl points behave as magnetic monopoles in momentum space;
therefore, the electron orbit is deflected according to the Weyl point chirality under
a longitudinal force field. This phenomenon is called the chirality Hall effect which
has no counterpart in 2D materials because it needs the third direction, normal
to the motion plane, for transverse shifts [103]. Splitting carriers based on their
chirality in addition to breaking inversion symmetry also induces an imbalance in
carriers with different chiralities.
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3D Dirac thin films, due to simple node configurations, can also be used for device
applications. These materials can be in a trivial phase or quantum spin Hall phase
through altering thickness, confinement along one direction, or transverse gating.
This results in a topological field-effect transistor where we can control helical edge
states for conducting spin currents [104].

Magnetic Weyl semimetals have great potential to be utilized in various spintronics
applications such as data storage and information processing [105, 106]. Quantum
anomalous Hall effect is observed at room temperature in these materials which
leads to a new generation of low energy consuming spintronics devices [107]. Spin-
polarized surface states in these materials can exert spin-transfer torque, necessary
for operating spintronics devices such as racetrack memory.
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3. ADATOMS IN GRAPHENE

In this chapter, we investigate the impact of deposited adatoms on graphene that is
enhancement of the spin-orbit coupling. We overview trivial and topological phases
of graphene with enhanced spin-orbit coupling or graphene-like materials hosting
intrinsic spin-orbit coupling. We provide numerical results of current-induced spin
accumulation that shows graphene (or graphene-like materials) can be utilized as
a spin-generator. Furthermore, we explore how valley and spin currents interact
with deposited adatoms on graphene. The most remarkable result of our study is
that valley currents can be converted into spin currents and vice-versa with the
aid of adatoms deposition through coupling spin and valley degrees of freedom.
This provides a fertile ground for designing new spin-valley converter devices in
spintronics and valleytronics fields.

3.1 Introduction

The possibility of utilizing the electron spin and valley degrees of freedom has been
the focus of the emergent fields of spintronics and valleytronics, respectively. Explor-
ing new phenomena and introducing applications based on spin and valley degrees
of freedom are widely studied in these fields. Low power consumption, less heat dis-
sipation, more compact, and faster reading or writing of data are the usually cited
advantages of using spin and valley instead of the electron charge.

Graphene, a prominent 2D material hosting both spin and valley, has widely at-
tracted attention in spintronics and valleytronics devices [35, 37, 45, 61]. Graphene
is a great candidate as a spin-conserver in spintronics perspectives due to its weak
spin-orbit coupling. Spin currents can be created by methods such as ferromagnetic
contacts or spin Hall effect, manipulated by a magnetic field or spin-orbit field, and
measured by ferromagnetic contacts and inverse spin Hall effect [108, 109]. The
spin-orbit coupling can be enhanced in graphene by introducing adatoms, strain,
and specific substrate as well as applying an external electric field so graphene can
be used as a spin-generator. Furthermore, graphene-like materials such as silicene,
germanene, stanene, etc., can also be utilized as spin-generators without adding
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adatoms since they already have strong intrinsic spin-orbit coupling due to their
higher atomic numbers and buckled structures [20–22]. Graphene-like materials and
graphene with enhanced spin-orbit coupling could possibly exhibit the quantum
spin Hall effect. On the other hand, in the scope of valleytronics, the valley Hall
effect, which is analogous to the spin Hall effect, is predicted to be seen, and valley-
polarized current can be induced in graphene by an in-plane electric field. However,
manipulation and measuring valley currents have proven difficult, which has been a
significant obstacle to the use of valleytronics applications.

The details of spin-relaxation in graphene are not still well-understood, even though
there have been promising developments in utilizing graphene in spintronics and
valleytronics fields. Experimental results for the spin lifetime are much shorter than
theoretical expectations: the naive theoretical expectation of spin-relaxation time
is in the order of microseconds, and it is experimentally found to be at most in the
order of tens of nano-seconds [49, 50]. Recent theoretical research has shown that
the adatoms, which can locally strengthen the spin-orbit interactions, [51] might
explain the reduction of spin lifetime [110, 111]. The other theoretical approach
for resolving this discrepancy is spin scattering by magnetic moments [112] and
the interaction with the substrate [113]. According to the ab initio calculations,
the induced Rashba spin-orbit coupling is one order of magnitude bigger than the
intrinsic spin-orbit coupling [55, 114]. Therefore, the induced Rashba spin-orbit
coupling possibly explains the observed spin-relaxation time. Here we focus on the
spin-valley mixing caused by introducing dilute adatoms on graphene.

This chapter is structured as follows: In Sec. 3.2, we outline the Hamiltonian of
graphene, including spin-orbit coupling, Rashba coupling, and staggered potential.
Besides, we review quantum spin Hall phase and edge states in addition to the
current-induced spin accumulation effect in graphene. In Sec. 3.3, we present that
introduced adatoms on graphene induce spin-valley mixing and present the method
for numerical calculations of spin and valley conductance. In Sec. 3.3.1, we numer-
ically demonstrate how spin and valley are coupled through introducing adatom(s)
on either one or both sublattices. Next, we investigate the effect of introducing ran-
dom adatoms with different densities on spin and valley conductance and conclude
in Sec. 3.4.

3.2 Quantum Spin Hall Effect

the first realization of Dirac fermions in condensed matter was graphene, a 2D
honeycomb lattice which is one atom thick. The graphene lattice consists of two
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sublattices, as shown in Fig. 3.1. The band structure of the Brillouin zone contains
two isolated band touching points, called valleys, with locally linear dispersion re-
lation as shown in Fig. 3.1. The effective Hamiltonian in the vicinity of the band
touching point is the Dirac Hamiltonian:

Hgraphene = vF (σ ·p) = vF (σxpx+σypy), (3.1)

where vF is the Fermi velocity, p = (px,py) is the 2D momentum, and the Pauli
matrices are in the space of the two sublattices, so-called pseudospin space.

Figure 3.1 Illustration of the graphene lattice (left) and the band structure (right).
A and B denote different sublattices. a and b are two primitive vectors of the
Bravais lattice.

A finite gap can be opened through any perturbation including σz, which anti-
commutes with the other two Pauli matrices in Eq. (3.1), and plays the role of a
mass term in the Dirac Hamiltonian. The source of such gap-inducing perturba-
tions can be adatoms, the substrate, and strain. An intrinsic spin-orbit coupling
that breaks sublattice symmetry can also open a finite energy gap. Hence, an ideal
sheet of graphene has an intrinsic energy gap that induces a time-reversal invari-
ant topological insulator phase of matter distinct from an ordinary insulator. In
the topological insulator phase, protected helical edge states reside in the bulk gap,
and their spin is locked to the momentum. Edge states are robust to nonmag-
netic disorders, and backscattering is forbidden. Even though the spin-orbit gap in
graphene is too small, there are other materials the structures of which are similar
to graphene, referred to as graphene-like materials, such as silicene, germanene, and
stanene with intrinsic strong spin-orbit coupling which may lead to quantum spin
Hall effect. Moreover, spin-orbit strength can be boosted by applying the electric
field or introducing substrate or adatoms [115–120].
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In order to model the intrinsic spin-orbit interaction, Kane and Mele have proposed
the following tight-binding Hamiltonian with time-reversal invariant spin-orbit in-
teractions [121]:

H = t
∑
〈ij〉

c†icj + iλSO
∑
〈〈ij〉〉

νijc
†
iszsj + iλR

∑
〈ij〉

c†i (s× d̂ij)zcj +λν
∑
〈ij〉

ξic
†
ici. (3.2)

Here c†i and ci are the annihilation and creation operators, respectively, and their
indices refer to the honeycomb lattice site i. The first term is the well-known nearest
neighbor hopping term with the amplitude t. The second term is the spin-orbit
interaction that includes spin-dependent next nearest neighbor hopping with the
amplitude λSO. Here νij = 2√

3(d̂1× d̂2)z = ±1, where d̂1 and d̂2 are unit vectors
along the two bonds with respect to the assumed origin in the lattice. The third
term is the nearest neighbor Rashba term, violating the mirror symmetry (z→−z),
with the strength λR appearing as a result of a perpendicular electric field or due to
an adatom or interaction with a substrate. The fourth term is a staggered sublattice
on-site potential (ξi =±1), which breaks the sublattice symmetry and describes the
transition between the quantum spin Hall phase and trivial insulator phase. Pauli
matrices si denote the electron spin space.

In order to demonstrate the quantum spin Hall physics, we focus on a zigzag nanorib-
bon graphene (see Fig. 3.2(a)) with spin-orbit coupling. As illustrated in Fig. 3.2(b),
edge states traverse in the bulk gap and connect two valleys, although the connec-
tion is not shown here. Moreover, the edge states are helical, i.e., states at each
edge propagates in both directions with opposite spin due to time-reversal symme-
try. this spin and momentum locking originates from the spin-orbit coupling and
leads to spin-polarized edge states.

As mentioned above, in the quantum spin Hall phase, a single pair of time-reversal
edge states traverses the bulk gap. These edge states are protected against small
perturbations, and elastic backscattering is forbidden due to time-reversal symme-
try; hence, no localization of edge states exists (unless the disorder is strong enough
to disturb the bandstructure). In the trivial insulator phase, localized states can
also be present at the edges, but these states are not robust against impurities in
disordered systems, and get localized. Therefore, the edge states in the quantum
spin Hall and insulating phases are distinguished by the number of edge state pairs
modulo two, and the result is one and zero, respectively. Energy bands of these
phases are shown in Fig. 3.3 for a zigzag strip.

In order to observe the QSHE in graphene, Kane and Mele found out that the
intrinsic spin-orbit coupling should be stronger than the Rashba spin-orbit coupling

19



-20 -10 0 10 20
L

-10

-5

0

5

10

W

(a)

0 2
k

1.0

0

1.0

E
(t)

(b)

Figure 3.2 (a) Schematic of a zigzag nanoribbon graphene with L= 40a and W =
67
√

3a/6, where a is the magnitude of the primitive vector along x̂ direction (a= ax̂).
(b) Band structure of a the system shown in panel (a) in quantum spin Hall phase.
Parameters used are λSO = 0.06 t and λR = λν = 0.
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Figure 3.3 Energy bands for a zigzag strip shown in Fig. 3.2(b) in (a) the quantum
spin Hall phase λν = 0.15 t and (b) the insulating phase λν = 0.5 t. Parameters used
are λSO = 0.08 t, and λR = 0.06 t. The edge states on a given edge cross at ka= π.

(see the full phase diagram as a function of λSO and λR [121]). Although later
estimates show that the Rashba spin-orbit coupling is higher than the intrinsic spin-
orbit coupling [55, 114], it has been proposed that the QSHE might be detected in
rippleless graphene in the absence of an external electric field and at a temperature
below 0.01K [114]. Moreover, it has been shown that the SHE remains even if
disorders vanish the intrinsic spin-orbit gap [122].

The current-induced spin accumulation effect at the edges is one of the striking fea-
tures of the quantum spin Hall phase when Fermi energy lies in the bulk gap (see
Fig. 3.4(a) for an illustration of spin accumulation at the edges of a zigzag strip).
By reversing the current direction, the spin polarization at the edges also reverses.
We also present the current density and z-component of the spin current density
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in Figs. 3.4(b) and 3.4(c), respectively, for incoming modes from the left lead. In
the simulations, the Hamiltonian of the scattering region is given in Eq. (3.2), with
nonzero t and λSO. It is worth noting that there is no spin accumulation in the
insulating phase when the Fermi energy is in the bulk gap unless there are trivial
states. The spin accumulation stemming from trivial edge states is suppressed in the
presence of disorder since the trivial edge states get localized. Therefore, graphene
with enhanced spin-orbit coupling and graphene-like materials can be considered
to be a spin-polarized source in spintronics applications. Accumulated spins at the
edges can be extracted to another material attached to the nanoribbon side analo-
gous to 2DEGs with spin-orbit coupling. For more details, see Appendix A where
we study how to extract accumulated spin from 2DEGs with spin-orbit coupling to
the adjourning material without spin-orbit coupling.

3.3 Adatoms Induced Spin-valley Coupling

Adatom deposition on graphene can significantly enhance the spin-orbit coupling.
For instance, induced Rashba spin-orbit coupling in Au adsorbed graphene can be
about 200 meV [123]. In this section, we study how Rashba spin-orbit coupling in-
duced by an adatom impurity influences the spin conductance and valley polarization
(conductance) in graphene. There are different ways that adatoms can be deposited
on graphene. The adatoms can be located above the center of each hexagon in the
honeycomb structure or above the middle of the bonds between different sublattices
or right on top of the carbon atoms. We find the effective Rashba spin-orbit coupling
Hamiltonian generated by random, uncorrelated, and dilute adatoms on graphene
through projecting the spin-orbit interaction on the bands to low energy states near
the K point in the valley isotropic basis [51]. Using this procedure, we obtain

HR = λR (τ0σxsy− τzσysx), (3.3)

Hspin-valley = iλR
4 (γ−τ−s−−γ+τ+s+)δ(ri−ra). (3.4)

Here λR is Rashba coupling constant strength of which should be obtained from
DFT calculations [51] and γ± = e±iζ(ra) with ζ(ra) = ∆K · ra, where ∆K is the
momentum distance between two Dirac points and ra is the position of adatoms lo-
cated randomly on carbon atoms, ri. τi, σi and si for i= x,y,z denote Pauli matrices
in the valley, sublattice and spin spaces, respectively. Subscript i= 0 identifies unit
matrices. Eq. (3.3) is the Rashba type of spin-orbit coupling for graphene [114] with
adatoms. Eq. (3.4) asserts spin-valley mixing induced by adatoms. we note that
to the best of our knowledge, this term has not been addressed in previous studies,
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(a)

(b) (c)

Figure 3.4 (a) 〈Sz〉 denotes spin polarization in a zigzag nanoribbon graphene. (b)
Charge current density and (c) z-component of the spin current density in a zigzag
nanoribbon graphene. Parameters used are L = 20a, W = 67

√
3a/6, λSO = 0.06 t,

and λR = λν = 0.

so it needs further attention and discussion. One of the outstanding utilization of
spin-valley interaction is spin-to-valley conversion and vice versa, that may establish
links between spintronics and valleytronics fields. Hence, graphene with engineering
adatoms deposition can be used as a spin to valley converter since flipping the spin
can induce a valley-flip.

Having discussed the analytical effective Hamiltonian of deposited adatoms on the
graphene, we now perform numerical quantum transport simulations to verify the
spin-valley coupling effect. In our numerical study, we use the tight-binding form of
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Rashba Hamiltonian in Eq. (3.3) with nonzero λR term for nearest-neighbor hopping
between sublattices where adatoms are deposited,

H = t
∑
〈ij〉

c†icj + iλR
∑
〈ij〉

c†i (s× d̂ij)zcj . (3.5)

The Hamiltonian is essentially the Hamiltonian Eq. (3.2) without the intrinsic spin-
orbit coupling and the staggered potential terms. We focus on a zigzag nanoribbon
attached to two semi-infinite graphene, see Fig. 3.2(a). We now numerically evaluate
spin conductance and valley polarization (conductance) with the aid of KWANT

toolbox [124]. To calculate the spin conductance between two leads, we implement
two approaches based on Green’s function [125] and spin-dependent transmission
probability [126]. According to Landauer formula, the spin-α component of the spin
conductance is given in linear response as:

Gσαpq = e2

h
Tr[σαΓq gqpΓp g+

qp], (3.6)

where Γq = i[Σ−Σ+] is the coupling matrix to the lead q, gqp is the submatrix of the
system Green’s function connecting sites which interfaces to leads q and p, σα is the
Pauli matrix along direction α, and Tr denotes the trace. Through the scattering
matrix approach, the spin conductance is obtained as [126]

G
σα,σβ
pq = e2

h

∑
q 6=p

Tαβpq = e2

h

∑
q 6=p

∑
mεp, nεq

Tr[t†mnσα tmnσβ], (3.7)

where σα for α= x,y,z are the Pauli matrices and σ0 is the (2×2) identity matrix.
The trace is taken over the spin degree of freedom, and tmn is a 2×2 matrix of spin-
dependent transmission amplitudes from channel n in the lead q to channel m in the
lead p. We set β = 0 since we assume that the reservoirs have no spin accumulation,
so there is no injected spin current to the system. Eqs. (3.6) and (3.7) are equivalent
(Gσαpq =Gσα,σ0

pq ) and the later is more beneficial in terms of computational time cost.
For simplicity, we use GSα for α-component of the spin conductance from now
on. We calculate the valley conductance in the way that we subtract transmission
probabilities of different valleys, e.g., K ′, from the other one K, where each valley
transmission probabilities are obtained through scattering matrix and defined as
squared of transmission amplitudes from a specific valley in one lead to both valleys
in the other lead. Therefore, the valley conductance is

GK −GK′ =
e2

h

∑
q 6=p

(TKpq −TK
′

pq ). (3.8)
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Here TKpq = ∑
mεp, nεq |(tKmn)†tKmn|2 is the transmission probability found through

using tKmn which is a transmission amplitude from channel n in the valley K of
the lead q to channel m in the valley either K or K ′ of the lead p. Note that
we study spin and valley conductances through Landauer formalism in the limit
of zero temperature and linear response regime (infinitesimal bias: µp ≈ µq ≈ EF ;
(µp−µq)→ 0), where the currents are determined by the transmission probabilities
at the Fermi energy according to Landauer formalism. Hence, spin conductance
and valley conductance are also only depend on the transmission probabilities at
the Fermi energy.

Valley polarization and spin conductance components under applied a small bias
voltage (linear response approximation) are depicted in Figs. 3.5 for clean zigzag
nanoribbon graphene attached to two leads having identical material properties
shown in Fig. 3.2(a). Since there is no spin-orbit coupling and Rashba type term
is zero in the absence of adatoms, there is no spin-momentum locking, leading to
vanishing spin current. Valley polarization is always two (in units of quantum con-
ductance, e2/h) because of having one more set of degenerate K modes than K ′

modes at any EF .
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Figure 3.5 Spin and valley conductances in a clean zigzag nanoribbon graphene
with L= 20a and W = 67

√
3a/6.

Now, we add an adatom in the center of the scattering region, located on a car-
bon atom, shown in Fig. 3.6(a) as a green circle. Moreover, in Fig. 3.6(a), the
Rashba coupling for the nearest neighbor bonds of the adatom are shown as red
lines, and the next nearest bonds denote intrinsic spin-orbit coupling, which we ig-
nore in our numerical simulations. We see in Fig. 3.6(b) that the deposited adatom
induces sz polarized conductance, and correlates valley and spin degrees of free-
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dom. Fig. 3.6(c) demonstrates the reduced valley polarization, correspondingly.
Fig. 3.6(d) illustrates that there is a good correlation between the z-component of
the spin conductance and valley polarization difference between zigzag nanoribbon
graphene with an adatom and a clean system. We also investigate the effect of a
single adatom located in the center of a hexagon in the middle of the scattering
region, shown in Fig. 3.7(a), where red bonds correspond to Rashba coupling due
to the presence of an adatom. As illustrated in Figs. 3.7(b) and 3.7(c), we have
in-plane, y-component, spin conductance, and a decrease in valley polarization com-
pared to a clear zigzag system. Therefore, an adatom located in the hexagon or on
the carbon atom leads to y- and z-components of the spin conductance, respectively.
The small peaks and sharp dips at the specific energies correspond to opening a new
transmission mode.

(a)

0.0 0.2 0.4 0.6 0.8 1.0
E/t

-0.05

-0.04

-0.03

-0.02

-0.01

0.0
G

[e2 /h]

GSx

GSy

GSz

(b)

0.0 0.2 0.4 0.6 0.8 1.0
E/t

1.975

1.980

1.985

1.990

1.995

2.000

(G
K

G K
′ )[

e2 /h]

(c)

0.0 0.2 0.4 0.6 0.8 1.0
E/t

1.95

1.96

1.97

1.98

1.99

2.0

GK GK ′ -0.05

-0.04

-0.03

-0.02

-0.01

0.0

GSz

(d)

Figure 3.6 (a) Zigzag strip with an adatom impurity (green circle). (b) Spin con-
ductance and (c) valley polarization of the system shown in panel (a). (d) The
z-component of the spin conductance in addition to valley polarization for zigzag
nanoribbon graphene with a Rashba impurity due to the presence of an adatom.
Parameters used are L= 20a, W = 11

√
3a, t= 1, λR = 0.1, and λSO = λν = 0.
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Figure 3.7 (a) Zigzag strip with an adatom impurity in the center of a hexagon in the
middle of the scattering region. (b) Spin conductance and (c) valley polarization of
the system shown in panel (a). Parameters used are L= 20a, W = 67

√
3a/6, t= 1,

λR = 0.1, and λSO = λν = 0.

3.3.1 Adatoms on different sublattices

In this section, we study the behavior of adhering an adatom on the carbon located
in either sublattice A or sublattice B in the zigzag nanoribbon. Based on our results
presented in the previous section, we know the spin and valley are correlated through
introducing adatoms. Here, we numerically explore how a deposited adatom on
different sublattices influences the spin conductance and the valley polarization.
Figs. 3.8 and 3.9 represent that the sign of z-component of the spin conductance
is reversed when adatom is located on sublattice B compared to A while valley
polarization is unaffected.
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Figure 3.8 (a) Zigzag strip with an adatom impurity on the carbon atom located on
sublattice A. (b) Spin conductance and (c) valley polarization of the system shown
in panel (a). Parameters used are L = 20a, W = 67

√
3a/6, t = 1, λR = 0.1, and

λSO = λν = 0.

We also survey the effect of two adatoms adhered to the carbon atoms on the same
or different sublattices. Figs. 3.10 and 3.11 illustrate spin and valley conductance
in the presence of two adatoms located on sublattices A and B, respectively. Like

26



(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
E/t

0.0

0.005

0.01

0.015

0.02

G
[e

2 /h
]

GSx

GSy

GSz

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
E/t

1.98

1.99

2.0

(G
K

G
K′

)[
e2 /h

]

(c)

Figure 3.9 (a) Zigzag strip with an adatom impurity on the carbon atom located
on the sublattice B. (b) Spin conductance and (c) valley polarization of the system
shown in panel (a). Parameters used are L = 20a, W = 67

√
3a/6, t = 1, λR = 0.1,

and λSO = λν = 0.

introducing one adatom, spin conductance has an opposite sign when adatoms de-
posit on sublattices B instead of sublattices A. In both cases, valley conductance
trends are similar. Then we locate one adatom on the sublattice A and the other
on the sublattice B, as shown in Fig. 3.12(a). We find that y-component of the spin
conductance is also present in addition to z-component but with less magnitude,
see Fig. 3.12(b). Since the spin-valley coupling depends on the position of the de-
posited adatoms and ∆K, a quantum fluctuation remains for spin conductance in
case the adatoms are deposited on different sublattices. Valley conductance trend
is similar to the cases that we have just one adatom on either sublattice A or B,
see Fig. 3.12(c). In these figures, the sharp dips or peaks at the specific energies
correspond to opening a new transmission mode.
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Figure 3.10 (a) Zigzag strip with two adatom impurities on the carbon atoms
located on the sublattices A. (b) Spin conductance and (c) valley polarization of
system shown in panel (a). Parameters used are L = 20a, W = 67

√
3a/6, t = 1,

λR = 0.1, and λSO = λν = 0.

Furthermore, we study spin and valley conductance in a larger system with random
adatom impurities. We consider different adatom densities and average over 1000
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Figure 3.11 (a) Zigzag strip with two adatom impurities on the carbon atoms located
on the sublattices B. (b) Spin conductance and (c) valley polarization of the system
shown in panel (a). Parameters used are L = 20a, W = 67

√
3a/6, t = 1, λR = 0.1,

and λSO = λν = 0.

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
E/t

0.002

0.001

0.000

0.001

0.002

0.003

G
[e

2 /h
]

GSx

GSy

GSz

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
E/t

1.975

1.980

1.985

1.990

1.995

2.000

(G
K

G
K
′ )[

e2 /h
]

(c)

Figure 3.12 (a) Zigzag strip with two adatom impurities on the carbon atoms located
on the sublattices B and A. (b) Spin conductance and (c) valley polarization of the
system shown in panel (a). Parameters used are L = 20a, W = 67

√
3a/6, t = 1,

λR = 0.1, and λSO = λν = 0.

configurations to find spin conductance and valley polarization and their fluctuations
defined as

∆Gα =
√
〈G2

α〉−〈Gα〉2 (3.9)

with α= Si for i= x,y,z different spin conductance components. α= valley denotes
valley polarization and 〈. . .〉 indicates averaging over different ensembles of the zigzag
strip with random distributions of adatoms for a particular adatom density. The
adatoms are not allocated to the specific sublattice in each configuration; i.e., ran-
dom selection is used. To the best of our knowledge, the in-plane component of the
spin conductance stems from the Rashba effect seen in different structures while the
out-of-plane component of the spin conductance originates from spin-valley mixing
effect. Hence, averaging over configurations with deposited adatoms results in van-
ishing out-of-plane component of the spin conductance since the spin-valley mixing
depends on the location of adatoms. Fig. 3.13 illustrates this effect as well as the
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adatom density does not affect the spin and valley conductance averaged over 1000
configurations, but it influences the ∆Gα. The increase in adatom density reduces
spin and valley conductance fluctuations even though their trends are preserved.
The important difference arisen in systems with more deposited adatoms is that
the out-of-plane (z-component) spin conductance vanishes, and y-component of the
spin conductance appears instead as we formerly found the emergence of GSy when
adatoms deposited on different sublattices.
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Figure 3.13 Spin conductance and valley conductance for a zigzag strip with L =
100a and W ' 48.16

√
3a averaged over 1000 configurations with particular adatom

densities: (a) 0.1, b) 0.2, and c) 0.3. Spin conductance and valley polarization
fluctuations for the same systems with the same order of mentioned adatom densities:
(d) 0.1, (e) 0.2, and (f) 0.3. Parameters used are t= 1, λR = 0.1, and λSO = λν = 0.

3.4 Conclusion

In summary, we investigated that graphene with enhanced spin-orbit coupling or
graphene-like materials hosting intrinsic spin-orbit coupling could be applied in spin-
tronics applications, especially as a polarized spin source. We have also obtained
numerical results demonstrating that dilute deposited adatoms on graphene induce
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the novel spin-valley interactions. We have found that the interplay between spin
and valley degrees of freedom in graphene provides a powerful tool to achieve state-
of-the-art spintronics and valleytronics devices. Our study provides the framework
to improve graphene functionality and sheds light on the utilization of spin-valley
mixing in detecting the valley polarization. Our research has improved our under-
standing of the adatoms effect, but future investigations need to be taken.

30



4. GATE-CONTROLLED SPIN EXTRACTION FROM
TOPOLOGICAL INSULATOR SURFACES

In this chapter, we consider a mechanism in topological insulators that allows for
local and all-electrical control of electrically generated spins with gates. In most
spintronics (or spin-orbitronics) platforms, charge carriers are of a given type, either
electron or hole, implying that local application of gates equally couples to both
spin species. In others where electron and hole pockets might co-exist, there is no
coherence between the electron or hole degree of freedom and the spin degree of
freedom. As a consequence, electric gates cannot locally control local spin accu-
mulations in conventional spintronics and spin-orbtronics platforms. On the other
hand, the surface (or edge) of 3D (2D) topological insulators features both electron
and hole degrees of freedom as well as spin-orbit coupling. Applied gates control
the local potential, which couples oppositely to electrons and holes, and spin-orbit
coupling allows for spin dependency of electron-hole degrees of freedom. We demon-
strate below that this joint property allows for electronic control of spins locally
within a region much smaller than the spin precession length, the lengthscale over
which spins can be manipulated in conventional spintronics applications [40].

4.1 Introduction

The push towards the utilization of the electron’s spin degree of freedom in com-
mon electronic devices, which are conventionally based on the manipulation of the
electron charge, has matured to the field called spintronics [40]. The various lines
of research in this field not only comprise questions of fundamental interest in spin
physics but also focus on applications. Possible advantages of utilizing spin-based
elements in comparison to charge-based electronic devices might be low power con-
sumption and less heat dissipation, as well as more compact and faster reading or
writing of data.

The ferromagnets [41, 127, 128] are the mainstream materials used in spintronics
where the ferromagnetic exchange interaction causes the spin-dependency of trans-
port, allowing the creation, manipulation, and detection of spins. However, after the
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celebrated Datta-Das spin transistor proposal [129], it became clear that spin-orbit
interaction can also be utilized for spin manipulation in electronic devices. As the
Datta-Das setting still requires ferromagnetic leads, a parallel approach utilizing
materials without intrinsic magnetism, such as paramagnetic metals and semicon-
ductors with only spin-orbit coupling [130–132], has become an attractive alterna-
tive.

Various methods of spintronics implementations without ferromagnets have emerged
and developed over recent years [133–143]. These methods are commonly based on
(i) the SHE [138], where an applied electric current generates a transverse spin cur-
rent, and (ii) Edelstein (or inverse spin galvanic) effect [133,144], where an applied
electrical current generates a nonzero spin accumulation. Once generated, as these
spins drive spintronics circuits, they need to be further manipulated and ultimately
detected. For detection, inverse effects corresponding to those mentioned above,
namely the inverse spin Hall effect [145–149] and spin galvanic effect (SGE) [150–154]
have been successfully utilized. Main methods for spin manipulation are based on
exchange and Zeeman fields or spin-orbit coupling to induce spin precession. How-
ever, weak coupling requires long length scales over which the induced spins need to
remain coherent. This is an issue as spin precession lengths are usually comparable
to spin relaxation or dephasing lengths. Furthermore, the spin-orbit coupling needs
to be controlled over the precession (hence manipulation) region, while spin gener-
ation in part of the circuit needs to remain unaffected. Hence, in order to close the
creation, manipulation, and detection cycle reliably, additional electrical methods
for spin manipulation are desirable.

As an explicit example, we consider 3D topological insulator materials of the
Bi2Se3 family the effective model of which is extensively discussed in the litera-
ture [155–158]. Qualitatively, our conclusions should apply also to strained (3D)
HgTe, though an equally successful effective model for such a system is still miss-
ing. We focus on a particular geometry (sketched in Fig. 4.1) and demonstrate how
the spin extraction can be controlled in a region smaller than the spin precession
length. In this geometry, the spins are generated by the SGE at the surface of the
topological insulator. By attaching a side pocket and tuning the chemical potential
on the pocket by an applied gate voltage, we demonstrate that the extracted spins
can change their polarization, regardless of the generated spins on the topological
insulator side.

This chapter is organized as follows: In Sec. 4.2.1, we outline the effective surface
Hamiltonian of a 3D topological insulator and the corresponding spin operators. We
then present the inverse spin galvanic effect (ISGE), also known as Edelstein effect,
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Ispin

Ibias

V Vgate

Figure 4.1 (Color online) Slab of a topological insulator (green), current biased with
Ibias. The induced spin accumulation at the boundaries can be injected into a side
contact (blue). A gate potential Vgate can be tuned to control the spin polarization
of the spin injected current.

through Kubo formalism in Sec. 4.2.2. Different names addressing the same phe-
nomenon are used in the literature depending on context. In Sec. 4.2.3, we state an
ISGE paradox with its solution for the surfaces of a 3D topological insulator. Next,
we discuss the model and the method proposed for extracting spin from surfaces of
a 3D topological insulator in Sec. 4.3.1. In Sec. 4.3.2, we derive the spin behavior on
the 3D topological insulator surfaces, which we show to be in close agreement with
our numerical simulations. In Sec. 4.3.3, we demonstrate how to extract spins from
3D topological insulator surfaces and how to manipulate their polarization through
a gate potential. We close with concluding remarks in Sec. 4.4.

4.2 A Spin-galvanic Paradox and its Solution

4.2.1 Setting the stage

Consider a finite crystal of an anisotropic 3D topological insulator material, such as
Bi2Se3, which in its topological insulator phase hosts topologically protected metallic
surface states. The existence of these states, described by a single Dirac cone, was
confirmed experimentally by angle-resolved photoemission spectroscopy [159, 160]
and scanning tunneling spectroscopy [161–165] measurements. Further experiments
confirmed the helical nature of such surface states [166]. The anisotropy of these
materials implies that the topological metallic states existing on the different crystal
faces will be described by Dirac-like effective Hamiltonians featuring different spin
structures [156–158]. We are interested in the consequences of the anisotropy of
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these materials on the ISGE [133,144,167]; for recent discussions see [168–170].

The states of the 2D helical surfaces of Bi2Se3 are admixtures of electron- and
hole-like states of different parity (±) and spin (↑↓), coming from Bi and Se pz
orbitals, |P1+

z ,↑↓〉 and |P2−z ,↑↓〉, respectively [155]. As a consequence, the real spin
content of such states does not necessarily coincide with the pseudospin degrees
of freedom used to label them. Hence, σi (i = x,y,z) denote the Pauli operators
corresponding to the two bands at the surface (the pseudospin), while si are the spin
operators within this restricted Hilbert space. The effective spin operators for any
surface orientation are obtained by projecting the full spin operators of the combined
electron and hole bands onto the relevant surface states (see Appendix B). As we
show below, this projection misses key physics that we utilize to electrically control
spin accumulations. The most commonly "known" low-energy effective Hamiltonian
for the topological surface state is that of the "top" and "bottom" surfaces in the
growth direction, which we choose to be in the ẑ direction:

H±ẑ = E0(ẑ) +vF (ẑ)
(
k× ẑ

)
·σ, (4.1)

where E0(ẑ) is the energy of the Dirac point, vF (ẑ) is the corresponding Fermi
velocity and ± refers to the surface normals pointing away from the bulk. In this
case, the spin and the pseudospin operators are the same:

s = σ. (4.2)

This identification as well as the rotational symmetry, however is lost at the side
surfaces:

H±ŷ = E0(ŷ)±vF,x(ŷ)kxσz∓vF,z(ŷ)kzσx, (4.3)

where E0(ŷ) is the energy of the Dirac point, and vF,x(ŷ) and vF,z(ŷ) are the cor-
responding Fermi velocity in the x and z directions, respectively. In this case, while
the x components of the spin and the pseusospin operators are the same, they are
merely proportional in the ŷ and ẑ surfaces with the proportionality parameter η:

sx = σx, sy = ησy, sz = ησz. (4.4)

For completeness, we express the ±x̂ surface Hamiltonian as

H±x̂ = E0(x̂)∓vF,y(x̂)kyσz±vF,z(x̂)kzσy, (4.5)

sx = ησx, sy = σy, sz = ησz, (4.6)
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where E0(x̂) = E0(ŷ), vF,y(x̂) and vF,z(x̂) are the Fermi velocities in the y and
z directions, respectively. To summarize, the real spin coincides with the Pauli
matrices σi, i = x,y,z of the pseudospin only on the ±ẑ surface. In particular, if
η→ 0, the surface states on the ±ŷ side have sy = 0, sz = 0. This point is crucial,
as we discuss below.

4.2.2 Spin galvanic basics

We consider the spin accumulation, sz(ω), generated in response to an applied elec-
tric field Ex in a spin-orbit coupled 2D system lying in the x̂-ẑ plane – corresponding
to the side surfaces ±ŷ. The ISGE can be written in Kubo form [134] as

sz(ω) = σISGE(ω)Ex(ω) (4.7)

= 〈〈sz;Jx〉〉Ax(ω), (4.8)

where 〈〈sz;Jx〉〉= −i
h̄

∫ t
0 〈[sz(t),Jx(0)]〉eiωtdt is the Kubo linear response kernel, A is

the vector potential and σISGE is the frequency-dependent ISGE conductivity. Thus

σISGE(ω) = 〈〈sz;Jx〉〉
iω

. (4.9)

Its Onsager reciprocal effect, the SGE, reads [154]

Jx(ω) = σSGE(ω)Ḃz(ω) (4.10)

= 〈〈Jx;sz〉〉Bz(ω), (4.11)

yielding
σSGE(ω) = 〈〈Jx;sz〉〉

iω
. (4.12)

In Eq. (4.11) Ḃ is the time derivative of the magnetic field which generates the
non-equilibrium sz leading to the SGE.

4.2.3 Spin galvanic effect on the surface of a 3D topological insulator

As we stressed above, the relation between the pseudospin σ and the real spin s
on the 3D topological insulator surface can be anisotropic. The two quantities are
identical on the ±ẑ surfaces, and hence there is no ambiguity in calculating the
ISGE and the SGE on the surfaces. However, on the ŷ surfaces

sz = ησz. (4.13)

35



On the surface of the topological insulator, spin and charge or momentum are locked.
To be explicit we assume

Jx = vF,x(ŷ)σz (4.14)

with vF,x(ŷ) the Fermi velocity in the x direction (see Eqs. (4.1)-(4.3)). From
Eqs. (4.13) and (4.14) one gets

Jx = vF,x(ŷ)
η

sz. (4.15)

Equation (4.15) seems to imply a divergent (“colossal”) SGE for η→ 0, while the
ISGE should vanish.

This apparent paradox is resolved by judiciously inspecting the SGE and ISGE linear
response kernels. First, for the SGE one has

Jx = 〈〈Jx;sz〉〉
iω

Bz(ω) (4.16)

= ηvF,x(ŷ) 〈〈σz;σz〉〉
iω︸ ︷︷ ︸
Lσσ

Bz(ω), (4.17)

which tends to zero for η → 0 as it should: The pseudospin-pseudospin response
function Lσσ defined above has no divergencies. Similarly for the ISGE holds

sz = 〈〈sz;Jx〉〉
iω

Ex(ω) (4.18)

= ηvF,x(ŷ) 〈〈σz;σz〉〉
iω︸ ︷︷ ︸
Lσσ

Ex(ω) (4.19)

which is given by the same response function Lσσ and again vanishes in the η→ 0
limit.

4.3 Spin Extraction from 3D topological insulator Surfaces

Even though it turns out that there is no paradox in the form of a divergent SGE
response, there are interesting consequences when considering η→ 0. In particular,
as we show below, it is possible to extract current-induced spins from the side sur-
faces even if these are not spin polarized. The main idea is the following: at the side
surfaces of a topological insulator, an analytical examination of the non-equilibrium
population of the kx states (induced by, say, an applied bias) reveals their composi-
tion to be a mixture of spin-up electron-like and spin-down hole-like quasiparticles
the spins of which partially cancel each other. This is the origin of the parameter
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η 6= 1 in general. In the limit D2 → 0 (hence η → 0) the cancellation is perfect.
Therefore, it suffices to contact the surface with a “pocket” containing electrons or
holes–in practice, a gated semiconductor–so that only the spin-polarized electron-
or hole-like part of the surface state will leak out of the topological insulator. A side
pocket or lead thus acts as a gate-tunable spin extractor: The sign of the extracted
spins can be reversed by simply switching the pocket polarity from n to p type or
vice versa, allowing for local electrical control of spin polarization. Note the crucial
observation that the size of the region where the spin is reversed can be shorter than
the spin precession length (see Fig. 4.7 below).

4.3.1 Model and method

In the rest of this section, we further study the spin extraction effect through an-
alytical and numerical means for 3D topological insulator nanowires. The wires
are described by a 3D effective Hamiltonian which captures the basic low-energy
properties of the Bi2Se3 family, including e.g. Bi2Se3, Bi2Te3 and Sb2Te3 materi-
als [155,171]:

H3D = E(k)(σ0τ0) +M(k)(σ0τz) +A1 sinkz(σzτx)

+ A2(sinkx(σxτx) + sinky(σyτx)), (4.20)

where

M(k) =M0−2B2(2− coskx− cosky)−2B1(1− coskz),

E(k) = C+ 2D2(2− coskx− cosky) + 2D1(1− coskz).

Here, σx,y,z and τx,y,z are the Pauli matrices, and σ0 and τ0 are the 2× 2 identity
matrices in spin and orbital space, respectively. If (M0/B1 > 0) then the system is
in the topologically nontrivial phase and Dirac-like surface states form within the
bulk band gap. For a wire, due to the size quantization around the wire, the surface
states form 1D channels and the lowest 1D subband is gapped due to its non-trivial
Berry phase [172,173].

In order to find the current-induced spin polarization on the 3D topological insulator
nanowire surfaces, we need the spin operators expressed in the basis used to represent
Eq. (4.20). The basis states are hybridized states of the Se and Bi p orbitals with
even (+) and odd (−) parities and spins up (↑) and down (↓), namely |P1+

z ,↑〉,
−i|P2−z ,↑〉, |P1+

z ,↓〉, and i|P2−z ,↓〉, in that order. Then the spin operators in the
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basis of bulk states are given by [158]:

Sx = σxτz, Sy = σyτz, Sz = σzτ0. (4.21)

Using the explicit forms of the spin operators, Eqs. (4.21), we generalize the Kubo
response kernel of the effective 2D surface model of the previous section to the more
realistic 3D model (4.20):

Sz(ω) = σISGE(ω)Ey(ω) (4.22)

= 〈〈Sz;Jy〉〉Ay(ω) (4.23)

with Sz = σzτ0.

The effective surface description is obtained by projecting in to the space spanned
by the surface modes. One thus obtains the effective surface spin and Hamiltonian
operators (see Appendix B). These surface Hamiltonians and modes for electrons on
3D topological insulator faces defined by their normals ±x̂,±ŷ,±ẑ, were computed
by Brey and Fertig [158]. In our geometry, the relevant surfaces are ±ẑ and ±ŷ
where the projections of the spin operators follow Eq. (4.2) and Eq. (4.4), yielding
the effective Hamiltonians Eq. (4.1) and Eq. (4.3), respectively. The parameters
of surface Hamiltonians are then obtained from Eq. (4.20) [158] by projection. In
particular, the band crossing energies of the ẑ and ŷ surfaces (which are the relevant
surfaces for our choice of axes) are given by:

E0(ẑ) = C+ ξM0, (4.24)

E0(ŷ) = C+ηM0, (4.25)

and the corresponding Fermi velocities are given by:

vF (ẑ) = A2
√

1− ξ2, (4.26)

vF,x(ŷ) = A2
√

1−η2, (4.27)

vF,z(ŷ) = A1
√

1−η2, (4.28)

where
ξ =D1/B1, η =D2/B2. (4.29)

In our numerical study, we use the tight-binding representation of the Hamilto-
nian in Eq. (4.20) and focus on a 3D topological insulator wire attached to two
semi-infinite leads (see Fig. 4.2(a)). We evaluate nonequilibrium local spin densities
〈Si〉(m) = 〈ψα(m)|Si|ψα(m)〉 for each site m, where ψα(m) is the wavefunction of
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the (occupied) state α at site m and Si are the spin operators defined in Eq. (4.21).
We then sum over all occupied states α. For an infinitesimal bias, these are all
scattering wavefunctions at a certain energy, EF originating from one of the leads,
depending on the sign of the bias. Local charge density is similarly obtained when
Si→ σ0τ0. We utilize the KWANT toolbox [124] for our numerical simulations. The
parameters of our band Hamiltonian are chosen from the ab initio band-structure
calculations of Bi2Se3 [171] in our numerical simulations. The particular values used
are A1 = 2.2eVÅ, A2 = 4.1eVÅ, B1 = 10eVÅ2, B2 = 56.6eVÅ2, C = −0.0068eV,
D1 = 1.3eVÅ2, D2 = 19.6eVÅ2 and M = 0.28eV. We have also set the lattice con-
stant to be a= 5Å in our numerical calculations.

4.3.2 Spin dynamics and accumulation at the surface

As a consequence of (pseudo)spin-momentum locking of the 3D topological insulator
surface states, the dynamics of spin and charge are coupled [174, 175]. Thus, even
nonmagnetic impurities can flip an electron’s spin during scattering, leading to the
dominant spin-relaxation mechanism. The situation here is similar to the so-called
clean limit of the well-known spin-diffusion equations of a 2DEG with Rashba spin-
orbit coupling [176], where the Dyakonov-Perel spin-relaxation time [177] is of the
order of the momentum relaxation time. Hence, typical features of spin diffusion
in standard semiconductors (which are in the “dirty” limit) such as the motional
narrowing do not take place here. The steady-state spin-diffusion equation for the
top (i.e., ẑ) surface of a 3D topological insulator is given by [174], [see Appendix E
for more details],

Σi

τ
= D

2 ∇
2Σi+ |εij |D

∂Ξ
∂xj
− εij

vF
2
∂n

∂xj
, (4.30)

where Σi, i = x,y are the in-plane components of the pseudospin density Σ, Ξ =
∂Σx/∂y+ ∂Σy/∂x, and n is the charge density. Furthermore, εij is the 2D anti-
symmetric tensor and D = v2

F τ/2 is the diffusion constant, with τ the momentum
scattering time and vF the Fermi velocity (vF (ẑ)). We stress that these equations
are valid only if the spin and charge accumulations vary appreciably at length scales
much larger than the mean free path [175]. In the present work, we only consider
geometries where this condition is satisfied. In order to obtain the equations appli-
cable to the side surfaces, [vF = vF,x(ŷ), see Appendix C], we generalize the diffusion
equations to anisotropic surfaces and obtain the dependence of the real spin density
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on the charge gradients due to the applied voltage bias:(
〈Sz〉

d〈n〉/dx

)
±ŷ

= ∓
(
η
vF,x(ŷ)τ

2

)
±ŷ
, (4.31)(

〈Sy〉
d〈n〉/dx

)
±ẑ

= ±
(
vF (ẑ)τ

2

)
±ẑ
. (4.32)

Hence, if EF sits in the bulk gap, then applying a bias voltage yields surface currents
flowing in the x direction, which in turn induces spin accumulations on the ±ŷ and
the ±ẑ surfaces. This is the ISGE. In order to test these predictions, we numerically
obtain spin densities via the method described in Sec. 4.3.1. Our results are shown
in Figs. 4.2(b) and 4.2(c), where we plot the x-averaged cross-sectional profile for
〈Sy〉 and 〈Sz〉. Note that both components of the spin accumulation are localized
to the respective surfaces and have opposite sign on opposite surfaces. Notice also
that 〈Sx〉 = 0 in our configuration since it is along the current direction. Further-
more, 〈Sz〉 is smaller than 〈Sy〉 for η < 1. The case D2 = 0, as mentioned earlier,
corresponds to a vanishing ISGE 〈Sz〉 and the "paradoxical" regime η = 0 of Sec. 4.2.
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Figure 4.2 Surface spin polarization of a 3D topological insulator nanowire. (a)
Sketch of a 3D topological insulator nanowire attached to two semi-infinite leads.
(b) 〈Sy〉 and (c) 〈Sz〉 denote the spatial profile of the averaged spin polarization
(averaged over 1000 disorder configurations) along cross sections, oriented in the
x̂ direction and marked as the blue rectangle in panel (a). Parameters used are
L = 30a, W = 30a, H = 20a, HSP = 10a, U0 = 0.5eV, and EF = 0.15eV, which is
in the bulk gap.
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In order to test Eqs. (4.31) and (4.32) numerically, we consider the quotient on
the left hand side of these equations as a function of disorder strength U0. Since
in Fermi’s "golden rule" regime 1/τ ∼ U2

0 , we expect a U−2
0 behavior. In order to

get the exact relation, we analytically calculate the mean free time using a k ·p
approximation for surface eigenmodes in Appendix C. Next, we perform numerical
simulations and obtain the local spin or charge accumulations and average these
over a square region in the middle of the +ẑ and −ŷ surfaces as well as over dif-
ferent disorder configurations with strength U0. Finally, we compare our analytical
prediction (the blue line) for the left-hand sides of Eqs. (4.31) and (4.32) against the
numerical simulations (red dots) in Figs. 4.3(a) and 4.3(b), respectively. We find
that our numerical results for ISGE are well described by the analytical formulas in
Eqs. (4.31) and (4.32).

(eV)  (eV)

(Å
)

 (
Å

)

(a) (b)

Figure 4.3 Average ratios (a) (〈Sz〉/d〈n〉/dx)−ŷ and (b) (〈Sy〉/d〈n〉/dx)+ẑ as a func-
tion of disorder strength U0. The blue curves show the analytical and the red sym-
bols the numerical results. Parameters in our simulations are L = 30a, W = 30a,
H = 20a, and EF = 0.15eV which is in the bulk gap.

4.3.3 Spin extraction

Having discussed how spins can be induced at a topological insulator surface, we
now study how these spins can be extracted to be used in (presumably topologi-
cally trivial) spintronics circuitry. To this end, we focus on a geometry where a
topologically trivial side pocket is attached to the topological insulator nanowire
(see Figs. 4.4(a) and 4.5(a)). The current-induced spins at the topological insulator
surface can then leak into the side pocket, generating nonzero spin accumulation
inside the side pocket. The nanowire size is chosen such that its length and width
L = W = 15nm exceed the mean free path l, ensuring diffusive carrier dynamics.
The mean free path is estimated in terms of the disorder potential strength U0 using
Fermi’s "golden rule" (see Appendix C for details).
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Figure 4.4 Current-induced spin polarization into a side pocket at the top surface.
(a-c) Spatial profile of the averaged spin polarization 〈Sy(y,z)〉 (averaged over 1000
disorder configurations) along cross sections in the x̂ direction shown as a dashed
blue rectangle in panel (a). In panels (b) and (c) the side pockets are doped to hole
bands (Vgate =−0.8eV) and electron bands (Vgate = 0.9eV ), respectively. Common
parameters are L = 30a, W = 30a, H = 20a, HSP = 10a, U0 = 0.5eV and EF =
0.15eV which is in the bulk gap.

Spin extraction can take place at pockets that are attached to either surface of the
3D topological insulator nanowire [see Fig. 4.4(a) and Fig. 4.5(a) for the geometry
where the pocket is attached to the ẑ surface or the ŷ surface, respectively]. The
pockets are gated in order to tune them to a metallic state, while charge carriers can
be either electron- or hole-like states; thus, there is a coupling only to the electron- or
hole-like spin-momentum locked components of the 3D topological insulator surface
states. The gating is modeled by adding a corresponding on-site energy term in the
tight-binding grid while keeping the other parameters of the effective Hamiltonian
unchanged.

We perform tight-binding simulations and numerically calculate the current-induced
spin polarization 〈Si〉, (i = y,z), averaging over 1000 disorder configurations for a
nanowire with side pockets. Figs. 4.4(b), 4.4(c) and Figs. 4.5(b), 4.5(c) show the
spatial profile of the spin polarization along a perpendicular cross section for fixed
doping values in the hole and electron bands, respectively. Focusing on the top (ẑ)
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surface, our simulations show all expected features: A substantial non-equilibrium
spin accumulation can be extracted into the doped side pockets (Fig. 4.4). The
extraction to the side (ŷ) surface (Fig. 4.5), on the other hand, has nontrivial fea-
tures. We first note the somewhat surprising fact that even if the 3D topological
insulator surface has negligibly small spin accumulation, η ≈ 0, the spin accumu-
lation extracted into the side pocket is nonnegligible (see corresponding figures in
Appendix D). Furthermore, the extracted spin polarization changes sign when the
gate voltage is tuned so that the charge carriers change from electrons to holes as
can be seen from Figs. 4.5(b) and 4.5(c). We find that the geometry of the contact
does not play a crucial role as it does for a 2DEG with Rashba spin-orbit coupling:
In that case, wide contacts lead to reduced extraction [152] while for topological
insulators wider contacts lead to enhanced extraction. In order to further study
the spin-gate effect mentioned above, we plot the spin accumulation 〈Sz〉 averaged
over the side pocket, as a function of the gate voltage applied to the side pocket, in
Fig. 4.6. We find that the spin accumulation depends linearly on the gate voltage
and the sign of polarization changes by switching the side pocket polarity from hole
to electron type.

Finally, we show that one can locally control the polarization direction of different
parts of side pockets by local gating. In Fig. 4.7, we apply the local gate profile where
the electron puddles change into hole puddles within a region much smaller than
the spin precession length `sp. We find that the spatial profile of the polarization of
the extracted spin accumulation closely follows the local gate potential. Thus, we
show that it is possible to electrically control local spin polarization within length
scales much smaller than the spin precession length.

4.4 Conclusion

In conclusion, we focus on the current-induced spins at the surfaces of 3D topological
insulators and show how to extract these spins into topologically trivial materials
commonly used in electronic devices. We find that unlike the corresponding effect
in 2DEGs with Rashba spin-orbit interaction the mixing of the electron and hole
degrees of freedom at the topological insulator surface allows for additional meth-
ods for spin manipulation. In particular, we exposed a way to use electrical gate
potentials to locally manipulate spins in regions smaller than the spin precession
length. The extracted spins can then be detected via usual spintronics methods
such as attaching a ferromagnetic lead or using magneto-optical Kerr microscopy.
This opens up new possibilities for spin manipulation in spintronics devices.
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Figure 4.5 Current-induced spin polarization into a side pocket at the side sur-
face. (a) Sketch of a side pocket attached to the side surface of the system shown
in Fig. 4.2(a). (b), (c) Spatial profile of the averaged spin polarization 〈Sz(y,z)〉
(averaged over 1000 disorder configurations) along cross sections in the x̂ direction
shown as a dashed blue rectangle in panel (a). In panels (b) and (c) the side pock-
ets are doped to hole bands (Vgate = −0.8eV) and electron bands (Vgate = 0.9eV),
respectively. Common parameters are L = 30a, W = 30a, H = 20a, WSP = 10a,
U0 = 0.5eV, and EF = 0.15eV, which is in the bulk gap.
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Figure 4.6 Gate dependence of side pocket spin polarization. 〈Sz〉 averaged over 1000
disordered configurations and doped side pocket sites is plotted vs gate potential.
We consider the following parameters: L = 30a, W = 30a, H = 20a WSP = 10a,
U0 = 0.5eV, and EF = 0.15eV, which is in the bulk gap. The blue line is the best
fitted line.
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Figure 4.7 Spatial profile of the averaged spin polarization 〈Sz(y,z)〉 (averaged over
1000 disorder configurations) along cross sections in the x̂ direction for the sys-
tem shown in Fig. 4.5(a). The side pocket is alternatively doped to electron bands
(Vgate = 1.3eV) and hole bands (Vgate =−1.1eV). The side pocket is divided into four
parts in the ẑ direction and the spatial profile is averaged over x̂ planes. Spin pre-
cession length in the ẑ direction, `sp' 32a (considering B1 =B2). Other parameters
used are WSP = 10a, L = 30a, W = 30a, H = 20a, U0 = 0.7eV, and EF = 0.15eV,
which is in the bulk gap.
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5. HYPERFINE INTERACTION FOR THREE-DIMENSIONAL
TOPOLOGICAL INSULATORS IN THE BISMUTH-SELENIDE

FAMILY

In this chapter, we obtain effective expressions for the hyperfine interactions in 3D
topological insulator materials belonging to the Bi2Se3 family within the effective
model that was introduced in Refs. [155–158]. We also derive analytic expressions for
the surface states corresponding to different faces of a Bi-based topological insulator
with semi-infinite geometry. We utilize our results to explore how the hyperfine
interactions differ for different surface states. We investigate transitions between
and within surface states of any plane of a 3D topological insulator and discuss
possible elastic backscattering spin-flip and forward scattering processes induced by
the hyperfine interactions.

5.1 Introduction

Over the past decade, there has been a rising interest in electrically manipulating
spin in nonmagnetic materials, e.g., paramagnetic metals and semiconductors with
spin-orbit coupling, in parallel to the prevailing utilization of ferromagnets in the
spintronics field. As we saw in previous chapters of this thesis, novel materials
like topological insulators with spin-orbit coupling are good alternative materials
for spintronics applications. 3D or 2D topological insulators host surface or edge
states located in the bulk gap. Protection of time-reversal symmetry implies that
topological surface or edge states are robust in topological insulators and against
perturbations preserving time-reversal symmetry, such as nonmagnetic impurities.
In 2D the situation is even more drastic, due to the time-reversal symmetry and
spin-orbit coupling in topological insulators, the gapless surface (edge) states are
spin-polarized helical 2D Dirac fermions (counterpropagating 1D helical pairs) at
Fermi energy lies in the bulk gap, where backscattering, elastic scattering between
paired modes, is forbidden since there is no available state for the reversed direc-
tion of propagation with similar spin polarization. All these features also lead to
current-induced spin accumulation phenomenon in topological insulators studied
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in the previous chapter, which has been observed experimentally [77, 83–88, 178].
From an application perspective, spin polarization obtained this way needs to be
long-lasting and controllable for devices such as spin battery and spin memory. Nu-
clear spin and/or magnetic impurities violate time-reversal symmetry in topological
insulators and lead to backscattering, which can be observed as a deviation from
perfect quantized conductance. Thus, nuclear spin and/or magnetic impurities re-
duce electron spin-coherence time, becoming an obstacle in quantum computing
devices. Nevertheless, there are recent proposals of potential applications that use
such impurities in spintronics, such as a rechargeable spin battery [94] and memory
resource [179].

Hyperfine interactions between the electron and nuclear spins have been stud-
ied in the context of nanostructures [180, 181], semiconductors [182, 183], quan-
tum dots [184–192], spin blockade regime of quantum dots [193–197], quantum
wells [198–200], 1D systems [201, 202], 2DEGs [203, 204], and at the edge of
2DEGs [205–207] as well as 2D topological insulators [208,209]. Although hyperfine
interactions are often weak, it plays an essential role in physical phenomena such as
the electron or hole spin decoherence processes and allows manipulation of electron
or hole spin with nuclear spins and vice versa. The isotropic hyperfine interaction
called contact hyperfine interaction involves electrons in s-like orbital states, and is
important while studying the conduction band of semiconductors, 2DEGs, or quan-
tum dots (electron spin). The anisotropic hyperfine interaction and nuclear-orbital
interaction are dominant in p-like orbital states, and are important for the valence
band of semiconductors and the hole spin of quantum dots. Since surface/edge
states of topological insulators is a quantum superposition of both electron and hole
states, it is important to consider all the types of hyperfine interactions. This is the
reason Lunde and Platero consider all aforementioned hyperfine interactions for a
2D topological insulator (HgTe quantum wire) within the BHZ model [75] includ-
ing both s- and p-like orbitals [209]. We follow their approach to find hyperfine
interactions in 3D topological insulators, particularly the Bi2Se3 family, within the
effective band model.

This chapter is organized as follows: In Sec. 5.2 and Sec. 5.3, we outline the various
types of hyperfine interactions and the effective band model for the Bi2Se3 family,
respectively. Then we present the hyperfine interactions within this model which
includes not only dominant p-like states but also s-like states in Sec. 5.4. Next, in
Sec. 5.5 we derive the total hyperfine interactions for a Bi-based topological insulator
slab as well as surface states of different planes of a 3D topological insulator with
zero in-plane momentum. We conclude in Sec. 5.6.
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5.2 Hyperfine Interactions

The interaction of an electron with a nucleus is described by the Dirac Hamiltonian:

H =α ·π+βmc2 + qV, (5.1)

where m and q are the electron mass and charge, respectively. Here, π = c(p− qA)
with c the speed of light and p the momentum. V and A are the scalar and vector
potentials of the electromagnetic field created by the nucleus. α and β are the
4×4 Dirac matrices. Therefore, one can obtain the terms including the coupling of
electron and nucleus through decoupling electron and positron spinors and utilizing
Foldy–Wouthuysen transformation to find the well-known relativistic corrections to
the Pauli Hamiltonian [210,211]:

Hihf = q2h̄

4m2c2
(E×A) ·σ, (5.2)

Hahf = − qh̄2m(∇×A) ·σ, (5.3)

Hang = − q

m
A ·p. (5.4)

These terms represent the coupling of the charge and magnetic moment of nuclei
(giving rise to E and A) and the spin, σ, and momentum, p of electron. The first
two are referred as isotropic and anisotropic hyperfine interaction, respectively, and
the last one corresponds to the coupling of electron orbital angular momentum and
the nuclear spin. It is customary to rewrite Eqs. (5.2)-(5.4) in the form of effective
Hamiltonians [209,210,212] in the same order as follows,

h1,n = γ1S ·Inδ(rn), (5.5)

h2,n = γ2 r
−3
n (3(en ·S)(en ·In)−S ·In), (5.6)

h3,n = γ2 r
−3
n Ln ·In. (5.7)

Here, In (S) is the nuclear (electron) spin operator, and Ln is the orbital momentum
operator of the electron. rn = r−Rn is the vector pointing from the nth nucleus to
the electron, rn ≡ |rn|, en ≡ rn/rn. For definition of the prefactors γi for i= 1,2,3,
see Appendix H. The first term is known as "Fermi contact interaction" and its
contribution is non-vanishing when the electron spin density is finite at the nucleus
position (only s-orbital has this property among all orbitals). The second term is
a dipole-dipole-like interaction (the anisotropic hyperfine interaction corresponding
to p-orbitals). The last term corresponds to the interaction between nuclear spin
and orbital angular momentum of the electron (and similar to the previous term, it
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is relevant for p-orbitals).

In order to find the hyperfine interaction matrix elements, we follow Lunde and
Platero’s approach and assumptions [209], see Appendix G. They have found hyper-
fine interactions for HgTe within BHZ model [75] for states consisting only the p-like
band as well as states consisting the mixtures of the s- and p- like bands. In this
thesis, we obtain hyperfine interactions for Bi2Se3 family materials the band model
of which includes only the p-like states. We will also consider s-orbitals because
the Fermi contact interaction arising from s-orbitals is the strongest one among
all hyperfine interactions [189], and even a small amount of s-mixing will have an
important effect.

5.3 The Band Model of Bi-based Topological Insulators

The 3D effective Hamiltonian capturing the basic low-energy properties of Bi2Se3

family materials was considered in the previous chapter, Eq. (4.20). The dominant
p-orbital states with angular momentum mj =±1/2 and parity P =±1 are close to
the Fermi energy [155]. These states are mixture of pz and p± orbitals due to the
spin-orbit coupling. The P =±1 hybridized states correspond to states from the Bi
and Se atoms (for more details see Appendix F). Hence, the effective Hamiltonian
is given in the basis below, expressed in terms of |Bi(Se)p,ml,ms〉:

|Bip,
1
2〉 = u1 |Bip,1,−

1
2〉+v1 |Bip,0,

1
2〉 , (5.8)

|Sep,
1
2〉 = u2 |Sep,1,−

1
2〉+v2 |Sep,0,

1
2〉 , (5.9)

|Bip,−
1
2〉 = u1 |Bip,−1, 12〉+v1 |Bip,0,−

1
2〉 , (5.10)

|Sep,−
1
2〉 = u2 |Sep,−1, 12〉+v2 |Sep,0,−

1
2〉 , (5.11)

where ui and vi include all the information about the spin-orbit coupling. We also
define the real space basis functions for a Bi-based topological insulator:

ϕk,Bip± 1
2
(r) =

√
va
V
eik·rwBip,± 1

2
(r), (5.12)

ϕk,Sep± 1
2
(r) =

√
va
V
eik·rwSep,± 1

2
(r), (5.13)

where r = (x,y,z), wBi(Se)p,mj(r) = 〈r |Bi(Se)p,mj〉 is the real space lattice periodic
functions at k = 0, va is the unit cell volume, and V is the volume of the system.
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We simplify the calculation of matrix elements interaction by approximating the
lattice periodic functions via using a linear combination of atomic orbitals (LCAO)
approach [189,213,214], see Appendix G.1 for more details.

5.4 Hyperfine Interactions within Bismuth-based Topological
Insulator Band Model

In this section, we present hyperfine interactions within Bi-based 3D topological
insulator band model. As we mention above, we obtain these interactions by gener-
alizing Lunde and Platero’s approach [209]. As it is already mentioned, the Fermi
contact HHF,1 is zero for p-orbitals while matrix elements of HHF,i for i= 2,3 vanish
for s-like states because of their spherical symmetry. In Bi2Se3, the states close to the
Fermi energy are p-like orbitals so HHF,2 and HHF,3 are hyperfine interaction with
more contributions. But, we will also take into account the possibility of s-orbital-
mixing. The s-mixing is nonnegligible because the Fermi contact interaction is the
strongest one among all hyperfine interactions [189], so, even the smallest mixing is
important. Based on numerical results [215], the contribution to the wavefunctions
is about 10%, which is also confirmed by experimental findings [216].

Since the hyperfine interactions are local in space and depend on the nuclei locations,
we focus on wavefunction around the nucleus. We sum over only lattice points with
a nonzero nuclear spin to find the hyperfine interactions

HHF =HHF,1 +HHF,2 +HHF,3 =
∑
n
h1,n+

∑
n
h2,n+

∑
n
h3,n. (5.14)

While most Bi nuclei have nonzero nuclear spin, other atoms in 3D topological insu-
lator Bi2Se3 family, the simplest members of which are Bi2Se3, Bi2Te3, and Sb2Te3,
may have zero nuclear spin as well. For instance, the natural abundances of stable
nuclei with a nonzero spin in the materials mentioned above are approximately [181]

100% for 209Bi (spin-9/2), 8% for 77Se (spin-1/2),

1% for 123Te (spin-1/2), 7% for 125Te (spin-1/2), (5.15)

57% for 121Sb (spin-5/2), 43% for 123Sb (spin-7/2).

We find the effective hyperfine interactions by projecting onto the relevant bonds,
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for which we need the following matrix elements

HHF,i =
∑
k,k′

∑
υ,υ′

∑
τ,τ ′=± 1

2

〈ϕk,υ,τ |HHF,i |ϕk′,υ′,τ ′〉c
†
k,υ,τ ck′,υ′,τ ′ (5.16)

for i= 1,2,3 corresponds to different hyperfine interactions. Here ϕk,υ±1/2(r) is the
real basis function (Eqs. (5.12) and (5.13) with υ(υ′) = Bip,Sep).

5.4.1 The hyperfine interaction for p-like states

The dominant orbitals of the Bi2Se3 are p-orbitals; therefore, the dipole-dipole like
interaction and electron orbital momentum-nuclear spin coupling are the prominent
hyperfine interactions. We obtain the contribution of HHF,2 interaction to the p-like
states in the band model of Bi-based 3D topological insulators by projecting dipole-
dipole hyperfine interaction, Eq. (5.6), onto the real basis functions, Eqs. (5.12)
and (5.13) (see Appendix G for more details). The projected Hamiltonian becomes:

HHF,2 =
∑
n

∑
k,k′

ei(k
′−k)·Rn

V
c†kH̃HF,2ck′ , (5.17)

where c†k = (c†k,E+, c
†
k,H+, c

†
k,E−, c

†
k,H−), Rn ≡ (Xn,Yn,Zn) is the Bravais lattice vec-

tor for nth unit cell with a nonzero nuclear spin, and

H̃HF,2 = 1
5h̄

A11Iz,n A12I−,n

A12I+,n −A11Iz,n

 , (5.18)

where

A11 =
A1A

++
p,jn A2A

+−
p,jn

A2A
−+
p,jn A3A

−−
p,jn

 , A12 =
A4A

++
p,jn A5A

+−
p,jn

A5A
−+
p,jn A6A

−−
p,jn

 .
We note that the definitions of the real parameters Ai as well as Ap,jn are given in
Appendix H.

The contribution of the HHF,3 interaction to the p-like states in this model is found
again by projecting the hyperfine interaction between nuclear spin and orbital an-
gular momentum field of the electron, Eq. (5.7), onto the real basis functions,
Eqs. (5.12) and (5.13) (see Appendix G). We obtain

HHF,3 =
∑
n

∑
k,k′

ei(k
′−k)·Rn

V
c†kH̃HF,3ck′ , (5.19)
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where

H̃HF,3 = 1
h̄

B11Iz,n B12I−,n

B12I+,n −B11Iz,n

 (5.20)

with

B11 =
B1A

++
p,jn B2A

+−
p,jn

B2A
−+
p,jn B3A

−−
p,jn

 , B12 =
B4A

++
p,jn B5A

+−
p,jn

B5A
−+
p,jn B6A

−−
p,jn

 .
The detailed definitions of Bi terms can be found in Appendix H.

5.4.2 Taking into account s-like states’ contributions to the band
model

The matrix elements that include contact hyperfine interaction are zero for p-orbitals
due to the fact that p-orbitals vanish at the atomic center whre the nuclei reside,
and the effect of contact hyperfine interaction is only on the nuclei. Therefore, one
gets zero matrix elements for HHF,1 if s-orbitals are neglected. As stated earlier, the
states close to the Fermi energy are predominantly p-like states in the Bi2Se3 family,
hence, the contact hyperfine interaction is zero. On the other hand, it is claimed
numerically [215] and experimentally [216] that the s-orbital contribution to the
bands is around 10%, so that the hyperfine coupling constants could be one order
of magnitude higher [189]. Therefore, we study the contact hyperfine interaction in
this section. In order to consider the effect of s-orbitals, we write the lattice periodic
functions as a mixture of s- and p-orbitals

wBi,± 1
2
(r) = uBis,± 1

2
(r) +uBip,± 1

2
(r), (5.21)

wSe,± 1
2
(r) = uSes,± 1

2
(r) +uSep,± 1

2
(r), (5.22)

where u’s with lower indices Bi(Se)s and Bi(Se)p are the lattice periodic functions
contributions corresponding to the s- and p-orbitals of Bi(Se) atom, respectively,
and they can be approximated similar to Eqs. (G.1) and (G.2) via using the LCAO
method, see Appendix H.

The contact hyperfine interaction in the Bi-based 3D topological insulator band
model basis is again found via projecting Fermi contact interaction, Eq. (5.5) onto
the real basis functions. This procedure produces

HHF,1 =
∑
n

∑
k,k′

ei(k
′−k)·Rn

V
c†kH̃HF,1ck′ , (5.23)
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where

H̃HF,1 = 1
2h̄

AIz,n AI−,n

AI+,n −AIz,n

 (5.24)

with

A=
A++

s,jn A+−
s,jn

A−+
s,jn A−−s,jn

 .
Again the precise definitions of the s-like hyperfine couplings, As,jn , are given in
Appendix H.

5.5 Hyperfine Interactions for Surface States

In this section, we shift our focus from the bulk to the surface and obtain the
expressions for hyperfine interactions for surface states of 3D Bi2Se3 family topolog-
ical insulator slabs with semi-infinite boundary condition (BC). The total hyperfine
interaction according to the previous sections gives rise to

HHF =
3∑
i=1
HHF,i =

∑
n

∑
k,k′

ei(k
′−k)·Rn

V
c†kH̃HFck′ , (5.25)

where

H̃HF = 1
h̄

C11Iz,n C12I−,n

C12I+,n −C11Iz,n

 (5.26)

with
C11 = A

2 + A11
5 +B11, C12 = A

2 + A12
5 +B12.

Using this, we can find the hyperfine interaction for any nanostructure in a Bi2Se3

family quantum wires through projecting the total hyperfine interaction, Eq. (5.25),
onto the associated envelope wavefunctions of the quantum wires, Φ(Rn⊥),

HHF =
∑
n

∑
ν,ν′

[Φν(Rn⊥)]†H̃HFΦν′(Rn⊥)c†νcν′ , (5.27)

where the sum includes only the atomic sites n with a nonzero nuclear spin, and
Rn⊥ is the projected Bravais lattice vector for nth unit cell with a nonzero nuclear
spin onto the surface of the extended directions.

We now consider a 3D topological insulator slab where the lattice periodic basis
functions include plane wave envelope functions in two directions, xi and xj , and an
envelope function in the other direction, xk. Hence, the real basis functions are as
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follows

ϕk,Bip,± 1
2
(r) =

√
va

LxiLxj
ei(kxixi+kxjxj)fBip(xk) wBip,± 1

2
(r), (5.28)

ϕk,Sep,± 1
2
(r) =

√
va

LxiLxj
ei(kxixi+kxjxj)fSep(xk) wSep,± 1

2
(r), (5.29)

where f(xk) are the transverse envelope functions in the xk direction perpendicular
to the extended directions of the slab, (xi,xj ,xk) = (x,y,z), and Lxi are the lengths of
the slab in the xi-direction. Since the hyperfine interactions act on the atomic length
scale, the gradually changing envelope functions become multiplicative factors in
the hyperfine interactions that leads to the position dependent hyperfine interaction
couplings, see Appendix H.

For finding the effective hyperfine interaction for surface states of 3D topological
insulator slab, we utilize the full wavefunction of a pair of surface states obtained
in the rest of this section by considering semi-infinite BC. For example, for the ẑ
surface, we have

Ψς(x,y,z) = 1√
LxLy

ei(kxx+kyy)ψẑ,ς
k‖

(z) for ς = u,d (5.30)

with ψẑ,ς
k‖

(z) is a spinor which decays as a function of z as z moves away from
the boundary. Here, ς = u,d corresponds to two states, eigenvectors of Hamilto-
nian (4.20), resulting from surface problems. For ẑ surface, "u" and "d" can be
regarded as spin-up and down feature of spinors due to the basis states of Hamilto-
nian (4.20) whereas this interpretation is not valid for x̂ and ŷ surfaces since surface
states include an admixture of electron and hole with opposite spins on these sur-
faces, as we show later in this chapter. Therefore, we can find hyperfine interaction
by plugging surface states into Eq. (5.27). Corresponding calculations for finding
surface states of different surfaces of a 3D topological insulator through considering
semi-infinite BC are discussed in Appendix B.

5.5.1 ẑ surface states

We insert surface states of ẑ planes found via considering semi-infinite BC, into the
hyperfine interaction formula (5.27) to find total hyperfine interaction for ẑ surfaces
of a 3D topological insulator. The surface states with zero in-plane momentum for
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semi-infinite BC are as follows,

ψ±ẑ,u
k‖=0(z) =


sgn(B1A1)

√
|1 + ξ|

∓i
√
|1− ξ|
0
0

g±(z), ψ±ẑ,d
k‖=0(z) =


0
0

sgn(B1A1)
√
|1 + ξ|

±i
√
|1− ξ|

g±(z),

(5.31)
where ± corresponds to ψ(z =∓∞) = 0, ξ =D1/B1, and

g±(z) = N√
2

(e±λ1z− e±λ2z) (5.32)

with

N =
( 1

2λ1
+ 1

2λ2
− 2
λ1 +λ2

)− 1
2
forλ1,λ2 ∈ R, (5.33)

N =
(1
a
− a

a2 + b2

)− 1
2
forλ1 = λ∗2 = a+ ib, (5.34)

which are normalization constants for different possibilities of having surface states
according to the solutions for λ. Hence, the total hyperfine interaction for ẑ surface
states for a single nuclear spin is

HHF,±ẑ = Λ±(Z)ei(k′−k)·R⊥

LxLyh̄

[
B1σzIz +B2,±σ+I−+h.c.

]
, (5.35)

where σz is the Pauli matrix in the pseudospin space (bands at the surface), σ0

denotes 2×2 identity matrix, and σ+ =
0 1

0 0

, Λ±(Z) = |g±(Z)|2, and the other

parameters are

B1 = |1 + ξ|A++
1 + |1− ξ|A−−1 ,

B2,± = |1 + ξ|A++
2 −|1− ξ|A−−2 ±2isgn(B1A1)

√
1− ξ2 Re(A+−

2 ),

where the hyperfine couplings are defined in Appendix H. Lambda is the position
dependency part of the hyperfine interaction couplings and it is also real because it
corresponds to the decay function of surface states. We also used the fact that Ai’s
are real. The hyperfine interaction for the ẑ surface demonstrates the transition
between Ψu(x,y,z) and Ψd(x,y,z) only if the nuclear spin state changes. This
means that nuclei behave as impurities and breaks time-reversal symmetry from
the standpoint of the electron. However, time-reversal symmetry in the system
that includes electrons and nuclei is conserved since the total angular momentum
(including electron spin and nuclear spin) is conserved.
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5.5.2 ŷ surface states

We now obtain the effective hyperfine interaction for ŷ surfaces of a 3D topological
insulator as we did for the ẑ surfaces. We substitute surface states of ŷ planes, found
through considering semi-infinite BC, into the hyperfine interaction formula (5.27).
For the ŷ surface, the full wavefunction can be written as follows,

Ψς(x,y,z) = 1√
LxLz

ei(kxx+kzz)ψŷ,ς
kx,z

(y), for ς = u,d (5.36)

where ψŷ,ς
kx,z

(y) is a spinor which includes a y-dependent decay function. The ŷ
surface states with zero in-plane momentum for semi-infinite BC are

ψ±ŷ,u
kx,kz=0(y) =


sgn(B2A2)

√
|1 +η|

0
0

±
√
|1−η|

g±(y),

(5.37)

ψ±ŷ,d
kx,kz=0(y) =


0

∓
√
|1−η|

sgn(B2A2)
√
|1 +η|

0

g±(y),

where ± corresponds to considering ψ(y =∓∞) = 0, η =D2/B2, and

g±kx,z(y) = N√
2

(e±λ1y− e±λ2y). (5.38)

As we can see, superscripts "u" and "d" do not belong to spin blocks anymore. Hence,
the total hyperfine interaction for ŷ surface states for one nuclear spin is

HHF,±ŷ = Λ±(Y)ei(k′−k)·R⊥

LxLzh̄

[
σz
(
B3Iz±2κRe(A+−

2 )Ix
)

(5.39)

+σ+
(
B4I−−B5I+∓2κRe(A+−

1 )Iz
)

+h.c.
]
,

where Λ±(Y) = |g±(Y)|2, κ= sgn(B2A2)
√

1−η2, and the other parameters are

B3 = |1 +η|A++
1 −|1−η|A−−1 , B4 = |1 +η|A++

2 , B5 = |1−η|A−−2 .

In contrast to hyperfine interaction found for ẑ surface states, Eq. (5.35), the hyper-
fine interaction for ŷ surface states include an additional term, Ix,n, which couples
the transition within a surface state to both spins. Furthermore, the transition
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between surface states contains not only terms involving I±, similar to ẑ surface
hyperfine interaction, but also Iz terms.These differences stem from the fact that
surface states of ŷ planes are an admixture of electron and hole with opposite spins,
while surface states of ẑ planes are a mixture of electron and hole with the same
spin.

5.5.3 x̂ surface states

Although it is very similar to the ŷ surface, for completeness, we obtain the total
hyperfine interactions for x̂ surfaces states of a 3D topological insulator with insert-
ing surface states of x̂ planes, calculated through considering semi-infinite BC, into
eq. (5.27). Accordingly, we have the full wavefunction as follows,

Ψς(x,y,z) = 1√
LyLz

ei(kyy+kzz)ψx̂,ς
ky,z

(x) for ς = u,d (5.40)

with the spinor ψx̂,ς
ky,z

(x) including a x-dependent decay function. The x̂ surface
states with zero in-plane momentum for semi-infinite BC are,

ψ±x̂,u
ky,kz=0(x) =


sgn(B2A2)

√
|1 +η|

0
0

∓i
√
|1−η|

g±(x),

(5.41)

ψ±x̂,d
ky,kz=0(x) =


0

∓i
√
|1−η|

sgn(B2A2)
√
|1 +η|

0

g±(x),

where ± corresponds to considering ψ(x=∓∞) = 0 and

g±(x) = N√
2

(e±λ1x− e±λ2x). (5.42)

The effective hyperfine interaction for x̂ surface states for one nuclear spin is

HHF,±x̂ = Λ±(X )ei(k′−k)·R⊥

LyLzh̄

[
σz
(
B3Iz∓2κRe(A+−

2 )Iy
)

(5.43)

+σ+
(
B4I−+B5I+∓2iκRe(A+−

1 )Iz
)

+h.c.
]
,
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where Λ±(X ) = |g±(X )|2. The x̂ surface states hyperfine interaction is similar to
the ŷ surface states hyperfine interaction except for some coefficients, originating
from the imaginary unit i in the components of x̂ spinors as well as Ix is replaced
by Iy.

5.6 Conclusion

In conclusion, we derived analytic expressions for the effective hyperfine interac-
tions for low-lying quasiparticle states of a 3D topological insulator belonging to
the Bi2Se3 family. We obtained zero in-plane momentum surface states of the edges
of a 3D topological insulator slab with considering semi-infinite BC in the specific
direction. We also obtained hyperfine interactions for different surface states of a
Bi-based topological insulator. The upshot of our results is general enough to be
applied for any material in the Bi2Se3 family. The findings of this study indicate
that hyperfine interactions imply elastic backscattering spin-flip process through
transitions between surface states corresponding to any edges of a Bi-based topolog-
ical insulator. Furthermore, we have obtained extra terms regarding coupling the
transition within surface states of x̂ or ŷ planes with nuclear spins while there is
not such a coupling for ẑ surface states. These terms will affect the nuclear spin
polarization and its associated Overhauser effective magnetic field complicatedly. In
our view, these results constitute an excellent initial step toward understanding hy-
perfine interactions for anisotropic 3D topological insulator materials, and we hope
that further tests will confirm our findings, which leads to spintronics applications.
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6. GIANT MAGNETORELECTRIC EFFECT IN WEYL
SEMIMETALS

In this chapter, we consider a mechanism in magnetic Weyl semimetals that al-
lows blocking or transmitting carriers through manipulating Weyl nodes’ chiralities.
Chirality in this context specify whether the spins are essentially locked parallel
or antiparallel to the momentum of the charge carriers, see Eq. (2.3) for a precise
definition. This effect is analogous to the GMR effect which is mostly observed in
junctions including Ferromagnetic layers and conductors, and electrical resistance
can be tuned by changing the magnetization of ferromagnetic layers. In the fer-
romagnetic case, the conductance of layers with antiparallel magnetization will be
lower than layers with parallel magnetization. Similarly, Weyl layers with oppo-
site chiralities show lower conductance than layers with identical chiralities. Hence,
we show below that manipulating Weyl points’ chiralities can adjust the electrical
resistance and lead to a new GMR device for nanoelectronics and valleytronics ap-
plications. In order to investigate the generality and robustness of this effect against
the presence of nonmagnetic and magnetic impurities in our systems, we study both
clean and disordered junctions that include different Weyl semimetals in terms of
symmetries.

6.1 Introduction

Weyl semimetals, 3D analogs of graphene, are gapless materials, where the bulk
bands cross at nodes, called Weyl points. Near the crossing, the energy depends
linearly on the momentum. There are an even number of Weyl points with oppo-
site chiralities in the Brillouin zone due to the fermion doubling theorem. Pairs of
Weyl points are connected through the surface states called the Fermi arcs [32]. In-
teresting quantum transport properties such as extremely large magnetoresistance
(MR) [217, 218], unprecedented carrier mobilities [217, 218], and negative MR in-
duced by the chiral anomaly [219, 220] in these materials have attracted extensive
attention from the condensed matter and material science communities. Moreover,
Weyl fermions are robust in the presence of impurity scattering due to the inter-

59



play of spin conservation with the chiral Weyl points. Moreover, each chiral Weyl
node behaves as a monopole in momentum space so that this magnetic property can
be utilized in the spintronics and valleytronics fields. To realize these theoretically
predicted properties and introduce prevalent devices, further experimental research
need to be conducted in Weyl semimetals.

The electrical resistance change in the presence of a magnetic field is an exceptional
characteristic of different materials, which becomes a fundamental diagnostic tool in
condensed matter and can be utilized in electronics and spintronics devices such as
magnetic sensors and magnetic storage devices. The most practical tool is made of
thin films composed of magnetic elements that exhibit giant negative MR [221] due
to the suppression of the spin scattering in a magnetic field. Metals, semiconductors,
and semimetals show positive MR [222]. Large MR was also reported in 3D Dirac
semimetal and Weyl semimetal materials recently [223, 224]. Hence, many studies
have been recently conducted to investigate MR in various Weyl semimetal materials
for fundamental physics and applicable devices.

In this chapter, we focus on the manipulation of Weyl cones’ chiralities in junctions
made of Weyl semimetals, and show how this leads to an analogue of the GMR
effect. We start with an effective model of Weyl semimetals commonly adopted in
the literature [225–227]. We then focus on a layered geometry (sketched in Fig. 6.4)
and demonstrate how chirality blocks or transmits current. Our considered junctions
are based on Weyl semimetals in which either time-reversal symmetry or inversion
symmetry is broken. Next, we show that the current can be blocked by reversing
the Weyl points’ chiralities. We finally study to what extent this effect is robust
against the random nonmagnetic and magnetic disorder.

The outline of this chapter is as follows. In Sec. 6.2, we outline the effective Hamil-
tonian of a Weyl semimetal. In Sec. 6.3, we present our analytical and numerical
results for different junctions based on Weyl semimetal in which inversion symmetry
or time-reversal symmetry is preserved. We then show that the GMR effect can be
seen in our considered systems. In Sec. 6.3.3, we demonstrate how nonmagnetic
or magnetic impurities influence the conductance of Weyl semimetal junctions. We
close with concluding remarks in Sec. 6.4.

6.2 Method and Model

The bulk gap closes when a 3D topological insulator undergoes a phase transition
to the trivial insulator or vice versa. At this critical transition point the system
becomes a 3D massless Dirac semimetal which have been experimentally observed
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in TlBi(S1−xSex)2 crystals [228] and (Bi1−xInx)2Se2 [229] films. Here the low en-
ergy spectrum satisfies the 3D form of Dirac equation. The Dirac points are doubly
degenerate due to the presence of time-reversal and inversion symmetries and can
be split into a pair of Weyl points by breaking one of the symmetries. The Weyl
points can be separated from each other either in momentum or in energy. Sym-
metry determines the location and the number of Weyl points in the momentum
space. To see this, note that the time-reversal symmetry maps k to −k and reverses
Berry curvature, Ω(−k) = −Ω(k) so the chirality of Weyl point does not change.
Therefore, in Weyl semimetals with preserved time-reversal symmetry (and with
broken inversion symmetry), there should be at least four Weyl points to fulfill the
fermion doubling theorem. Inversion symmetry keeps the k-space "magnetic field",
Ω(−k) = Ω(k) so the chirality of a Weyl point at k is reversed under inversion
symmetry and mapped to −k. Hence, Weyl semimetals with broken time-reversal
symmetry can host two Weyl cones.

To have better intuition of constructing a Weyl semimetal with the smallest number
of Dirac points, which is two, in a real space, Burkov and Balents [28] have pro-
posed the simplest realistic model that is composed of stacking the topological and
trivial insulators, such as Bi2Se3, alternatively. A Zeeman field breaks time-reversal
symmetry by adding magnetic impurities, see Fig. 6.1. Producing ultrathin films of
Bi2Se3 in experiments [230–232] paves the way of fabricating the proposed multilayer
heterostructure. Their model is written based on the two different short-range tun-
neling parameters corresponding to tunneling between surface states within the same
layer and neighboring layers. Regardless of magnetism, the multilayer heterostruc-
ture can be in a topological or trivial phase based on the strength of tunneling
parameters. By inducing magnetization to the topological insulator layers through
doping magnetic impurities, the system shows the Weyl semimetal phase determined
by tuning tunneling parameters. The analogous structure has also been proposed by
breaking the inversion symmetry to reach a Weyl semimetal material [233]. Further-
more, another model for a Weyl semimetal realization has also been suggested based
on the stacking 1D primitives according to the Aubry-Andre-Harper model [234].
Weyl Semimetal phase can also be reached at the transition point between topolog-
ical and trivial insulators where bulk gap closes [28,34,233,235,236].

Different forms of Hamiltonians that feature low energy physics consisting of Weyl
semimetals that can easily be transformed into each other by applying a unitary
transformation. We start with the Weyl semimetal Hamiltonian introduced by Vaz-
ifeh and Franz [225] who have started with the standard 3D topological insulator
model for the Bi2Se3 family. However, the Hamiltonian is presented in a basis that
is different from what we used in the previous chapters for 3D topological insulators.
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Figure 6.1 The multilayer structure includes topological insulator layers and trivial
insulator spacers (shown as blue layers). The induced magnetization direction due
to introducing magnetic impurities (shown as red circles) is shown by the arrow in
each topological insulator layer.

The momentum space Hamiltonian of Vazifeh and Franz is,

H0(k) = 2λτz(σxsin(ky)−σysin(kx)) + 2λzτysin(kz) + τxMk (6.1)

with τ and σ the Pauli matrices in the orbital and spin space, respectively, and
Mk = ε− 2t∑α cos(kα). This model describes a strong topological insulator when
λ and λz have positive values in the range of (2t,6t). We can easily transform
this Hamiltonian to the form of the effective Hamiltonian introduced by Zhang et
al. [155] for 3D topological insulators through a unitary transformation. Hence,
H3DTI = UHVazifehU

† with

U = exp(−i[π2 τzσ0−
π

4 τyσ0 + π

4 τxσz−
3π
4 τ0σz]). (6.2)

As a result, the Hamiltonian is in the following basis, (|E ↑〉, |H ↑〉, |E ↓〉, |H ↓〉) which
enables us to use associated spin operators [158] for adding appropriate magnetic
impurities later. The Hamiltonian in Eq. (6.1) includes the transition point of a
topological insulator phase and a trivial insulator phase, 3D Dirac point, where gap
closes at k = 0 when ε = 6t. Furthermore, in order to explore the Weyl phases,
Vazifeh and Franz introduce the following perturbation [225];

H1(k) = b0τyσz +b · (−τxσx, τxσy, σz). (6.3)

Here nonzero b0 breaks the inversion symmetry but preserves the time-reversal sym-
metry while b breaks the time-reversal symmetry, keeping the inversion symmetry
intact. In the case b = bz ẑ, there is a pair of Weyl points located at k = ± bz

2λz
ẑ

in momentum space. The band structure of H = H0 and H = H0 +H1 for the
mentioned cases are displayed in Fig. 6.2.
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(a) (b)

Figure 6.2 The band structure of the Weyl semimetal lattice model. (a) Doubly
degenerate 3D Dirac point when H1 = 0. (b) Momentum-shifted Weyl point for
bz = 1.0 and b0 = 0. In both panels, ε= 6t, λ= λz = 1.0, and t= 0.5.

In our numerical study, ww utilize the KWANT toolbox [124] and use the tight-
binding representation of the Hamiltonian given in Eqs. (6.1) and (6.3), and focus
on a 3D wire attached to two semi-infinite leads. We use different structures for
the scattering region, such as a uniform Weyl semimetal or a heterostructure of
Weyl semimetals, where the Weyl cones are separated differently in the momentum
space. We numerically evaluate the charge conductance according to Eq. (3.7) for
an infinitesimal bias (linear response regime) at a specific energy, EF , originating
from one of the leads, depending on the sign of the bias.

6.3 Weyl Semimetal Junction, GMR Effect

The GMR effect is usually observed in systems including a nonmagnetic layer (usu-
ally a conductor) between alternating ferromagnetic layers. There is a substan-
tial change in the electrical resistance depending on the magnetization direction of
adjoining ferromagnetic layers. The resistance for parallel alignment of the mag-
netization of the ferromagnetic layers is much lower than that of the antiparallel
alignment. The GMR effect has many applications for reading, writing, and storing
data in the field of electronics and spintronics, such as magnetic field sensors and
magnetoresistive random-access memory [237].

Weyl cones with different chiralities behave like magnetic monopoles (sink or source)
in the momentum space. When a left-handed Weyl fermion is incident on a re-
gion allowing right-handed Weyl fermions then the transmission will be diminished
compared to the case where both fermions are left-handed. Since the chirality in
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magnetic Weyl semimetals are controlled by the magnetization, this situation is
very similar to the GMR effect. Therefore, we expect that Weyl semimetal junc-
tions with different chiralities directions of "magnetization" might be utilized as a
chirality-valve analogous to GMR devices. we explore this idea in the next section.

6.3.1 Junctions with broken time-reversal symmetry

Consider a slab junction including Weyl semimetals with broken time-reversal sym-
metry where two Weyl points are located at at k=± bz

2λz
ẑ. Hence, we take only the

bz term to be nonzero in Eq. (6.3). We want to find the transmission and reflection
coefficients for two junctions shown in Fig. 6.3 through the wavefunction matching
method. For the region I in both junctions, we consider a Weyl semimetal the Weyl
cones of which are separated in the ẑ direction in momentum space. The region II of
the first junction, shown in Fig. 6.3(a), is identical to the region I, i.e., chiralities of
the Weyl points remain unchanged. By contrast, the chiralities of the Weyl points
in region II of the junction shown in Fig. 6.3(b) are reversed with respect to the
chirality of Weyl points in the region I. The magnitude of the bz term is considered
the same in all regions. In order to match the wavefunction at x = 0, the interface
between two regions, we need to find eigenvalues and corresponding eigenvectors of
H =H0 +H1.
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Figure 6.3 Junction of Weyl semimetals slabs with a pair of Weyl cone shifted in the
ẑ direction in momentum space with (a) the identical chiralities and (b) reversed
chiralities at the location of Weyl points. Weyl cones of different colors represent
opposite chiralities.

In case b= |bz|ẑ and b0 = 0, we find four energies which are Elow
± =±

√
A∓2

√
B and

Ehigh
± = ±

√
A±2

√
B, where A = M2

k + b2z + 4λ2(sin2(kx) + sin2(ky)) + 4λ2
z sin2(kz)

and B = b2z(M2
k + 4λ2

z sin2(kz)). We focus on low energy region since the two low-
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energy bands Elow
± form a pair of Weyl cones and their spinors are simplified as

follows

φlow
± (k,E±) = 1

N±



i
√
B(|bz|2−

√
B+ |bz|E±)

2λ|bz|2(sin(kx) + isin(ky))(Mk+ 2iλz sin(kz))√
B

|bz|(Mk+ 2iλz sin(kz))
−i(|bz|2−

√
B+ |bz|E±)

2λ|bz|(sin(kx) + isin(ky))
1


, (6.4)

where N± are normalization constants. In the case b = −|bz|ẑ, we find identical
energies since energy dispersion does not change and just the chirality of Weyl
points are reversed. Even though, terms |bz| in spinors should be replaced to −|bz|.

Case bz = |bz| in region II:

For simplicity we consider the energy dispersion along the kz-axis and assume
kx = ky = 0 in Hamiltonian, hence, low energies are E± = ±|bz| ∓ |F (kz)| with
F (kz)=

√
(ε− t(2 + cos(kz))) + 2iλz sin(kz) and corresponding spinors are as follows

u(kz) = 1√
2



E+−|bz|
F (kz)

0
1
0

 , v(k′z) = 1√
2



0
E−+ |bz|
Fk′z
0
1


. (6.5)

The fixed energy, EF , intersects low energy bands at four points, ±kz and±k′z, where
EF = E+(±kz) = E−(±k′z). The incoming mode is a linear superposition of both
cones, but we consider incident electron near the cone located at k = (0,0, bz/2λz)
since the other Weyl cone at opposite k in the Brillouin zone gives the same con-
tribution to the conductance. Based on these considerations, we can write the
wavefunctions of both regions in the form of

ΨI = 1√
2
(
u(kz)ei(kxx+kyy+kzz) +v(k′z)ei(kxx+kyy+k′zz)

)
+ r1u(kz)ei(−kxx+kyy+kzz) + r1v(k′z)ei(−kxx+kyy+k′zz), (6.6)

ΨII = t1u(kz)ei(kxx+kyy+kzz) + t2v(k′z)ei(kxx+kyy+k′zz). (6.7)

The wavefunction must be continuous at the interface x= 0, thus the transmission
and reflection coefficients are found as r1 = r2 = 0, and t1 = t2 = 1/

√
2. The con-

65



ductance is obtained via G = e2

h
T where T = Tr[t†t], in the limit of infinitesimal

voltage bias and zero temperature, and is 1 when considering only these bands. In
addition, there is not any reflection obviously because both regions are identical and
any incoming modes propagate to the other part.

Case bz =−|bz| in region II:

The bands at low energies are identical to the previous section, but spinors are
different, which is key to our results. Now the spinors are given by

u(kz) = 1√
2



0
E+−|bz|
F (kz)

0
1

 , v(kz) = 1√
2



E−+ |bz|
Fkz
0
1
0

 . (6.8)

Therefore, while ΨI is unchanged, ΨII changes to the form based on the spinors given
above. By applying the matching BCs at the interface, we obtain r1 = r2 =−1/

√
2

and t1 = t2 = 0. This implies that the current is switched to zero if we switch
the chirality in region II with respect to the region I under constant bias. Hence,
manipulation Weyl points’ chiralities in heterostructres results in a magnetoelectric
effect.

(a) (b)

Figure 6.4 (a) Schematic representation of a Weyl semimetal nanowire with a pair
of Weyl cone shifted in the ẑ direction in momentum space. (b) Schematic repre-
sentation of a Weyl semimetal junction with a pair of Weyl cone shifted in the ẑ
direction in momentum space and have opposite chirality at the location of Dirac
points as shown in Fig. 6.3(b).

We also numerically find the charge conductance for Weyl junctions attached to
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two leads along the x̂ direction as shown in Fig. 6.4. The Weyl semimetals con-
sidered in all parts of nanowire shown in Fig. 6.4(a) have Weyl cones separated
along the ẑ direction in momentum space. This situation analogous to the case of
two ferromagnetic layers with the same direction of magnetization. On the other
hand, in Fig. 6.4(b) we sketch a junction including Weyl semimetals with a pair of
Weyl cones shifted again in the ẑ direction in momentum space, but this time with
opposite chiralities. In other words, bz terms in their Hamiltonians have opposite
signs, and each Weyl semimetal have a pair of Weyl cones shifted in momentum
space with opposite chirality (similar to the same sign case) but the location of the
cones have switched. The different sign of bz terms are depicted as different colors
in Fig. 6.4(b). Also, the left lead is similar to the left part of the junction in the
scattering region, and the right lead has the same properties as the right side of
the system. Two semi-infinite Weyl semimetals with opposite chirality of separated
cones mimic two ferromagnetic layers with antiparallel alignment.
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Figure 6.5 Conductance of the systems shown in Fig. 6.4. The blue line shows
the conductance of a Weyl semimetal nanowire the cones of which are separated in
the ẑ direction, see Fig. 6.4(a). The red line illustrates the conductance of a Weyl
junction where the sign of bz terms are opposite in different regions, see Fig. 6.4(b).
Parameters used are ε= 6t, λ= λz = 1.0, t= 0.5, bz = |1.0|, and b0 = bx = by = 0.

In Fig. 6.5 the numerical results for the conductance of a junction of two Weyl
semimetals with opposite sign of bz as well as a Weyl semimetal nanowire the bz
term of which has the same sign is plotted. We see that the junction with the same
chirality structure behaves as a conductor with quantized conductance, the junction
with opposite chirality essentially have zero conductance. Our numerical simulations
are therefore in good agreement with our analytical expectations.

We also perform numerical simulations for the conductance of Weyl junctions where
the Weyl cones are separated in the kx and the ky directions, centered at opposite
points in ±k = (±bx/2λ,0,0) and ±k = (0,±by/2λ,0), respectively. The numerical
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results plotted in Fig. 6.6 shows that the conductance for junctions with nonzero by
term is identical to the previous case since the system is isotropic in the yz-plane.
On the other hand, the conductance for the system where Weyl cones are separated
in the kx direction is less compared to the systems where Weyl cones are separated
in the ky or kz direction. The reason is that only one of the cones contribute to
the conductance since the current is in the x̂ direction. In summary, a junction
including Weyl semimetals in which the magnetization can be tuned to be parallel
and antiparallel (i.e., their Weyl cones have different chiralities) might be applied
as a GMR device.
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Figure 6.6 Conductance of the systems the Weyl cones of which are separated in
the (a) kx direction, where bx = |1.0| and by = 0.0; and (b) ky direction, where
bx = 0.0 and by = |1.0|. In both figures, the blue (red) lines show the conductance of
a Weyl semimetal nanowire junction where the chiralities of Weyl points in region
II are identical (opposite) with respect to the chiralities of Weyl points in region I.
Common parameters are ε= 6t, λ= λz = 1.0, t= 0.5, and b0 = bz = 0.

6.3.2 Junctions with broken inversion symmetry

Weyl semimetal materials where time-reversal symmetry is broken are more ac-
cessible compared to Weyl semimetal materilas with broken inversion symmetry.
Because introducing magnetic impurities or applying magnetic field for breaking
time-reversal symmetry make materials potentially tunable. Besides, the electronic
band structure is also simpler in time-reversal symmetry broken Weyl materials. A
Weyl semimetal phase can also be reached at the phase transition from a topological
insulator to a trivial insulator by applying strain, hence with violating the inversion
symmetry [34]. We note that, TaAs is intrinsically found to be a Weyl semimetal
due to the lack of inversion symmetry, which splits degenerate spin bands [18]. In
this section, we consider a Weyl semimetal with broken inversion symmetry and
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intact time-reversal symmetry. This perturbation can be introduced as a spin-orbit
interaction term, τyσz, see the Hamiltonian (6.3) as a result of strain. As we said
earlier, at least four (i.e., two pairs) of Weyl points are separated in energy, see
Fig. 6.7(a).

We now focus on the conductance for Weyl junction nanowires with a lack of in-
version symmetry and preserved time-reversal symmetry. Hence, we set b = 0 and
b0 6= 0 in the tight-binding form of Hamiltonian (6.3) for our numerical simula-
tions. Again, in one system, the sign of b0 term is considered identical in both
regions, while in another junction, the sign of the broken inversion symmetry term
is reversed, i.e., chiralities of two pairs of Weyl points are changed. Fig. 6.7(b) repre-
sents that the GMR effect can also be obtained by using broken inversion symmetry
Weyl semimetals. This magnetoelectric effect is not as perfect as junctions based
on Weyl semimetals with broken time-reversal symmetry discussed in the previous
section. The reason is that there are four Weyl points shifted in energy, and the
band structure is complicated due to spin splitting bands.
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Figure 6.7 (a) The band structure of the broken inversion symmetry Weyl semimetal
lattice model. (b) Conductance of the Weyl junction systems with broken inversion
symmetry. The blue (red) line shows the conductance of a Weyl semimetal nanowire
junction where the sign of b0 term in region II is same (opposite) the b0 term in region
I. Common parameters are ε= 6t, b= 0.0, |b0|= 0.5, λ= λz = 1.0, and t= 0.5.

6.3.3 Disordered systems

In this section, we numerically find conductance of different Weyl semimetals junc-
tions in the presence of either nonmagnetic or magnetic impurities. For model
nonmagnetic disorder by adding an on-site potential randomly chosen from a Gaus-
sian distribution with strength U0 to the tight-binding Hamiltonian of a Weyl
semimetal (6.1) and (6.3). We find that the magnetoelectric effect in junctions
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based on time-reversal symmetry broken Weyl semimetals is robust against disor-
der, see Fig. 6.8(a). On the other hand, there is an increase in the charge conduc-
tance for the broken inversion symmetry Weyl semimetal junctions with opposite
chiralities of Weyl points, see Fig. 6.8(b), because there could be an interaction be-
tween energy-shifted Weyl cones in the presence of scalar disorder. Consequently,
the magnetoelectric effect in our proposed junctions is intact in the presence of weak
nonmagnetic disorder.
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Figure 6.8 Conductance of the Weyl junction systems in the presence of nonmag-
netic impurities at the fixed energy, EF = 0.2. (a) The blue (red) line shows the
conductance of a Weyl semimetal nanowire junction where the sign of bz terms are
same (opposite) in Hamiltonian of regions I and II, see Fig. 6.4(b). We set |bz|= 1.0
and b0 = 0. (b) The blue (red) lines show the conductance of a Weyl semimetal
nanowire junction where the sign of b0 terms are same (opposite) in the Hamilto-
nian of regions I and II. We set |b0|= 0.5 and bz = 0. Common parameters are ε= 6t,
bx = by = 0.0, λ= λz = 1.0, t= 0.5, and U0 is the on-site disorder strength.

To study the effect of a static magnetic impurity, we add M ·στ0 term to the uni-
tary transformed form of Hamiltonian Eq. (6.2). M models the magnetization. In
our simulations, we consider M = Mz ẑ which means that the magnetic disorder is
polarized. In addition, we distribute magnetic disorder randomly on a few per-
centages of sites. We find that the GMR effect in broken time-reversal symmetry
Weyl semimetal junction is intact in the presence of random magnetic impurities,
see Fig. 6.9(a). Because magnetic impurities also break time-reversal symmetry,
which was already broken in this junction. Introducing magnetic impurities does
not significantly affect the conductance of junctions based on Weyl semimetals with
broken inversion symmetry, see Fig. 6.9(b). When both time-reversal and inversion
symmetries are violated, Weyl nodes are shifted in the opposite direction in energy
and momentum space. Hence, there should not be any significant change in the
conductance. Thus, introducing magnetic impurities with nonzero z-component of
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the exchange field does not affect the chirality-valve effect discussed in this section.
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Figure 6.9 Conductance of the Weyl junction systems in the presence of magnetic
impurities at the fixed energy, EF = 0.2. (a) The blue (red) line shows the conduc-
tance of a Weyl semimetal nanowire junction where the sign of bz terms are same
(opposite) in Hamiltonian of regions I and II, see Fig. 6.4(b). We set |bz|= 1.0 and
b0 = 0. (b) The blue (red) line shows the conductance of a Weyl semimetal nanowire
junction where the sign of b0 terms are same (opposite) in the Hamiltonian of regions
I and II. We set |b0|= 0.5 and bz = 0. Common parameters are ε= 6t, bx = by = 0.0,
λ= λz = 1.0, t= 0.5, and Mz = 1.0.

6.4 Conclusion

In conclusion, we find a chirality-valve effect in junctions based on Weyl semimetals
with preserving either inversion symmetry or time-reversal symmetry. We show that
current can be totally blocked by reversing Weyl points’ chiralities in junctions based
on time-reversal symmetry broken Weyl semimetals. We find that this effect also
exists in Weyl semimetal junctions with broken inversion symmetry, but the effect is
weaker as the conductance is not zero due to the presence of at least four Weyl points.
We numerically find that the magnetoelectric effect in Weyl semimetal junctions is
robust against weak nonmagnetic and magnetic impurities. This chirality blockade
in Weyl semimetals opens up new possibilities for nanoelectronics devices.
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7. CONCLUSION

In this thesis, we studied the quantum transport of internal quantum degrees of
freedom in Dirac materials, in particular, graphene, topological insulators, and Weyl
semimetals. Based on our findings, we proposed various spintronics and valleytronics
applications.

In chapter 2, we gave a brief overview of Dirac materials properties and applications
as a background in consideration of the subject matter of the thesis.

In chapter 3, we showed that graphene with enhanced spin-orbit coupling can be used
as a spin generator. We demonstrated that dilute adatoms deposited on graphene
induce novel spin-valley interactions. We then checked this effect with numeri-
cal tight-binding simulations and investigated how valley currents transform into
spin currents by introducing adatoms on graphene. We found that the increase of
deposited adatoms on graphene leads to an in-plane polarized spin current. We
proposed a valley-spin converter device that can be utilized in spintronics and val-
leytronics fields.

In chapter 4, we focused on the Edelstein effect at the surfaces of a 3D topological
insulator, Bi2Se3, and investigated the extraction of the spin accumulation from
topological insulator surfaces into topologically trivial materials. We found that
admixture of electron and hole degrees of freedom at the topological insulator surface
allows for additional methods for spin manipulation. We derived the spin-charge
coupled dynamics formula at anisotropic topological insulator surfaces and obtained
the dependence of the real spin density on the charge gradients due to the applied
voltage bias. We numerically tested our formula via the tight-binding method, and
we found that the analytical formulas well describe our numerical results for the
Edelstein effect at topological insulator surfaces. We exposed a way to use electrical
gate potentials to locally manipulate spins, especially at the edges of crystals that
are not in the growth direction in regions smaller than the spin precession length.
We proposed a new spin device based on topological insulator for spin manipulation
in spintronics applications.

In chapter 5, We studied hyperfine interactions that include the contact hyperfine
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interaction, the dipole-dipole-like hyperfine interaction, and the interaction between
the nuclear spin and the electrons orbital for 3D topological insulators, particularly
the Bi2Se3 family. We derived surface states of all surface planes for a 3D topological
insulator slab that are general enough to be applied for any material in the Bi2Se3

family. We then found hyperfine interactions for all surface states of a 3D topological
insulator. We demonstrated that hyperfine interactions imply elastic backscattering
spin-flip process through transitions between surface states of any planes of a 3D
topological insulator. We have also obtained intra-transition only in surface states
of the edges of crystals that are not in the growth direction due to the admixture of
electron- and hole-like states with different spins at the corresponding surfaces.

In chapter 6, we found a chirality-valve effect in junctions based on different Weyl
semimetals. We analytically derived that junctions made of Weyl semimetals with
broken time-reversal symmetry are ideal candidates for GMR devices. We have
also found similar results via performing tight-binding simulations. We showed that
chirality could be tuned to allow or block the current. We have also investigated
this effect in our proposed systems with the presence of nonmagnetic and magnetic
disorders. We found a new magnetoelectric effect due to the chirality of valley degree
of freedom in Weyl semimetal materials and proposed a chirality-valve device to be
used in nanoelectronics applications.
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APPENDIX A: Edelstein Effect in Two-dimensional Quantum Wires

We consider a uniform quantum wire with Rashba spin-orbit interaction to inves-
tigate the Edelstein effect (or current-induced spin accumulation) in 2DEGs. The
components of ~s in 2DEGs with Rashba spin-orbit interaction are proportional to
the applied electric field. Consider the electric field in x̂ direction, the current is in
the same direction; therefore, the spin polarization is perpendicular to the current
direction. The Hamiltonian of the system is

H =
p2
x+p2

y

2m +HR+Ud, (A.1)

where HR = (σxpy − σypx) represent the Rashba Hamiltonian, and the disorder
potential Ud is introduced by static impurities in the scattering region with a length
of L. In our numerical implementation, we use random on-site potential in the range
of [−Ud/2,Ud/2] in the scattering region. Also, U0 = µL−µR is applied between the
left and right semi-infinite leads connected to the system to generate current in the
x̂ direction. In order to have linear response approximation, U0 is chosen small. We
perform numerical simulation to calculate the different components of 〈si〉 averaged
over 100 disorder configurations. Our results are in agreement with spin components

(a) (b) (c)

Figure A.1 The spin accumulation components (a) 〈Sx〉, (b) 〈Sy〉, and (c) 〈Sz〉
(eV −1a−2) averaged over 100 disorder configurations for a quantum wire. Param-
eters used are α = 0.2, W = 94a, L = 150a, Ud = 2, and EF = 0.5. a = 1 is the
considered lattice constant.

calculated in Refs. [133] and [134] using Kubo formalism. As we see in Fig. A.1,
spin accumulation components in x̂ and ẑ directions (〈Sx〉 and 〈Sz〉) averaged over
100 disorder configurations vanish in the center of the scattering region and show
substantial values at boundaries and interfaces of leads. But 〈Sy〉 averaged over
100 disorder configurations is approximately constant, especially in the center of the
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disorder scattering region.

A.1 Extraction of Current-induced Spins

Spintronics devices like spin transistors have drawn a lot of attention in recent years.
One of the essential features for operating these devices is spin-polarized current or
local spin accumulation. In the previous section, we found that it depends on the
current flow, i.e., by turning off the current, no spin is accumulated in the scattering
region. So one way for having polarized spins, which does not decay and is not
influenced by spin-relaxation, is adding a side pocket with no or negligible spin-
orbit interaction to a 2D wire. Candidate spin extraction setup is a 2D quantum
wire with spin-orbit interaction and a side pocket attached to its top with negligible
spin-orbit interaction, see Fig. A.2. Spins are accumulated in the quantum wire
region, as already explained in the previous section. Now, spins are extracted with
the same polarization direction to the attached side pocket. By decreasing the width
of contact between the scattering region and side pocket, the polarization magnitude
of extracted spins increases [152], see Fig. A.3.

Figure A.2 A 2D quantum wire with Rashba spin-orbit interaction (yellow) with
an attached normal side pocket.

A.2 Voltage Probe

So far, we have calculated the spin density which is proportional to spin accumula-
tion. In this section, we find the relation between spin density (spin polarization)
and spin accumulation numerically and analytically. Hence, we consider a three-
terminal junction which is shown in Fig. A.4 where the third terminal is a voltage
probe and spin probe, i.e., the voltage at this terminal is adjusted such that the total

94



(a) (b) (c)

Figure A.3 Spin accumulation 〈Sy〉 (eV −1a−2) averaged over 1000 disorder config-
urations shown in Fig. A.2 with different length of contact between the scattering
region and the side-pocket, (a) LH = 240a, (b) LH = 180a, and (c) LH = 50a. Pa-
rameters used are a quantum wire with width W = 112a and L = 240a where an
abrupt drop of the spin-orbit interaction strength is considered from α = 0.25 for
y < 112a, to zero for y ≥ 112a, at the interface of the Rashba quantum wire and the
normal side pocket; LSP = L, WSP = 44a, Ud = 2, and EF = 0.4eV , see Fig. A.2.
a= 1 is the considered lattice constant.

charge current and spin current flowing into terminal 3 is zero, Iq3 = 0 and Is3 = 0.
According to the Landauer-Büttiker theory, we can write net charge-spin current Iαi
flowing into terminal i as follows,

Iαi = e

h

∑
β

(2Niδαβ−Tαβii )µβi −
e

h

∑
j 6=i,β

Tαβij µβj . (A.2)

Here, µ0
i = eVi where Vi is the voltage applied to terminal i. µβi for β = x,y,z

are components of the spin accumulation vector µ~si , spin potential along the corre-
sponding axis, i.e. µβi = µ~si = (µxi ,µ

y
i ,µ

z
i ) (as an example µzi = µ↑i −µ

↓
i ). I0

i = I and
Iβi = I~si are charge current and the components of spin current in terminal i , respec-
tively. Moreover, Tαβij is the spin-dependent transmission probabilities introduced
by Adagideli et al. [126]:

Tαβij =
∑

mεi,nεj

Tr[t†mnσα tmnσβ], (A.3)

where σα, α = x,y,z are Pauli matrices and σ0 is the identity matrix. The trace is
taken over the spin degree of freedom and tmn is a 2× 2 matrix of spin-dependent
transmission amplitudes from channel n in lead j to channel m in lead i.

Consider the case of µβ1 = µ0
1, µ

β
2 = µ0

2, and µβ3 is non zero, see Fig. A.4. To have
terminal 3 as a voltage probe and spin probe, the net charge current and spin
current flowing into lead 3 must be zero, Iβ3 = 0. Hence, by setting Eq. (A.2) = 0 for
terminal 3, we can find µ0

3 and µ~s3 in terms of µ0
1≡µ1 and µ0

2≡µ2 via calculating spin-
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dependent and energy-independent transmission probabilities (Eq. (A.3)). Fig. A.5

Figure A.4 A three-terminal junction where terminal three is a voltage probe and
spin probe.

illustrates that the spin density calculated in 2D quantum wires is approximately
spin accumulation over bias voltage between two reservoirs (leads). We find the
corresponding analytical relation in the rest of this section.

The equilibrium electron density n0 in semiconductors is given by

n0 =
∫ inf

− inf
dED(E)fFD(E), (A.4)

where D(E) is the density of states and fFD(E) is the Fermi-Dirac distribution func-
tion. The equilibrium density n0 can be written in simpler form in the degenerate
limit of 2DEG which fFD(E) = θ(µ−E):

n0 =D2D(E)µ, (A.5)

where D2D(E) = m∗

πh̄2 denotes the 2D density of states and µ is the chemical poten-
tial. Moreover, the equilibrium densities for spin-up, n+, and spin-down electrons,
n−, can be written as n+ = n− = n0

2 in nonmagnetic materials.

For small applied voltages and in diffusive systems, local quasichemical potential
µ(~r) is defined. This yields for 2DEGs

µ(~r) = πh̄2

m∗n(~r) , (A.6)

where n(~r) is the local electron density. However, the densities of spin-up and spin-
down electrons are not necessarily equal anymore, n+(~r) 6= n−(~r), and the difference
between the quasichemical potential of spin-up µ+(~r) = (2πh̄2

m∗ )n+(~r) and spin-down
electrons µ−(~r) = (2πh̄2

m∗ )n−(~r) is called spin accumulation µs(~r) = µ+(~r)−µ−(~r).
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Figure A.5 (a) Scattering region of a three-terminal junction, where the third termi-
nal is a scanning tunneling microscopy tip that hovers over the system. Spin density
and spin accumulation over Voltage for specified sites corresponding to (b) Red cut,
(c) Green cut, (d) Blue cut, and (e) Purple cut shown in panel (a).

Therefore, the spin accumulation is proportional to the spin density,

~µs = 2πh̄2

ms
~s. (A.7)
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APPENDIX B: Effective Surface Hamiltonians and Spin Operators

Surface states in 3D topological insulators decay exponentially into the bulk and
have energies in the bulk bandgap. We first consider a semi-infinite 3D topological
insulator system situated in z ≥ 0 (z ≤ 0) with a surface normal −ẑ (ẑ) pointing
away from the bulk. By considering a vanishing BC at the surface, eigenfunctions
corresponding to these states can be written as

φ∼ u(kx,ky,λ1,2)ei(kxx+kyy)(e±λ1z− e±λ2z) , (B.1)

where the ± sign in the ẑ direction corresponds to a system with a surface normal
in the ∓ẑ direction at z = 0. Here Re(λ1,2)> 0 and u(kx,ky,λ1,2) is a spinor that is
an eigenstate of the 3D topological insulator Hamiltonian described in Eq. (4.20),
corresponding to kx = ky = 0 and kz =−iλ1,2:

u±ẑ = 1√
2



√
1 + ξ

∓i
√

1− ξ
0
0

 , v±ẑ = 1√
2


0
0
√

1 + ξ

±i
√

1− ξ

 (B.2)

with energy dispersion to the lowest order of k given by

E± = C+ ξM0±A2
√

1− ξ2 k⊥, (B.3)

where k2
⊥ = k2

x + k2
y. Hence, the effective surface Hamiltonian as given in the text

is obtained through projecting the 3D topological insulator Hamiltonian in basis
states given in Eq. (B.1) and using the spinor eigenstates stated in Eq. (B.2). To
lowest order in kx and ky , this results in

H±ẑ = C+ ξM0±A2
√

1−ξ2

 0 ikx+ky

−ikx+ky 0

 , (B.4)

which is introduced as Eq. (4.1) in the paper. The real spin operators for the
ẑ surface are formed by projecting the spin operators in the basis of bulk states,
Eq. (4.21), onto the two surface states

sx = σx, sy = σy, sz = σz, (B.5)
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which is stated as Eq. (4.2). The effective surface Hamiltonians and real spin oper-
ators corresponding to other surfaces can be calculated similarly.
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APPENDIX C: Mean Free Time Estimation

We proceed with a Fermi’s "golden rule" estimation of the mean free path. The sur-
face modes are four-spinors with k-dependent components [238] due to (pseudo)spin-
momentum coupling. Such k dependence can lead to substantial differences between
lifetime and transport time [239]. In the case of uncorrelated disorder, however, the
difference is only an O(1) factor [175] and thus irrelevant for our estimations. We
thus work exclusively with band-bottom k= 0 spinors. We consider a topological in-
sulator slab extended in x̂ and ŷ directions, having a length L and a width W along
the x̂ direction and ŷ direction, respectively, and a thickness H along the ẑ direc-
tion. We further assume white-noise disorder of the form 〈V (r)V (r′)〉= γ δ(r−r′).
Therefore, using spinors stated in Eq. (B.2) leads to

〈
|Vkk′|2

〉
= γ

LW

α

β2 , (C.1)

where α =
∫H
0 dzf2(z), β =

∫H
0 dzf(z) with f(z) = (e−λ∗1z − e−λ∗2z)(e−λ1z − e−λ2z).

We use Fermi’s "golden rule" to derive the inverse mean free time and find

1
τ

=
∑
k′

1
τ(k→ k′) = 2π

h̄

∑
k′
〈|Vkk′|2〉δ(Ek−Ek′) (C.2)

for surface states of a disordered 3D topological insulator with semi-infinite boundary
condition in the ẑ direction, i.e., H −→∞. Based on Eq. (B.3), we have

δ(E+
k −E

+
k′) = 1

A2
√

1− ξ2
δ

k′⊥− E+−C− ξM0

A2
√

1− ξ2

 . (C.3)

Hence, the resulting total ensemble-averaged mean free time of surface states on the
ẑ surface reads

1
τ

= 2γ
h̄

E+−C− ξM0
A2

2(1− ξ2)
α

β2 . (C.4)

Here, since λ’s are complex conjugate partners in our system, λ1 = λ∗2 = ã+ ib̃, we

find α = 3b̃4

8ã5 + 10ã3b̃2 + 2ãb̃4
and β = b̃2

ã3 + ãb̃2
.

Similarly, for an energy dispersion, to the lowest order of k, for ŷ plane surface
states,

E± = C+ηM0±
√

1−η2
√
A2

2k
2
x+A2

1k
2
z , (C.5)
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we obtain the total ensemble-averaged inverse mean free time

1
τ
' 2γ

h̄

E+−C−ηM0
A2

2(1−η2)
α′

β′2
, (C.6)

where we approximate the Fermi velocity, vF = vF,x(ŷ), at this surface based on
Eq. (C.5) since A2 > A1. Note that α(β) and α′(β′) are different values since the
depths of the surface states into the bulk in different surfaces are not the same
according to the parameters of the Hamiltonian.

According to our mean free time and Fermi velocities derivations, Eqs. (4.31) and
(4.32) yield

(
〈Sz〉

d〈n〉/dx

)
−ŷ

=
η(A2

√
1−η2)3

E+−C−ηM0

β′2

4α′γ


−ŷ

, (C.7)

(
〈Sy〉

d〈n〉/dx

)
+ẑ

=
 (A2

√
1− ξ2)3

E+−C− ξM0

β2

4αγ


+ẑ

, (C.8)

where γ = U2
0a

3 in the discretized system.
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APPENDIX D: η = 0 case

Here we provide figures for the case D2 = 0 leading to η = 0. It is clearly seen that
while there is negligible spin accumulation on the side of a 3D topological insulator
[Fig. D.1(a)] spin extraction is non-negligible in the side pocket and spin polarization
can be switched via a gate potential [see Figs. D.1(b) and D.1(c)].

(a) (b) (c)

Sz  (eV-1a-2)

z 
(a

)

y (a) y (a) y (a)

Figure D.1 Current-induced spin polarization into a side pocket at the side surface
when η= 0. Spatial profile of the averaged spin polarization 〈Sz(y,z)〉 (averaged over
1000 disorder configurations) along cross sections in the x̂ direction. (a) 〈Sz(y,z)〉
corresponds to the system shown in Fig. 4.2(a). (b), (c) 〈Sz(y,z)〉 corresponds to
the system shown in Fig. 4.5(a). In panels (b) and (c) the side pockets, WSP =
10a, are doped to hole bands (Vgate =−0.7eV) and electron bands (Vgate = 0.7eV),
respectively. Common parameters are L= 30a,W = 30a, H = 20a, U0 = 0.5eV, and
EF = 0.15eV, which is in the bulk gap. We set D2 = 0 in all parts of the system.
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APPENDIX E: Spin-charge Coupled Dynamics for Topological
Insulator ẑ Surface

The quasiclassical (Eilenberger) equation for a helical metal with a single Dirac cone
in the diffusive regime (ωτ � 1 and q`� 1) with ` = vF τ the electronic mean free
path (vF is the Fermi velocity and τ is the momentum scattering time) reads [175]

∂tg+ vF
2 {ẑ×σ ·∇,g}+ ivFkF [k̂× ẑ ·σ,g] =−1

τ
g+ 1

τ
〈g〉+ 1

2τ {k̂× ẑ ·σ,〈g〉}, (E.1)

where 〈· · ·〉 =
∫

dφ/2π · · · is the angle average in the momentum space. The quasi-
classical Green’s function g = g(r, t, ε,φ) is a 2× 2 matrix in the spin space, and it
is a slowly varying function of space and time coordinates (r, t) with the energy ε,
and the momentum angle φ= arctan(ky/kx). This can be solved with the ansatz

g = g0(σ0 + k̂× ẑ ·σ), (E.2)

where g0 = g0(r, t, ε,φ) is a scalar function. In the diffusive regime, the Green’s
function can be expanded in the spherical harmonics as follows

g = gs+gp · k̂ (E.3)

with gs the s-wave (isotropic) component, gp the p component (like a p-orbital).
Here, we neglect the higher orders since we assume that each additional spherical
harmonic is smaller than the previous term. To get the leading order form of the
diffusion equation - where no gradient of the spins appear - only s- and p-waves need
to be considered. Thus we enforce the following condition,

〈k̂ik̂jg0〉 ≈
δij
2 〈g0〉 . (E.4)

To have the spin space-gradient terms, we should consider d-wave order, which is
beyond our assumption, Eq. (E.4). We obtain these terms later in this section.

Eq. (E.1) can be rewritten in the matrix form,

(1 + τ∂t)g =−aMg−Lg+N 〈g〉 , (E.5)

where a= 2vFkF τ and g = (g̃, gz) = (g0,gx,gy,gz) is a four-vector the components of
which are obtained by taking the trace g0 = Tr[g] and gi = (1/2)Tr[σig] for i= x,y,z.
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M , L, N are 4×4 matrices defined as follows,

M =
 0 K

−Kt 0

=


0 0 0 0
0 0 0 k̂x

0 0 0 k̂y

0 −k̂x −k̂y 0

 , K =


0
k̂x

k̂y

 ,

L=
L̂ 0

0 0

=


0 `∂y −`∂x 0
`∂y 0 0 0
−`∂x 0 0 0

0 0 0 0

 ,

N =
N̂ 0

0 1

=


1 k̂y −k̂x 0
k̂y 1 0 0
−k̂x 0 1 0

0 0 0 1

 .

Moreover, the normalization KtK = 1 gives rise to

M2 =−
KKt 0

0 KtK

=−


0 0 0 0
0 k̂2

x k̂xk̂y 0
0 k̂yk̂x k̂2

y 0
0 0 0 1

 ,

and
M3 =−M, (k̂2

x+ k̂2
y = 1).

The angle average of Eq. (E.1) reads

(1 + τ∂t)〈g〉=−a〈Mg〉−L〈g〉+ 〈g〉 , (〈N〉= 1). (E.6)

To get the equation of motion of 〈Mg〉 term, we multiply Eq. (E.5) by M and then
take the angle average (〈MN〉= 0)

(1 + τ∂t)〈Mg〉=−a〈M2g〉−〈MLg〉 . (E.7)

We repeat the same procedure for the 〈M2g〉 term (recall M3 =−M)

(1 + τ∂t)〈M2g〉= a〈Mg〉−〈M2Lg〉+ 〈M2〉〈g〉 . (E.8)
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The explicit form of Eq. (E.6) yields

τ∂t 〈g̃〉=−a〈Kgz〉− L̃〈g̃〉 , (E.9)

τ∂t 〈gz〉= a〈Ktg̃〉 . (E.10)

Similarly, Eq. (E.7) leads to

(1 + τ∂t)〈Kgz〉=−a〈M̃2g̃〉 , (E.11)

−(1 + τ∂t)〈ktg̃〉= a〈gz〉− `(∂x 〈k̂yg0〉−∂y 〈k̂xg0〉). (E.12)

Finally Eq. (E.8) can be written as

(1 + τ∂t)〈M̃2g̃〉= a〈Kgz〉−〈M̃2L̃g̃〉+ 〈M̃2〉〈g̃〉 , (E.13)

−(1 + τ∂t)〈gz〉=−a〈Ktg̃〉−〈gz〉 . (E.14)

After some algebra calculations and considering a� 1 in a diffusive regime, we find

τ∂t 〈g0〉= `(∂x 〈gy〉−∂y 〈gx〉), (E.15)

τ∂t 〈gx〉= `(∂y 〈k̂2
xg0〉−∂x 〈k̂xk̂yg0〉)−〈k̂2

x〉〈gx〉−〈k̂xk̂y〉〈gy〉− `∂y 〈g0〉 , (E.16)

τ∂t 〈gy〉= `(∂y 〈k̂yk̂xg0〉−∂x 〈k̂2
yg0〉)−〈k̂yk̂x〉〈gx〉−〈k̂2

y〉〈gy〉+ `∂x 〈g0〉 , (E.17)

〈gz〉= 1
2kF

(∂x 〈k̂yg0〉−∂y 〈k̂xg0〉). (E.18)

Using the condition stated earlier, 〈k̂ik̂jg0〉 '
1
2δij 〈g0〉, we have

∂t 〈g0〉= vF (∂x 〈gy〉−∂y 〈gx〉), (E.19)

∂t 〈gx〉=−vF2 ∂y 〈g0〉−
1
2τ 〈gx〉 , (E.20)
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∂t 〈gy〉= vF
2 ∂x 〈g0〉−

1
2τ 〈gy〉 . (E.21)

Therefore, spin-charge coupled dynamics including the first-order of the space and
the time derivatives with the aid of charge density definition, n=−N0

2
∫
dε〈g0〉, and

spin density definition, s=−N0
4
∫
dε〈g〉, for ẑ surface of a 3D topological insulator

are
∂tn−2vF (∂xsy−∂ysx) = 0, (E.22)

∂tsx+ vF
4 ∂yn+ 1

2τ sx = 0, (E.23)

∂tsy−
vF
4 ∂xn+ 1

2τ sy = 0. (E.24)

Our findings are consistent with Schwab et al. results [175]. For finding higher order
terms, we start from Eq. (E.5), (1+τ∂t)g =−aMg−Lg+N 〈g〉 and ignore τ∂t since
τ∂t� 1. Therefore, we have

g0 = `(∂xgy−∂ygx) + 〈g0〉+ k̂y 〈gx〉− k̂x 〈gy〉 , (E.25)

gx =−ak̂xgz− `∂yg0 + k̂y 〈g0〉+ 〈gx〉 , (E.26)

gy =−ak̂ygz + `∂xg0− k̂x 〈g0〉+ 〈gy〉 , (E.27)

gz = a(k̂xgx+ k̂ygy) + 〈gz〉 . (E.28)

Similarly, we find from Eq. (E.5) by ignoring the time and the space derivatives,

g = (1 +aM)−1N 〈g〉 , (E.29)

where

(1 +aM)−1 = 1
1 +a2


1 0 0 0
0 1 +a2k̂2

y −a2k̂xk̂y −ak̂x
0 −a2k̂xk̂y 1 +a2k̂2

x −ak̂y
0 ak̂x ak̂y 1

 , (E.30)
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and

(1 +aM)−1N = 1
1 +a2


1 k̂y −k̂x 0

(1 +a2)k̂y 1 +a2k̂2
y −a2k̂xk̂y −ak̂x

−(1 +a2)k̂x −a2k̂xk̂y 1 +a2k̂2
x −ak̂y

0 ak̂x ak̂y 1

 . (E.31)

Therefore, we find the following relations (recall a� 1)

gx = k̂y 〈g0〉+ k̂2
y 〈gx〉− k̂xk̂y 〈gy〉 , (E.32)

gy =−k̂x 〈g0〉− k̂xk̂y 〈gx〉+ k̂2
x 〈gy〉 . (E.33)

Then we multiply Eqs. (E.25) - (E.28) as well as Eqs. (E.32) - (E.33) by k̂2
x, k̂2

y, and
k̂xk̂y and take the angle average. After some lengthy algebra calculations, we find

τ∂t 〈gx〉=−1
2 〈gx〉−

`

2∂y 〈g0〉+
`2

4 ∂x∂y 〈gy〉+
`2

8 (∂2
x+ 3∂2

y)〈gx〉 , (E.34)

τ∂t 〈gy〉=−1
2 〈gy〉+

`

2∂x 〈g0〉+
`2

4 ∂x∂y 〈gx〉+
`2

8 (∂2
y + 3∂2

x)〈gy〉 . (E.35)

By using definitions of charge and spin densities n = −N0
2
∫
dε〈g0〉 and s =

−N0
4
∫
dε〈g〉, we obtain

∂tsx =− 1
2τ sx−

vF
4 ∂yn+ D

2 ∂x∂ysy + D

4 (∂2
x+ 3∂2

y)sx, (E.36)

∂tsy =− 1
2τ sy + vF

4 ∂xn+ D

2 ∂x∂ysx+ D

4 (∂2
y + 3∂2

x)sy, (E.37)

where D = v2
F τ

2 .
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APPENDIX F: Crystal Structure and Atomic Orbitals

In this section, we will review the crystal structure and the basis states around the
Fermi level at the Γ point of Bi2Se3 [155, 171]. The ẑ axis is the growth direction,
and the structure can be considered a repeating unit, quintuple layer, in which five
atomic layers are stacked in different orders. To find the physical band structure of

Figure F.1 The quintuple layer structure of the Bi2Se3. The red rectangle denotes
the stacking order of Se and Bi atomic layers along the ẑ direction where the Se2
atoms are considered inversion centers. Adopted form [155] with permission from
the Springer Nature.

Bi2Se3, we start from the atomic orbitals of Bi and Se atoms. Since the electronic
configuration of Bi and Se are 6s26p3 and 4s24p4, respectively, the states close to the
Fermi energy are dominantly made up of p orbitals. The coupling between layers
within a quintuple (covalent-ionic) is stronger than the bonding between quintuple
layers (van der Waals). Hence, we focus on chemical bonding in a quintuple layer
to find states near the Fermi level. As it is shown in Fig. F.1, Se2 atoms can be
considered inversion centers and Bi atoms are sandwiched between Se layers, so the
strongest coupling is between Bi and Se layers which causes level repulsion and leads
to pushing up Bi energy levels and pushing down Se energy levels and forming the
new hybridized states {|B〉, |B′〉} and {|S〉, |S′〉, and |S0〉}, respectively, see Fig. F.2,
phase I. Because of the inversion symmetry in the system, hybridized states split
into bonding and antibonding states with definite parity. The antibonding states
have higher energy than bonding ones, which are illustrated in phase II of Fig. F.2
and have the form of

|P1±,α〉= 1√
2

(|Bα〉∓ |B′α〉), |P2±,α〉= 1√
2

(|Sα〉∓ |S′α〉), (F.1)
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where α = px,py,pz, and the upper index denotes the parity. We mainly focus on
states close to the Fermi level, P1+

x,y,z and P2−x,y,z.

Figure F.2 Schematic of the band structure of Bi2Se3. Originating from the atomic
orbitals of Bi and Se, and the following four stages: (I) the hybridization of Bi
and Se orbitals, (II) the chemical bonding, (III) the crystal field splitting, and (IV)
the effect of the spin-orbit coupling. Adopted form [171] with permission from the
American Physical Society.

Furthermore, the atomic orbitals have full rotation symmetry, but this symmetry can
be broken by the crystal field. Since the crystal has a layered structure, the growth
direction is in the ẑ direction, which is different from the x̂ or ŷ direction in the
atomic plane, there is an energy splitting between pz and px,y orbitals for both P1+

and P2− states. Hence, the conduction band mainly consists of P1+
z (corresponding

to the hybridized states |B〉 and |B′〉) and the valence band mainly includes P2−z
(corresponding to the hybridized states |S〉 and |S′〉), see Fig. F.2, phase III. Finally,
we consider the effect of the spin-orbit coupling on the atomic orbitals, which lifts the
two-fold degeneracy of the aforementioned states. We go one step back and work
with states |Λα,ms〉 with Λ = P1+,P2−, α = px,py,pz, and ms = ±1/2 the spin
quantum number in the ẑ direction. We transform the basis (px,py) to a basis (p±)
with definite orbital angular momentum in the ẑ direction, ml = 0,±1. By looking at
spherical harmonic tables we have p+≡ p1 =− 1√

2(px+ipy), p−≡ p−1 = 1√
2(px−ipy),

and p0 = pz. Accordingly, we write states |Λ,ml,ms〉 in terms of the previous basis:

|Λ,p+,ms〉 ≡ |Λ,1,ms〉=− 1√
2

(|Λpx ,ms〉+ i |Λpy ,ms〉),

|Λ,pz,ms〉 ≡ |Λ,0,ms〉= |Λpz ,ms〉 , (F.2)

|Λ,p−,ms〉 ≡ |Λ,−1,ms〉= 1√
2

(|Λpx ,ms〉− i |Λpy ,ms〉 .
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Spin-orbit coupling operator can be written in terms of the raising and lowering
operators of orbital and spin angular momentum, L± =Lx± iLy and S± = Sx± iSy:

S.L = 1
2(S+L−+S−L+) +SzLz. (F.3)

We apply this operator on the states written in the new basis. Hence, we see that
the total angular momentum, mj = mL +ms is conserved because the spin-orbit
coupling is rotationally invariant, and |Λ,ml,ms〉 states are also eigenstates of spin-
orbit coupling term in the Hamiltonian. Within this basis, there are nonzero matrix
elements of spin-orbit Hamiltonian [171], such as

〈Λ,1,−1
2 |HSO |Λ,0,

1
2〉= λΛ√

2
, (F.4)

where the value λΛ is a linear combination of the spin-orbit coupling strength for Bi
and Se and depends on Bi and Se orbitals mixture in each state. The sign of λΛ is
always positive since the potential is attractive for atoms. HΛ,SO is block diagonal
because spin-orbit term couples states with the same total angular momentum and
each block corresponds to a different angular momentum projection mj in the basis
|Λ,1, 1

2〉, |Λ,1,−
1
2〉, |Λ,0,

1
2〉, |Λ,−1, 1

2〉, |Λ,0,−
1
2〉, and |Λ,−1,−1

2〉. Therefore, after
taking into account spin-orbit coupling, the eigenstates are given by

|Λ,±3/2〉 = |Λ,±1,±1/2〉 (F.5)

|Λ+,±1/2〉 = uΛ
+ |Λ,±1,∓1/2〉+vΛ

+ |Λ,0,±1/2〉 (F.6)

|Λ−,±1/2〉 = uΛ
− |Λ,±1,∓1/2〉+vΛ

− |Λ,0,±1/2〉 (F.7)

with eigenenergies as follows: EΛ
3
2
, E

Λ+
1
2

, and E
Λ−
1
2

. Here, uΛ
± =

∆EΛ±
√

(∆EΛ)2 +λ2
Λ/2√

N±
, vΛ
±= λΛ√

2N±
withN±=λ2

Λ +2∆E2
Λ±2∆EΛ

√
∆E2

Λ +λ2
Λ/2

and ∆EΛ = (EΛ,x−EΛ,z−λΛ/2)/2. Therefore,

EΛ
3
2

= EΛ
x + λΛ

2 , E
Λ±
1
2

=
EΛ,x+EΛ,z−λΛ/2

2 ±
√

(∆EΛ)2 +λ2
Λ/2. (F.8)

Finally, the states |P1+
−,±1

2〉 and |P2−+,±1
2〉 are close to the Fermi energy and they

are inverted due to the spin-orbit interaction; i.e., |P1+
−,±1

2〉 is pushed down while
|P2−+,±1

2〉 is pushed up in energy. These states are related to hybridized states
stated in Eq. (F.1) and located below and above the Fermi energy, respectively. In
the low energy limit, Bi2Se3 is in the topological phase because of the band inversion.
For simplicity, we write |Bip,±1

2〉 ≡ |P1+
−,±1

2〉, |Sep,±1
2〉 ≡ |P2−+,±1

2〉, u1 ≡ uP1+
− ,

u2 ≡ uP2−
+ , v1 ≡ vP1+

− , and v2 ≡ vP2−
+ .
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APPENDIX G: Further Details about Hyperfine Interactions
Calculations

In this section, we briefly explain the applied method and approximations, which are
similar to Lunde and Platero’s approach and assumptions [209], to find the hyperfine
interaction matrix elements.

G.1 Linear Combination of Atomic Orbitals Method for Bi2Se3

Family Materials

Valence and conduction bands for semiconductors, schematically shown in [213]
stem from antibonding s-orbitals and bonding p-orbitals, respectively. Gueron es-
timates InSb conduction bands through using the LCAO method and considers a
minus sign between atomic orbitals of In and Sb since the wavefunction should have
s-symmetry [214]. The lattice periodic functions for GaAs conduction band (elec-
tron band with s-symmetry) and valence band (heavy hole band with p-symmetry)
are also calculated through utilizing the LCAO method [189]. In the Bi2Se3 family
materials, we have a quintuple layer including five atomic layers of two different
atoms. Hence, there are five atoms in one unit cell, e.g., in Bi2Se3 there are two
equivalent Se atoms (Se1 and Se1′), two equivalent Bi atoms (Bi1 and Bi1), and
one Se atom (Se2), which is not similar to the other Se atoms, see Fig. F.1. There-
fore, the lattice periodic functions of Bi2Se3 via applying the LCAO method are as
follows,

wBip,± 1
2
(r) =NBip,± 1

2

[
αSe1

BipΨSe1
Bip,± 1

2
(r−d)−αBi1

BipΨBi1
Bip,± 1

2

(
r− d2

)
(G.1)

+αSe2
BipΨSe2

Bip,± 1
2
(r)−αBi1′

Bip ΨBi1′
Bip,± 1

2

(
r+ d2

)
+αSe1′

Bip ΨSe1′
Bip,± 1

2
(r+d)

]
,

wSep,± 1
2
(r) =NSep,± 1

2

[
αSe1

SepΨSe1
Sep,± 1

2
(r−d) +αBi1

SepΨBi1
Sep,± 1

2

(
r− d2

)
(G.2)

+αSe2
SepΨSe2

Sep,± 1
2
(r)−αBi1′

Sep ΨBi1′
Sep,± 1

2

(
r+ d2

)
−αSe1′

Sep ΨSe1′
Sep,± 1

2
(r+d)

]
,

where Ψi
Bi(Se)p,±

1
2
for i = Se1, Bi1, Se2, Bi1′, and Se1′ is atomic-like wavefunctions

centered on the ith atom. The symmetry of the atomic wavefunctions follows the
symmetry of their corresponding bands. The atoms are connected by the vector
d, and the constants NBi(Se)p,±

1
2
is determined by the normalization of the lattice

periodic function. The amount of electron sharing regarding each atom in the unit
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cell is described by α’s, which satisfy ∑i |αi|2 = 1 for i ∈ {Se1,Bi1,Se2,Bi1′,Se1′}
and the spatial distribution of the wavefunctions for conduction and valence bands
can be found for each atom in the unit cell [215]. The relative signs between the
atomic wavefunctions originate from the bonding and antibonding properties of the
bands and the parity, which corresponds to the symmetric and antisymmetric linear
combination of bonding or antibonding orbitals with respect to inversion center
(Se2 atom) [240]. Here the band regarding Sep with odd parity is considered as
an antisymmetric LCAO including bonding superposition of Se and Bi orbitals on
both sides of the inversion center (Se2), where the sign of each side wavefunction
is opposite to the other one. Also, Bip with even parity with respect to Se2 is
considered as a symmetric superposition of antibonding orbitals on both sides of the
inversion center. Unlike materials such as HgTe [209], the signs used in Eqs. (G.1)
and (G.2) based on properties of bands are important in the rest of our calculations
regarding the matrix elements of hyperfine interactions. The LCAO method can be
also used for s orbitals contributions to the lattice periodic functions.

G.2 Hyperfine Interaction Calculations via Linear Combination of
Atomic Orbitals Method

We can change the integration of interaction matrix elements, Eq. (G.4), over the
whole system volume into a summation of integrals over each unit cell volume,

〈ϕk,υ,τ |HHF,i |ϕk′,υ′,τ ′〉 '
va
V

∑
n

∑
Rn
ei(k

′−k)·Rn
∫
va

dρw∗
υ,τ 1

2
(ρ)hi,nwυ′,τ ′ 12 (ρ), (G.3)

where ρ is the vector within the mth unit cell, so every point in space can be written
in the form of r =Rn+ρ. We have utilized the fact that the lattice periodicity of
the lattice periodic functions do not change considerably on the atomic scale, i.e.,
wυ,τ 1

2
(Rn+ρ)' wυ,τ 1

2
(ρ) for all Rn. Moreover, the integral over ρ is over the nth

unit cell, whereas hi,n is the hyperfine interaction operator for the nth nuclei with
nonzero spin that is located atRn. Furthermore, we can write the interaction matrix
elements without the unit cell position dependence since hyperfine interactions are
local in space,

〈ϕk,υ,τ |HHF,i |ϕk′,υ′,τ ′〉= va
V

∑
n
ei(k

′−k)·Rn
∫
va

dρw∗
υ,τ 1

2
(ρ)hi,nwυ′,τ ′ 12 (ρ). (G.4)

Here, we interchange the sum over the nonzero spin-carrying lattice with the integral
over the unit call volume because random lattice points have nonzero nuclear spins.

Now, we can calculate integral over the unit cell part for finding matrix elements,
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〈ϕk,υ,τ |HHF,i |ϕk′,υ′,τ ′〉 through utilizing LCAO approach. For instance, the unit
cell integral for a nonzero spin on the nth Bi1 nucleus located on ρ = d/2 with a
contribution of p-orbital in |Bip,±1

2〉 state is
∫
va

dρw∗Bip,τ 1
2
(ρ)hi,nwBip,τ ′ 12

(ρ)'N∗Bip,τ 1
2
NBip,τ ′ 12

|αBi1
Bip |

2 (G.5)

×
∫
va

dρ
[
ΨBi1

Bip,τ 1
2

(
ρ− d2

)]∗
hi,nΨBi1

Bip,τ ′ 12

(
ρ− d2

)
.

Therefore, we have obtained the way to find the matrix elements
〈ϕk,E,τ |HHF,i |ϕk′,E,τ ′〉 for all three kinds of hyperfine interactions. Similarly, the
other forms of matrix elements 〈ϕk,E,τ |HHF,i |ϕk′,H,τ ′〉 and 〈ϕk,H,τ |HHF,i |ϕk′,H,τ ′〉
can be calculated. Moreover, integrals including nonlocal contributions are negli-
gible as it is found that nonlocal contributions are smaller at least two orders of
magnitude compared to local contributions for GaAs [189].

We evaluate the integral of lattice periodic functions over the unit cell using the
LCAO approach. We use Eqs. (G.1) and (G.2), and separate the angular and radial
parts of the atomic wavefunctions ΨBi(Se)p,±

1
2
(r) = Rjn(r)YBi(Se)p,±

1
2
(θ,φ). This

approximation is valid because the interactions are important only within the unit
cell. Hence, the integral for Bi1 atom can be written as

∫
va

dρ
[
ΨBi1

Bi(Se)p,τ
1
2

(
ρ− d2

)]∗
hi,nΨBi1

Bi(Se)p,τ
′ 1

2

(
ρ− d2

)
(G.6)

≈
∫ rmax

0
dr r2

∫ 2π

0
dφ
∫ π

0
dθ sin(θ)

[
ΨBi1

Bi(Se)p,τ
1
2
(r)

]∗
hi,nΨBi1

Bi(Se)p,τ
′ 1

2
(r).

The radial part of the integral yields effective interaction strength, which we call
AAtomic
p,jn for a given isotope. The expression for the p-like atomic coupling strength

deducting from radial and including coefficients in h2(3),n is

AAtomic
p,jn ≡ h̄2γ2

〈
1
r3

〉jn
r

, (G.7)

where γ2 is defined in the Appendix H, the term
〈

1
r3

〉jn
r

only depends on the type
of the atom, jn, that is determined by the following integral,

〈
1
r3

〉jn
r

≡
∫ rmax

0
dr |R

jn(r)|2
r

. (G.8)

Here, this integral is evaluated numerically for rmax ≥ a0, with a0 the Bohr radius.
The angular part of the wavefunction is not included in Eq. (G.8). The reason
is that with this definition of p-like hyperfine coupling strength, both dipole-dipole
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like coupling (HHF,2) and electron orbital momentum-nuclear spin coupling (HHF,3)
have the same effective coupling strength on the atomic level since the radial part
of both interactions are identical, and they only differ in their the angular parts.
Moreover, the atomic wavefunctions can be presented as a product of an angular
part and radial part. The angular part of Bi-based topological insulator states
YBi(Se)p,±

1
2
(θ,φ) can be written in the from of spherical harmonics Ym

l (θ,φ) and the
spin-1/2 (|↑〉 and |↓〉) based on Eqs. (5.8)-(5.11),

YBip, 12
(θ,φ) = u1Y 1

1 |↓〉+v1Y 0
1 |↑〉 , (G.9)

YSep, 12
(θ,φ) = u2Y 1

1 |↓〉+v2Y 0
1 |↑〉 , (G.10)

YBip,− 1
2
(θ,φ) = u1Y−1

1 |↑〉+v1Y 0
1 |↓〉 , (G.11)

YSep,− 1
2
(θ,φ) = u2Y−1

1 |↑〉+v2Y 0
1 |↓〉 . (G.12)

These states are eigenstates of Jz = Lz +Sz (with eigenvalue h̄mj), J2 = (L + S)2

(with j = 3/2), L2 (with l = 1 due to the p-like states), and S2 (with s = 1/2). We
note that we follow the signs (phase) convention for |3/2,±1/2〉 states to write the
angular part of states mentioned above in terms of spherical harmonics [241].

Furthermore, we can also rewrite h2,n as a product of radial and angular parts,

h2,n = µ0
4πγeγjn

1
r3


(

3z2− r2

2r2

)[
2SzIz,n−

1
2(S+I−,n+S−I+,n)

]

+3
2

(
x2−y2

r2

)
1
2(S+I+,n+S−I−,n) + 3xy

r2 (SxIy,n+SyIx,n)

+3xz
r2 (SxIz,n+SzIx,n) + 3yz

r2 (SyIz,n+SzIy,n)

,
(G.13)

which is the same as Eq. (C3) in Lunde and Platero’s paper [209]. Moreover, AAtomic
P,jn

includes the radial part of states written in Eq. (G.8) and the other parameters, not
the angular part. So, the terms in the curly bracket of Eq. (G.13) corresponds to
the remained angular part.

To find the HHF,3 interaction related to the p-like states in Bi-based topological
insulator band model, the integrals in the spherical approximation again can be
separated into the radial part (see Eq. (G.8)) and angular part (see Eq. (G.6)). To
find this hyperfine interaction, we use Eqs. (G.9)-(G.12) and terms defined in (H.9)-
(H.12) as well as rewriting Ln · In = Lz,nIz,n+ 1

2(L+,nI−,n+L−,nI+,n).
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To calculate the matrix element of contact hyperfine interaction, we start with

〈ϕk,Bi(Se)s,τ
1
2
|HHF,i |ϕk′,Bi(Se)s,τ

′ 1
2
〉=va

V

∑
n

∑
Rn
ei(k

′−k)·Rn (G.14)

×
∫
vuc
dρ

[
uBi(Se)s,τ

1
2
(ρ)

]∗
hi,nuBi(Se)s,τ

′ 1
2
(ρ),

where only s-orbital contributions to the lattice periodic functions are considered.
The uBi(Se),± 1

2
(r) can be written as a multiplication of the orbital part and the

spin part, uBi(Se)s,+(−) 1
2
(r) = uBi(Se)s

(r) |↑ (↓)〉. S.In = 1
2(S+I−,n+S−I+,n)+SzIz,n,

therefore,

〈ϕk,Bi(Se)s,τ
1
2
|HHF,i |ϕk′,Bi(Se)s,τ

′ 1
2
〉=

∑
n

∑
Rn

ei(k
′−k)·Rn

V

×As,jn
1
h̄

[
τ

1
2Iz,nδτ,τ

′+ 1
2Iτ

′,nδτ,−τ ′
]
, (G.15)

where I±,n≡ Ix,n± iIy,n are the ladder operators of nuclear spin. As,jn is the contact
hyperfine interaction coupling,

As,jn ≡ va(uBi(Se)s
(Rn))∗uBi(Se)s

(Rn)AAtomic
s,jn (G.16)

'N∗Bi(Se)s
NBi(Se)s

(αjnBi(Se)s
)∗αjnBi(Se)s

(Ψjn
Bi(Se)s

(0))∗Ψjn
Bi(Se)s

(0),

where AAtomic
s,jn ≡ γ1 for the nuclear spin at site n of isotope j, see Eq. (H.1) for

definition of γ1.
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APPENDIX H: Details on Hyperfine Interaction Coefficients

The prefactors in Eqs. (5.5)- (5.7) are defined as follows,

γ1 = µ0
4π

8π
3 γeγjn , (H.1)

γ2 = µ0
4πγeγjn . (H.2)

Here µ0 is the vacuum permeability, γe = geµB/h̄ and γjn = gjnµN/h̄ are the gyro-
magnetic ratios of the electron and the nth nuclear spin of the isotope j, respectively,
where gjn (ge ' 2) is the nuclear (electron) g-factor, µN (µB) is the nuclear (Bohr)
magneton.

Definitions of Ai terms and the p-like hyperfine couplings, Ap,jn , used in Eq. (5.18),
the H̃HF,2 interaction corresponding to the p-like states in the band model of Bi-
based topological insulators, are as follows,

A1 = u2
1 + 2v2

1−3
√

2(u1v1), (H.3)

A2 = u1u2 + 2v1v2−
3√
2

(u1v2 +u2v1), (H.4)

A3 = u2
2 + 2v2

2−3
√

2u2v2, (H.5)

A4 = −3u2
1−v2

1 + 3√
2
u1v1, (H.6)

A5 = −3u1u2−v1v2 + 3
2
√

2
(u1v2 +u2v1), (H.7)

A6 = −3u2
2−v2

2 + 3√
2
u2v2, (H.8)

We consider that u1(2) and v1(2) are real numbers, see Appendix F.

The p-like hyperfine interaction couplings are defined as follows,

A++
p,jn ≡ va|NBip |2|α

jn
Bip|

2AAtomic
p,jn , (H.9)

A−−p,jn ≡ va|NSep|2|α
jn
Sep|

2AAtomic
p,jn , (H.10)

A+−
p,jn ≡ vaN

∗
BipNSepsgn(αjnBip)sgn(αjnSep)(αjnBip)∗αjnSepA

Atomic
p,jn , (H.11)

A−+
p,jn = (A+−

p,jn)∗, (H.12)

where NBi(Se)p
is the normalization constant for lattice periodic functions that are

independent of the spin sign since the atomic wavefunctions for different spin signs
are identical, see Eqs. (5.8)- (5.11). Here αjnBi(Se)p

describes the electron sharing of
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the associated atom in the unit cell, and sgn(αjnBi(Se)p
) corresponds to the signs of

this term in the atomic wavefunctions, see Eqs. (G.1) and (G.2), stemming from the
bonding and antibonding properties of the bands as well as the parity.

Bi terms corresponding to the Eq. (5.20) are defined as follows

B1 = u2
1, B2 = u1u2, B3 = u2

2, B4 =
√

2u1v1, (H.13)

B5 = 1√
2

(u1v2 +u2v1) B6 =
√

2u2v2.

The position dependent s-like hyperfine couplings, As,jn , used in Eq. (5.24) are

A++
s,jn ≡ va|NBis|2|α

jn
Bis |

2|Ψjn
Bis(0)|2AAtomic

s,jn , (H.14)

A−−s,jn ≡ va|NSes|2|α
jn
Ses |

2|Ψjn
Ses(0)|2AAtomic

s,jn , (H.15)

A+−
s,jn ≡ vaN

∗
BisNSessgn(αjnBis)sgn(αjnSes)(α

jn
Bis)
∗αjnSes(Ψ

jn
Bis(0))∗Ψjn

Ses(ρ)AAtomic
s,jn ,

(H.16)

A−+
s,jn = (A+−

s,jn)∗. (H.17)

The position dependent hyperfine interaction for the Bi-based topological insulator
slab are

A++
p(s),jn(Xi)≡ A++

p(s),jn |fBip(s) |
2, (H.18)

A−−p(s),jn(Xi)≡ A++
p(s),jn |fSep(s) |

2, (H.19)

A+−
p(s),jn(Xi)≡ A+−

p(s),jnf
∗
Bip(s)

fSep(s) , (H.20)

A−+
p(s),jn(Xi) = (A+−

p(s),jn(Xi))∗. (H.21)

The hyperfine interaction coupling regarding surface states are

A++
1 = 1

2A
++
s,jn +

(
B1 + A1

5

)
A++
p,jn , (H.22)

A+−
1 = 1

2A
+−
s,jn +

(
B2 + A2

5

)
A+−
p,jn , (H.23)

A−−1 = 1
2A
−−
s,jn +

(
B3 + A3

5

)
A−−p,jn , (H.24)

A++
2 = 1

2A
++
s,jn +

(
B4 + A4

5

)
A++
p,jn , (H.25)

A+−
2 = 1

2A
+−
s,jn +

(
B5 + A5

5

)
A+−
p,jn , (H.26)

A−−2 = 1
2A
−−
s,jn +

(
B6 + A6

5

)
A−−p,jn . (H.27)
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