
Recommendation System by Link Prediction
Approach on Transactional Data

by
Emir Alaattin Yılmaz

Submitted to the Graduate School of Engineering and Natural
Sciences in partial fulfilment of the requirements for the degree of

Master of Science

Sabancı University
July 2021

RECOMMENDATION SYSTEM BY LINK PREDICTION
APPROACH ON TRANSACTIONAL DATA

Approved by:

Date of Approval: 02/07/2021

Emir Alaattin Yılmaz 2021 ©

All Rights Reserved

Recommendation System by Link Prediction Approach on
Transactional Data

Emir Alaattin Yılmaz

Computer Science and Engineering Master’s Thesis, July 2021

Thesis Supervisor: Prof. Dr. Selim Saffet Balcısoy

Keywords: recommendation system, link prediction, transaction data, merchant
prediction

ABSTRACT

With the continuous digitalization of the world, massive amounts of data are pro-
duced every second. Therefore, recommending relevant items to users has become
a more important task in many systems. For this purpose, transaction data sets
can be exploited in recommendation systems to understand underlying user inter-
ests. Commonly used recommendation systems adopt collaborative filtering based
approaches that utilize a user-item matrix based on users’ past activity. However,
these methods may suffer from sparsity and scalability issues. In this thesis, a link
prediction based recommendation system combining graph representation learning
algorithms and gradient boosting classifiers for transaction data sets is proposed as
a scalable solution. Proposed system generates a network where nodes correspond
to users and items, and links represent the interactions between them. A use case
scenario is examined on a credit card transaction data set as a merchant prediction
task which is predicting the merchants where users can make purchases in the next
month, in a link prediction context. Performances of common network embedding
extraction techniques and classifier models are evaluated by conducted experiments,
and based on these evaluations; the proposed system is constituted. A matrix fac-
torization based alternative scalable recommendation method is compared with the
proposed model. Proposed method has shown a superior performance than alter-
native method in terms of receiver operating characteristic curves, area under the
curve, and mean average precision metrics.

iv

İşlem Verilerinde Bağlantı Tahmini Yaklaşımı ile Öneri Sistemi

Emir Alaattin Yılmaz

Bilgisayar Bilimi ve Mühendisliği Yüksek Lisans Tezi, Temmuz 2021

Tez Danışmanı: Prof. Dr. Selim Saffet Balcısoy

Anahtar Kelimeler: öneri sistemi, bağlantı tahmini, işlem verisi, işyeri tahmini

ÖZET

Dünyanın süregelen dijitalleşmesi ile her saniye çok büyük miktarlarda veri
üretilmektedir. Bu nedenle, kullanıcılara ilgili öğeleri önermek, birçok sistemde daha
da önemli bir görev haline gelmiştir. Bu amaçla, öneri sistemlerinde altta yatan
kullanıcı ilgilerini anlamak için işlem veri setlerinden yararlanılabilir. Yaygın olarak
kullanılan öneri sistemleri, kullanıcıların geçmiş etkinliklerine dayalı bir kullanıcı
öğe matrisinden faydalanan işbirlikçi filtrelemeye dayalı yaklaşımları benimsemek-
tedir. Ancak bu yöntemler seyreklik ve ölçeklenebilirlik sorunları yaşayabilirler. Bu
tezde, işlem veri setleri için grafik temsili öğrenme algoritmalarını ve gradyan artırıcı
sınıflandırıcıları birleştiren, bağlantı tahmini tabanlı bir öneri sistemi, ölçeklenebilir
bir çözüm olarak önerilmiştir. Önerilen sistem, düğümlerin kullanıcılara ve öğelere
karşılık geldiği, bağlantıların aralarındaki etkileşimleri temsil ettiği bir ağ oluştu-
rur. Bir kredi kartı işlem veri seti üzerinde, kullanıcıların bir sonraki ay içerisinde
alışveriş yapabilecekleri işyerlerini tahmin eden bir üye işyeri tahmin görevi, bir kul-
lanım senaryosu olarak bağlantı tahmini bağlamında incelenmiştir. Yaygın olarak
kullanılan ağ gömme çıkarımı teknikleri ve sınıflandırıcı modellerinin performansları,
deneyler yapılarak değerlendirilmiş ve bu değerlendirmelere dayalı olarak önerilen
sistem oluşturulmuştur. Önerilen model ile matris çarpanlarına ayırma tabanlı al-
ternatif bir ölçeklenebilir öneri yöntemi karşılaştırılmıştır. Önerilen yöntem, alıcı
çalışma karakteristik eğrileri, eğri altında kalan alan ve ortalama kesinlik değer-
lerinin ortalaması metrikleri açısından alternatif yönteme göre daha üstün bir per-
formans göstermiştir.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor
Professor Selim Saffet Balcısoy, for providing valuable mentoring and great support
throughout my master’s study. I am very grateful for his scientific guidance and
encouragement of new ideas.

Also, I would like to thank Prof. Dr. Burçin Bozkaya for his invaluable feedback
about my thesis study. I also would like to thank Prof. Dr. Yücel Saygın for his
precious time to be present in my thesis jury.

I thank Kerim Gökarslan, Muratcan Serdar Canlı, Hamza Kandiş, Alphan Yalaz,
Yağız Varol, Işın Mert Balcı, Berkant Deniz Aktaş, Hasan Alp Boz, Ahmet Ege Gül-
dalı, Ömer Burak Aladağ, Cansu Ekiz, Ayşe Merve Soylu for their great friendship.

I also thank Anıl Özdemir, Furkan Coşkun, Ethem Tunal Hamzaoğlu, Pınar Ön for
their support for my master’s study and their great friendship.

And finally, I would like to thank my beloved family Gamze Yılmaz, Mehmet Yılmaz,
and Mehmet Akif Yılmaz, for their constant support throughout my entire life.

vi

“Science is the only true guide in life.”
Mustafa Kemal ATATÜRK

vii

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATONS . xiii

1. Introduction . 1

2. Related Works . 4

3. Architecture . 11
3.1. Link Prediction Problem. 11
3.2. Research Problem Definition. 12
3.3. Framework . 12
3.4. Preprocessing . 15
3.5. Node Embeddings . 15

3.5.1. node2vec . 16
3.5.2. metapath2vec . 19

3.6. Link Embeddings . 20
3.6.1. Binary Operators. 20

3.7. Data Partition . 21
3.7.1. Train Set . 21
3.7.2. Validation and Test Set . 22

3.8. Classifier Model . 22
3.8.1. Boosting Algorithms . 22

3.8.1.1. Gradient Boosting Algorithms . 23
3.8.1.2. XGBoost . 25
3.8.1.3. LightGBM . 26

3.8.2. Artificial Neural Networks . 27
3.9. Alternative Method . 29

3.9.1. Collaborative Filtering . 29

viii

3.9.2. Alternating Least Squares . 30

4. Implementation . 32
4.1. Embedding Extraction . 32

4.1.1. node2vec Implementation . 32
4.1.2. metapath2vec . 33

4.2. Classifier Model . 34
4.2.1. XGBoost . 34
4.2.2. LightGBM. 35
4.2.3. Artificial Neural Networks . 35

5. Use Case: Merchant Prediction . 36
5.1. Problem Formulation . 36
5.2. Motivation . 36
5.3. Data set . 37
5.4. Merchant-Customer Network . 38
5.5. Data Partition . 41
5.6. Embedding Visualization . 42

6. Evaluation . 44
6.1. Evaluation Metrics . 44

6.1.1. Receiver Operating Characteristic . 44
6.1.2. Mean Average Precision at K . 44
6.1.3. Mann-Whitney U-Test . 45

6.2. Experiments . 46
6.2.1. Embedding Model Hyperparameter Tuning . 46
6.2.2. Classifier Model Configurations . 46

6.3. Results . 47
6.3.1. Validation Results . 47
6.3.2. Test and Comparison Results . 50

7. Conclusion and Future Work . 60

BIBLIOGRAPHY. 63

APPENDIX A . 70

ix

LIST OF TABLES

Table 3.1. Binary operators and definitions adopted from [1] 21

Table 4.1. node2vec paramater list . 32
Table 4.2. metapath2vec paramater list . 33
Table 4.3. XGBoost paramater list . 34
Table 4.4. LightGBM paramater list . 35
Table 4.5. ANN paramater list . 35

Table 5.1. Snapshot from the transaction data set . 37
Table 5.2. Data partition details . 42

Table 6.1. Summary of models and operators to be selected 46
Table 6.2. Embedding Model hyperparameters . 46
Table 6.3. Classifier Model parameter configurations . 47
Table 6.4. Validation experiment results part 1 . 48
Table 6.5. Validation experiment results part 2 . 49
Table 6.6. Comparisons of proposed and alternative methods 50
Table 6.7. Significance comparisons of proposed and alternative methods . 52
Table 6.8. Catch and Miss rates of top-5 recommendations of proposed

and alternative methods . 54

x

LIST OF FIGURES

Figure 3.1. Visualization of link prediction problem . 12
Figure 3.2. Illustration of preprocessing stage, graph network generation

and embedding model training stages . 13
Figure 3.3. Node embeddings. 13
Figure 3.4. Illustration of train set generation by positive-negative edge

embeddings and train of classifier. 14
Figure 3.5. Representation of node u and node v in embedding space, zu

and zv are embeddings of node u and v adopted from [2] 15
Figure 3.6. BFS and DFS traversing from node u, adopted from [1] 17
Figure 3.7. Illustration of random walk where walker at node v, adopted

from [1] . 18
Figure 3.8. Feed Forward Neural Network. 27
Figure 3.9. Matrix Factorization of interaction matrix R into U as user

features and V item features matrix. 30

Figure 5.1. Number of transactions according to months 38
Figure 5.2. Sampled visualization of Merchant-Customer Network. 39
Figure 5.3. Unique merchant-customer pair distribution according to mer-

chant category . 40
Figure 5.4. Number of merchant distribution according to merchant category 40
Figure 5.5. Degree distribution of MCN in log scale . 41
Figure 5.6. Data Partition Visualization . 41
Figure 5.7. Metapath2vec Sampled Node Embedding Visualization 43
Figure 5.8. Node2vec Sampled Node Embedding Visualization 43

Figure 6.1. MAP@5 Scores according to experiment numbers (see Table
6.4 and 6.5) . 47

Figure 6.2. ROC Curve and AUC score of test set applied on proposed
and alternative models . 51

Figure 6.3. MAP@K Comparison of proposed and alternative models 52
Figure 6.4. U-Test statistic distribution of proposed and alternative method 53

xi

Figure 6.5. P-Value distribution of proposed and alternative method 53
Figure 6.6. Map Visualization of proposed method catching recommenda-

tions for a sample user . 56
Figure 6.7. Map Visualization of alternative method missing recommen-

dations for a sample user . 56
Figure 6.8. Map Visualization of proposed method catching recommenda-

tions for a sample user . 57
Figure 6.9. Map Visualization of alternative method catching recommen-

dations for a sample user . 57
Figure 6.10. Map Visualization of proposed method missing recommenda-

tions for a sample user . 58
Figure 6.11. Map Visualization of alternative method missing recommen-

dations for a sample user . 58
Figure 6.12. Map Visualization of proposed method missing recommenda-

tions for a sample user . 59
Figure 6.13. Map Visualization of alternative method catching recommen-

dations for a sample user . 59

Figure A.1. Town labeled metapath2vec merchant node embedding visu-
alization. 70

Figure A.2. Town labeled node2vec merchant node embedding visualization 71
Figure A.3. Metapath2vec Sampled Train Link Embedding Visualization . . 72
Figure A.4. Node2vec Sampled Test Link Embedding Visualization. 72
Figure A.5. Node2vec Sampled Train Link Embedding Visualization 73
Figure A.6. Node2vec Sampled Test Link Embedding Visualization. 73

xii

LIST OF ABBREVIATIONS

ALS: Alternating Least Squares

ANN: Artificial Neural Networks

AUC: Area Under the Curve

CF: Collaborative Filtering

GBDT: Gradient Boosting Decision Tree

GT: Ground Truth

LGBM: Light Gradient Boosting Machine

MAP@K: Mean Average Precision at K

MCN: Merchant Customer Network

PCA: Principal Component Analysis

ROC: Receiver Operating Characteristic

SVD: Singular Value Decomposition

t-SNE: t-Distributed Stochastic Neighbor Embedding

UIN: User-Item Network

XGB: Extreme Gradient Boosting

xiii

Chapter 1

Introduction

Graphs are data structures that can powerfully abstract complex systems.
Many real-world systems can be represented in a graph structure where individ-
uals and relationships between them correspond to nodes and edges. These systems
include social networks [3, 4], biological networks [5, 6], physical networks [7], ci-
tation networks [4], knowledge representations [8] and much more [9]. Due to its
applicability in a wide range of domains, graph systems advancements can lead to
great improvements in many diverse fields.

The systems that exploit network architectures can perform common tasks such
as node classification, community detection, and link prediction. Node classification
is to decide the class of a node in a graph; community detection is to find the clusters
that contain similar nodes in a network, and link prediction is to discover hidden
links based on observed links.

Link prediction has many diverse applications in real-world scenarios such as
predicting the future friends in a social network, detecting future collaborations in
an academic network [4], finding protein-protein interactions (PPI) in a biological
network, and recommending items in recommendation systems. Due to its high
practicality, research in this field can lead to many contributions in a wide range
of systems. Among these applications, recommendation systems are the primary
consideration of this thesis.

Recommendation systems offer items to users which they might be interested
in. These items can be relevant links on a search engine, products on an e-commerce
website, movies, and much more. Common recommendation systems use collabora-
tive filtering based approaches that utilize a user-item matrix to make recommen-
dations using users’ past activity. However, these methods may have sparsity and
scalability issues [10].

1

A link prediction approach for a recommendation system can operate in a
small neighborhood which can be proposed as a scalable solution for the scalability
issues in recommendation systems. In addition, transaction data sets consisting of
records with item-user pairs, timestamps, and optional numerical quantities can be
exploited to understand user interests and make recommendations. Based on these
motivations, a link prediction based recommendation system for transaction data
sets is proposed in this thesis.

In this thesis, a link prediction based recommendation system for transaction
data sets is presented with the aim of predicting and recommending relevant items
which the user can interact but not linked up with these items before.

Proposed method in this thesis adopts a binary classification approach to link
prediction problem where the actual links and non-existent links are classified as
"true" and "false", respectively. To perform this task, it includes preprocessing step,
embedding model and classifier model. Transaction data is processed at preprocess-
ing step to create a graph network where nodes are users and items; links are the
associations between them. Embedding model extracts the network information and
puts it in a low dimensional form (node embeddings) which can be used in machine
learning tasks. Extracted node embeddings are put in a link embedding form by a
binary operator. Then, embeddings of existent and non-existent links are used to
train a classifier model and then this model is used to classify a link as "true" or
"false" by thresholding. As a use case scenario, a credit card transaction data set is
used to predict and recommend merchants which customers might make purchases
in the next month based on their past transactions.

The contributions of this thesis are the following:

• Performances of embedding extraction methods node2vec [1], metapath2vec
[11] and binary operators averaging, hadamard, l2 and classifier models XG-
Boost [12], LightGBM [13], Artificial Neural Networks are compared to find
the best combination on the use case scenario. Based on the evaluations on
area under the curve (AUC) and mean average precision at K (MAP@K) met-
rics, metapath2vec, averaging, LightGBM is found to be the best combination
and presented as the proposed model.

• Performance of a collaborative filtering based alternative scalable recommen-
dation method Alternating Least Squares [14] is compared with the proposed
model. Proposed method has shown superior performance than alternative
method in terms of receiver operating characteristic (ROC) curves, area under
the curve (AUC) and mean average precision at K (MAP@K) scores.

2

In Chapter 2, a literature review is conducted on existing link prediction, graph
representation learning, and recommendation systems. Chapter ?? gives the defini-
tions and describes the research problem. Chapter 3 explains the proposed method
in detail with theoretical background. Chapter 4 gives details about implementa-
tion process. Chapter 5 presents a use case scenario as merchant prediction on a
transaction data set. In Chapter 6 experimental results are evaluated. Lastly, in
Chapter 7 conclusion of research and future works that can expand the research is
given.

3

Chapter 2

Related Works

In recent years, many methods have been proposed in link prediction, graph
representation learning, classification algorithms and recommendation systems.
Throughout this chapter, commonly used methods in these fields will be discussed
to strengthen the core of this research.

Link Prediction Algorithms

There are several approaches on link prediction task. The most commonly used
methods are similarity-based algorithms. Similarity-based algorithms assume that
two similar nodes will interact with a high probability [15]. These methods assign a
similarity score for pair of nodes and create an ordered list of links based on these
scores. Defining the similarity has different types of interpretations. Some methods
focus on commonality of nodes at feature level [16, 17]. Although this is a reasonable
approach, node features may not always be present. Therefore, structural similarity
methods are taken into consideration where network topology information such as
node degree, neighborhood commonality and links between common neighborhood
can be used. Similarity indices can be classified as local or global. Local similarity
indices such as common neighbours [18] resembles to determining mutual friends of
two people in a social network, Salton index [19] which is also known as cosine simi-
larity, Sørensen Index [20] considers common neighbors and states nodes with lower
degree have higher link probability, Jaccard Index [21] calculates the ratio of inter-
section over union and is introduced many years ago, Adamic/Adar index [22] which
is calculated as summing log-degree centrality of two nodes are used frequently. Fur-
thermore, global indices such as Katz centrality [23] that measures centrality of a
node by considering the total number of walks between pair of nodes also have sim-
ilarities between famous page-rank algorithm [24] and eigenvector centrality [25],
local path [26] metric which considers local paths are also considered.

4

Another type of link prediction methods is maximum likelihood estimation-
based algorithms. These methods optimize parameters that maximize the likelihood
of observing network structure. These parameters can also be used to calculate the
probability of non-observed links. However, they have some disadvantages such
as high computational time complexity and giving sub-optimal results [27]. One
of the maximum likelihood-based algorithms is Hierarchical structure model [28]
uses dendrograms that create hierarchical organizations of networks which are used
to infer link probabilities for missing links. Stochastic Block Models [29, 30] is a
generative model which organizes nodes into blocks that has the same structural
patterns of connections. It can capture modules, clusters, and communities [31].
This method assigns probabilities of link existence to pairs of nodes based on their
group memberships by using Bayesian inference.

Learning-based models adopt a probabilistic approach that generates a joint
probability distribution that abstracts the observed graph by optimizing an objective
function including model parameters. Based on this distribution, link existence and
non-existence probabilities can be calculated using conditional probability. Proba-
bilistic relational models [32, 33] create a joint probability that abstracts attributes of
relational data sets. This method includes three types of networks: skeleton as data
graph, model graph, and ground as inference graph. This technique considers the
type of the nodes, dependencies among item types, and probabilistic dependencies
of variables. Inference graph can be built as Bayesian Networks, Markov Networks,
or Dependency Networks. Stochastic relational models [34] considers the random
nature of links by use of tensor factorization of multiple Gaussian Processes. Each
process is associated with the type of links. By maximizing marginalized likelihood,
the relational networks convey dependency information to Gaussian processes. This
method presents a discriminative way for link prediction.

Related to learning-based models, graph neural networks (GNN) have gained
attention in recent years for link prediction task. SEAL [35] is a graph neural net-
works based model to perform link prediction. In this method, GNN learns the
general network information by extracting local enclosing sub-graphs and using ap-
propriate heuristics for each related sub-graphs accordingly. Also, this method chal-
lenges the belief that nodes should be linked if they have common neighborhoods. Its
prior work Weisfeiler-Lehman Neural Machine [36] adopts a similar approach. This
method also extracts enclosing subgraphs and labels the nodes as their structural
roles. Then, a neural network is trained by the adjacency matrix representation of
these sub-graphs and used for link prediction.

5

Graph Representation Learning Algorithms

Graph representation learning algorithms are an essential part of link predic-
tion methods. By these algorithms, graphs can be represented in a low-dimensional
space by capturing network information. These low dimensional feature represen-
tations can be used in machine learning tasks such as anomaly detection, attribute
prediction, clustering, and link prediction [37]. The classical methods of network
feature extraction rely on network properties such as node degrees [38] which are
label-independent features that can be a powerful signal while working on sparsely
labeled data. Similarly, node-based features combined with egonet-based features
can be used to capture behavioral information [39]. However, these methods con-
duct a hand-crafted feature extraction process which is not practical in many cases.
Therefore, automation of this process can be a better approach to extract network
representations.

Unsupervised representation learning algorithms do not involve hand-crafted
feature extraction and make the whole process automated. Mainstream unsuper-
vised methods use different types of matrix representations of graphs such as Lapla-
cian and adjacency forms. Laplacian eigenmaps is a matrix factorization method [40]
assumes that data lies in a low-dimensional manifold from a high-dimensional space.
In principle, all of these linear algebraic methods can be interpreted as dimension-
ality reduction techniques. Dimensionality reduction techniques can be non-linear
or linear. For linear algorithms, Principal Component Analysis (PCA) [41] which is
the most common dimensionality technique that relies on the idea of generating un-
correlated variables that maximize the variance. Using these principle components
corresponding to eigenvectors can represent the data in a low dimensional space.
Similarly, Linear Discriminant Analysis (LDA) is another technique that tries to find
a linear combination of features to maximize class separation that is different than
PCA method. Furthermore, non-linear algorithms such as ISOMAP [42] tries to
make nodes that are close to each other also close in terms of their geodesic distance
in lower-dimensional space. Another non-linear technique t-SNE [43] minimizes the
difference between conditional probabilities using Kullback-Leibler divergence that
also minimizes the distance in low dimensional space. Although these dimensionality
reduction methods are powerful, their computational complexity is high. Because
eigendecomposition of a matrix is an expensive operation that is unfeasible to use
in large networks. Another drawback of these methods is the lack of generalizability
due to their strong assumptions on network structures such as homophily. Although
homophily is effective for clustering, it is not applicable to all network structures
with various patterns.

6

Recent advancements in natural language processing (NLP) techniques have
opened a new path for representation learning. One of the noteworthy NLP meth-
ods is Word2vec [44] which creates vector representations of words from a large
corpus. These representations or word embeddings are similar to each other for
the words in the same or similar context. Skip-gram architecture in this technique
uses the current word to predict the nearby words in a window of context words.
Some graph representation learning algorithms have been developed based on this
idea. These algorithms treat a graph as a large corpus and create random walks
around each node representing sentences to learn latent representations. DeepWalk
[45] is the first algorithm that applies this random walk idea on graphs to create
low dimensional continuous node embeddings. LINE [46] is another method that
also relies on concepts of NLP techniques. Instead of using random walk approach
in DeepWalk that is analogical to depth-first search, LINE uses bread-first search
method to create sentences and states that as a more reasonable approach. By do-
ing this, it considers both the first order and the second-order proximity of nodes.
Moreover, while DeepWalk can only be applied on unweighted edges, this is appli-
cable to both weighted and unweighted edges. After these studies, node2vec [1] is
developed by focusing on the sampling strategy of nodes which is the core compo-
nent of these methods. node2vec combines both bread-first and depth-first search
strategies by using parameters and performs biased random walks decided by these
parameters at each step. By these parameters, the method can capture both lo-
cal neighborhood and explore network structure and tries to maximize likelihood of
network neighborhood. Due to its high flexible structure and generalizing power, it
can capture network information better than DeepWalk (can also be interpreted as
uniform random walks version of node2vec) and LINE.

Despite having convincing performances of graph feature extraction methods
mentioned in both homogeneous and heterogeneous graphs, these methods have
been developed considering that they will be used mostly in homogeneous graphs.
Therefore, some other techniques have been developed, especially for heterogeneous
graphs, to create better latent node representations. metapath2vec [11] have been
developed for heterogeneous graphs, which takes types of the nodes into account
while creating random walks. Random walks are generated based on meta-path
schemes to create heterogeneous neighborhoods for different types of nodes. The goal
of this method is to maximize the likelihood of heterogeneous network neighborhood.

Abovementioned graph representation learning algorithms can only generate
representations for a single fixed graph which can not be generalized efficiently for
unseen nodes due to their transductive nature. GraphSAGE [47] is an inductive
method that uses node attributes to create node representations for unseen data.

7

Instead of separate node embeddings, it learns a function by creating a local neigh-
borhood and aggregating feature information from the neighborhood. By use of this
learned aggregation function, it can generate node representations for previously
unseen nodes.

Boosting Algorithms

Boosting is a powerful technique introduced by Kearns and Valiant [48, 49]
that adopts the approach of building a strong learner model based on the weak
learners whose predictions are slightly better than random. A week classifier is
trained, then another weak classifier focuses on the wrongly predicted data parts.
Other week classifiers keep up this process in an iterative manner. As a result, a
strong classifier is created. Adaboost [50] is the first algorithm using this boosting
idea. Gradient boosting [51] is a generalized version of boosting algorithms by
using gradient descent for optimization. Residuals are used in gradient boosting
algorithms after each round as input to the next weak learner. Eventually, they are
combined with a loss function to get an overall loss. The goal is to create a model
that minimizes this overall loss. XGBoost [12] is a gradient boosting algorithm
that introduces a regularization term in objective function to reduce overfitting.
Moreover, training time is reduced by its parallelized and distributed architecture.
Alongside these benefits, increase in data sizes can cause some scalability issues in
gradient boosting algorithms. Feature selection and decreasing data size can be a
solution to these problems. As another gradient boosting algorithm, LightGBM [13]
developed by Microsoft introduces Gradient-based One-Side Sampling in gradient
boosting. The data points which cause larger gradient changes are more preserved in
this sampling strategy. Exclusive Feature Bundling technique groups the mutually
exclusive features as bundles and treats them as a single feature to reduce the number
of features.

Over the past decades, many different types of recommendation systems have
been developed. They can be classified into three categories as content-based, col-
laborative filtering, and hybrid methods. In content-based methods [52] user de-
scriptions based on their previous activity is used . User profiles are created from
items in which the user shows an interest. Recommendation is achieved by calculat-
ing the similarity between item description and user profile. One of the limitations
of content-based methods is the requirement of detailed user profiles, which is not
always found. Item descriptions are in the form of textual information using TF-IDF
[53, 54] and user profiles are encoded in the weighted combinations of these item
description vectors [55]. Therefore, it provides an advantage to create a relation for
previously unseen items.

8

Recommendation System Algorithms

Collaborative filtering is the most common recommendation system method
which has various types of implementations. These methods can be divided into
memory-based and latent factor models. Memory-based type also has sub-branches
as item-based and user-based approaches. Item-based [56] approach predicts the
rating of an item given from a particular user, based on the calculation of the rat-
ings on similar items which had been rated by this user. However, in user-based [57]
approach, this calculation is performed by considering other similar users’ ratings
for this item. Although memory-based techniques are easy to implement and have
high interpretability, the recommendation matrix can be very sparse with many
missing values, which is highly observed in real-life scenarios. Sparsity can decrease
the performance and create scalability issues [58, 59]. On the contrary, latent factor
models handles this sparsity problem by matrix factorization [60, 61, 62, 63] tech-
niques. This method can be considered as a dimensionality reduction which creates
latent factor representations approximating the recommendation matrix. This is
usually achieved by Singular Value Decomposition (SVD) [64] which decomposes a
sparse matrix into separate dense matrices. Some matrix factorization techniques
can include parameter estimation steps [63] and use stochastic gradient descent al-
gorithm for optimization [65]. However, in large data, scalability issues may arise
due to stochastic gradient descent optimization. Because of that reason, a different
optimization technique is used, which is Alternating Least Squares (ALS) [66]. In
this optimization method, user interaction and item interaction matrices are fixed
and derivatives are taken alternatively, making cost function quadratic, which can
be optimized by alternating-least-squares method iteratively. Moreover, applica-
tions of the mentioned methods can vary according to the characteristics of data
sets. Explicit data set has rating information from the users, but implicit data sets
do not. A study [14] utilizes this Alternating Least Squares (ALS) approach and
adapts it to explicit feedback data sets that give convincing performances.

Link Prediction as Recommendation System

Some studies use graph structures and link prediction methods as recommen-
dation systems. A link prediction approach to collaborative filtering [10] uses some
common similarity measures mentioned above. A resource allocation idea based ap-
proach [67] exploits bipartite graph structures and assigns weights to links by use of
matrix projection of node degree information to provide personal recommendations.
Another work [68] proposes a random-walk based recommendation framework that
leverages node attributes into links as local, global or mixed weights, includes at-
tribute ranking that simulates a friend hunting behavior. A link prediction based

9

recommendation approach [69] creates a graph where nodes are users and items,
links are the associations between them assign weights to links as complex num-
bers to assess user similarity and user-item interest information. Another study
about friend recommendation in social networks [70] extracts social patterns from
different networks and transfers this information as attribute correlation and social
correlation into a Markov Random Field while link recommending. Most of the link
prediction based recommendation system methods [71, 59] are various adaptations
of existing link prediction algorithms discussed above.

10

Chapter 3

Architecture

In this thesis, the research task is formulated as a link prediction problem.
In link prediction context, a graph is generated from the transactions where nodes
correspond to users and items, and links represent interaction occurrence between
these users and items. Given this network generated from previous transactions,
the goal here is to discover the new users-items links to be formed in a future time.
While predicting these links, it can also be used as an item recommendation system.

Due to prediction characteristics of this task, a machine learning approach is
adopted within the link prediction framework. To be more precise, this formulated
problem is tackled as a binary classification task where actual links between the pair
of nodes in the network are classified as "positive" and the links that do not exist
classified as "negative".

3.1 Link Prediction Problem

Consider a graph G= (E,V), where V is the set of vertices/nodes and E is the
set of edges/links. Let E represent the "true" link set in the network and consider
the case when only some parts of the links are given. These given links are the
"observed" links and denoted as EO where EO ⊆ E. The task is to discover the
hidden (unobserved) link set EH where EH ∪EO = E,EH ∩EO = ∅.

For the temporal formulation of the link prediction problem, let Et be the set
of true links in a network observed at time t. The goal is to predict Et+1 which is
the set of true links at time t+ 1.

Since the problem investigates link occurrences between pair of nodes, it can
also be formulated as a binary classification task to examine if there is a link or

11

not. Links between nodes are considered as "true" links if there is a real connection
among examined nodes, and "false" links if there is not an actual connection between
these nodes in the network. A classifier is trained and tries to predict given test link
is true or not. With regard to this formulation, a probability estimate of possible
links can be associated with their probability of existence.

Graph Network

Possible Link A-C

Possible Link D-G

Possible Link G-I

Figure 3.1 Visualization of link prediction problem

3.2 Research Problem Definition

Prediction and recommendation of the future items where the user can discover
and interact in a future time by a link prediction approach is the main problem of
this research. Task is to discover the new interactions that may occur in a future time
given the past interactions by utilizing transactional data sets. By mean discover,
it is actually to predict the most relevant items which the user can establish a
connection but not interacted with these items before. These predictions can also
be considered as recommendations which allows a link prediction framework to be
used as a recommendation system.

3.3 Framework

In this thesis, the research task is formulated as a link prediction problem.
In link prediction context, a graph is generated from the transactions where nodes
correspond to users and items, and links represent interaction occurrences between
these users and items. Given this network generated from previous transactions, the
goal here is to discover the new users-items links to be formed in a future time. While
predicting these links, it can also be used as an item recommendation system. Due
to prediction characteristics of this task, a machine learning approach is adopted
within the link prediction. To be more precise, the problem is tackled as a binary
classification task where actual links between the pair of nodes in the network are
classified as "positive" and the links that do not exist are classified as "negative".

12

At preprocessing step, transaction data is cleaned and processed to create a
graph architecture where nodes correspond to users and items, and links represent
the interactions. Embedding model captures network information and extracts low
dimensional latent space representations of nodes (embeddings) that can be used
as inputs to machine learning systems. A binary operator is applied to node em-
beddings to form link embeddings. Then, embeddings of existent and non-existent
links train a classifier model which will be able to classify a link as "true" or "false"
by applying certain thresholds. In this section, all stages will be explained in detail,
including their theoretical backgrounds.

TRANSACTIONAL
DATA

Graph Network

Preprocessing Embedding
Model

Train

Figure 3.2 Illustration of preprocessing stage, graph network generation and embed-
ding model training stages

d dimensional vector representation

Node Embeddings

d dimensional vector representation

d dimensional vector representation

d dimensional vector representation

Figure 3.3 Node embeddings

13

Train Set

(node c1 embedding ○ node m1 embedding)

(node c1 embedding ○ node m2 embedding)

(node c6 embedding ○ node m3 embedding)

(node c5 embedding ○ node m3 embedding)

(node c1 embedding ○ node m3 embedding)

(node c5 embedding ○ node m1 embedding)

(node c2 embedding ○ node m3 embedding)

(node c4 embedding ○ node m2 embedding)

Classifier Model

Train

(node c embedding ○ node m embedding)
Testing Thresholding

1: Positive Edge

0: Negative Edge

Figure 3.4 Illustration of train set generation by positive-negative edge embeddings
and train of classifier

14

3.4 Preprocessing

User-Item Network (UIN) is a graph generated from the transaction history
where nodes are users and items, and links are interaction occurrence of users with
items.

There are two different types of nodes (users and items) in UIN. Therefore, this
generated network is a heterogeneous graph. Moreover, since these links only exist
between users and items, not between any user-user or item-item, this network also
shows a bipartite network characteristic in its nature.

3.5 Node Embeddings

Graphs are architectures that have high abstractional power of many systems.
However, they may have complex topologies which are hard to use in machine learn-
ing tasks. In order to benefit from their expressive power in machine learning tasks,
there is a requirement to transform them into low-dimensional vectors. In this way,
these d-dimensional vector representations can be used to generalize the network
and can be given as input to machine learning models to perform prediction tasks.
Also, in comparison with traditional graph analysis algorithms, which use inflexible
and high costly hand-crafted features, graph representation learning algorithms have
better generalization ability.

By representing the nodes in embedding space, similar nodes in the graph will
also have similar embeddings. These methods can be considered as a sub-branch
of word-embedding concept. In word-embedding methods, similar words also have
similar embeddings. As a result, the words in the same context are also close in the
embedding space.

Graph Network Embedding Space

MAP(u)

MAP(v)

Mapping nodes

Figure 3.5 Representation of node u and node v in embedding space, zu and zv are
embeddings of node u and v adopted from [2]

15

As can be seen in Figure 3.5, a mapping function encodes nodes into a d-
dimensional embedding space. The goal is to make this mapping function approxi-
mate the network similarity of nodes to vector similarity of embeddings (dot prod-
uct).

similarity(u,v)≈ zTv zu

As mentioned earlier, positive links are the actual links that are present in the
graph that also creates MCN, and negative links are the non-existing links. Nodes
and corresponding positive links are used to train embedding model. By doing so,
node embeddings are obtained after this process. These embeddings capture the
network information which can be used in the machine learning tasks.

In this research, common node embedding extraction methods in the litera-
ture, namely node2vec and metapath2vec are used and examined in terms of their
performances for the link prediction task in User-Item Network.

3.5.1 node2vec

Node2vec is the most common node representation method that is used to
generate node embeddings from the networks. It optimizes a graph-based objec-
tive function by stochastic gradient descent algorithm. The embedding extraction
method relies on maximizing the likelihood of preserving network neighborhood.
To achieve this goal, 2nd order biased random walks are used to create network
neighborhoods of the nodes.

Given a graph G=(V,E), node2vec algorithm seeks to learn a mapping function
f : u→ Rd which maximizes the log-likelihood objective function:

max
f

∑
u∈V

logPr(Ns(u)|f(u))

where Ns(u) is network neighboorhod of node u. With a conditional independence
assumption:

logPr(Ns(u)|f(u)) =
∑

ni∈Ns(u)
logPr(f(ni)|f(u))

By use of symmetry in feature space or softmax parametrization:

logPr(f(ni)|f(u)) = exp(f(ni) ·f(u))∑
v∈V exp(f(v) ·f(u))

16

which leads to following objective:

max
f

∑
u∈V

∑
ni∈Ns(u)

log exp(f(ni) ·f(u))∑
v∈V exp(f(v) ·f(u))

This objective function is optimized by SGD by adopting of a negative sam-
pling approach. Since the denominator of the above function is quite expensive
to compute, a negative sampling method is used. It is just sampling some of the
negative nodes. By this means, only embeddings of a few nodes will be updated at
each step while performing the stochastic gradient descent algorithm. Therefore, it
will reduce the training time. But at this time, another question arises as to how to
determine the network neighborhood Ns(u).

To determine the network neighborhood Ns(u), two traditional strategies,
namely breadth-first search (BFS) and depth-first search (DFS), can be considered.
BFS is mostly traversing the local neighborhood. In contrast, DFS is an algorithm
that explores the network in a global view.

BFS
DFS

Figure 3.6 BFS and DFS traversing from node u, adopted from [1]

Both traversing strategies has useful aspects for different types of networks to
capture neighborhoods. Instead of depending on one traversing strategy, combin-
ing both of them by a ratio is the key idea behind node2vec algorithm. By doing
so, it takes advantage of both strategies. To this end, in node2vec algorithm there
are two parameters that interpolate BFS and DFS: return parameter p (return to
the previous node), and in-out parameter q (moving inwards (BFS)-moving out-
wards(DFS). These parameters are used to perform 2nd order biased random walks
around selected node to capture neighborhood.

17

Figure 3.7 Illustration of random walk where walker at node v, adopted from [1]

In Figure 3.7 an illustration of random walk is depicted where a walker at node
v, has just came from node t, and the next step is determined by search biases
denoted as α.

Formally, a simulation of random walk of fixed length l, a source node u, ci
is the ith node in the walk, which starts from c0 = u. The following probability
distribution is used to generate nodes ci:

P (ci = x|ci−1 = v) =

πvx
Z
, if (v,x) ∈ E

0, otherwise

where πvx is the unnormalized transition probability between nodes v and x

To perform a biased random walk, unnormalized transition probabilities are
calculated as the multiplication of the static edge weights by a bias factor α. So,
when the walker at node v came from node t, the next step at random walk is
evaluated based on this probability:

πvx = αpq(t,x) ·wvx

where wvx is the static edge weight between node v and node x and α is defined as
follows:

αpq(t,x) =

1
p
, if dtx = 0

1, if dtx = 1
1
q
, if dtx = 2

18

3.5.2 metapath2vec

metapath2vec algorithm is another powerful network representation learning
algorithm to generate node embeddings. It is designed to apply on heterogeneous
graphs which contain different type of nodes. To illustrate, for an academic collabo-
ration network, there are two types of nodes which are authors and papers, and the
collaboration between them correspond to edges. Since the User-Item Network is
also a heterogeneous graph, metapath2vec is worth to be examined for this network.

This method also uses a random walk approach as node2vec and line; in com-
parison with them, metapath2vec focuses on heterogeneity. The motivation behind
this approach is based on the poor evaluation results caused by behaving all the
nodes identically, which creates indistinguishable representations for all nodes. It
performs meta-path-based random walks to generate latent representations of the
networks.

Formally, given a heterogeneous network G= (V,E,T), the mapping functions
associated with node v and link e are defined as follows: φ(v) : V → TV and φ(e) :
E→ TE with |Tv|. TV is the set of node types and TE is the set of link types, and
|TV |+ |TE | > 2. Method learns d-dimensional node embeddings X ∈ R|V |×d. Here
X is a matrix and Xv correspond the d-dimensional vector embedding of node v.

metapath2vec algorithm maximizes the network neighborhood probability of
corresponding type of nodes that preserves the context information for each node
type. Therefore, it optimizes the following objective:

argmax
θ

∑
v∈V

∑
t∈TV

∑
ct∈NT (v)

logp(ct|v;θ)

where Nt(v) is the network neighborhood of node v with the tth type of nodes,
p(ct|v;θ) is the conditional probability of context node ct given node v.
By applying softmax factorization:

logp(ct|v;θ) = exp(Xct ·Xv)∑
v∈V exp(Xu ·Xv)

Same as node2vec, negative sampling approach is used for computational efficiency,
and this equation gets the following approximation:

logσ(Xct ·Xv) +
M∑
m=1

Eum∼P (u)[logσ(−Xum ·Xv)]

19

where σ(·) is sigmoid function, and P (u) is the probability distribution which gen-
erates negative samples M times.

In the metapath2vec algorithm, the meta-paths used are used to perform ran-
dom walks rather than heterogeneous paths, as they tend to highly visible node
types that only make up a small portion of nodes.

For a heterogeneous graph G = (V,E,T) and meta path P : v1
R1−−→ v2

R2−−→
·· ·vt

Rt−→ vt+1 · · ·
Rl−1−−−→ vl, where R = R1 ◦R2 ◦ · · · ◦Rl defines a composite relation,

◦ is composition operator, the transition probability for a random walk at step i is
determined as the following:

p(vi+1|vit,P)) =

1
|Nt+1(vit)|

(vi+1,vit) ∈ E,φ(vi+1) = t+ 1

0 (vi+1,vit) ∈ E,φ(vi+1,vit) 6= t+ 1

0 (vi+1,vit) /∈ E

In addition to that, meta-paths are used as symmetrical in the algorithm.
Therefore, a recursive approach is adopted to lead the random walk.

p(vi+1|vit,P) = 1, if t= 1

3.6 Link Embeddings

Node embeddings are explained on the above sections in detail but since it is
a link prediction task, a "link" formulation is also needed to use in the machine
learning framework. An edge/link is the connection between a pair of nodes, but as
an input perspective for the prediction task, it is the combination of the embeddings
of the nodes that is interacting with each-other by a binary operator.

3.6.1 Binary Operators

A binary operator � generates a link representation g(u,v) such that g : V ×
V → Rd where d is the vector size based on node embedding vectors f(u) and f(v)
of node u and node v. This operator is intended to have a generalization power
which also enables to represent non-existent "false" or "negative" links.

In order to preserve vector dimension d in these "link embeddings", three most
common binary/element-wise operators are considered in this thesis namely average,
hadamard and l2 [1].

20

Binary Operator Symbol Definition
Average � [f(u)�f(v)]i = fi(u)+fi(v)

2
Hadamard ◦ [f(u)◦f(v)]i = fi(u)∗fi(v)

L2 ‖ · ‖2 ‖f(u) ·f(v)‖2i = |fi(u)−fi(v)|2

Table 3.1 Binary operators and definitions adopted from [1]

3.7 Data Partition

For binary classification task, three different types of models are considered as
classifier. In addition, hyperparameter tuning step is included to select the best
model to perform the task. To evaluate the model, data is divided into train,
validation, and test sets. Since the task is to predict which item will the user
interact in the future time, among the M month period, the first M−2 months are
used as train, M − 1st month as validation, and the last month in the data set is
used as test set to evaluate the models. After the model selection steps, train and
validation set are merged to train the best classifier in order to apply on test set
and get results because accessing the test set and change the model characteristics
according to scores create a bias towards the test set and cause over-fitting which is
not the desired behavior. It can cause to get poor results on different test sets.

3.7.1 Train Set

For model evaluation on validation set, positive links in the first M month are
used to create a graph (UIN) and train embedding model. For the final evaluation
on test data, these sets are merged and used to train the embedding model. After
training of embedding model, node embeddings preserving network information are
obtained.

Training of the classifier model is achieved by use of both positive and negative
links together. Negative links are also important to have a robust classifier that
needs to learn a differentiation between existence and non-existence. Positive links
are labeled as 1 and negative links are labeled as 0. The process of getting non-
existent (negative) links is called negative sampling. Negative sampling is achieved
by randomly selecting a pair of nodes that are not linked in the network and gener-
ating its link embedding since all node embeddings are present. Applying a binary
operator on these vectors gives a non-existing link representation. To have a balance
in both classes, number of positive and negative links are selected as equal. Since
most real networks are sparse, there are vast numbers of non-existing links. Thus,
finding the negative samples is not a complex process.

21

3.7.2 Validation and Test Set

After embedding and classifier models are trained, validation set and test sets
are used for model evaluation. From M month transaction data, validation set
and test sets include some users and their M − 2nd and M − 1th month purchase
transactions as positive links, respectively. On the other hand, since the task is to
discover the newly formed transactions in this month, one should consider all the
item combinations for specific user. Simply taking the only positive links of a user
for this month is not the right approach because this information is unknown and
needs to be discovered.

For a fair evaluation, for one user, all item and this user combinations should
be checked where actual transactions are labeled as positive and other combinations
as negative links in validation and test sets since they are not included training set.
Classifier model should be able to differentiate which links are positive or negative.

3.8 Classifier Model

In order to perform binary classification of true links and false links, a classifier
model is needed. For this reason, a couple of machine learning models are considered
in this thesis to compare their performances because various machine learning models
can give different predictive performances according to applied data sets. Due to
high predictive powers of gradient boosting algorithms and artificial neural networks,
these models are considered for the binary classification task in this thesis.

3.8.1 Boosting Algorithms

Boosting is introduced by Kearns and Valiant, which relies on the concept of an
ensemble of weak learners creating a strong learner model. By mean weak learner,
which is the model slightly better than random predictions. Boosting algorithms
train a single weak classifier and then train another weak classifier which only focuses
on data parts where the first weak classifier got poor results. Again, another weak
classifier comes into the picture, which focuses on the parts the second weak learners
got wrong. This process is going on iteratively. In the end, a whole strong learner
may be produced from multiple weak learners. Adaboost [50] is the first robust
algorithm based on boosting approach, which will be examined in this section.

22

Boosting algorithms have some similarities with random forest algorithms, but
the core procedure is different. Random forest algorithms use independent fully
grown tree models with low bias and high variance as learners; in the end, it combines
the predictions according to averaging and majority voting principles for different
parts of data to reduce variance. In boosting, this combining stage is done in
a sequential way in contrast to random forest. Contribution weights of the weak
learners depend on the prediction performance of each model. In this method, wrong
predictions have increased weights in order to be picked up with a high probability
in the next round. Therefore, there is an iterative process that does not emerge a
clear independence.

3.8.1.1 Gradient Boosting Algorithms

Gradient boosting [51] is a generalized version of boosting algorithms that uses
gradient descent for optimization. It also has characteristics of boosting algorithms,
such as combining weak learners to form a strong one. In comparison with Adaboost
explained in the previous section, gradient boosting algorithms use a residual concept
in their methodology. After each round, residuals are used as input to the next weak
learner. In the end, the residuals are combined with a loss function to get an overall
loss. The objective is to obtain a model which minimizes this overall loss.

Formally, given a training data {xi,yi}Ni=1 where xi = (x1i,x2i, · · · ,xdi), yi is
the label for ith data point, N is the total number of data points. The main aim
is to find a optimized classification function F (x) which minimizes the loss function
L(yi,F (xi)) as follows:

F ∗(x) = argmin
F
L(yi,F (xi))

Since this equation has an infinite number of parameters in function space, this
is approximated by the following solution, which is designed as additive form:

F ∗(x) =
M∑
m=1

fm(x)

where f0(x) is initialized value and {fm(x)}M1 are incremental formed functions
defined as "boosts".

The model is initialized with a constant value γ as follows:

23

F0(x) = argmin
γ

N∑
i=1

L(yi,γ)

where L(yi,γ) is loss function
Gradient function is defined as:

r̂i =−
[
∂L(yi,F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

where m corresponds to the number of iterations and m= 1,2, · · · ,M
For steepest descent fm(x) is defined as follows:

fm(x) = γmrm(x)

T (xi;αn) is the base learner with parameters αn and βn that characterizes this
function [51, 72];

F (x;{βm,αm}M1) =
M∑
m=1

βmT (x;αm)

After fitting of data, to approximate F ∗(x), by use of approximator Fm−1(x), the
function βmT (x;αm) can be seen as the best greedy step which is highly correlated
with negative gradient direction (residuals r̂i) and can be obtained by optimization:

αm = argmin
α,β

M∑
i=1

[r̂i−βT (xi;α)]2

This T (xi;α) function is used in place of negative gradient in steepest descent
method [51]. By performing a line search [73] the following approximation is
obtained for the model weights γ:

γm = argmin
γ

M∑
i=1

L(yi,Fm−1(x) +γT (xi;αm))

Model update is achieved by the following:

Fm(x) = Fm−1(x) +γmT (xi;αm)

This iterative process goes on until convergence or iteration times are reached.

24

3.8.1.2 XGBoost

XGBoost [12] (eXtreme Gradient Boosting) is a framework based on gradient
boosting algorithm. It introduces regularization that reduces overfitting. Due to
parallelized and distributed structure of XGBoost, it also reduces training time.

By adding a regularization term the objective function used in XGBoost is as
follows:

O =
N∑
i=1

L(yi,F (xi)) +
M∑
m=1

Ω(fm) +C

where the first term corresponds to training loss measuring of how well model
fit on training data and Ω(fk) is regularization or penalty term at m time iteration
measuring complexity of trees, C is a constant and M is the number of trees. By
optimizing training loss model, model gets more predictive nature which is close to
training data. In addition to that, optimizing regularization gives simpler models
which make more stable predictions with reduced variances. The objective is to
balance these terms and obtain a model both predictive and simple [74].

Regularization term Ω(fk) is defined as:

Ω(fk) = αH+ 1
2λ

H∑
j=1

w2
j

where α is complexity parameter of leaves which can be considered as a measure
of how much split occurs in tree, H is the number of leaf nodes, λ is regularization or
penalty parameter and wj is the output of each leaf node in tree. So, the complexity
of tree can be expressed in terms of the number of leaf nodes and prediction scores
of each leaf node.

Second-order Taylor series expansion of objective function is used with a mean
square error loss function. Hence, the objective function becomes the following [74]:

O =
n∑
i=1

[gift(xi) + 1
2hif

2
t (xi)] + Ω(ft)

gi and hi are first and the second derivatives of the loss function. The tree is
redefined by the scores of leaf nodes. Therefore, a function q(xi) is defined, which
maps each data points to appropriate leaves, and the following mapping is used:

25

ft(x) = wq(x)

where w is the output scores of leaf nodes and t is boosting round. After this
redefinition, the objective function becomes the following:

O =
n∑
i=1

[piwq(xi) + 1
2(qiw2

q(xi))] +αH+ 1
2λ

H∑
j=1

w2
j

Leaves are representing the data samples, and the loss values at these nodes can be
summed up and used as the final loss value. After this process objective function
can also be written in the following form:

O =
T∑
j=1

[Pjwj + 1
2(Qj +λ)w2

j] +αH

where Pj =∑
i∈I pi, Qj =∑

i∈I qi, and Ij indicates all samples in leaf node j as Ij .
Hence, the problem becomes simply as minimization of a quadratic function. More-
over, by adding regularization, overfitting is reduced by this model.

3.8.1.3 LightGBM

Although gradient boosting algorithms have very satisfying performances in
machine learning tasks, because of increase in data sizes in recent years, traditional
gradient boosting decision tree (GBDT) algorithms have some challenges about
efficiency while working on big data. In order to overcome these challenges, feature
selection methods are used by calculating the information gain in the decision tree
splits to examine feature importance. Another approach is decreasing data size and
features.

LightGBM [13] brings a new idea into gradient boosting approach as Gradient-
based One-Side Sampling (GOSS). In this method, the data points which cause
larger gradient changes are kept more while data sampling in order to have more
information gain.

Exclusive Feature Bundling (EFB) is another technique that is newly intro-
duced by LightGBM. They regroup the mutually exclusive features into bundles
and take them as a single feature which reduces the number of features.

26

3.8.2 Artificial Neural Networks

As a classifier model, Artificial Neural Networks (ANN) are also considered for
the prediction task. In this section, very brief background information about ANN
will be given.

A neural network is an information processing system that is modeled based on
biological neural networks. An artificial neuron is the smallest unit of cell that carries
information in these systems. Actually, this information can be thought of as holding
a number. These neurons are fired up (being activated) when the given threshold
values are reached, which has some similarities between real neurons, which have
action potentials that start their activation according to electrical voltages.

Input Layer Hidden Layer Output Layer

Figure 3.8 Feed Forward Neural Network.

An artificial neural network tries to learn a function approximation that maps
input values to output values. This function approximation is achieved by combining
neuron-containing layers. There are weights that are multiplied with input data
and convey information to other layers. After weight multiplication, a non-linear
function such as sigmoid, reLu, tanh is applied to incoming values. A feed-forward
neural network (only considered neural network architecture in this thesis) performs
one pass after these steps and calculates a loss based on a specified loss function
since the labels are known in train data. After passing these steps, gradient descent
algorithm is applied on loss function for minimization.

Given a training data {xi,yi}Ni=1 where xi = (x1i,x2i, · · · ,xdi), yi is the label
for ith data point, N is the total number of data points. Non-linarities σ1 and σ2

are used as ReLu and sigmoid function where σ1(x) = max(0,x) and σ2(x) = 1
1+e−x .

z = σ1(W1x)
27

s= σ2(W2z)

where W1 is layer 1 weights and W2 is layer 2 weights. Loss function L is chosen as
binary cross-entropy for binary classification:

L=− 1
N

N∑
i=1

yi log (si) + (1−yi) log(1− si)

Gradient descent algorithm is used based on the following update rules for
optimization.

W old
2 =Wnew

2 −η ∂L

∂W2

W old
1 =Wnew

1 −η ∂L

∂W1

To obtain these partial derivatives, chain rule is used. For the layer 2 weights:

∂L

∂W2
= ∂L

∂s

∂s

∂W2

∂L

∂s(i) = 1
N
· −yi
s(i) + (1−yi)

(1− si)

∂s(i)

∂W
(i)
2

= z ·σ′2(W2z) = z ·σ2(W2z) · (1−σ2(W2z)) = z(i)e−W
(i)
2 z(i)

(1 + e−W
(i)
2 z(i))2

∂L

∂W
(i)
2

=
(

1
N
· −yi
s(i) + (1−yi)

(1− si)

)
·

 −z(i)e−W
(i)
2 z(i)

(1 + e−W
(i)
2 z(i))2

For the layer 1 weights:

∂L

∂W1
= ∂L

∂s

∂s

∂z

∂z

∂W1

28

∂s(i)

∂z(i) =W2 ·σ′2(W2z) =W2 ·σ2(W2z) · (1−σ2(W2z)) = W
(i)
2 e−W

(i)
2 z(i)

(1 + e−W
(i)
2 z(i))2

∂z(i)

∂W
(i)
1

= x ·σ′1(W1x) =

x, if W1x > 0

0, otherwise

Then;

∂L

∂W1
=

(

1
N
· −yi
s(i) + (1−yi)

(1− si)

)
· W

(i)
2 e−W

(i)
2 z(i)

(1 + e−W
(i)
2 z(i))2

·x, if W1x > 0

0, otherwise

3.9 Alternative Method

In order to perform a comparative analysis, a method is considered that is used
as a common solution to the research task. This problem is addressed with a recom-
mendation system. This is a common task in e-commerce, movie recommendations
and much more.

3.9.1 Collaborative Filtering

Collaborative filtering is a common data mining method that is used in recom-
mendation systems. For a recommendation system, collaborative filtering technique
generates a matrix where each row represents a user and each column is assigned to
an item. The value in their intersection is usually corresponds to rating value which
the user has given for this item. This matrix representation can be adapted to var-
ious concepts such as user-movie recommendation, user-product recommendation,
or user-song recommendation systems.

Implicit and Explicit Data sets

The data which is gathered from the users can be classified as implicit or
explicit. In explicit data sets, there is rating information which may be a rating of
a movie in a range of 1-5 given by a user. On the other hand, in explicit data sets,
there is not a clear rating information. Instead, there may be some user actions that
can be used to recommend items to users. These actions can be number of times
a song is played, an item purchase, how many times a customer visits a merchant

29

to make a purchase. Therefore, one can say that if a person plays a song so many
times than the other songs, this user likes this song. These implicit signals are used
in many recommendation systems. Most transactional data sets (such as purchase
data) do not contain rating information; therefore, they are implicit data sets.

3.9.2 Alternating Least Squares

In this thesis, a latent factor model type of collaborative filtering is used as
an alternating method. The number of times a user interacts with an item is used
as the implicit information. Alternating Least Squares (ALS) method is a case of
matrix factorization technique.

User 1
User 2

User m

Item 1 Item 2 Item n Feature 1 Feature d
User 1
User 2

User m

Feature 1

Feature d

Item 1 Item 2 Item n

R (m×n) U (m×d)

V (d×n)

Figure 3.9 Matrix Factorization of interaction matrix R into U as user features and
V item features matrix.

For implicit data sets, an interaction matrix R is defined which represents
user and item interactions. The main idea behind ALS method is to factorize this
interaction matrix R into smaller matrices U as user features, and V item features.
rui which is the interaction value of user u with item i, which can be number of
times a song played or number of times an item is added to the cart etc. Preference
pui of user u on item i is calculated based on the interaction value rui as follows:

pui =

 1 rui > 0
0 rui = 0

According to this equation, if a user u has interacted with item i, it is believed
that this user has liked this item. Otherwise, it is considered as not having an
interest. However, these interactions may be misleading. For example, a user may
be unaware of the existence of an item that may be interested. Similarly, an item
may have been purchased as a present for a friend of the user. Therefore, a confidence
value cui is introduced, which can be defined as how much value a user u gives for
that item i.

30

cui = 1 +αrui

By this equation, larger confidence is obtained on user-item pairs having higher
interaction values rui. Also, this confidence value increases linearly by a factor of α.

A user-factors vector xu ∈Rf for user u, item-factors vector yi ∈Rf for item i.
Dot product is used to create a prediction for missing data as follows:

r̂ui = xTu yi

To find the optimal user interaction and item interaction matrices, the following
cost function is used:

min
y∗,y∗

∑
u,i

cui
(
pui−xTu yi

)2
+λ

(∑
u
‖xu‖2 +

∑
i

‖yi‖2
)

where λ is regularization factor determined by cross validation. Since this cost
function has m ·n terms, which reach billions, stochastic gradient descent algorithm
cannot be applied. Therefore, an alternating approach is adopted for optimization.
By fixing user and item interaction matrices and taking derivatives alternatively, cost
function becomes quadratic, which can be optimized by alternating-least-squares
method. This process continues iteratively, and at each step cost function is mini-
mized. Taking derivatives of cost function gives the following equations:

xu =
(
Y TCuY +λI

)−1
Y TCup(u)

yi =
(
XTCiX+λI

)−1
XTCip(i)

Then, these equations can also be broken into the followings that reduce com-
putational complexity:

xu =
(
Y TY +Y T (Cu− I)Y +λI

)−1
Y TCup(u)

yi =
(
XTX+XT

(
Ci− I

)
X+λI

)−1
XTCip(i)

By using them, randomly initialized X and Y are alternatively updated and
reduce cost function.

31

Chapter 4

Implementation

In this section, proposed method implementation details will be given. First,
the whole architecture is written in Python [75] programming language due to its
high flexibility. Google Colab 1 which is a cloud-based Jupiter notebook service
provided by Google is used as the coding platform. This platform also provides
GPU support that accelerates training process.

4.1 Embedding Extraction

4.1.1 node2vec Implementation

Stellargraph framework is providing a node2vec implementation that is also
based on Gensim, which is a Python package for natural language processing. Gen-
sim package has a Word2vec [44] implementation. Since node2vec is an adaptation
of Word2vec in a network perfective, all parameters in Word2vec are also valid for
node2vec. Here is the list of parameters related to node2vec, their descriptions, and
their value ranges.

Parameter Value Range Description
p [0,2] how probable returns to source node
q [0,2] how much it explore the network

dimensions [32,100] embedding dimension
num_walks [1,100] number of random walks done for each root node
walk_length [50,200] length of a random walk from a source root
num_iter [1,10] number of SGD epochs

Table 4.1 node2vec paramater list

1https://colab.research.google.com/

32

Algorithm 1: node2vec
Function LearnFeatures(Graph G(E,V,W), Dimensions d, Number of walks
r, Walk length l, Context size k, Return p, In-out q):
π = PreprocessWeights(G,p,q)
G′ = (V,E,π)
walks← empty
for i← 0 to r do

foreach u ∈ V do
walk = node2vecWalk(G′,u, l)
Add walk to walks

end
end
f = StochasticGradientDescentOptimization(k,d,walks)
return f

Function node2vecWalk(Graph G(E,V,W), Starting node u, Walk length l):
walk← [u]
for i← 0 to l do

curr = walk[−1]
V curr =GetNeighbors(curr,G′)
s= AliasSample(Vcurr,π)
Add s to walk

end
return walk

4.1.2 metapath2vec

Stellargraph 2 framework also provides a metapath2vec implementation which
is similar to node2vec but different in meta-path concepts. Since node2vec and meta-
path2vec are both based on Word2vec, all parameters in Word2vec are also valid for
metapath2vec. The list of parameters related to metapath2vec, their descriptions,
and their value ranges are given below.

Parameter Value Range Description
dimensions [1,10] embedding dimension
metapath − meta path scheme
num_walks [1,100] number of random walks done for each root node

context_window_size [1,10] context window size of Word2Vec
walk_length [50,200] length of a random walk from a source root
num_iter [1,10] number of SGD epochs

Table 4.2 metapath2vec paramater list

2http://stellargraph.readthedocs.io

33

Algorithm 2: metapath2vec
Input : Heteregenous Graph G(E,V,T), Meta-Path P , number of walks per

node w, walk length l, Dimension d, Neighborhood size k
Output: Node embedding matrix X ∈ R|V |×d
for i← 1 to w do

foreach v ∈ V do
MP =MetaPathRandomWalk(G,P,v, l)
X =HeteregenousSkipGram(X,k,MP)

end
end
return X
Function MetaPathRandomWalk(Heteregenous Graph G(E,V,T), Meta-path P ,
Node v, Walk length l):
MP [1] = v for i← 1 to l−1 do

u=NegativeSampling()
MP [1] = u

end
return MP

Function HeteregenousSkipGram(Node Embedding Matrix X, Neighborhood
size k, Meta-path P):
walk← [u]
for i← 1 to l do

v =MP [i]
for j = max(0, i−k) to min(i+k, l) and j 6= i do

ct =MP [j]
X = StochasticGradientDescent(X,v,ct)

end
end
return walk

4.2 Classifier Model

4.2.1 XGBoost

XGBoost [12] provides implementation in various environments such as Python,
R, and JAVA. Python version is used in this thesis. Some important parameters of
XGB package are listed as follows:

Parameter Value Range Description
eta [0,1] Learning rate

max_depth [0,20] Maximum depth of the decision tree
max_bin [16,256] Maximum # discrete bins to collect continuous features

num_rounds [0,1000] Number of boosting rounds

Table 4.3 XGBoost paramater list

34

4.2.2 LightGBM

LightGBM, a gradient boosting framework developed by Microsoft, is designed
to be distributed and efficient with lower training times and memory usage, higher
efficiency. It also provides GPU support that can work with large-scale data.

Parameter Value Range Description
eta [0,1] Learning rate

max_depth [0,20] Maximum depth of the decision tree
is_unbalance {true,false} Checks the data set unbalanced or not

feature_fraction [0,1] Random selection data without resampling
begging_fraction [0,1] Random selection a subset of features at each round
num_rounds [0,1000] Number of boosting rounds

Table 4.4 LightGBM paramater list

4.2.3 Artificial Neural Networks

Keras 3 provides an Tensorflow [76] based easy-to-use, scalable neural network
framework in Python environment. The parameters which can be used in Keras
framework are listed below.

Parameter Value Range Description
hidden_units [0,256] Number of neurons at a layer

input_dimension [0,20] Size of the input
optimizer {SGD,RMSprop,Adam} Optimizing method at backpropagation

loss [0,1000] Loss function
lr (0,0.1] Learning rate

batch_size [16,128] # samples that are used at each update
activations {relu,sigmoid,softmax,tanh} Activation function

Table 4.5 ANN paramater list

Repository

All codes that are used to implement proposed system are freely available at a
GitHub repository. 4

3https://keras.io/

4https://github.com/alaattinyilmaz/link-prediction-recommender

35

Chapter 5

Use Case: Merchant Prediction

In this chapter, a use case scenario of proposed link prediction model will be
presented with a real-life transaction data set. Throughout this chapter, problem
formulation of merchant prediction task, the motivation behind using this scenario
with proposed model will also be examined.

5.1 Problem Formulation

Merchant prediction refers to discovering the potential merchants where a cus-
tomer can visit and make a purchase. Transaction data has these customer-merchant
pair information which can be used to predict future purchases. In this context, link
prediction based methodology developed in this thesis is used to discover merchants
where a customer can make a purchase but not visited before by this customer.
These predictions can be used as recommendations.

5.2 Motivation

Due to advancements in information technologies, the availability of customer
transaction data has raised [77]. Hence, this gives an opportunity to have more
insights into consumer purchase behavior, which plays a huge role in determining
marketing strategies. Moreover, it is also useful for detecting the target market,
which has many advantages on increasing sales.

Detecting the audience can help merchants to create personalized recommenda-
tions, advertising campaigns, promotions, and allocate resources efficiently [78, 79].
In classical methods, audience demographics extracted from census data, psycho-
graphics and customer surveys are used for segmentation of customers to target

36

audience [80]. In addition to these statistics, product categories or market-basket
analysis methods are also used to understand customer purchase preferences. How-
ever, their ability of customer purchase prediction is limited [81].

To overcome their limitations, probability modeling approaches [77] that cap-
ture latent purchase behavior characteristics from transaction data are adopted.
Some methods combine probability distributions (e.g., Poisson, binomial, exponen-
tial) to characterize user behaviors [77]. In addition to these approaches, machine
learning methods such as gradient boosting tree, random forest algorithms combined
with customer features are giving convincing performances [79]. Moreover, collabo-
rative filtering based methods such as Alternating Least Squares (ALS) for implicit
feedback data [14] which is mainly used on item recommendation, can also be used
for merchant prediction task.

In this context, the motivation behind predicting the next month’s merchants is
to detect the audience for personalized advertising and allocate resources efficiently.

5.3 Data set

A transactional credit card data was provided by a private bank from an OECD
country and used throughout the research. In order to preserve privacy, data set
is anonymized, which does not allow one to identify the users and merchants. Al-
though the data is anonymized, the assigned anonymous identification numbers for
customers and merchants are used as the same values for the entire data set to
ensure consistency.

MUSTERI_ID_MASK ISLEM_TARIHI ISLEM_SAAT ISLEM_TUTARI UYEISYERI_ID_MASK X Y mcc_cat
11664741 2015-01-22 12:24:27 309.35 69846423 41.03265 28.99068 Doğrudan Pazarlama- Sigorta Hizmetleri
2949796 2015-01-03 11:06:54 274.99 69846423 41.03265 28.99068 Doğrudan Pazarlama- Sigorta Hizmetleri
17360000 2015-01-03 14:30:24 873.1 69846423 41.03265 28.99068 Doğrudan Pazarlama- Sigorta Hizmetleri
11871471 2015-01-03 15:37:48 411.26 69846423 41.03265 28.99068 Doğrudan Pazarlama- Sigorta Hizmetleri
11595923 2015-01-03 12:42:32 468.12 69846423 41.03265 28.99068 Doğrudan Pazarlama- Sigorta Hizmetleri

Table 5.1 Snapshot from the transaction data set

Each row corresponds to a user purchase transaction, and the columns rep-
resent customer id, operation time, transaction amount, merchant id, latitude and
longitude coordinates of merchant location and merchant category, respectively.

In this credit card transaction data, there are 627184 transactions made by
51451 customers from 482 different merchants with a time span of July 2014 to
June 2015. The vast majority of transactions are made in Istanbul, a major city in
Turkey.

37

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
Month

0

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

Figure 5.1 Number of transactions according to months

Each merchant has a merchant category and these are as follows: Service
Stations, Houseware Shops, Grocery Stores and Supermarkets, Direct Marketing
and Insurance Services, Man and Woman Clothing Shops, Electronics Shops, Other
Commercial Activities, Public Services, Telecommunication Services, Sports Shops,
Insurance Sale, Car Parks and Garages, Food Places and Restaurants, Airlines,
Travel Agents and Tour Operators, Hospitals, Cosmetics Shops, Bus Routes.

5.4 Merchant-Customer Network

Data Cleaning and Prepocessing

The transaction data set is preprocessed to create Merchant-Customer Network
where nodes are customers and users, and links represent the purchase occurrence
between them.

At preprocessing step, some merchant categories are discarded, which may cre-
ate noise while training the models. After dropping these categories, only merchants
that are under the following categories are taken into consideration throughout
the thesis: Grocery Stores and Supermarkets, Electronics Shops, Man and Woman
Clothing Shops, Houseware Shops, Service Stations, Sports Shops, Food Places, and
Restaurants.

38

Network Visualization

The sampled visualization of MCN can be seen below, where red nodes represent
customers, and yellow nodes correspond to merchants. As the whole network is really
huge, sampled version is used for better visualization.

Figure 5.2 Sampled visualization of Merchant-Customer Network.

In Figure 5.3 unique-merchant customer pair distribution can be seen. Ac-
cording to that bar graph, Service Stations, and Grocery Stores, and Supermarkets
categories are dominant at transaction numbers. In Figure 5.4 the number of mer-
chants are represented according to their merchant categories. If both figures 5.3
and 5.4 are considered together, it can be interpreted that Houseware Shops cate-
gory has dense connections since it has a relatively lower number of merchants but
a higher number of transactions. Furthermore, Figure 5.5 shows the degree distri-
bution of the network in log scale gives information about the probability of a node
chosen randomly has a degree of k.

39

Grocery
Stores

and
Supermarkets

Electronics
Shops

Man
and

Woman
Clothing
Shops

Houseware
Shops

Service
Stations

Sports
Shops

Food
Places

and
Restaurants

Merchant Category

0

5000

10000

15000

20000

25000

30000

35000

40000

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

Figure 5.3 Unique merchant-customer pair distribution according to merchant cat-
egory

Grocery
Stores

and
Supermarkets

Electronics
Shops

Man
and

Woman
Clothing
Shops

Houseware
Shops

Service
Stations

Sports
Shops

Food
Places

and
Restaurants

Merchant Category

0

25

50

75

100

125

150

175

Nu
m

be
r o

f M
er

ch
an

ts

Figure 5.4 Number of merchant distribution according to merchant category

40

100 101 102 103

Degree
(log scale)

10 4

10 3

10 2

10 1

Nu
m

be
r o

f N
od

es
(lo

g
sc

al
e)

Distribution Of Node Linkages (log-log scale)

Figure 5.5 Degree distribution of MCN in log scale

5.5 Data Partition

As defined in proposed model architecture, data is splited as train, validation
and test sets. Train set contains transactions from the first 10 months, the validation
set has the 11st month, and test set has the 12nd month as positive links. In addition
to them, an equal number of negative transactions are randomly generated and
added to train set.

FIRST 10 MONTH TRANSACTIONS 11th

MONTH
12th

MONTH

Positive
Train Links

Positive
Validation

Links

Positive
Test
Links

Train For Model Selection

NEGATIVE LINKS

NEGATIVE LINKS

Train For Model Comparison

Figure 5.6 Data Partition Visualization

41

On the other hand, for test and validation sets, since the task is to discover
the newly formed transactions on these months, in addition to positive links, all
merchant-customer combinations are considered for the specific customer as negative
links. Simply taking the only positive links of a customer would not be an accurate
approach, because this information is not known and has to be detected by proposed
model.

Data # Pos. Links # Neg. Links # Customers # Merchants
Train 119931 119931 41431 397

Validation 8410 5777942 14723 397
Train+Validation 132410 132410 43245 426

Test 7165 5743713 13640 426

Table 5.2 Data partition details

5.6 Embedding Visualization

Node embeddings extracted by node2vec and metapath2vec are visualized by
projecting into 2-dimensional space by t-SNE [43] dimensionality reduction method.
By doing so, it can give a better understanding of underlying characteristics that
forms clusters in the embedding space.

Link embeddings are generated by applying binary operator on node embed-
dings of pairs of nodes. These embeddings can also represent negative links which
is the link that does not exist between two nodes. Similarly, node2vec and metap-
ath2vec based link embeddings according to average binary operators are generated
and visualized. Due to the hugeness of data, PCA [41] dimensionality reduction
technique is used instead of t-SNE in link embedding visualization.

In Figure 5.7 and 5.8 metapath2vec and node2vec node embeddings are visu-
alized. Moreover, due to maintain flow of the thesis, town labeled node embedding
and link embeddings visualizations are presented in Appendix A.

42

Node Embeddings

Figure 5.7 Metapath2vec Sampled Node Embedding Visualization

Figure 5.8 Node2vec Sampled Node Embedding Visualization

43

Chapter 6

Evaluation

In order to decide which methods mentioned in architecture design are better,
an evaluation process is performed. This process consists of embedding model,
classifier model and binary operator selection stages. In addition, hyper-parameter
tuning is conducted for each model.

6.1 Evaluation Metrics

Deciding on a "goodness" of a recommendation provided by a recommendation
system is based on some evaluation metrics. To evaluate and compare performances
of models, receiver operating characteristic (ROC) curve, mean average precision at
K (MAP@K) and area under curve (AUC) metrics are used in this thesis.

6.1.1 Receiver Operating Characteristic

For classification problems, Receiver Operating Characteristic curve is widely
used. It plots the true positive rate against the false positive rate for different
threshold values. A classifier is considered good when its ROC curve lies up the
y-axis and along the x-axis. However, poor classifier ROC curve lies on x=y line at
the coordinate system. Area Under Curve (AUC) is, as its name implies, the area
under the ROC curve and a numerical value between 0 and 1.

6.1.2 Mean Average Precision at K

Mean Average Precision at K (MAP@K) metric treats the recommendation
system as a ranking task since recommendation systems offer a ranked list of rec-
ommendations based on their recommendation score. This score can be similarity,
probability, or any other measurements.

44

MAP@K is a common metric that is widely used in information retrieval and
recommendation systems. It aims to evaluate how relevant a recommendation is.

AP@K =
∑K
k=1P (k)× rel(k)

R

where AP@K is average precision at K, R is the number of relevant documents,
rel(k) is an indicator function equals to 1 if the item at rank k is relevant, 0 otherwise.

MAP@K =
∑Q
q=1AP@Kq

Q

where Q is the number of queries, AP@Kq is average precision at K value for
this specific query q.

In merchant prediction context, Q is the number of customers being considered
at validation or test set, R is the number of new purchases that need to be discovered
for a customer. AP@K value is calculated for each user and taking the average of
these values gives MAP@K value.

6.1.3 Mann-Whitney U-Test

Mann-Whitney U-Test [82] is a non-parametric test that examines the null
hypothesis as probability of X is greater than Y and probability of Y is greater than
X are equal where X and Y are random samples selected from two populations.

Formally, Let X1, · · · ,Xn be an independent and identically distributed (i.i.d.)
sample from X, and Y1, · · · ,Ym an i.i.d. sample from Y , X and Y are statistically
independent of each other. Then, U-Test statistics are defined as follows:

U =
n∑
i=1

m∑
j=1

S (Xi,Yj)

S(X,Y) =

1, if Y < X
1
2 , if Y =X,

0, if Y > X.

For link prediction evaluation of merchant prediction task, prediction scores are
divided as positive and negative link groups, and samples taken from these groups
will be used in the U-Test. This test will examine whether positive link scores are
significantly higher than negative link scores or not.

45

6.2 Experiments

To evaluate the effectiveness of proposed model, many number of experiments
are conducted. In the first experiments, the training set (the first 10 months of
transactions) and validation set (11st month transactions) are used to decide which
embedding model, binary operator and combination is the best. There are a total
of 72 different combinations in the experiments. After the decision, the best combi-
nation is used to compare with alternative method which is the Alternating Least
Squares (ALS) on test data. Training data used in comparison consists of merging
of train and validation set.

Embedding Models Classifer Models Binary Operators
node2vec XGBoost Average

metapath2vec LightGBM Hadamard
ANN L2

Table 6.1 Summary of models and operators to be selected

6.2.1 Embedding Model Hyperparameter Tuning

Number of walks and walk length are the predominant hyper-parameters that
affect embedding model performances. Therefore, the effects of different values of
these hyperparameters are examined. For other configurations, meta-path used in
metapath2vec model is customer→merchant→ customer and embedding dimension
is 100. There are 8 different embedding models present in the experiments.

Model Name Embedding Type Number of walks Walk length
N1 node2vec 1 100
N2 node2vec 1 200
N3 node2vec 10 100
N4 node2vec 10 200
MP1 metapath2vec 1 100
MP2 metapath2vec 1 200
MP3 metapath2vec 10 100
MP4 metapath2vec 10 200

Table 6.2 Embedding Model hyperparameters

6.2.2 Classifier Model Configurations

In order to decide classifier model, aforementioned classifier models with default
parameter values are considered in the selection process.

46

Model Name Parameters
LGBM objective: binary, is_unbalance: true, feature_fraction: 0.5, bagging_fraction: 0.5, bagging_freq: 20, num_boost_round=500
XGB max_depth: 11, eta:0.3, objective: binary logistic, max_bin:16, num_rounds: 500
ANN hidden_units: 32, input_dimension:100, optimizer: adam, loss: binary cross entropy, activations: reLu, sigmoid

Table 6.3 Classifier Model parameter configurations

6.3 Results

6.3.1 Validation Results

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
Experiment Number

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
AP

@
5

Figure 6.1 MAP@5 Scores according to experiment numbers (see Table 6.4 and 6.5)

Classifier Model

Table 6.4 and 6.5 show the experiment results ordered by MAP@5 values on
validation set. Among 72 experiments, the best MAP@5 score is 0.065144 with
LGBM +metapath2vec + average operator. LightGBM classifier model is dominant
at the first 10 ordered experiments. XGBoost classifier is the second which is shown
until 16th experiment. ANN comes into picture after 18th experiment that shows
the worst performance among classifiers.

According to results, it can be interpreted that LGBM creates more complex
trees that give better results in comparison with XGBoost. Also, ANN prediction
scores are close to each other in general, which means they are mostly accumulated
near 1 or 0, which does not create a powerful, distinguishing feature for a ranking
task.

47

Rank Classifier Embedding Model Operator AUC MAP@5
1 LGBM MP2 avg 0.842366 0.065144
2 LGBM MP1 avg 0.867941 0.064438
3 LGBM N1 avg 0.86557 0.064115
4 LGBM N2 avg 0.83629 0.063995
5 LGBM N1 hadamard 0.860167 0.061063
6 XGB N1 avg 0.85034 0.060578
7 LGBM MP2 hadamard 0.85298 0.060059
8 XGB MP2 avg 0.833313 0.059653
9 LGBM MP1 hadamard 0.859542 0.05955
10 XGB MP1 hadamard 0.845396 0.059514
11 XGB MP1 avg 0.851308 0.059469
12 XGB N1 hadamard 0.844432 0.059295
13 XGB MP1 l2 0.843222 0.059279
14 XGB N1 l2 0.839112 0.059192
15 XGB N2 avg 0.828527 0.059097
16 XGB N2 hadamard 0.825707 0.05806
17 ANN MP3 l2 0.858522 0.057942
18 XGB MP2 hadamard 0.836183 0.057528
19 ANN N3 l2 0.859616 0.057033
20 LGBM N2 hadamard 0.844917 0.056921
21 ANN MP1 hadamard 0.848236 0.056906
22 ANN N1 hadamard 0.849119 0.056831
23 ANN N1 avg 0.873278 0.056572
24 XGB MP2 l2 0.852815 0.056424
25 XGB N2 l2 0.846407 0.056317
26 LGBM N1 l2 0.856985 0.056233
27 XGB MP3 l2 0.844462 0.055673
28 ANN MP4 l2 0.855041 0.055147
29 XGB N3 l2 0.849336 0.055095
30 ANN N4 l2 0.850823 0.054748
31 LGBM N2 l2 0.862117 0.054171
32 ANN MP2 avg 0.864014 0.053685
33 LGBM MP2 l2 0.864245 0.053445
34 LGBM MP1 l2 0.857637 0.053436
35 XGB MP4 l2 0.847255 0.053172
36 ANN MP2 l2 0.857006 0.052898

Table 6.4 Validation experiment results part 1

Embedding Model

For embedding model selection, models with metapath2vec embeddings show
better performance in the first 2 experiments. Although models with node2vec
embeddings have convincing results in the next experiments, due to heterogeneous
nature of the network built in this thesis, it is not surprising that models with
metapath2vec embeddings results are better. Also, walk length on heterogeneous

48

Rank Classifier Embedding Model Operator AUC MAP@5
37 ANN MP1 avg 0.869216 0.052412
38 XGB N4 l2 0.840477 0.052278
39 ANN MP2 hadamard 0.83607 0.051069
40 ANN N2 l2 0.851234 0.050448
41 ANN N2 avg 0.861046 0.049704
42 ANN N2 hadamard 0.825901 0.049255
43 ANN MP1 l2 0.842776 0.049232
44 ANN N1 l2 0.841221 0.048963
45 LGBM MP4 avg 0.851825 0.048614
46 LGBM N3 avg 0.839608 0.048518
47 LGBM MP3 avg 0.839772 0.048391
48 ANN N4 avg 0.859196 0.047775
49 ANN MP3 avg 0.854452 0.046927
50 LGBM N4 avg 0.847614 0.046913
51 ANN MP4 avg 0.855556 0.046877
52 ANN N3 avg 0.855993 0.046762
53 XGB MP3 avg 0.831444 0.045798
54 XGB MP4 avg 0.845583 0.045403
55 XGB N3 hadamard 0.833318 0.04535
56 XGB N3 avg 0.83273 0.044507
57 XGB MP3 hadamard 0.830757 0.043149
58 XGB MP4 hadamard 0.835488 0.042679
59 XGB N4 hadamard 0.833846 0.041819
60 XGB N4 avg 0.843175 0.041724
61 ANN MP3 hadamard 0.831502 0.036346
62 ANN N3 hadamard 0.832816 0.033939
63 ANN MP4 hadamard 0.830758 0.03388
64 ANN N4 hadamard 0.830609 0.032843
65 LGBM N3 hadamard 0.841425 0.024693
66 LGBM MP3 hadamard 0.830858 0.022915
67 LGBM MP3 l2 0.828677 0.021685
68 LGBM MP4 hadamard 0.823009 0.020958
69 LGBM N4 hadamard 0.828977 0.019798
70 LGBM N3 l2 0.832715 0.019147
71 LGBM N4 l2 0.817684 0.018035
72 LGBM MP4 l2 0.821527 0.017422

Table 6.5 Validation experiment results part 2

networks seems to be an important hyper-parameter by examining orderings of
MP1 and MP2. In most experiments, MP2 has a superior performance (has higher
orders) than MP1 while fixing other features. This situation is opposite in node2vec
embeddings (for homogeneous networks); while comparing N1 and N2 embeddings,
N1 has superior performance than N2. Furthermore, increasing number of walks
can cause overfitting and make the performance worse based on these results.

49

Binary Operator

Among the binary operators, average operator is the best which dominates
the first 4 experiments with the highest MAP@5 values. Hadamard operator is
the second best operator after average based on the presence in the first ordered
experiments. L2 operator has the worst performance which is dominating the last
3 experiments. Since the node embeddings are representing coordinate values in
the latent space, it is a reasonable approach to take element-wise averages in a
geometrical perspective that preserving information of both nodes to form a link.

There are only small changes on AUC scores throughout the experiments.
Moreover, there is an unbalance at test set between positive and negative links where
positive links are only the small portion of entire test set. Because of this, model
can predict the negative values more easily that increase AUC score. Therefore, it
can be interpreted that AUC scores are not so significant measure to differentiate
the validation models. However, this variation is high at MAP@5 values. Based on
these observations, experiments are ordered based on their MAP@5 values.

6.3.2 Test and Comparison Results

Proposed and alternative models are compared according to MAP@5, AUC
scores. Also, U-Test statistics are calculated in order to examine the significance of
the results.

Model AUC MAP@5 Mean U-Test Statistics
Proposed 0.8557 0.064718 331.421
Alternative 0.6954 0.047719 278.145

Table 6.6 Comparisons of proposed and alternative methods

Receiver Operating Characteristic

According to AUC scores and ROC curves, proposed model has shown a su-
perior performance than the alternative model. This can also be interpreted from
the shapes of the ROC curves. ROC Curve of proposed model is above than the
alternative method, and more lied on y-axis and x-axis which shows a closer shape
to perfect classifier than alternative method.

Since the prediction scores are in alternative method in cosine similarity form
which is between -1 and 1, these scores are scaled between 1 and 0 by use of min-max
normalization method to plot ROC curve.

50

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic Curve

Proposed - AUC:0.8557
Alternative - AUC:0.6964

Figure 6.2 ROC Curve and AUC score of test set applied on proposed and alternative
models

MAP@K

Higher MAP@K results show that the recommendation system can make more
relevant recommendations. Figure 6.3 shows the MAP@K score for different K
values from 1 to 5. Naturally, increase of K recommendation will also increase
MAP@K result. For K is 5, MAP@K values are 0.064718 and 0.047719 for proposed
and alternative methods, respectively. According to these values, proposed model
has shown 35% superior performance than alternative method. Even both models
recommends the same merchants in their top-5 recommendations, proposed method
recommends the merchants in the higher ranks compared to alternative method
which is measured by MAP@K.

U-Test Statistics

Mann-Whitney U-Test is applied in order to evaluate proposed and alternative
method performances. It is tried to show that prediction scores for positive links
are significantly higher than negative link predictions. Since every combination of
merchants and customers is considered in the test set, there are a huge number of
negative links. To perform a reliable significance test, sampling is applied. The test
procedure is as follows: among the test customers, 10 people are selected randomly,
then positive and negative links of these people taken. Positive links are constitutes

51

1 2 3 4 5
K

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065
M

AP
@

K

MAP@K vs K

Proposed
Alternative

Figure 6.3 MAP@K Comparison of proposed and alternative models

the positive class directly and 50 samples are randomly selected from negative links
of these people and named as negative class. U-Test is applied between positive
class and sampled negative class of these 10 people. This whole process (including
taking 10 people randomly) is repeated 1000 many times.

Model Mean U-Test Stats. Std U-Test Stats
Proposed 331.421 6.9475
Alternative 278.145 12.6452

Table 6.7 Significance comparisons of proposed and alternative methods

According to results presented at 6.5, p-values of both methods are distributed
in smaller ranges than 0.05, which means they have significant results. Since p-
value distribution of proposed method is in smaller ranges, and its U-Test statistics
are higher than alternative method, proposed method has more significant results.
This means that positive link prediction scores are significantly higher than negative
prediction scores, and obtaining these predictions by chance has a small probability.
Also, this probability is lower at proposed method than alternative.

52

Proposed Alternative
Method

240

260

280

300

320

340
U-

Te
st

 S
ta

tis
tic

Figure 6.4 U-Test statistic distribution of proposed and alternative method

Proposed Alternative
Method

0.00

0.02

0.04

0.06

0.08

0.10

P-
Va

lu
e

Figure 6.5 P-Value distribution of proposed and alternative method

53

Detection Rates

Models are also compared based on their detection rates for 5 recommendations.
It is the ratio of detected merchant purchases/visits in the top-5 recommendations
to total merchants purchase/visits of two models.

Proposed Model
Catch Miss Total

Alternative Model Catch 0.1495 0.0708 0.2203
Miss 0.1546 0.6251 0.7797
Total 0.3041 0.6960

Table 6.8 Catch and Miss rates of top-5 recommendations of proposed and alterna-
tive methods

Proposed method has caught 30.41% of the merchant purchases for this month
compared to alternative method as 22.03% in their top-5 recommendations.

Map Comparisons

Recommendations of both models for some sample users are visualized on the
map. These visualizations include top-5 recommendations of both models and the
ground truth merchant visits of a sample customer. Ground truth merchants are
shown as markers and 5 recommendations denoted as R#rank (e.g. R1 is the first
recommendations, R2 is the second) are shown as circles (blue for proposed method,
red for alternative method).

Catch-Miss

In Figure 6.6, proposed model has caught 3 of 3 actual visits (named as GT:
ground truth) in the top-5 recommendation merchants as R2, R3 and R5. 2 other
merchant recommendations are also close to ground truths geographically. However,
in Figure 6.7 alternative method could not catch these merchants and make other
recommendations. R2 can be considered as close to a ground truth merchant but
R1, R4 and R5 are far away from the actual visit places.

Catch-Catch

In Figure 6.8, proposed model has caught 2 of 3 ground truths (GT) in the
top-5 recommendation merchants as R1 and R3. Again, 3 other merchant recom-
mendations are also close to GTs geographically. Alternative method has caught 1
GT as the 4th recommendation, which can be seen in Figure 6.9. R1 can be consid-
ered as close to a ground truth merchant, but R3 is far away from the actual visit
places.

54

Miss-Miss

There are also some instances where both models fail to catch ground truths. In
Figure 6.10, proposed model missed the GTs, but its recommendations R1, R2, R4,
and R5 are close to GTs. Only R3 is far away from the GTs. Similarly, alternative
method has also missed the merchants visits which can be seen in Figure 6.11, its
recommendations are far away except R2 in comparison with proposed model.

Miss-Catch

In this case, alternative method has caught 2 of 3 ground truths as R1 and R2
which can be seen in Figure 6.13. However, proposed model could not catch any
GTs for this case (see Figure 6.12). Although it fails to detect the GTs, its recom-
mendations R2,R3 and R5 are so close to 2 GTs. Also, R4 and R1 recommendations
of proposed model are closer to another GT, which alternative method could not
catch, and its recommendations are not far away from that GT in comparison with
R3, R4, R5 recommendations of alternative method.

55

R5
GT

R3
GT

R2GT
R1

R4

+

−

Leaflet (http://leafletjs.com)

Figure 6.6 Map Visualization of proposed method catching recommendations for a
sample user

R5

GT
R1R2 R3

GT

GT

R4

+

−

Leaflet (http://leafletjs.com)

Figure 6.7 Map Visualization of alternative method missing recommendations for a
sample user

56

R1GT
GT

R4
R2 R3GT

R5GT

+

−

Leaflet (http://leafletjs.com)

Figure 6.8 Map Visualization of proposed method catching recommendations for a
sample user

R3

R1
GT

GT

R5 GTR2 R4GT

+

−

Leaflet (http://leafletjs.com)

Figure 6.9 Map Visualization of alternative method catching recommendations for
a sample user

57

GT
GTGT R1R2

R4 R5

R3

+

−

Leaflet (http://leafletjs.com)

Figure 6.10 Map Visualization of proposed method missing recommendations for a
sample user

R4

R5R3

R1

GT
GTGT

R2

+

−

Leaflet (http://leafletjs.com)

Figure 6.11 Map Visualization of alternative method missing recommendations for
a sample user

58

GT

R4
R5

R3GT R1
R2GT

+

−

Leaflet (http://leafletjs.com)

Figure 6.12 Map Visualization of proposed method missing recommendations for a
sample user

R4

GT

R1
GT

R2
GT

R3

R5

+

−

Leaflet (http://leafletjs.com)

Figure 6.13 Map Visualization of alternative method catching recommendations for
a sample user

59

Chapter 7

Conclusion and Future Work

In this thesis, a link prediction framework is proposed to create a scalable
recommendation system for transaction data sets. The main goal of this thesis is
to predict the most relevant future items where the user will establish a connection
and make potential recommendations by use of proposed framework.

For this purpose, a link prediction based framework is proposed. It is using a
binary classification approach where actual links between the pair of nodes in the
network are classified as "positive" and the links that do not exist are classified as
"negative".

Summary of Work

Proposed framework includes a preprocessing, embedding model and classifier
model. At preprocessing step, transaction data set is put into a form of a net-
work. By use of embedding methods, a latent space representation of the network
is extracted to be used in a machine learning task. Binary operators are used to
create forms of link embeddings from node representations. A classifier model is
trained with the created link embeddings and used to classify test links in a binary
classification framework that creates recommendations.

Several types of embedding and classifier models are examined, and their per-
formances are analyzed on a use case scenario which is a merchant prediction task
in a transaction data set. metapath2vec and node2vec are the embedding models
that are used in this thesis. Gradient Boosting Decision Tree algorithms such as
LightGBM, XGBoost, and another type of classifier Artifical Neural Networks are
used as classifier models. Moreover, binary operators considered in this thesis are
averaging, hadamard and l2.

60

Experiments are conducted in order to select the best embedding, classifier and
binary operator combination. According to validation results evaluated on ROC,
AUC and MAP@K metrics; the best combination is found to be metapath2vec,
LightGBM, and average operator.

After model and operator selection, proposed model is compared with a collab-
orative filtering based alternative method, namely Alternating Least Squares. Ac-
cording to comparative analysis, proposed method shows superior performance than
alternative method in terms of MAP@K, AUC scores, and detection rates in top-5
merchant recommendations. Also, a significance test is performed, and proposed
method is found to have higher U-Test statistics in comparison with alternative
method.

According to detection rate results, proposed method has caught more merchant
purchases compared to alternative method as in their top-5 recommendations. It
also means that even both models are catching the same merchant purchases, pro-
posed method catches these merchants in the higher-ranked recommendations in
comparison with alternative method.

A map comparison is also conducted, which is geographically representing rec-
ommended merchants in a map, and according to these map visualizations, proposed
method is found to be making closer merchant recommendations to ground truth
merchants geographically, even it cannot detect ground truth merchants exactly.
These results can also be useful to have location information about customers to
make recommendations more relevant.

According to significance results, p-values of both methods have significant
performances where can be understood by their p-values are in the range smaller
than 0.05. Since p-value distribution of proposed method is in smaller ranges, and
its U-Test statistics are higher than alternative method, it can be concluded that
proposed method has more significant results. Positive link prediction scores are sig-
nificantly higher than negative prediction scores in proposed method in comparison
with alternative method.

Overall, proposed method demonstrates a convincing performance that can be
used as a recommendation system. The items which have the highest prediction
scores can be utilized as top recommendations of a recommendation system. More-
over, it shows that using only previous interaction information can be a powerful
signal that does not need another user or item features. Furthermore, due to the
generalization power of proposed method, it can be used in many different types of
data sets even they do not have a transaction nature.

61

Future Work

As future work, due to the existence of adjustable stages and high applicability
of proposed method, it can open a new path for further research. Each stage in
proposed method can be revisited and contributed from several perspectives.

Embedding models in this thesis adopt a random walk approach and generates
the walks based on preserving neighborhood probabilities. Heterogeneous graphs
use metapath2vec, and the homogeneous ones use node2vec widely. This process
can be combined with a sub-graph extraction stage which later can be used for
generalization of the network, and random walks can be generated based on these
sub-graphs instead of using more hyper-parameters. Moreover, other similarity mea-
sures combined with cosine similarity can also be introduced as a further approach
in embedding extraction.

Time dimension of the transactions can be benefited, which has not been used
in this thesis. This information may be helpful in assigning weights to the links.
Furthermore, the number of occurrence times of user-item pairs can also be used as
weighted combination with time information to assign link weights. Binary opera-
tors can be revisited, or different link formation methods other than element-wise
operators can be adopted. A dimensionality reduction stage can also be integrated
in order to decrease training time and reduce overfitting. Use case scenarios can be
expanded with product recommendations, song or movie recommendations based on
the previous purchases, listening or watching history data in order to perform more
performance analysis of the proposed method.

In addition, decreasing the number of pairwise combinations can be considered
to have a more scalable system. It can be achieved by using node features. For ex-
ample, a subset of merchants can be taken into consideration according to a location
filter for a customer. This location information can also be understood; even they
are not present explicitly as a customer node feature. Since proposed method makes
some recommendations in some neighborhoods, this information can be inferred
from these top recommendations and can be used to make new recommendations in
these neighborhoods that decrease the number of pairwise combinations.

Likewise many other link prediction techniques, proposed method only operates
on the "seen" nodes. It actually tries to discover the hidden links among the observed
network. Unseen users and items can be taken into consideration by estimating
their embeddings based on their external features which later can be used to test
link existence in proposed method. This would be a solution to a common "cold
start" problem in recommendation systems.

62

Bibliography

[1] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-
works. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 855–864, 2016.

[2] Jure Leskovec. Node embeddings. CS224W: Machine Learning with Graphs
lecture notes, pages 9–10, 07 2021. Stanford University.

[3] David Easley and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning
about a Highly Connected World. Cambridge University Press, 2010.

[4] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for so-
cial networks. Journal of the American Society for Information Science and
Technology, 58(7):1019–1031, 2007.

[5] Albert-Laszlo Barabasi and Zoltan Oltvai. Network biology: Understanding
the cell’s functional organization. Nature reviews. Genetics, 5:101–13, 03 2004.

[6] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface
prediction using graph convolutional networks. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, page
6533–6542, Red Hook, NY, USA, 2017. Curran Associates Inc.

[7] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray
Kavukcuoglu. Interaction networks for learning about objects, relations and
physics, 2016.

[8] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-
ganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. In
Karl Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyn-
don Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi,
Guus Schreiber, and Philippe Cudré-Mauroux, editors, The Semantic Web,
pages 722–735, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[9] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets
for machine learning on graphs, 2021.

[10] Hsinchun Chen, Xin Li, and Zan Huang. Link prediction approach to collabo-
rative filtering. In Proceedings of the 5th ACM/IEEE-CS Joint Conference on
Digital Libraries (JCDL ’05), pages 141–142, 2005.

63

[11] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scal-
able representation learning for heterogeneous networks. In KDD ’17, pages
135–144. ACM, 2017.

[12] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY,
USA, 2016. ACM.

[13] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting de-
cision tree. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[14] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In 2008 Eighth IEEE International Conference on Data
Mining, pages 263–272, 2008.

[15] Md Islam, Sabeur Aridhi, and Malika Smail. A comparative study of similarity-
based and gnn-based link prediction approaches. 08 2020.

[16] Dekang Lin. An information-theoretic definition of similarity. In Proceedings of
the Fifteenth International Conference on Machine Learning, ICML ’98, page
296–304, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[17] Peng Wang, Baowen Xu, Yurong Wu, and Xiaoyu Zhou. Link prediction in
social networks: the state-of-the-art, 2014.

[18] M. E. J. Newman. Clustering and preferential attachment in growing networks.
Phys. Rev. E, 64:025102, Jul 2001.

[19] Gerard Salton and Michael McGill. Introduction to modern information re-
trieval. McGraw-Hill, New York, NY, 1983.

[20] T. A. Sorensen. A method of establishing groups of equal amplitude in plant
sociology based on similarity of species content and its application to analyses
of the vegetation on danish commons. Biol. Skar., 5:1–34, 1948.

[21] Paul Jaccard. Etude de la distribution florale dans une portion des alpes et du
jura. Bulletin de la Societe Vaudoise des Sciences Naturelles, 37:547–579, 01
1901.

[22] Lada Adamic and Eytan Adar. Friends and neighbors on the web. Social
Networks, 25:211–230, 2001.

[23] Leo Katz. A new status index derived from sociometric analysis. Psychometrika,
18(1):39–43, March 1953.

[24] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical Report 1999-66,
November 1999.

64

[25] Edmund Landau. Zur relativen wertbemessung der turnierresultate deutsches
wochenschach. Jahrgang, pages 366–369, 1895.

[26] Linyuan Lü, Ci-Hang Jin, and Tao Zhou. Similarity index based on local paths
for link prediction of complex networks. Phys. Rev. E, 80:046122, Oct 2009.

[27] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey.
Physica A: Statistical Mechanics and its Applications, 390(6):1150–1170, Mar
2011.

[28] Aaron Clauset, Cristopher Moore, and M. E. J. Newman. Hierarchical structure
and the prediction of missing links in networks. Nature, 453(7191):98–101, May
2008.

[29] Harrison C. White, Scott A. Boorman, and Ronald L. Breiger. Social structure
from multiple networks. i. blockmodels of roles and positions. American Journal
of Sociology, 81(4):730–780, 1976.

[30] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochas-
tic blockmodels: First steps. Social Networks, 5(2):109–137, 1983.

[31] Clement Lee and Darren J. Wilkinson. A review of stochastic block models and
extensions for graph clustering. Applied Network Science, 4(1), Dec 2019.

[32] Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and Ben Taskar. Prob-
abilistic relational models, 2001.

[33] Lise Getoor and Lilyana Mihalkova. Learning statistical models from relational
data. pages 1195–1198, 06 2011.

[34] Kai Yu, Wei Chu, Shipeng Yu, Volker Tresp, and Zhao Xu. Stochastic re-
lational models for discriminative link prediction. In B. Schölkopf, J. Platt,
and T. Hoffman, editors, Advances in Neural Information Processing Systems,
volume 19. MIT Press, 2007.

[35] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks.
In Advances in Neural Information Processing Systems, 2018.

[36] Muhan Zhang and Yixin Chen. Weisfeiler-lehman neural machine for link pre-
diction. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’17, page 575–583, New York,
NY, USA, 2017. Association for Computing Machinery.

[37] William Hamilton, Rex Ying, and Jure Leskovec. Representation learning on
graphs: Methods and applications. 09 2017.

[38] Brian Gallagher and Tina Eliassi-Rad. Leveraging label-independent features
for classification in sparsely labeled networks: An empirical study. In Pro-
ceedings of the Second International Conference on Advances in Social Net-
work Mining and Analysis, SNAKDD’08, page 1–19, Berlin, Heidelberg, 2008.
Springer-Verlag.

65

[39] Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad,
Hanghang Tong, and Christos Faloutsos. It’s who you know: Graph mining
using recursive structural features. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’11,
page 663–671, New York, NY, USA, 2011. Association for Computing Machin-
ery.

[40] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. In Proceedings of the 14th International
Conference on Neural Information Processing Systems: Natural and Synthetic,
NIPS’01, page 585–591, Cambridge, MA, USA, 2001. MIT Press.

[41] I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[42] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290(5500):2319–
2323, 2000.

[43] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(86):2579–2605, 2008.

[44] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space, 2013.

[45] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk. Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining, Aug 2014.

[46] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
Line. Proceedings of the 24th International Conference on World Wide Web,
May 2015.

[47] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation
learning on large graphs, 2017.

[48] M. Kearns and L. G. Valiant. Learning boolean formulae or finite automata
is as hard as factoring. Technical Report TR 14-88, Harvard University Aiken
Computation Laboratory, 1988.

[49] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning
boolean formulae and finite automata. J. ACM, 41(1):67–95, January 1994.

[50] Robert E. Schapire. A brief introduction to boosting. In Proceedings of the 16th
International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’99,
page 1401–1406, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc.

[51] Jerome H. Friedman. Greedy function approximation: A gradient boosting
machine. The Annals of Statistics, 29(5):1189–1232, 2001.

[52] Michael J. Pazzani and Daniel Billsus. Content-Based Recommendation Sys-
tems, page 325–341. Springer-Verlag, Berlin, Heidelberg, 2007.

66

[53] H. P. Luhn. A statistical approach to mechanized encoding and searching of
literary information. IBM Journal of Research and Development, 1(4):309–317,
1957.

[54] H. P. Luhn. A statistical approach to mechanized encoding and searching of
literary information. IBM Journal of Research and Development, 1(4):309–317,
1957.

[55] Donghui Wang, Yanchun Liang, Dong Xu, Xiaoyue Feng, and Renchu Guan.
A content-based recommender system for computer science publications.
Knowledge-Based Systems, 157:1–9, 2018.

[56] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
International Conference on World Wide Web, WWW ’01, page 285–295, New
York, NY, USA, 2001. Association for Computing Machinery.

[57] Zan Huang, Wingyan Chung, and Hsinchun Chen. A graph model for e-
commerce recommender systems. J. Am. Soc. Inf. Sci. Technol., 55(3):259–274,
February 2004.

[58] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering
techniques. Adv. in Artif. Intell., 2009, January 2009.

[59] T. Jaya Lakshmi and S. Durga Bhavani. Link prediction approach to recom-
mender systems. CoRR, abs/2102.09185, 2021.

[60] Nathan Srebro, Jason Rennie, and Tommi Jaakkola. Maximum-margin matrix
factorization. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural
Information Processing Systems, volume 17. MIT Press, 2005.

[61] Jasson D. M. Rennie and Nathan Srebro. Fast maximum margin matrix fac-
torization for collaborative prediction. In Proceedings of the 22nd International
Conference on Machine Learning, ICML ’05, page 713–719, New York, NY,
USA, 2005. Association for Computing Machinery.

[62] Dennis DeCoste. Collaborative prediction using ensembles of maximum mar-
gin matrix factorizations. In Proceedings of the 23rd International Conference
on Machine Learning, ICML ’06, page 249–256, New York, NY, USA, 2006.
Association for Computing Machinery.

[63] Robert Bell, Yehuda Koren, and Chris Volinsky. Modeling relationships at mul-
tiple scales to improve accuracy of large recommender systems. In Proceedings
of the 13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’07, page 95–104, New York, NY, USA, 2007. Associ-
ation for Computing Machinery.

[64] Daniel Billsus and Michael J. Pazzani. Learning collaborative information
filters. In Proceedings of the Fifteenth International Conference on Machine
Learning, ICML ’98, page 46–54, San Francisco, CA, USA, 1998. Morgan Kauf-
mann Publishers Inc.

67

[65] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8):30–37, 2009.

[66] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-
scale parallel collaborative filtering for the netflix prize. In Proc. 4th Int’l Conf.
Algorithmic Aspects in Information and Management, LNCS 5034, pages 337–
348. Springer, 2008.

[67] Tao Zhou, Jie Ren, Matú š Medo, and Yi-Cheng Zhang. Bipartite network
projection and personal recommendation. Phys. Rev. E, 76:046115, Oct 2007.

[68] Zhijun Yin, Manish Gupta, Tim Weninger, and Jiawei Han. A unified frame-
work for link recommendation using random walks. In Proceedings of the 2010
International Conference on Advances in Social Networks Analysis and Mining,
ASONAM ’10, page 152–159, USA, 2010. IEEE Computer Society.

[69] Feng Xie, Zhen Chen, Jiaxing Shang, Xiaoping Feng, and Jun Li. A link pre-
diction approach for item recommendation with complex number. Knowledge-
Based Systems, 81:148–158, 2015.

[70] Yuxiao Dong, Jie Tang, Sen Wu, Jilei Tian, Nitesh V. Chawla, Jinghai Rao,
and Huanhuan Cao. Link prediction and recommendation across heterogeneous
social networks. In 2012 IEEE 12th International Conference on Data Mining,
pages 181–190, 2012.

[71] Nitin Chiluka, Nazareno Andrade, and J.A. Pouwelse. A link prediction ap-
proach to recommendations in large-scale user-generated content systems. pages
189–200, 04 2011.

[72] Zhiyuan He, Danchen Lin, Thomas Lau, and Mike Wu. Gradient boosting
machine: A survey. 08 2019.

[73] Nigel Duffy and David Helmbold. A geometric approach to leveraging weak
learners. In Paul Fischer and Hans Ulrich Simon, editors, Computational Learn-
ing Theory, pages 18–33, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[74] Tianqi Chen. Introduction to boosted trees. CS 675: Introduction to Machine
learning lecture notes, 2014. Washington University.

[75] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum voor
Wiskunde en Informatica Amsterdam, The Netherlands, 1995.

[76] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015.

68

[77] Peter Fader and Bruce Hardie. Probability models for customer-base analysis.
Journal of Interactive Marketing - J INTERACT MARK, 23:61–69, 02 2009.

[78] Saar Kagan and Ron Bekkerman. Predicting purchase behavior of website
audiences. International Journal of Electronic Commerce, 22(4):510–539, 2018.

[79] A machine learning framework for customer purchase prediction in the non-
contractual setting. European Journal of Operational Research, 281(3):588–596,
2020. Featured Cluster: Business Analytics: Defining the field and identifying
a research agenda.

[80] Jon Goss. "we know who you are and we know where you live": The instrumental
rationality of geodemographic systems. Economic Geography, 71(2):171–198,
1995.

[81] Charlotte Mason. Journal of Marketing Research, 39(4):499–501, 2002.

[82] H. B. Mann and D. R. Whitney. On a test of whether one of two random
variables is stochastically larger than the other. The Annals of Mathematical
Statistics, 18(1):50–60, 1947.

69

APPENDIX A
Node Embedding Visualization

Figure A.1 Town labeled metapath2vec merchant node embedding visualization

70

Figure A.2 Town labeled node2vec merchant node embedding visualization

71

Link Embedding Visualization

Figure A.3 Metapath2vec Sampled Train Link Embedding Visualization

Figure A.4 Node2vec Sampled Test Link Embedding Visualization

72

Figure A.5 Node2vec Sampled Train Link Embedding Visualization

Figure A.6 Node2vec Sampled Test Link Embedding Visualization

73

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATONS
	Introduction
	Related Works
	Architecture
	Link Prediction Problem
	Research Problem Definition
	Framework
	Preprocessing
	Node Embeddings
	node2vec
	metapath2vec

	Link Embeddings
	Binary Operators

	Data Partition
	Train Set
	Validation and Test Set

	Classifier Model
	Boosting Algorithms
	Gradient Boosting Algorithms
	XGBoost
	LightGBM

	Artificial Neural Networks

	Alternative Method
	Collaborative Filtering
	Alternating Least Squares

	Implementation
	Embedding Extraction
	node2vec Implementation
	metapath2vec

	Classifier Model
	XGBoost
	LightGBM
	Artificial Neural Networks

	Use Case: Merchant Prediction
	Problem Formulation
	Motivation
	Data set
	Merchant-Customer Network
	Data Partition
	Embedding Visualization

	Evaluation
	Evaluation Metrics
	Receiver Operating Characteristic
	Mean Average Precision at K
	Mann-Whitney U-Test

	Experiments
	Embedding Model Hyperparameter Tuning
	Classifier Model Configurations

	Results
	Validation Results
	Test and Comparison Results

	Conclusion and Future Work
	BIBLIOGRAPHY
	APPENDIX A -4em

