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ABSTRACT

TRAPDROID: BARE-METAL ANDROID MALWARE BEHAVIOR ANALYSIS
FRAMEWORK

HALİT ALPTEKİN

COMPUTER SCIENCE AND ENGINEERING MSc THESIS, JULY 2021

Thesis Advisor: Prof. Albert Levi

Thesis Co-Advisor: Prof. Erkay Savaş

Keywords: cyber security, dynamic analysis, mobile malware, android

In the realm of mobile devices, malicious applications pose considerable threats
to individuals, companies, and governments. Cyber security researchers are in a
constant race against malware developers and analyze their new methods to ex-
ploit them for better detection. In this thesis, we present TRAPDROID, a dynamic
malware analysis framework mostly focused on capturing unified behavior profiles of
applications by analyzing them on physical devices in real-time. Our framework pro-
cesses events which are collected from system calls, binder communications, process
stats, and hardware performance counters. Afterwards, it combines them into a sim-
ple, yet meaningful behavior format named UBF (Unified Behavior Format) using
UPL (UBF Processing Language) scripts. We evaluated our framework’s accuracy
and performance on the up-to-date malware dataset, which contains widely-known
variants, custom crafted malicious applications, 0-day, and 1-day samples. The
framework is easy to use, extensible, fast, and providing high accuracy in malware
detection with relatively low overhead.
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ÖZET

TRAPDROID: ZARARLI ANDROİD UYGULAMALARININ GERÇEK
CİHAZLAR ÜZERİNDE DAVRANIŞSAL ANALİZİ

HALİT ALPTEKİN

BİLGİSAYAR BİLİMLERİ VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ,
TEMMUZ 2021

Tez Danışmanı: Prof. Dr. Albert Levi

Tez Eş-Danışmanı: Prof. Dr. Erkay Savaş

Anahtar Kelimeler: siber güvenlik, dinamik analiz, mobil zararlı yazılım, android

Zararlı mobil uygulamalar; devletlere, şirketlere ve son kullanıcılara yönelik ciddi bir
tehdit oluşturmaktadır. Siber güvenlik uzmanları da bu tarz zararlı uygulamaları
sürekli olarak analiz edip daha iyi bir tespit sistemi ortaya çıkarmaya çalışmak-
tadır. TRAPDROID ismini verdiğimiz çalışma, zararlı yazılımları dinamik olarak
davranışsal analizini gerçek cihazlar üzerinde gerçekleştirebilmektedir. Bu platform,
sistem çağrıları ile birlikte uygulamaların süreçler arası iletişimini ve donanımsal per-
formans metrikleri harici herhangi bir bağımlılığı olmadan toplayabilmektedir. Tüm
bu toplanan veriler ve metrik değerler, özel olarak yazılmış betikler (UPL - UBF Pro-
cessing Language) kullanılarak davranışsal bilgiler içeren özel bir formata (UPF -
Unified Behavior Format) dönüştürülmektedir. Geliştirdiğimiz zararlı yazılım tespit
sisteminin başarısını ölçebilmek için kullanılan tanınmış veri kümeleri, özel olarak
geliştirilen zararlı yazılımlar ve henüz daha sınıflandırılması yapılmamış uygulamalar
ile zenginleştirilmiştir. Projemiz geliştirilmeye açık olmasının yanı sıra, hızlı ve yük-
sek bir başarı oranı ile mobil cihazlardaki zararlı yazılımları gerçek zamanlı olarak
tespit edebilmektedir.
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1. INTRODUCTION

As Android1 malware analysis and detection systems evolve, attackers also adapt
their methodologies by leveraging detection and analysis techniques. Modern mal-
ware samples can detect the presence of a virtualization environment or instru-
mented functions, which allow them to evade detection (Jing et al., 2014). Besides,
they use techniques like obfuscation, encryption, or dynamic loading to evade static
analysis (Aslan & Samet, 2020). They also use anti-emulation and anti-debugging
techniques to evade dynamic analysis (Park et al., 2020). There is a growing body
of literature that recognizes the importance of using bare-metal environments for
the detection of the evasive malware (Bulazel & Yener, 2017).

In this work, we present TRAPDROID2, a scalable, dynamic malware analysis
framework that is able to analyze a given application in real-time on physical de-
vices. TRAPDROID is divided into two components: driver and server. The driver
is a LKM (Loadable Kernel Module) that is responsible for interception of system
calls, binder communications, collection of PMU events, and statistical information
of processes collected from kernel structures like task_struct.3 The raw events
collected by the driver are securely transmitted to a server using custom UDP4

protocol. All of the pre-processed events are populated into an advanced analysis
engine using state-of-the-art machine learning techniques to differentiate whether
a given application performed malicious activity or not. Our platform shows the
results through a dashboard and allows users to involve in the analysis phase by
triggering (stimulating) malicious activities of the target application. In order to
reveal more hidden behavior, we employ the UI-coverage based approach with a
depth-first search on an activity graph.

1https://www.android.com/what-is-android/

2The preliminary version of TRAPDROID has been published as a conference paper (Alptekin et al., 2019).

3https://tldp.org/LDP/lki/lki-2.html

4https://datatracker.ietf.org/doc/html/rfc768
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TRAPDROID converts all pre-processed logs into UBF (Unified Behavior Format)
by executing UPL (UBF Processing Language) scripts. This behavior profile format
is simple yet adequate to represent the dynamic behavior of an application. The
pre-processed logs contain the following information:

• a selected subset of system calls such as open, close, socket, connect with
returned value of Linux kernel;

• broadcast events such as SMS_RECEIVED, SCREEN_ON, SCREEN_OFF emitted by
system process through binder;

• IPC communication between target application and binder;

• PMU events of target process such as L1D-access, L1I-miss, instruction,
branch-prediction count, etc;

• accounting information of target process such as maj_flt, min_flt, stime,
utime, read_char, write_bytes, etc.

Our experiments achieved 98.41% accuracy using our CNN model with multiple em-
bedding layers on a balanced (MWR=0.5) dataset containing 6000 applications col-
lected from different research datasets and private resources. Furthermore, widely-
accepted machine learning algorithms and deep-learning models also provide higher
than 97% accuracy and F-1 score, which is enough to build a successful detection
system.

The main contributions of our work are:

• A publicly accessible, open-source Android malware analysis platform and up-
to-date dataset;

• Proposing a novel unified behavior format to reconstruct the activities of the
target application;

• Testing the performance of the widely accepted text-classification approaches
and proposing a novel CNN network;

• Analyzing the MWR and behavior coverage (λ) metrics over detection perfor-
mance;

• Demonstrating that low-level features can be effectively used in Android mal-
ware detection, bridging the semantic gap between low-level features and ma-
licious behavior;

• Comparing our findings with the existing researches.
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2. BACKGROUND

This chapter provides a general overview of the Android applications, operating
system details, and essentials of the malware detection methodologies.

2.1 Android Operating System

Android is a mobile operating system specifically optimized for resource-constrained
devices and developed by Open Handset Alliance1 with the commercial support of
Google2 since 2008. It has been the top-selling mobile operating system on smart-
phones since 2011. OEMs (Original Equipment Manufacturers), chip-makers, carri-
ers, and application developers play a vital role in developing the operating system
and core frameworks. The overview of the Android architecture is shown in Fig-
ure 2.1.

APPLICATIONS
(Home, Contacts, Phone, Browser, Email)

APPLICATION FRAMEWORK
(Activity, Telephony, Window, Location)

LIBRARIES
(OpenGL, SQLite, Webkit)

RUNTIME
(ART, Core)

LINUX KERNEL
(Display, WiFi, Camera, Display, Binder)

Figure 2.1 Overview of the Android Architecture.

1https://www.openhandsetalliance.com/

2https://developers.google.com/android
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The Android architecture consists of four layers. The first layer at the bottom is
the Linux Kernel, responsible for the file system, task scheduling, memory manage-
ment, socket handling, and other critical tasks. The upper level employs system-
wide libraries, Android Runtime (ART)3 and its predecessor, Dalvik virtual machine
(DVM), which provide core functionalities and a runtime environment for Android
applications. Most of the system services in the application framework layer are
written in the Java programming language. The Android applications are running
in the last level known as the application layer.

2.1.1 Linux Kernel

Linux kernel is a monolithic, UNIX-like, free, and open-source operating system
kernel. Android patched the mainline Linux kernel to add new components4 such
Binder and AShmem. Each Android application has a unique UID value assigned
by Linux to prevent applications from interacting directly between each other’s
data and processes. However, they invoke the Binder driver in case of inter-process
communication. Figure 2.2 depicts the call graph of a sample binder transaction.

asInterface()                   (ISms.Stub)

sendText()                               (ISms)

native transact()           (BinderProxy)

android_os_BinderProxy_transact()  

transact()                          (BpBinder)

talkWithDriver()      (IPCThreadState)

Binder Driver (/dev/binder)

ISms
Service

Other
Services

Figure 2.2 Call graph of sample binder transaction.

3https://source.android.com/devices/tech/dalvik

4https://elinux.org/Android_Kernel_Features
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2.1.2 Binder

Binder is a kernel driver responsible for handling IPC (Inter-process communication)
calls. These calls handle data transfer between applications through a protected
environment. Applications make use of ioctl system call in order to execute IPC calls
of the Android operating system. In order to receive requests and send responses,
objects define interfaces using Android Interface Definition Language (AIDL).5

2.2 APK File Structure

The Android applications use APK (Android Package Kit) as their main application
format. This format contains required files such as AndroidManifest.xml, icons,
signatures, assets, native libraries, resources, and the executable classess.dex file,
which is compiled for DVM (Dalvik Virtual Machine). AndroidManifest.xml is the
most important file among them since it contains many definitions such as package
name, permissions, services, receivers, and providers. Figure 2.3 represents the inner
structure of the APK.

Manifest
(AndroidManifest.xml)

Signatures
(META-INF)

Assets
(assets/)

Native Libraries
(lib/)

Compiled Resources
(resources.arsc)

Dalvik Bytecode
(classes.dex)

Resources
(res/)

Figure 2.3 APK file structure.

5https://developer.android.com/guide/components/aidl
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2.2.1 Permissions

Mobile application developers set required permissions in the manifest file to allow
their software to perform privileged operations such as sending or receiving SMS,
accessing the internet, dialing, or setting wallpapers. The Android operating sys-
tem provides permissions with protection levels categorized as signature, system or
signature, normal and dangerous. Regular permissions (normal protection level) do
not pose any risk to the user’s privacy. Therefore, the operating system grants ac-
cess automatically if those sorts of permissions are listed in the manifest file. On the
contrary, dangerous permissions enable applications to access confidential informa-
tion stored on the device. However, users can grant or revoke permissions upon the
installation. Android 6.0 or newer versions have this facility of granting or revoking
permission.

Table 2.1 Significant permissions for malware detection.

Permission Name Description
READ_CONTACTS Read-access to contacts

MANAGE_ACCOUNTS Manage the account list
ACCESS_COARSE_LOCATION Obtain the current device location via GPS

INTERNET Full internet access
WRITE_SETTINGS Modify global device settings

INSTALL_PACKAGES Install new applications
ACCESS_NETWORK_STATE View network/connectivity status
READ_EXTERNAL_STORAGE Access to external storage (SDcard)

SEND_SMS Send a short message to destination
WRITE_APN_SETTINGS Update APN settings

GET_ACCOUNTS Discover known accounts

Threat actors demand developer-defined or self-defined permissions to gain access
to the victims’ private information. It is expected for the application to behave in
a way, which requires these set of permissions during the execution. For instance,
if any application defines READ_CONTACTS permission, we expect that application
invokes to regarding API call to obtain contact list. These expectations enable
us to develop behavior coverage metric to assess the performance of the stimulation
engine. Table 2.1 represents several significant permissions (Li et al., 2018) requested
by malware samples.
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2.2.2 Intents

An Intent is an unique messaging object which enables applications to request an
action from another application. The requested action includes starting an activity
or service and delivering a broadcast. There are two types of intents: implicit
and explicit. While implicit intent can interact with other applications within the
operating system, explicit intent is developed for message passing between the same
application components.

2.2.3 Native Libraries

Native libraries are widely used in Android applications as they allow developers
implementing functionality with C/C++ or even with assembly language. In some
use cases, it is advantageous to use these lower-level programming languages, not
only due to better performance but also because it is easy to re-use the code that
had been developed for other platforms.

Native libraries are compiled into .so (shared object) files for each targeted platform
architecture (x86, x86-64, armeabi etc.) and they are dynamically loaded into mem-
ory when the application is launched. There is a communication interface called
Java Native Interface (JNI) to allow calling functions in native libraries from Java
layer or vice versa.

It is known that Android malware can utilize native libraries in order to hide the
functionality running in the background by means of obfuscation which is usually
harder to reverse engineer when compared to Dalvik Bytecode.

2.2.4 Dalvik Bytecode

Android apps are written in Java language and run in Android Runtime (ART)
environment. In this environment, unlike the discontinued project Dalvik, ART
converts the application’s bytecode into native instructions.
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2.3 Android Malware Ecosystem

There are different types of malware threats affecting the Android operating sys-
tem. In this section, we briefly present the most common types of these malicious
applications. Table 2.2 shows some real-world examples of different malware types.

Table 2.2 Real-world examples for each malware category.

Category Variants
Adware Batmobi, Ewind, Hummingbird, Mobisec, Loki
APT Confucius, Pegasus, FinSpy, Monokle, Tangelo

Banking Malware Alien, Cerberus, Hydra
Cryptocurrency Miner HiddenMiner, ADB Miner

Ransomware Congur, Masnu, Fusob, Jisut, Koler, Lockscreen
Scareware Avpass, Mobwin, Fakeapp
SMS Worm Selfmite, Flubot, Goodnews, Samsapo, Filecoder
Spyware Spynote, Stalkerware, Spydealer, Smsthief, Spyagent

2.3.1 APT

An advanced persistent threat (APT) is a highly-skilled threat actor who mainly
develops malicious applications to increase their privileges on the operating system
and hide their activities to maximize persistence. As a result, they may stay hidden
for months without the user noticing any suspicious activity. Nation-state threat
actors regularly develop mobile APT malware usually backed up with 0-day exploits.
This type of mobile malware is generally aimed at high-profile targets and is not
easily detected by modern AV (Antivirus) software. For instance, Pegasus6 is a
notorious APT sample developed by NSO Group7 to allegedly tackle crime and
terrorism.

6https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-android-technical-analysis.pdf

7https://www.nsogroup.com/about-us/
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2.3.2 Adware

Adware is another type of mobile malware that generally does not show any mali-
cious behavior but is designed to pop up ads and trick users into profiting by selling
products or increasing website traffic. These applications mainly slow down the
operating system and often try to direct users to install other variants to maximize
the gain of the threat actors.

2.3.3 SMS Worm

One of the most significant examples of Android malware is the SMS Worm. These
malicious applications are a popular type of mobile malware that tricks users by
spreading themselves via SMS. Since many users are well adapted to using SMS
technology, the spreading speed of malware is almost unbeatable. Furthermore,
this type of malware also utilizes the contact list of the victim’s device to trick the
victim’s close circle, thus making the spreading much faster. Figure 2.4 shows the
sample SMS contains the malicious file URL sent by malware during the COVID-19
pandemic.

Figure 2.4 Sample text message sent by SMS Worm.

2.3.4 Banking Malware

One of the most common types of threats affecting the finance sector is the use of
banking malware. The banking malware is a specially crafted malicious software to
steal the user’s credentials and other confidential information. These applications
generally spread through large phishing attacks, smishing, or social engineering.
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2.3.5 Scareware

The purpose of scareware is to trick users into downloading and paying for unnec-
essary software. The application itself does not necessarily contain any malicious
code. Nevertheless, they are designed to mislead users to feel obligated to pay for
specific software to maintain their devices. As these applications do not have any
malicious code in themselves, they can be downloaded from public markets.

2.3.6 Spyware

Spyware is a generic term to represent any application that is capable of exfiltrating
certain private information such as the browsing history, messages, contacts, or other
confidential information stored on the device without the user’s consent. Spyware
can be installed as a standalone application or it may well be included as a module
of another benign application.

2.3.7 Ransomware

Ransomware is a specially developed application that prevents users from accessing
services and data on their devices by encrypting or disrupting them until a consid-
erable ransom amount is paid. Ransomware has gained popularity in recent years
due to the rise of crypto coins and anonymous payments. These types of attacks
mostly have catastrophic consequences and their damage is almost irreversible.

2.3.8 Cryptocurrency Miner

While not as popular as their desktop counterparts, mobile malware samples mining
cryptocurrencies like BTC, ETH, or XMR in the device are constantly increasing.
This type of malware is generally bundled with benign applications as users need to
keep using the application during the mining phase. However, mining on phones is
not as profitable as PCs and needs more technological development.
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2.4 Malware Detection

Malware detection can be separated into two main categories: static and dynamic
analysis. During recent years, malware developers have found multiple methods
(Bello & Pistoia, 2018) to evade static analysis, which shaped the working dynamics
of modern anti-virus products. As malware gained more capability in hiding its
tracks and evading detection methods, dynamic analysis (Yan & Yin, 2012) gained
immense importance to cope with the growing threat. However, recent solutions also
became ineffective to detect sophisticated malware threats, which opens up using
hybrid analysis (Kabakus & Dogru, 2018) and bare-metal frameworks (Mutti et al.,
2015) in detection software.

2.4.1 Static Analysis

There is a considerable amount of research on static malware analysis that utilizes
the static properties (Feng et al., 2014) of the executable and provides high scalabil-
ity with relatively low computation resources without executing them. The several
properties of the APK file, intents, permissions, API calls, information flow, and
opcodes are essential for the static analysis.

The permission set extracted from the manifest file is a primary feature resource of
the researchers. Static analysis approaches heavily dependent on the defined permis-
sions. Nevertheless, application developers tend to extravagantly define permissions
in a manifest file even the application does not need all of the permissions. Further-
more, APT or advanced malicious applications might not declare any permission to
carry out their actions. They can use the privilege escalation exploits to bypass the
security enforcements of the defined permissions.

One of the most popular static features is the source code of the program, if available.
Otherwise, the binary file needs to be disassembled or decompiled. Researchers
utilize the semantic representation of the source code by building control-flow or
data-flow graphs and sequences of API calls. However, the actual malicious code
can be downloaded from external resources or generated during the application
runtime. Therefore, the detection system built on top of source codes can be easily
evaded by dynamic loading (reflection) techniques.
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2.4.2 Dynamic Analysis

There are several approaches proposed to overcome the limitations of the static
analysis. Unlike static analysis, dynamic analysis is carried out in controlled (emu-
lator) or bare-metal (real device) environments. Most of the techniques utilize the
system calls, binder transactions, resource consumption, and network traffic. Since
the dynamic analysis relies on runtime behavior, not just the source code or static
properties, it is less prone to dynamically loaded malware.

Upon executing applications, some of the variants can evade the analysis environ-
ment using several bypass techniques. In order to observe the activities of the mali-
cious applications firmly and block the evasive attacks, execution environments need
to be appropriately configured. The bare-metal platforms provide a more suitable
environment instead of emulators.

Analyzing the system call sequences of the application under inspection is one of the
most popular dynamic analysis approaches. In this approach, detection systems can
be configured for intercepting the system calls between application and kernel. Since
the kernel modifications are complicated and challenging to apply different versions
due to compatibility issues, most researchers use the strace8 tool to capture the
system calls. The strace tool utilizing ptrace9 system call and can be easily
detected by evasive malware.

Alongside the system calls, API calls invoked by applications are also helpful for
malware detection. Since the Android operating system cannot allow direct access to
resources such as contacts, messages, or other private information, applications need
to call related API calls. For instance, adding a new device admin, obtaining the
whole message database, reading notifications, or dialing numbers can be considered
suspicious behavior.

The network traffic of the Android application can be used to identify malware.
The entropy of the domain name, packet counts, protocols, destination ports, or
reputation of the IP addresses are example features extracted from network activity.
However, there is a widely accepted phenomenon called the ephemerality of malware.
Accordingly, the command and control servers of the malware shut down in a short
period, and it needs to be instantly analyzed upon availability.

8https://man7.org/linux/man-pages/man1/strace.1.html

9https://man7.org/linux/man-pages/man2/ptrace.2.html
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2.5 Related Works

There has been significant research on using the bare-metal framework for detecting
Android malware in recent years. This section present related work and discuss
detection methodologies of recent researches.

Crowdroid (Burguera et al., 2011) is an Android malware analysis system that uses
ptrace to log and analyze an application’s system calls. It can collect the system-
wide device information, installed application list, and system call sequences of the
application under the analysis. Upon collecting the required information, the remote
server applies clustering algorithms to identify malicious applications.

Similarly, DroidTrace (Zheng et al., 2014) is a standalone classification system that
utilizes ptrace system call within the device itself to identify malware. It uses a
dynamic library loading technique to monitor selected system calls. Moreover, the
authors developed a forward-execution mechanism that can disassemble and repack
the samples to provide high behavior coverage. However, both of these tools are
highly dependent on the usage ptrace system call, and evasive malware samples can
identify whether their active processes are under analysis or not.

On the other hand, DroidScope (Yan & Yin, 2012) is a malware detection project
that monitors the samples in the emulated environment without utilizing the ptrace
system call. It implements taint-tracking and enables introspection at different layers
of the platform. However, the platform is based on QEMU10 and cannot mimic the
properties of physical devices.

BareDroid (Mutti et al., 2015) uses the power of a bare-metal platform. It enables
to use of real devices for Android malware analysis. Nevertheless, instead of using
their platform for practical malware analysis, the authors explained the feasibility
and procedures of running a bare-metal system for detection. We opted to use
BareDroid’s threat model in our project.

Some researchers (Canfora et al., 2015) also apply machine learning algorithms to
detect malicious applications in real devices. Instead of the classical approach, they
consider the limited number of system calls to bridge the semantic gap between be-
havior and system calls. However, the Android operating system constantly evolves
and adding new functionalities to its platform. Therefore, the limited number of
system calls is inadequate to represent some of the malicious behaviors.

10https://www.qemu.org/
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In addition to traditional machine learning approaches, several deep-learning-based
detection systems also proposed dynamic analysis methods. Deep4MalDroid (Hou
et al., 2016) is a fully automatic malware detection system based on an emulator.
It builds the weighted graph of system calls invoked by the sample application and
populates the generated graph into a deep learning model containing stacked auto-
encoders.

In order to encode the behavior sequence, researchers (Xiao et al., 2019) applied Long
Short-Term Memory (LSTM) language model to system calls. They developed two
models for malware and benign families to calculate the similarities between them.
Although their promising results, their detection system is built on top of ptrace
system call and prone to evasive attacks.

The Convolutional Neural Network (CNN) is another deep learning model specially
developed for image processing problems. Researchers (Abderrahmane et al., 2019)
developed a custom CNN architecture to detect Android malware samples using
system calls invoked by samples under the analysis. The CNN network expects the
dependency matrix to determine whether the sample is malware or benign. In our
research, we treat system call sequences as a text and employ TF-IDF vectorization
before populating the input matrix into the CNN network.

Most of the previous work has prevalent limitations such as the usage of outdated
Android versions (Kouliaridis et al., 2020), lack of dataset information and publicity
(Qiu et al., 2020), susceptibility to evasion (Jing et al., 2014), imbalanced variant
distribution (Wang et al., 2020), or producing low behavior coverage due to the
ephemerality of the malware. In order to overcome these limitations, we combine
widely-known datasets (Arp et al., 2014; Mahdavifar et al., 2020) with 0-day and
1-day samples which emerged during our research. Upon analyzing the behavior of
these samples using the bare-metal platform called TRAPDROID, we tested certain
classification algorithm’s performance using TF-IDF with n-grams and novel deep-
learning architectures.
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3. TRAPDROID FRAMEWORK

Our study required a fully implemented bare-metal framework to test our method-
ology and validate our results. This section presents our framework in detail by
covering all distinct stages, including data collection, stimulation, and automatic
state restoration.

3.1 Data Collection

The TRAPDROID framework consists of two main components: driver and server.
The driver gathers the raw activity log from the kernel level and sends them to the
remote server using the netpoll1 mechanism. As a next step, API converts logs
into a meaningful yet straightforward event stream. The human analyst can track
the actual progress of analyzing the suspected application from a user-friendly dash-
board. TRAPDROID is able to provide all activities in real-time using WebSocket
technology and REST API to external systems for integration. Figure 3.1 depicts
the overview of the framework.
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Figure 3.1 Overview of the TRAPDROID framework.

1https://wiki.ubuntu.com/Kernel/Netconsole
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The driver module intercepts some selected system calls via kretprobes without
altering the system call table when mounted to the system. We have selected 15 of
the most crucial system calls to reconstruct the behavior of the analyzed application.
In addition, the system filters ioctl system calls on the binder driver to intercept
all IPC communications. TRAPDROID is implemented in a modular way to be
extended easily to capture new system calls or other sorts of data such as memory
access patterns, scheduler stats, etc. We evaluated most of the system calls and
kernel functions to boost the detection system’s performance, and we decided to use
a compact subset of system calls, as shown in Table 3.1. As an alternative to our
approach for intercepting system calls, this process is traditionally carried out by
strace tools.

Table 3.1 Intercepted system calls.

File System open, close, rename, unlink, mkdir, access, getdents
Process fork, execve, clone, ptrace
Network socket, connect
Privilege chown, chmod

strace is a debugging tool capable of intercepting all system calls invoked by the
target process, taking advantage of the ptrace system call. However, evasive mal-
ware samples can identify whether their active processes are under analysis or not.
Therefore, they can bypass the dynamic analysis systems based on strace. For
instance, malware developers may craft malware equipped with the native library,
which can bypass strace-based analysis for the Android operating system. The below
code is a motivational example of the traditional anti-debugging technique which
thwarts ptrace-based tools.

void anti_debug ( ) {
int pid = fo rk ( ) ;

i f ( pid == 0){
int ppid = getppid ( ) ;
int s t a tu s ;

i f ( pt race (PTRACE_ATTACH, ppid , NULL, NULL) == 0){
waitp id ( ppid , &status , 0 ) ;
pt race (PTRACE_CONT, ppid , NULL, NULL) ;

}
}

}

Listing 3.1 Motivational example of the anti-debugging.

16



In our framework, the driver identifies whether the current process is our target
or not by looking at its UID value. This step is trivial as the Android operating
system assigns a unique UID value to each installed application. When a system
call occurs, the driver checks whether the current process’s UID value is equal to
our target UID. Then, the driver pushes a new event containing the information
collected from task_struct and PMU into a circular queue. Another kernel worker
processes items in the queue and delivers them to the remote server using netpoll.

The starting of Android applications can be captured by hijacking fork system calls
of the zygote process. If the driver detects a new application executed in the oper-
ating system, it clears and enables the hardware performance counter of the target
process for defined PMU events such as data cache access, branch-misprediction,
instruction, etc. When the target application invokes the hooked system calls, the
driver stores the exact values of hardware performance counters. Targeting PMU
events can be configured or extended easily as represented in below code blocks
using perf-subsystem of the Linux kernel.

stat ic struct perf_event_attr pattr_cpu_cycles = {
. type = PERF_TYPE_HARDWARE,
. s i z e = s izeof ( struct perf_event_attr ) ,
. c o n f i g = PERF_COUNT_HW_CPU_CYCLES,
. exclude_user = 0 ,
. exc lude_kerne l = 1

} ;

stat ic struct perf_event_attr pattr_branch_misses = {
. type = PERF_TYPE_HARDWARE,
. s i z e = s izeof ( struct perf_event_attr ) ,
. c o n f i g = PERF_COUNT_HW_BRANCH_MISSES,
. exclude_user = 0 ,
. exc lude_kerne l = 1

} ;

Listing 3.2 Sample PMU configurations.

As an alternative approach, there is another way to gather hardware or software
PMU events of the system with the help of the perf2 tool. However, we preferred
the unified behavior analysis approach rather than relying on different applications
to gather different metrics. Moreover, to analyze a suspicious application, we need
to have more privilege on the operating system than the tracked application. Oth-
erwise, evasive malware could bypass our analysis framework.

2https://perf.wiki.kernel.org/index.php/Main_Page

17



3.2 Environment

Recently, there is an increasing interest in the research of automated dynamic mal-
ware analysis systems running on physical hardware. As the main advantage of
our proposed work is using the capabilities of a bare-metal environment, we have
deployed our framework to a physical mobile device and analyzed various malware
samples. Table 3.2 shows our analysis environment.

Table 3.2 Analysis environment.

Model Sony Xperia XZ 2
OS Android 10
Chipset Qualcomm SDM845
Memory 4 GB
Storage 50 GB
Kernel 4.14.226-msm
Internet Connected, no-restrictions
Cellular Connected, without internet
PMU Active

Most of the frameworks developed by researchers use old Android versions. Older
Android versions lack many features and high percentage of new malware samples
only works on modern Android versions. As a result, we targeted Android 10 in
order to test the recent features of the Android operating system and be able to
include the novel malware samples in our work. This selection enabled us to develop
a sound, dynamic analysis framework and produced more relevant results in real-
world scenarios.

Our analyzing environment consisted of two main components: real-device and
TBOX (TRAPDROID-Box). While the real device responsible for executing the
malware samples, TBOX manages the device and stores collected information ap-
propriately in the database. Although we deployed TBOX as a mini-computer, it can
be used in the cloud environment after minor modifications. It is developed using
modern programming languages (Python, Flask) and scalable products (MongoDB,
Elasticsearch) for further improvement.
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3.2.1 TBOX

TRAPDROID is capable of sniffing the network communications while analyzing
the target application. In order to capture network packets and provide an internet
connection to the mobile device via WiFi, we created a protected network envi-
ronment using TBOX. TBOX is a mini-server running with Arch Linux ARM on
Raspberry Pi. In order to provide continuous charging and directly communicating
through ADB, we connected our analysis device to TBOX via USB 3.0 with an
external adapter. TRAPDROID utilizes tcpdump3 software to capture all network
packets and parses them using the scapy4 library.

Figure 3.2 The dashboard of the TRAPDROID analysis engine.

Another functionality of the TBOX is to serve the Dashboard of the analysis en-
gine. Figure 3.2 shows the analysis queue, which contains completed and active
tasks. From this panel, analysts start a new analysis or obtain the generated re-
port regarding the sample. Upon execution of the application, the analysis engine
automatically determines the label using an active detection model.

3https://www.tcpdump.org/

4https://scapy.net/
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3.2.2 Emulator vs Bare-metal
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Figure 3.3 Behaviour comparison of the Emulator and Bare-metal environments.

To examine the effects of the bare-metal environment in terms of the number of
revealed distinct behavior, we conducted an experiment with five different evasive
malware samples, which belong to Ztorg, OBAD, and Hehe family. Our results can
be seen in Figure 3.3. Four of the evasive malware terminated upon execution in
the emulator either because they detected the emulation or crashed due to failed
state, while the last sample (S5) failed at a later step. All executions were success-
ful in the bare-metal framework, which allowed us to analyze the whole malicious
activity of the samples. Although we tested our system with a relatively small
dataset, numerous works provide similar outputs (Mutti et al., 2015). Therefore,
bare-metal frameworks seem a more reasonable option for dynamic analysis rather
than emulators.
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3.3 Automatic State Restoration

In order to start analysis process using physical hardware, partitions of the mobile
device should be properly organized. Our framework keeps a clean state of the
system and the userdata partition in the Android sparse image format. These
partitions always keep the pristine state of the device and cannot be altered during
the execution in the analysis phase.

In case a modification is detected on the system partition, we use our previously
saved state of the original system partition in our file system and flash it on the
device accordingly. We opted to use the threat model, which is explained in more
detail in BareDroid. The applications under the analysis can read/write to the
userdata partition. Additionally, we rely on SELinux policies to keep our system
partition safe from malicious applications. We have a validation mechanism to
determine whether the system partition is altered or not. TRAPDROID analyzes
the past activities of malware and decides to flash partition into the device via
fastboot.

For the restoration, TRAPDROID boots the device into fastboot mode. The content
of the cache partition is erased in the fastboot mode. Then, the original boot and
userdata partition is flashed regardless of the malicious application’s activity as in
BAREDROID. system, vbmeta and OEM partitions are flashed as well if any threat
is detected against other partitions’ integrity.

Table 3.3 Procedure timings.

Step Time (sec-
onds)

Flash the boot partition 2.61
Flash the vbmeta, dtbo and other partitions 0.43
Restore system partition 39.09
Restore userdata partition 23.04
Boot the operating system 10.15
Execute the stimulation engine 180

TRAPDROID uploads the kernel module into the system and imports it after the
ADB connection has been established successfully. It waits for the graphical user
interface of the Android operating system to start the analysis process. After con-
firming every step during the preparation phase, we start our simulation engine.
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The whole stimulation and state restoration process take roughly four minutes for
a single application. Table 3.3 shows the required timings for each procedure.
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Figure 3.4 Automatic state restoration procedure.

We take advantage of the static analysis so as to uncover hidden behaviors of target
application and reduce the analysis time. We have focused on neither how static
analysis useful at malware detection nor to improve the static analysis techniques.
We only leverage the static analysis report to improve the efficiency of the dynamic
analysis. TRAPDROID extracts the statically defined broadcast receivers, which
are expected by the target application from its manifest file. In addition to static
receivers, our framework also finds the receivers which are registered dynamically.
Our simulator engine uses this knowledge to broadcast more relevant intent actions
in order to interact with the application. Figure 3.4 depicts the simplified represen-
tation of the automatic state restoration procedure.
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3.4 Stimulation

Stimulation is the process of executing consecutive tasks for revealing more activities
of the sample under analysis. While the triggered number of hidden activities in-
creases the performance of the classification systems, it also reduces the probability
of the overfitting problem.

In the research community, there are several stimulation engine options to trigger
the hidden behaviors of the malware sample. These engines emulate the user inter-
actions like clicking the button, scrolling or populate the test data to text fields to
increase the activity coverage. In this work, we have used an improved version of
the DroidBot (Li et al., 2017) as a primary stimulation engine. To increase the effi-
ciency, we have altered the life-cycle of the DroidBot and added some new features
like broadcasting several intents, auto-enabling accessibility, and notification ser-
vices. Besides the automatic stimulation, we also employ manual stimulation when
the engine cannot reveal activities sufficiently. However, barely a small portion of
samples needed a manual inspection during our research. Figure 3.5 depicts the our
stimulation acceptance methodology.

Sample reached
required behavior

coverage?

Stimulation Engine
(Automatic)

Save for dataset.

Yes

Human Analyst
(Manual)

No

Adjust analysis time and tune the
parameters of the stimulation engine.

Figure 3.5 Stimulation acceptance methodology.

In our experience, the malicious behavior of the samples can principally be triggered
by our stimulation engine. However, further investigation and experimentation of
how to effectively trigger the malicious behavior of an application is another research
area that needs to be addressed.
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3.4.1 Human Analyst vs Monkey
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Figure 3.6 Stimulation comparison of the Monkey and Human Analyst.

Most of the malware need some form of interaction for stimulation, such as inputs
from the user or the occurrence of certain events. In order to test the efficiency
of the proposed system, we have measured the number of triggered functions using
the monkey5 tool and an expert analyst. In Figure 3.6, we show the number of dis-
tinct behavior actions of the malware triggered with the help of an expert analyst
and the monkey tool. The results show that an expert analyst made it possible to
observe 22.5% more actions on average than the automated counterpart. Trigger-
ing more functions by an expert analyst shows the advantages of using bare-metal
environments for malware analysis as the number of observable functions differs sig-
nificantly. In order to improve the efficiency of the monkey, we revised the DroidBot
by adding valuable features like enabling accessibility or notification services.

5https://developer.android.com/studio/test/monkey
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3.5 UBF Processing Language (UPL)

In order to process raw events, we developed a DSL (Domain-specific Language)
named UPL (UBF Processing Language). Although it is not an actual Turing-
complete programming language, even it has grammar, developers can include
Python scripts that allow UPL to access third-party libraries like pattern processing,
machine learning, or signal processing. This combination significantly reduces the
time of need for the development of UPL scripts. Consequently, we can consider the
UPL as a compound programming language with Python and JSON. UPL scripts
can be extended by defining new blocks which have different intents as follow:

Behavior: In order to reconstruct the target applications’ activities, we mainly
declare new behavior blocks in the UPL scripts, which include system and API calls.
We use a specific behavior block to accept all API calls with their respective API
name and target code located in the binder transaction.

Annotation: We delicately declared annotation blocks to enhance the output of
the behavior blocks. The extension of the file tried to open, remote port of the
open socket, and textual representation of the return values are examples of the
annotation blocks. Some may argue that annotations are another form of feature
engineering. However, we barely utilize the arguments and return values of the
invocations to build a compound representation of the target behavior.

Context: Most malicious applications remain idle until the new device event oc-
curred, like receiving SMS or activating the WiFi. Hence, we declared context blocks
for all possible stimulation events apart from specific conditions like high cache ac-
tivity or battery consumption. This contextual representation of the behaviors char-
acterizes the malware’s activities and allows malware analysts to dissect the sample
profoundly.

Auxiliary: Although TRAPDROID is not primarily focused on static analysis
of malware, it can extract beneficial auxiliary information from samples. In this
research, the auxiliary information is out-of-scope and not integrated into our de-
tection system. It barely provides supportive results to dynamic analysis.

Network: TRAPDROID can transparently sniff the network connections of the
target application. Therefore, we can access the raw and parsed PCAP file contain-
ing network traffic while declaring a new network block in the UPL scripts.
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The below code excerpt demonstrates the block definitions of the UPL scripts. For
the sake of simplicity, we have eliminated redundant blocks in the whole script
developed for the TRAPDROID.

annotation invoke_not_permitted {
where := cur rent . r e s u l t == OPERATION_NOT_PERMITTED
union := base_annotat ions

}

annotation ext_apk {
where := cur rent . args . ex t ens i on == " apk "
union := f i l e _ a n n o t a t i o n s

}

annotation tcp_communication {
where := cur rent . args . type == SocketType .TCP
union := socket_annotat ions

}

behavior thread_create {
where := cur rent . target_type == TargetType .THREAD
meta := " Thread [ { cur rent . t g id } ] "
union := base_annotat ions

}

behavior api_device_policy_manager {
where := args . c a l l == " android . app . admin . IDevicePol icyManager "
meta := " DevicePolicyManager : { args . code } "

}

context high_st ime_act iv i ty {
where := sum( cur rent . st ime . l i s t ( ) ) > sum( cur rent . utime . l i s t ( ) )
follow := sum( cur rent . st ime . l i s t ( ) ) > sum( cur rent . utime . l i s t ( ) )

}

auxiliary dupl i cated_permis s ions {
where := l en ( s e t ( app . pe rmi s s i ons ) ) != l en ( app . pe rmi s s i ons )

}

network high_entropy_domain_name {
where := any ( [ f o r pkt in net . dns i f entro ( pkt . domain ) > 8 0 . 0 ] )

}

Listing 3.3 Example UPL script demonstrates block definitions.
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3.6 Unified Behavior Format (UBF)

UBF (Unified Behavior Format) is a simple yet powerful behavior representation
format developed to model the application’s dynamic activities under inspection.
TRAPDROID converts pre-processed logs into UBF by processing them using a
custom DSL (Domain-specific language) called UPL (UBF Processing Language).
Let E = {e1, e2, ..., en} express the observable events and their respective fields like
system call arguments, API parameters, process details collected from the device
and S = {s1, s2, ..., sn} indicate the system-wide measurable information like cache
usage, kernel structure values, battery consumption, and memory access patterns
where n is the total number of activities. The Analysis Engine (AE) is responsible
for combining and transforming the S and E into a set of UBF events. Figure 3.7
depicts the whole process.

e1

s1

Analysis Engine
(AE)

e2 en

s2 sn

u1 u2 un

UPL Script

Figure 3.7 Transformation process of the raw logs into UBF.

In the UBF, we abstract the system calls, binder transactions, and broadcast actions
to model the behavior of applications during our analysis. Besides abstraction,
we also map the system calls that operate similarly into the same behavior. For
example, if a process uses an open or openat system call to open a file, we map this
behavior into file_open.

The kernel returns a handler, representing operating system objects like file, socket,
thread, or process upon invoking the system call. For instance, open system call
returns with a file descriptor. The Analysis Engine (AE) is capable of resolving
dependencies between system calls by tracking these handlers. In order to illustrate
this as an example, the process first opens a file, duplicates fd using dup3, invokes
ioctl call, and closes it. We can represent the flow between these calls using the file
descriptor object, which is returned from the first open system call and duplicated
with dup3. Therefore, we can make better distinctions between the calls, like closing
the socket or closing the file.
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We also take advantage of system call arguments to produce a meaningful represen-
tation of the application’s behavior. For example, if the process opens a file with
the O_RDONLY flag, it becomes clear that the process only wants to read the file and
will not be expected to alter or delete it. On the contrary, if the process opens the
same file with O_APPEND flag, this means that the process wants to append data
into the file. These represent different intents. This small but essential detail allows
us to learn more information about a system call, and it enables us to make better
reasoning about the process than other techniques in the literature.

The Analysis Engine maps the system call arguments into meaningful annotations
specified in the UPL like tcp_communication, http_communication, read_only,
write_only, etc. Each UBF block might contain zero or more annotations to en-
hance the activity. Table 3.4 represents the some of the sample blocks which can
be activated in the running UPL script. In this research, we utilize the behavior
and annotation blocks of the UBF. Other blocks are out-of-scope and need further
research to find proper methods to mount that blocks into the current classification
schemes.

Table 3.4 Sample blocks from defined in UBF fields.

Behavior file_open,file_access_check,file_chmod,file_chown,
file_remove,file_mkdir,file_list,file_rename,socket_create,
socket_connect, process_create,thread_create,process_exc

Annotation folder_sdcard,folder_system,folder_dev,ext_apk,ext_txt,
ext_xml,ext_archive,ext_so,ext_db,access_read,
open_read_only, invoke_success,invoke_not_permitted

Context sms_received,wifi_state_changed,boot_completed,
screen_on,package_installed,user_present,rebooted

Auxiliary duplicated_permissions,vt_match,malformed_cert
Network high_entropy_domain_name,udp_traffic

In addition to system call arguments, we also transform the return values of the
system calls into meaningful text representations. The return values of the system
calls depend on the type of the system call. For example, the kernel returns FD that
represents the opened file; whereas, it returns PID representing the child process.
In addition to that, we also use the error codes from the return values of the system
calls. If a process attempts to open a file that does not exist in the file system,
the kernel returns ENOENT error code to the user. The analysis engine transforms
that error code to no_such_file_or_directory annotation and adds it into the
active application’s UBF stream. These annotations lead us to determine whether
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the process tries to open a file without required permission, exploits some vulnera-
bilities in the operating system, or gives us signs of the behavior of applications like
ransomware.

Similarly, we represent the operating system and mobile device’s context information
like receiving SMS, installing new applications, rebooting the device, or high cache
usage in the context block of the UBF. This representation allows us to determine
and bound context to activities. In this research, we selected some of the fundamen-
tal fields of the UBF. For instance, we did not include Auxiliary or Network outputs
and accounting information of the target process into the detection system. Hence,
further analysis is needed to bridge the semantic gap between low-level features and
application-level activities.
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3.7 Behavior Coverage (λ) Analysis
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Figure 3.8 Distribution of the behavior coverage (λ).

Malware developers set necessary permissions in the manifest file to perform re-
stricted operations like reading SMS, dialing a phone number, or accessing the in-
ternet. We utilized these permissions and dynamic behaviors to estimate the per-
formance of the stimulation engine and reduce the noise in the dataset. Therefore,
we have developed a permission-centric metric named behavior coverage (λ). This
mapping is not intended to cover all possible Android permissions, and it barely
represents the behavior expectations. In order to calculate the metric, the permis-
sions defined in the APK manifest file are directly mapped to behaviors specified
in the UPL blocks thanks to PScout6 (Au et al., 2012). This mapping might be
in one-to-one or one-to-many format due to the nature of the Android permission
system.

6https://security.csl.toronto.edu/pscout/
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Figure 3.8 represents the behavior coverage distribution of our dataset. One descrip-
tive finding on distribution is that 29% of the benign samples which are not declared
any permission in their manifest file produce a 1.0 behavior coverage rate. Besides,
60% of the malware samples produce less than or equal to 0.4 behavior coverage
which is adequate based on our empirical findings. We deeply evaluated the effects
of the coverage metric on classifier performance in Section 4.3.1, and we determined
that λ= 0.2 and more is a satisfactory threshold for the detection systems.

behavior api_access_camera {
where := args . c a l l == " android . hardware . ICameraService "
meta := " AccessCamera : { args . code } "
depends := android . permis s ion .CAMERA

}

behavior api_device_policy_manager {
where := args . c a l l == " android . app . admin . IDevicePol icyManager "
meta := " DevicePolicyManager : { args . code } "
depends := android . permis s ion .BIND_DEVICE_ADMIN

}

behavior api_sms {
where := args . c a l l == "com . android . i n t e r n a l . te lephony . ISms "
meta := "SMS: { args . code } "
depends := android . permis s ion .RECEIVE_SMS,

android . permis s ion .SEND_SMS
}

Listing 3.4 Example UPL script represents behavior-permission mappings.

The behavior or annotation blocks in the UPL script can declare the "depends"
field that builds mappings between permissions and activities. For instance, if any
application sets Internet permission, the Analysis Engine expects the connect syscall
upon socket syscall in the event stream. Similarly, access to camera API depends
on Camera permission. Excerpt UPL code block above depicts the mappings.
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4. EVALUATION

Since TRAPDROID uses Android 10 and the up-to-date kernel version, some of the
samples coming from widely-known datasets have not worked as intended. Besides
compatibility issues, the samples could not produce high behavior coverage because
their command and control servers are already shut down. Upon successfully build-
ing a diverse dataset, we tested well-known machine learning algorithms and deep
learning models using different versions of the UBF encoding such as UBF-A, UBF-
P, and UBF-R on 0-day samples that are not publicly available, and 1-day samples
emerged during our research. Figure 4.1 describes our evaluation steps.

Collect Android
applications from
several public and
private resources.

Apply basic static
analysis to extract

essential information
for dynamic analysis.

Execute samples on
real devices using
TRAPDROID and

convert event stream
into UBF.

Encode UBF into text
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and DL algorithms.

Compare models
based on different

performance metrics
and test with 0-day,1-
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Figure 4.1 Detection flow.

The classical machine learning (ML) algorithms like SVM, Random Forest, or Gradi-
ent Boosting Trees produce outstanding performance on malware analysis. However,
the success of the malware detection systems profoundly depends on the specially
crafted feature vectors and authors’ security background. Recent publications show
us that feature engineering is time-expensive, error-prone, task-specific, and subjec-
tive to individual judgment (Qiu et al., 2020). In our research, we do not perform
any feature engineering or selection to manipulate the output of algorithms. Instead,
the machine learning algorithms treat Android malware detection as a traditional
text classification problem.

Besides classical machine learning algorithms, we also tested our UBF format using
novel deep neural computation networks. Deep learning is an excellent approach to
overcoming feature-engineering obstacles and provides generalization for malware
detection. Furthermore, we apply several text classification models of deep neural
networks and novel approaches to improve the performance of our detection system.
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Most of the proposed models are predominantly influenced by text classification
approaches. Hence, Attention (Vaswani et al., 2017), Transformer (Wang et al.,
2019), or similar state-of-the-art text classification techniques are also applicable to
our problem domain.

4.1 Dataset
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Figure 4.2 Source distribution of the our new dataset.

The Drebin dataset (Arp et al., 2014), which is collected in 2014, portrays the his-
torical Android malware samples up to that date. Nevertheless, threat actors con-
stantly evolve and seek new abusive functionalities in the operating system to make
their strain undetectable or offensive regarding exfiltration, device management, or
data acquisition methods. To discover 0-day or 1-day malware samples with high
accuracy, we need to update existing datasets by feeding them with distinct mal-
ware families. Therefore, we have collected 3638 benign and 3701 malicious samples
from several resources including Drebin, Maldroid (Mahdavifar et al., 2020), Google
Play,1 F-Droid,2 and professional security researchers. Figure 4.2 depicts the source
distribution of our dataset.

1https://play.google.com/store

2https://www.f-droid.org/en/packages/
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In order to increase the diversification and reduce the noise in the dataset, we have
evaluated the collected samples based on different criteria like defined permission
distribution, behavior coverage, number of family variations, and VirusTotal3 de-
tections. We also removed 3.92% of all collected samples due to their dormant state
or execution problems.

Virustotal We expect that malware samples have at least one AV detection and
zero detection rate for benign samples. Some of the edge samples include benign
AV software with high detection rate or custom zero-permission malware Zpware
are also allowed.

Behavior Coverage (λ) There is a trade-off between behavior coverage and
dataset size due to the nature of malware. We determined that λ= 0.2 is a reason-
able threshold for the stimulation engine. Hence, our dataset contains samples that
have at least revealed 20% of the whole possible activities.

Malfunction Some of the samples, mostly coming from Drebin, cannot work as
intended, wherefore compatibility issues, C2 communication problem, and restricted
API usage. We eliminated those automatically upon analysis completed.

Permission Distribution We do not allow some malware families or samples to
dominate the entire database regarding permission distribution. The analysis engine
is trying to keep that distribution always balanced using several conditions.

Category The benign samples coming from Google Play and F-Droid are carefully
and uniformly selected based on their purpose. Most benign samples are widely
known and installed by mobile device users for usage in daily life. Banking, game,
antivirus, system, SMS, or multimedia are excerpts of the complete category list.

0-day or 1-day samples We have been collecting malware samples upon emerged
in public since the beginning of 2021. In addition to 1-day samples, some threat
intelligence professionals provide to us 0-day samples that are not publicly available.

3https://www.virustotal.com/
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4.2 Metrics

TP denotes the number of true positives, FP the number of false positives, TN
the number of true negatives, and FN the number of false negatives. Thus, while
Recall (R) is the sensitivity metric of the detection formularized using TP and FN,
Precision (P) is the relevance metric of the detection formularized using TP and FP.

The F-1 score is a compound metric that takes advantage of precision and recall. In
order to develop a more robust classifier, we utilized F1-score for each class without
using pre-defined weights.

MWR is a metric that calculates the malware ratio of the subset. For instance, the
dataset indicates that MWR equals 0.4 and dataset size is 1000, which means that
400 malware samples available in the subset with 600 benign samples. Moreover,
MWR=0.5 indicates that the dataset is balanced. For the balanced datasets, accu-
racy could be used for performance metrics rather than the F-1 score. However, the
F-1 metric is crucial for imbalanced datasets.

Table 4.1 The evaluation metrics.

Metric Explanation

True Positive (TP) # of correctly identified malware samples
False Positive (FP) # of incorrectly identified benign samples
True Negative (TN) # of correctly identified benign samples
False Negative (FN) # of incorrectly identified malware samples
Precision (P) = T P

T P +F P

Recall (R) = T P
T P +F N

Accuracy (ACC) = T P +T N
T P +F P +T N+F N

F-Score (F-1) = 2P ×R
P +R

Malware Ratio (MWR) = # of malware samples
# samples in dataset

Behavior Coverage (λ) = # of occurred behaviors linked with regarding permission
# of defined permissions
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4.3 TF-IDF

As we described in Section 3.6, we convert the event stream into UBF (Unified
Behavior Format), a novel representation format developed for modeling dynamic
activities of the sample under the analysis. Then, we encode some selected fields of
the UBF to vector format, which is the list of tokenized strings.

Let D = {a1,a2, ...,aN} denotes the dataset which contains N distinct application
samples and a= {u1,u2, ...,un}, where n is the total number of UBF event happened
under the analysis of sample application a. We define the TF and IDF values of the
UBF event ui ∈ a as follows:

TFi = fi

n
IDFi = log(N

dfi
)

where fi is the frequency of ui appearing in application ai; and dfi is the number of
all applications contain the ui. Based on the equations, we can define the TF-IDF
value of the UBF event ui as follows:

(4.1) TF-IDFi = TFi× IDFi

In order to keep the local order information of the UBF events, we apply the n-grams
technique before building the TF-IDF vector. While n-grams increase the vector
size excessively, it encodes the sequential combinations of the behaviors. n = 3
provides the best performance when considering the computational requirements,
time-costs, vector size, and evaluation metrics. According to Table 4.2, we can
infer that most of the crucial features selected by the classifiers are n-grams of the
tokens. Despite these promising results, n-grams are not providing the descriptive
output of the annotations and context information of the UBF. We overcome these
limitations using the separate word embedding matrices for each input in the deep
neural network.
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Table 4.2 Some of the selected best features.

UBF-A UBF-P

no_such_file, read_write iactivitymanager:184
iservicemanager:1, itelephony:145 igraphicsstats:1

ipackagemanager:13, iwindowmanager:37 file_remove, file_open, file_chmod
folder_data_user, file_chmod, success itelephony:145
read_write, create_file, exclude_file iservicemanager:1, itelephony:145

itelephony:123 itelephony:123
iphonesubinfo:13 file_open, file_remove

iservicemanager:1, isub:29 iphonesubinfo:13
iservicemanager:1, iphonesubinfo:13 iservicemanager:1, itelephony:123
igraphicsstats:1, iwindowsession:1 iservicemanager:1, iphonesubinfo:13

folder_data_user, file_remove, success iactivitymanager:184, igraphicsstats:1

We developed three different encoding formats for the tokenization of the UBF:
UBF-P, UBF-R, and UBF-A. While UBF-P utilizes the Behavior name field of the
UBF and has the same characteristics as the traditional malware detection system
built on top of system and API calls, UBF-R is an extended version of the UBF-P,
which couples with their return value. Likewise, UBF-A is the improved variant of
the UBF-P, enhanced with well-defined annotations of the events. Figure 4.3 depicts
the tokenization process of the UBF event.

UBF

File ActivityBehavior

Annotation Read Only

  Data Folder

XML File

Success

Context SMS Received

     Thread #3691

Process #3685

read_file_success

read_file

UBF-P

UBF-R

UBF-A

read_file, data_folder, xml_file, success

Figure 4.3 Sample representation of the tokenization process of UBF.
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4.3.1 Impact of the Behavior Coverage (λ)

First of all, we tested the F-1 performance of various behavior coverage (λ) met-
ric on selected dataset sizes (N) in with 80%, 20% train-test split rate (Prusa &
Khoshgoftaar, 2016). λ = 0 means that the application under the analysis did not
reveal their coded behaviors while performing stimulation. In this condition, the
performance of the classifiers is reduced drastically and may cause an overfitting
problem. On the contrary, λ= 1.0 refers to successful stimulation, meaning that the
application showed all its expected behaviors. As we can see in Figure 4.4, there
is a strong correlation between behavior coverage and performance of the classifier
until they reach a certain dataset size. Besides behavior coverage, dataset size plays
an indispensable role in the system’s performance. It should be noted that behavior
coverage needs to be selected based on the expectations and resource limitations.
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Figure 4.4 Behavior coverage (λ) performance over balanced (MWR=0.5) dataset
size.

Although the performance of the classifiers continues to increase as the behavior
coverage increases, we determined that λ = 0.2 and more is a reasonable threshold
to reduce the noise in the dataset and avoid the overfitting problem because dataset
size (N) is limited. Thus, according to these findings, we can infer that high behavior
coverage enables detection systems to provide their best performance in large dataset
sizes.
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4.3.2 Baseline Performance

We tested baseline performance of the SVM (Support Vector Machines), GB (Gradi-
ent Boosted Tree), and RF (Random Forest) algorithms on the 3000 samples using
λ = 0.2 without optimization in order to figure out the effects of the MWR and
different tokenization techniques over performance. As shown in Table 4.3, UBF-P
reaches the best F-1 value which is 97.10% with GB classifier where MWR=0.4 and
its accuracy reaches 97.50% where MWR=0.7.

Table 4.3 Baseline performance of the UBF-P with TF-IDF.

Classifier MWR P R F-1 ACC

SVM

0.3 0.9393 0.8991 0.9153 0.9283
0.4 0.9264 0.9168 0.9207 0.9233
0.5 0.9094 0.9094 0.9094 0.9100
0.6 0.9209 0.9145 0.9175 0.9233
0.7 0.9143 0.9066 0.9103 0.9283

RF

0.3 0.9700 0.9407 0.9534 0.9600
0.4 0.9632 0.9554 0.9587 0.9600
0.5 0.9541 0.9557 0.9548 0.9550
0.6 0.9580 0.9564 0.9572 0.9600
0.7 0.9513 0.9360 0.9433 0.9550

GB

0.3 0.9722 0.9635 0.9677 0.9717
0.4 0.9712 0.9707 0.9710 0.9717
0.5 0.9696 0.9701 0.9698 0.9700
0.6 0.9615 0.9640 0.9627 0.9650
0.7 0.9667 0.9717 0.9692 0.9750
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UBF-R outperforms the UBF-P with 97.53% F-1 score and 98.00% accuracy when
dataset is highly imbalanced (MWR=0.7). Most of the time, UBF-R is more solid
than UBF-P in terms of overall performance.

Table 4.4 Baseline performance of the UBF-R with TF-IDF.

Classifier MWR P R F-1 ACC

SVM

0.3 0.9545 0.9218 0.9356 0.9450
0.4 0.9195 0.9130 0.9158 0.9183
0.5 0.9181 0.9188 0.9183 0.9183
0.6 0.9237 0.9230 0.9233 0.9283
0.7 0.9109 0.9168 0.9138 0.9300

RF

0.3 0.9774 0.9520 0.9633 0.9683
0.4 0.9659 0.9593 0.9622 0.9633
0.5 0.9504 0.9495 0.9499 0.9500
0.6 0.9503 0.9461 0.9481 0.9517
0.7 0.9375 0.9158 0.9259 0.9417

GB

0.3 0.9748 0.9685 0.9715 0.9750
0.4 0.9757 0.9731 0.9743 0.9750
0.5 0.9752 0.9747 0.9749 0.9750
0.6 0.9672 0.9688 0.9680 0.9700
0.7 0.9736 0.9770 0.9753 0.9800
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From the data in Table 4.5, it is apparent that the UBF-A outperforms the other pro-
posed tokenization schemes, UBF-R and UBF-P, with 97.78% F-1 score. Moreover,
a closer inspection of the table shows GB (Gradient Boosted Trees) classification
algorithms considerably better than other tested algorithms.

Table 4.5 Baseline performance of the UBF-A with TF-IDF.

Classifier MWR P R F-1 ACC

SVM

0.3 0.9191 0.8942 0.9050 0.9183
0.4 0.8779 0.8720 0.8745 0.8783
0.5 0.8914 0.8917 0.8915 0.8917
0.6 0.9038 0.9038 0.9038 0.9100
0.7 0.8921 0.8877 0.8899 0.9117

RF

0.3 0.9758 0.9533 0.9634 0.9683
0.4 0.9583 0.9530 0.9554 0.9567
0.5 0.9534 0.9531 0.9532 0.9533
0.6 0.9517 0.9412 0.9460 0.9500
0.7 0.9437 0.9182 0.9298 0.9450

GB

0.3 0.9773 0.9698 0.9734 0.9767
0.4 0.9786 0.9770 0.9778 0.9783
0.5 0.9750 0.9749 0.9749 0.9750
0.6 0.9693 0.9702 0.9698 0.9717
0.7 0.9764 0.9782 0.9773 0.9817
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4.3.3 Impact of the Malware Ratio (MWR)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Malware Ratio (MWR)

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

 S
co

re

UBF-A
UBF-R
UBF-P

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Malware Ratio (MWR)

0.90

0.92

0.94

0.96

0.98

1.00

F-
1 

Sc
or

e

UBF-A
UBF-R
UBF-P

Figure 4.5 Performance of the datasets with various Malware Ratios (MWRs).

Malware ratio (MWR) is a crucial metric that provides information on the imbalance
of the dataset. Moreover, it directly affects the classifier performance and needs to
be determined precisely. From the data (λ = 0.2) in Figure 4.5, it is apparent that
extremely imbalanced datasets produce high-accuracy scores. On the other hand,
the F-1 score of the classifier rising as the malware ratio approaches 0.5. When
the malware ratio equals 0.4,0.5 or 0.7, the classifier reaches top scores in terms of
accuracy and F-1 scores. Therefore, MWR can be adjusted to develop a successful
detection system for high detection or low false-positive rate.
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4.3.4 Optimization

After carefully analyzing the output of the baseline classifiers, we decided to optimize
the parameters of the algorithms using a tree-based pipeline optimization (Olson
et al., 2016). Moreover, we observed that feature selection based on SVM feature
importances slightly increases the system’s performance and reduces the size of the
input vector of the classification algorithm. As a result, UBF-P, UBF-R, and UBF-
A attain F-1 scores of 97.75%, 97.92%, and 98.08%, respectively, when using the
balanced dataset (MWR=0.5). In addition to the F-1 score, UBF-A attains 98.08%
accuracy with relatively low false-positive rate. Table 4.6 depicts the output of the
classifiers that reached the best performance with optimized parameters and feature
selection on 6000 randomly selected samples.

Table 4.6 Optimized performance of TF-IDF with MWR=0.5 and λ= 0.2.

Tokenization Classifier P R F-1 ACC

UBF-P GB 0.9775 0.9777 0.9775 0.9775
UBF-R GB 0.9791 0.9793 0.9792 0.9792
UBF-A GB 0.9808 0.9809 0.9808 0.9808
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4.4 Deep Learning Models

Deep learning is a powerful approach for malware detection and researchers are con-
stantly developing new models to overcome the limitations of traditional machine
learning algorithms. The Convolutional Neural Network (CNN) is another type of
deep learning model developed for image processing problems, and its performance
mainly depends on the convolution function and sliding filter. It is a widely ac-
cepted approach to solve text classification and sequence processing problems. We
employed a simple text-classification CNN model to the malware detection domain
and improved it by attaching different combinations of embedding layers. In this
section, we first present our novel CNN models containing single and multiple em-
bedding layers. Then, we analyze the performance of our networks on malware
detection.

4.4.1 CNN with Single Embedding Layer

One-hot-encoding is a method to produce a sparse binary vector that allows the rep-
resentation of texts in vector space. It is widely accepted and used in text classifica-
tion problems. However, it has several disadvantages, like producing gigantic vectors
and inadequately reflecting semantic distances of the objects. In this research, we
employed an embedding layer for compact representation, which includes semantic
information. Formally, an embedding is defined by a dense matrix W ∈ Rdv×dw

with dv the size of the vocabulary and dw the dimension of the embedding, so that
dw� dv. The size of the vocabulary dv highly depends on the sequence length n.

Table 4.7 Proposed CNN architecture.

Layer Output Shape

Embedding (None, n, dw)
Conv1D (None, n, 50)

GlobalMaxPooling1D (None, 50)
Dense(ReLU) (None, 50)
Dense(ReLU) (None, 100)
Dense(ReLU) (None, 50)
Dense(Sigmoid) (None, 1)
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A convolutional layer in deep neural networks encodes the patterns of local structure
in the input sequences. We connected a pooling layer following the convolutional
layer to perform maximum pooling operation through enhancing the sequences.
Moreover, we added a Dense layer with a stall regulation rate of 0.6 (probabil-
ity of 0.6 that a given element is dropped during training) using a rectification
function (ReLu) as the activation function. Table 4.7 represents the designed and
implemented network architecture, where n refers to sequence length and dw refers
to the embedding layer’s output dimension.
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Figure 4.6 Performance comparison of the proposed CNN architecture with
different parameters.

We tested our proposed network on the same 6000 samples with MWR=0.5 and
λ = 0.2. Figure 4.6 represents the results obtained from the preliminary analysis
of our neural network architecture with different parameters. The CNN network
achieves best performance when embedding output dimension dw = 200 and se-
quence length n= 4500. Likewise, the convolutional layer (Conv1D) directly affects
the performance, and we determined the 50 and 5 for window and kernel size, re-
spectively.
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Table 4.8 shows the results of experiments performed to evaluate the performance
of the proposed neural model with different combinations of the inner architecture
of the dense layers. With the [50,100,50] combination, we reached a 98.31% F-1
score and an 98.33% accuracy.

Table 4.8 Comparison of the different hidden layer combinations.

# of layers # of neurons P R F-1 ACC

1 50 0.9829 0.9656 0.9740 0.9741
1 100 0.9799 0.9728 0.9761 0.9758
1 200 0.9894 0.9639 0.9763 0.9766
1 250 0.9797 0.9691 0.9742 0.9741
1 300 0.9862 0.9691 0.9774 0.9775
2 50, 50 0.9798 0.9741 0.9766 0.9766
2 100, 100 0.9846 0.9701 0.9771 0.9775
2 200, 200 0.9766 0.9741 0.9751 0.9750
2 250, 250 0.9717 0.9789 0.9750 0.9750
2 300, 300 0.9586 0.9852 0.9714 0.9708
3 50, 50, 50 0.9850 0.9643 0.9743 0.9741
3 50, 100, 50 0.9947 0.9720 0.9831 0.9833
3 100, 100, 100 0.9896 0.9673 0.9782 0.9783
3 100, 50, 100 0.9780 0.9754 0.9764 0.9766
3 100, 200, 100 0.9845 0.9689 0.9764 0.9766
3 200, 200, 200 0.9695 0.9819 0.9753 0.9750
3 200, 300, 200 0.9748 0.9706 0.9724 0.9725
3 300, 300, 300 0.9815 0.9725 0.9767 0.9766
4 50, 50, 50, 50 0.9766 0.9673 0.9717 0.9716
4 50, 100, 100, 50 0.9798 0.9754 0.9775 0.9775
4 100, 100, 100, 100 0.9754 0.9775 0.9761 0.9758
4 200, 200, 200, 200 0.9897 0.9689 0.9791 0.9791
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4.4.2 CNN with Multiple Embedding Layers

In order to include the annotations into the deep-neural network, we employed multi-
ple embedding layers for each input sequence. For the sake of simplicity, we selected
two input sequences: Behavior and Annotations. While the Behavior sequence con-
tains the tokenized UBF-R stream of events, the Annotations sequence consisted of
a list of annotations whose size is limited to 16. Figure 4.7 depicts the vectorization
process of the UBF.

Behavior Annotations

Xbehavior Xannotations

Wbehavior Wannotations

(n, ) (n, 16)

(n, 16, La)(n, Lb)

Reshape (n, 16 * La)

Concat (n, Lb+16*La)

CNN

Figure 4.7 Simplified representation of the vectorization process of the UBF.
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Figure 4.8 Performance comparison of the proposed CNN network contains
multiple embedding layers.

Upon the vectorization process, we tested our proposed network on the same 6000
samples with MWR=0.5 and λ = 0.2. Figure 4.8 represents the results obtained
from the extensive analysis of our neural network architecture contains multiple em-
bedding layers. The CNN network achieves the best performance when embedding
output dimension dw = 200 and sequence length n = 3000. Likewise, the convolu-
tional layer (Conv1D) directly affects the performance, and we determined the 200
for window size.
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Table 4.9 shows the results of experiments performed to evaluate the performance
of the proposed neural model with different combinations of the inner architecture
of the dense layers. With the [100,100] combination, we reached a 98.42% F-1 score
and an 98.41% accuracy.

Table 4.9 Performance of the CNN model contains multiple embedding layers with
various configurations.

# of layers # of neurons P R F-1 ACC

1 50 0.9830 0.9740 0.9783 0.9783
1 100 0.9829 0.9721 0.9772 0.9775
1 200 0.9846 0.9804 0.9823 0.9825
1 250 0.9828 0.9725 0.9774 0.9775
1 300 0.9782 0.9820 0.9800 0.9800
2 50, 50 0.9829 0.9721 0.9772 0.9775
2 100, 100 0.9895 0.9790 0.9842 0.9841
2 200, 200 0.9880 0.9743 0.9810 0.9808
2 250, 250 0.9814 0.9736 0.9774 0.9775
2 300, 300 0.9702 0.9868 0.9783 0.9783
3 50, 50, 50 0.9878 0.9737 0.9806 0.9808
3 50, 100, 50 0.9880 0.9735 0.9805 0.9808
3 100, 100, 100 0.9865 0.9739 0.9800 0.9800
3 100, 50, 100 0.9845 0.9724 0.9783 0.9783
3 100, 200, 100 0.9895 0.9688 0.9789 0.9791
3 200, 200, 200 0.9750 0.9803 0.9774 0.9775
3 200, 300, 200 0.9814 0.9736 0.9774 0.9775
3 300, 300, 300 0.9880 0.9770 0.9823 0.9825
4 50, 50, 50, 50 0.9879 0.9654 0.9763 0.9766
4 50, 100, 100, 50 0.9847 0.9719 0.9780 0.9783
4 100, 100, 100, 100 0.9878 0.9687 0.9778 0.9783
4 200, 200, 200, 200 0.9784 0.9775 0.9777 0.9775
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5. RESULTS AND DISCUSSION

This chapter includes the comparison results of our framework with existing re-
search. We present 0-day and 1-day malware detection performances of different
methodologies. Moreover, several dynamic features, advanced use-cases, and re-
markable observations are also discussed in this section. While we analyze our
system’s detection performance, we additionally inspected the inner structures of
the most widespread malware variants. Thus, we proposed a protection mechanism
to limit their capabilities in mobile devices.

5.1 Comparison with Other Approaches

In this section, we present our results from the TRAPDROID and compare them
with other state-of-the-art research. First, we discuss the performance of the clas-
sifiers. Subsequently, we compare the methodologies of both approaches. This is
followed by the final discussion of platform features.

5.1.1 Platform Capabilities

Table 5.1 illustrates some of the main capabilities of the available platforms. TRAP-
DROID seems more capable than others to collect information from multiple re-
sources like system calls, IPC communications, PMU, battery, or kernel structures.
In contrast to capabilities, the most significant limitation lies in the fact that TRAP-
DROID needs more resources to deploy and maintain the system. Therefore, the
tradeoff between resource and detection performance needs to be carefully consid-
ered.
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Table 5.1 Comparison of the platform capabilities.

Name Environment System Calls IPC ptrace PMU Battery Kernel Structures

BareDroid (Mutti et al., 2015) Bare-metal 7 7 7 7 7 7

Crowdroid (Burguera et al., 2011) Emulator 3 7 3 7 7 7

DroidTrace (Zheng et al., 2014) Emulator 3 7 3 7 7 7

CopperDroid (Tam et al., 2015) Emulator 3 3 7 7 7 7

DroidScope (Yan & Yin, 2012) Emulator 3 3 7 7 7 7

DroidBox (Chaurasia, 2015) Emulator 7 3 7 7 7 7

Andrubis (Weichselbaum et al., 2014) Emulator 3 3 7 7 7 7

TRAPDROID Bare-metal 3 3 7 3 3 3

5.1.2 Detection Performance

Table 5.2 compares the related works on various configurations and dataset sizes.
What is interesting about the data in this table is that our proposed models and
tokenization schemes outperform most of the works. Overall, these results indicate
that malware detection in a bare-metal environment with realistic malware samples
produces high performance on detection. In addition, it is tough to compare ap-
proaches due to the lack of information on the dataset. To overcome this drawback,
we made our dataset publicly available for other researchers. Other researchers can
obtain the our dataset and analyze the their detection system’s performance on the
same samples. They can obtain our dataset via request and analyze their detection
system’s performance on the same samples.

Table 5.2 Performance comparison of the selected works.

Name Dataset Size (N) MWR P R F-1 ACC

Hou et al. (2016) 3000 0.5 0.9396 0.9336 0.9368 0.9368
Xiao et al. (2019) 7103 0.502 0.9126 0.9663 N/A 0.9367

Abderrahmane et al. (2019) 12750 0.807 0.9410 0.9780 0.9600 0.9330
Canfora et al. (2015) 2000 0.5 N/A N/A N/A 0.9700

Surendran et al. (2020) 2750 0.41 0.9490 N/A 0.9410 0.9540
Vinayakumar et al. (2018) 558 0.5 0.9370 0.9870 0.9610 0.9390

Karbab et al. (2016) 8639 0.395 0.9400 0.7800 0.8500 N/A
Yeh et al. (2016) 32000 0.5 N/A N/A N/A 0.9312

UBF-P with RF (Baseline) 4000 0.5 0.9678 0.9740 0.9707 0.9725
UBF-R with GB (Baseline) 4000 0.5 0.9720 0.9777 0.9762 0.9747
UBF-A with GB (Baseline) 4000 0.5 0.9773 0.9799 0.9786 0.9800
UBF-P with GB (Optimized) 6000 0.5 0.9775 0.9777 0.9775 0.9775
UBF-R with GB (Optimized) 6000 0.5 0.9791 0.9793 0.9792 0.9792
UBF-A with GB (Optimized) 6000 0.5 0.9808 0.9809 0.9808 0.9808
CNN (Single Embedding) 6000 0.5 0.9947 0.9720 0.9831 0.9833

CNN (Multiple Embedding) 6000 0.5 0.9895 0.9790 0.9842 0.9841

51



A greater focus on text classification techniques and models could produce interest-
ing findings that account more effectively for malware detection. In this thesis, we
employ TF-IDF and Embedding techniques to encode our UBF streams. Although
our novel approach provides promising results, this research has thrown up many
questions in need of further investigation into similarities between textual data and
behavioral sequences. More work will need to be done to determine the approaches
built on top of Attention, Transformer, skip-grams, or similar state-of-the-art text
classification techniques. Moreover, pre-calculated embedding layers with an ade-
quate number of samples can be distributed to boost the resource-limited detection
systems. Besides, further research might explore how to bridge the semantic gap
between applications and low-level observable information. In this research, we did
not include that sort of data in the detection system for the sake of simplicity.

5.1.3 Environment and Data Collection Methodology

Most of the detection platforms utilize the Emulator and ptrace system-call-based
approach. However, evasive malware can quickly identify that sort of environments
and abort its execution. The most successful detection system must be highly trans-
parent to the application under inspection. In order to increase the transparency of
the detection system, we developed a Linux kernel module that allows us to collect
the required information for malware detection. Furthermore, one of the essential
parts of the detection system is stimulation. We employed a UI coverage-based stim-
ulation approach to reveal more hidden behavior rather than a randomness-based
approach. The evidence from this study suggests that effective stimulation tech-
niques improve the detection as well. Table 5.3 illustrates the differences between
TRAPDROID and other widely known researches in terms of methodology.

Table 5.3 Environment and data collection methodology comparison.

Name Environment Data Collection Stimulation

Hou et al. (2016) Emulator strace (ptrace) Custom
Xiao et al. (2019) Bare-metal strace (ptrace) Monkey

Abderrahmane et al. (2019) Emulator strace (ptrace) Monkey
Canfora et al. (2015) Bare-metal N/A Monkey

Surendran et al. (2020) Emulator strace (ptrace) Monkey
Vinayakumar et al. (2018) Emulator STREAM Monkey

Karbab et al. (2016) Emulator DroidBox Monkey
Yeh et al. (2016) Emulator DroidBox Monkey
TRAPDROID Bare-metal Kernel-level Improved Droidbot
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5.2 0-day and 1-day Malware Detection

While 0-day malware refers to a sample found in the wild as undetected or previously
unseen, 1-day malware is a fresh sample that emerges in a relatively short time. We
tested our system’s performance on carefully collected 0-day and 1-day samples,
which can be seen in Table 5.4.

Table 5.4 Selected 0-day and 1-day samples.

Hash Type Variant VirusTotal Status

e4e4c5e3b3b147910d44bbe7bc3499f6 0-day Alien N/A (22.05.2021)
895db415cf5e8facd0dbce2c737282e1 0-day Alien N/A (22.05.2021)
d073164e36b1044633f30daab18ed2ef 0-day Alien N/A (22.05.2021)
8ad1cbb3c7e9c9b673e5c016456e66cd 1-day Toddler 25/64 (18.05.2021)
6c430813edb87df5f92d2b55611d6b9b 1-day Toddler 25/63 (20.05.2021)
1a352c997a2ac7c8a18aee5c581674a7 0-day Anubis N/A (22.05.2021)
47154b064d9773afce6ca189d49650af 0-day Anubis N/A (22.05.2021)
c804f7bf78bae2e34c0a080677a16298 1-day Flubot 7/62 (20.05.2021)
194b876c5cc689ef9e77b64d92869a10 1-day Flubot 21/63 (13.05.2021)
c407853771c163c6b1110b5630f36ee4 0-day Hydra N/A (22.05.2021)
95fe97f1cdc00405518a853313a00472 0-day Hydra N/A (22.05.2021)
31fca10d265d00e66bf116c5c2408484 0-day Medusa N/A (22.05.2021)
3253e2c462bcd739a58e973448a3482c 0-day Hydra N/A (22.05.2021)
72d874162e112fba1c4294d372c5928a 0-day Hydra N/A (22.05.2021)
f5f28fda870b1cfe5fecb8ca9354dea5 0-day Hydra N/A (22.05.2021)

Flubot and Toddler are relatively new banking malware variants that utilize ad-
vanced persistence techniques and smishing. They both emerged during the research
at the beginning of May 2021. PRODAFT,1 a reputable cyber threat intelligence
company, employed TRAPDROID to detect previously unseen malware samples and
variants crawled from Darknet.2 Nevertheless, our detection system identified most
of the never-before-seen samples without re-training. This lead to the naming of the
Flubot3 as the sample was not categorized before.

1https://www.prodaft.com

2https://en.wikipedia.org/wiki/Darknet

3https://www.prodaft.com/m/reports/FluBot_4.pdf
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One possible explanation might be that these variants heavily depend on accessibility
services like Alien or other sorts of banking samples. Consequently, these results
support the idea that our classifier can identify new variants without seeing them
before.

Moreover, we successfully identified several 0-day samples including Alien, Anubis,
Hydra, Medusa, and other variants in the wild as malware but not yet detected
by the Virustotal or included in other datasets. Accordingly, most of the samples
are developed by the financially motivated threat actors and represent the current
Android malware trends. Besides banking malware, two new high-profile APT vari-
ants were identified using our system in the field by professional malware analysts.
These findings are out-of-the-scope of this research, but it confirms the 0-day de-
tection performance of our models. We did not include the APT examples in Table
5.4 due to the avoiding disrupting ongoing investigations.

5.3 Novel Dynamic Features

While we inspected our dataset, we discovered that some of the malware we tested
were actively trying to hide their presence by calling setComponentEnabledSetting
method of IPackageManager4 class. We concluded that the observation of this
function within an application effects the output of our framework drastically.

As another finding, we observed that there are significant differences between stime
and utime values of a given application. Malware samples have a higher stime
duration compared to their utime durations. Respectively, benign samples have a
longer utime duration than stime. Additionally, nvcsw, nivsw and cache usages are
other features, which can clearly be used in detection decisions. Difference between
I/O operation rate with respect to broadcast events shows a significant indicator of
malicious behavior.

4https://developer.android.com/reference/android/content/pm/PackageManager
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5.4 Advanced Threat Use-cases

It has been established that finding up-to-date malware samples is a very tedious
process. Furthermore, most of the advanced attack scenarios, which are discussed in
scientific researches, cannot be simulated due to the absence of practical samples. In
our work, we developed different advanced malware samples that have novel attack
capabilities. We demonstrated that our framework is also capable to detect future
attack vectors which is likely to be seen in the practical world in the near future.
This section explains multiple techniques that we have experimented during our
research and how a specially crafted malware can be identified with TRAPDROID.

5.4.1 Zero-permission Malware

Applications running on the Android platform do not require any special permissions
to check whether the screen is on or off. Zpware uses the weakness of this feature
as an advantage to detect whenever a user is actively using the device. After de-
tecting and active usage, malware reads all contents of the files under the /proc/net
folder. These files contain metadata of all the network traffic of the device. Access-
ing the contents under this folder is a significant breach of the user’s privacy. In
addition to collecting network metadata, Zpware also processes the tools’ outputs
such as getprop, which contain more sensitive information such as device model,
kernel version, etc. Whenever the user locks the screen or turns it off, the mal-
ware automatically sends all collected information to a remote server using covert
channels.

It is widely known that Android applications can broadcast an Intent named by
Intent.ACTION_VIEW5 with a specially crafted URL argument and forces to open
this URL with the default browser. In our example, we also use this technique
to send collected data to a remote server in a covert fashion. There are few steps
needed to successfully transfer large files since the GET requests that are called
by the browser itself have a limited data header. Firstly, we need to divide the
collected data into chunks. After that, we use encoding to transfer collected data
chunks with the help of the Intent.ACTION_VIEW intent. Our sample uses the same
browser page iteratively without open a new page for every intent.

5https://developer.android.com/reference/android/content/Intent#ACTION_VIEW
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Figure 5.1 Behavior activity graph of Zpware.

We explained advanced malware, which is very hard to detect with static analysis
since it does not require any permission and does not contain any suspicious API
calls. It should be noted that the only feasible way to detect these types of advanced
cases is through dynamic analysis. We used TRAPDROID to analyze Zpware, and
Figure 5.1 shows only a small part of its behavior. It is clear to see from this
figure that the application immediately starts a new thread after the screen goes
off. It should also be easy to observe that the number of file system activities is
relatively high when the screen goes back on. Our findings show the importance of
analyzing events and their interactions with other applications in a broader picture
to understand any malicious activity. Most of the malware has a trigger mechanism
for their malicious actions, such as receiving an SMS from the server, checking for
the existence of a file, and so forth. TRAPDROID automatically stimulates these
actions and makes it very easy to analyze the behavior of these applications under
different conditions.
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5.4.2 Cache Attacks

Cache attacks are becoming more popular in the malware field during the past few
years. Many libraries and toolkits are released to the public in order to experiment
with the outcomes practically. One of the popular tools, ARMageddon(Lipp et al.,
2016), is used to conduct cache attacks for the ARM platform. We could not find
any practical example of malware which uses cache attacks in the Android world, so
we developed one sample which uses the ARMageddon library to test our framework.
Our example carries a compiled ARMageddon6 library within itself and conducts
cache-attacks to libinput.so library. It is relatively easy to capture all input activities
of the user and save them into a file. After particular decision rules, the malware
sends the collected data to a remote server like in the Zpware case. The primary
purpose of creating such malware is not about testing the effectiveness of detecting
cache attacks but to show that our framework can detect possible practical cache
attacks.
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Figure 5.2 Comparison of different metrics on various samples.

In Figure 5.2, we represent some of the values of our ArmageddonApp sample during
execution. One of the most critical findings is the duration of the stime in applica-
tions that executes cache-attacks. We reason that the density of the sched_yield
system calls used during the cache-attacks increases the duration of stime signifi-
cantly. One can argue that sched_yield system call is not the only way to execute
a cache attack successfully. Nevertheless, our research shows that a sample cache
attack scenario can also create deviations that allow our framework to detect them
successfully.

6https://github.com/IAIK/armageddon
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5.5 Remarkable Observations

Accessibility Malware Nowadays, threat actors abuse the accessibility services
provided by the Android operating system itself in their malicious applications (Diao
et al., 2019). Accordingly, we performed several experiments with the accessibility
malware samples. The investigation has shown that these variants produce high API
usage for interaction callbacks.7 As a result, banking or similar high-profile applica-
tion developers can hook the binder calls of its applications utilizing application-level
interfaces to block offensive operations of accessibility services. In addition, a fur-
ther study could assess the long-term effects of blocking interaction callbacks. The
below code excerpt shows the simplified implementation of the disruption method.

public c l a s s BinderHookHandler implements Invocat ionHandler {
Object base ;

public BinderHookHandler ( IBinder base , Class<?> sClas s ) {
try {

Method asInter faceMethod = sClas s . getDeclaredMethod ( " a s I n t e r f a c e " , IBinder . c l a s s ) ;
this . base = asInter faceMethod . invoke ( null , base ) ;

} catch ( Exception e ) {
throw new RuntimeException ( " hooked␣ f a i l e d ! " ) ;

}
}

@Override
public Object invoke ( Object proxy , Method method , Object [ ] a rgs ) throws Throwable {

i f ( " IAc c e s s i b i l i t y I n t e r a c t i onConne c t i onCa l l b a ck " . equa l s (method . getName ( ) ) ) {
return f a l s e ;

}
return method . invoke ( base , args ) ;

}
}

Listing 5.1 Simplified implementation of the proposed method.

Dynamic IP Address Interestingly, we observed that several malware variants
revealed more hidden behaviors when our framework uses the residential IP address
instead of the static or VPN IP address. This result may be explained by the
fact that malware developers target real people. They developed this technique to
protect their infrastructure from security analysts and bypass the detection systems.
As we deployed our framework to a device that contains daily usage artifacts of real
people and assigned residential IP addresses, we successfully detected this evasive
method. A reasonable approach to tackle this issue could be using real people’s
devices as a detection environment.

7Full name of the call: "android.view.accessibility.IAccessibilityInteractionConnectionCallback"
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6. CONCLUSION

Analyzing malware in a bare-metal environment offers a massive advantage over
emulation. Malware continuously becomes more capable of detecting and changing
execution flows in emulated environments. We present TRAPDROID as a practical
example of analyzing different Android malware types by utilizing unified behavior
profiles instead of using a single system call metric. Besides the malware analysis
framework, we implemented several advanced malware and analyzed their behav-
ioral characteristics in our framework. Although our detection system shows many
exciting results, more research is needed to understand kernel-level properties such
as cache usage, timing differences, and battery consumption.

We employed state-of-the-art machine learning algorithms and novel deep-learning
models to identify malicious applications upon developing the analysis framework.
Then, we evaluated the proposed models’ accuracy and performance on the up-to-
date dataset, which contains widely known variants, custom-crafted applications,
and 0-day and 1-day samples collected from different research datasets and private
resources. With UBF-P, UBF-R, and UBF-A tokenization schemes, the GB (Gra-
dient Boosted Trees) classification algorithm yields 97.75%, 97.92%, and 98.08%
F-1 scores, respectively. Moreover, we reached 98.33% accuracy with a deep-neural
network developed using CNN with a single embedding layer. Later, we populated
annotations for each sequence to another different embedding layer, leading us to
reach 98.42% F-1 and 98.41% accuracy scores on a balanced (MWR=0.5) dataset
containing 6000 applications. The empirical findings in this study provide a new
understanding of treating dynamic malware analysis as a text-classification problem.

The main weakness of this study was the resource and time limitations of the bare-
metal environments. Further investigation and experimentation into speeding up
the restoration and stimulation is strongly recommended. In general, therefore, it
seems that any improvements on the stimulation will also improve the performance
of the detection.
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