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ABSTRACT

AUTOMATED TEST CASE GENERATION FOR SELF-DRIVING CARS
USING CCTV VIDEOS

VATAN AKSOY TEZER

Computer Science and Engineering, M.S. THESIS, JULY 2021

Thesis Supervisor: Assoc. Prof. Dr. Cemal Yılmaz

Keywords: self-driving cars, simulator, image processing, artificial intelligence,
automated test case generation

Self-driving cars are more and more included in our daily lives with recent ad-
vancements in the fields of artificial intelligence and robotics. Self-driving cars are
typically tested in simulation and real-life with various types of tests in different sce-
narios. To ensure the safety of self-driving cars we must be able to conduct realistic
test cases in simulation and real life. The most realistic and highly convincing tests
include test cases from real-life accidents. However, currently, these tests are gen-
erated manually with humans still in the loop. We introduce a generic and scalable
way to realistically generate automated test cases from any car accident video that
is available. To show the flexibility of our study we use various YouTube videos that
we have no prior information about for evaluation. The proposed method consists
of three steps, namely analysis, scene reconstruction, and test case generation. Our
method is fully automated and an end-to-end solution to generate test cases. In the
analysis step, we run the input videos through an image processing pipeline that
consists of six internal steps. Then we reconstruct the crash in a 3D physics engine.
Finally, we generate various test cases from a set of automatically pre-defined or
user-defined parameters. The test cases can be used with any autonomous driving
stack that satisfies the communication requirements through a simulation bridge.
We evaluate our results with a user study and a set of case study experiments that
are conducted on the popular open-source autonomous driving stack, Apollo.
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ÖZET

OTONOM ARAÇLAR İÇİN CCTV VIDEOLARI KULLANARAK OTOMATİK
TEST SENARYOLARI OLUŞTURULMASI

VATAN AKSOY TEZER

Bilgisayar Bilimi ve Mühendisliği, YÜKSEK LİSANS TEZİ, Temmuz 2021

Tez Danışmanı: Doç. Dr. Cemal Yılmaz

Anahtar Kelimeler: otonom araçlar, simülatör, görüntü işleme, yapay zeka,
otomatik test senaryoları oluşturma

Otonom araçlar, yapay zeka ve robotik alanlarındaki son gelişmelerle günlük hay-
atımıza giderek daha fazla dahil olmakta. Otonom araçlar tipik olarak simülasyonda
ve gerçek hayatta farklı senaryolarda çeşitli testlerle test edilir. Otonom araçların
güvenliğini sağlamak için simülasyonda ve gerçek hayatta gerçekçi test senaryoları
yürütebilmeliyiz. Bu kapsamda en gerçekçi ve ikna edici testler, gerçek hayattaki
kazalardan test senaryolarını içerir. Ancak şu anda bu testler, halen insanlar yardımı
ile oluşturuluyor. Bu çalışmada mevcut herhangi bir araba kazası videosundan
gerçekçi bir şekilde otomatik test senaryoları oluşturabilen genel ve ölçeklenebilir
bir yöntem sunuyoruz. Çalışmamızın esnekliğini göstermek için, değerlendirme aşa-
masında hakkında önceden bilgi sahibi olmadığımız çeşitli YouTube videolarını kul-
lanıyoruz. Önerilen yöntem, analiz, yeniden sahneyi canlandırma ve test senaryosu
oluşturma olmak üzere üç adımdan oluşmaktadır. Geliştirilen yöntem tamamen
otomatizedir ve test senaryoları oluşturmak için uçtan uca bir çözüm sunar. Analiz
adımında, giriş videolarını altı farklı adımdan oluşan bir görüntü işleme yapısı
üzerinden çalıştırıyoruz. Sonrasında kazayı üç boyutlu bir fizik simülasyonunda
yeniden oluşturuyoruz. Son olarak, bir dizi otomatik olarak önceden tanımlanmış
veya kullanıcı tanımlı parametrelerden çeşitli test senaryoları oluşturuyoruz. Oluış-
turulan test senaryoları, bir simülasyon köprüsü aracılığıyla iletişim gereksinimlerini
karşılayan herhangi bir otonom sürüş sistemi ile kullanılabilir. Sonuçlarımızı bir kul-
lanıcı çalışması ve popüler açık kaynaklı otonom sürüş sistemi olan Apollo üzerinde
yürütülen bir dizi test ile değerlendiriyoruz.
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1. INTRODUCTION

1.1 Motivation

Developments in autonomous vehicle technology have the potential to change the
way humanity lives in the future immensely. The technology on autonomous vehicles
is growing and much more likely to continue growing over the near future. Numer-
ous tech giants have seen the opportunity in autonomous vehicles and joined the
competition including Google parent Alphabet’s Waymo, Ford Motor Company’s
Argo AI, Elon Musk’s Tesla, and China’s Baidu. These companies have already
been testing their autonomous vehicles on the roads, driving millions of miles.

Autonomous vehicles need to face a great number of strict tests to ensure the safety
regulations are met, as similar with the other technologies that involve usage and
interaction with humans. There are two main phases of autonomous vehicle testing:
simulation and road tests. Hardware is always expensive, but when the hardware to
be tested is an autonomous vehicle with precise sensors, it is even more expensive.
In early phases of development, there usually exists a great number of edge cases
and the software can make fatal mistakes. To avoid financial losses and endangering
the test conductors, the tests are done in simulation environments, where there are
no safety issues at all and the software failures don’t cost lives or hardware losses.
After the software is developed to be mature enough in simulation, real life tests
start with the exact hardware and safety precautions.

There are already sophisticated test methods and environments that are being used
by autonomous vehicle companies and researchers. But the test cases are usually
hardcoded into the system, or randomly generated from user or NHTSA (National
Highway Traffic Safety Administration) defined scenarios (Thorn, Kimmel & Chaka,
2018). Although one can cover as many scenarios in traffic as possible, it’s hard
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to evaluate how likely they are going to happen and if they cover the necessary
safety requirements to declare an autonomous vehicle safe enough. Autonomous
vehicles are already mature enough to perform quite successfully in most every
day scenarios in a robust fashion, but the edge cases are usually the setbacks in
autonomous vehicle software. These edge cases can include misleading signs, human
driver faults, unobserved dynamic objects, and estimating the next events that are
likely to occur. Whether it is an autonomous vehicle or a human driver, these edge
cases can be hard to deal with and unfortunately can result in accidents. Therefore,
our idea is to use real life accidents for test case generation and came up with the
method of potentially converting every single car accident video available in the
world to a test case that can support different autonomous driving stacks, which
would mean a substantially large pool of test cases.

The idea of using accidents to generate test cases for autonomous cars is previously
realized by (Huynh, Gambi & Fraser, 2019), though only a specifically prepared
dataset of accident reports by NHTSA was used and these reports contained nu-
merical and very detailed information on how the accident occured. In this study
the authors used NLP (Natural Language Processing) to retrieve information from
accident reports. These type of datasets can be extremely rare and can take long
times to be prepared by humans.

Another idea that inspired our work was the first track of the 2018 NVIDIA AI
City Challenge (Naphade, Chang, Sharma, Anastasiu, Jagarlamudi, Chakraborty,
Huang, Wang, Liu, Chellappa, Hwang & Lyu, 2018). In this challenge teams of
researchers showed their success on analyzing the city’s traffic flow from monocular
cameras around the city. These cameras are typically in high locations so that they
have a wide angle of view. These teams used a combination of artificial intelligence
and computer vision methods to analyze the speeds of individual cars in the traffic
flow. The works from 2018 NVIDIA AI City Challenge has showed the feasibility of
generating traffic analysis using only videos that are taken from monocular cameras.

1.2 Approach

Our approach is much more generalizable, where in this study we only use car
accident videos as our only input. Car accident videos are trivial to find as there
are a large number of accidents recorded by security cameras and dash cameras that
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are mounted on cars. One of the assumptions in this study is that the cameras are
mounted on tall poles or buildings, so that it is easier to get a general idea of how
the accident happened and there won’t be any needing to account for the speed of
the vehicle that carry the dash camera. Our approach has three steps: analysis,
reconstruction and testing.

The first step is to analyze the accident scene, retrieve and abstract the data from
its surroundings. In this step we run the video through an image processing pipeline
and extract the speed, 3D position and rotation of vehicles along with the roads,
lanes and pavements. This information is then used to reconstruct the vehicles with
their respective positions and speeds in the lanes in a simulation environment with
realistic physics engine, in the reconstruction step. Then the constructed simulation
runs with the computer generated or user defined parameters to finalize the test.
The main purpose of this approach is to provide challenging, realistic, configurable
and modular test cases for autonomous driving stack developers. A test is typically
run with all the vehicles following to their respective routes that is extracted from
the video and before the collision happens the control of one the cars involved in the
accident is given to an autonomous driving software and the reaction or the ability
of the autonomous driving stack to prevent the accident to happen is measured. The
car under test (or ego car) can be defined by the user or selected by our software.
The moment of control given to the autonomous car can be defined by either time
to collision (TTC) or distance to collision (DTC), which is also a parameter in our
test case definition.

1.3 Challenges

Our study uses nothing but RGB images to generate full 3D reconstruction of the
car accidents. Although this makes it extremely generic and useful, brings various
challenges with it. Brief explanations on each of the most critical challenges our
work included is as follows:

• Videos do not contain any information on where the video is taken
with respect to the world, with other words the translation and
rotation of the camera with respect to the scene is not known: Our
pipeline has no apriori information on the location and rotation of the camera
with respect to a fixed point in the scene (eg. a road or a building). The videos
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that are used in this study are taken from cameras that has been located in
different heights, distances and rotations to the crash scene. This problem
causes performance variances between different videos if not handled correctly.

• Videos do not contain any information on what kind of camera is
used: Thus, our pipeline has no apriori information on the intrinsic and ex-
trinsic camera parameters, including the focal length of the camera, lens, field
of view and calibration matrices. Most of the videos used in this study are
taken from publicly available sources such as YouTube, therefore contains wide
differences in the cameras used. This forced us to develop a novel method to
estimate these parameters and calibrate cameras from the available footage.

• It is hard to evaluate our results, since there is no such dataset and
ground truth available for all the information that is used to generate
simulation: Although there exists datasets with 3D tracking information of
objects in the scene including camera calibration parameters such as Nuscenes
(Caesar, Bankiti, Lang, Vora, Liong, Xu, Krishnan, Pan, Baldan & Beijbom,
2020) and Waymo Open Dataset (Sun, Kretzschmar, Dotiwalla, Chouard, Pat-
naik, Tsui, Guo, Zhou, Chai, Caine, Vasudevan, Han, Ngiam, Zhao, Timofeev,
Ettinger, Krivokon, Gao, Joshi, Zhang, Shlens, Chen & Anguelov, 2020), they
have near to no accident footage and there is no simulation implementation
done prior to our work using these datasets.

• The idea and study is unique and there is no prior work on this topic:
This is the first attempt to reconstruct a fully dynamic 3D scene using only
one monocular camera source. As of the authors knowledge and capabilities
of research, the idea and study is unique, thus there is no previous work on
this topic, which brings various difficulties itself.

• We use cutting edge technologies and software: Most references and
software used in this study are developed after 2019. There is almost no
worldwide usage on most of these tools and they are in alpha or beta states.
This brings numerous technical difficulties including but not limited to: being
the first one find and report bugs, stability issues, breaking changes on the
interfaces, custom source builds and modifying the source codes of these tools.

• There are too many factors to take into account: There can be various
causes of a car accident, including driver’s vision being blocked by an external
object, a small animal passing by the road and other factors that may or may
not be visible in the accident footage. It is one of the most challenging part
of our study and the root cause of some of the assumptions.
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1.4 Contributions

In the light of this study, our contributions can be summarized as follows:

• We construct a novel image processing pipeline where the output of one neural
network is the input of the next neural network. This pipeline includes, 2D
object detection, 2D object tracking, 2D object segmentation, and 3D object
tracking networks.

• We introduce a novel method to calibrate monocular cameras without any
prior knowledge on the scene, and camera’s intrinsic and extrinsic parameters.
This method features an estimation only using the available footage from itself.

• We introduce a novel method to integrate 2D tracking outputs to improve per-
formance on 3D tracking outputs of CenterTrack (Zhou, Koltun & Krähenbühl,
2020).

• We develop a novel way to define car crash test cases to ease the implementa-
tion with different 3D physics simulator options, alternative for using Open-
DRIVE (ASAM, 2020a) or OpenSCENARIO (ASAM, 2020b).

• We visualize the car crashes using LGSVL simulator (Rong, Shin, Tabatabaee,
Lu, Lemke, Možeiko, Boise, Uhm, Gerow, Mehta, Agafonov, Kim, Sterner,
Ushiroda, Reyes, Zelenkovsky & Kim, 2020) and tested Apollo Autonomous
Driving (AD) Stack (Xu, Xiao, Miao & Luo, 2020) on various different test
cases, generated by our system.

• We implement a modular test case generation executable that given the input
car crash video, analyzes the video with the image processing pipeline, recon-
structs the 3D scene in LGSVL, runs all the predefined test cases and outputs
a detailed report and video result of each step to the user. The executable
is reading a configuration file of more than 50 parameters and offers a wide
range of configurations in accordance to comply with the users requirements.

• We conduct a user study on how realistic the generated crashes are to further
evaluate the results of this study.

1.5 Thesis Outline
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Th rest of the thesis is organized as follows:

In Chapter 2, we discuss related work within the context of our study and introduces
current state of the art methods in related areas. Where applicable, after each topic
there is a table that compares these methods. Chapter 3, describes our approach
and system as a whole. Chapter 4, introduces the experiment frameworks and
discusses the results. Chapter 5, focuses on issues that could effect the validity and
assumptions in our study. Chapter 6, concludes the study with final remarks and
finally chapter 7, discusses future work suggestions.
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2. BACKGROUND, METHOD SELECTION AND RELATED

WORK

Our approach, which is detailed in chapter 3, uses an image processing pipeline that
consists 2D object detection, 2D object tracking, 2D object segmentation, camera
calibration, speed estimation and 3D multi object tracking steps, to reconstruct
car crash videos in a 3D physics simulation. Then an AD stack is integrated to
conduct tests and evaluate the performance of the stack on generated test cases.
We introduce state of the art methods in each of these steps and compare existing
solutions in this chapter.

2.1 2D Object Detection

2D object detection is one of the most studied are in the field of Artificial Intelligence
(AI) and computer vision. Although there are still every day improvements in 2D
object detection networks and frameworks, there exists a set of industry-proven
state of the art solutions to this problems. In the context of our study, including the
future work, pedestrians, vehicles and traffic lights are currently the only objects
that are important. For this task, networks trained in one of the most common
datasets, COCO (Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár & Zitnick,
2014), were considered and used without any additional training. Although this
study does not have any requirements for the methods to be real time, we aim to
keep the pipeline as fast as possible to generate more test cases in limited time.
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2.1.1 You Only Look Once (YOLO)

YOLO (Redmon, Divvala, Girshick & Farhadi, 2016) is one of the most popular
2D object detection systems and managed to stay as one of the state of the art
systems till today with recent improvements on YOLO v4 (Bochkovskiy, Wang &
Liao, 2020). YOLO is a unique 2D object detection system that only does one pass
on the given image for detecting bounding boxes and class probabilities, contrary to
most other systems, which require multiple passes on the image to first detect region
proposals and classification. Thus, YOLO is fast and performs extremely well, as
only single network is responsible for the detection pipeline, making the network
easier to optimize solely based on detection performance.

2.1.2 Faster R-CNN

Evolved from R-CNN (Girshick, Donahue, Darrell & Malik, 2014) and Fast R-CNN
(Girshick, 2015), Faster R-CNN (Ren, He, Girshick & Sun, 2017) is a state of the
art 2D object detection method that uses a network to make region proposals, as
opposed to its predecessors using selective search for the same purpose, making
Faster R-CNN multiple times faster and better performing than it’s predecessors.
More than often Faster R-CNN systems use Residual Networks (ResNets) for feature
extraction. ResNets (He, Zhang, Ren & Sun, 2016) have a variety of deep and
shallow variants including Resnet-34, ResNet-50, Resnet-101. The core difference
between ResNets and other networks is identity shortcuts which lets the network
skip layers as desired to avoid performance degrading on deeper networks, allowing
researchers to build deeper networks with increasing performances to some degree.
Although especially deeper ResNets can slow the object detection system they help
the system achieve better overall performances on 2D detection tasks.

2.1.3 Single Shot Detector (SSD)

SSD is also one of the most popular method that only passes the image in one
shot to generate multi-object detection (Liu, Anguelov, Erhan, Szegedy, Reed, Fu
& Berg, 2016), contrary to Regional Proposal Network (RPN) based methods, such
as Faster R-CNN, requiring multiple passes on image. These methods requies a

8



first pass to generate regional proposals and another pass to detect the objects of
respective proposals as detailed in subsection 2.1.2.

Although the original SSD can be used as a standalone method, today it is also
usually used with a different network integrated into SSD architecture to optimize
detection performance for different use cases, the most commonly used network
being MobileNets (Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto
& Adam, 2017; Sandler, Howard, Zhu, Zhmoginov & Chen, 2018). MobileNets
are a special type of Convolutional Neural Network (CNN) and are known for being
extremely fast, as they use a special depth-wise separable convolutions, which makes
them remarkably lightweight in terms of computational complexity and parameter
count.

Even though SSD, depending on the network that is used along with, usually fall
short in accuracy rankings against Faster R-CNN and YOLO, it is much faster,
which makes it widely used on devices with limited computing capabilities.

2.2 2D Object Tracking

2D object tracking is also an important part of this study, as well as many AI
researches. There are many cases where detecting the class of an object on a single
frame is not enough and the objects needs to be assigned with a unique identifier.
This problem is specifically important in video processing and the cases where the
object itself is crucial rather than the type of it. There are various different solutions
to object tracking problem, this section discusses two of these tracking methods.

2.2.1 Simple Online and Realtime Tracking (SORT)

SORT (Bewley, Ge, Ott, Ramos & Upcroft, 2016) is one of the state of the art
methods of the earlier generation of 2D object tracking algorithms, that revolution-
ized the field by ranking the best open source implementation in one of the most
competitive benchmark, MOT15 (Leal-Taixé, Milan, Reid, Roth & Schindler, 2015)
with a simple approach. Due to the ease of implementation and use SORT is still
considered to be one of the widest used algorithms. In addition, a stronger and more
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recent version of SORT exists, that is called Deep SORT, which simply improves
the original implementation via information derived from deep appearance descrip-
tors. SORT utilized the visual features from an object detection algorithm along
with a Kalman Filter for state estimation and Hungarian algorithm for matching
and clustering. SORT is unable to identify re-entering objects which happens quite
often in our studied videos, which was the reason to eliminate this algorithm from
our image processing pipeline.

2.2.2 TC Tracker

TC Tracker (Tang, Wang, Xiao, Zheng & Hwang, 2018a) utilizes a combination of
visual and semantic features typically found from 2D object detection as a backbone
of the tracking algorithm. It then calculates a loss function with a model that is
based on histograms, which is used to find associations between tracklets in the
clustering step. TC Tracker proved its capabilities in similar single camera footages
that are taken from high location. With this proven performance record, we have
chosen to utilize this method in 2D object tracking part of our image processing
pipeline.

2.3 2D Object Segmentation

2D Object Segmentation is used extensively to analyze objects more accurately.
Object detection algorithms can only insert bounding boxes, which can not take
arbitrary shapes and faulty in representing an exact location or area that object
covers. Segmentation algorithms however use masks that can take any shape and
much more precise on representing 3D objects. In the context of our study we use
object segmentation to serve as a base of camera calibration using masks of vehicles
and traffic lines for calibration as explained further in sections 3.1.3 and 3.1.4.
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2.3.1 Mask R-CNN

Mask R-CNN (He, Gkioxari, Dollár & Girshick, 2020) is considered to be one of
the methods that revolutionized 2D object segmentation by using a simple method-
ology that outperformed every competitor algorithm in COCO benchmarks (Lin
et al., 2014) in the time of publish. Mask R-CNN extends the capabilities of Faster
R-CNN with segmentation masks with a fully convolutional network (FCN) (Long,
Shelhamer & Darrell, 2014), that is passed through each object detection and classi-
fication as an overhead. Although Mask R-CNN is now considered to be a baseline
algorithm in object segmentation, there other methods exists such as In Place Acti-
vated BatchNorm, that outperforms Mask R-CNN in various datasets.

2.3.2 In Place Activated BatchNorm

In Place Activated Batch Normalization (InPlace-ABN) (Bulo, Porzi &
Kontschieder, 2018) is a state of the art method that is specifically developed for traf-
fic datasets by Mapillary Research. InPlace-ABN is the best performing algorithm
in Mapillary Vistas (Neuhold, Ollmann, Bulo & Kontschieder, 2017), Cityscapes
(Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth & Schiele,
2016), KITTI (Geiger, Lenz, Stiller & Urtasun, 2013) and ScanNet (Dai, Chang,
Savva, Halber, Funkhouser & Nießner, 2017) benchmarsk by introducing a uncon-
ventional new layer called In-Place Activated Batch Normalization, instead of using
the regular method of BatchNorm and activation layers after each other. InPlace-
ABN is a new layer plugin that combines BatchNorm and activation layers in a
unique way withm performance increase and saves up to 50% GPU memory, which
enables the use of deeper and heavier networks with this method. Since this algo-
rithm is still performing in the top of many benchmarks and was able to handle the
videos that are taken from highly located cameras within our tests, we have chosen
to use this method.
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2.4 Camera Calibration and Speed Estimation

Most of the related works that we have considered does integrate or relate camera
calibration and speed estimation processes, thus these two parts will be considered
in one section. Camera calibration is the process of estimating Intrinsic and extrin-
sic camera calibration matrix that is required by various methods that are used in
this study including, depth estimation for speed estimation and 3D Multi Object
tracking. Speed estimation is the process of estimating the speeds of dynamic ob-
jects in length per seconds rather than pixels per seconds. This is considered to
be hard problem to overcome by using monocular camera images without the help
of additional sensors, since the depth estimation and camera calibration brings ac-
curacy problems. This problem is mostly studied for NVIDIA AI City Challenge’s
Track 1 in 2018 (Naphade et al., 2018), which was about anlyzing the traffic flow
within CCTV footages around the city cameras, making it contain similar footages
that we also use in our studies.

The winner of Track 1 from University of Washington (Tang, Wang, Xiao, Zheng
& Hwang, 2018b), requires a camera calibration method that requires a human
intervention that labels two parallel traffic lines, from which the algorithm finds the
ground and estimates the camera calibration matrix with small constraints. Speed
estimation is then done by simply extracting how much pixels did the tracked vehicle
moved between each frame and dividing it by time passed to achieve px/s values.
The algorithm is completed by converting px/s values to m/s tracked vehicles using
a depth estimator that uses camera calibration matrix.

One of the best performers in the same challenge, University of Maryland (Kumar,
Khorramshahi, Lin, Dhar, Chen & Chellappa, 2018), can perform speed estima-
tion without any camera calibration by assuming the road and camera are parallel
and locating a vanishing point through the road for image rectification. For speed
estimation they use a combination of affine transformation within rectified image
and Kalman filter with scaling that is performed by estimating the distances from
Google Maps. This method was not applicable in our study since we don’t have
prior knowledge of the images and cameras.

We use a similar approach for speed estimation with University of Washington with
modified constraints , and introduce a novel method for camera calibration that
does not require human intervention and automate the whole process.
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2.5 3D Multi Object Tracking

3D Multi Object Tracking (MOT), is one of the recently advanced areas in the field
of AI. 3D MOT algorithms are mainly developed to be used with autonomous vehi-
cles, where these algorithm estimate 3D poses (all 6 degrees of freedom including 3
Axis for translation and 3 axis for rotation) of the objects. Being computationally
heavy and a complex problem to solve, 3D MOT algorithms typically use a combi-
nation of multiple sensors including 3D LIDARs and multiple depth and monocular
cameras. There are only a few open source implementations of 3D MOT, using
a single monocular camera. Identifying 3D poses of objects with only one single
monocular makes these algorithms fit into our study, where we use rotation estima-
tion solely based on 3D MOT outputs. We discuss two popular algorithms that are
highly ranked in popular datasets.

2.5.1 CenterTrack

CenterTrack (Zhou et al., 2020; Zhou, Wang & Krähenbühl, 2019) is one of the state
of the art algorithms, being the best performer in KITTI (Geiger et al., 2013) and
MOT17 (Dendorfer, Osep, Milan, Schindler, Cremers, Reid, Roth & Leal-Taixé,
2021) benchmarks the time it is published. CenterTrack uses a more traditional
approach of tracking the central points of interested objects in contrast with most
tracking algorithms, that use tracking-by-detection approach, where they are usu-
ally complimented by a detection algorithm and uses clustering or different neural
networks to achieve tracking with the prior knowledge of objects. Tracking only
the central points of moving objects, makes CenterTrack faster than most networks.
Our study uses a modified version of CenterTrack that provides a prior knowledge
of object locations which increase the accuracy performance even further.

2.5.2 DEFT

DEFT (Detection Embeddings for Tracking) (Chaabane, Zhang, Beveridge &
O’Hara, 2021), is another rare tracker that does not use tracking-by detection
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methodology. Instead, DEFT uses an LSTM for motion constraints and completes
the joint detection and tracking by comparing the appearances of objects only by
using a single monocular camera. Similar to what this study applied to Center-
Track, an advantage of DEFT is that it can accept a detection algorithm to further
increase accuracy. Down side of the way it applied is it requires retraining DEFT
alongside the object detection algorithm, which decreases the modularity of such im-
plementation. DEFT is not chosen for this study, as it is simply performing worse
then CenterTrack in the benchmarks and in our configuration. The best performing
DEFT uses CenterNet (Duan, Bai, Xie, Qi, Huang & Tian, 2019), which uses a
similar approach of CenterTrack for object detection tasks.

2.6 3D Physics Simulation

Physics simulators are usually referred to computer software that includes a realistic
physics engine and preferably a photorealistic graphical user interface that represent
visuals. Collisions are modeled with fast collision checking libraries under the physics
engine in the background and realistic visuals are rendered in the front end. In the
context of our study we use physics engines to realistically recreate the accident and
integrate autonomous cars to conduct our use case studies.

2.6.1 LGSVL

LGSVL (Rong et al., 2020), is a simulator developed in Unity (Technologies, Tech-
nologies) game engine by electronic giant LG’s Silicon Valley Lab and features pho-
torealistic scenes, fast 3D LIDAR simulation, easily editable maps and vehicles.
LGSVL provides a modular interface to add and configure a variety of sensors and
provides off-the-shelf support for two of the most popular publicly available au-
tonomous driving stacks, Autoware and Baidu’s Apollo. Asides from Autoware and
Baidu users can integrate any autonomous driving stack via supported communica-
tion bridges, namely ROS, ROS2 and CyberRT. LGSVL has an extensive Python
Application Programming Interface (API) that can spawn dynamic and controllable
objects such as pedestrians and vehicles, along with a collection of useful static ob-
jects such as traffic lights. Our previous experience with Unity and the modular way
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that LGSVL is written are the main reasons this study has selected to use LGSVL.
Figure 2.1 shows the high level communication architecture between autonomous
driving stacks and LGSVL.

Figure 2.1 LGSVL integration with Autonomous Driving Stacks

2.6.2 CARLA

CARLA (Dosovitskiy, Ros, Codevilla & Antonio, 2017) is another autonomous driv-
ing simulator that is developed in Unreal Engine (Games, Games). Similar to
LGSVL, CARLA features photorealistic scenes, map generation with OpenDrive,
extensive sensor suite and ROS integration, as well as a scenario runner to easily
integrate and run test cases.

2.6.3 Gazebo

Gazebo (Koenig & Howard, 2004) is a popular robotics simulator that provides
a selection of some of the most popular physics engines such as ODE (Smith &
others, 2005), Bullet (Coumans, 2015) and DART (Lee, X. Grey, Ha, Kunz, Jain,
Ye, S. Srinivasa, Stilman & Karen Liu, 2018) for dynamic interactions. The ability
to change and integrate different physics engines gives Gazebo an edge against its
competitors, however Gazebo is typically considered to be less photorealistic than
CARLA and LGSVL, which are built on top of game engines. Although, gazebo
provides a large selection of sensors and extensive integration with ROS and ROS2
it does not have a direct support for spawning random traffic, and other dynamic
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objects that can be considered to be essential for autonomous car simulation.

2.7 Autonomous Driving Software Stacks

Although there are great advancements in autonomous driving technologies recently,
most of the work done are commercial and closed source. In this section we discuss
two popular open source methods that are available to use as autonomous driving
stacks. Autonomous driving stacks represents the software component of self driv-
ing cars. They are usually integrated with high end CPUs and GPUs along with a
collection of sensors. All the afore-mentioned simulators can provide realistic sen-
sors that are used in self driving cars with environmental noise features. So the
selection for autonomous driving stack here is solely based on software performance
and integrability. In this study we use autonomous driving stacks to test our test
case generation framework and demonstrate the usability of our software.

2.7.1 Autoware

Autoware (Kato, Tokunaga, Maruyama, Maeda, Hirabayashi, Kitsukawa, Monrroy,
Ando, Fujii & Azumi, 2018), is developed completely open source by efforts of nu-
merous companies together. It is fully compatible with ROS and ROS2. Supporting
ROS and ROS2 Autoware is compatible with almost all simulators in the current
market. Autoware is modular and ships with multiple software stacks for each driv-
ing module, such as perception, control and planning. This provides Autoware with
a flexibility to swap each module with custom algorithms. On the other hand this
flexibility causes Autoware harder to configure and use as is. Autoware uses RViz
(ROS Visualization) (Kam, Lee, Park & Kim, 2015) for data visualizations, which
is the default visualization tool for current ROS and ROS2 distributions.
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2.7.2 Apollo

Apollo (Xu et al., 2020; Zhu, Ma, Xu, Guo, Cui & Kong, Zhu et al.) is a commercial
AD stack of Chinese tech giant Baidu. Although being commercial and actually used
on roads, Apollo is open source and even easily integrable to custom hardware. There
are different versions of Apollo available, though we are only considering Apollo 5.0
in the context of this study, since 6.0 was published later into our development
progress. Apollo uses its own communication protocol, namely CyberRT for intra-
process communications, simulation and hardware bridges. Although, CyberRT is
not supported on all simulators and is a new protocol with steep learning curve,
LGSVL, provides an easy to use API to integrate with CyberRT. Apollo’s software
is designed as a modular framework and one can easily swap different modules such
as localization, perception and routing with custom modules. Apollo is shipped with
a verbose UI, namely Dreamview. Apollo is robust in lane following and responsive
to sudden changes in environment. In our tests we found that Apollo to be easier
to integrate and more ready and robust than Autoware in our configuration, thus
used it for running generated test cases.

2.8 Software Selection

Table 2.1 shows the final selections of software and their use cases that are discussed
in this chapter.

Table 2.1 Software selections in this study

Use Case Software Selection

2D Object Detection YOLO
2D Object Tracking TC Tracker
2D Object Segmentation In Place Activated Batch Norm
Camera Calibration Custom
Speed Estimation UW NVIDIA 2018
3D Object Tracking Modified CenterTrack
Simulator LGSVL
Autonomous Driving Stack Apollo 5.0
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3. Methods

Our ultimate goal with this study is to generate realistic test cases for autonomous
vehicles in an automated manner, to fill the lack of generating such test cases without
any human intervention. Although, (Huynh et al., 2019) seems to automate this
process, the datasets used are specifically prepared by NHTSA with humans in the
loop.

We wanted our approach to be generic, scalable and usable within research commu-
nities and industry. Thus, we are presenting a unique way to generate these test
cases, using only videos taken from monocular cameras around the world without
any prior knowledge in scene, crash or cameras. This increases the significance of
our study to an impressive potential of being capable of generating test cases from
every car crash video in the world. The analysis and scene reconstruction steps has
also potentials to be used in a wide range of applications including security, robotics,
film casting and law.

Our approach to the problem of constructing a 3D scene, and generating test cases
of AD stacks only using series of 2D images, has 3 main steps, which are:

• Analysis

• Scene Reconstruction

• Test Case Generation

3.1 Analysis

In the analysis step, we construct a special and rather complex image processing
pipeline that only takes one input, which being the original car crash video itself
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in a common video format such as mp4, flv or mkv. The pipeline outputs all the
necessary data to reconstruct the 3D scene.

The image processing pipeline consists of three different neural network and six
internal steps in total which can be listed as follows:

• 2D Object Detection

• 2D Object Tracking

• 2D Object Segmentation

• Camera Calibration

• 2D Speed Estimation

• 3D Object Tracking

The full input and output configuration of the pipeline can be seen in Figure 3.1.

Figure 3.1 Image processing pipeline used in the analysis step

3.1.1 2D Object Detection

The first step is 2D object detection where a CNN, YOLOv4 is used for classification
of objects. YOLO can classify and mark the objects with 2D bounding boxes, clas-
sification labels, detection frame IDs and confidence values. We retrained YOLO’s
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pre-trained COCO model on a custom dataset that includes a mix of two available
datasets, namely Jakarta Smart City Dataset and KITTI. The motivation behind
retraining the network is to achieve better performance on the videos that are taken
from high locations. An example output frame from this step can be seen in Figure
3.2.

Jakarta Smart City Dataset (Caldeira, Fout, Kesari, Sefala, Walsh, Dupre, Khaefi,
Setiaji, Hodge, Pramestri & Imtiyazi, 2020) contains 700GB of raw video footage
from 7 CCTV cameras around the Jakarta City to better analyze traffic behaviour
around the city. Although the dataset was not labeled, we randomly extracted
2000 images and labeled from this dataset to increase our detection performance on
CCTV camera footages.

KITTI (Geiger et al., 2013) is one of the most popular datasets for autonomous cars
and consists over 15000 labeled 2D and 3D test and training images. KITTI has
been used to analyze the performance of current state of the art methods including
(Weng, Wang, Held & Kitani, 2020) and (Zhou et al., 2020).

Figure 3.2 Output of YOLO’s 2D Object Detection in one of the analyzed crashes

3.1.2 2D Object Tracking

The second step in the pipeline is 2D object tracking. To analyze a car crash
one needs to know more than the labels of the objects. As our study analyzes
attributes for every unique object in the videos, a unique id for each object needs to
be assigned. The unique id assignments are 2D tracking neural networks. For 2D
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tracking, we are using TC Tracker (Tang et al., 2018b), a proven clustering based
tracking method that runs on Matlab. This method was used for University of
Washington’s 2018 NVIDIA AI City Challenge implementation with great success.
The input for this algorithm is the output of 2D detection step which are the 2D
bounding boxes, classification labels, detection frame IDs and confidence values.
The outputs contains one extra column which is the unique id of the object. A
sample output frame from 2D tracking step is visualized in Figure 3.3.

Figure 3.3 Output of TC Tracker’s 2D Object Tracking in one of the analyzed
crashes

3.1.3 2D Object Segmentation

The third step in the pipeline is 2D object segmentation. Object segmentation is
especially important for the scalability of this study and allows many of the potential
future works to be feasible. Object segmentation is used to detect the vehicles and
roads in masks. Masks are more precise representation than bounding boxes to, as it
can represent all the edges correctly. The detections on this step are used as a base
for camera calibration in the analysis step and mapping the points between road
from the video and map of the simulation in the scene reconstruction step in Section
3.2. The image segmentation algorithm used in our analysis is a pre-trained version
of In Place Activated Batchnorm (Bulo et al., 2018) network using WideResNet-38.
An output of 2D segmentation from the same video can be seen in Figure 3.4
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Figure 3.4 Output of 2D Object Segmentation in one of the analyzed crashes

3.1.4 Camera Calibration

The next process in the pipeline is camera calibration. The camera calibration is
executed on the output images of 2D object segmentation process. The single frame
on the video with the most cars detected is selected by default with an option given
to user to select any frame desired. In the case where there are more than one frames
that contain the same number of maximum cars detected, the first one to appear is
selected.

This process starts with, selecting a car that is considered aligned with the traffic
lines for doing the calibration. The car is selected via an additional pre-processing
step that finds the relative angle between all the cars and all the traffic lines. The
smallest relative value is selected.

Then an affine transformation is applied to image to find the rotation between the
camera and the car. The affine transformation is applied such that the car is aligned
with vertical axis of the image. In Figure 3.5, the car with id “3” is selected by the
calibration program and the image is rotated with affine transformation as such.
The rotation amount from the affine transformation is directly passed to the scene
reconstruction step.
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Figure 3.5 Output of 2D affine transformation in one of the analyzed crashes

The full 3D calibration needs at least 2 points in each of the 3D Cartesian axes.
These points are selected from the chosen car’s furthest points of each axes, namely,
from side (Y axis), back (X axis) and height (Z axis). Then the pixel values are
compared with average sedan car length, width and height to find pixel to meter
ratios which are also directly passed to scene reconstruction step. The average values
that are used in this study are taken from 2020 model Renault Megane, which as
follows:

• Width: 1814mm

• Length: 4356mm

• Height: 1436mm

Lastly, the full camera calibration containing intrinsic and extrinsic parameters is
completed applying the open source implementation of (Lee, Lee & Hwang, 2013)
by using cars instead of people, which also uses these 6 points for self-calibration.

The assumptions in this process are as follows:

• The video contains traffic lines.

• At least one car is close to parallel (within 15 degrees) with a traffic line.
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3.1.5 Speed Estimation

The fifth step in this pipeline is speed estimation. The inputs to this step are
the outputs of 2D tracking step and the full camera calibration from the relevant
process. The open source speed estimation implementation of (Tang et al., 2018b)
is used with pre-defined minimum and maximum speed constraints. The method
essentially calculates how much each vehicle has travelled using the 2D tracking and
calibration information and takes the derivative of position over time to estimate
the speed. The method also applies a projection correction, which uses the closer
objects as a base to estimate farther object’s speeds to decrease estimation errors
caused by the depth. Figure 3.6 show an image from the output of speed estimation
process. The speeds are labeled as a unit of km/h.

Figure 3.6 Output of speed estimation in one of the analyzed crashes

3.1.6 3D Object Tracking

The final step of the image processing pipeline is 3D tracking. Although the previous
outputs of the pipeline is sufficient to reconstruct a scene, the tests showed that the
car’s rotation errors are too high to ignore and be compensated. These tests were
conducted such that the rotations of the cars were to be calculated using a quintic
G2-spline trajectory generation from the 2D spline path that is following the center
of the car’s bounding boxes from 2D tracking process (Piazzi & Guarino Lo Bianco,
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2002), with the form of equation 3.1.

(3.1) θ(t) = a0 +a1t+a2t
2 +a3t

3 +a4t
4 +a5t

5

The trajectory generation does not account the camera calibration, thus causes high
rotation errors depending on how angled the camera is looking. This problem is
solved by this extra 3D object tracking process which accounts for camera rotations
and thus finds the rotations, namely the yaw angle, of the cars more accurately.

3D multi object detection (MOT) is common to be done using a combination sen-
sors, being primarily developed for autonomous car applications. Using only video
images to achieve a full 3D scene reconstruction limited our study to be able to use
the camera only methods, which is not the usual case and performs poorer than the
multi sensor methods understandably. Out of all camera only methods we have ex-
perimented with we found CenterTrack (Zhou et al., 2020) to be the most promising
by using the object centers with the combination of camera calibration (Yin, Zhou
& Krähenbühl, 2020; Zhou et al., 2019) method to be the most promising, which is
also the best performing camera only method in Waymo Open Dataset (Sun et al.,
2020).

The method is essentially an end-to-end algorithm, which also derives the 2D object
detection, tracking and speed estimation itself. However, as an end-to-end solution
CenterTrack performed poorly, finding the vehicles. This is mainly due to Center-
Track being trained in NuScenes dataset (Caesar et al., 2020), which only contains
footages from car dash cameras, where this study mainly contains static footages
taken from CCTV cameras. Due to limited GPU resources and the lack of 3D MOT
datasets that contain CCTV footages, instead of training this network, our study
modifies it such that it takes the 2D tracking and speed estimation information
from the previous processes of this pipeline along with the already used camera
calibration matrices. The network is informed such that it now assumes that there
is a unique object with a specific speed in a location exists, and generates the 3D
tracking estimation based on this initial estimate. This increased the detection and
tracking performance of this network and made it useful for our study. Although the
network still generates full 3D tracking estimation with 3D bounding boxes and 3D
speed estimations, we only use the rotation angle outputs of this network, since the
performance of 2D tracking, and speed estimation algorithms were already enough
for an accurate estimation of car locations in scene reconstruction step. Figure 3.7
shows a sample image that contains 3D bounding boxes, newly assigned unique ids
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and speed estimation (with pink arrows) of the 3D tracking output.

Figure 3.7 Output of 3D tracking network in one of the analyzed crashes

3.1.7 Outputs

The final output of the image processing pipeline consists of 2 files, one file including
all the information necessary to locate and move the objects in the scene, and
another file containing a one line calibration information to make pixel to meter
transformations and define necessary rotation matrices. In our study we define the
format of the former file as follows, which is a redefined version of the format being
used in Multi Object Tracking (MOT) Challenge (Milan, Leal-Taixe, Reid, Roth &
Schindler, 2016) as follows:

< class >,< frame >,< id >,< bb_left >,< bb_top >,< bb_right >,< bb_bottom >,

<speed>, <confidence>, <rotation>

and the definitions for these elements are stated as follows:

• class: Numerical representation of detected class of the object (such as 1 for
car, 2 for pedestrian etc.)
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• frame: The frame number (counting from 1) of the data in this line.

• id: Unique tracking id of the detected object

• bb_left: The top left point’s X value (in pixels) of the 2D bounding box,
that the object is detected.

• bb_top: The top left point’s Y value (in pixels) of the 2D bounding box,
that the object is detected.

• bb_right: The bottom right point’s X value (in pixels) of the 2D bounding
box, that the object is detected.

• bb_bottom: The bottom right point’s Y value (in pixels) of the 2D bounding
box, that the object is detected.

• speed: The speed of the object in km/h.

• confidence: Probability value of the object’s presence between 0 and 1, ac-
cording to 3D tracking algorithm.

• rotation: Heading angle of the object with respect to the camera in radians.

A sample portion of an output file can be seen in listing 3.1.
1 1 125 3 428 85 553 205 77.370 0.87 -1.72138520249562
2 1 125 4 626 37 713 108 73.160 0.84 -1.4583021104770997
3 1 125 6 186 125 443 220 7.441 0.91 -0.1724041104169461
4 1 126 3 425 88 557 209 75.123 0.87 -1.7215194937681721
5 1 126 4 624 38 711 110 71.883 0.83 -1.4501205016055827
6 1 126 6 189 125 445 220 0.000 0.92 -0.13362234296247422

Listing 3.1 A sample from the data output file of an analysis step

The calibration file is a one line file which contains the following information:

< x_px_to_meter >,< y_px_to_meter >,< z_px_to_meter >,< rotation >

where:

• x_px_to_meter: A calibration parameter to transform pixel values in the
data output file to meters in X axis.

• y_px_to_meter: A calibration parameter to transform pixel values in the
data output file to meters in Y axis.
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• z_px_to_meter: A calibration parameter to transform pixel values in the
data output file to meters in Z axis.

• rotation: The amount of rotation that should be applied to data output
around Z axis with respect to the scene in radians.

An example of such calibration file can be seen in listing 3.2.
1 0.26179 55.9411764706 0.022222 10.3333333333

Listing 3.2 A sample calibration file of an analysis step

The outputs of the analysis step forms the inputs of the scene reconstruction step.

3.2 Scene Reconstruction

The scene reconstruction step includes spawning vehicles and other objects read from
the input, creating the map, traffic lights, weather and all the related environment
in a physics simulator. For the implementation simplicity this study only models the
vehicles in the 3D Physics simulator to demonstrate the capabilities of our image
processing pipeline.

The simulator chosen for this task, LGSVL, contains different maps, vehicles and
allows users to modify the environment variables, such as changing the color of
traffic lights and weather through a Python API. However the maps are loaded as
3D meshes and normally constructed through a detailed Unity User Interface, that
can be found in the source built version of the simulator. LGSVL and no other
simulator to our knowledge does not support automatic map generating through
road definition files. Thus, although part of the environment such as roads and
traffic lights are analyzed in analysis step, the simulation only includes the vehicles
and uses the same map for every video.

In this step, the input speeds and locations are read from the outputs of analysis
step and changed to a format available from the Python API, trajectories are piped
through a Savitzky–Golay filter (Merkle & Discher, 1964) and motions are limited
in accordance with the velocity, acceleration and jerk limits of the vehicles. Sav-
itzky–Golay filter are used to smooth the this time-series (in this case frame-series)
data to achieve smoother motion instead of the jiggly motion output from the track-
ing. A sample output from the Savitzky–Golay filter applied to a tracked vehicle’s
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X and Y positions are given in Figure 3.8.

Figure 3.8 Output of Savitzky–Golay filter applied to the tracking data of a
tracked vehicle

Then the camera is placed in an automatically determined location in accordance
with the camera calibration matrix, estimated depths of the cars are pixel to meter
ratios.

One last important point in the scene reconstruction step is matching the actual
roads in the accident and the simulator. The roads may not match exactly with
the accident and Borregas Ave map, that is used for the simulation. To automate
that process, the roads in the simulation map are hardcoded to be matched with the
road on the video. Each lane in the simulator is assigned a unique id and direction
with a spawning position. The vehicles on the accident videos are matched to these
hardcoded spawning positions to achieve a realistic mapping between the video and
simulator map. Figure 3.9 shows an empty Borregas Ave map from LGSVL, that is
used for all the scene reconstructions.
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Figure 3.9 Borregas Ave in LGSVL

A rotation and translation is then applied to every tracked car’s position in accor-
dance with the map matching and pixel to meter ratios taken from the analysis step.
The rotation and translations are applied in the forms of a simple 2D translation
and rotation matrices, which can be seen in 3.2 and 3.3.

(3.2) R =
 cosθ −sinθ

sinθ cosθ



(3.3)


x′

y′

1

 =


1 0 tx

0 1 ty

0 0 1



x

y

1



All the translation and rotations are applied relative to a reference vehicle. This
so called “reference vehicle” is the same vehicle that is selected in the 2D object
segmentation step with the lowest relative angle difference to the closest traffic line.
The z position of the vehicles are ray casted to the closest ground point in the map
which is another assumption that the accident happened in a flat surface.

In the ray casting implementation our study uses the readily available raycasting
method through LGSVL’s Python API. The method imitates a car’s position as a
light being refracted through hitting an object. The car here is simulated as a light
source and the object is simulated the closest road.

With all the known positions, speeds and time steps for each tracked vehicle, the
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vehicles are placed into their spawn locations and spawned in the time step where
they are appeared in the video. Due to a reported known bug in the LGSVL
simulator, these vehicles are visualized floating, but not included in physics. Figure
3.10 shows a bird-eye 2D view of the tracked vehicles after the transformation process
and before the full 3D scene reconstruction. Here the vehicles are represented as
blue arrows, where the starting point of the arrow represents the center of a car and
the direction of the car is aligned with the actual yaw angle. The tracked path is
represented as red dots and the unique IDs are placed on top of each vehicle.

Figure 3.10 2D bird-eye view of tracked vehicles

With all these steps including motion filtering, camera placement, spawning vehicles
and map matching the scene can be fully reconstructed. Figure 3.11 shows a side
by side comparison between the actual accident and the reconstructed accident in
LGSVL simulator by using Borregas Ave Map. Note that the color of the cars are
ignored in this simulation.
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(a) Original accident

(b) Recreated accident

Figure 3.11 Side by side comparison of the actual accident and the recreated
accident

3.3 Test Case Generation

After the simulator is reconstructed the vehicles that are involved in the accident
are swapped with autonomous cars one by one and various tests are done for each
swapped vehicle.
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At this step, the video is already analyzed and the scene is reconstructed in LGSVL.
All the tester should do is to conduct the test by defining a few parameters and start
the automated tests. In these tests, there are two types of vehicles: non playable
characters (NPCs) and ego cars (or car under test). This study assumes that only
one vehicle is an ego car and the rest of the scene is replayed by NPCs. NPCs follow
their usual trajectory that is already derived in analysis and scene reconstruction
steps. However after their trajectories are over NPC vehicles are ordered to follow
the closest lane via Python API, so that an analysis can be done in the case accident
is avoided by the ego var. A parametric post accident time is added to the simulation
runs for after accident analysis. In the simulation, NPC vehicles are selected to be
random Sedan cars. Ego car can be selected by the user and typically is provided
by the autonomous driving stack to the simulator.

Tests are automatically stopped after a crash is detected between the ego car and
any of the other vehicles. Although the test results are always either a pass or a
fail, the test conductor can select to retrieve valuable data, including various raw or
processed data from sensors, throttle and odometry to further analyze the reaction
of the ego car.

Technically the ego car is the autonomous vehicle, and it is expected from the test
conductor to provide an autonomous driving stack. LGSVL’s modular interface
allows one to swap and test different autonomous driving stacks with ease while
providing support for ROS, ROS2 and Cyber RT with modular and extensive API.
By default our study controls the ego car with Apollo 5.0 (Xu et al., 2020; Zhu,
Ma, Xu, Guo, Cui & Kong, Zhu et al.), the Chinese tech giant Baidu’s autonomous
driving stack. Apollo is publicly available, capable of thoroughly following it’s given
route, extensible and scalable with their API and Cyber RT protocol. LGSVL
provides a bridge to communicate with Apollo, where LGSVL provides the data from
simulated sensors, Apollo uses a combination of different software stacks including
navigation, localization, mapping, perception to calculate the necessary throttle
and control the ego car. Although typically the target location is given by the users
in autonomous vehicles, this study automates this process, such that the target
waypoint is automatically calculated by forward predicting the tracked vehicle’s
desired position in time via curve fitting and provided to Apollo’s internal stacks.
The target waypoint of the autonomous vehicle is selected as the closest lane of the
curve fitting location using a pre-defined number of seconds after the accident would
have happened by default and defined as a parameter. The accident time here is
defined as the first collision between any of the vehicles in a dry run that is done
without an ego car.
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As mentioned above out of two popularly available autonomous driving stacks, we
use Baidu’s Apollo. Apollo comes with a ready-to-use interface through Python API
of LGSVL, which was of one the main reasons why this study uses it, asides from
it’s stability over the other popular AD stack, Autoware Kato et al. (2018). The
autonomous cars of Apollo in LGSVL contains the following sensors:

• GPS / INS

• 3D LIDAR

• Radar

• IMU

• Colored Monocular Cameras

• Stop Line Sensor

In addition to these sensors we have included a 3D Ground Truth sensor and a
Traffic signal sensor that retrieves ground truth information from the simulator. 3D
Ground Truth sensor pipes a collection of 3D bounding boxes that represents the
nearby vehicles that are in a certain range of the autonomous vehicle. Traffic signal
sensor automatically recognizes the color of the nearby traffic lights and reports it to
the vehicle. Both sensors are used instead of the unavailability of Apollo’s Perception
system that requires very high-end GPUs to work on, which was unavailable to our
study due to limited resources. A full view of Apollo working in LGSVL can be
seen in Figure 3.12. The left is an LGSVL simulation istance in Borregas Ave with
random traffic, and the right shows the UI monitor of Apollo, namely Dreamview.

Figure 3.12 Apollo in LGSVL

The autonomous cars have two essential key parameter indicators (KPI) when it
comes to crash analysis. The two KPIs are:

• Time to Collision (TTC) (Archer, 2005)

• Distance to Collision (DTC)
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DTC is a sub-part of TTC and TTC is known to be objectively good at analyzing
car crashes, in the sense that it also includes DTC and other parameters. Thus, the
tests are generated by using TTC as the KPI.

After the crash time is calculated with the afore-mentioned strategy. Initial TTC can
be calculated by simply taking the difference between current simulation time and
crash time. The tests are conducted such that control of the ego car is overridden
by the calculated speed and position from the analysis step until a user or computer
defined time to collision (TTC) or distance to collision parameter is satisfied, where
the controls are given to the autonomous driving stack. By default the TTC value
is selected as a list of values in increments of 100 milliseconds starting from the
maximum value possible (start of the video t= 0) and 1 second to crash.
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4. User and Case Studies

To evaluate our approach of video analysis and scene reconstruction we have con-
ducted a user study among a collection of heterogeneous age and jobs of participants.
Along with the user study we have also conducted a set of experiments to evaluate
performance of Apollo AD stack on selected accidents, which would show the capa-
bilities of our test case generation part of the pipeline. Evaluating car crashes can
be hard and subjective to people’s perspective. One of the main reasons for us to
evaluate our simulation performance with a user study is the subjectivity, caused by
the nature of car accidents. Another important reason was that the lack of ground
truth and labeled data to evaluate our study. A similar study that is introduced
prior in this thesis (Huynh et al., 2019), also uses a similar approach to evaluate
simulation performance.

4.1 Subjects

Our evaluation consists six different videos that are taken from various YouTube
videos. These videos are particularly selected to evaluate different aspects of a car
accident. Table 4.1 show the selected aspect of each accident.

Table 4.1 Aspects of the accidents that are used in evaluation

Video Crash Aspect
1 Side Impact, Footage from Front
2 Side Impact, Footage From Back
3 Front Impact
4 Side Impact, Tilting Car
5 Rear Impact
6 Dragging, Night Accident
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4.2 Evaluation of the User Study

In the user study afore-mentioned six videos have been shown to participants. The
participants were given a short introduction on the thesis motivation, videos and
survey questions, then asked to first answer personal questions, then answer each
question after seeing the respective video. The participants were allowed to watch
the videos multiple times. The videos here are only to evaluate the performance of
scene reconstruction and analysis steps and do not contain any autonomous car. A
sample image from the video can be seen in Figure 4.1. Each video here is a collage
of 4 videos:

• Top left consists the original raw footage of the car crash.

• Top right, consists the output of the image processing pipeline that tracks the
cars, assigns a unique ID for each car and estimates the speed of the cars in
km/h.

• Bottom left, consists the bird eye view of the scene in 2D with the unique ID’s
of the cars (which are represented as arrows)

• Bottom right, consists the final 3D reconstruction of the same car crash in the
physics simulation, LGSVL.

Figure 4.1 A sample frame that is taken from the Video 4 that is shown to user
study participants

The user study consists of the following personal questions to evaluate how hetero-
geneous the test group is:
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• What is your current job?: Short text answer

• What is your education level?: Multiple choice between High School, Under-
graduate, Master, PhD and Other

• What is your age?: Multiple choice between 15-19, 20-24, 25-29, 30-34, 35-44,
45-54 and 55+

And the following question were repeated for each video:

• What was the cause of the crash?: Drivers, Vehicles Environment, Not Sure,
Other

The following statements were also repeated and asked to be graded within a likert
scale that contains, Strongly Disagree, Disagree, Neutral, Agree and Strongly Agree:

• All the cars directly involved in the accident are detected. (Note that the cars
that are not directly involved in the accident are not required to be detected.)
(Top right video)

• Motions of the cars look realistic. (Bottom right video)

• Speeds of the cars look realistic. (Top right video)

• Simulation looks realistic. (Note that the environment, including the streets,
traffic lights, pedestrians, buildings, and weather conditions are not meant to
be simulated. Answer this question by solely focusing on the cars motions.)
(Bottom right video)

• Simulation includes the cause of the crash (Bottom right video)

4.3 Analysis and Discussion of User Study

The participant were a heterogeneous group of 37 people with a variety of different
jobs, changing from field experts to students, with ages dominant around 20 to
29. Although the dominant education level was undergraduate, our study included
responses from a mix of master’s and PhD levels of participants as well. Figures
4.2, 4.3 and table 4.2 shows the respective answers to personal questions.
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Figure 4.2 Age distribution among user study participants

Figure 4.3 Level of education distribution among user study participants
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Table 4.2 Job distribution among user study participants

Job Number of Participants
Student 17
Software Engineer 5
Research Assistant 3
Control Engineer 3
Accountant 1
Brand Manager 1
Chief of Staff 1
Human Resources 1
Naval Architecture And Marine Engineer 1
Researcher 1
Teacher 1
Worker 1

One of our studies top priority is to include the cause of the crash in the simulated
environment, which would create the backbone of a realistic test, that can be used
to show capabilities of AD stacks in real life accident scenarios. Thus, the first
question asked to the participants was “What was the cause of the crash?”. Figure
4.4 shows the overall results that is found by taking the average response of each
video, where users could select from Drivers, Environment, Vehicles, Not Sure and
Other. These causes were determined from an official NHTSA report (Thorn et al.,
2018). Table 4.3 shows individual results for each video. These answers imply that
most accidents are considered to be driver fault, and can be avoided with an AD
stack. Although there is an overall agreement on driver fault in each video, these
responses show that there is much subjectivity between each participant.
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Figure 4.4 Overall responses to cause of the crash of different videos

Table 4.3 % of participants response to cause of the crash in video subjects

Cause of the crash
/ % of Participants

Drivers Environment Vehicles Unsure Other

Video 1 94.59 2.70 0 2.70 0
Video 2 62.16 13.51 13.51 8.11 2.70
Video 3 75.68 10.81 5.41 5.41 2.70
Video 4 97.30 0 0 2.70 0
Video 5 89.19 8.11 0 2.70 0
Video 6 94.59 2.70 0 0 2.70

The first question that is graded in the likert scale was to analyze our image process-
ing pipelines performance and participants were asked to answer this question solely
on the cars that are directly involved in the accident. Figure 4.5 shows the overall
response to this question, while Table 4.4 shows answers to individual answers to
this question. From the responses we can confidently say that our image processing
pipeline was successful on detecting and tracking vehicles that are involved in the
accident.
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Figure 4.5 Overall responses to detection success of different videos

Table 4.4 % of participants response to detection success in video subjects

Detection Success /
% of Participants

Strongly Agree Agree Neutral Disagree Strongly Disagree

Video 1 91.89 8.11 0 0 0
Video 2 97.3 2.7 0 0 0
Video 3 94.59 2.7 0 2.7 0
Video 4 89.19 10.81 0 0 0
Video 5 94.59 2.7 2.7 0 0
Video 6 100 0 0 0 0

The second question was asked for the motions that are conducted in the physics
simulator were realistic or not. This question was asked to evaluate our rotation,
translation and trajectory estimation of the vehicles in the accident video. Figure
4.6, which is showing the overall response among all videos, show that our average is
on agree. This implies that our rotation, translation and trajectory estimations were
not as successful as our detection algorithm but still accurate enough to convince
different participants sense of realism. Table 4.5 shows individual results for each
video, where we either agree or high-end neutral in each individual video.
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Figure 4.6 Overall responses to motion success of different videos

Table 4.5 % of participants response to realistic motions in simulation in video
subjects

Realistic Motions /
% of Participants

Strongly Agree Agree Neutral Disagree Strongly Disagree

Video 1 18.92 59.46 13.51 8.11 0
Video 2 13.51 21.62 43.24 18.92 2.7
Video 3 45.95 32.43 10.81 10.81 0
Video 4 43.24 21.62 24.32 8.11 2.7
Video 5 43.24 24.32 18.92 13.51 0
Video 6 29.73 27.03 24.32 16.22 2.7

The third question asks if the simulation includes the cause of the crash, which is
a subjective but crucial aspect of our studies success. This question can also be
interpreted as “Does the simulation contain the elements that lead to an accident?”.
Figure 4.7 shows the overall responses averaged from each video, and Table 4.6 shows
individual answers for each video. The answers indicate that our study includes the
cause of the crash in every video by averaging strongly agree. This shows that
our simulation is realistic in the sense that if an autonomous car passes the test in
simulation, it is believed that it would be able to avoid accident in real life too.
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Figure 4.7 Overall responses to including cause of the crash in simulation of
different videos

Table 4.6 % of participants response to inclusion of the crash in simulation in
video subjects

Simulation Includes
Cause of Crash /
% of Participants

Strongly Agree Agree Neutral Disagree Strongly Disagree

Video 1 62.16 24.32 13.51 0 0
Video 2 45.95 29.73 21.62 2.7 0
Video 3 67.57 21.62 5.41 5.41 0
Video 4 64.86 21.62 13.51 0 0
Video 5 67.57 10.81 10.81 5.41 5.41
Video 6 62.16 21.62 10.81 5.41 0

The fourth question is a general evaluation question that is asked to participants
on how realistic in general they find the simulation. This question involves the
environment, crash, physics, rendering and every other factor that can affect the
simulation’s realism aspect. This question partially includes our selection of simu-
lation along with our scene reconstruction algorithm. Table 4.7 shows % number of
participants that responded that particular answer in each video. Figure 4.8 gives
an overall look, averaging all videos. From the responses we can interpret that our
simulation is realistic and our selection of simulation is well fit, but there is much
room for improvement as we averaged high-end agree overall and between neutral,
agree and strongly agree on videos. Particularly the simulation of the second video
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was not found realistic, caused by a drift in one of the vehicle’s rotation at the start
of the video.

Figure 4.8 Overall responses to realistic simulations of different videos

Table 4.7 % of participants response to realistic simulations in video subjects

Realistic Simulation /
% of Participants

Strongly Agree Agree Neutral Disagree Strongly Disagree

Video 1 43.24 51.35 2.7 2.7 0
Video 2 24.32 29.73 35.14 10.81 0
Video 3 35.14 40.54 18.92 5.41 0
Video 4 37.84 24.32 21.62 13.51 2.7
Video 5 48.65 24.32 18.92 8.11 0
Video 6 35.14 27.03 27.03 10.81 0

The final question of the user study was whether the speeds of the cars look realistic
or not. Although this could have been measured with a ground truth data, there is
no dataset that includes car accidents with speeds labeled, and the information that
is measured by the local police through radars and other sensors are confidential and
not available on request. We have asked users to answer this question through how
fast they think the vehicles are moving in the video in km/h. The overall answer is
strongly agree as can be seen from Figure 4.9 and Table 4.8 shows that we average
agree or strongly agree on every video subject. The results show that our speed
estimation estimates speeds realistically according to the participants opinion.
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Figure 4.9 Overall responses to realistic speeds of different videos

Table 4.8 % of participants response to realistic speeds in video subjects

Realistic Speed /
% of Participants

Strongly Agree Agree Neutral Disagree Strongly Disagree

Video 1 48.65 37.84 10.81 2.7 0
Video 2 32.43 43.24 18.92 2.7 2.7
Video 3 67.57 24.32 0 8.11 0
Video 4 72.97 21.62 5.41 0 0
Video 5 59.46 18.92 13.51 8.11 0
Video 6 45.95 32.43 10.81 10.81 0

In the light of our user study, we can interpret that our simulation serves as a solid
proof of concept, that includes realistic speed estimation, tracking information and
realistic simulation. The accident is convincingly recreated in the physics simulator
according to most participants. Although there is still much room for improvement
and considering the various limitations of this study, even the current version of this
study serves as a solid foundation for future works.
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4.4 Case Study

Along with the user study, we’ve tested Apollo 5.0 AD stack by utilizing the test
case generation steps in addition to analysis and scene reconstruction, to produce
automated test cases and run the tests over the same six videos to evaluate the
performance of Apollo 5.0 on avoiding these accidents. All the tests are conducted
in a computer with following configuration:

• CPU: i7-9750H

• RAM: 16GB

• GPU: Nvidia GeForce GTX 1660Ti

• OS: Ubuntu 18.04.5

• Kernel: 5.4.0-74

Other versioning of software that is used in this case study are as follows:

• LGSVL: 2021.1

• LGSVL API: Modified version of Preview (Alpha) Release

• Apollo: 5.0

• Python: 3.6.9

The test process were conducted such that a specific vehicle was selected manually
for each video and the results were analyzed in terms of a crash happening or not.
The only variable that is changed between tests are time to collision with increments
of 0.1 seconds until time to collision is evaluated as less than 1 second. Tables 4.9,
4.10, 4.11, 4.12, 4.13, 4.14 shows the results for each respective crash that is derived
from afore-mentioned videos.
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Table 4.9 Accident results of Apollo 5.0 on the first crash

Video Time To Collision Tested Car ID Crash
1 4.0 3 No
1 3.9 3 No
1 3.8 3 No
1 3.7 3 No
1 3.6 3 No
1 3.5 3 No
1 3.4 3 No
1 3.3 3 No
1 3.2 3 No
1 3.1 3 No
1 3.0 3 No
1 2.9 3 No
1 2.8 3 No
1 2.7 3 No
1 2.6 3 No
1 2.5 3 No
1 2.4 3 No
1 2.3 3 No
1 2.2 3 No
1 2.1 3 Yes
1 2.0 3 Yes
1 1.9 3 Yes
1 1.8 3 Yes
1 1.7 3 Yes
1 1.6 3 Yes
1 1.5 3 Yes
1 1.4 3 Yes
1 1.3 3 Yes
1 1.2 3 Yes
1 1.1 3 Yes
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Table 4.10 Accident results of Apollo 5.0 on the second crash

Video Time To Collision Tested Car ID Crash
2 1.8 8 Yes
2 1.7 8 Yes
2 1.6 8 Yes
2 1.5 8 Yes
2 1.4 8 Yes
2 1.3 8 Yes
2 1.2 8 Yes
2 1.1 8 Yes
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Table 4.11 Accident results of Apollo 5.0 on the third crash

Video Time To Collision Tested Car ID Crash
3 3.6 2 No
3 3.5 2 No
3 3.4 2 No
3 3.3 2 No
3 3.2 2 No
3 3.1 2 No
3 3.0 2 No
3 2.9 2 No
3 2.8 2 No
3 2.7 2 No
3 2.6 2 No
3 2.5 2 No
3 2.4 2 No
3 2.3 2 No
3 2.2 2 No
3 2.1 2 No
3 2.0 2 No
3 1.9 2 No
3 1.8 2 No
3 1.7 2 No
3 1.6 2 Yes
3 1.5 2 Yes
3 1.4 2 Yes
3 1.3 2 Yes
3 1.2 2 Yes
3 1.1 2 Yes

Table 4.12 Accident results of Apollo 5.0 on the fourth crash

Video Time To Collision Tested Car ID Crash
4 1.5 2 Yes
4 1.4 2 Yes
4 1.3 2 Yes
4 1.2 2 Yes
4 1.1 2 Yes
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Table 4.13 Accident results of Apollo 5.0 on the fifth crash

Video Time To Collision Tested Car ID Crash
5 2.1 4 No
5 2.0 4 No
5 1.9 4 No
5 1.8 4 Yes
5 1.7 4 Yes
5 1.6 4 Yes
5 1.5 4 Yes
5 1.4 4 Yes
5 1.3 4 Yes
5 1.2 4 Yes
5 1.1 4 Yes
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Table 4.14 Accident results of Apollo 5.0 on the sixth crash

Video Time To Collision Tested Car ID Crash
6 3.6 2 No
6 3.5 2 No
6 3.4 2 No
6 3.3 2 No
6 3.2 2 No
6 3.1 2 No
6 3.0 2 No
6 2.9 2 No
6 2.8 2 No
6 2.7 2 No
6 2.6 2 No
6 2.5 2 No
6 2.4 2 No
6 2.3 2 No
6 2.2 2 No
6 2.1 2 No
6 2.0 2 No
6 1.9 2 No
6 1.8 2 No
6 1.7 2 No
6 1.6 2 No
6 1.5 2 No
6 1.4 2 No
6 1.3 2 No
6 1.2 2 No
6 1.1 2 No

As can be analyzed from these test results, every accident that we have conducted
the tests on has a “point of no return” as expected. The point of no return is defined
as the AD stack under test, cannot prevent the accident after this point. This can
either be between start of the appearance of the ego car and 1 second, below 1
second or prior to appearance of the car in the video, or after there is 1 second to
collision. For example the first video has the ”point of no return“ in between, the
sixth video has it under 1 second mark and the fourth video has it before the ego
car appeared in the video. The point of no return being before the accident implies
that we need to analyze back in time of the video to find a non-accident test run,
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which our study currently is not capable of. If the point of no return is less than 1
second the tests can be rerun again to manually include times under 1 second TTC.

This tests show that AD stacks can avoid the accident when they are replaced with
human drivers in certain cases. This also proves the capability of our software to
perform analysis, scene reconstruction and test case generation steps successively
to achieve a full end to end pipeline to generate runnable test cases for AD stacks
using a physics simulator with the only input resource being the accident videos.

The time our software takes for each step from image processing pipeline to test
case generation and execution, using a 2D video input from scratch with our current
configuration is given in Table 4.15. Here we can see a strong correlation between
number of test cases generated and test case execution time, which has the most
significant percentage of total time in an end-to-end run. Test case generation is
considered only generating runnable test case files, which happens quickly, using the
apriori information from scene reconstruction step.

Table 4.15 Time needed to execute each step in our study

Video Video Length Analysis Scene Rec. Test Case Gen. No. of Test Cases Test Case Exe. Total Time
1 10 300 130 13 30 2250 2693
2 5.8 174 75 8 8 566.4 823.4
3 6.3 189 82 9 26 1853.8 2133.8
4 3.2 96 42 6 5 341 485
5 4 120 52 7 11 759 938
6 6.2 186 81 9 26 1851.2 2127.2
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5. Threats to Validity

This study contains a variety of restrictions and assumptions causing threats to
validity of the experiments. These threats can be analyzed for each step in our
study.

Much of the restrictions that affects the other steps are stemming from the analysis
step. Here we use a multi process image processing pipeline to achieve a detailed
analysis of how the crash has happened. Various different neural networks that we
use, to which comes with various assumptions and accuracy limitations that are
stated in chapter 3. Specifically the speed estimation process has various different
assumptions including maximum and minimum speeds and average speeds of the
cars. Camera calibration process assumes that there is at least one traffic line where
at least one vehicle is aligned with as well as assuming every car analyzed are an
average sedan size car. Although we analyze the roads in object segmentation step
we don’t use it and don’t analyze what type of road it is along with its material.
There is no analysis on weather is done and wetness of the roads. Although all these
assumptions and limitations can not be ignored, our study still represents the car
crashes in a realistic manner according to our user study. However, the user study
represents a selection of limited number of crashes with thousands of different crash
videos remain untested, creating a potential threat the scope of our user study.

In the scene reconstruction step, we use only one simulator, LGSVL, however the
capabilities of this study can theoretically extends beyond one simulator but it
won’t be a safe assumption unless this hypothesis is tested with different simulators.
Using only one simulator also comes with limiting our capabilities to this simulator
and making the same assumptions the simulator makes. Another and potentially the
biggest threat to validity in this step is using the same map for every accident without
actually constructing a map. Every video footage that we use in our experiments
are in different locations with different environmental conditions and varying types
of road and road material. There is a great number of factors that can contribute
to a car accident, many being related to environment. However our study can only
consider a small number of these factors in its current state without our potential
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future improvements stated in chapter 7 of this thesis. The simulator also contains a
certain amount of different vehicles to be tested, however each brand and each model
cars are different than each other which can be a significant factor contributing to
an accident happen.

In the test case generation step, similar to scene reconstruction step we only con-
sider one autonomous driving driving stack, with only one ego car option. Again,
although our software is constructed in a modular manner to allow any autonomous
driving using communication bridges, this is not tested. Test are generated in lim-
ited number of configurable parameters which can only represent a part of the many
factors that contributes to a car accident.

In the user study, we do not ask the difference between simulation and original car
crash videos, and instead we give them the information on which is the simulated
video and which is the original crash. This may have caused users leaning towards
giving more positive answers while they are evaluating how realistic the simulation
is.

Although, we have compiled numerous potential threats to validity here, we strongly
believe, in parallel with our user study results, that this study serves as a proof of
concept and leaves room to improve this to be a potentially widely used way to
generate test cases for autonomous cars.

55



6. Conclusion

We have proposed a method for potentially generating a great number of realistic test
cases for autonomous driving stacks using accident footage. We strongly believe that
increasing the number of realistic test cases will increase the safety and reliability of
autonomous vehicles and increase these developers ability to test their capabilities.

Our method, introduces an offline image processing pipeline that can run a number
of analysis to determine each vehicles 3D trajectory, a new novel concept to 3D
camera calibration from 2D video footages and improvements on a 3D tracking
neural network, CenterTrack. The image processing pipeline is complimented with
a scene reconstruction and test case generation steps to complete an end to end test
case generation software from a 2D video.

Although this research shows the potential of generating these test cases, there
were numerous assumptions that prevented our software from being more realistic.
There are quite a few factors that contributes to an accident and our research shows
a limited scope of these variables.

We have conducted a user study to understand how realistic our simulations are,
and how likely it represents the actual accident. The results of our user study, that
is conducted in a variety of range of ages and professions, shows that even though
our software has assumptions and limitation on its own, the resultant scenes that
are reconstructed in an automated manner were realistic enough and represents the
actual accident.
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7. Future Work

This study works as a proof of concept, showing that automated car crash tests
can be generated by only using 2D video footage without any prior information.
However, there is much room to improve in this concept. As stated in chapter 5
we currently have a limited scope of videos that can be analyzed with some strict
restrictions and assumptions.

As can be seen from the references this study uses very recently published work.
More than 50% of references are published in 2019 and later. There are various
limitations of the tools we are using such as LGSVL simulator and various neural
networks. In the near future, with the advancements in artificial intelligence and
autonomous car technologies the networks we use will become precise and the sim-
ulators will have much more realistic physics with improved APIs. We will continue
to adapt to these changes also contributing them with open source issues and pull
requests and test our software in different simulators to prove our analysis steps
flexibility.

Many assumptions of this study can be removed by adding additional processes
and further post-processing in the analysis step. We plan to add these processes in
near future and also extend our capabilities to automatically creating a map in the
analysis step and use it while reconstructing the scenes.

Another important feature we are planning to add is to analyzing the past trajec-
tories of the cars from the video. This is possible since we know the cars trajectory
and speed as soon as it appears in the video. Analyzing past trajectories will help
to make the tests more realistic.

A final and more trivial future work we are planning to add is to conduct the same
(or improved) tests with other autonomous driving stacks, proving the modularity
of our program further.
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