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ABSTRACT

DISCOVERING CODING LNCRNAS USING DEEP LEARNING TRAINING
DYNAMICS

AFSHAN NABI
COMPUTER SCIENCE AND ENGINEERING M.A. THESIS, JULY 2021

Thesis Supervisor: Prof. Oznur Tastan Okan

Keywords: Noncoding RNA, coding IncRNAs, Deep learning, Training dynamics

Long non-coding RNAs (IncRNAs) are the largest class of non-coding RNAs (ncR-
NAs). However, recent experimental evidence has shown that some IncRNAs contain
small open reading frames (SORFs) that are translated into functional micropeptides.
Current methods to detect misannotated IncRNAs rely on ribosome-profiling (ribo-
seq) experiments, which are expensive and cell-type dependent. In addition, while
very accurate machine learning models have been trained to distinguish between
coding and non-coding sequences, little attention has been paid to the increasing
evidence about the incorrect ground-truth labels of some IncRNAs in the underly-
ing training datasets. We present a framework that leverages deep learning models’
training dynamics to determine whether a given IncRNA transcript is misannotated.
Our models achieve AUC scores > 91% and AUPR > 93% in classifying non-coding
vs. coding sequences while allowing us to identify possible misannotated IncRNAs
present in the dataset. Our results overlap significantly with a set of experimentally
validated misannotated IncRNAs as well as with coding sORFs within IncRNAs
found by a ribo-seq dataset. The general framework applied here offers promising
potential for use in curating datasets used for training coding potential predictors
and assisting experimental efforts in characterizing the hidden proteome encoded by
misannotated IncRNAs.
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OZET

DERIN OGRENME EGITIM DINAMIKLERINI KULLANARAK KODLAMA
LNCRNA’LARINI KESFETME

AFSHAN NABI

BILGISAYAR BILIMI VE MUHENDISLIGI YUKSEK LISANS TEZI, TEMMUZ
2021

Tez Damsmani: Prof. Dr. Oznur Tastan Okan

Anahtar Kelimeler: kodlamayan RNA, kodlayan IncRNA, Derin Ogrenme, Egitim

Dinamikler

Uzun kodlamayan RNA’lar (IncRNA’lar), kodlamayan RNA’larin (ncRNA’lar) en
biiytik sinifidir. Bununla birlikte, son deneysel kanitlar, bazi IncRNAlarin, fonksiy-
onel mikropeptidlere gevrilen kiigiik agik okuma gergeveleri (SORF’ler) igerdigini
gostermigtir. Yanlhg yorumlanmig IncRNA’lar1 tespit etmek i¢in mevcut yontemler,
pahali ve hiicre tipine bagh olan ribozom profili olugturma (ribo-seq) deneylerine
dayanir. Ek olarak, kodlama yapan ve kodlamayan dizileri ayirt etmek icin c¢ok
hassas makine 6grenimi modelleri egitilmis olsa da, temel egitim veri kiimelerinde
bazi IncRNA’larin yanhg yer-gergegi etiketleri hakkinda artan kanitlara ¢ok az ilgi
gosterilmigtir. Belirli bir IncRNA transkriptinin yanlig yorumlanip isaretlenmedigini
belirlemek i¢in derin 6grenme modellerinin egitim dinamiklerinden yararlanan bir
gergeve sunuyoruz. Modellerimiz, veri kiimesinde bulunan olasi yanls yorumlanmig
IncRNA’lar1 belirlememize izin verirken, kodlama yapmayan ve kodlama dizilerini
smiflandirmada AUC puanlarn > 91% ve AUPR > 93% elde eder. Sonuclarimiz, bir
ribo-seq veri kiimesi tarafindan bulunan IncRNA’lar i¢indeki sORF’leri kodlamanin
yani sira, deneysel olarak dogrulanmig yanlis yorumlanmig bir dizi IncRNA ile 6nemli
olciide ortiismektedir. Burada uygulanan genel gergeve, potansiyel tahmin edicileri
kodlamak i¢in kullamilan veri kiimelerinin kiiratorliigiinde kullanim i¢in umut verici
bir potansiyel sunar ve yanlig yorumlanmig IncRNA’lar tarafindan kodlanan gizli
proteomun karakterize edilmesinde deneysel ¢abalara yardimei olur.
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1. INTRODUCTION

1.1 Some IncRNAs are misannotated

Genome-wide transcriptome analyses have revealed that the vast majority of the
human genome is transcribed; but only 2% of the human genome is annotated as
protein coding (Djebali, Davis, Merkel, Dobin, Lassmann, Mortazavi, Tanzer, La-
garde, Lin, Schlesinger & others, 2012). A considerable fraction of transcripts are
annotated as ncRNAs and IncRNAS constitute the largest category of ncRNAs (Der-
rien, Johnson, Bussotti, Tanzer, Djebali, Tilgner, Guernec, Martin, Merkel, Knowles
& others, 2012). While IncRNAs studied are known to play vital roles in cellular pro-
cesses such as regulation of translation, transcription, chromatin modification and
mRNA stability (Batista & Chang, 2013; Rinn & Chang, 2012; Ulitsky & Bartel,
2013), functions of most IncRNAs remain unknown. Moreover, although IncRNAs -
by definition- do not code for proteins, recent studies have shown that short the open
reading frames (sORFs) within some IncRNAs are translated into micropeptides of
a median length of 23 amino acids (Andrews & Rothnagel, 2014; Choi, Kim & Nam,
2019; Couso & Patraquim, 2017; Hartford & Lal, 2020; Ji, Song, Regev & Struhl,
2015; Lu, Zhang, Lian, Sun, Meng, Chen, Sun, Yin, Li, Zhao & others, 2019). The
translation events of IncRNAs were overlooked previously because the open reading
frames (ORFs) present in IncRNAs do not meet the conventional criteria of an ORF:
that it encodes at least 100 amino acids in eukaryotes (Hartford & Lal, 2020). De-
spite this, recent studies have shown that micropeptides translated from IncRNAs
perform vital functions across species, including bacteria, flies and humans (Hart-
ford & Lal, 2020; Matsumoto, Pasut, Matsumoto, Yamashita, Fung, Monteleone,
Saghatelian, Nakayama, Clohessy & Pandolfi, 2017; Nelson, Makarewich, Anderson,
Winders, Troupes, Wu, Reese, McAnally, Chen, Kavalali & others, 2016). There-

fore, identifying misannotated IncRNAs is a necessary step towards the functional
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characterization of this large class of transcripts.

1.2 Ribosome Profiling can be used to identify misannotated IncRNAs

experimentally

Experimental identification of coding transcripts is performed using ribosome pro-
filing (ribo-seq), which involves capturing and sequencing RNA fragments protected
by ribosomes (Ingolia, 2014). Use of ribo-seq data has revealed many unexpected
micropeptides (Brar & Weissman, 2015), including sORFs within IncRNAs (Ingo-
lia, Ghaemmaghami, Newman & Weissman, 2009). However, since ribo-seq data is
known to contain false positives (Ingolia et al., 2009; Ingolia, Lareau & Weissman,
2011), several computational methods have been proposed to identify true translated
ribo-seq fragments. These include FLOSS (Ingolia, 2014), ORFscore (Bazzini, John-
stone, Christiano, Mackowiak, Obermayer, Fleming, Vejnar, Lee, Rajewsky, Walther
& others, 2014) and PhyloP (Miller, Rosenbloom, Hardison, Hou, Taylor, Raney,
Burhans, King, Baertsch, Blankenberg & others, 2007; Olexiouk, Van Criekinge &
Menschaert, 2018). FLOSS (Ingolia, 2014) relies on the typical length of ribo-seq
fragments to determine truly coding ribo-seq fragments. ORFscore (Bazzini et al.,
2014) relies on the property that translating ribosomes shift by three nucleotides
(ribosome phasing),which leads to a characteristic pattern wherein true positive
fragments have higher sequencing reads every third nucleotide. PhyloP is used to
find true translated ribo-seq fragments by probing conservation across species (Miller
et al., 2007; Olexiouk et al., 2018). These computational methods applied over ribo-
seq data can be used to find sORFs that are both translated and located within
IncRNAs. However, one major limitation of relying on ribo-seq data to identify
misannotated IncRNAs is that not all transcripts are likely to be transcribed and
translated at a given time point in a given cell. To obtain a complete picture of
the misannotated IncRNAs in the genome, different cell types, at different develop-
mental stages, under different environmental conditions need to be sequenced and
analyzed. In contrast, the nucleotide sequence of a IncRNA transcript is unlikely to
change across cell types and conditions. Therefore, methods to detect misannotated
IncRNAs from nucleotide sequences will be useful in assisting experimental efforts

and available ribo-seq based computational methods.



1.3 Computational Methods for Identifying misannotated IncRNAs

Once sufficient coding sORFs have been detected, a dataset containing positive
(coding) and negative (non-coding) examples can be built to train models to predict
the coding potential of a given sSORF. These methods can then be used to assess the
coding potential of a transcript. For instance, logistic regression (Zhu & Gribskov,
2019) and SVM (Tong, Hong, Xie & Liu, 2020) based models have been proposed to
predict the coding potential of a given sSORF with sequence length < 303 nucleotides.
To determine whether a IncRNA is misannotated by using these methods requires
first to extract all possible SORFs in the IncRNA and then assess the coding potential
of each of these sORFs. However, while it is possible to predict the coding potential
of IncRNA sORFs with these tools, it is impossible to evaluate the performance since
the data on which IncRNA sORFs are truly coding is very sparse (Zhu & Gribskov,
2019).

1.4 Machine Learning for Sequence Classification

Several classical machine learning (Kang, Yang, Kong, Hou, Meng, Wei & Gao,
2017; Kong, Zhang, Ye, Liu, Zhao, Wei & Gao, 2007; Tong & Liu, 2019; Wang,
Park, Dasari, Wang, Kocher & Li, 2013) and deep learning (Baek, Lee, Kwon &
Yoon, 2018; Camargo, Sourkov, Pereira & Carazzolle, 2020; Hill, Kuintzle, Tee-
garden, Merrill III, Danaee & Hendrix, 2018) based models, which focus on longer
length nucleotide sequences as input, have also been developed to predict the coding
potential of a given RNA. Most of these methods demonstrate very high prediction
performance. However, using these, it is not possible to identify IncRNAs that
might be misannotated. This is because these models do not incorporate any strat-
egy to deal with misannotated IncRNAs in the underlying training datasets. To
ensure that we are not overfitting the models to learn biologically irrelevant decision
boundaries, there is a need to find ways to determine possible misannotated RNAs

in the underlying training datasets.



1.5 Training Dynamics for Identifying IncRNAs

We present a framework that leverages deep learning models’ training dynam-
ics to determine whether a given IncRNA transcript in the dataset is misanno-
tated. In particular, we train convolutional neural network (CNN) (LeCun, Boser,
Denker, Henderson, Howard, Hubbard & Jackel, 1989), long short term memory
(LSTM) (Hochreiter & Schmidhuber, 1997), and Transformer (Vaswani, Shazeer,
Parmar, Uszkoreit, Jones, Gomez, Kaiser & Polosukhin, 2017) architectures to pre-
dict whether a given nucleotide sequence is non-coding or coding and use the train-
ing dynamics to identify possible misannotated IncRNAs (Swayamdipta, Schwartz,
Lourie, Wang, Hajishirzi, Smith & Choi, 2020). Our models learn biologically rel-
evant features to distinguish between coding and non-coding RNAs with average
AUC scores >91% and identify many misannotated IncRNAs. By generating un-
supervised clusters of coding and non-coding RNAs, we observe that there might
be a continuity in the embedded space between coding and misannotated IncRNAs.
Finally, our results show a significant overlap with previous methods that use ribo-
seq data to identify misannotated IncRNAs as well as with a set of experimentally
validated misannotated IncRNAs. This work represents the first instance where
deep learning model training dynamics are successfully applied to identify misanno-
tated IncRNAs from nucleotide sequences. This approach can be applied to better
curate datasets for training coding potential prediction models and can be applied

alongside ribo-seq data to identify misannotated IncRNAs with high confidence.



2. METHODS

2.1 The Overall Framework

The workflow for determining misannotated IncRNAs is described in Figure 2.1.
The main steps are as follows. We train deep learning based sequence classification
models that can distinguish coding and non-coding RNAs. Once we establish that
models can achieve good performance on the held-out test data, we retrain a final
model on all the data and inspect its training dynamics to find possibly misanno-
tated ncRNAs. By focusing especially on the union of the IncRNAs identified as
misannotated by all the models, we arrive at a final list of putative misannotated
IncRNAs. We compare this list to experimentally validated coding ncRNAs as well
as to a ribo-seq dataset. We use unsupervised clustering to find where possibly mis-
annotated IncRNAs are located within the broader RNA clusters. We also study the
features used by the deep learning models to make classification decisions. In the
following sections we detail the dataset, the sequence classification models trained

and the other analysis we conducted.

2.2 Datasets

2.2.1 Pre-trained embeddings for deep learning models
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Figure 2.1 Workflow for identifying misannotated IncRNAs by examining
the training dynamics of deep learning models. All RNA sequences are con-
strained to be between 200-4000 nucleotides long. From each RNA sequence 3-mer
‘words’ are obtained by using a window that slides by 1 nucleotide at each step.
For each 3-mer ‘word’, 100-dimensional embeddings Ng (2017) are obtained. Each
RNA also has an associated ground-truth label, i.e. each RNA is labelled as coding
or non-coding. Deep learning models are trained using 100-dimensional embeddings
for contiguous 3-mers from the sequences. At the end of each training epoch, the
predicted probabilities for each RNA being coding or non-coding are saved. After
training, the mean and standard deviation for the ground-truth label probability
prediction are calculated and misannotated IncRNAs are identified. These are com-
pared to IncRNAs containing translated sORFs determined from ribo-seq data.

add

2.2.2 Sequences for training deep learning models



We use the dataset of human RNA nucleotide sequences compiled by (Tong & Liu,
2019) to train the sequence classification models. After filtering to remove non-
coding RNA sequences < 200 nucleotides in length, the data comprises of 38,051
coding RNA and 19,472 non-coding RNA sequences. Filtering non-coding RNAs
by length was necessary since the length distributions of coding and non-coding
RNAs in the dataset was very different; non-coding RNAs are noticeably shorter
than coding RNAs. For the deep learning models to learn biologically relevant
features in order to distinguish between coding and non-coding RNAs, equalizing
the sequence length distributions was necessary. If the sequence lengths of ncRNAs
are significantly shorter than those of coding RNAs, then sequence length itself might
be used by the models as a feature distinguishing between coding and non-coding
RNAs.

2.2.3 Unsupervised clustering (t-SNE) of RNAs

2.3 Deep Learning Model Architectures

We train CNN (LeCun et al., 1989), LSTM (Hochreiter & Schmidhuber, 1997) and
Transformer (Vaswani et al., 2017) models to classify non-coding and coding RNA
sequences. Each input sequence is truncated to a length of 4000 nucleotides before
being input to the deep learning models. The sequences are encoded as 1-nucleotide
sliding window 3-mers using the 100-dimensional DNA-embeddings generated by
(Ng, 2017). All three models are implemented using Keras (Chollet & others, 2015).
We use ReLu as the activation function. We trained all models to minimize the
sparse categorical cross-entropy loss using the Adam optimizer (Kingma & Ba, 2014).

In all cases, we use a batch size of 64.

2.3.1 Convolutional neural network:



For the CNN, encoded sequences are fed into an embedding layer which is followed
by 3 layers of 1-D convolution (each with 128 units and filter size 5) and max-pooling

(5 units). These are followed by a dense layer of 128 units.

2.3.2 LSTM:

For the LSTM, encoded sequences are fed into an embedding layer which is followed
by 2 layers of 1-D convolution (each with 128 units and filter size 5) and max-pooling
(5 units), followed by a bi-directional LSTM layer. These are followed by a dense
layer of 128 units.

2.3.3 Transformer:

Encoded sequences are added to a positional encoding and fed into a transformer
block followed by global average pooling, dropout and a dense layer of 64 units. The
transformer block comprises of a single-headed self-attention layer and a dense layer

both followed by layer normalization.

2.3.4 Model Evaluation Set Up

We use the human coding & non-coding train and test datasets provided by (Tong
& Liu, 2019). We set aside 20% of the training data as the validation data. We use
Keras Tuner (O’Malley, Bursztein, Long, Chollet, Jin, Invernizzi & others, 2019) to
find the optimal set of hyperparameters for the deep learning models. We created
a hyperparameter search space for different model architecture and hyperparameter
assignment values and used the Hyperband tuner (Li, Jamieson, DeSalvo, Ros-
tamizadeh & Talwalkar, 2017) to find the optimal parameters based on validation
loss. We tried the following choices for given hyperparameters: dense layer units
64, 128, and 256, 1-D convolutional filters (64 and 128, LSTM units 64, 128, and
256, dropout 0.2, 0.3, 0.4 and 0.5 and learning rate (logarithmic sampling between
e-2 and e-4. We used the best model returned by the Hyperband tuner and retrain
a model on the train-validation data to calculate and assess these models’ perfor-

mances on the held-out test data. Once the test performances are attained, we
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rebuilt the models on all data to find the misannotated ncRNAs.

Since the training dataset is imbalanced in favor of coding RNA, we used class-
weights inversely proportional to the number of class samples to ensure learning.
Moreover, since a coding RNA is unlikely to be misannotated, we penalized coding

RNA misclassifications 5 times more than non-coding RNA misclassifications.

2.3.5 Identifying misannotated IncRNAs using training dynamics

We inspect the deep learning models’ training dynamics to find possible misanno-
tated IncRNAs. Swayamdipta et al. (Swayamdipta et al., 2020) report that it is
possible to identify possibly mislabelled training samples in a given dataset by in-
specting how model predictions for samples behave during training. We employ this
strategy; at the end of each training epoch, the deep learning models are evaluated
on the training examples and the predictions for the class probabilities are saved.
Consider a training dataset of size N, D = {(w,y*)i}i]\il where the i th instance con-
sists of the observation, x; and its true label under the task, y;. We calculate the
mean and the standard deviation of the posterior probability of the ground-truth
label for example ¢ over E epochs as follows (Swayamdipta et al., 2020):

2

1 & . . S (Poe (UF | i) — fui

(2.1) Hi=71 Zpe(e) (i | i), 0; = J ‘ ( EZ )
e=1

where pg) denotes the probability assigned at the end of the et epoch by the
model parameterized with 8(¢). Using the mean and the standard deviation of the
predicted probability of ground-truth class across all epochs, the training dataset
can be divided into three groups: easy-to-learn, ambiguous, and hard-to-learn. The
hard-to-learn samples are those with low mean and low standard deviation of the
true class probabilities. In other words, the model consistently misclassifies these
samples across training epochs. We retrain the models using both the training &
test data and consider the IncRNAs within this hard-to-learn class as candidates for

misannotation.

2.3.6 Unsupervised clustering (t-SNE) of RNA sequences



To analyze the coding and noncoding transcript distributions of the data, we calcu-
lated features on for all RNAs in the dataset, based on properties of the transcripts as
in (Tong & Liu, 2019). These features include ORF length, ORF quality, nucleotide
distribution, translated peptide stability etc. used by (Tong & Liu, 2019) see Sup-
plementary Table 1 for more details. Using these features, we apply T-distributed
stochastic neighbor embedding (t-SNE) (Maaten & Hinton, 2008) (SciKit-learn im-
plementation (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel,
Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot &
Duchesnay, 2011), perplexity=150, iterations=1000, learning rate=200) to reveal
RNA clusters.

2.3.7 Comparison to cncRNAdb & ribo-seq

We downloaded data from the cncRNAdb (Huang, Wang, Zhao, Wang, Liu, Li,
Cui, Li, Feng, Luo & others, 2020), a resource that provides a manually curated
list of experimentally validated ncRNAs found to be coding. We filtered data to
get IncRNAs found to be coding in Homo sapiens and compared the list to the

misannotated IncRNA candidates generated from the deep learning models.

Next, we compared the list of misannotated IncRNAs generated by our models
to a ribo-seq dataset. We downloaded data on sORFs identified in the ribo-seq
data generated by (Elkon et al., 2015) from sORFs.org (Olexiouk et al., 2018).
This database provides computations of values of FLOSS (Ingolia, 2014), ORFscore
(Bazzini et al., 2014) and PhyloP (Miller et al., 2007) metrics for RNAs identified
from the ribo-seq data. We used RNAs annotated as IncRNAs and present in both
the sequence dataset (used to train deep learning models) and the Ribo-seq dataset
in our analysis. According to previous considerations, to get the list of IncRNAs
containing translated sORFs, we used the following cutoff values: ‘Good’ for the
Floss-classification, ORFscore > 6 and PhyloP > 4 (Olexiouk et al., 2018).
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3. RESULTS

3.1 Prediction performance of classifying coding vs. non-coding RNAs

Prediction performances calculated on the held-out test set for the models trained
are provided in Table 3.1 and show that our models perform well on the classification
task. The LSTM model achieves the highest classification performance with 94%
AUC and 96% AUPR. The CNN model performs similarly well with 93% AUC
and 95% AUPR, while the transformer achieves 91% AUC and 93% AUPR. Since
our aim is to study the underlying dataset and find misannotated IncRNAs, higher
prediction performance is not the primary focus. Instead, since we know that the
training dataset contains IncRNAs that have incorrect ground-truth labels, we want
to ensure that the models are not being overfitted to learn features that might not be
relevant to learning the biological distinction between coding and non-coding RNAs
as encoded in the nucleotide sequences. In the following sections, we detail how we
employ these models to discover possibly misannotated IncRNAs in the underlying
dataset.
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Table 3.1 The test-data performances of the different models trained to classify long
non-coding RNAs and coding RNAs. AUC and AUPR are micro-averaged.

AUC AUPR Precision Recall F1-Score
Non-Coding 0.93 0.95 0.94
LSTM 094 096 Coding 0.95 0.94 0.94
Non-Coding 0.93 0.92 0.93
CNN 0.93 0.95 Coding 0.93 0.94 0.94
Non-Coding 0.93 0.88 0.90

Transformer 0.91 0.93 Coding 0.90 0.94 0.92
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3.2 Training dynamics of deep learning models can be used to identify

misannotated IncRNAs

Having evaluated the CNN, LSTM and Transformer models to distinguish between
coding RNA and non-coding RNA, we retrain the models using all data and in-
spect each instances training dynamics. During the training phase of each model,
we track the coding probability predictions for each RNA. Figure 3.2a shows the
predictions for the coding probability for three different RNAs across all train-
ing epochs for the LSTM model. For example, the coding probability predic-
tions for ENST00000447563 (shown in orange) -an RNA annotated as long non-
coding (ground-truth)- are consistently high. In other words, as model training
progresses, this RNA is invariably classified as coding. It was recently shown that
ENST00000447563 has been misannotated as IncRNA when it can, in fact, code
for a protein (Hartford & Lal, 2020). Two other examples of correctly annotated
coding and non-coding RNA are also shown in Figure 3.2a. By studying the predic-
tions made by models as they are under training, it is possible to identify putative

misannotated IncRNAs.

Figure 3.1b expands upon this idea: calculating the mean and standard deviation of
predicted probability for the ground-truth class across all training epochs provides a
measure of identifying misannotated IncRNAs. IncRNAs in the lower left quadrant of
Figure 3.1b are considered putative misannotated IncRNAs; these samples have low
mean and standard deviation for the predicted probability of the ground-truth class
over all training epochs. In other words, these IncRNAs are consistently classified
into the non-ground-truth class (coding) and therefore, are likely to be misanno-
tated. It is interesting to note that the majority of the putative mislabelled samples
have ground-truth label ncRNA. This observation supports the notion that the cur-
rent method for identifying putative misannotated IncRNAs is reasonable. This is
because an RNA with ground-truth ‘coding’ is unlikely to be misannotated. In con-
clusion, many IncRNAs might be misannotated and sequence information combined
with training dynamics of deep learning based classifiers might help identify such

misannotations.
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3.3 Different deep learning architectures find common misannotated

IncRNAs

Figure 3.3a shows the overlap between the lists of misannotated IncRNAs gener-
ated by CNN, LSTM and Transformer models. It is interesting to note that despite
the difference in network architectures, the intersection of possible misannotated
IncRNAs is large. The CNN model identifies the smallest number of candidate mis-
annotated ncRNAs. It is interesting to note that the number of common candidates
identified by Transformer and LSTM but not by CNN (912 in total) is large as
compared to the common candidates between CNN & Transformer only (78) and
between LSTM & CNN only (167). 1271 candidates are identified by all 3 models.

14



3.4 Misannotated IncRNAs overlap significantly with manually curated,

experimentally validated coding IncRNAs & with misannotated

IncRNAs discovered by ribo-seq

The ecncRNA database provides a manually curated list of experimentally validated
coding IncRNAs (Huang et al., 2020). We report the overlap of the misannotated
ncRNAs identified by training dynamics with this ezperimentally validated set. Fig-
ure 3.3b shows that 442 RNAs that are present in both the datasets. Out of these
442 RNAs common with cncRNAdb, 229, 179, and 109 are discovered by the union,
intersection of at lease two, and intersection of all three of LSTM, CNN and Trans-
former models. The first thing of note is that while the training dynamics have
the ability to identify some misannotated RNA, they are not able to identify all
of them. The second thing to note is that the union of the misannotated RNAs
shows the largest overlap with experimentally validates misannotated RNAs. This
suggests that different models is more effective at identifying misannotated RNAs.
It might be that different architectures of the CNN, LSTM and Transformer predis-
pose them towards finding certain misannotated RNAs. Clearly the different models
find different decision boundaries for the classification task they are trained on. This
also suggests that an ensemble of models could be trained to identify misannotated
IncRNAs with more confidence. The third thing of note is that training dynamics
find a lot more candidates for misannotated RNAs than the 442 that are present
in the intersection with cncRNAdb. For instance, the union of LSTM, CNN and
Transformer models finds 3374 misannotated RNAs that are not present in cncR-
NAdb. This suggests that there are a lot more coding IncRNAs than are currently

known, even though an unknown fraction of the 3374 might be false positives.
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3.5 Misannotated IncRNAs from training dynamics overlap significantly

those discovered by ribosome profiling

Next, we compared the overlap between the misannotated IncRNAs discovered by
our deep learning models with high-throughput ribo-seq dataset from several dif-
ferent cell line compiled by (Olexiouk et al., 2018). Figure S4 shows the counts for
IncRNAs obtained by applying 3 different methods (FLOSS, ORFScore and Phy-
loP) to identify true positives from ribo-seq data. For FLOSS, IncRNAs with a
classification of ‘Good’ are considered candidate misannotated IncRNAs; it is inter-
esting to note that most of the IncRNAs have a ‘Good” FLOSS score. In contrast,
fewer IncRNAs are considered misannotated according to ORFScore and PhyloP.
The overlap between these 3 methods to find sORFs from ribo-seq data is shown in
Figure S3.

It is important to note that the dataset used in the current work is much smaller and
contains fewer IncRNAs than those found from the (Olexiouk et al., 2018) ribo-seq
dataset. In order to be able to compare the numbers of misannotated IncRNAs found
by the different methods, we first generated a list of IncRNAs that were present both
in the ribo-seq dataset and in the nucleotide sequence dataset used for training deep
learning models. From this common IncRNAs master list, we calculated the over-
lap between misannotated IncRNAs found by different methods. Figure 3.4 shows
that the overlap between our method and FLOSS (hypergeometric test, p-value
~ 0), ORFScore (hypergeometric test, p-value 4e-320) and PhyloP (hypergeometric
test, p-value 1le-32) significant. This shows that our method successfully identifies
misannotated IncRNAs by learning relevant features from the IncRNA nucleotide

sequemnces.
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3.6 Candidate coding IncRNAs discovered using training dynamics

Figure 3.5 shows some candidate coding IncRNAs discovered using the models
trained here, together with evidence for coding potential aggregated from other
sources. Ribo-seq p-value shows the confidence that the given IncRNA con-
tains a true positive sSORF as discovered from ribosome profiling (Olexiouk et al.,
2018). PeptideShaker is a tool to analyze publicly available mass-spectrometry data.
The confidence score, PeptideShaker score, for the peptide generated from each
IncRNA sequence is also provided by (Olexiouk et al., 2018). BLAST Hit shows
the most significant top hit for each IncRNA (Gish & States, 1993). CPC2 (Kang
et al., 2017), CPAT (Wang et al., 2013) and RNASamba (Camargo et al., 2020) are
coding potential prediction tools. For each candidate IncRNA, the coding potential
predicted by these tools is shown as well. Finally, Transformer, LSTM and CNN
refer to the coding potential predictions averaged over all epochs, as predicted by

models trained in this work.

All IncRNAs shown here have a high confidence sORF discovered by ribosome-
profiling, a high confidence PeptideShaker score for the peptide produced from that
ORF and a significant BLAST hit. While some of the candidates like Figure 3.5a
and Figure 3.5f show high coding potential prediction from most models, others like
Figure 3.5d and 3.5e are only discovered by the training dynamics models trained

in this work.
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3.7 Misannotated IncRNAs exist in a continuous cluster with coding

RNAs

To analyze the coding and noncoding transcript distributions of the data, we calcu-
lated features on for all RN As in the dataset, based on properties of the transcripts as
in (Tong & Liu, 2019). These features include ORF length, ORF quality, nucleotide
distribution, translated peptide stability etc. used by (Tong & Liu, 2019) (see Ta-
ble ?? for more details). Using these features, we apply T-distributed stochastic
neighbor embedding (t-SNE) (Maaten & Hinton, 2008) (SciKit-learn implementa-
tion (Pedregosa et al., 2011), perplexity=150, iterations=1000, learning rate=200)
to reveal RNA clusters.

Figure 3.6 shows the clusters obtained by performing t-SNE (Maaten & Hinton,
2008) on these features generated from RNA sequences. The labels of the RNAs
(coding, non-coding) are not used while generating the clusters. However, based
on available coding and non-coding ground-truth labels, along with the biotype
information for the ncRNAs, we label each individual RNA example. LncRNAs
determined as misannotations by the different deep learning models are labeled in
black; interestingly, putative misannotated IncRNAs lie in a cluster contiguous with
coding RNAs. This suggests that there is indeed some continuity between coding and
IncRNAs in this embedded space and that the categories might not be as mutually
exclusive as we believe, which is consistent with recent research discovering that
some IncRNAs encode micropeptides (Hartford & Lal, 2020). In support of this,
there are clusters of non-coding RNAs (labelled Misc RNA) that are well separated

from coding RNAs and that do not contain many putative misannotated IncRNAs.
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3.8 Exploring features learnt by models

To understand which which regions of the sequence are useful for making classi-
fication decision, we visualize the activation weights of the model layers. These
activation weights determine which sequence features are paid most attention to by
the model. Figure 3.7 shows an example attention map of a misannotated IncRNA
generated from the first convolutional layer of the CNN model. Supplementary Fig-
ure 1 shows the attention weights visualized for a coding and long non-coding RNA
that are not misannotated according to the criteria described above. The CNN
model appears to focus on continuous stretches of adenines in the sequence to make
decisions about whether a given RNA is coding or long non-coding. This might
be because the poly-adenylation sites are one of the major distinguishing features
between coding and non-coding RNAs. Supplementary Figure 7?7 shows the average
attention given to all codons for this sequence. Codons with high ‘adenine’ con-
tent have higher average attention, but codons ending with ‘TA’ like ‘ATA’, ‘CTA’,
‘GTA” & ‘TTA’ also have high average attention. Studying these and comparing
the average attention differences in codons between coding and non-coding RNAs

might prove interesting.
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Figure 3.1 Analysis of the training dynamics of deep learning models. (a)
Estimated coding probability across all training epochs shown for five RNAs. We
expect coding and non-coding RNAs to have high and low coding probabilities
respectively; this is the case for examples A and E. In this work, we are trying
to identify non-coding RNAs that might be misannotated, when they are in fact
coding. We are interested in IncRNAs- like B (ENST00000447563)- which have
consistently high estimated coding probability, despite having the ground truth-label
‘Non-coding’ These are candidate coding IncRNA. In support of this observation,
ENST00000447563 (also known as 1inc00689) was recently found to be protein coding
Hartford & Lal (2020). C and D show examples of ambiguous samples, i.e. they show
a large change in estimated coding probabilities as model training progresses, so we
are not sure whether they are mislabelled or not. (b) Mean (y-axis) and standard
deviation (x-axis) of ground truth class probability predictions across all training
epochs can be used to determine mislabelled samples. Candidate misannotated
RNAs are those in the Hard-to-Learn region i.e. RNAs with low mean and standard
deviation for the ground truth class probability.
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Figure 3.2 Training dynamics of deep learning models can be used to iden-
tify misannotated IncRNAs. To prove that training dynamics can be used
to identify mislabelled RNAs, we sampled 5% of the data with jiground trutn and
Oground truth less than 0.8 and 0.2 respectively. These are samples for which we have
medium-high confidence that the ground truth labels are correct (before). After we
flip the labels (coding RNAs become, non-coding RNAs and vice-versa), the samples
move into the hard-to-classify region of the training dynamics summary plot.
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Figure 3.3 Comparison with cncRNAdb (a) Comparison of the hard-to-learn
ncRNAs obtained from by CNN, LSTM and Transformer models’ training dynam-
ics. (b) Comparison of the number of common RNAs that are present in the deep
learning dataset and in cncRNAdb. (c) Intersection of the misannotated IncRNAs
identified in the union of LSTM, CNN, and Transformer set with the common RNAs
found in ecncRNAdb. (d)Intersection of the misannotated IncRNAs identified in the
intersection of at least 2 of LSTM, CNN, and Transformer set with the common
RNAs found in ecncRNAdb. (e) Intersection of the misannotated IncRNAs identified
in the intersection of LSTM, CNN, and Transformer set with the common RNAs
found in cncRNAdb.
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Figure 3.4 Comparison to ribo-seq data based methods used to find mis-
annotated IncRNAs from : (a) FLOSS (p-value ~ 0), (b) ORFScore (p-value
4e —320) and (c) PhyloP (p-value (le —32)) for the dataset from (Elkon et al.,
2015). Background set has 26857 IncRNAs.
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Figure 3.5 Some of the candidate coding IncRNAs discovered in this work,
with evidence for coding potential aggregated from other sources. Ribo-
seq identifies RNAs associated with ribosomes, which are likely to be translated.
Ribo-seq p-values (a combined score from FLOSS, ORFScore and PhyloP) show
the likelihood of the identified RNA being a true-positive. PeptideShaker analyzes
publicly available MS data and provides a confidence score for each peptide. The
BLAST Hit is the top hit from running the query in BLASTx. CPC2, CPAT and
RNASamba are tools for the coding potential prediction of a given RNA.)
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Figure 3.6 Misannotated IncRNAs exist in a continuous cluster with coding
RNAs. t-SNE clusters obtained from hand-crafted features (Tong & Liu, 2019)
generated from nucleotide sequences. Labels (Coding, IncRNA etc.) are only used
for visualizing the clusters, not for generating the clusters. Putative misannotated
IncRNAs lie in a cluster contiguous with coding RNAs. There are other clusters of
ncRNAs that are well separated from coding RNAs and that do not contain any
putative misannotated IncRNAs.

gta ggt gtt tctecce et cttttgtgeacg cgg6ga gag
99tigtg tottg totgts cu tgtacocg coggamces outgty gk /999 totg tototy 20t gtg tgagagaga. e e e 9ot to
29209 gat tetctc tetctataa aac ace 99,992 ga actcte =i Roac
mg«xgmzc magn;agagagu 9gt gtc tetctc teccca cat atc teacac. ggncgwcgcga«aa atc:
ttgtgg ggt gt ttgtgggga gag aga gag age gec ccmgmg-ang-gn aac gtt -“gg-gagagc gclclggaa mngxgcgcamagc get ctttec tetctt| ggt gnnglgcgcg cgt
2 gaa t9t99999 @ tetetg tacgca catatgtg tetctttectea gaamam@kamgagggg( can asa aac (g((((amaax cgcgec
acacacag 209 05t 51 ot M sataty e ca cot Mt atacRc s aan Snc ke ncag 90 08 Ilglmmm:l(:(x mmmuw-m B0 oot ol e oo cuc e T
oS algsnro BN oot o o ocacou ot tec s e HeaansaeacBemeEicas aac aca vat st tctea
it i e ce i (¢ e ccacon 209 wmaqqgmmﬁa--m@mg«mmmmwwmc cittataa aat wmmuwyniin et waumqqcmmwmmmmmmncm
tgt agc. act mngngggguwtwggn g(a(agagagi@aﬂﬂ 992 gacacg cgt gtc et ctg tga gac acg €ge gec ccc cet cteteacaa aat atc tea cat att ttgtgc
‘g€ ccg cgt git ttatacaca cac act ctt tctcc ccc ccacag agc o gtgtgg. 9999 mwwmag t9tqtg tgtgtg tgt gtt ttataa aac acalcaa aa: cca cat atc cgcga gac act ctgt9ggga gac aca caa aat atc feglegc gea cag agt
922 2ag agg ggc get cttttatac act ct 299 gg¢ get ctc ttctgt9gga gat att tcicacag aga gaa aag age Geg 92922 229 agt 9k g cgc get it Hetca cat atc tecccc cec ceg o G St ct-lcog mgn on cloceiec Joca ot ate tec el ciatag st m 199952929
et ctatacece cclag a2 922 aaagagea 229299 999 ¢ 9t 2 c ac cea catats gy g tatate tetctgtgagag agg|
{aaalaaal@agace ccc cca cacacg cgtgtg tgtgta @gsnumﬁ ‘aaciacg cat e tec cct g tga gat att acg cga gac get t9agaa aaa aat att ttcteg cgc qummo«mwc C ettt aac.
tgtgtatc aqtgttl’ act 9g¢ acc cee cet cte tee cct ctg tge get cttd 199¢ 9¢3 acc cec cetctg tgegcea caa aaa catatg tgcgece cec cct cte teccce
agtgtg tggqye cgt gt teeceg cgg gat gt tetctc tec cct ctg totgtg tgcgeg cgg 999 9ga gat atgkgagag aga gaa aat ata tc teccca cat atc |
gac acc cct ctt ttatagaga gag agtgtg tgggga gat atg tgtgte tecceg €gg gat gtc tetete n:cc(lagw /199999 Ewmmgwag-gaﬁm& cge gee cct ct ttctec ccc cct mncm:cca tgcgca cag aga gag agxmmmagx s S5
t999gg gga gat ata taa aat ata tacaca cacacg cgc e icag aga gag agt gtg tgggga cucggwtmt tetctc tec cctctg tgtgtg totgtg tggggg.

ctctg tatgtg tatgtg: 9
e e A S 992 gac acc mmu—lu Eimien sehitos gatatg

el oo o vttt v cotcr el B mﬁ‘vq SRRl Bl eockcicte-icct ciutictoceor bot ticeeceeacac actety tacoct cip lcgen
tgag: cgca Ntm aga gag gacacg

cag aga gac acc cet ctctcacag aga gag agt gtg 199 9ga g ceocog gt gte fetcte tec cet g tgtglg (gigig iggon gatal
tctc tec cct cit C cct cttttcs m ’G‘aqmuan gacacg. 99
ata X tgcgea cacg tatgtg tac: gat aw@’ =
cct cat atcteg: teac: gacacy oot ctctc et ckcty caca cacaca cag i et tea cacaca caa oac act
g9t atg JBeicts ot cacag agc agg get ctc tetctg tgc get
ot ghtat cte tec ccc cca cac aca €a€ acc cec ccg cotgta tGLgtgtag

tetctg totgtatagaaaanalaaa ttatagagg goc gea cag agg ggt gtc
ttg

999 ggc get cte mnamnnq 993 gllaknx((( «cmmmmmkuum-q(w«-aq agc gec cec ccacag agy| 999 992 gac aca cat atc tct c 9 (w ctg
tcacag agnga] 199 9ot gtc teacaa aacaca caa aaa. ‘act ctt ttctcacaa ast. jag algn aan%mq«mmm mm; tgtgta tat att ttc tecceg cga gaa aag agt gtg tat gtt tc tetcte tetctc teacag aga gat atg tgt gtt tgtgagag agt
tca

‘act at et ctg tge get ctg tgtgta tatate tcacaa aat as 293929, cct e teacaa aac accicea catatg tgtgtg tgggga gat atc tetcta tatatt e tet ct tc
cag agt gtt ttataa ast attttg e amnc)n(ca atg tat jagaa aag agc et ctc tetctg tgt it tta tatatc tcacag agg 9at gt tacqea cat atg tgcgea cac aca cat. 999 992 ga gatannglglgll tatatg tgc gct ctt ttctce cct ctg tgagatatg| a aac act ctgtgagac acc cct ctt ttc ettt tte
fcacat ot g ococa canang 09Oy g ggaigan gas aagiaga gat atg tgc gct ctg tgcgca catata tacaca cag 299 99a gatatg (9999 gaa aatata tatatc teccca cag agy 992 92a aag aga gac acg cot gic fetctataaaag a ag.aga gag/aga gat atg tge gec cec cca cag age 9et 9999t

.gaa aagaga gat atg tgc gct ctg tgcqca cat ata ta aumw@uwﬁmwuma xamcmccuagagg mmp-m-g- gat att trc tetctal 95 '9aa aag aga gag aga gat atg tgc gec ccc cca cag age get ctgtgg

992929 agt gt tec cetta tatatg tgcgca caa a2 299 999
tathls

999 993 02 agt gte tec cct tgcgea caaaag agg 22 aag aga gaa 2a9:20a gat atg tac gt ctg tgcgca cat ata ta gatatgtggggg gga gataata tatatc teccca 999 992 gaa aag aga gat att tic tetctataaaag agg 992 0ag aga gag aga gac aca e

agmgg-qnnq agt gtc teaca: -nms- ﬁmmw l.ucin agt nnnthnn l\(rcc((a cat att ttatatata taa| ccacac I(- m-w mmn-uﬁmmqummmmgn nu«czmmc«c Cet ctt ttetee cee coc ccacag agt git tc tet ctettat

ate] 220 a0t otg tag gac actctg R coaRapA b et il agtatg i vt tococs con oot

e e ErE ctctcacaa aag ag tetctg tgegee ttatacaca cag
cc Ctataa sat afEttg gtota tat at ttcacag agtgta t29aga 99398 Gac. o292 cca tetctctegcga g

cetctctcacag agg ggt gtataa aat atc tetctg tgegec ccc cea cacace cct B T caa aaa 2ag agt gtg tgc get ctgggggg gga gat 2ca catatg tgagag age gec cca cat atc tca catatg tgcgec cet ctgtgggga gacaca Catata taaaag agtgig (gagag agt gt ta tatata tak

atttg tgtgta tatatt tta tatata taaaag aga gac act cta tatatg tga gat ata tacaca cag agt catatgtgagaa aaa aat. uucqammmmmﬁmm aatata tatatc tca cac aca cac act cta tacaca Gatata taa a ca aac act tg tgtgta taaaac ace cctctc tea cac ace €eg g

gec cee cctta tatate tec et ctg 19999 998 gatatg totata totatg totgte tea cat at ttatatata tag age gee cca caa aat att Hatats cttttatat gggagagﬂgagagagtqtglgﬂgtataanl ftetetete tec cec cct citttatatatt et

Qe get Cit e Kctcta tacaca cag agt gic KCt i £tg tgtgtg tgtgta tacaca cat atc tcacag agt git tta fatatc tetcrg Lt git i 2 agtgtg g cgtgta ttataasag agc

gct cttttgtagaac get

9agaga gat attttatagaga gaa aat alt tc tet ctt ttctcc cce ccc Cct ctataaaagaga gaa aag@galgaa aaa Mmamaazmmag:m\(@
catatgtggggc gcg cgagac 1999 99t gtc tct 8gs0 ogcicace

to ctctg g‘m 299 99t
tec cet cta tag: Tetctg tgtgtc 9tgg. uw;mwgag agg ggc gec ceg| mmwsmgma@mcgca catatg -c«ccgcgcgcqmmg 999 99¢ gec cec ccc ccg chgum
ctgtogegcic catitytyg got gty tocgca cac acc cetcy gtotg ococtclpigeiagey sgtgty tocgcc cet cta ko tagagagen agt gatag gt gt tatat trctec cetciot
tgt gtt ttg! atc - ccacaa aaa aat attttgte cte tetetg wmumm tatatc tetete tec cee cec cct ctttig totgtg S 93, -.m mm)ng-(m agc gea caa aaa.

83t tatatg gcoca Cat at i teccec cca a9 a9t 919

0.0 0.2 0.4 0.6 0.8 1.0
Mean Activation Weights (Normalized)

Figure 3.7 Attention maps explain which parts of sequence are important
for making a classification decision. An example attention map extracted
from first convolutional layer of CNN model for ENST00000447563 (a misannotated
IncRNA). The ground-truth for this RNA is ‘Non-coding’. However, CNN model
predicts that this is a non-coding RNA with probability 0.12. Attention visualiza-
tion shows regions with contiguous ‘A’ nucleotides have high activation weights.
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4. DISCUSSION

In this work, we apply the general framework described by (Swayamdipta et al.,
2020) for detecting mislabelled samples in a training dataset to detect misannotated
IncRNAs. The training dataset, comprising of nucleotide sequences of coding and
non-coding RNA, is used to train CNN, LSTM and Transformer models. At the
end of each training epoch, coding and non-coding prediction probabilities for every
RNA sample are saved. Calculating the mean and standard deviation of the ground-
truth class helps determine whether a given RNA is possibly mislabelled. LncRNAs
with low mean and standard deviation for the non-coding class are the possible

misannotations.

A large number of misannotated IncRNAs are identified by all three different deep
learning methods. This is significant since the algorithms to distinguish between
coding and non-coding RNAs employed by the models are different. Moreover,
when we compare the misannotations discovered here to previous methods to detect
misannotated IncRNAs from ribo-seq data and manually curated dataset, we see a
large overlap for two of the methods, suggesting that our method is successfully able
to detect misannotated IncRNAs. It is also interesting to note that our method shows
a high overlap with a manually curated list of misannotated IncRNAs. Therefore, we
conclude that this approach offers promising potential for use in curating datasets
used for training coding potential predictors and assisting experimental efforts in

characterization of misannotated IncRNAs.

To our knowledge, this work also represents the first instance in which nucleotide
sequence embeddings and transformer models are applied to the problem of building
coding potential predictive models. Using nucleotide embeddings might be prefer-
able to other representations like one-hot encoding (Hill et al., 2018) or integer
encoding (Camargo et al., 2020) used previously. This is because embeddings are
learnt from the complete human genome and incorporate the context in which a
given codon is found in the DNA. All models are configured to have trainable em-
beddings; this helps to learn better representations of codons in RNA, since the

original embeddings are learnt from DNA sequences. Future work to compare the
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original embeddings to the embeddings generated from models trained here might

provide valuable insight into the differences between codons in DNA and RNA.

One limitation of the approach presented here is that it is computationally intensive
since models need to be retrained on the complete dataset after evaluation of the test
set performance. However, this approach represents the first method that can find
possibly misannotated IncRNAs from the nucleotide sequence alone. In conjugation
with ribo-seq data, it can be used to identify misannotated IncRNAs with high
confidence. Moreover, it can be used for curating the training datasets used for
training coding potential predictors. Future work that compares the misannotated
IncRNAs obtained from models here with ribo-seq datasets from different cell-types

will provide interesting results on the cell-line specificity of misannotated IncRNAs.

In the future, conducting the following analysis will provide interesting insights.
First, a meta analysis of attention maps like the one shown in Figure 3.7 to compare
different groups of RNAs (coding, non-coding, misannotated) to see if there are any
significant differences. One approach is to calculate the distribution of average atten-
tion paid to every 3-mer in the sequence, and then to make a correspondence to the
amino acid encoded. Second, since it is widely known that disease-related variants
are located in the non-coding regions of the human genome, it might be interesting
to look for genetic variants present in the misannotated IncRNAs identified here.
Third, integrating conservation information from different species together with the

analysis here might provide insights into the evolution of coding and non-coding
RNA.
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