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ABSTRACT

DISCOVERING CODING LNCRNAS USING DEEP LEARNING TRAINING
DYNAMICS

AFSHAN NABI

COMPUTER SCIENCE AND ENGINEERING M.A. THESIS, JULY 2021

Thesis Supervisor: Prof. Öznur Taştan Okan

Keywords: Noncoding RNA, coding lncRNAs, Deep learning, Training dynamics

Long non-coding RNAs (lncRNAs) are the largest class of non-coding RNAs (ncR-
NAs). However, recent experimental evidence has shown that some lncRNAs contain
small open reading frames (sORFs) that are translated into functional micropeptides.
Current methods to detect misannotated lncRNAs rely on ribosome-profiling (ribo-
seq) experiments, which are expensive and cell-type dependent. In addition, while
very accurate machine learning models have been trained to distinguish between
coding and non-coding sequences, little attention has been paid to the increasing
evidence about the incorrect ground-truth labels of some lncRNAs in the underly-
ing training datasets. We present a framework that leverages deep learning models’
training dynamics to determine whether a given lncRNA transcript is misannotated.
Our models achieve AUC scores > 91% and AUPR > 93% in classifying non-coding
vs. coding sequences while allowing us to identify possible misannotated lncRNAs
present in the dataset. Our results overlap significantly with a set of experimentally
validated misannotated lncRNAs as well as with coding sORFs within lncRNAs
found by a ribo-seq dataset. The general framework applied here offers promising
potential for use in curating datasets used for training coding potential predictors
and assisting experimental efforts in characterizing the hidden proteome encoded by
misannotated lncRNAs.
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ÖZET

DERIN ÖĞRENME EĞITIM DINAMIKLERINI KULLANARAK KODLAMA
LNCRNA’LARINI KEŞFETME

AFSHAN NABI

BILGISAYAR BILIMI VE MÜHENDISLIĞI YÜKSEK LİSANS TEZİ, TEMMUZ
2021

Tez Danışmanı: Prof. Dr. Öznur Taştan Okan

Anahtar Kelimeler: kodlamayan RNA, kodlayan lncRNA, Derin Öğrenme, Eğitim
Dinamikler

Uzun kodlamayan RNA’lar (lncRNA’lar), kodlamayan RNA’ların (ncRNA’lar) en
büyük sınıfıdır. Bununla birlikte, son deneysel kanıtlar, bazı lncRNA’ların, fonksiy-
onel mikropeptidlere çevrilen küçük açık okuma çerçeveleri (sORF’ler) içerdiğini
göstermiştir. Yanlış yorumlanmış lncRNA’ları tespit etmek için mevcut yöntemler,
pahalı ve hücre tipine bağlı olan ribozom profili oluşturma (ribo-seq) deneylerine
dayanır. Ek olarak, kodlama yapan ve kodlamayan dizileri ayırt etmek için çok
hassas makine öğrenimi modelleri eğitilmiş olsa da, temel eğitim veri kümelerinde
bazı lncRNA’ların yanlış yer-gerçeği etiketleri hakkında artan kanıtlara çok az ilgi
gösterilmiştir. Belirli bir lncRNA transkriptinin yanlış yorumlanıp işaretlenmediğini
belirlemek için derin öğrenme modellerinin eğitim dinamiklerinden yararlanan bir
çerçeve sunuyoruz. Modellerimiz, veri kümesinde bulunan olası yanlış yorumlanmış
lncRNA’ları belirlememize izin verirken, kodlama yapmayan ve kodlama dizilerini
sınıflandırmada AUC puanları > 91% ve AUPR > 93% elde eder. Sonuçlarımız, bir
ribo-seq veri kümesi tarafından bulunan lncRNA’lar içindeki sORF’leri kodlamanın
yanı sıra, deneysel olarak doğrulanmış yanlış yorumlanmış bir dizi lncRNA ile önemli
ölçüde örtüşmektedir. Burada uygulanan genel çerçeve, potansiyel tahmin edicileri
kodlamak için kullanılan veri kümelerinin küratörlüğünde kullanım için umut verici
bir potansiyel sunar ve yanlış yorumlanmış lncRNA’lar tarafından kodlanan gizli
proteomun karakterize edilmesinde deneysel çabalara yardımcı olur.
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1. INTRODUCTION

1.1 Some lncRNAs are misannotated

Genome-wide transcriptome analyses have revealed that the vast majority of the
human genome is transcribed; but only 2% of the human genome is annotated as
protein coding (Djebali, Davis, Merkel, Dobin, Lassmann, Mortazavi, Tanzer, La-
garde, Lin, Schlesinger & others, 2012). A considerable fraction of transcripts are
annotated as ncRNAs and lncRNAS constitute the largest category of ncRNAs (Der-
rien, Johnson, Bussotti, Tanzer, Djebali, Tilgner, Guernec, Martin, Merkel, Knowles
& others, 2012). While lncRNAs studied are known to play vital roles in cellular pro-
cesses such as regulation of translation, transcription, chromatin modification and
mRNA stability (Batista & Chang, 2013; Rinn & Chang, 2012; Ulitsky & Bartel,
2013), functions of most lncRNAs remain unknown. Moreover, although lncRNAs -
by definition- do not code for proteins, recent studies have shown that short the open
reading frames (sORFs) within some lncRNAs are translated into micropeptides of
a median length of 23 amino acids (Andrews & Rothnagel, 2014; Choi, Kim & Nam,
2019; Couso & Patraquim, 2017; Hartford & Lal, 2020; Ji, Song, Regev & Struhl,
2015; Lu, Zhang, Lian, Sun, Meng, Chen, Sun, Yin, Li, Zhao & others, 2019). The
translation events of lncRNAs were overlooked previously because the open reading
frames (ORFs) present in lncRNAs do not meet the conventional criteria of an ORF:
that it encodes at least 100 amino acids in eukaryotes (Hartford & Lal, 2020). De-
spite this, recent studies have shown that micropeptides translated from lncRNAs
perform vital functions across species, including bacteria, flies and humans (Hart-
ford & Lal, 2020; Matsumoto, Pasut, Matsumoto, Yamashita, Fung, Monteleone,
Saghatelian, Nakayama, Clohessy & Pandolfi, 2017; Nelson, Makarewich, Anderson,
Winders, Troupes, Wu, Reese, McAnally, Chen, Kavalali & others, 2016). There-
fore, identifying misannotated lncRNAs is a necessary step towards the functional
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characterization of this large class of transcripts.

1.2 Ribosome Profiling can be used to identify misannotated lncRNAs

experimentally

Experimental identification of coding transcripts is performed using ribosome pro-
filing (ribo-seq), which involves capturing and sequencing RNA fragments protected
by ribosomes (Ingolia, 2014). Use of ribo-seq data has revealed many unexpected
micropeptides (Brar & Weissman, 2015), including sORFs within lncRNAs (Ingo-
lia, Ghaemmaghami, Newman & Weissman, 2009). However, since ribo-seq data is
known to contain false positives (Ingolia et al., 2009; Ingolia, Lareau & Weissman,
2011), several computational methods have been proposed to identify true translated
ribo-seq fragments. These include FLOSS (Ingolia, 2014), ORFscore (Bazzini, John-
stone, Christiano, Mackowiak, Obermayer, Fleming, Vejnar, Lee, Rajewsky, Walther
& others, 2014) and PhyloP (Miller, Rosenbloom, Hardison, Hou, Taylor, Raney,
Burhans, King, Baertsch, Blankenberg & others, 2007; Olexiouk, Van Criekinge &
Menschaert, 2018). FLOSS (Ingolia, 2014) relies on the typical length of ribo-seq
fragments to determine truly coding ribo-seq fragments. ORFscore (Bazzini et al.,
2014) relies on the property that translating ribosomes shift by three nucleotides
(ribosome phasing),which leads to a characteristic pattern wherein true positive
fragments have higher sequencing reads every third nucleotide. PhyloP is used to
find true translated ribo-seq fragments by probing conservation across species (Miller
et al., 2007; Olexiouk et al., 2018). These computational methods applied over ribo-
seq data can be used to find sORFs that are both translated and located within
lncRNAs. However, one major limitation of relying on ribo-seq data to identify
misannotated lncRNAs is that not all transcripts are likely to be transcribed and
translated at a given time point in a given cell. To obtain a complete picture of
the misannotated lncRNAs in the genome, different cell types, at different develop-
mental stages, under different environmental conditions need to be sequenced and
analyzed. In contrast, the nucleotide sequence of a lncRNA transcript is unlikely to
change across cell types and conditions. Therefore, methods to detect misannotated
lncRNAs from nucleotide sequences will be useful in assisting experimental efforts
and available ribo-seq based computational methods.
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1.3 Computational Methods for Identifying misannotated lncRNAs

Once sufficient coding sORFs have been detected, a dataset containing positive
(coding) and negative (non-coding) examples can be built to train models to predict
the coding potential of a given sORF. These methods can then be used to assess the
coding potential of a transcript. For instance, logistic regression (Zhu & Gribskov,
2019) and SVM (Tong, Hong, Xie & Liu, 2020) based models have been proposed to
predict the coding potential of a given sORF with sequence length ≤ 303 nucleotides.
To determine whether a lncRNA is misannotated by using these methods requires
first to extract all possible sORFs in the lncRNA and then assess the coding potential
of each of these sORFs. However, while it is possible to predict the coding potential
of lncRNA sORFs with these tools, it is impossible to evaluate the performance since
the data on which lncRNA sORFs are truly coding is very sparse (Zhu & Gribskov,
2019).

1.4 Machine Learning for Sequence Classification

Several classical machine learning (Kang, Yang, Kong, Hou, Meng, Wei & Gao,
2017; Kong, Zhang, Ye, Liu, Zhao, Wei & Gao, 2007; Tong & Liu, 2019; Wang,
Park, Dasari, Wang, Kocher & Li, 2013) and deep learning (Baek, Lee, Kwon &
Yoon, 2018; Camargo, Sourkov, Pereira & Carazzolle, 2020; Hill, Kuintzle, Tee-
garden, Merrill III, Danaee & Hendrix, 2018) based models, which focus on longer
length nucleotide sequences as input, have also been developed to predict the coding
potential of a given RNA. Most of these methods demonstrate very high prediction
performance. However, using these, it is not possible to identify lncRNAs that
might be misannotated. This is because these models do not incorporate any strat-
egy to deal with misannotated lncRNAs in the underlying training datasets. To
ensure that we are not overfitting the models to learn biologically irrelevant decision
boundaries, there is a need to find ways to determine possible misannotated RNAs
in the underlying training datasets.
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1.5 Training Dynamics for Identifying lncRNAs

We present a framework that leverages deep learning models’ training dynam-
ics to determine whether a given lncRNA transcript in the dataset is misanno-
tated. In particular, we train convolutional neural network (CNN) (LeCun, Boser,
Denker, Henderson, Howard, Hubbard & Jackel, 1989), long short term memory
(LSTM) (Hochreiter & Schmidhuber, 1997), and Transformer (Vaswani, Shazeer,
Parmar, Uszkoreit, Jones, Gomez, Kaiser & Polosukhin, 2017) architectures to pre-
dict whether a given nucleotide sequence is non-coding or coding and use the train-
ing dynamics to identify possible misannotated lncRNAs (Swayamdipta, Schwartz,
Lourie, Wang, Hajishirzi, Smith & Choi, 2020). Our models learn biologically rel-
evant features to distinguish between coding and non-coding RNAs with average
AUC scores >91% and identify many misannotated lncRNAs. By generating un-
supervised clusters of coding and non-coding RNAs, we observe that there might
be a continuity in the embedded space between coding and misannotated lncRNAs.
Finally, our results show a significant overlap with previous methods that use ribo-
seq data to identify misannotated lncRNAs as well as with a set of experimentally
validated misannotated lncRNAs. This work represents the first instance where
deep learning model training dynamics are successfully applied to identify misanno-
tated lncRNAs from nucleotide sequences. This approach can be applied to better
curate datasets for training coding potential prediction models and can be applied
alongside ribo-seq data to identify misannotated lncRNAs with high confidence.

4



2. METHODS

2.1 The Overall Framework

The workflow for determining misannotated lncRNAs is described in Figure 2.1.
The main steps are as follows. We train deep learning based sequence classification
models that can distinguish coding and non-coding RNAs. Once we establish that
models can achieve good performance on the held-out test data, we retrain a final
model on all the data and inspect its training dynamics to find possibly misanno-
tated ncRNAs. By focusing especially on the union of the lncRNAs identified as
misannotated by all the models, we arrive at a final list of putative misannotated
lncRNAs. We compare this list to experimentally validated coding ncRNAs as well
as to a ribo-seq dataset. We use unsupervised clustering to find where possibly mis-
annotated lncRNAs are located within the broader RNA clusters. We also study the
features used by the deep learning models to make classification decisions. In the
following sections we detail the dataset, the sequence classification models trained
and the other analysis we conducted.

2.2 Datasets

2.2.1 Pre-trained embeddings for deep learning models

5



Figure 2.1 Workflow for identifying misannotated lncRNAs by examining
the training dynamics of deep learning models. All RNA sequences are con-
strained to be between 200-4000 nucleotides long. From each RNA sequence 3-mer
‘words’ are obtained by using a window that slides by 1 nucleotide at each step.
For each 3-mer ‘word’, 100-dimensional embeddings Ng (2017) are obtained. Each
RNA also has an associated ground-truth label, i.e. each RNA is labelled as coding
or non-coding. Deep learning models are trained using 100-dimensional embeddings
for contiguous 3-mers from the sequences. At the end of each training epoch, the
predicted probabilities for each RNA being coding or non-coding are saved. After
training, the mean and standard deviation for the ground-truth label probability
prediction are calculated and misannotated lncRNAs are identified. These are com-
pared to lncRNAs containing translated sORFs determined from ribo-seq data.

add

2.2.2 Sequences for training deep learning models
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We use the dataset of human RNA nucleotide sequences compiled by (Tong & Liu,
2019) to train the sequence classification models. After filtering to remove non-
coding RNA sequences < 200 nucleotides in length, the data comprises of 38,051
coding RNA and 19,472 non-coding RNA sequences. Filtering non-coding RNAs
by length was necessary since the length distributions of coding and non-coding
RNAs in the dataset was very different; non-coding RNAs are noticeably shorter
than coding RNAs. For the deep learning models to learn biologically relevant
features in order to distinguish between coding and non-coding RNAs, equalizing
the sequence length distributions was necessary. If the sequence lengths of ncRNAs
are significantly shorter than those of coding RNAs, then sequence length itself might
be used by the models as a feature distinguishing between coding and non-coding
RNAs.

2.2.3 Unsupervised clustering (t-SNE) of RNAs

2.3 Deep Learning Model Architectures

We train CNN (LeCun et al., 1989), LSTM (Hochreiter & Schmidhuber, 1997) and
Transformer (Vaswani et al., 2017) models to classify non-coding and coding RNA
sequences. Each input sequence is truncated to a length of 4000 nucleotides before
being input to the deep learning models. The sequences are encoded as 1-nucleotide
sliding window 3-mers using the 100-dimensional DNA-embeddings generated by
(Ng, 2017). All three models are implemented using Keras (Chollet & others, 2015).
We use ReLu as the activation function. We trained all models to minimize the
sparse categorical cross-entropy loss using the Adam optimizer (Kingma & Ba, 2014).
In all cases, we use a batch size of 64.

2.3.1 Convolutional neural network:
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For the CNN, encoded sequences are fed into an embedding layer which is followed
by 3 layers of 1-D convolution (each with 128 units and filter size 5) and max-pooling
(5 units). These are followed by a dense layer of 128 units.

2.3.2 LSTM:

For the LSTM, encoded sequences are fed into an embedding layer which is followed
by 2 layers of 1-D convolution (each with 128 units and filter size 5) and max-pooling
(5 units), followed by a bi-directional LSTM layer. These are followed by a dense
layer of 128 units.

2.3.3 Transformer:

Encoded sequences are added to a positional encoding and fed into a transformer
block followed by global average pooling, dropout and a dense layer of 64 units. The
transformer block comprises of a single-headed self-attention layer and a dense layer
both followed by layer normalization.

2.3.4 Model Evaluation Set Up

We use the human coding & non-coding train and test datasets provided by (Tong
& Liu, 2019). We set aside 20% of the training data as the validation data. We use
Keras Tuner (O’Malley, Bursztein, Long, Chollet, Jin, Invernizzi & others, 2019) to
find the optimal set of hyperparameters for the deep learning models. We created
a hyperparameter search space for different model architecture and hyperparameter
assignment values and used the Hyperband tuner (Li, Jamieson, DeSalvo, Ros-
tamizadeh & Talwalkar, 2017) to find the optimal parameters based on validation
loss. We tried the following choices for given hyperparameters: dense layer units
64, 128, and 256, 1-D convolutional filters (64 and 128, LSTM units 64, 128, and
256, dropout 0.2, 0.3, 0.4 and 0.5 and learning rate (logarithmic sampling between
e-2 and e-4. We used the best model returned by the Hyperband tuner and retrain
a model on the train-validation data to calculate and assess these models’ perfor-
mances on the held-out test data. Once the test performances are attained, we
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rebuilt the models on all data to find the misannotated ncRNAs.

Since the training dataset is imbalanced in favor of coding RNA, we used class-
weights inversely proportional to the number of class samples to ensure learning.
Moreover, since a coding RNA is unlikely to be misannotated, we penalized coding
RNA misclassifications 5 times more than non-coding RNA misclassifications.

2.3.5 Identifying misannotated lncRNAs using training dynamics

We inspect the deep learning models’ training dynamics to find possible misanno-
tated lncRNAs. Swayamdipta et al. (Swayamdipta et al., 2020) report that it is
possible to identify possibly mislabelled training samples in a given dataset by in-
specting how model predictions for samples behave during training. We employ this
strategy; at the end of each training epoch, the deep learning models are evaluated
on the training examples and the predictions for the class probabilities are saved.
Consider a training dataset of size N,D = {(x,y∗)i}

N
i=1 where the i th instance con-

sists of the observation, xi and its true label under the task, y∗
i . We calculate the

mean and the standard deviation of the posterior probability of the ground-truth
label for example i over E epochs as follows (Swayamdipta et al., 2020):

(2.1) µ̂i = 1
E

E∑
e=1

pθ(e) (y∗
i | xi) , σ̂i =

√√√√∑E
e=1

(
pθ(e) (y∗

i | xi)− µ̂i

)2

E

where pθ(e) denotes the probability assigned at the end of the eth epoch by the
model parameterized with θ(e). Using the mean and the standard deviation of the
predicted probability of ground-truth class across all epochs, the training dataset
can be divided into three groups: easy-to-learn, ambiguous, and hard-to-learn. The
hard-to-learn samples are those with low mean and low standard deviation of the
true class probabilities. In other words, the model consistently misclassifies these
samples across training epochs. We retrain the models using both the training &
test data and consider the lncRNAs within this hard-to-learn class as candidates for
misannotation.

2.3.6 Unsupervised clustering (t-SNE) of RNA sequences
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To analyze the coding and noncoding transcript distributions of the data, we calcu-
lated features on for all RNAs in the dataset, based on properties of the transcripts as
in (Tong & Liu, 2019). These features include ORF length, ORF quality, nucleotide
distribution, translated peptide stability etc. used by (Tong & Liu, 2019) see Sup-
plementary Table 1 for more details. Using these features, we apply T-distributed
stochastic neighbor embedding (t-SNE) (Maaten & Hinton, 2008) (SciKit-learn im-
plementation (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel,
Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot &
Duchesnay, 2011), perplexity=150, iterations=1000, learning rate=200) to reveal
RNA clusters.

2.3.7 Comparison to cncRNAdb & ribo-seq

We downloaded data from the cncRNAdb (Huang, Wang, Zhao, Wang, Liu, Li,
Cui, Li, Feng, Luo & others, 2020), a resource that provides a manually curated
list of experimentally validated ncRNAs found to be coding. We filtered data to
get lncRNAs found to be coding in Homo sapiens and compared the list to the
misannotated lncRNA candidates generated from the deep learning models.

Next, we compared the list of misannotated lncRNAs generated by our models
to a ribo-seq dataset. We downloaded data on sORFs identified in the ribo-seq
data generated by (Elkon et al., 2015) from sORFs.org (Olexiouk et al., 2018).
This database provides computations of values of FLOSS (Ingolia, 2014), ORFscore
(Bazzini et al., 2014) and PhyloP (Miller et al., 2007) metrics for RNAs identified
from the ribo-seq data. We used RNAs annotated as lncRNAs and present in both
the sequence dataset (used to train deep learning models) and the Ribo-seq dataset
in our analysis. According to previous considerations, to get the list of lncRNAs
containing translated sORFs, we used the following cutoff values: ‘Good’ for the
Floss-classification, ORFscore > 6 and PhyloP > 4 (Olexiouk et al., 2018).
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3. RESULTS

3.1 Prediction performance of classifying coding vs. non-coding RNAs

Prediction performances calculated on the held-out test set for the models trained
are provided in Table 3.1 and show that our models perform well on the classification
task. The LSTM model achieves the highest classification performance with 94%
AUC and 96% AUPR. The CNN model performs similarly well with 93% AUC
and 95% AUPR, while the transformer achieves 91% AUC and 93% AUPR. Since
our aim is to study the underlying dataset and find misannotated lncRNAs, higher
prediction performance is not the primary focus. Instead, since we know that the
training dataset contains lncRNAs that have incorrect ground-truth labels, we want
to ensure that the models are not being overfitted to learn features that might not be
relevant to learning the biological distinction between coding and non-coding RNAs
as encoded in the nucleotide sequences. In the following sections, we detail how we
employ these models to discover possibly misannotated lncRNAs in the underlying
dataset.
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Table 3.1 The test-data performances of the different models trained to classify long
non-coding RNAs and coding RNAs. AUC and AUPR are micro-averaged.

AUC AUPR Precision Recall F1-Score

LSTM 0.94 0.96 Non-Coding 0.93 0.95 0.94
Coding 0.95 0.94 0.94

CNN 0.93 0.95 Non-Coding 0.93 0.92 0.93
Coding 0.93 0.94 0.94

Transformer 0.91 0.93 Non-Coding 0.93 0.88 0.90
Coding 0.90 0.94 0.92
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3.2 Training dynamics of deep learning models can be used to identify

misannotated lncRNAs

Having evaluated the CNN, LSTM and Transformer models to distinguish between
coding RNA and non-coding RNA, we retrain the models using all data and in-
spect each instances training dynamics. During the training phase of each model,
we track the coding probability predictions for each RNA. Figure 3.2a shows the
predictions for the coding probability for three different RNAs across all train-
ing epochs for the LSTM model. For example, the coding probability predic-
tions for ENST00000447563 (shown in orange) -an RNA annotated as long non-
coding (ground-truth)- are consistently high. In other words, as model training
progresses, this RNA is invariably classified as coding. It was recently shown that
ENST00000447563 has been misannotated as lncRNA when it can, in fact, code
for a protein (Hartford & Lal, 2020). Two other examples of correctly annotated
coding and non-coding RNA are also shown in Figure 3.2a. By studying the predic-
tions made by models as they are under training, it is possible to identify putative
misannotated lncRNAs.

Figure 3.1b expands upon this idea: calculating the mean and standard deviation of
predicted probability for the ground-truth class across all training epochs provides a
measure of identifying misannotated lncRNAs. lncRNAs in the lower left quadrant of
Figure 3.1b are considered putative misannotated lncRNAs; these samples have low
mean and standard deviation for the predicted probability of the ground-truth class
over all training epochs. In other words, these lncRNAs are consistently classified
into the non-ground-truth class (coding) and therefore, are likely to be misanno-
tated. It is interesting to note that the majority of the putative mislabelled samples
have ground-truth label ncRNA. This observation supports the notion that the cur-
rent method for identifying putative misannotated lncRNAs is reasonable. This is
because an RNA with ground-truth ‘coding’ is unlikely to be misannotated. In con-
clusion, many lncRNAs might be misannotated and sequence information combined
with training dynamics of deep learning based classifiers might help identify such
misannotations.
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3.3 Different deep learning architectures find common misannotated

lncRNAs

Figure 3.3a shows the overlap between the lists of misannotated lncRNAs gener-
ated by CNN, LSTM and Transformer models. It is interesting to note that despite
the difference in network architectures, the intersection of possible misannotated
lncRNAs is large. The CNN model identifies the smallest number of candidate mis-
annotated ncRNAs. It is interesting to note that the number of common candidates
identified by Transformer and LSTM but not by CNN (912 in total) is large as
compared to the common candidates between CNN & Transformer only (78) and
between LSTM & CNN only (167). 1271 candidates are identified by all 3 models.
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3.4 Misannotated lncRNAs overlap significantly with manually curated,

experimentally validated coding lncRNAs & with misannotated
lncRNAs discovered by ribo-seq

The cncRNA database provides a manually curated list of experimentally validated
coding lncRNAs (Huang et al., 2020). We report the overlap of the misannotated
ncRNAs identified by training dynamics with this ezperimentally validated set. Fig-
ure 3.3b shows that 442 RNAs that are present in both the datasets. Out of these
442 RNAs common with cncRNAdb, 229, 179, and 109 are discovered by the union,
intersection of at lease two, and intersection of all three of LSTM, CNN and Trans-
former models. The first thing of note is that while the training dynamics have
the ability to identify some misannotated RNA, they are not able to identify all
of them. The second thing to note is that the union of the misannotated RNAs
shows the largest overlap with experimentally validates misannotated RNAs. This
suggests that different models is more effective at identifying misannotated RNAs.
It might be that different architectures of the CNN, LSTM and Transformer predis-
pose them towards finding certain misannotated RNAs. Clearly the different models
find different decision boundaries for the classification task they are trained on. This
also suggests that an ensemble of models could be trained to identify misannotated
lncRNAs with more confidence. The third thing of note is that training dynamics
find a lot more candidates for misannotated RNAs than the 442 that are present
in the intersection with cncRNAdb. For instance, the union of LSTM, CNN and
Transformer models finds 3374 misannotated RNAs that are not present in cncR-
NAdb. This suggests that there are a lot more coding lncRNAs than are currently
known, even though an unknown fraction of the 3374 might be false positives.
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3.5 Misannotated lncRNAs from training dynamics overlap significantly

those discovered by ribosome profiling

Next, we compared the overlap between the misannotated lncRNAs discovered by
our deep learning models with high-throughput ribo-seq dataset from several dif-
ferent cell line compiled by (Olexiouk et al., 2018). Figure S4 shows the counts for
lncRNAs obtained by applying 3 different methods (FLOSS, ORFScore and Phy-
loP) to identify true positives from ribo-seq data. For FLOSS, lncRNAs with a
classification of ‘Good’ are considered candidate misannotated lncRNAs; it is inter-
esting to note that most of the lncRNAs have a ‘Good’ FLOSS score. In contrast,
fewer lncRNAs are considered misannotated according to ORFScore and PhyloP.
The overlap between these 3 methods to find sORFs from ribo-seq data is shown in
Figure S3.

It is important to note that the dataset used in the current work is much smaller and
contains fewer lncRNAs than those found from the (Olexiouk et al., 2018) ribo-seq
dataset. In order to be able to compare the numbers of misannotated lncRNAs found
by the different methods, we first generated a list of lncRNAs that were present both
in the ribo-seq dataset and in the nucleotide sequence dataset used for training deep
learning models. From this common lncRNAs master list, we calculated the over-
lap between misannotated lncRNAs found by different methods. Figure 3.4 shows
that the overlap between our method and FLOSS (hypergeometric test, p-value
≈ 0), ORFScore (hypergeometric test, p-value 4e-320) and PhyloP (hypergeometric
test, p-value 1e-32) significant. This shows that our method successfully identifies
misannotated lncRNAs by learning relevant features from the lncRNA nucleotide
sequences.
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3.6 Candidate coding lncRNAs discovered using training dynamics

Figure 3.5 shows some candidate coding lncRNAs discovered using the models
trained here, together with evidence for coding potential aggregated from other
sources. Ribo-seq p-value shows the confidence that the given lncRNA con-
tains a true positive sORF as discovered from ribosome profiling (Olexiouk et al.,
2018). PeptideShaker is a tool to analyze publicly available mass-spectrometry data.
The confidence score, PeptideShaker score, for the peptide generated from each
lncRNA sequence is also provided by (Olexiouk et al., 2018). BLAST Hit shows
the most significant top hit for each lncRNA (Gish & States, 1993). CPC2 (Kang
et al., 2017), CPAT (Wang et al., 2013) and RNASamba (Camargo et al., 2020) are
coding potential prediction tools. For each candidate lncRNA, the coding potential
predicted by these tools is shown as well. Finally, Transformer, LSTM and CNN
refer to the coding potential predictions averaged over all epochs, as predicted by
models trained in this work.

All lncRNAs shown here have a high confidence sORF discovered by ribosome-
profiling, a high confidence PeptideShaker score for the peptide produced from that
ORF and a significant BLAST hit. While some of the candidates like Figure 3.5a
and Figure 3.5f show high coding potential prediction from most models, others like
Figure 3.5d and 3.5e are only discovered by the training dynamics models trained
in this work.
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3.7 Misannotated lncRNAs exist in a continuous cluster with coding

RNAs

To analyze the coding and noncoding transcript distributions of the data, we calcu-
lated features on for all RNAs in the dataset, based on properties of the transcripts as
in (Tong & Liu, 2019). These features include ORF length, ORF quality, nucleotide
distribution, translated peptide stability etc. used by (Tong & Liu, 2019) (see Ta-
ble ?? for more details). Using these features, we apply T-distributed stochastic
neighbor embedding (t-SNE) (Maaten & Hinton, 2008) (SciKit-learn implementa-
tion (Pedregosa et al., 2011), perplexity=150, iterations=1000, learning rate=200)
to reveal RNA clusters.

Figure 3.6 shows the clusters obtained by performing t-SNE (Maaten & Hinton,
2008) on these features generated from RNA sequences. The labels of the RNAs
(coding, non-coding) are not used while generating the clusters. However, based
on available coding and non-coding ground-truth labels, along with the biotype
information for the ncRNAs, we label each individual RNA example. LncRNAs
determined as misannotations by the different deep learning models are labeled in
black; interestingly, putative misannotated lncRNAs lie in a cluster contiguous with
coding RNAs. This suggests that there is indeed some continuity between coding and
lncRNAs in this embedded space and that the categories might not be as mutually
exclusive as we believe, which is consistent with recent research discovering that
some lncRNAs encode micropeptides (Hartford & Lal, 2020). In support of this,
there are clusters of non-coding RNAs (labelled Misc RNA) that are well separated
from coding RNAs and that do not contain many putative misannotated lncRNAs.
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3.8 Exploring features learnt by models

To understand which which regions of the sequence are useful for making classi-
fication decision, we visualize the activation weights of the model layers. These
activation weights determine which sequence features are paid most attention to by
the model. Figure 3.7 shows an example attention map of a misannotated lncRNA
generated from the first convolutional layer of the CNN model. Supplementary Fig-
ure 1 shows the attention weights visualized for a coding and long non-coding RNA
that are not misannotated according to the criteria described above. The CNN
model appears to focus on continuous stretches of adenines in the sequence to make
decisions about whether a given RNA is coding or long non-coding. This might
be because the poly-adenylation sites are one of the major distinguishing features
between coding and non-coding RNAs. Supplementary Figure ?? shows the average
attention given to all codons for this sequence. Codons with high ‘adenine’ con-
tent have higher average attention, but codons ending with ‘TA’ like ‘ATA’, ‘CTA’,
‘GTA’ & ‘TTA’ also have high average attention. Studying these and comparing
the average attention differences in codons between coding and non-coding RNAs
might prove interesting.
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Figure 3.1 Analysis of the training dynamics of deep learning models. (a)
Estimated coding probability across all training epochs shown for five RNAs. We
expect coding and non-coding RNAs to have high and low coding probabilities
respectively; this is the case for examples A and E. In this work, we are trying
to identify non-coding RNAs that might be misannotated, when they are in fact
coding. We are interested in lncRNAs- like B (ENST00000447563)- which have
consistently high estimated coding probability, despite having the ground truth-label
‘Non-coding’. These are candidate coding lncRNA. In support of this observation,
ENST00000447563 (also known as linc00689) was recently found to be protein coding
Hartford & Lal (2020). C and D show examples of ambiguous samples, i.e. they show
a large change in estimated coding probabilities as model training progresses, so we
are not sure whether they are mislabelled or not. (b) Mean (y-axis) and standard
deviation (x-axis) of ground truth class probability predictions across all training
epochs can be used to determine mislabelled samples. Candidate misannotated
RNAs are those in the Hard-to-Learn region i.e. RNAs with low mean and standard
deviation for the ground truth class probability.
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Figure 3.2 Training dynamics of deep learning models can be used to iden-
tify misannotated lncRNAs. To prove that training dynamics can be used
to identify mislabelled RNAs, we sampled 5% of the data with µground truth and
σground truth less than 0.8 and 0.2 respectively. These are samples for which we have
medium-high confidence that the ground truth labels are correct (before). After we
flip the labels (coding RNAs become, non-coding RNAs and vice-versa), the samples
move into the hard-to-classify region of the training dynamics summary plot.
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Figure 3.3 Comparison with cncRNAdb (a) Comparison of the hard-to-learn
ncRNAs obtained from by CNN, LSTM and Transformer models’ training dynam-
ics. (b) Comparison of the number of common RNAs that are present in the deep
learning dataset and in cncRNAdb. (c) Intersection of the misannotated lncRNAs
identified in the union of LSTM, CNN, and Transformer set with the common RNAs
found in cncRNAdb. (d)Intersection of the misannotated lncRNAs identified in the
intersection of at least 2 of LSTM, CNN, and Transformer set with the common
RNAs found in cncRNAdb. (e) Intersection of the misannotated lncRNAs identified
in the intersection of LSTM, CNN, and Transformer set with the common RNAs
found in cncRNAdb.
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Figure 3.4 Comparison to ribo-seq data based methods used to find mis-
annotated lncRNAs from : (a) FLOSS (p-value ≈ 0), (b) ORFScore (p-value
4e− 320) and (c) PhyloP (p-value (1e− 32)) for the dataset from (Elkon et al.,
2015). Background set has 26857 lncRNAs.
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Figure 3.5 Some of the candidate coding lncRNAs discovered in this work,
with evidence for coding potential aggregated from other sources. Ribo-
seq identifies RNAs associated with ribosomes, which are likely to be translated.
Ribo-seq p-values (a combined score from FLOSS, ORFScore and PhyloP) show
the likelihood of the identified RNA being a true-positive. PeptideShaker analyzes
publicly available MS data and provides a confidence score for each peptide. The
BLAST Hit is the top hit from running the query in BLASTx. CPC2, CPAT and
RNASamba are tools for the coding potential prediction of a given RNA.)
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Figure 3.6 Misannotated lncRNAs exist in a continuous cluster with coding
RNAs. t-SNE clusters obtained from hand-crafted features (Tong & Liu, 2019)
generated from nucleotide sequences. Labels (Coding, lncRNA etc.) are only used
for visualizing the clusters, not for generating the clusters. Putative misannotated
lncRNAs lie in a cluster contiguous with coding RNAs. There are other clusters of
ncRNAs that are well separated from coding RNAs and that do not contain any
putative misannotated lncRNAs.
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cac aca cag agg gga gaa aaa aaa aat atg tga gat atg tgagaa aag agt gtc tcc ccc cca caa aaa aaa aag aga gac acc cca cag aga gaa aaa aat ata tatata tat att ttc tcacag aga gaa aag aga gat atg tgc gcc cca cag agt gtt tta tac act cta tac act ctt tta taaaaa aat atg tgt gtc tcacaa aaa aac acc cca caa aac aca cat att ttc tca
cag aga gaa aaa aat ata taa aac act ctt ttc tcacaa aat atg tga gat att tta tat att ttc tcc cct ctg tgc gcc cca caa aag aga gaa aag agg ggt gtg tgagaa aac acg cgc gct ctg tgggga gag aga gac acc cct ctt tta taa aat atg tgg ggt gtg tgggga gaa aag aga gat atg tgggga gag agg ggg ggc gcg cgt gtc tct ctt ttc tcc cct ctt ttc tct
ctg tgt gtt tta taaaag agc gct ctg tga gac aca caa aac act ctt ttgtgg ggc gct ctt ttc tcccca cat atc tct ctt ttg tgtgtg tgagag agg gga gac acc cct ctc tca cac acc ccc cct cta tac acc cct ctg tgg ggt gtg tgg ggc gca cag aga gag agg gga gac acg cgt gtc tctctg tga gac acg cgc gcc ccc cct ctc tcacaa aat atc tca cat att ttg tgc
gcc ccg cgt gtt tta tacaca cac act ctt ttc tcc ccc cca cag agc gcc cct ctg tgg ggt gtg tgg ggt gtc tcacag agt gtc tct ctc tcc cct ctg tggggg ggg ggt gtc tctctg tgtgtg tgtgtg tgt gtt tta taa aac aca caa aaa aac acc cca cat atc tcgcga gac act ctg tgggga gac aca caa aat atc tcg cgc gca cag agt gtt ttc tcc cct ctt tta tatatg tga
gaa aag agg ggc gct ctt tta tac act ctt tta taaaaa aaa aaa aag agg ggc gct ctc tctctg tgggga gat att ttc tcacag aga gaa aag agc gcg cga gaa aag agt gtc tcg cgc gct ctt ttc tca cat atc tcc ccc ccc ccg cga gat att ttc tcacag aga gac acc ccc cca cat atc tcc cct cta tag agt gtg tgggga gag agg gga gaa aaa aaa aaa aat atc tcc
cct cta tac acc cca cag aga gaa aag aga gaa aag agg ggg ggc gct ctg tga gac acc cca cat ata tagagg gga gaa aac act ctt ttg tgc gcc cca cat att ttc tcc cct ctt ttg tga gac acc ccc ccc cca cat atc tca cat ata tat atc tctctg tgagag agg gga gaa aaa aaa aaa aaa aac aca caa aac aca cag aga gaa aaa aaa aag agg ggt gtc tcacaa
aaa aaa aac acc ccc cca cac acg cgt gtg tgtgta tacacg cgc gcc ccc cca caa aac acg cgt gtc tcc cct ctg tga gat att ttg tga gac acg cga gac act ctt ttg tgc gcc cct ctg tgcgca cag agc gct ctt ttc tctctg tgc gct ctt ttc tcc cct ctg tgagaa aaa aat att ttc tcg cgc gct ctg tgc gct ctg tgc gcc cct ctt ttatagaga gaa aac acc ccc cct ctt
ttg tgt gtc tctctg tgcgca cag agc gcc cca cag agt gtg tggggg ggg gga gag agt gtt ttc tcacag agg gga gac act ctt ttatagagg ggc gcg cgg gga gag agc gct ctg tgc gcc ccc ccc cca cac acc ccc cct ctc tcc cct ctg tgc gct ctt ttgtgg ggc gca cac acc ccc cct ctg tgcgca caa aaa aat ata tacaca cat atg tgc gcc ccc cct ctc tcc ccc
cct ctt ttc tcccca cat atc tcg cgc gct ctg tgcgca cag aga gac acc cct ctc tcacag aga gag agt gtg tggggg ggc gcg cgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctg tgtgtg tgcgcg cgg ggg gga gat atg tgagag aga gaa aat ata tacaca cac aca cac acc ccc cct ctc tcc ccc cct ctt ttc tcccca cat atc tcg cgc gct ctg tgcgca cag aga
gac acc cct ctt ttatagaga gag agt gtg tgggga gat atg tgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctg tgtgta tatatg tggggg gga gat atg tgagag aga gaa aat ata tacaca cac acg cgc gcc cct ctt ttc tcc ccc cct ctt ttc tcccca cat atc tcg cgc gct ctg tgcgca cag aga gag agt gtg tgggga gac acg cgt gtc tctctg tgg ggt gtc tct ctc
tcc cct ctg tgtgtg tgtgtg tggggg gga gat ata taa aat ata tacaca cac acg cgc gcc ccc cct ctc tcc cct ctt ttc tcacaa aat atc tcg cgc gct ctg tgcgca cag aga gac acc cct ctc tcacag aga gag agt gtg tgggga gac acg cgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctg tgtgtg tgtgtg tggggg gga gat ata taa aat ata tacaca cac acg cgc
gcc ccc cct ctc tcc cct ctt ttc tcacaa aat atc tcg cgc gct ctg tgcgcg cgg gga gac acc cct ctc tcacag aga gag agt gtg tgggga gat atg tgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctg tgtgta tatatg tggggg gga gat atg tgagag aga gat ata tacaca cac act ctc tcc cct ctt ttc tcc ccc cct ctt ttc tcccca cac act ctg tgc gct ctg tgcgca
cag aga gac acc cct ctc tcacag aga gag agt gtg tgggga gac acg cgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctg tgtgtg tgtgtg tggggg gga gat atg tgagag aga gat ata tacaca cac act ctc tcc cct ctt ttc tcc ccc cct ctt ttc tcccca cac act ctg tgc gct ctg tgcgca cag aga gac acc cct ctc tcacag aga gag agt gtg tgggga gac acg
cgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctt ttg tgtgtg tggggg gga gat atg tgagag aga gaa aat ata tacaca cac act ctc tcc cct ctt ttc tcc ccc cct ctt ttc tcccca cat atc tca cac act ctg tgcgca cag aga gac acc cct ctc tcacag aga gag agt gtg tgggga gac acg cgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctg tgtgtg tgcgcg cgg
ggg gga gac aca caa aag aga gaa aat ata tacaca cac act ctc tcc cct ctt ttc tcc ccc cct ctt ttc tcccca cat atc tca cac act ctg tgcgca cag aga gac acc cct ctc tcacag aga gag agt gtg tgggga gac acg cgt gtc tcccca cag agt gtc tct ctc tcc cct ctg tgtgtg tgcgcg cgg ggg gga gat atg tgagag aga gat ata tacaca cac act ctc tcc
cct ctt ttc tcc ccc cct ctt ttc tcccca cat atc tcg cgc gct ctg tgcgca cag aga gac acc cct ctc tcacag aga gag agt gtg tgggga gac acg cgt gtc tcccca cag agt gtc tct ctc tct ctc tctctg tgtgtg tgcgcg cgg ggg ggc gcc cca caa aag agt gtg tgtgta tacaca cac aca cag agt gtt ttg tgt gtt ttc tccccg cgt gtc tca cac aca caa aac act
ctt ttc tcccca cac acg cga gac aca cag agg ggc gcc cca cag agt gtg tgtgtg tgagag agg ggt gtt ttg tgagag agc gct ctg tgg ggt gtg tgc gct ctg tga gac act ctg tgagaa aaa aaa aac act ctg tgt gtc tcacag agc gct ctg tgc gcc ccc cca caa aag agg gga gac acc cct ctg tggggg gga gag agc gct ctc tctctg tgc gct ctc tcc ccc ccc
cca cac act ctc tcc cct ctg tgg ggt gtg tgtgtg tgcgcg cgg ggt gtc tct ctt ttg tgcgcg cgc gcc cct ctg tgg ggc gcc cct ctc tcc ccc cct ctg tgc gcc cct cta tagagg ggt gtt tta tacaca cat atg tgcgca cag agt gtg tgg ggt gtc tca cat atc tcc ccc ccg cgg ggt gtc tcg cgc gct ctc tcc ccc cca cac aca cac acc ccc ccg cgt gtg tgtgtg tgg
ggg ggc gct ctc tctctg tggggg gga gat atc tcc ccc ccc cct ctc tct ctt ttc tcccca cag agc gcc cca cag agc gcc ccc cca cag agg ggg ggg gga gac aca cat atc tctctg tgg ggc gct ctg tgt gtc tct ctc tcacag agg gga gac acc ccc cca cag agc gcc cca cat atc tctctg tgtgta taaaaa aaa aaa aat att ttatagagg ggc gca cag agg ggt gtc
tcc ccc cct ctt ttc tcacag agt gta tatatg tgc gct ctc tcc cct ctg tgg ggt gtc tcacaa aac aca caa aaa aag aga gaa aaa aaa aaa aac act ctt ttc tcacaa aat att ttg tgagag aga gaa aat atg tgg ggc gca cat atc tctctg tgtgta tat att ttc tccccg cga gaa aag agt gtg tgt gtt ttc tct ctc tct ctc tcacag aga gat atg tgt gtt ttg tgagag agt
gtt ttc tcccca cac act cta taaaag agt gta tagaga gat att ttc tct ctt ttatag agt gtc tctctg tgc gct ctg tgtgta tat atc tcacaa aat atg tga gac aca cac aca cag aga gag aga gag aga gac acg cgt gtg tgcgca cat att tta taaaaa aaa aac acc cct ctc tcacaa aac acc cca cat atg tgtgtg tgggga gat atc tct cta tat att ttc tct ctt ttc tca
cag agt gtt tta taa aat att ttg tgc gct ctt ttc tca cat atg tgtgta tat atc tct ctt ttg tgagaa aag agc gct ctc tctctg tgt gtt tta tat atc tcacag agg ggt gtg tgcgca cat atg tgcgca cac aca cat att ttgtggggg gga gat att ttg tgt gtt tta tatatg tgc gct ctt ttc tcc cct ctg tga gat atg tgagaa aac act ctg tga gac acc cct ctt ttc tct ctt ttc
tca cat att tta tatatg tgcgca caa aag agg ggg ggg gga gaa aag aga gaa aag aga gat atg tgc gct ctg tgcgca cat ata tacaca cag agg gga gat atg tgggga gaa aat ata tat atc tcccca cag agg ggg ggg gga gaa aag aga gac acg cgt gtc tct cta taaaag agg gga gag aga gag aga gat atg tgc gcc ccc cca cag agc gct ctg tggggg
gga gag agt gtc tcc cct cta tatatg tgcgca caa aag agg ggg ggg gga gaa aag aga gaa aag aga gat atg tgc gct ctg tgcgca cat ata tacaca cag agg gga gat atg tggggg gga gat ata tat atc tcccca cag agg ggg ggg gga gaa aag aga gat att ttc tct cta taaaag aga gaa aag aga gag aga gat atg tgc gcc ccc cca cag agc gct ctg tgg
ggg gga gag agt gtc tcc cct cta tatatg tgcgca caa aag agg ggg ggg gga gaa aag aga gaa aag aga gat atg tgc gct ctg tgcgca cat ata tacaca cag agg gga gat atg tggggg gga gat ata tat atc tcccca cag agg ggg ggg gga gaa aag aga gat att ttc tct cta taaaag agg gga gag aga gag aga gac aca cac acc ccc ccg cgg ggc gct
ctg tgggga gaa aag agt gtc tcacaa aag aga gat ata tatatg tgt gtc tcacag agt gtt ttg tgt gtt ttc tcccca cat att tta tatata taa aat ata taaaaa aaa aac acc cca cac act ctc tca cat atg tgt gtt ttatagaga gat atg tgagag agc gct ctg tgagaa aac act ctt ttc tcc ccc cct ctt ttc tcc ccc ccc cca cag agt gtt ttc tct ctt tta tacacg cga gat
atc tcacaa aaa aaa aaa aag agt gtg tgg ggc gct ctg tgt gtc tcc cct cta taaaaa aat att ttc tca cat atc tca cac act ctc tcacaa aat ata tat atc tcc cct ctt ttg tgc gct cta tagaga gag agt gtc tct ctt ttc tcc cct ctt ttg tgt gtc tcacag agc gcc cca cag agg ggc gct ctg tgggga gag agt gtg tgcgca caa aat atg tgtgtg tgcgca caa aat atg
tgg ggc gca cac aca caa aat atc tct ctt ttgtgg ggc gct ctc tca cac act ctg tgcgca caa aac acc cct ctc tctctg tgt gtc tct ctc tcc cct ctg tggggg ggc gct ctc tcacaa aag agc gca caa aat att ttc tct ctt ttc tctctg tgc gcc cct ctc tcacag agc gcc cct ctc tcc cct ctg tgagag agt gta tag agc gct ctg tggggg gga gat att tta tacaca cag
agg ggt gta tatatg tgcgca cac acc cca cac acc cca cat atg tgc gcc ccc cca caa aac act cta taa aat att ttg tgtgta tat att ttc tcacag agt gta tagaga gag aga gac acg cga gag agg ggt gtt ttc tca cac acc cca cat atg tgt gtt ttgtgg ggc gcc cca cag agg ggc gct ctg tgg ggt gtc tct ctc tcgcga gat atc tct ctc tcc cct ctg tga gac acc
cct ctc tcacag agg ggt gta taa aat atc tctctg tgc gcc ccc cca cac acc cct ctt ttgtgg ggc gcc cct ctc tct ctc tcacaa aaa aag agt gtg tgc gct ctg tggggg gga gat att tta tacaca cag aga gac aca cat atg tgagag agc gcc cca cat atc tca cat atg tgc gcc cct ctg tgggga gac aca cat ata taaaag agt gtg tgagag agt gtt tta tatata tat
att ttg tgtgta tat att tta tatata taaaag aga gac act cta tatatg tga gat ata tacaca cag agt gta taaaaa aaa aac acc cca cat atg tgagaa aaa aat atc tcccca caa aaa aat att tta tatata taa aat ata tat atc tca cac aca cac act cta tacaca cat ata taa aat ata tacaca caa aac act ctg tgtgta taa aac acc cct ctc tca cac acc ccg cgc
gcc ccc cct cta tat atc tcc cct ctg tggggg gga gat atg tgtgtg tgtgtg tgt gtc tca cat att tta tatata tag agc gcc cca caa aat att tta tatatg tgg ggc gcc ccc ccc ccc cca cag agc gct ctt ttatag agt gtt ttc tct ctt ttg tgc gct ctt tta tat att ttgtgggga gag aga gag agt gtg tgtgta taa aat att ttc tct ctc tcc ccc cct ctt tta tat att ttc tct
ctt ttg tgc gct ctt ttc tct cta tacaca cag agt gtc tct ctt ttg tgtgtg tgtgta tacaca cat atc tcacag agt gtt tta tat atc tctctg tgt gtt ttg tgt gtc tcc cct ctt ttg tgc gcc cca cag agt gtg tgt gtt ttc tcacaa aaa aag agt gtg tgt gtt tta tat att ttc tcg cgt gta tat att tta tac act ctt tta taaaag agc gct ctc tcc cct ctg tgcgca cag agg ggg gga
gag aga gat att ttatagaga gaa aat att ttc tct ctt ttc tcc ccc ccc cct cta taaaag aga gaa aag aga gaa aaa aat ata taaaag agt gta taa aat ata tag agc gcg cgg gga gag aga gac acc cct ctg tgc gct ctg tggggg ggc gca cac act ctg tgg ggt gtg tgg ggc gcg cgc gcc cca cag agg ggc gct ctt ttgtgg ggc gct ctc tctctg tggggg ggg
ggc gct ctg tgc gcc ccc cca cat atc tcccca cat atc tcc cct ctc tca cac aca cag agc gca cat atg tgg ggc gcg cga gac act ctg tgggga gag agg ggg ggt gtc tct ctt ttg tgc gcc ccc cct ctg tgagag agg ggt gtc tcc ccc ccg cgt gtg tgtgtg tgcgcg cgg gga gag agc gca cag agg ggg ggc gct ctt ttgtgg ggc gca cat att ttc tca cac act ctc
tcc cct cta tagagg ggc gca cac act ctg tgc gct ctg tga gac act ctc tcacag agt gtc tctctg tgt gtc tcc cct ctg tgg ggt gtg tgg ggt gtg tgc gct ctg tggggg gga gag agg ggc gcc ccg cga gaa aaa aac acc ccc ccg cgt gtc tca cat atg tgcgca cat atg tgtgta taaaaa aac acc ccg cgc gcg cgg ggg ggg ggc gcc ccc ccc ccg cgt gtc tct
ctg tgg ggc gca cat atg tgg ggt gtg tgcgca cac acc cct ctg tgtgtg tgc gct ctg tggggg gga gag agt gtg tgc gcc cct cta tatata tagaga gag agt gta tagagg gga gaa aaa aaa aag agt gta tat att ttc tcc cct ctg tgggga gac acc cct ctt tta taaaaa aaa aaa aaa aac act ctt ttatagagg ggc gcc cca caa aaa aaa aaa aaa aag agt gtg
tgt gtt ttgtgg ggt gtt ttg tgagaa aat atc tct ctt ttgtgg ggc gcc cca caa aaa aat att ttgtgggga gaa aac act ctg tgcgca caa aaa aac act ctc tctctg tgtgta tat att tta tat atc tct ctc tcc ccc ccc cct ctt ttg tgtgtg tgagaa aaa aat att ttc tct cta tatatg tgggga gaa aaa aaa aat att ttc tcgcga gag agc gca caa aaa aat ata taaaaa
aat ata tatatg tgcgca cat att ttc tcc ccc cca cag agt gtg

Figure 3.7 Attention maps explain which parts of sequence are important
for making a classification decision. An example attention map extracted
from first convolutional layer of CNN model for ENST00000447563 (a misannotated
lncRNA). The ground-truth for this RNA is ‘Non-coding’. However, CNN model
predicts that this is a non-coding RNA with probability 0.12. Attention visualiza-
tion shows regions with contiguous ‘A’ nucleotides have high activation weights.
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4. DISCUSSION

In this work, we apply the general framework described by (Swayamdipta et al.,
2020) for detecting mislabelled samples in a training dataset to detect misannotated
lncRNAs. The training dataset, comprising of nucleotide sequences of coding and
non-coding RNA, is used to train CNN, LSTM and Transformer models. At the
end of each training epoch, coding and non-coding prediction probabilities for every
RNA sample are saved. Calculating the mean and standard deviation of the ground-
truth class helps determine whether a given RNA is possibly mislabelled. LncRNAs
with low mean and standard deviation for the non-coding class are the possible
misannotations.

A large number of misannotated lncRNAs are identified by all three different deep
learning methods. This is significant since the algorithms to distinguish between
coding and non-coding RNAs employed by the models are different. Moreover,
when we compare the misannotations discovered here to previous methods to detect
misannotated lncRNAs from ribo-seq data and manually curated dataset, we see a
large overlap for two of the methods, suggesting that our method is successfully able
to detect misannotated lncRNAs. It is also interesting to note that our method shows
a high overlap with a manually curated list of misannotated lncRNAs. Therefore, we
conclude that this approach offers promising potential for use in curating datasets
used for training coding potential predictors and assisting experimental efforts in
characterization of misannotated lncRNAs.

To our knowledge, this work also represents the first instance in which nucleotide
sequence embeddings and transformer models are applied to the problem of building
coding potential predictive models. Using nucleotide embeddings might be prefer-
able to other representations like one-hot encoding (Hill et al., 2018) or integer
encoding (Camargo et al., 2020) used previously. This is because embeddings are
learnt from the complete human genome and incorporate the context in which a
given codon is found in the DNA. All models are configured to have trainable em-
beddings; this helps to learn better representations of codons in RNA, since the
original embeddings are learnt from DNA sequences. Future work to compare the
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original embeddings to the embeddings generated from models trained here might
provide valuable insight into the differences between codons in DNA and RNA.

One limitation of the approach presented here is that it is computationally intensive
since models need to be retrained on the complete dataset after evaluation of the test
set performance. However, this approach represents the first method that can find
possibly misannotated lncRNAs from the nucleotide sequence alone. In conjugation
with ribo-seq data, it can be used to identify misannotated lncRNAs with high
confidence. Moreover, it can be used for curating the training datasets used for
training coding potential predictors. Future work that compares the misannotated
lncRNAs obtained from models here with ribo-seq datasets from different cell-types
will provide interesting results on the cell-line specificity of misannotated lncRNAs.

In the future, conducting the following analysis will provide interesting insights.
First, a meta analysis of attention maps like the one shown in Figure 3.7 to compare
different groups of RNAs (coding, non-coding, misannotated) to see if there are any
significant differences. One approach is to calculate the distribution of average atten-
tion paid to every 3-mer in the sequence, and then to make a correspondence to the
amino acid encoded. Second, since it is widely known that disease-related variants
are located in the non-coding regions of the human genome, it might be interesting
to look for genetic variants present in the misannotated lncRNAs identified here.
Third, integrating conservation information from different species together with the
analysis here might provide insights into the evolution of coding and non-coding
RNA.
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