
TESTITALREADY: A CODE-FREE APPROACH FOR AUTHORING
EXECUTABLE AND MAINTAINABLE TEST CASES FOR

NON-TECHNICAL STAKEHOLDERS

by
MAHDI ALI POUR

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of Master of Computer Science

Sabancı University
July 2021

TESTITALREADY: A CODE-FREE APPROACH FOR AUTHORING
EXECUTABLE AND MAINTAINABLE TEST CASES FOR

NON-TECHNICAL STAKEHOLDERS

Approved by:

. .

Date of Approval: June 2, 2021

MAHDI ALI POUR 2021

All Rights Reserved

ABSTRACT

TESTITALREADY: A CODE-FREE APPROACH FOR AUTHORING
EXECUTABLE AND MAINTAINABLE TEST CASES FOR NON-TECHNICAL

STAKEHOLDERS

Mahdi Ali Pour

Computer Science, Master’s Thesis, July 2021

Thesis Supervisor: Assoc. Prof. Cemal Yilmaz

Keywords: Google blockly, BDD Cucumber, Capture amd Replay, automated
test, test case

In the process of software development, software testing is an important part that
makes a product satisfied by all expectations and requirements. Existing software
testing tools need software testing knowledge to be used, and they are not literally
readable by non-technical stakeholders. The use of Behavior Driven Development
(BDD) techniques has been rapidly increasing since it uses Gherkin syntax which
is similar to natural language and extremely easy to understand. In our tool, we
aim to create a code-free framework for non-technical personnel can implement
their own test suite in BDD and implement the middle layer by using Google
Blockly. We suggest testers, to use TestProject Capture&Replay, which is a free
web application, to capture a script and import it to our tool for locating elements
in Android or iOS devices. Moreover, users either are able to use the subset of
actions in the captured list generated by TestProject or all actions in their test
cases. Our tool enables users to modify the test suite in Google Blockly to have
additional blocks such as loops, if-then-else statements, which make our tool more
flexible and unique from other existing testing tools.

iii

ÖZET

TESTITALREADY: TEKNIK OLMAYAN PAYDAŞLAR IÇIN
UYGULANABILIR VE SÜRDÜRÜLEBILIR TEST ÖRNEKLERININ

YAZILMASINA DAIR KOD IÇERMEYEN BIR YAKLAŞIM

Mahdi Ali Pour

Bilgisayar Bilim, Yüksek lisans tezi, Temmuz 2021

Tez danışmanı : Doçent Doktor Cemal Yılmaz

Anahtar Kelimeler: Google blockly, BDD cucumber, Capture and Replay,
automated test, test case

Yazılım denemeleri, yazılım geliştirmede bir ürünün bütün gereksinimleri ve bek-
lentileri karşılamasını sağlar. Var olan yazılım deneme araçları, yazılım deneme
bilgisinin kullanımı gerektiriyor ve bunlar teknik bilgiye sahip olmayan kişiler ta-
rafından okunamıyor. Davranış odaklı geliştirme teknikleri (BDD) doğal dile çok
benzeyen ve kolay anlaşılır Gherkin sentaksını kullandığından çok hızlı bir şekilde
artıyor. Biz aracımızda, teknik bilgiye sahip olmayan çalışanların BDD ile kendi
testlerini hazırlayabileceği ve orta katmanı Google Blocky ile uygulayabileceği tek-
noloji harikası bir sistem kurmayı amaçladık. Kullanıcılara senaryolarını kaydetmek
ve bizim aracımıza yollamaları için bedava bir internet uygulaması olan TestProject
Capture&Replay kullanmalarını öneriyoruz. Bunun dışında, kullanıcılar TestProject
tarafından oluşturulan dizilerin bir kısmını ya da tamamını kullanabilirler. Bizim
aracımız kullanıcıların test odasını Google Blockly’de fazladan döngüler ve if-then-
else ile değiştirmesine izin verdiğinden var olan deneme araçlarından daha esnek ve
özel.

iv

ACKNOWLEDGEMENTS

I am honored to express my profound and sincere to my thesis advisor Dr. Cemal
Yılmaz for his tremendous support and guidance during my master’s study at
Sabanci university. My sincere appreciation goes to the jury members Dr. Hüsnü
Yenigün and Dr. Tuğkan Tuğlular for their insightful comments.

v

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

1. INTRODUCTION 1
1.1. Test Driven Development and Behavior Driven Development 2
1.2. Google Blockly . 3
1.3. Capture and replay . 4

2. RELATED WORK 6

3. PROBLEM DEFINITION 8

4. APPROACH 10
4.1. Google Blockly . 10

4.1.1. Test suite . 12
4.1.2. Test case . 12
4.1.3. Run test case . 12
4.1.4. Assert . 12
4.1.5. Open existing app on Android 15
4.1.6. Install new app on Android 15
4.1.7. Open existing app on iOS . 15
4.1.8. Install new app on iOS . 15
4.1.9. Tap . 15
4.1.10. Tap point . 16
4.1.11. Type text . 16
4.1.12. Get element . 16
4.1.13. Check existence . 16
4.1.14. Pause . 16
4.1.15. Swipe . 17
4.1.16. Swipe gesture . 17
4.1.17. Scroll up . 17
4.1.18. Scroll down . 17
4.1.19. Go to . 17
4.1.20. Set driver . 17
4.1.21. Given . 20
4.1.22. When . 20
4.1.23. Then . 20

vi

4.1.24. Parametric Given . 20
4.1.25. Parametric When . 20
4.1.26. Parametric Then . 21
4.1.27. Parameter . 21
4.1.28. Step name . 21

4.2. Capture and Replay . 24
4.3. Behavior Driven Development (BDD) 30
4.4. Implementation . 32

4.4.1. Creating Test Case . 32
4.4.2. Parameters . 33
4.4.3. Saving Test Case . 34
4.4.4. Running Test Case . 34

5. EMPIRICAL EVALUATION 36
5.1. Experiment . 36
5.2. Empirical result . 38

6. CONCLUSION 41

7. FUTURE WORK 42

vii

LIST OF TABLES

Table 4.1. Test suite blocks details . 11
Table 4.2. Appium action blocks . 14
Table 4.3. BDD step block details . 19
Table 4.4. Test scenario for Clock App . 25

Table 5.1. Test scenario for 3 subject applications 37

viii

LIST OF FIGURES

Figure 1.1. BDD Scenario . 2
Figure 1.2. Step definition . 3
Figure 1.3. Compiling Google Blockly to Python 4

Figure 3.1. Implementation of BDD . 8
Figure 3.2. Step definition in Python . 8

Figure 4.1. Test suite blocks . 11
Figure 4.2. Appium action blocks . 13
Figure 4.3. BDD step blocks . 18
Figure 4.4. Test suite example . 22
Figure 4.5. Created Python code by Test suite blocks 22
Figure 4.6. BDD WHEN block . 22
Figure 4.7. Created Python code for BDD WHEN block 23
Figure 4.8. BDD THEN block . 23
Figure 4.9. Created Python code for parametric BDD THEN block . . . 23
Figure 4.10. TestProject captured a list and mirror view of emulator . . . 24
Figure 4.11. Creating "Given" step definition from captured script 26
Figure 4.12. Creating "When" step definition from captured script 27
Figure 4.13. Creating "Then" step definition from captured script 28
Figure 4.14. Files app home screen checking by modified "When" step . . . 29
Figure 4.15. Modified "When" step definition 29
Figure 4.16. BDD test scenario to set an alarm at 7:00 AM 30
Figure 4.17. BDD test scenario using "And" and "But" key words 30
Figure 4.18. HTML BDD test report . 31
Figure 4.19. Action information . 32
Figure 4.20. Captured test script with the parameterization opportunity . 33
Figure 4.21. Parameterization form, when we have not defined yet 33
Figure 4.22. Parameterization form, when the parameter is defined 33
Figure 4.23. File explorer . 34

Figure 5.1. Student’s academic status . 36
Figure 5.2. Student’s experiences in software testing 37
Figure 5.3. Time spent for each tasks . 38
Figure 5.4. Submitted test cases scores 39
Figure 5.5. Difficulty level of the Calculator scenarios 39
Figure 5.6. Difficulty level of the Clock scenarios 39
Figure 5.7. Difficulty level of the Files scenarios 40

ix

1. INTRODUCTION

There has been a remarkable increase in the number of mobile applications in re-
cent year thanks to advances in mobile devices and technology. By 2019, 4.4 million
mobile apps will be available on Apple App Store and Google Play by the end of
the year. The proportion of worldwide website traffic produced by mobile devices
rose from 0.7 percent to 52.6 percent between 2009 and 2019 due to the emergence
of mobile apps (Xue, 2020).
To achieve a high level of app satisfaction, developers apply testing to ensure the
high quality of an app. Manual testing simply cannot keep up with the increasing
complexity of systems and apps. Mobile software testing automation is usually used
to determine whether the mobile app or the entire software meets the end user’s
requirements. Testing software is automated by utilizing an automation tool to au-
tomate the processes of manual test cases, therefore reducing the testing life cycle
in terms of time. (Bathla & Bathla, 2009).
It is not surprising that test automation comes at a high cost, but once purchased,
thousands of projects can be executed and tested. Mobile application testing is dif-
ferent and more difficult than traditional desktop and web application testing (Saad
& Bakar, 2014).
With a minimal collection of scripts, automated testing optimizes the testing ef-
fort. The automation tester is a technical expert who is able to create, debug, and
support software for ready-to-use test scripts, a test suite, and automated testing
tools. A test script is a sequence of steps for automatically testing specific parts
of a piece of software. A test run is a combination of test scripts and test suites
based on the intended goals and a possible automated testing method. A test suite
is a collection of test scripts used to evaluate a specific piece of software, and a test
run is a collection of test scripts and test suites used to evaluate a specific piece of
software (Apple-Developer, 2011; Yeh, Chang & Miller, 2009).
Manual or automated methods can be used to test the user interfaces in mobile
applications. In manual method, test cases are first designed manually, then im-
plemented and finally executed. On the other hand, automated GUI testing can
be performed using automatic input generation (AIG) tools (Choudhary, Gorla &

1

Orso, 2015) and (Mariani, Pezzè, Riganelli & Santoro, 2014), can be used to auto-
matically generate sequences of input events and attempt to test the GUI of an app.
A number of AIG methods, especially at the GUI level, have been developed by
academic and industrial professionals to support testing and achieve different levels
of automation in app testing (Méndez Porras, Quesada López & Jenkins Coronas,
2015).

1.1 Test Driven Development and Behavior Driven Development

Test Driven Development (TDD) has become an important method for developing
software, with its roots in agile programming development. New features are tested
in advance because testing and writing code are fundamentally intertwined in TDD,
and test cases are written before code. An extension of TDD has recently been
proposed. In Behavior Driven Development (BDD), the test cases are written in a
natural language called Gherkin to describe the behavior of the software while hid-
ing the implementation details, which facilitates communication with stakeholders
as they do not need to read the code (Lübke & van Lessen, 2016).
The BDD language focuses on behavioral aspects rather than testing by using
three simple sentences beginning with Given[context], When[event], and Then[result]
(North, 2012). Context refers to antecedent conditions or system states, event de-
scribes a triggering event, and outcome is an expected or unexpected system behav-
ior (Wang & Wagner, 2018).

The structure Given-When-Then links human concepts and effects to software con-
cepts. In BDD, each test case is called a scenario and multiple scenarios are called
a feature file (Diepenbeck, Soeken, Große & Drechsler, 2012). Figure 1.1 shows a
simple scenario where 2 numbers are added in the Calculator application.

Figure 1.1 BDD Scenario

Scenario steps must be linked to the actual test code in order to run the scenario.
Step definitions are tuples of a keyword (such as Given, When, or Then), a regular

2

expression, and step code. Whenever a scenario record matches the regular expres-
sion (also called step), the step code is executed. The step definitions for the given
scenario are shown in Figure 1.2.

Figure 1.2 Step definition

One of the main advantages of BDD is its reusability, where step definitions can
be used iteratively. For example, step implementations can be used for multiple
test scenarios to avoid duplicate code for each test scenario implementation. These
scenarios are a valuable tool for software developers, testers, and researchers to com-
municate and improve software quality. They are often used to record the predicted
behaviour of the software (Rahman & Gao, 2015). Despite all the advantages such
as reusability of stage definition and separation of concerns between developers,
testers and business analysts, the existing challenges that should be solved only by
technical testers and developers are implementation and maintenance. Developers
and testers should provide an non-faulty step definition to business analysts as the
back-end of BDD scenarios.

1.2 Google Blockly

Block-based programming has become a common approach to initial programming
environments for young students in recent years to help them get started with
low-threshold programming. The use of block-based programming allows devel-
opers and educators to reduce the complexity of introducing students to basic
programming concepts (Seraj, Katterfeldt, Bub, Autexier & Drechsler, 2019).

3

Figure 1.3 Compiling Google Blockly to Python

The world of Google Blockly is based on concepts similar to popular scratch lan-
guages. Google Blockly blocks have placeholders for variables and subclauses of
variables, commands, and can express the scope of program segments, depending
on the notation of a block that physically includes other blocks, with possible nest-
ing. This Scratch coding style is more appealing to children than traditional pro-
gramming languages. A number of studies have used block-based programming to
promote programming accessibility for learning, such as Programming Interactive
Applications with JavaScript and Blockly (Marron, Weiss & Wiener, 2012) and Vi-
sual Programming for Media Computation and Bluetooth Robotics Control (Trower
& Gray, 2015). Blockly-based programming is also used by the authors of (Culic,
Radovici & Vasilescu, 2015) to streamline the process of creating visual programming
elements to constantly provide users with new and up-to-date visual programming
blocks. In Chapter 3, we explain how we use Google Blockly to overcome the BDD
step definition challenge. By using Google Blockly, business analysts can implement
the BDD step definition themselves.

1.3 Capture and replay

Test scripts can be created automatically by interacting with the application under
test (AUT) using capture and replay (C&R) tools. This makes C&R a very attractive
alternative to writing test scripts manually from a usability perspective, as it helps
testers with minimal testing experience to quickly create test scripts that represent
actual usage scenarios. It is then possible to automatically repeat these scripts, and
in certain situations this can be done on a different computer than the one on which
they were registered. Because of the level of abstraction from the graphical user
interface they take when recording events, C&R tools are categorized as coordinate-
based, layout-based, or visual tools (Di Martino, Fasolino, Starace & Tramontana,

4

2020).
By storing the exact display coordinates in which they reside, coordinate-based
tools completely ignore the AUT interface and monitor events. Appetizer replaykit
(Appetizer.io, 2009), RERAN (Gomez, Neamtiu, Azim & Millstein, 2013), VALERA
(Hu, Azim & Neamtiu, 2015), RandR (Sahin, Aliyeva, Mathavan, Coskun & Egele,
2019), Mosaic (Halpern, Zhu, Peri & Reddi, 2015), and OBDR (Moran, Bonett,
Bernal-Cárdenas, Otten, Park & Poshyvanyk, 2017) are notable examples of tools
in this category.
GUI components are identified by layout-based software based on certain objective
layout properties (e.g., unique IDs and query language expressions). Espresso Test
Recorder (Android-Developers, 2009), developed by Google as part of the Android
Studio IDE , is a well-known example of tools that belong to this group. Visual tools
such as Sikuli (Yeh et al., 2009) and EyeStudio (Eyestudio, 2009) record identical
screen captures of GUI components that users interact with and play back the
captured script using an image matching process, which is also true for the test part
(Ardito, Coppola, Morisio & Torchiano, 2019).
Although using C&R tools is easy for non-technical users, there are limitations as
the tests recorded by C&R need to be updated when an application GUI is changed
(Di Martino et al., 2020).
In this study, we use a high-level layout-based C&R tool to obtain the application
selector information, such as the Id/Xpath of the element and the order of actions,
for further processing.

5

2. RELATED WORK

The development of mobile application testing has been greatly enhanced by all
these automated testing procedures. However, their implementation depends more
or less on the internal information of the apps, which leads to limitations in their
use. The main automated testing methods for mobile applications can generally be
divided into three levels (Xue, 2020).
First stage techniques focus on automating test results. Script-based testing en-
ables the automatic execution of test cases defined by manual script editing. The
test automation frameworks, including XCTest (Apple-Developer, 2011) can be used
to simulate the execution of the application under test by converting scripts into
event streams and inputs. Unlike text-only scripts, Eyeautomatic (EyeAutomate,
2009)allows visual information to be specified and visual GUI tests to be performed
by image matching. To achieve a high success record replay rate for single and
cross-devices, SARA (Guo, Li, Lou, Yang & Liu, 2019) uses the proposed self-
replays and adaptive playback mechanisms. In terms of cross-platform testing of
turntables, LIRAT (Yu, Fang, Feng, Zhao & Chen, 2019) is a blend of image pro-
cessing technology. Tuan Anh Nguyen et al. (Nguyen & Csallner, 2015) presents a
tool, REMAUI, that uses computer vision and OCR technology to recognize input
images for UI elements such as text, photos, and containers. Moran et al.(Moran,
Bernal-Cárdenas, Curcio, Bonett & Poshyvanyk, 2020) also establishes an approach
to generate REMAUI code from UI images. It can be used in the creation of mobile
device scripts for widget recognition. Chunyang Chen et. al. (Chen, Su, Meng, Xing
& Liu, 2018) introduces a neural machine translator, which integrates recent devel-
opments in computer vision and machine translation and also translats UI pictures
to GUI skeletons. Robotium (Robotium, 2014) is used in Android apps only and has
minimal features for recording/replay functionality which is Android-limited. For
use with native, hybrid, and mobile web applications, Appium (Appium.io, 2011) is
an open-source test automation system. Using the WebDriver protocol, it powers
iOS and Android apps (Hussain, Razak & Mkpojiogu, 2017).
The second level techniques are focused on the first level and focus more on the pro-
duction and optimization of automated test cases. An approach intoduced by (Xue,

6

2020) that random testing uses a random approach to analyze and assess applica-
tions and produces test inputs, although randomly . A native Android test tool,
Monkey (Android-Developers, 2015) sends GUI events selected and device events
to be tested randomly. MobiGUITAR (Amalfitano, Fasolino, Tramontana, Ta &
Memon, 2015) moves through models dynamically and then produces test cases. In
order to obtain the static-dynamic relationship between GUI elements and events
statically, AMOGA (Salihu, Ibrahim, Ahmed, Zamli & Usman, 2019) uses the source
code and then scans applications dynamically and orderly to build the model. These
models typically consist of a finite state machine.
Third stage techniques further incorporate the learning function. Traditionnelle test
methods that employ model learning rely on conventional state models to produce
test inputs on-the-fly and establish a learning mechanism that permits dynamic cre-
ation (Xue, 2020). By using the adapter module and the brain module, DroidBot
(Yuanchun Li, Ziyue Yang, Yao Guo & Xiangqun Chen, 2017) dynamically updates
the model. To train an end-to-end test model, Deep Learning-based testing uses
deep neural network technology. Humanoid (Li, Yang, Guo & Chen, 2019) designs
a deep neural network model by learning user interaction with apps to generate
human-like inputs.

7

3. PROBLEM DEFINITION

In recent years, BDD has become an increasingly agile approach to production. The
BDD development is based on test driven development Behavior Driven Develop-
ment (TDD). BDD test scenario which is known as feature can be written in native
language in Gherkin syntax without need to mention any selector or element Ids.
In addition, implementation details can be hidden in automation layer. BDD test
scenarios need step definition to perform test on the system (Figure 3.1). Step def-
initions connect Gherkin step to programming code and carry out the action that
should be performed by a test scenario.

Figure 3.1 Implementation of BDD

Step definition can be written in any language such as Python. Figure 3.2 shows
an example of step definition to perform "enter card number {cardNum}" step on
Android in Python language.

Figure 3.2 Step definition in Python

In this study, we aim to provide non-technical stakeholders an easy, readable and
simple method for testing Android and iOS applications by using BDD.
The main problem of using BDD are implementation and maintaining of step defini-
tion to perform Appium actions on the emulator or real device. In addition, selector
details and element Id and Xpath are required to find and access elements on the
emulator/device. On the other hand, writing and maintaining step definition need

8

programming knowledge.
In this case, we are going to enable non-technical stakeholders to implement Gherkin
test scenario in their native language as well as its step definitions. Therefor they will
be able to create and modify step definitions by using Google Blockly and extract
selector details by using C&R tool. In chapter4, we will show how users can create
a BDD test and its step definitions very quickly. They are also able to use loops,
if-then-else statements in step definition which is a new approach in automation test
method.

9

4. APPROACH

We propose an integrated mobile testing tool which is a combination of 3 approaches:
Google Blockly, BDD, and TestProject Capture&Replay (C&R) tool.
Our code-free mobile testing tool enables non-technical stakeholders to test mobile
apps at a high level without any knowledge about application internal information.
This tool also provides a flexible environment by using Google Blockly for the users
to modify created test cases or reuse them in another test suite without worries about
code syntax. Users can import a captured action list exported from TestProject C&R
to our tool that provides required internal app information and action sequences to
create BDD step definitions. Finally they can run test by writing BDD test scenario
in Gherkin language which is similar to natural language and extremely readable.
Testers can write BDD test scenarios in their native language. In this chapter We
explain how do we apply these 3 approaches for our tool.

4.1 Google Blockly

To express coding ideas such as logical expressions, variables, loops, and other related
notions through graphics, and more, Google Blockly uses interlocking graphical
blocks. It helps users to apply programming principles without having to think
about syntax.
In this phase, we implemented all actions by custom blocks in Google Blockly for
testing Android/iOS applications. These custom blocks generate corresponding code
in Python language to interact with the emulator or real device by using Appium.
In this case, in our current version of the tool, we defined 28 new blocks that cover
25 actions supported by Appium on Android emulator/device and iOS simulator.
All these blocks can be found under 3 categories in toolbox under Blockly tab in
our tool.

10

In the first category of toolbox we have "Test suite" containing 4 blocks named
“Test Suite”, “Test case”, "Run test case", and "Assert" that provide users making
test cases and run them directly from the Blockly tab (Figure 4.1). Table 4.1 shows
details of these blocks.

Figure 4.1 Test suite blocks

Table 4.1 Test suite blocks details

Block Description

Unittest class includes test cases

Test case include actions

Call an existing test case

Assertion for test oracle

11

4.1.1 Test suite

Software programs are tested using test suites, which are a collection of "test case"
blocks.

4.1.2 Test case

Software testing objectives are achieved by performing a single test using a test case
that specifies the inputs, execution circumstances, testing process, and expected
outcomes. This block contains actions and test oracles.

4.1.3 Run test case

Existing test cases can be called by their names with "Run test case" block. Test
case names can be a string or defined by variable blocks.

4.1.4 Assert

Assertion is the validation step, determines whether the automated test case suc-
ceeded or not.

Second category in the toolbox belongs to "Appium action". We have 16 blocks to
perform actions on Android emulator/device or iOS simulator (Figure 4.2). Table
4.2 shows details of these blocks.

12

Figure 4.2 Appium action blocks

13

Table 4.2 Appium action blocks

Block Description
Open/Reset an existing application on An-
droid emulator/device

Install a new application by using APK file
on emulator or real device

Open/Reset an existing application on iOS

Install a new application by using APK file
on iOS

Tap an element on the Android/iOS screen

Tap a specific point on the screen

Type text on the Android/iOS screen

Pause a certain amount of time in second

Swipe gesture from point A1 to A2

Swipe Left/Right/Up/Down

Get element text or visibility attribute

Check the visibility of element

Long tap an element

Scroll down in pixel

Scroll up in pixel

Tap Back/Home button on emulator

Reset/Quit web driver

14

4.1.5 Open existing app on Android

User can open an existing application on the Android emulator or real device by
using this block. User also can open an application with Reset status. For open-
ing application successfully, specifying platform version, device name, App package
name and activity are required.

4.1.6 Install new app on Android

User can install a new application by uploading Android APK file. APK file path
should be entered in "App location".

4.1.7 Open existing app on iOS

User can open an existing application on the iOS simulator by using this block.
Device name and application bundle id are required for this action.

4.1.8 Install new app on iOS

User can install a new application on simulator by uploading iOS IPA file. IPA file
path should be entered in "App location".

4.1.9 Tap

To tap an element user can use Tap block. In this case, element’s Id or Xpath for
Android and iOS predicate for iOS should be entered.

15

4.1.10 Tap point

To tap a specific point on the screen user can use Tap point block. In this case,
coordinates of point should be specified by X and Y.

4.1.11 Type text

To enter a string in a text box user can use Type text block. This block locates text
box by its Id, Xpath or iOS predicate.

4.1.12 Get element

This block enables user to get an element’s attributes such as element text or visi-
bility. We need to enter element Id, Xpath or iOS predicate for locating.

4.1.13 Check existence

User can check an element existence without failing test. Normally, test case fails
when ever an element can not be locate on the screen. Check existence block returns
True/False value can be used in if-then-else clauses.

4.1.14 Pause

User will have more reliable test by using pause while the test cases fail because of
synchronization issue. This block put a certain amount of time in second between
other actions.

16

4.1.15 Swipe

User can swipe one page to the left, right, up and down. This block is configured
with a size of pixel that perform one page swiping.

4.1.16 Swipe gesture

When user need more accurate swipe from a point to another point on the screen,
can use "Swipe gesture" and specify the coordination of starting and ending point.

4.1.17 Scroll up

User can scroll up when the screen is scrollable and not single page.

4.1.18 Scroll down

User can scroll down when the screen is scrollable and not single page.

4.1.19 Go to

This block has 2 option to perform "Back" and "Home" button on Android emulator
or real device.

4.1.20 Set driver

To quit form web driver or reset the driver in test case user can apply "Set driver"
block with its 2 options: Reset/Quit.

17

BDD, the third category of toolbox, contains blocks for BDD steps: Given, When
and Then together required blocks for parametrizing including Parameter and step
name. (Figure 4.3). Table 4.3 shows more details of these blocks. We have 2 types
of BDD steps for GIVEN, WHEN and THEN: (1)parametric, (2)non-parametric.

Figure 4.3 BDD step blocks

18

Table 4.3 BDD step block details

Block Description
GIVEN step, step name can be a normal
sentence

WHEN step, step name can be a normal
sentence

THEN step, step name can be a normal
sentence

Parametric GIVEN step include text join
to combine string and parameter as step
name

Parametric WHEN step include text join
to combine string and parameter as step
name

Parametric THEN step include text join
to combine string and parameter as step
name

Convert Google Blockly variable to BDD
parameter

Return string for step name

19

4.1.21 Given

The first step in BDD test is "Given" which is an initializing steps. This block can
contain initializing blocks such as opening or installing application and the step
name should be string.

4.1.22 When

The second step in BDD test is "When". This block contains main body of test
scenario and actions such as tapping, typing a text or scrolling that tester need to
perform for testing purpose and the step name should be string.

4.1.23 Then

The last step in BDD test is "Then". This block contains evaluation block such as
assertion blocks.

4.1.24 Parametric Given

Parametric block is used for given step whenever user defines an input. It is different
than normal "Given" in the step name. In this case "Parametric Given" includes a
parametric step name.

4.1.25 Parametric When

Same as "Parametric Given" whenever user defines an input, "Parametric When"
can be applied to implement parametric steps. It is different than normal "When"
in the step name. In this case, "Parametric When" includes a parametric step name.

20

4.1.26 Parametric Then

When we have parametric steps, therefor we need parametric test oracle. "Paramet-
ric Then" provides us test evaluation with existing inputs and variables.

4.1.27 Parameter

This block convert variable to BDD parameter to be used in BDD step name by
putting variable inside curly brackets.

4.1.28 Step name

This block returns a simple string to be used in BDD step name.

In the following we explain the usage of blocks with some examples. We can create
simple test cases by using Test suite blocks collection and Appium blocks. In this
case we need to know selector such as element Id/Xpath. This information can be
collected by some other tools manually such as UiAutomatorViewer for Android and
Appium inspector for iOS.
For example, Figure 4.4 shows a test suite contains 2 test cases: (i) Reset Clock app
(ii) Set an alarm. "Reset Clock app" opens Clock application in Android emulator
and resets the application, then check the existence of an specific element on the
screen for test oracle by using "Assert" block. "Set an alarm" calls "Rest Clock app",
then continues the test and sets an alarm at 8:00. Figure 4.5 shows compiled Python
code which is generated automatically.

Figure 4.6 shows a simple BDD "When" step that calculates "2+3" by tapping "2",
"+", and "3" on the Android emulator with the step name of "add 2 and 3". These
buttons are found by their Ids. Figure 4.7 shows compiled code corresponding to
"When" step.

Another type of BDD blocks are parametric blocks. Despite non-parametric step
where step name can be a string, parametric step name should include all inputs
given by the user in a BDD parameters format. So, step name is a mixture of string

21

Figure 4.4 Test suite example

Figure 4.5 Created Python code by Test suite blocks

Figure 4.6 BDD WHEN block

and parameters. In this case, We defined parametric "Given", "When", and "Then"
blocks. Figure 4.8 shows a test oracle that is implemented by parametric "Then"

22

Figure 4.7 Created Python code for BDD WHEN block

block. It checks whether answer is equal to result and Figure 4.9 shows generated
Python code.

Figure 4.8 BDD THEN block

Figure 4.9 Created Python code for parametric BDD THEN block

23

4.2 Capture and Replay

Indeed high-level tests need the application’s internal information such as Id and
Xpath for locating elements on the emulator’s screen. Basically, users either can
make test cases manually and find required Id/Xpath of each element by using
some tools such as UIAutomatorViewer or import captured test script provided
by Testproject C&R tool that include all application internal information such as
Id/Xpath.
In this case, Users record a test script in TestProject C&R, which is an online free
web application, then download captured test document which is an "Excel" file
format. Downloaded test document contains emulator and application information,
actions title with all accessible Ids and Xpaths for each action, and coordination for
gesture actions such as scrolling, swiping and tapping a specific point on the screen.
Figure 4.10 shows TestProject C&R captured list and mirror view of emulator and
application under test.

Figure 4.10 TestProject captured a list and mirror view of emulator

We describe work flow of creating BDD test case and step definitions from the
scratch with "Clock" application on Android emulator. Table 4.4 shows test scenario
of our example. In the first step user creates a test script using C&R tool and save
its document to be used in next step 4.10.

24

Table 4.4 Test scenario for Clock App

BDD step Step name
Given Clock app is on
When set an alarm at 7:00
Then Alarm 7:00 should be visible

By importing captured test document into our tool, users can select a sub sequence
of actions and implement intended BDD steps. All selected actions will be
mapped to its corresponding BDD blocks in Google Blockly and automatically
saved as step_name.xml together with equivalent Python code as step_name.py
in corresponding "Given", "When" and "Then" folder under application project
directory.

Figures 4.11, 4.12 and 4.13 show how user select the "Reset app" for "Given" step,
"set an alarm at 7:00" for "When step" and "Alarm 7:00 should be visible" for "Then"
step to create step definition.

Once users convert selected actions to blocks by selecting from the action list, they
are able to modify and insert additional blocks such as logical expression, loops,
pause, break, and quit driver based on their need in test case.
In addition, in a logical expression, users can check existence of elements to con-
tinue testing based on its existence. Figure 4.15 shows another example of modified
"When" step in Android "Files" application. In this example, the existence of fold-
ers in the "Files" application will be checked (by locating "No items" message in
the middle of home screen in "Files" app, Figure 4.15), if there are no folders then
creates 3 folders by using a loop and a list of folder names: "Photo", "Music", and
"Movie".

25

Figure 4.11 Creating "Given" step definition from captured script

26

Figure 4.12 Creating "When" step definition from captured script

27

Figure 4.13 Creating "Then" step definition from captured script

28

Figure 4.14 Files app home screen checking by modified "When" step

Figure 4.15 Modified "When" step definition

29

4.3 Behavior Driven Development (BDD)

When users implemented step definition, all steps are saved in a single file named
"step-definition.py" and it contains all created steps for the particular application
under the test. Now, users need to write test scenario in Gherkin language.
we used a web-based Gherkin editor named ACE (Editor, 2010) that provides us
syntax highlighting, real-time parsing and auto completion of step names (Figure
4.16). It also support "And" and "But" key words in writing scenarios (Figure
4.17). Written scenarios will be saved with the “.feature” extensions and they are
executable.

Figure 4.16 BDD test scenario to set an alarm at 7:00 AM

Figure 4.17 BDD test scenario using "And" and "But" key words

Apart from the emulator being up and running, Appium should be up and running
to run the BDD test scenarios and perform actions on the emulator.
Once test is completed, the test report will be displayed in the report tab in our tool
(Figure 4.18) in HTML format which is created by "behave-html-formatter" Python
library.

30

Figure 4.18 HTML BDD test report

31

4.4 Implementation

4.4.1 Creating Test Case

We used Google Blockly source code which is a free and client side in JavaScript
language and can be run in the browser. The source code includes some basic blocks
such as loops, logic, strings and variables. We defined 28 new blocks to perform
BDD test and Appium actions in JavaScript using Google Blockly standard. Also,
we defined the equivalent Python code corresponding to each block in JavaScript
language. So, compilation of block can be run in the client side. On the other hand,
regarding to captured script, user can import created script by TestProject which is
an "Excel" file to our tool and it will be store in "TestProject" folder under project
directory locally. By opening imported test document "Excel" file, all recorded
actions will be shown in the "Step Definition" tab as an HTML table together with
all information that user needs for creating test cases (Figure 4.19). We linked each
action to corresponding block by parsing action titles and their selector details. Each
action selected by user, depends on its title, is mapped to the corresponding block in
Google Blockly and all required information such as Id/Xpath, coordination, time
and pixel will be inserted to block in Blockly work space. During creation of BDD
step from action list, users are able to select sub sequence of actions or all actions
to create BDD steps.

Figure 4.19 Action information

32

4.4.2 Parameters

We offered a mechanism that enables users to define parameters instead of constant
input in BDD step definition. In this case, we analyse captured script to find inputs
with the possibility of parametrizing, then we show that input in the action list
as an HTML button in the "Parameterization opportunity" column (Figure 4.20).
By clicking that button, user can define a name to create new parameter (Figure
4.21), change or remove an existing parameter of that action (Figure 4.22). All
defined parameters are store in the action list table temporary and will be removed
by closing the table.

Figure 4.20 Captured test script with the parameterization opportunity

Figure 4.21 Parameterization form, when we have not defined yet

Figure 4.22 Parameterization form, when the parameter is defined

33

4.4.3 Saving Test Case

We implemented a file server using Node.js (Node.js, 2009) which is a back-end,
cross-platform and open-source plaltform that runs JavaScript code outside a web
browser. File server works with the local memory in a fixed folder structure. In
this case, each project includes 5 sub directories: "BDD", "TestProject", "Given",
"When", and "Then"). Whenever user creates a BDD steps, BDD feature or import
a captured script, it is stored in the relevant directory. All "xml" files contain Google
Blockly blocks and each "xml" file has a pair of "py" file that contains complied
step definition in Python language. To integrate all steps, we created a single step
definition file in the "BDD" directory include all Given-When-Then steps and will
be updated automatically after each test case creation, modification or deletion.
Also, We apply this single step definition file for auto completion in BDD editor for
writing BDD test scenarios.

Figure 4.23 File explorer

4.4.4 Running Test Case

BDD test scenario can be written simply since we provided auto completion that
suggest users existing BDD steps. We implemented a local Python server that is
able to run BDD test scenarios. When user runs test, web browser sends "step-
definition.py" and feature file to the local server and waits for the response. The

34

local server runs test cases, interacts with Appium and and performs test cases on
the emulator, then generates test result in HTML format can be shown in "Test
Result" tab in our tool.

35

5. EMPIRICAL EVALUATION

5.1 Experiment

In this chapter, we describe the experimental design that we carried out and the
related empirical results. We also demonstrate that our tool is extremely easy to use
even for non-technical users without programming or software testing knowledge
and they are able to make BDD test cases and its step definition by themselves.
To evaluate our tool, we held "PURE Project" course at Sabanci University in fall
semester 2020. In our user study, 38 students including 58% freshman students and
42% sophomore students volunteered to participate with no payment or forcing
them (Figure 5.1). Among all participants, 96% had no experiences of testing
software systems before (Figure 5.2).

Figure 5.1 Student’s academic status

In the PURE Project, We taught them all concepts that we used in our tool,
including Android Studio, Google few homeworks and asked them to record com-
pletion time for each task. For our user study, We selected 3 subject applications
Calculator, Clock and Files, and defined tasks for each application and assigned
them as their last homework with a one-week deadline. Table 5.1 shows applications
and test scenarios for our user study experiment.

36

Figure 5.2 Student’s experiences in software testing

Table 5.1 Test scenario for 3 subject applications

Application Scenario

Calculator
1. Initialize the app
2. Compute (2+3)*(5+6)
3. Compute ((2+3)*(5+6))-15

Clock
1. Initialize the app
2. Set an alarm at 8:00 AM
3. Set a recurring alarm on every weekday at 8:00 AM

Files

1. Initialize the app
2. Remove all existing folder if any
3. Create folders "foo", "bar" and "zoo" by using example
eable and scenario outline
4. Create 3 folders with names "Music", "Photo" and
"Movie" by using loop

Considering the students were freshmen, our software was under development
and was using heavy dependencies, we decided to use Docker to containerize
our software. We provided the students two files, namely “DockerFile” and
“docker-compose.yml”, which they use to create a Docker container. The source
code could be downloaded from the GitHub repository during the creation of the
container. This container contains two HTTP servers; one for the website, and the
other one for the web API. Each time the container is run, it automatically updates
itself using the GitHub repository.

We asked participants to use all 3 technologies including Testproject tool, Google
Blockly and BDD. We divided each task into 3 sub tasks: 1) Testproject 2) Blockly
3) BDD, and evaluated them separately to evaluate the submitted test suites by
the participants carefully.

37

5.2 Empirical result

Since no similar tool exists, we measured 2 items after completing the user study to
evaluate the usability of our tool, number of tasks that were successfully completed
and the time duration that a participant spent to finish each task. According to
the result that we extracted from submitted files by participants, we observed that
participants have done task number 1 which is an initializing scenario in 10 minutes
on average. Regarding the second task of each application which has medium
difficulties, participants spent 25 to 30 minutes to get complete. Task number 3
is designed more challenging and the result was what we have expected, and they
needed about 40 minutes to complete Clock and Files application and 22 minutes
to complete Calculator 5.3.

Figure 5.3 Time spent for each tasks

By grading submitted test cases by 26 participants, we found that more 20 student
got high range score between 85 and 100 (Figure 5.4).

We provided a survey at the end of the user research. Participants were polled on
their thoughts on the usefulness of our product. According to the survey, most of
students believe that working with Capture&Replay tool and Google Blockly are
extremely easy and they found BDD and applying Blockly for implementing test
cases normal.

For each application we also asked participants 4 questions: 1) Deciding and creating
the capture-and-replay scripts to be used 2) Using the recorded scripts to create step
definitions 3) Modifying the Blockly blocks 4) Implementing the BDD scenarios.

38

Figure 5.4 Submitted test cases scores

Figure 5.5 shows that most of them found Blockly, Capture&Replay and BDD easy
and more than 10 students believe using Google Blockly for developing test cases
for Calculator app is normal.

Figure 5.5 Difficulty level of the Calculator scenarios

Regarding Clock application, participants believed different that Calculator app.
They said difficulty level of Clock app testing is normal and only one student believes
modifying blocks is very difficult (Figure 5.6).

Figure 5.6 Difficulty level of the Clock scenarios

Finally, Files app survey shows that it challenged students, since Files app scenar-
39

ios had complex structure including loop, list and conditional statements, 50% of
participants found it difficult and very difficult for modifying step definitions and
implementing BDD scenarios (Figure 5.7).

Figure 5.7 Difficulty level of the Files scenarios

40

6. CONCLUSION

We proposed a mobile testing approach, namely TestItAlready, with a new idea
to provide non-technical stakeholders an ease of use BDD framework that enables
user to create BDD features and step definitions by themselves with the help of
Google Blockly and Capture&Reply tool. Users are able to create, modify and
reuse BDD step definitions. Using Google Blockly for implementing BDD step
definitions made our tool possible to use complex structure including such as logical
conditional structures and loops in test cases and users are able to define parametric
step definitions. These opportunities make TestItAlready so flexible.

41

7. FUTURE WORK

We intend to plan in the future to get this definitions and automatically reason
about those natural language description to execute test cases other than relying on
block. In addition, we want to Add new blocks which can given a text description
and interact with UI elements automatically.
To avoid having same step definition we want to make a mechanism that analyse
and compare similar step definitions and merge them as one step definition.
In the case of locating element by their Xpath and Id, we plan to make our tool
enable to show a mirror view of device/emulator screen and user can select elements
to get information such as coordination, Xpath and Id.

42

BIBLIOGRAPHY

Amalfitano, D., Fasolino, A. R., Tramontana, P., Ta, B. D., & Memon, A. M. (2015).
Mobiguitar: Automated model-based testing of mobile apps. IEEE Software,
32 (5), 53–59.

Android-Developers (2009). Espresso, https://developer.android.com/training/t-
esting/espresso.

Android-Developers (2015). Ui/application exerciser monkey.
Appetizer.io (2009). appetizer/replaykit, https://github.com/appetizerio/replaykit.
Appium.io (2011). Appium: Open source test automation framework,

http://appium.io/.
Apple-Developer (2011). Apple developer documentation,

https://developer.apple.com/documentation/xctest.
Ardito, L., Coppola, R., Morisio, M., & Torchiano, M. (2019). Espresso vs. eye-

automate: An experiment for the comparison of two generations of android
gui testing. In Proceedings of the Evaluation and Assessment on Software
Engineering (pp. 13–22).

Bathla, R. & Bathla, S. (2009). Innovative approaches of automated tools in software
testing and current technology as compared to manual testing. Global Journal
of Enterprise Information System, 1 (1), 119–131.

Chen, C., Su, T., Meng, G., Xing, Z., & Liu, Y. (2018). From ui design image to gui
skeleton: A neural machine translator to bootstrap mobile gui implementation,
665–676.

Choudhary, S. R., Gorla, A., & Orso, A. (2015). Automated test input generation
for android: Are we there yet? (e). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), (pp. 429–440).

Culic, I., Radovici, A., & Vasilescu, L. M. (2015). Auto-generating google blockly
visual programming elements for peripheral hardware. In 2015 14th RoEduNet
International Conference-Networking in Education and Research (RoEduNet
NER), (pp. 94–98). IEEE.

Di Martino, S., Fasolino, A. R., Starace, L. L. L., & Tramontana, P. (2020). Compar-
ing the effectiveness of capture and replay against automatic input generation
for android graphical user interface testing. Software Testing, Verification and
Reliability, e1754.

Diepenbeck, M., Soeken, M., Große, D., & Drechsler, R. (2012). Behavior driven
development for circuit design and verification. In 2012 IEEE International
High Level Design Validation and Test Workshop (HLDVT), (pp. 9–16). IEEE.

Editor, A. C. (2010). Ace - the high performance code editor for the web,
https://ace.c9.io/.

EyeAutomate (2009). Eyeautomate, https://eyeautomate.com/eyeautomate/.
Eyestudio (2009). Eyestudio, https://eyeautomate.com/eyestudio/.
Gomez, L., Neamtiu, I., Azim, T., & Millstein, T. (2013). Reran: Timing-and touch-

sensitive record and replay for android. In 2013 35th International Conference
on Software Engineering (ICSE), (pp. 72–81). IEEE.

Guo, J., Li, S., Lou, J.-G., Yang, Z., & Liu, T. (2019). Sara: self-replay augmented
record and replay for android in industrial cases. In Proceedings of the 28th

43

ACM SIGSOFT International Symposium on Software Testing and Analysis,
(pp. 90–100).

Halpern, M., Zhu, Y., Peri, R., & Reddi, V. J. (2015). Mosaic: cross-platform
user-interaction record and replay for the fragmented android ecosystem. In
2015 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), (pp. 215–224). IEEE.

Hu, Y., Azim, T., & Neamtiu, I. (2015). Versatile yet lightweight record-and-replay
for android. In Proceedings of the 2015 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications,
(pp. 349–366).

Hussain, A., Razak, H. A., & Mkpojiogu, E. O. (2017). The perceived usability
of automated testing tools for mobile applications. Journal of Engineering,
Science and Technology (JESTEC), 12 (4), 89–97.

Li, Y., Yang, Z., Guo, Y., & Chen, X. (2019). Humanoid: A deep learning-based ap-
proach to automated black-box android app testing. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), (pp.
1070–1073).

Lübke, D. & van Lessen, T. (2016). Modeling test cases in bpmn for behavior-driven
development. IEEE software, 33 (5), 15–21.

Mariani, L., Pezzè, M., Riganelli, O., & Santoro, M. (2014). Automatic testing of
gui-based applications. Software Testing, Verification and Reliability, 24 (5),
341–366.

Marron, A., Weiss, G., & Wiener, G. (2012). A decentralized approach for program-
ming interactive applications with javascript and blockly. In Proceedings of
the 2nd edition on Programming systems, languages and applications based on
actors, agents, and decentralized control abstractions (pp. 59–70).

Méndez Porras, A., Quesada López, C., & Jenkins Coronas, M. (2015). Automated
testing of mobile applications: A systematic map and review.

Moran, K., Bernal-Cárdenas, C., Curcio, M., Bonett, R., & Poshyvanyk, D. (2020).
Machine learning-based prototyping of graphical user interfaces for mobile
apps. IEEE Transactions on Software Engineering, 46 (2), 196–221.

Moran, K., Bonett, R., Bernal-Cárdenas, C., Otten, B., Park, D., & Poshyvanyk, D.
(2017). On-device bug reporting for android applications. In 2017 IEEE/ACM
4th International Conference on Mobile Software Engineering and Systems
(MOBILESoft), (pp. 215–216). IEEE.

Nguyen, T. A. & Csallner, C. (2015). Reverse engineering mobile application user
interfaces with remaui (t). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), (pp. 248–259).

Node.js (2009). Open-source, back-end javascript runtime environment.
North, D. (2012). Jbehave. a framework for behaviour driven development (bdd).
Rahman, M. & Gao, J. (2015). A reusable automated acceptance testing architecture

for microservices in behavior-driven development. In 2015 IEEE Symposium
on Service-Oriented System Engineering, (pp. 321–325). IEEE.

Robotium (2014). Robotium: Open source test framework,
https://github.com/robotiumtech/robotium.

Saad, N. H. & Bakar, N. S. A. A. (2014). Automated testing tools for mobile
applications. In The 5th International Conference on Information and Com-
munication Technology for The Muslim World (ICT4M), (pp. 1–5). IEEE.

44

Sahin, O., Aliyeva, A., Mathavan, H., Coskun, A., & Egele, M. (2019). Late breaking
results: Towards practical record and replay for mobile applications. In 2019
56th ACM/IEEE Design Automation Conference (DAC), (pp. 1–2). IEEE.

Salihu, I.-A., Ibrahim, R., Ahmed, B. S., Zamli, K. Z., & Usman, A. (2019). Amoga:
a static-dynamic model generation strategy for mobile apps testing. IEEE
Access, 7, 17158–17173.

Seraj, M., Katterfeldt, E.-S., Bub, K., Autexier, S., & Drechsler, R. (2019). Scratch
and google blockly: How girls’ programming skills and attitudes are influenced.
In Proceedings of the 19th Koli Calling International Conference on Computing
Education Research, (pp. 1–10).

Trower, J. & Gray, J. (2015). Blockly language creation and applications: Visual
programming for media computation and bluetooth robotics control. In Pro-
ceedings of the 46th ACM Technical Symposium on Computer Science Educa-
tion, SIGCSE ’15, (pp.5̃)., New York, NY, USA. Association for Computing
Machinery.

Wang, Y. & Wagner, S. (2018). Combining stpa and bdd for safety analysis and
verification in agile development: A controlled experiment. In International
Conference on Agile Software Development, (pp. 37–53). Springer.

Xue, F. (2020). Automated mobile apps testing from visual perspective. In Pro-
ceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, (pp. 577–581).

Yeh, T., Chang, T.-H., & Miller, R. C. (2009). Sikuli: using gui screenshots for
search and automation. In Proceedings of the 22nd annual ACM symposium
on User interface software and technology, (pp. 183–192).

Yu, S., Fang, C., Feng, Y., Zhao, W., & Chen, Z. (2019). Lirat: layout and im-
age recognition driving automated mobile testing of cross-platform. In 2019
34th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), (pp. 1066–1069). IEEE.

Yuanchun Li, Ziyue Yang, Yao Guo, & Xiangqun Chen (2017). Droidbot: a
lightweight ui-guided test input generator for android. In 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-C),
(pp. 23–26).

45

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Test Driven Development and Behavior Driven Development
	Google Blockly
	Capture and replay

	Related work
	Problem Definition
	approach
	Google Blockly
	Test suite
	Test case
	Run test case
	Assert
	Open existing app on Android
	Install new app on Android
	Open existing app on iOS
	Install new app on iOS
	Tap
	Tap point
	Type text
	Get element
	Check existence
	Pause
	Swipe
	Swipe gesture
	Scroll up
	Scroll down
	Go to
	Set driver
	Given
	When
	Then
	Parametric Given
	Parametric When
	Parametric Then
	Parameter
	Step name

	Capture and Replay
	Behavior Driven Development (BDD)
	Implementation
	Creating Test Case
	Parameters
	Saving Test Case
	Running Test Case

	Empirical evaluation
	Experiment
	Empirical result

	Conclusion
	Future work

