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ABSTRACT

APPLICATIONS OF UNIFIED COMBINATORIAL INTERACTION TESTING

OĞUZ ÖZSAYGIN

COMPUTER SCIENCE AND ENGINEERING M.Sc. THESIS, JULY 2021

Thesis Supervisor: Assoc. Prof. Cemal Yılmaz

Keywords: combinatorial testing, covering arrays, constraint solving, answer set
programming

U-CIT approach has provided a flexible and systematic method to flexibly define
and compute combination interaction testing (CIT) objects generating covering ar-
rays used in software testing. By U-CIT, software system under test and coverage
criterion are expressed as a constraint solving problem, and CIT objects are com-
puted by using appropriate constraint solvers. The convenience of defining flexibly
coverage criteria brought by U-CIT has made it possible to easily define new CIT
objects to test any software system. Although U-CIT objects are generated by
solving constraints with constraint solvers in these studies, a higher level modelling
abstraction may be required to define complex system models and coverage criteria.
In this study, we present UCIT-ASP approach that we developed to generate U-CIT
objects by using Answer Set Programming (ASP) which is a declarative modeling
language. In addition, by using ASP modeling libraries that was developed within
the scope of this study, we both generated U-CIT objects already defined in the
literature (i.e. standard covering arrays, test case aware covering arrays, etc.) and
defined new U-CIT objects, specifically for graph-based systems (for the testing of
mobile applications, multi-threaded systems, etc.). In our case studies to experience
with UCIT-ASP on the generation of well-known CIT objects, we have observed
that our approach generated smaller CIT objects than specialized covering array
generation methods in the literature at the cost of computation times.
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ÖZET

TÜMLEŞİK KOMBİNEZON ETKİLEŞİM SINAMA YÖNTEMİNİN
UYGULAMALARI

OĞUZ ÖZSAYGIN

BİLGİSAYAR BİLİMİ VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ
2021

Tez Danışmanı: Doç. Dr. Cemal Yılmaz

Anahtar Kelimeler: kombinezon etkileşim sınama, kapsayan diziler, kısıt çözme,
bildirimli modelleme

T-KES yaklaşımı, yazılımların test edilmesinde kullanılan kapsayan dizileri oluş-
turan kombinezon etkileşim sınama (KES) objelerini esnek şekilde tanımlamak ve
hesaplamak için bir esnek ve sistematik yöntem sağladı. Bu yaklaşım sayesinde test
altındaki yazılım sistemleri ve kapsama kriterleri bir kısıt çözme problemi olarak
ifade edilip, hali hazırda kullanılan kısıt çözücüler kullanılarak KES objeleri hesa-
planmaktadır. T-KES’in getirdiği bu esnek kapsama kriteri tanımlayabilme ra-
hatlığı, herhangi bir yazılım sistemini test edebilmek için yeni KES objelerinin ko-
layca tanımlanabilmesine olanak sağlamıştır. Bu çalışmalarda her ne kadar kısıt
çözücüler kullanılarak T-KES objeleri üretilse de, karmaşık sistem modellerinin ve
kapsama kriterlerinin tanımlanması için daha yüksek seviyede modelleme soyutla-
ması yapılması gerekebilir. Bu çalışmada, T-KES objelerini bildirimli bir modelleme
dili olan ASP kullarak üretmek için geliştirdiğimiz TKES-ASP yaklaşımını sunuy-
oruz. Ayrıca, bu çalışma kapsamında geliştirilen ASP modelleme kütüphanelerini
kullanarak hem hali hazırda olan T-KES objelerini üretip hem de, özellikle çizge
tabanlı sistemler için (mobil uygulamalar, multi-threaded sistemler, vs.) için T-
KES objeleri tanımlıyoruz. Literatürde tanımlanan KES objelerinin TKES-ASP
kullanılarak yeniden üretilmesini konu alan vaka çalışmalarında, üretilen KES ob-
jelerinin hem akademik hem de endüstride sıkça kullanılan kapsayan dizi üretme
yöntemlerinden daha fazla sürede bu dizileri hesaplaması karşılığında daha küçük
boyutlu objeler ürettiği gözlemlenmiştir.
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1. INTRODUCTION

Nowadays, software systems have many parameters to be tested such as the inter-
action of user inputs, configuration parameters, and multi-threaded inter-leavings.
While these parameters provide flexibility to end-users, they cause serious problems
on ensuring the quality assurance of software. The reason is that it is a challenging
problem to test all configuration parameter space (if not possible at all), even on a
small scale. For example, Apache server has 172 configuration parameters and it has
1.8x1055 configuration combinations which can be obtained from the combinations
of these parameters. Even if each configuration is tested for 1 second, testing all
possible configurations might take longer than millions of years. Hence, it is not
feasible to test all possible configurations for the Apache server or similar software
systems.

For similar reasons, the testing of industrial software systems is almost always per-
formed using a subset selected by a sampling method from a very large configuration
space (combination of parameter values). This sample is considered as having the
ability to represent the entire configuration space. Practically, this sampling func-
tionality is usually performed by using techniques gathered under the name of Com-
bination Interaction Testing (CIT) methods (Yilmaz (2013); Nie & Leung (2011)).
CIT methods have two main inputs: configuration space and coverage criterion.
The configuration space contains all valid configurations. The coverage criterion
identifies all valid combinations of parameter values to be tested. A CIT object is
computed as an output for a given configuration space and coverage criterion. This
object is a set of configurations selected from the configuration space in a way that it
obtains full coverage under the coverage criterion. Once a CIT object is computed,
the testing of the software system in interest can be achieved by testing the selected
set of configurations.

Many studies in the literature show that CIT methods are used successfully in many
different application areas (Williams & Probert (1996); Schroeder, Faherty & Korel
(2002); Yilmaz, Cohen & Porter (2004); Johansen, Haugen & Fleurey (2012); Lei,
Carver, Kacker & Kung (2007); Yuan, Cohen & Memon (2011)). However, CIT

1



methods are still used far below their potential. The reason is that the existing CIT
objects only support very limited test scenarios. Moreover, it is very difficult, if not
impossible, to use these objects in cases where test scenarios at hand differ slightly
from supported scenarios. Therefore, different CIT problems require the develop-
ment of specialized CIT constructors to compute relevant CIT objects. However, by
considering the fact that there are at least 50 articles/papers in the literature used
to compute covering arrays, it can be understood how difficult and a costly process
to develop specialized CIT objects and methods to compute these objects (Yilmaz,
Fouche, Cohen, Porter, Demiroz & Koc (2014); Nie & Leung (2011)).

To bring flexibility to the definition process of new CIT objects, Mercan, Javeed &
Yilmaz (2020) has introduced Unified Combinatorial Interaction Testing (U-CIT)
approach which allows practitioners to define their own CIT objects to test a specific
configuration system under any specific coverage criterion. In U-CIT approach, both
the system under test and the coverage criterion are expressed as constraints. While
already existing CIT constructor uses constraints to define invalid parameters values
or parameter value combinations, in U-CIT, constraints are used to express both
entities to be covered and test cases. Specifically, an entity to be tested to achieve
full coverage under a given coverage criterion is referred as a testable entity.

For example, consider t-way standard covering arrays for a given configuration space
model having parameters that take a value from its discrete domain. While com-
puting a t-way covering array, each t-tuple combination to be covered is marked as a
testable entity in U-CIT. While computing a CIT object, the set of testable entities
are divided into subsets in a way that when entities in each subset are solved with
system model constraints via a constraint solver (a SAT solver or CSP solver), and
the satisfiable solution obtained at the result of this process is referred as a test case.
Each satisfiable solution specific to the entity subset composes a U-CIT object.

However, constraints to be provided to solvers must be in a form similar to Boolean
expressions. Although a front-end is provided by constraint solvers to help to model
system models and coverage criteria with abstractions up to a certain level, while
modelling more complex coverage criteria and software systems, expressing con-
straints with Boolean expressions is a burden for practitioners. Also, each solvers
recognize their own syntax. However, this creates an obstacle to practitioners to
switch between solvers while generating U-CIT objects.

In this paper, we introduce UCIT-ASP approach to model software systems and
coverage criteria declaratively by using Answer Set Programming (ASP) as a front-
end. The motivation beneath introducing UCIT-ASP approach is to provide a front-
end system to practitioners to model their own coverage criterion with high-level
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abstraction. Moreover, we developed several modeling libraries allowing to test a
software system for well-known CIT scenarios by modelling these CIT objects as
U-CIT objects. In addition to these objects, we introduce two new U-CIT objects
to test graph-based software systems, which are path aware covering arrays and
def-use pair covering arrays.

The rest of the paper is organized as follows: Section 2 provides background infor-
mation about technologies and concepts used in this work, Section 3 presents our
contributions by going through our proposed approach, Section 4 presents the ex-
periments evaluating the proposed approach on different studies, Section 5 presents
the possible threats to the validity of approach proposed, Section 6 discusses related
work and finally Section 7 presents concluding remarks and discusses possible future
work.
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2. BACKGROUND INFORMATION

2.1 Combinatorial Interaction Testing

Combinatorial Interaction Testing approaches (CIT) usually describe a software
system under test as a set of parameters that takes a value from its value set. In
a real-life scenario, certain aspects of software systems cannot be tested for certain
parameter values or parameter value combinations. Any software system can contain
such constraints which invalidate certain parameter combinations. For a given such
software system, CIT approach by taking system parameters and invalid parameter
combinations as an input, it generates a set of test cases, which also referred as
CIT object, where test cases meet requirements provided under a given coverage
criterion. These test cases are usually composed of the combinatorial interaction of
parameter values of the given configuration space model.

For instance, t-way covering arrays, which is one of a well-known CIT object in the
literature, covers all valid t-tuples of given configuration space model at least once
where t is the coverage strength for parameter interactions. The motivation of using
this object is to reveal all the failures occurring due to the interaction between t or
fewer parameters.

2.2 Unified Combinatorial Interaction Testing

CIT objects defined in the literature are not always adequate to test specific require-
ments for different software systems. Therefore, recently many new CIT objects have
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been introduced to test systems by considering different CIT problems (Demiroz &
Yilmaz (2012); Yilmaz (2013)).

U-CIT allows defining our CIT objects under any coverage criterion for any type of
software system. Fundamentally, it defines a software system and entities generated
under a coverage criterion as constraints by representing them as a cov-CSP problem
which is a constraint solving problem to obtain a full-coverage under given coverage
criterion.

A satisfiable solution of system constraints and a subset of entities produced by
a constraint solver is referred as a test case. Moreover, all solutions obtained by
solving the entity subsets and the system model composes a U-CIT object (Mercan
et al. (2020)).

As aforementioned, system model constraints and entity constraints are two main
constraints. System constraints involve the characteristic attributes of the system
under test by considering the specifications of a coverage criterion. In the definition
of the system model as U-CIT constraints, all system attributes required for the
given coverage criterion must be defined as system constraints. In other words,
software systems must be formulated as constraints in a way that testable entities
can be expressed with respect to these constraints. A testable entity definition is also
provided in form of constraints which states what configurations must be covered to
increase the coverage. A testable entity represents a single entity to be tested under
a given coverage criterion (Mercan et al. (2020)). For example, in the computation
of a standard t-way covering array, a testable entity is expressed as a single t-tuple
that involves parameter value combinations of t configuration parameters. In this
example, all t-tuple combinations to be covered compose the overall list of testable
entities.

In U-CIT, a test case is a solution satisfying the system model and a subset of
testable entity, when constraints of them are solved by a constraint solver. Simply,
U-CIT invokes a constraint solver (specifically an SAT solver or CSP solver) to find
a satisfiable solution to these constraints. The solution generated by the solver for
each subset is considered as a valid test case under the given coverage criterion
(Mercan et al. (2020)).

U-CIT approach uses two covering array construction methods (covering array con-
structors) to generate U-CIT objects: generate-and-cover and cover-and-generate.
The basic logic of generate-and-cover method is to generate a new test case covering
entities yet to be covered by ensuring if each testable entity is covered by test cases
that have already been generated. On the other hand, cover-and-generate method
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aims to generate a cluster of testable entities by trying to collect as many as testable
entities in the same cluster that can be satisfied together (in other words, covered
in the same test case). Each entity cluster that is solved by a constraint solver
corresponds to a test case (Mercan et al. (2020)).

In our studies, instead of using the constructors aforementioned, we have introduced
one-test-case-at-a-time constructor and generated U-CIT objects with it. In com-
parison with other U-CIT constructors, given a time limit, one-test-case-at-a-time
constructor generates test cases with an approach that tries to cover the most num-
ber of testable entities selected from the entity list in each iteration and continues
to iterate until no entity is left to be covered.

In the U-CIT paper, many new CIT objects have been already defined with U-CIT
approach such as order-based, structural, and usage-based CIT objects (Mercan
et al. (2020)). In the rest of this paper, we will also introduce new CIT objects by
using U-CIT approach, such as def-use pair covering arrays and path aware covering
arrays.

2.3 Answer Set Programming

Answer Set Programming (ASP) is a declarative programming language that allows
defining difficult search problems as a constraint satisfaction problem. Basically, in
ASP a search problem is expressed as a set of ASP constraints referred as rules. In
the definition of a problem statement, the problem is expressed as a logic problem
where a set of values and rules satisfying all rules defined in the problem statement
is referred as a solution.

In ASP, a satisfiable solution is generated by an ASP solver. Since the search
problem in constrained search space is a generic problem, many ASP solvers have
been already defined in the literature such as clasp (Gebser, Kaufmann & Schaub
(2012)), assat (Lin & Zhao (2004)).

In ASP, each ASP rule is a constraint that restraints the search space for the solver.
The main purpose of these rules to narrow down possible solutions for the solver.
Each rule is composed of head and body, and ends with a dot (.) symbol.

<head> :- <body>.
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:- operator in the ASP expression stands for "if" statement where it creates a logical
dependency between head and body parts. Specifically, this operator means that
to satisfy the head of rule (as well as the rule itself), the body of the rule must be
satisfied.

A rule defined without body part is referred as a fact.

<head>.

Another ASP syntax is choices where choices allow to solver only to pick among
provided set of atoms. For example, in example rule given below, the solver can
pick a, b, c and d atoms to include them in the solution.

{a, b, c, d}.

The number of choices made by the solver can be also constrained. For example, in
the ASP statement below, the solver picks at least 1, at most 3 atoms from the set
of atoms provided in the rule.

1{a, b, c, d}3.

Negation logic can be implemented with :- operator. For instance, the same choice
expression can be also expressed as illustrated in the example ASP rule below. This
rule states that more than 3 atoms cannot be included in the problem solution.

:- 3{a, b, c, d}.

Also, choices can be represented as values in a range. For example, following the
ASP rule involving 5 atoms as choices

{1, 2, 3, 4, 5}.

which can be also expressed as illustrated in the ASP rule below:

{1..5}.

Finally, capital letters are used to represent variables in ASP. While finding a solu-
tion for a given problem with a set of rules, the ASP solver replaces variable with
discrete values defined in the problem statement to obtain a satisfiable solution with
problem definition. For instance, for the given problem definition below,

num(1). num(2). num(3).
res(X) :- res(X), X!=3.

an ASP solver might generate following solution:

res(1). res(2).
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3. APPROACH

In this part, we will introduce UCIT-ASP approach by expressing processes involved
in a U-CIT object computation using this approach. Firstly, we will express how to
define coverage criterion and valid test spaces required to compute a U-CIT object
by this approach. Afterwards, we will explain in detail, how a U-CIT object is com-
puted for a given system model and coverage criterion. Finally, we will explain the
development process of UCIT-ASP by going over the modelling libraries developed
within the scope of this study.

U-CIT (Mercan et al. (2020)) proposes a generic approach to systematically generate
CIT objects under any coverage criterion regardless of the topology of the system
under test. However, in the proposed approach, the system and coverage criterion
definitions are expressed with Boolean primitives. We know the fact that the front-
end of a testing framework is as important as the back-end. Based on this idea,
we have developed a unique approach using ASP (Gebser, Kaminski, Kaufmann &
Schaub (2012)), which is the one of declarative modeling languages, so that end-
users can flexibly define any coverage criterion and compute related U-CIT objects.
This approach is referred as UCIT-ASP in the rest of the document.

In general terms, UCIT-ASP is a unique system that allows end users to define both
coverage criterion and valid test case spaces in an informed and flexible way, to
determine the requirements to be covered under the defined coverage criteria, and
to compute U-CIT objects to cover these requirements.

3.1 Definition of Coverage Criterion

Since UCIT-ASP approach uses ASP as a front-end, it allows the use of all definition
and computation capabilities of ASP language to define a coverage criterion without
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Figure 3.1 An example to graph-based models

any restrictions. In this section, we explain the UCIT-ASP method on an example
without giving detailed information about ASP language. For detailed information
about ASP, Section 2.3 and the literature can be referred (Gebser et al. (2012)).

% Start and end nodes
start_state(ss).
end_state(se).

% Nodes
state(ss).
state(s1).
state(s2).
state(s3).
state(s4).
state(se).

% Edges
edge(ss, s1).
edge(s1, s3).
edge(s3, s4).
edge(s1, s2).
edge(s2, s4).
edge(s4, se).

Figure 3.2 The ASP modelling of Figure 3.1

As an example, Figure 3.2 models the graph given in Figure 3.1 by using ASP
language. For a given graph, nodes are defined by state(...) rules and edges are
defined by edge(...) rules. The entry and exit nodes in graphs are defined by
using the start_state(...) and end_state(...) rules, respectively.
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For example, let’s want to express graph theoretical concepts over this model. In the
rest of the document, we will also use these concepts while defining novel coverage
criteria on graph-based models (Section 4.4 and 4.5). Note that in this context, each
path from the entry node to the exit node corresponds to a test case. The loops in
the graphs are unrolled by opening these loops in the numbers requested.

% A start state is visited by default
visited(S) :- start_state(S)

% An edge is either taken or not taken
{taken(A, B)} :- A != B, edge(A, B), visited(A).

% At most one incoming edge to a state can be taken
:- taken(A, B), taken(C, B), A != C.

% At most one edge originating from a state can be taken
:- taken(A, B), taken(A, C), B != C.

% A state is visited iff one of the incoming edges is taken
visited(A) :- taken(_, A).

% Expressing reachability
reaches(A, B):- A != B, taken(A, B).
reaches(A, B):- A != B, taken(A, C), reaches(C, B).

% All 2-orders
any_order(A, B) :- reaches(A, B).

Figure 3.3 The modelling of graph-based concepts in ASP

For this scenario, the following ASP definitions can be stated as illustrated in Figure
3.3. In these definitions, the rule below always marks the entry node as a visited
node.

visited(S) :- start_state(S).

The following rule is used to express the fact that each edge in the graph will either
be taken or not taken on the path to be computed:

{taken(A, B)} :- A != B, edge(A, B), visited(A).

Since graphs are acyclic, at most one incoming edge to a node

:- taken(A, B), taken(C, B), A != C.

and at most one outgoing edge from a node can be taken:

:- taken(A, B), taken(A, C), B != C.
10



If any of the incoming edges to a node is taken, that node is considered as visited:

visited(A) :- taken(_, A).

When any of following conditions are met, node B will be reachable from node A:

reaches(A, B):- A != B, taken(A, B).
reaches(A, B):- A != B, taken(A, C), reaches(C, B).

Therefore, the following rule can be used to find all possible 2-way any node order-
ings:

any_order(A, B) :- reaches(A, B).

Note that each A and B node pair obtained by this rule represents valid 2-way node
ordering. In addition, the coverage strength of this ordering criterion can be easily
increased or similar ordering criteria can be implemented.

UCIT-ASP approach defines a special rule under the name of entity(...) which
takes as many parameters as needed for the end-user in order to define the coverage
criteria. Each solution that satisfies this rule is considered as a U-CIT testable entity
to be covered. What makes this rule special is that UCIT-ASP approach uses this
rule both as it is and by deriving more rules from this rule, as will be explained
below.

For example, in the example above, if a coverage criterion is defined to cover all
2-way any node orderings in a graph, then the only rule that the end-user needs to
add would be the following rule:

entity(A, B) :- any_order(A, B).

With this given rule, UCIT-ASP automatically computes all the testable entities to
be covered for 2-way any node orderings.

3.2 Definition of Valid Test Space

The UCIT-ASP method defines a special rule called testcase, which can take as
many parameters as needed to define a valid test space. The purpose of this rule is
to determine the constraints that a valid test must satisfy.
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For the example, as discussed in this section, since there is a path from the start
node to the end node in the graph, a valid test case for this example can be defined
as follows:

testcase :- reaches(S1, S2), start_state(S1), end_state(S2).

3.3 Computation of U-CIT Objects

With the given entity(...) and testcase(...) rules, the U-CIT object computes
both the entity space to be covered and the set of valid test cases to be used for this
purpose. The next step is to compute the U-CIT object in interest by sampling the
valid test case space.

In U-CIT paper (Mercan et al. (2020)), two computation methods (in other word,
covering array constructor) have been introduced for this purpose: generate-and-
cover and cover-and-generate methods. The basic logic of generate-and-cover
method is to check whether each U-CIT entity is covered by test cases that have
already been generated, and in case of the existence of an uncovered U-CIT entity,
to generate a new U-CIT test case covering that entity. Cover-and-generate, on the
other hand, aims to create a cluster pool by trying to collect the U-CIT entities in
the same cluster where the entities in the same cluster can be satisfied together (for
example, covered in the same U-CIT test case) so that the combination of all cluster
in this pool covers the entire set of testable U-CIT entities.

In our study, we introduced a third computation method which is different from these
two computation methods was developed and this method has been implemented in
ASP. This method generates a test case to cover the most number of entities among
the entities that are not yet covered in each step. Iterations continue until there are
not testable entities left to cover. Note that while this method tries to optimize the
number of entities covered in each step, generate-and-cover method aims to include
at least 1 new entity at each step as needed. In other words, it does not deal with
the optimization part.

For this purpose, UCIT-ASP first generates entity_covered(...) rules to find
entities covered by a test case using entity(...) rules. For example, for the rule
given below,

entity(A, B) :- any_order(A, B).
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the automatically generated corresponding entity_covered(...) rule is as follows:

entity_covered(A, B) :- entity(A, B), any_order(A, B).

This rule means that if entity(A, B) is a testable entity to be covered and all
entity constraints are satisfied (i.e., any_order(A, B) rule is satisfied), then that
entity is covered.

Algorithm 1 entity_covered ASP rule generation algorithm as pseudocode.
procedure GenerateEntityCoveredRule(entityRule)

head, headArgs ← ParseRuleHead(entityRule)
body, bodyArgs ← ParseRuleBody(entityRule)
if headArgs 6= bodyArgs then . returns if entity definition is invalid

return ""
entityCoveredHead ←BuildASPFact("entity_covered",headArgs)
entityCoveredBody ← ConcatWithComma(head,body)
entityCoveredRule ← ConcatRuleSep(entityCoveredHead,entityCoveredBody)
return entityCoveredRule

Note that automatic generation of the entity_covered(...) rule for a given
entity(...) rule is a mechanical task. This rule has the same number of pa-
rameters as the entity(...) rule, and the body of this rule (the part after the :-
symbol) is generated by combining the head of the given entity(...) rule (the
part before the :- symbol) and its body, as illustrated in Algorithm 1.

To ensure the fact that a valid test case is generated at each step, UCIT-ASP uses
the following ASP constraint:

:- not testcase.

In other words, it is ensured that the solution obtained creates a test case. The
following optimization directive is also used to ensure that this test case covers the
most number of entities that are not covered yet:

#maximize{1, A, B : entity_covered(A, B)}.

Since here we deal with combinatorial problems, it may not always be practical (or
possible) to reach the global optimum in the optimization step. In this case, the ASP
solver is run under certain time constraints to find local optimums. If a solution is
found within the time constraint for each step, that solution is an optimal solution.
If at least one solution is found but the solution space is not completely scanned,
the solution is the best among the solutions found in the given time constraint.

If no solution is found at all, all the remaining entities are tried to be covered one-
by-one to ensure that this situation is not due to the time limit determined. Note
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that covering each entity alone significantly reduces the size of the problem to be
solved. When the entity that cannot be covered alone will be marked as invalid, after
this step, the invalid entities among the remaining entities will be sorted out and
reported. If there are still valid entities among the remaining entities, this indicates
that these entities can be covered by increasing the time limit used.

The automatic invalid entity detection functionality provided by UCIT-ASP tool
is actually an important feature. Namely, in the studies that we carried out, we
have observed that in some cases it is costly to list valid entities, and in such cases,
it is reasonable to go for solutions that can also select invalid entities in order to
use resources more effectively. Since UCIT-ASP recognizes and eliminates possible
invalid entities, this does not cause any negativity in the computation of UCIT-ASP
objects.

Once a solution is computed (which actually corresponds to a test case), the corre-
sponding test case is included in the computed U-CIT object. Then, entities covered
by this test case are removed from the entity list that contains entities to be cov-
ered. Iterations continue until the entity list is empty. All of computed test cases
correspond to a U-CIT object that achieves full-coverage under the given coverage
criterion.

3.4 Development of UCIT-ASP

We developed UCIT-ASP tool by using clingo (Gebser, Kaminski, Kaufmann
& Schaub (2018)) ASP solver, and Python programming language. With
the tool developed, test scenarios are defined by using three text files named
system_model.ucit, coverage_criterion.ucit and test_space.ucit. These
files contain directives and rules for both ASP programs and UCIT-ASP tool.

UCIT-ASP works in two steps. In the first step, all the testable entities to be covered
under a given coverage criterion are computed. In the second step, a U-CIT object
covering these entities is computed. In the rest of the document, the first step will
be referred as enumeration step and the second step will be referred as construction
step.

Among the mentioned files, the system_model.ucit file contains general and com-
mon definitions of test scenarios. Unless otherwise is stated, the definitions in this
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file are used both in the enumeration step and in the construction step. For example,
in the example used in this section, the graph modeling definitions of the system
under test (Figure 3.2) can be included in the system_model.ucit file.

The coverage_criterion.ucit file, which is the second file mentioned above,
contains the rules that determine the coverage criterion (i.e., entity(...)
rules). Therefore, the enumeration step is performed by using the definitions
in the system_model.ucit and coverage_criterion.ucit files together. In
other words, by solving the ASP rules contained in or generated from both
the system_model.ucit and coverage_criterion.ucit files. For example, the
entity(A, B) and any_order(A, B) rules developed for the graph aforementioned
above, are located in the coverage_criterion.ucit file.

The third file, test_space.ucit, is used to determine the valid test cases space.
In other words, this file contains testcase(...) rules. Therefore, in the construc-
tion step, ASP rules in both system_model.ucit and test_space.ucit files (or
generated from these files) are used together with the entities determined in the
enumeration step.

3.4.1 Configuration Parameters

Two main configuration parameters have been implemented in UCIT-ASP system
to increase both the run-time performance and scalability of UCIT-ASP. These pa-
rameters are named as max_entities and coverage_max_entities in the rest of
the document. The first parameter represents the maximum number of uncovered
entities that will be used while computing each test case. When this parameter is
not given, UCIT-ASP tries to achieve optimum coverage by using the entire entity
list not yet covered. However, since there may be too many entities to be cov-
ered in combinatorial problems, using all entities simultaneously in the optimization
problem may reduce both run-time performance and scalability. To prevent this,
max_entities parameter can be used. When this parameter is used, it is used to
solve the optimization problem by randomly selecting only the number of entities
that have not yet been covered determined by this parameter from the entity list
in each step. Therefore, the coverage provided by the computed test case will be
limited to the chosen entities. Although this approach may cause an increase in the
size of U-CIT objects to be computed, it generally increases computation times and
scalability.
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In cases where this parameter is used, although the coverage of a test case is com-
puted over the selected set of entities, the test case may actually cover more than
these entities. Therefore, the coverage provided by the selected test case is calculated
by using the entire entity list not yet covered. However, for this procedure as well,
problems may arise in terms of both run-time performance and scalability. There-
fore, we developed coverage_max_entities parameter to deal with these problems.
In cases where this parameter is used, the coverage of a selected test case is per-
formed step-by-step by using a maximum number of different entities determined
by the coverage_max_entities parameter at each step. The set of entities used
during all these steps actually corresponds to the entire set of entities that contains
entities which have not yet been covered. Therefore, the coverage provided by the
selected test case can be calculated, while increasing the scalability of the system
by performing the coverage step-by-step. Note that UCIT-ASP approach uses two
parameters instead of a single parameter, since the computation problem of a test
case and the coverage calculation of a selected test case are different problems (the
second problem is a simpler problem than the first problem).

3.4.2 ASP-Based Modelling Libraries

Within the scope of our studies, we observed that the same or similar models
can be used to test very different systems (such as mobile applications and multi-
threaded systems). Based on this observation, we developed ASP modeling libraries
that contain ASP rules required for the model types that are frequently used in
the studies and the ASP directives that can generate these rules parametrically.
All functionality provided by these libraries can be used in system_model.ucit,
coverage_criterion.ucit and test_space.ucit files as UCIT-ASP directives.
UCIT-ASP directives are directives that start with ## character string and end with
## character string. The libraries developed within the scope of our studies and the
directives provided by these libraries are presented in Table 3.1, 3.2, 3.3 and 3.4.
Also, ASP rules generated by these ASP directives are presented in Appendix A.

For example, when the following directive of graphs library which has been devel-
oped for graph-based models is used,

## graphs.graphs.any_order ${‘t’:2}$ ##

any_order(...) rule given in Table 3.1 and all other ASP rules completing rules
generated by directive to make sense (which are other rules in Figure 3.3) are auto-
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directive description
any_order ${’t’}$ Generates ASP code to

compute any t-way node
orderings.

consecutive_order ${’t’}$ Generates ASP code to
compute consecutive t-
way node orderings.

nonconsecutive_order ${’t’}$ Generates ASP code to
compute non-consecutive
t-way node orderings.

def_use_pair_def Generates ASP code to
compute def-use pairs.

single_def_clear_path_def Generates ASP code
to determine def-clear-
paths in a given path.

multi_path_def_clear_path_def Generates ASP code
to determine def-clear-
paths in all possible
paths.

any_order_t1_tuple_t2 ${’t1’, ’t2’}$ Generates ASP code to
compute all testable en-
tities under (t1, t2)-way
any ordered path aware
coverage criterion.

consecutive_order_t1_tuple_t2 ${’t1’, ’t2}́$ Generates ASP code to
compute all testable en-
tities under (t1, t2)-way
consecutive ordered path
aware coverage criterion.

nonconsecutive_order_t1_tuple_t2 ${’t1’, ’t2’}$ Generates ASP code to
compute all testable en-
tities under (t1, t2)-way
non-consecutive ordered
path aware coverage cri-
terion.

Table 3.1 The list of directives defined in graphs library.
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directive description
minimal_forbidden_tuple ${’tuple’}$ Generates ASP con-

straints to describe the
combination of minimal
invalid parameter values.

t_tuple ${’t’}$ Generates ASP code to
express t-tuple combina-
tions with their valid pa-
rameter values.

Table 3.2 The list of directives defined in configs library.

directive description
decision_system ${’input’_mode’,[’file’|’decisions’]}$ Generates ASP rules for

logical expressions in a
given decision system.

bool_expr ${’name’, ’expr’}$ Generates ASP rules for
given Boolean expres-
sions.

bool_var ${’vars’}$ Generates ASP rules for
Boolean variables pro-
vided.

Table 3.3 The list of directives defined in ucit library.

matically generated by graphs library.

The point is that the directives can be parametric, which increases the flexibility
and the usability of the approach developed by providing parametrically generation
of ASP rules. For example, if the coverage strength t= 3 in the directive above, in
other words, if the following directive was used,

## graphs.graphs.any_order ${‘t’:3}$ ##

then any_order(...) rule would be defined as:

any_order(A, B, C) :- reaches(A, B), reaches(B, C).

UCIT-ASP is designed to allow flexible integration of different libraries into the
whole system. Adapter design patterns were used for this work. Therefore, UCIT-
ASP can be easily expanded with new libraries to be developed.

3.4.3 Non-ASP-Based Modelling Libraries
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directive description
any_order ${’t’}$ Computes any t-way

node orderings by using
graphy theory.

consecutive_order ${’t’}$ Computes consecutive t-
way node orderings by
using graphy theory.

nonconsecutive_order ${’t’}$ Computes non-
consecutive t-way node
orderings by using graph
theory.

path_aware_any_order ${’t1’, ’t2’}$ Computes all testable en-
tities under (t1, t2)-way
any ordered path aware
coverage criterion by us-
ing graph theory.

path_aware_consecutive_order ${’t1’, ’t2’}$ Computes all testable en-
tities under (t1, t2)-way
consecutive ordered path
aware coverage criterion
by using graph theory.

path_aware_nonconsecutive_order ${’t1’, ’t2’}$ Compute all testable en-
tities under (t1, t2)-way
non-consecutive ordered
path aware coverage cri-
terion by using graph
theory.

def_use_pairs Compute def-use pairs by
using graph theory.

Table 3.4 The list of directives defined in graph_theory library
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In the studies that we carried out, we have observed that in some cases, ASP-based
declarative programming approaches may be slower than imperative programming
approaches, particularly in the computation of entities (enumeration step) to be
covered under a given coverage criterion. For example, in some cases, while analyzing
graph-based models, it may be more appropriate to use graph theory instead of ASP-
based approaches to solve these problems by using graph theoretical algorithms.

For such cases, non-ASP-based libraries can be developed and integrated with UCIT-
ASP tool. Within the scope of our studies, we developed the graph_theory library,
which computes testable entities by using graph theory algorithms for graph-based
models. We developed this library in Python (Table 3.4).

For example, the following parametric directive provided by this library:

## graphs.graph_theory.path_aware_any_order ${‘t1’:2, ‘t2’:2}$ ##

It states that all testable entities for (2,2)-way path-aware coverage criterion (will be
mentioned on Section 4.5) can be computed by using graph theoretical approaches,
instead of ASP.

Note that these libraries only take part in the enumeration of testable entities. The
computation of U-CIT objects requested is carried out by ASP as handled in Section
3.3.
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4. EXPERIMENTS

We have conducted a series of experiments to evaluate the proposed approach in
Section 3. In these experiments, firstly we have computed well-known CIT objects
as U-CIT objects. Afterward, we have also introduced two novel U-CIT objects
by taking advantage of the flexibility of U-CIT. In the rest of this section, in each
following subsection related to a U-CIT object, we will introduce the U-CIT object
that was used in the experiment and state how we model this U-CIT object in
ASP. Then, we will present the results of experiments that have been conducted
about the computation of this object. Specifically, we will discuss about standard
covering arrays, test case aware covering arrays, decision covering arrays, def-use
pair covering arrays, and path aware covering arrays in respectively Section 4.1, 4.2,
4.3, 4.4 and 4.5.

4.1 Computing Standard Covering Arrays as U-CIT Objects

In this section, we will present standard covering array experiments and state how
we formulate standard covering arrays by using ASP encoding.

4.1.1 Standard Covering Arrays

The t-way covering arrays (Nie & Leung (2011)), which are frequently used in the
Combination Interaction Testing (CIT), takes a configuration space model as an
input which is the configuration parameters taking a finite set of values. For a given
configuration space model, a t-way standard covering array is a set of configurations
constructed to cover at least one combination of relevant parameter values for each
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t-way subset of the configuration parameters (Cohen, Dalal, Fredman & Patton
(1997)). In this definition, t is called the coverage strength. Once the covering
array is computed, the testing of the system under test is performed by testing all
configurations in the covering array.

p1 : {false, true}
p2 : {false, true}
p3 : {false, true}

Figure 4.1 A simple configuration space model.

Figure 4.1 provides an example of a simple configuration space model. In this
figure, a configuration space model is consisted of three configuration parameters
(p1, p2, p3) where each parameter can take binary values (true, false). Thus,
the configuration space model has 23 = 8 different configurations. For example,
<p1 = false, p2 = false, p3 = true> and <p1 = false, p2 = true, p3 = true> are
two different configurations in this configuration space.

p1 p2 p3
true true false
true false true
false true true
false false false

Table 4.1 A simple 2-way covering array.

Table 4.1 presents an example of a 2-way covering arrays computed for the config-
uration space model given in Figure 4.1. Since the covering array in the table is
a 2-way covering array, it is possible to find at least one configuration that covers
a 2-way combination of the parameter values of p1, p2, and p3 in this array. For
example, all parameter value combinations for p1 and p2 (<p1 = true, p2 = true>,
<p1 = true, p2 = false>, <p1 = false, p2 = true>, <p1 = false, p2 = false>) has
been covered at least once. This also applies to parameter combinations (p1, p3)
and (p2, p3).

Configuration space models may contain system constraints to express both invalid
configurations and invalid combinations of configuration parameter values (Jia, Co-
hen, Harman & Petke (2015); Yamada, Biere, Artho, Kitamura & Choi (2016)). For
example, if the following constraints, (p2 = true) =⇒ (p3 = true) (if p2 is true, p3

must be true) and ¬(p1 = true∧p3 = false) (combination of p1 = true and p3 = false

is invalid) are given, the 2-way covering array in Table 4.2 would be obtained. Note
that each configuration in the computed 2-way covering array satisfies all the system
constraints, and any 2-way parameter value combination which does not satisfy the
constraints is not included in this array.

22



p1 p2 p3
true true true
true false true
false true true
false false false

Table 4.2 An example of 2-way covering array with system constraints.

4.1.2 U-CIT Formulation

This section presents the ASP formulation of standard covering arrays. As dis-
cussed in Section 3.4, test scenarios in the UCIT-ASP method are defined using
three different input files (system_model.ucit, coverage_criterion.ucit and
test_space.ucit).

system_model.ucit: In this study, the configuration parameters in the configu-
ration space model and the finite values of these parameters are defined in the
system_model.ucit file. For this purpose, the option(...) rule is defined. In this
ASP rule, the first parameter represents the name of the configuration parameter,
while the second parameter represents the set of values that the defined parameter
can take. For example, the system_model.ucit file in Figure 4.2 models a system
with four configuration parameters (o1, o2, o3 and o4), each of parameters can take
a binary value (0 or 1).

% Each configuration parameters takes binary values (0 and 1)
option(o1, 0..1).
option(o2, 0..1).
option(o3, 0..1).
option(o4, 0..1).

## configs.configs.minimal_forbidden_tuple ${‘tuple’:{‘o1’:1, ‘o2’:1}}$ ##
## configs.configs.minimal_forbidden_tuple ${‘tuple’:{‘o3’:1, ‘o4’:1}}$ ##

## configs.configs.t_tuple ${‘t’:2}$ ##

Figure 4.2 An example system_model.ucit file

% Entity definition
entity(O1, V1, O2, V2) :- t_tuple(O1, V1, O2, V2).

Figure 4.3 An example coverage_criterion.ucit file

Standard covering arrays are concerned with the interaction between parame-
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% Test case definition
testcase.

Figure 4.4 An example test_space.ucit file

ters. However, certain combinations of parameter values might be invalid. The
minimal_forbidden_tuple directive in the configs library that we developed de-
veloped in UCIT-ASP can be used to specify invalid parameter combinations. For
example, in Figure 4.2

## configs.configs.minimal_forbidden_tuple ${‘tuple’:{‘o1’:1,‘o2’:1}}$ ##

directive states that (o1 = 1, o2 = 1) combination is an invalid combination. This
directive automatically generates the following ASP rules to ensure that the specified
system constraint is met:

minimal_forbidden_tuple(o1, 1, o2, 1).

coverage_criterion.ucit: In Figure 4.3, a sample coverage_criterion.ucit
file that can be used for the testing scenario mentioned in this section is illustrated.

The definition of coverage strength t is also illustrated by using the parametric
t_tuple directive defined in the configs library developed:

## configs.configs.t_tuple ${‘t’:2}$ ##

This directive automatically generates the rule t_tuple(O1, V1, O2, V2) to find
all valid 2-way parameter value combinations as follows:

t_tuple(O1, V1, O2, V2) :- O1 < O2,
option(O1, V1), option(O2, V2),
not minimal_forbidden_tuple(O1, V1),
not minimal_forbidden_tuple(O2, V2),
not minimal_forbidden_tuple(O1, V1, O2, V2).

Note that the t_tuple(O1, V1, O2, V2) rule represents a valid 2-way combination
(O1=V1, O2=V2). As seen from the following rule in Figure 4.3,

entity(O1, V1, O2, V2) :- t_tuple(O1, V1, O2, V2).

for the coverage criterion, in this example, it is stated that all combinations of 2-way
parameter values are covered. In fact, it corresponds to the computation of a 2-way
standard covering array.

test_space.ucit: Finally, Figure 4.4 presents an example test_space.ucit file.
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As covered in Section 3.2, the purpose of this file is to define the valid test space
using testcase rule. However, since a valid test case for the scenario discussed in
this section is to generate a valid configuration in which each defined configuration
parameter takes a value, and this constraint is already provided by the rules in the
system_model.ucit file given in Figure 4.2. Therefore, testcase rule is defined
empty without needing for an extra definition as follow:

testcase.

4.1.3 Experiment

In this section, the related experiment information will be provided on computing
standard covering arrays as U-CIT objects. In the rest of the section, we will present
respectively our experiment setup, evaluation framework, operational framework,
data and analysis of experiment results, and finally, the discussion of experiment
results.

4.1.3.1 Setup

To evaluate the proposed approach on standard covering array generation, the con-
figuration space models of Apache and MySQL web servers have been used as ex-
periment models (Yilmaz (2013)). Table 4.3 shows the model details for these ap-
plications. More details about the experiment models can found in Section 4.2.3.1.

Apache MySQL
parameter count 13 12

2-way testable entities 311 333
3-way testable entities 2261 2476

Table 4.3 The information about experiment models.

4.1.3.2 Evaluation Framework
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In this section, we present our evaluation framework to demonstrate our evaluation
metrics for the experiments. To evaluate the experiments, we use covering array
sizes (also referred as U-CIT object size), testable entity enumeration times, cov-
ering array construction times and covering array size improvement percentages in
comparison to other covering array constructors as evaluation metrics.

Covering array size represents the number of generated configuration tuples and
indicates the effectiveness of the approach. In comparisons, approaches generat-
ing covering arrays with smaller covering array sizes indicate the fact that testable
entities are covered with less number of test cases vice versa. Therefore, these ap-
proaches are considered more effective than others. Testable entity enumeration
time states the elapsed time during entity enumeration. Covering array construc-
tion time states the elapsed time during the construction of a covering array. While
comparing covering array constructors, a constructor with smaller values of these
three metrics is considered as performing better. Also, covering array size improve-
ment percentage is another measurement metric used in this study which expresses
how much the array size is improved by using our constructor with respect to others.

4.1.3.3 Operational Framework

Unless otherwise stated, all experiments in this study were repeated 5 times on
an Intel Xeon CPU 2.30GHz Google Cloud machines with 64-bit Ubuntu 18.10
operating system and 4Gb RAM. Clingo (v4.5.4) has been used as the ASP solver
during experiments. For each test case generation phase, 30 seconds time limit has
been set to the ASP solver to find a satisfiable solution, in other words a test case.

4.1.3.4 Data and Analysis

A series of experiments have been performed to evaluate the proposed approach on
standard covering array generation. In the experiments, 2-way and 3-way covering
arrays have been generated for the experiment models mention in Section 4.1.3.1.
We used one-test-case-a-time constructor for this study to represent our approach.
Also, in order to compare our approach, we produced covering arrays with well-
known covering array constructors (Jenny and ACTS) in the literature (Jenkins
(2005); Yu, Lei, Kacker & Kuhn (2013)). Table 4.4 illustrates the experiments
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results performed in the scope this study.

time (seconds)
model parameters t entities approach size enumeration construction

apache 13

2 311
ucit-asp 9 0.33 1.00
jenny 10 - 0.01
acts 11 - 0.34

3 2261
ucit-asp 21 0.00 13.66
jenny 21 - 0.01
acts 24 - 0.36

mysql 12

2 333
ucit-asp 13 0.00 1.00
jenny 14 - 0.01
acts 9 - 0.37

3 2476
ucit-asp 35 0.33 17.66
jenny 39 - 0.01
acts 22 - 0.37

Table 4.4 The comparison of UCIT-ASP approach with the standard covering
array constructors defined in the literature.

In these experiments, we observed that coverage strength has an important impact
on the number of testable entities. While t = 2, testable entity counts are 311 and
333; and when t= 3 testable entity counts are 2261 and 2476, for Apache and MySQL
models respectively. Also, another observation is that our constructor generated
smaller covering arrays in comparison with Jenny for all experiment setups. Even in
comparison to ACTS, for Apache model, our constructor generates smaller U-CIT
objects than ACTS. Table 4.5 shows the covering array size improvements of our
constructor in comparison with Jenny and ACTS. However, UCIT-ASP severely
suffers in the covering array construction time.

size improvement (%)
model parameters t vs jenny vs acts

apache 13 2 10.00 18.18
3 0.00 12.50

mysql 12 2 7.14 -44.44
3 1.00 -59.09

Table 4.5 The covering array size improvement of one-test-case-at-a-time
constructor in comparison to Jenny and ACTS.

4.1.3.5 Discussion

The aim of our approach is to support scenarios that existing constructors cannot
support, rather than replacing existing combinatorial object constructors. In fact,
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the aim of the study, in this section, is to demonstrate the flexibility of this method
by showing that the developed approach can also compute frequently used standard
covering arrays.

Although UCIT-ASP approach has computed CIT objects in more computation
time than other approaches, it has generated smaller covering arrays than other
approaches in most experiments. Particularly, we observed that up to 18.18% size
reductions in the covering arrays generated for the Apache model. The reason for
this is can be considered as that Apache model have the smaller value set for each
configuration parameter and fewer system constraints than MySQL model which
allows the ASP solver to optimize the problems in depth.

4.2 Computing Test Case Aware Covering Arrays as U-CIT objects

In this section, test case aware covering arrays (Yilmaz (2013)) will be introduced
and also we will explain how they are modeled as U-CIT objects in ASP through
examples.

4.2.1 Test Case Aware Covering Arrays

Unlike standard covering arrays (Section 4.1), test case aware covering arrays com-
pute the covering arrays by considering the test case specific constraints (Yilmaz
(2013)). Standard covering arrays ignoring the test case constraints might suffer
from masking effects of parameters as a result. Hence, all combinations of parame-
ter values that are required to be tested may not be tested at all. Thus, test case
aware covering arrays significantly increase both the applicability and the effective-
ness of the CIT approaches by allowing all combinations required to be tested for
each test case.

To understand the test case aware covering arrays, the sample configuration space
model given in Figure 4.1 can be extended. The difference of our application scenario
from the example is that each valid configuration does not represent a test case
as it is. In other words, in this study, systems under test have test cases that are
designed to run on selected configurations and these test cases have their own specific
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constraints.

For example, let the system defined in Figure 4.1 have two test cases: test1 and
test2. Let these test cases have the following constraints: test1 cannot be run when
p2 = true and p3 = true, and test2 test case cannot be run when p3 = false. Note
that the test case, which does not meet its own test case constraint, will not run on
any configuration. For example, test1 will not run in the first configuration in Table
4.2 (<p1 = true, p2 = true, p3 = true>). In this case, another combination of 2-way
parameter values (p1 = true, p2 = true), which is a valid configuration for the test
case (test1), cannot be tested by test1. In other words, this configuration will be
masked (Yilmaz et al. (2014)). The purpose of test case aware covering arrays is to
eliminate the masking effect of standard covering arrays by allowing each test case
to be run on each valid t-way combination of parameter values.

Therefore, test case aware covering arrays take a configuration space model as input
that includes configuration parameters, the set of values that these parameters can
take, system constraints, a list of test cases, and test case specific constraints (if
any). For a given configuration space model and coverage strength (t), a t-way test
case aware covering array is a set of configurations in which each configuration is
associated with a set of test cases. In this structure, the set of test cases associated
with a configuration refers to the test cases scheduled to be run in that configuration.

A t-way test case aware covering array is computed to provide the following proper-
ties: 1) all selected configurations meet the system constraints, 2) none of test cases
are scheduled to run in configurations that do not meet their specific constraints,
and 3) for each test case, all of the configurations, which the test case is scheduled
for, constitute a t-way standard covering array containing all valid t-way combi-
nations of parameter values for the test case at least once. Table 4.6 illustrates a
computed test case aware covering array for the example considered above.

p1 p2 p3 t1 t2
true true true false true
true false true true true
false true true false true
false false false true false
false false true true true
false true false true false
true true false true false

Table 4.6 An example of a 2-way test case aware covering array.
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4.2.2 U-CIT Formulation

In this section, we will show how test case aware covering arrays are formulated
by using UCIT-ASP method. Test case aware covering arrays extend the cover-
age criterion of standard covering arrays by adding extra test specific constraints.
Therefore, system models of both CIT objects are similar to each other.

% Parameters and their value set
option(o1, 0..1).
option(o2, 0..3).
option(o3, 0..1).
option(o4, 0..2).

% System constraints
## configs.configs.minimal_forbidden_tuple ${‘tuple’:{‘o3’:1,‘o4’:1}}$ ##

% 2-way parameter value combinations
## configs.configs.t_tuple ${‘t’:2}$ ##

% Test cases
test(t1).
test(t2).

% Test case specific constraints
test_specific_minimal_forbidden_tuple(t1, o1, 1).
test_specific_minimal_forbidden_tuple(t2, o2, 2).

% Valid 2-way parameter combinations for test cases
schedule_test(T, O1, V1, O2, V2) :- test(T), O1 < O2,

option(O1, V1), option(O2, V2),
not test_specific_minimal_forbidden_tuple(T, O1, V1),
not test_specific_minimal_forbidden_tuple(T, O2, V2),
not test_specific_minimal_forbidden_tuple(T, O1, V1, O2, V2).

Figure 4.5 An example system_model.ucit file.

% Coverage criterion
entity(T, O1, V1, O2, V2) :- O1 < O2, test(T),

t_tuple(O1, V1, O2, V2),
schedule_test(T, O1, V1, O2, V2).

Figure 4.6 An example coverage_criterion.ucit file.

system_model.ucit: As in standard covering arrays, in this scenario, all parameters
in the system are defined in the system_model.ucit file by using the option(...)
rule (Section 4.1.2). In addition, system-wide constraints (i.e. constraints that must
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% Test case
testcase.

Figure 4.7 An example test_space.ucit file.

be applied for all test cases) are expressed by using minimal_forbidden_tuple
directive provided in the configs library (Section 3.4.2).

Moreover, two new ASP rules are used to make specific definitions for
test case aware covering arrays. These rules are test(...) and
test_specific_minimal_forbidden_tuple(...). While the first rule defines test
cases, the second defines test case specific constraints (i.e. combinations of param-
eter values for which test cases will not run).

In Figure 4.5, a system with two test cases, test case specific constraints for these
test cases and a system constraint are modeled to be used in this study. For example,

test_specific_minimal_forbidden_tuple(t1, o1, 1).

rule states that t1 test cannot run when o1 = 1

test_specific_minimal_forbidden_tuple(t2, o2, 2).

The rule also states that the t2 test cannot run when o2 = 2. Also, in this file,

schedule_test(T, O1, V1, O2, V2)
:- test(T), O1 < O2,
option(O1, V1), option(O2, V2),
not test_specific_minimal_forbidden_tuple(T, O1, V1),
not test_specific_minimal_forbidden_tuple(T, O2, V2),
not test_specific_minimal_forbidden_tuple(T, O1, V1, O2, V2).

rule specifies that in which configurations the test case will run and in which config-
urations it will not run, by determining the valid combination of 2-tuple parameter
values (O1=V1, O2=V2) for each test case T. Note that the definitions here may vary
depending on the definitions of invalid combinations or coverage strength to be
achieved. However, it is clear how to adapt in such cases.

coverage_criterion.ucit: The coverage criterion specified in the
coverage_criterion.ucit file in Figure 4.6,

entity(T, O1, V1, O2, V2) :- O1 < O2, test(T),
t_tuple(O1, V1, O2, V2),
schedule_test(T, O1, V1, O2, V2).
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computes a 2-way test case aware covering array by expressing that every combina-
tion of valid 2-tuple parameter values for each test case must be covered.

test_space.ucit: As in the previous section (Section 4.1.2), since definitions pro-
vided in system_model.ucit file already express what a test case means, testcase
rule defining test cases is defined as an empty rule (Figure 4.7):

testcase.

4.2.3 Experiment

In this section, the related experiment information will be provided on computing
test case aware covering arrays as U-CIT objects. In the rest of the section, we
will present respectively our experiment setup, evaluation framework, operational
framework, data and analysis of experiment results and finally, the discussion of
experiment results.

4.2.3.1 Setup

A series of experiments have been carried out to evaluate our approach on test case
covering array generation. In these experiments, the same Apache and MySQL
web servers in Section 4.1.3.1 (Yilmaz (2013)) were used as experimental models
with test cases and extra test case specific constraints. While Table 4.7 and Table
4.8 shows the configuration space model and the test case specific constraints for
MySQL model respectively, Table 4.9 and Table 4.10 present the same model details
for Apache model.

4.2.3.2 Evaluation Framework

In this study, the same evaluation framework defined in Section 4.1.3.2 has been
used to evaluate the proposed approach for test case aware covering arrays.
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option settings
log-format {row, statement, mixed}
sql-mode {strict, traditional, ansi}
ext-charsets {disable, complex, all}
innodb {enable, disable}
libedit {enable, disable}
log-bin {enable, disable}
readline {enable, disable}
ndbcluster {enable, disable}
ssl {enable, disable}
archive {enable, disable}
blockhole {enable, disable}
federated {enable, disable}

system-wide constraint
ssl=disable1∧ (libedit=enable → readline=disable)

Table 4.7 Traditional configuration space
model used in the experiments for

MySQL (taken from Yilmaz (2013)).

cluster # of test case-specific
idx tests constraint
1 86 log-bin=enable ∧ sql-mode6=ansi
2 60 ndbcluster=enable
3 33 innodb=enable
4 28 log-format6=row ∧ log-bin=enable

∧ sql-mode6=ansi
5 22 sql-mode6=ansi
6 18 ext-charsets6=disable ∧ sql-mode6=ansi
7 17 log-format6=statement ∧ log-bin=enable

∧ ndbcluster=enable
8 17 innodb=enable ∧ log-bin=enable

∧ sql-mode6=ansi
9 16 log-bin=enable ∧ ndbcluster=enable

10 6 log-format 6=row ∧ innodb=enable
∧ log-bin=enable ∧ sql-mode6=ansi

11 4 log-format 6=row ∧ ext-charsets6=disable
∧ log-bin=enable ∧ sql-mode6=ansi

12 4 federated=enable ∧ log-bin=enable
∧ sql-mode6=ansi

13 4 innodb=enable ∧ sql-mode6=ansi
14 4 ndbcluster=enable ∧ sql-mode6=ansi
15 2 log-format 6=statement ∧ innodb=enable

∧ log-bin=enable ∧ sql-mode6=ansi
16 2 blackhole=enable ∧ log-bin=enable

∧ ndbcluster=enable
17 1 archive=enable ∧ log-format6=row

∧ log-bin=enable ∧ sql-mode6=ansi
18 1 federated=enable ∧ innodb=enable

∧ log-bin=enable ∧ sql-mode6=ansi
19 1 log-format 6=row ∧ blackhole=enable

∧ log-bin=enable ∧ sql-mode6=ansi
20 1 log-format 6=statement ∧ log-bin=enable

∧ ndbcluster=enable ∧ sql-mode6=ansi
21 1 ext-charsets 6=disable ∧ log-bin=enable

∧ sql-mode6=ansi
22 1 log-bin=enable ∧ ndbcluster=enable

∧ sql-mode6=ansi
23 1 log-format 6=row ∧ log-bin=enable

∧ ndbcluster=enable
24 1 ext-charsets 6=disable

∧ innodb=enable ∧ sql-mode6=ansi
25 1 innodb=enable ∧ log-bin=enable

∧ ndbcluster=enable
26 1 innodb=enable ∧ ndbcluster=enable
27 1 archive=enable ∧ innodb=enable
28 1 archive=enable
29 1 log-bin=enable
30 1 ext-charsets 6=all

Table 4.8 Test case-specific constraints
used in the experiments for MySQL

(taken from Yilmaz (2013)).
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option settings
case-filter {enable, disable}
ssl {enable, disable}
dav {enable, disable}
echo {enable, disable}
rewrite {enable, disable}
case-filter-in {enable, disable}
bucketeer {enable, disable}
info {enable, disable}
headers {enable, disable}
vhost-alias {enable, disable}
cgi {enable, disable}
proxy-http {enable, disable}
proxy {enable, disable}

system-wide constraint
proxy-http = enable → proxy=enable

Table 4.9 Traditional configuration space
model used in the experiments for
Apache (taken from Yilmaz (2013)).

cluster # of test case-specific
idx tests constraint
1 172 ssl=enable ∧ proxy-http=enable
2 74 ssl=enable
3 26 rewrite=enable
4 22 headers=enable
5 21 proxy=enable
6 16 dav=enable
7 11 case-filter=enable
8 8 vhost-alias=enable
9 7 proxy-http=enable

10 5 proxy=enable∧rewrite=enable
∧ cgi=enable

11 4 echo=enable
12 3 ssl=enable ∧ headers=enable
13 2 rewrite=enable ∧ proxy=enable
14 2 ssl=enable ∧ case-filter-in=enable
15 2 case-filter-in=enable
16 2 bucketeer=enable
17 1 info=enable

Table 4.10 Test case-specific constraints used in
the experiments for Apache (taken from Yilmaz

(2013)).

4.2.3.3 Operational Framework

In this study, the same operational framework defined in Section 4.1.3.3 has been
used to carry out the experiments.

4.2.3.4 Data and Analysis

Table 4.11 presents the experiment results of computing 2-way and 3-way test case
covering arrays for Apache and MySQL web servers. Table 4.12 presents cover-
ing size improvement ratios obtained by using UCIT-ASP approach. As stated in
the standard covering arrays (Section 4.1.3.4), covering array sizes and construction
times increase as entity sizes increase. As seen in Table 4.12, UCIT-ASP has out-
performed tse-algo introduced in Yilmaz (2013) in terms of array size improvements
in Apache experiments. We observed covering array size improvement in Apache
experiments up to 5.77%.
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time (seconds)
model t entities approach size enumeration construction

apache
2 4994 ucit-asp 25.2 0.2 237.2

tse-algo 25.5 - 60.0

3 35174 ucit-asp 62.1 2.2 9624.5
tse-algo 65.9 - 420.0

mysql
2 9833 ucit-asp 42.3 0.0 386.6

tse-algo 42.2 - 60.0

3 72402 ucit-asp 133.4 3.6 37217.5
tse-algo 130.0 - 1020.0

Table 4.11 The comparison of UCIT-ASP approach with approaches (Yilmaz
(2013)) defined in the literature.

model t parameters system constraints tests size improvement (%)

apache 2 13 1 17 1.18
3 5.77

mysql 2 12 5 30 -0.24
3 -2.62

Table 4.12 The array size improvement comparison of UCIT-ASP approach with
the test case covering array construction algorithm proposed in the literature

(Yilmaz (2013)).

4.2.3.5 Discussion

As discussed in the previous section (Section 4.1.3.5), the purpose of this study
is not to compare the our approach with the specialized approaches. The main
purpose of this study is to demonstrate the flexibility of this approach by showing
that the approach developed can compute a different CIT object published in the
literature. Even though UCIT-ASP approach requires more time to compute CIT
objects, it has decreased the size of CIT objects up to 5.77% for the Apache model
in comparison with the other method in the literature.

4.3 Computing Decision Covering Arrays as U-CIT Objects

In this section, first of all, we will introduce decision covering arrays and explain how
they are formulated as U-CIT objects and computed with UCIT-ASP. In addition,
experiments results obtained from the experiments to measure the efficiency and
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effectiveness of UCIT-ASP in the computation of decision covering arrays will be
provided.

4.3.1 Decision Covering Arrays

In this study, we are interested in compile-time configuration parameters declared
by using preprocessor directives such as #ifdef and #ifndef preprocessor directives
used in C and C++. Figure 4.8 shows a hypothetical system with 6 compile-time
configuration parameters (o1,o2, . . . ,o6), where each parameter can take binary val-
ues (T : true or F : false). In the rest of the document, #ifdef, #ifndef, or
similar conditional branching directives will be referred as an if-then-else directive.
Since these directives consist of compile-time parameters, they can be easily checked
externally during the compilation and build phase of the system.

Figure 4.8 (a) An example of preprocessor directives with 6 compile-time
configuration parameters, (b) An example of 2-way standard covering array

generated for this system, and (c) An example of test cases obtaining full coverage
under decision coverage criterion.

Moreover, these if-then-else directives types express how the configuration param-
eters interact with each other. Since the decisions to be taken might change with
respect to these interactions and might change the way of the system works, these
interactions need to be tested. Therefore, decision coverage (DC) criterion takes
its place as a structural test adequacy criterion that software developers can use in
such scenarios. In order to achieve full coverage with DC criterion, both true and
false results must be obtained for all decisions (such as o1∧o2 and o3∨o4 in Figure
4.8.a).

Since standard covering arrays do not take into account the interaction between
configuration parameters, in cases where there are nested parameters, they usually
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either cannot achieve full coverage or require too many test cases to achieve full
coverage (Javeed (2015); Javeed & Yilmaz (2015)). For example, for the scenario
given in Figure 4.8.a, we want to obtain full coverage under DC. For this reason,
let’s use a 2-way covering array that is partially given in 4.8.b. In this case, the last
4 columns in 4.8.b show the outputs of the decisions taken: T (true) and F (false)
indicate the Boolean outcomes, while ’−’ indicates that the relevant conditional
statement cannot be reached due to other conditional statements. For example, the
decision (o3∨ o4) in the first line cannot be reached because the (o1∧ o2) condition
cannot be satisfied, and therefore this decision cannot be tested by (o1 = T,o2 =
F,o3 = T,o4 = F,o5 = F,o6 = F ) configuration.

While for if-then-else directives between lines 1 and 5, it can achieve only 75%
coverage, the 2-way covering array in 4.8.b achieves full coverage under DC coverage
criterion for the if-then-else directives between lines 6 and 10 in 4.8.a.

UCIT-ASP method takes the source code of the system to be tested, a coverage
strength t, and a structural coverage criterion as an input. First of all, each if-
then-else directive not included in another if-then-else directive in the source code
is defined as a virtual configuration parameter. Then, under the structural coverage
criterion requested for a given virtual configuration parameter, each condition that
must be satisfied to achieve full coverage is expressed as a virtual value that the
virtual configuration parameter can take.

Finally, configurations (test cases) are generated to include valid combinations of
t virtual parameter values. The fewer configurations needed for full coverage, the
more effective the proposed approach will be.

In the rest of the document, the DC criterion will be used as the structural coverage
criterion without compromising the generality of the proposed method. However,
the proposed approach is easily suitable to use with other structural coverage criteria
such as condition coverage and MC/DC coverage (Yu & Lau (2006)).

Definition 1 A virtual configuration parameter (or virtual parameter voi) is an
if-then-else directive that is not nested within another if-then-else directive.

For example, the system in 4.8.a has two virtual parameters: while vo1 represents
the if-then-else directive between lines 1 and 5, and vo2 represents the if-then-else
directive between lines 6 and 10.

Definition 2 Every possible outcome of all decisions in the if-then-else directive
corresponding to a given virtual configuration parameter is a virtual value for that
virtual configuration parameter. Note that each virtual value must be expressed as a
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constraint in U-CIT.

Therefore, when all virtual values of a given virtual configuration parameter are
covered, full coverage is obtained under the DC criterion for the relevant if-then-else
directive.

For the example in 4.8, vo1 has four virtual values: {(o1∧o2),¬(o1∧o2),(o1∧o2)∧
(o3 ∨ o4),(o1 ∧ o2)∧¬(o3 ∨ o4)}. The first two virtual values are defined to cover
true and false values in the branches formed by (o1 ∧ o2) decision, and the next
two virtual values are for true and false branches in the decision (o3∨ o4), which
is protected by (o1∧ o2) condition. Similarly, the vo2 parameter has four virtual
values: {o5,¬o5,(o5∧o6),(o5∧¬o6)}.

For a given source code of a software system, not all combinations of virtual pa-
rameter values may be valid due to conflicts that may arise because of using the
actual configuration parameters in more than one place. In these cases, since each
virtual value is expressed as an U-CIT constraint, it can be decided whether a given
virtual value is valid or not, by looking at whether the corresponding constraint can
be solved. In other words, a virtual value will only be valid if the corresponding
constraint can be satisfied. In the rest of the document, the term “virtual value”
will be used to refer to valid virtual values.

Definition 3 A t-combination is the constraints corresponding to the virtual values
obtained from t different virtual parameters combined with the logical AND operator.

A t-combination would be invalid if the corresponding constraint with virtual values
is not satisfied. In the rest of the document, the term “t-combination” will be used
to denote valid t-combinations.

Notice that each t-combination represents an interaction to be tested. If we go back
to the previous example, when t= 2, some 2-way combinations for vo1 and vo2 are
as follows: (o1∧o2)∧ (o5) which tests the interactions between the true branches of
decisions on lines 1 and 6 and ((o1∧ o2)∧¬(o3∨ o4))∧ (o6) tests the interaction of
false branch on line 2 and true branch on line 7.

Definition 4 For a given set of virtual configuration parameters, a t-way structural
coverage criterion (Kstructural) marks the virtual values taken by the parameters in
this set to include all valid t-way combinations for t coverage strength.

If we go back to the previous example, for t= 2, it marks the Kstructural criterion to
include a total of 4x4 = 16 2-way combinations for the virtual parameters vo1 and
vo2.
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Definition 5 A t-way structural U-CIT object is a set configuration consisting of
real configuration parameters, including all t-combinations marked by the Kstructural

criterion for the given virtual configuration parameters, the virtual values these pa-
rameters take, and the coverage strength t.

In this context, to include a t-combination for a real system configuration, the con-
straint corresponding to the t-combination must be satisfied with the configuration
in interest.

Note that if the coverage strength t for Kstructural is 1, all the virtual values of all
virtual parameters would be covered. In other words, covering all valid 1-way com-
binations guarantees full coverage under the given structural coverage criterion. As
a result, the 1-way structural U-CIT object corresponds to CIT objects introduced
in the (Javeed & Yilmaz (2015)) study. Therefore, our study is a study showing the
expressiveness strength of the U-CIT approach.

Although the 1-way structural U-CIT objects test the interactions of the configura-
tion parameters within the if-then-else directives, they do not take into account the
interactions between the if-then-else directives that are not structurally related to
each other. By considering the 1-way structural U-CIT object given in 4.8.c as an
example, although this object provides full coverage under DC criterion, it does not
test some interactions between independent if-then-else directives. For example, the
interactions of true branches of the decisions o1∧o2 (line 1) and o6 (line 7) cannot
be tested by this given structural object. Therefore, we also compute 2-way decision
covering arrays to test interactions of 2-way if-then-else directives, in other words
2-way combinations of decision outcomes.

4.3.2 U-CIT Formulation

In order to compute U-CIT objects, first of all, logical decisions must be defined
in UCIT-ASP system. Two new directives have been developed in UCIT-ASP for
this purpose: ucit.ucit.bool_var and ucit.ucit.bool_expr. While the first
directive is used to define a Boolean variable, the second is used to define Boolean
expressions that use declared variables. Note that these directives parametrically
generate the necessary ASP rules, as discussed in the previous sections. Thus, there
is no need to develop another ASP directive to achieve the same functionality. ASP
rules corresponding to these directives can be used directly in UCIT-ASP system.
The aim of developing these directives within the scope of the study is to reduce the
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burden on end-users as much as possible by creating ready-made ASP libraries for
frequently used model elements based on our development experience.

For example, the following directive defines three Boolean variables: a, b, and c.

## ucit.ucit.bool_var ${‘vars’:[‘a’,‘b’,‘c’]}$ ##

This directive automatically generates the following ASP directives to express that
each variable can take either true or false values:

1 {parameter(global, a, true); parameter(global, a, false)} 1.
1 {parameter(global, b, true); parameter(global, b, false)} 1.
1 {parameter(global, c, true); parameter(global, c, false)} 1.

The following directive defines a Boolean expression ~((a&~b)|c) for falseBranch
by using these variables:

## ucit.ucit.bool_expr ${‘name’:‘falseBranch’,‘expr’:‘~((a&~b)|c)’}$ ##

This directive converts a given Boolean expression to Disjunctive Normal Form
(DNF) (so that it can be formulated in ASP) and generates an ASP rule for each
element in this form. For example, the directive above produces the following rules:

% falseBranch : orig = ~((a & ~b) | c)

% falseBranch : dnf = Or(And(~a, ~c), And(b, ~c))

falseBranch :- parameter(global, a, false), parameter(global, c, false).

falseBranch :- parameter(global, b, true), parameter(global, c, false).

% Variable definitions
## ucit.ucit.bool_var ${‘vars’ : [‘a’, ‘b’, ‘c’]}$ ##

% Expression results
## ucit.ucit.bool_expr ${‘name’:‘trueBranch’, ‘expr’:‘(a&~b)|c’}$ ##
## ucit.ucit.bool_expr ${‘name’:‘falseBranch’, ‘expr’:‘~((a&~b)|c)’}$ ##

Figure 4.9 An example system_model.ucit file.

% Entity definitions
entity(e1) :- trueBranch
entity(e1) :- falseBranch

Figure 4.10 An example coverage_criterion.ucit file.
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% Test case definition
testcase.

Figure 4.11 An example test_space.ucit file.

system_model.ucit: To compute UCIT objects, system_model.ucit file contains
Boolean variables used in the system and decisions using these variables. Both
satisfied and not satisfied outcomes of decisions also are included in the file. In the
example file system_model.ucit given in Figure 4.9, both outcomes of ((a&~b)|c)
decision (in other words, when this decision is satisfied or not) are defined as two
Boolean expressions, as trueBranch and falseBranch.

coverage_criterion.ucit: To compute decision covering U-CIT objects under
structural coverage criterion, it is required to cover all outcomes of each decision.
As can be seen in the sample coverage_criterion.ucit file in Figure 4.10, this is
achieved by showing that all relevant Boolean expressions defined must be covered.

test_space.ucit: Since there is no extra constraint to define the valid test space,
testcase rule is defined as an empty rule, as seen in the sample test_space.ucit
file given in Figure 4.11.

4.3.3 Experiment

In this section, the related experiment information will be provided on computing
decision covering arrays as U-CIT objects. In the rest of the section, we will present
respectively our experiment setup, evaluation framework, operational framework,
data and analysis of experiment results, and finally, the discussion of experiment
results.

4.3.3.1 Setup

A series of experiments have been carried out to evaluate the proposed approach.
In these experiments, 12 experiment models obtained from real software systems
have been used (Javeed & Yilmaz (2015)). Each application model has binary
compile-time configuration parameters built using preprocessor directives. Since no

41



constraints on the configuration parameters are known, all possible combinations of
parameter values are assumed to be valid.

4.3.3.2 Evaluation Framework

In this study, the same evaluation framework defined in Section 4.1.3.2 has been
used to evaluate the proposed approach for decision covering arrays.

4.3.3.3 Operational Framework

Unless otherwise is stated, in this study, all the experiments were repeated 5 times
and carried out on Google Cloud using Intel Xeon CPU 2.30GHz machines with
4Gb of RAM, running 64-bit Ubuntu 18.04 as the operating system. The time limit
configuration parameter of UCIT-ASP, which is used to limit test case generation
time for each step by interrupting the ASP solver, was set to 60 seconds for these
experiments.

4.3.3.4 Data and Analysis

The experiments results are given in Table 4.13. In experiments, we observed that
the number of testable entities, covering arrays sizes and covering array computation
times exponentially has increased with the coverage strength t.

In the computation of standard covering arrays and test case covering arrays, we
observed that there is a correlation between the size of U-CIT objects computed and
the number of entities. In those studies, we realize the fact that array sizes increase
as the number of entities to cover increases. However, in this study, there is no
correlation between entity sizes and U-CIT object sizes. For example, when t = 1,
while 152 entities for parrot model is covered by 10.0 test cases, it is adequate to
cover cherokee model with 172 decisions with 5.0 test cases. Similarly, when t = 2,
while gimp model with 16438 entities can be 48 configuration, for xfig model with
26985 entities, all 2-way decision combinations have been covered with 45.8 test
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cases.

In our experiments, we compared our approach with cover-and-generate constructor
proposed by Mercan et al. (2020). In most of experiments, both when t= 1 and t= 2,
our approach computed smaller sized U-CIT objects. More specifically, when t=1,
U-CIT object sizes are improved up to 9.1%, when t=2, UCIT-ASP computes smaller
U-CIT object up to 21.4% in comparison with cover-and-generate constructor.

ucit-asp cover-and-generate
t model entities size time size time size improvement (%)

1

mpsolve 30 3.0 0.67 3.0 0.31 0.0
dia 42 6.0 0.67 4.2 0.34 -42.9
irissi 70 4.0 35.00 4.0 0.66 0.0
xterm 78 5.0 61.00 4.2 0.58 -19.0
parrot 152 10.0 69.33 10.0 1.95 0.0
gimp 198 8.0 122.00 8.0 2.27 0.0
pidgin 199 4.0 121.00 4.4 2.29 9.1
python 210 4.0 120.67 4.4 2.07 9.1
xfig 237 6.0 121.33 6.0 2.74 0.0
vim 239 6.0 121.67 6.2 2.69 3.2
sylpheed 258 7.0 122.33 6.6 3.04 -6.1
cherokee 272 5.0 121.67 5.0 3.53 0.0

2

mpsolve 296 11.0 4.00 14.0 2.07 21.4
dia 734 18.0 12.33 19.4 2.26 7.2
irissi 2102 21.0 742.67 24.2 13.16 13.2
xterm 2871 20.0 722.67 21.2 5.74 5.7
parrot 10359 52.0 2679.33 55.8 46.65 6.8
gimp 16438 44.3 3629.67 48.0 67.11 7.6
pidgin 17857 32.0 2651.67 33.4 31.82 4.2
python 21180 32.3 3029.00 34.6 28.68 6.6
xfig 26985 42.3 4071.67 45.8 78.54 7.6
vim 27442 46.3 4181.67 48.6 56.47 4.7
sylpheed 31597 44.3 4574.67 47.4 78.2 6.5
cherokee 32530 38.7 3698.33 45.0 79.89 14.1

Table 4.13 The results of decision coverage experiments.

4.3.3.5 Discussion

Although the UCIT-ASP method was slower in terms of computation time than
the cover-and-generate method developed in the literature (Mercan et al. (2020)),
it mostly computed smaller U-CIT objects. Particularly, in experiments when the
coverage strength is 2 (t = 2), UCIT-ASP method reduced the sizes of all objects
generated. This shows that the effectiveness of our approach increases as coverage
strength increase in this study.
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4.4 Computing Def-Use Pair Covering Arrays as U-CIT Objects

In this section, we introduce a novel coverage criterion which is def-use pair covering
arrays as a black-box testing strategy and explain how to model def-use pairs in ASP
encoding by examples.

4.4.1 Def-Use Pair Covering Arrays

Def-use-based testing strategies in the literature aim to test def-use pairs on the basis
of the program variables as a white-box testing method (Su, Wu, Miao, Pu, He, Chen
& Su (2017)). In this study, we propose a def-use-based test strategy which is used
as a black-box testing strategy to test def-use pairs for symbolic objects defined on
graph-based models.

Although a coverage criterion has been developed to test all t-node orders in the
literature (Mercan et al. (2020)), the effectiveness of these methods can be further
increased. Namely, in the order-based studies, while it is sufficient to cover t-node
orders with any path in a graph, the purpose of our study is to ensure that after an
object is updated within the nodes, this update must be tested at every node where
the object is used without any its state changes. In other words, if an o object is
defined in the vi node and used in vj node, it is sufficient to find a path starting
from vi to vj in the order-based studies. However, in def-use pair testing, we must
find a path from vi to vj such that, in that path, the object is not updated again
in nodes visited between them. Thus, the effects of each update on the objects can
be tested. If the object is updated by another node on the path, the effect of the
change made on that in vi may disappear, and therefore this change in vj may not
be tested.

The proposed method in graph-based models used in mobile applications where
states stand for application screens and edges stands for transition between edges,
by defining common resources (variables, inputs, files, and databases, etc.) as objects
on applications screens, interactions between screens defining these resources and
screens using those resources can be tested. Similarly, in multi-threaded application
models in which states represent atomic blocks and edges represents a transition be-
tween these atomic blocks, by defining defined and used resources (variable, inputs,
files, and databases, etc.) as an object on models, the interaction between atomic
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Figure 4.12 An example for graph based models.

blocks using common resources and atomic blocks defining these resources can be
tested.

Definition 6 Given a graph G= (V,E,O,D,U,v0,v⊥) where V is the set of nodes;
E is the set of edges; v0,v⊥ ∈ V are the entry and exit nodes respectively; O =
{o1,o2, . . .} are symbolic objects defined; D = {D1,D2, . . .} and U = {U1,U2, . . .}
refers to nodes where the objects are defined and used respectively. Each set of
Di ∈D and Ui ∈ U is actually a subset of V (Di ⊂ V and Ui ⊂ V ). Also, for any
object oi ∈ O, the nodes where oi is defined are in the Di ∈D set, and the nodes it
is used in the Ui ∈ U set.

Definition 7 Given G = (V,E,O,D,U,v0,v⊥), a path is an ordered sequence of
nodes (vi1 , . . . ,vin) such that (vij ,vij+1) ∈ E for 1≤ j < n.

Definition 8 Given G = (V,E,O,D,U,v0,v⊥), a test case φ is a path from v0 to
v⊥. For a given test case φ with length n, φi where 1 ≤ i ≤ n is assumed to be the
node having ith position in the test case. Hence, φ1 = v0 and φn = v⊥.

Definition 9 Given a graph G = (V,E,O,D,U,v0,v⊥), [vi1 , . . . ,vit ] is a t-order
(vij ∈ V,1≤ j ≤ t).

Definition 10 Given G= (V,E,O,D,U,v0,v⊥), a tuple of (vi1 ,vi2 ,oj) is a testable
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def-use entity, if vi1 defines the oj object (vi1 ∈Dj), vi2 node uses oj object (vi2 ∈Uj),
and if there is a path from vi1 to vi2 where oj object is not redefined (except vi2).

Definition 11 Given G = (V,E,O,D,U,v0,v⊥), def-use coverage criterion covers
all testable def-use entities (in other words, def-use pairs).

Definition 12 Given G = (V,E,O,D,U,v0,v⊥), a def-use-based U-CIT object is a
set of U-CIT test cases that provides full coverage under def-use coverage criterion.

For example, let O = {o1,o2} objects are defined for the graph-based model given
in Figure 4.12.c, and the definition and usage information of these objects are as
follows:

D1 = {v2} # nodes where o1 is defined

U1 = {v4,v5} # nodes where o1 is used

D2 = {v2,v4} # nodes where o2 is defined

U2 = {v4,v5} # nodes where o2 is used

In this case, def-use coverage criterion marks the following def-use entities to cover:

(v2,v4,o1)

(v2,v5,o2)

(v4,v5,o2)

Note that (v2,v5,o2) is not a valid def-use entity. The reason is that, it is not
definitely possible to find a path from v2 to v5 without pass through v4. Since v4

node defines o2 object (v2,v5,o2), it is not a valid def-use pair. A def-use U-CIT
object to be computed for this scenario will consist of a single test case containing
the path [v2,v4,v5].

4.4.2 U-CIT Formulation

In this section, def-use pair covering arrays will be formulated and computed by
using the UCIT-ASP approach.
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system_model.ucit: The difference of the graph models used in def-use pair cover-
ing arrays from the usual graph models is that there are two sets containing defined
and used objects mapped to nodes in these models. Therefore, a graph model
prepared to compute a def-use pair covering array has the characteristics of other
graph-based models. This shows that the same or similar modeling approaches can
be used in modeling different systems and computing related U-CIT objects.

As discussed in Section 3.1, state(...), edge(...), start_state(...) and
end_state(...) rules are used to define graph-based models. In addition to these
rules, objects in the model are defined by using object(...) rule and the parameter
in this rule expresses the name of the defined object. def(...) and use(...) rules
are used to determine the nodes where an object is defined and used respectively.
The first parameter in these rules refers to the name of the node where the definition
or the use occurs and the second parameter refers to the name of the object defined
or used in that node with respect to the rule used.

Figure 4.13 presents an example system_model.ucit file. There are two objects
defined in the graph model expressed: o1 and o2. For example, o1 is defined only in
node v2 and used in node v4 and v5. The definition of def-use pairs for this model
is computed by using the single_path_def_clear_path_def directive of graphs
library developed (Section 3.4.2). This directive generates the following ASP rules
to determine def-use pairs:

def_use_pair(A, B, O) :- def(A, O), use(B, O),
reaches(A, B), not redefs(A, _, B, O).

redefs(A, X, B, O) :- A != X, X != B, def(A, O), def(X, O),
use(B, O), reaches(A, X), reaches(X, B).

Note that these rules requires a path from A to B where the object O is not redefined
to satisfy def_use_pair(A, B, O) rule, so that the definition of object O in node
A and the use in node B creates a def-use pair.

If graph theory is wanted to use to compute def-use pairs, the
graphs.graph_theory.def_use_pairs directive can be used. (Section 3.4.3)

coverage_criterion.ucit: As shown in Figure 4.14, the coverage criterion defined
for this testing scenario is that all valid def-use pairs must be covered.

test_space.ucit: As shown in Figure 4.15, a valid test case for this scenario is a
path from the start node to the end node.

47



% Start and end nodes
start_state(v0).
end_state(v6).

% Nodes
state(v0).
state(v1).
state(v2).
state(v3).
state(v4).
state(v5).
state(v6).

% Edges
edge(v0, v1).
edge(v1, v2).
edge(v1, v3).
edge(v1, v4).
edge(v1, v5).
edge(v4, v5).
edge(v5, v6).

% Objects
object(o1).
object(o2).

% Object definitions
def(o1, v2).
def(o2, v2).
def(o2, v4).

% Object uses
use(o1, v4).
use(o1, v5).
use(o2, v4).
use(o2, v5).

% Def-clear-path rule
## graphs.graphs.single_path_def_clear_path_def ##

Figure 4.13 An example system_model.ucit file.

% Entity definition
entity(def_use_pair, A, B, O) :- def_use_pair(A, B, O).

Figure 4.14 An example coverage_criterion.ucit file.
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% Test case definition
testcase :- reaches(A, B), start_state(A), end_state(B).

Figure 4.15 An example test_space.ucit file.

4.4.3 Experiment

In this section, the related experiment information will be provided on comput-
ing def-use pair covering arrays as U-CIT objects. In the rest of the section, we
will present respectively our experiment setup, evaluation framework, operational
framework, data and analysis of experiment results and finally, the discussion of
experiment results.

4.4.3.1 Setup

A series of experiment has been carried out to evaluate our proposed approach on
the covering array generation for def-use pairs. In these experiments, 42 graphs
selected from the graphs obtained from real software (Çalpur (2012)) were used as
experiment models.

Experiment graph variations were obtained by using the cross product of the fol-
lowing independent variables for each graph mentioned above:

• the number of objects in the diagram: {10,20}

• the number of definitions per objects: {5,10}

• the number of uses per objects: {5,10}

For this purpose, symbolic objects were created in graphs as many as the total
number of objects declared above. Each object is defined in the randomly selected
nodes and used in the randomly selected nodes as many as aforementioned in the
experiment setup. Thus, 8 different experiment models were prepared for each graph
model.

4.4.3.2 Evaluation Framework
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In this study, we used the same evaluation metrics introduced at Section 4.1.3.2,
except the size improvement metric to evaluate.

4.4.3.3 Operational Framework

In the experiments for this study, we used the same operational framework that is
stated in Section 4.1.3.3.

4.4.3.4 Data and Analysis

Table 4.14 summarizes the results obtained from experiments. Due to the number
of experiments performed to evaluate the approach, this table presents the average
results obtained by grouping the experiment results on the basis of the independent
variables aforementioned. In other words, the table presents the aggregated result
of experiments with respect to the combination of experiment setup parameters.

In the experiments, we observed that the experiment parameters, which are the
number of objects, definitions per object, and uses per object, affect construction
times and object sizes. While, when the number of objects in graphs is 10, the
average U-CIT object size is 6.5, when this number is doubled to 20, the average
U-CIT object size becomes 8.0.

Similarly, particularly for graphs containing a large number of representative objects
in the graphs, an increase in the number of defs and uses in graphs leads to an
increase as well in the covering array sizes. For example, when objects in graphs
are 20 and defs per object is 5, doubling uses per object in graphs from 5 to 10,
increases U-CIT object sizes 1.98x times.

Moreover, if we keep the number of objects and number of uses per object constant,
we can observe the same change in U-CIT object size by doubling the number defs
per object.

In experiments, two entity enumeration approaches were used which are graph-
theory-based enumeration and ASP-based enumeration. The average entity compu-
tation time for both approaches is 0.18s. This indicates that both imperative and
declarative programming techniques used in the testable entity enumeration perform
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similar performances.

enumeration time (s)
objects defs per object uses per object stats entities size graph-based ASP-based construction time (s)

10

5

5
min 45.0 3.0 0.00 0.00 0.00
avg 55.0 5.4 0.08 0.05 3.23
max 74.0 11.0 0.33 0.33 7.33

10
min 80.0 3.0 0.00 0.00 0.00
avg 113.4 6.8 0.12 0.13 4.52
max 152.0 18.0 0.67 0.33 16.67

10

5
min 50.0 3.0 0.00 0.00 0.33
avg 63.2 6.1 0.04 0.06 3.55
max 103.0 15.0 0.67 0.33 15.67

10
min 104.0 3.0 0.00 0.00 0.33
avg 128.1 7.5 0.07 0.09 5.31
max 219.0 24.0 0.33 0.67 20.67

20

5

5
min 91.0 3.0 0.00 0.00 0.33
avg 113.3 6.8 0.08 0.06 4.12
max 151.0 16.0 0.33 0.33 12.00

10
min 181.0 3.0 0.00 0.00 0.33
avg 224.6 8.2 0.07 0.08 4.92
max 310.0 17.7 0.33 0.67 17.67

10

5
min 103.0 3.0 0.00 0.00 1.00
avg 125.8 7.7 0.10 0.06 5.72
max 191.0 21.0 0.33 0.33 20.33

10
min 215.0 3.0 0.00 0.00 0.67
avg 256.0 9.1 0.07 0.07 7.27
max 347.0 23.7 0.67 0.67 25.00

Table 4.14 The experiment results of def-use pair covering array generation.

4.4.3.5 Discussion

As expected, as the number of objects, the number of definitions per object, and
the number of uses per object have been increased, both the dimensions of covering
arrays and their computation times have increased. Since graph models enriched
with objects are unique models within the scope of this study, the results obtained
could not be compared with other approaches.

4.5 Computing Path Aware Covering Arrays

In this section, firstly, we will introduce a novel U-CIT object which is path aware
covering arrays and explain how they are formulated as U-CIT objects and computed
with UCIT-ASP. In addition, experiments results obtained from the experiments to
measure the efficiency and effectiveness of UCIT-ASP in the computation of path
aware covering arrays will be provided.
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4.5.1 Path Aware Covering Arrays

In this problem, we work with graph-based models where each node contains a set
of distinct node parameters; and each parameter can be set to a finite amount of
values. In the graph, each set of parameters are uniquely defined for each node and
nodes must be visited to activate those parameters.

Such graph-based models can be used as a mobile application testing strategy where
mobile applications are represented as a graph-based model in which nodes represent
application screen; edges represent a transition between those screens; the param-
eters defined in nodes refer to input fields on related screens. Moreover, multi-
threaded systems can be tested with this testing strategy where nodes represent
atomic blocks; edges represent transitions between atomic blocks, and parameters
defined at nodes represent shared resources between atomic blocks.

Figure 4.16 An example for graph-based models

When there are parameters defined on the nodes, it might be necessary to test the
parameter interactions both within a node and between nodes. For example, the
assumption is that there are two screens in a mobile application where round-trip
information is entered and all flights are listed with this information. The user
wants to make a ticket reservation for an adult and a child over 2 years old on
this application. After entering the round-trip information for a certain date, the
assumption is that there are enough seats for the selected flight. However, it is not
possible to find two seats next to each other. Since it is prohibited that a child
over 2 years old to sit in a seat separate from their parents, this case must not be
possible. However, if the tests are performed taking into account only the screen
transitions (in other words, the order-based studies in the literature (Mercan et al.
(2020)) where the interaction between screen inputs is ignored) such errors may not
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be detected.

Although standard covering arrays might be a good option to test the interactions
of parameters between nodes, most of the test cases to be generated by this method
will be invalid.

Therefore, we introduce a new order-based coverage criterion which is based on both
the order of nodes and the interactions of the parameters defined in these nodes by
expanding the order-based coverage criterion (Mercan et al. (2020)). In the rest of
the paper, this coverage criterion is referred as path aware coverage criteria.

Definition 13 Given a graph G = (V,E,P,K,v0,v⊥) where; V is the set of nodes,
E is the set of edges, v0 ∈ V and v⊥ ∈ V are entry and exit nodes respectively,
P = {P1,P2, . . .} is the parameter sets defined in nodes where K = {K1,K2, . . .}
refers to the finite sets of values that these parameters take. For example, for vi ∈ V ,
Pi = {pi1 ,pi2 , . . .} specifies the parameters defined in this node. The finite set of
values that these parameters can take are represented as Ki = {ki1 ,ki2 , . . .}. In other
words, the set of kij ∈Ki refers to the finite set of values pij ∈ Pi can take.

Definition 14 For given graph G = (V,E,P,K,v0,v⊥), a path is an ordered se-
quence of nodes (vij , . . . ,vin) where a valid value is assigned for all parameters defined
by these nodes.

Definition 15 For a given G= (V,E,P,K,v0,v⊥), a test case θ, is a path starting
with node v0 and ending with node v⊥. Given test case θ of length n, θi (1≤ i≤ n)
is assumed to be the node having ith position in the test case. Therefore, θ1 = v0 and
θn = v⊥.

Definition 16 Given a graph G = (V,E,P,K,v0,v⊥), [vi1 , ...,vit ] is a t-way node
order (vij ∈ V , 1≤ j ≤ t).

To cover this node sequence by a test case, nodes must be visited in the order which
they are ordered, and a value must be assigned to the parameters within each node
from their own set of values. Also, nodes do not have to be visited consecutively. For
example, for the graph given in Figure 4.16.a, (v0,v1,v2,v5,v6,v⊥) test case includes
both [v1,v2] and [v1,v6] orderings. On the other hand, [v2,v3] is not a valid 2-way
order, because there is no path from v2 to v3.

Based on these definitions, the coverage criteria given are defined below.

Definition 17 Path aware coverage criterion with (t′, t) parameters, for a given
graph G= (V,E,P,K,v0,v⊥), marks for each t′-order nodes in G and t-combinations
of parameters defined in these nodes to cover.
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Definition 18 Given graph G = (V,E,P,K,v0,v⊥), a path aware U-CIT object is
a set of U-CIT test cases that provides full coverage under path aware coverage
criterion.

Notice that the coverage criterion proposed here has two parameters: node order
strength (t′) and parameter interaction strength (t). While node order strength
determines the size of node sequences in interest, the interaction strength deter-
mines the coverage strength that must be obtained among parameters in these node
orderings.

During this study, 3 ordering criteria has been used which are any, consecutive and
non-consecutive node orderings. While these ordering criteria determine in which
order nodes must be covered, it also determines the interactions of parameters that
must be covered.

In addition to any t-order definition described in Definition 16, for consecutive and
non-consecutive node orderings introduced in the literature (Mercan et al. (2020))
as well, U-CIT objects will be formulated in Section 4.5.2.

4.5.2 U-CIT Formulation

Path-aware U-CIT objects have been introduced in Section 4.5.1. In this section,
these objects will be formulated and computed by using the UCIT-ASP approach.
In addition, in this section, a path-aware U-CIT object is defined with only any t′-
order criterion. In this section, with the flexibility provided by UCIT-ASP, alongside
t′-any-order path aware U-CIT object, t′-consecutive-order and t′-nonconsecutive-
order path aware U-CIT objects will be formulated in ASP. These U-CIT objects
will be evaluated with the experiments carried out with graph models obtained from
real software systems (Çalpur (2012)) in the next section.

The models used for path aware U-CIT objects are graph based models. Therefore,
state(...), edge(...), start_state(...) and end_state(...) rules are devel-
oped in UCIT-ASP (in Section 3) to define these models. In addition to these rules,
option(...) rule is defined to express parameters defined in the nodes which can
take a finite set of values. For example, the following ASP rule

option(s1, o1, 1..4).

defines a parameter named o1 which is defined in node s1 and can take four different
values (1, 2, 3 or 4).
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start_state(ss).
end_state(se).

state(ss).
state(se).
state(s1).
state(s2).
state(s3).

edge(ss, s1).
edge(s1, s2).
edge(s1, s3).
edge(s2, se).
edge(s3, se).

option(s1, o1, 1..4).
option(s1, o2, 1..2).
option(s2, o3, 1..4).
option(s3, o4, 1..2).

## graphs.graphs.any_order_t1_tuple_t2 ${‘t1’:2, ‘t2’:2}$ ##

Figure 4.17 An example system_model.ucit file.

% Coverage criterion
entity(any_order, A, O1, V1, B, O2, V2)

:- any_order_2_tuple_2(A, O1, V1, B, O2, V2).

Figure 4.18 An example coverage_criterion.ucit file.

% Test case
testcase :- reaches(A, B), start_state(A), end_state(B).

Figure 4.19 An example test_space.ucit file.
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system_model.ucit: In Figure 4.17, an example system_model.ucit file to
compute a path aware U-CIT object is presented. To determine the entities
to be covered, any_order_t1_tuple_t2, consecutive_order_t1_tuple_t2 and
nonconsecutive_order_t1_tuple_t2 directives have been developed. For a given
graph model, these directives, determines the entities to be covered under (t′, t) path
aware coverage criterion, (t′, t) consecutive path aware coverage criterion, and (t′, t)
non-consecutive path aware coverage criterion respectively. In Figure 4.17, only
any_order_t1_tuple_t2 directive is used as an example, where other directives
can be used similarly.

For example, the following directive,

## graphs.graphs.any_order_t1_tuple_t2 ${‘t1’:2,s‘t2’:2}$ ##

generates the following ASP rules to determine all testable entities that must be
covered by (2,2)-way any path aware U-CIT objects:

reaches(A, A) :- state(A).
any_order_2_tuple_2(A, O1, V1, B, O2, V2) :- A != B,

option(A, O1, V1), option(B, O2, V2), any_order(A, B).
any_order_2_tuple_2(A, O1, V1, A, O2, V2) :- O1 < O2,

option(A, O1, V1), option(A, O2, V2).
any_order(A, B) :- reaches(A, B).

any_order_2_tuple_2(A, O1, V1, B, O2, V2) rule here states that the interac-
tion between the parameter O1 defined in node A value V1 and the parameter O2
defined in node B with value V2 must be included for the ordered A and B node
pair. Note that the symbols A, B, O1, V1, O2, and V2 in this context are actually
variables and these variables will be matched by the ASP solver with all concrete
values satisfying the criterion.

Similarly, to determine all the entities to be covered by the (2,2)-way consecutive
path aware U-CIT object with

## graphs.graphs.consecutive_order_t1_tuple_t2 ${‘t1’:2,‘t2’:2}$ ##

directive can be used and this directive automatically generates the following ASP
rules:

edge(S,S) :- state(S).
consecutive_order_2_tuple_2(S1, O1, V1, S2, O2, V2) :- S1 != S2,

option(S1, O1, V1), option(S2, O2, V2),
consecutive_order(S1, S2).
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consecutive_order_2_tuple_2(S, O1, V1, S, O2, V2) :- O1 < O2,
option(S, O1, V1), option(S, O2, V2).

consecutive_order(A, B) :- edge(A, B), A != B.

To determine all the entities that must be covered by (2,2)-way non-consecutive
path-aware U-CIT object with

## graphs.graphs.nonconsecutive_order_t1_tuple_t2 ${‘t1’:2,‘t2’:2}$ ##

directive can be used and this directive automatically generates the following ASP
rules:

nonconsecutive_order(A, B)
:- reaches(A, C), reaches(C, B), A != B, B != C.

nonconsecutive_order_2_tuple_2(S1, O1, V1, S2, O2, V2)
:- S1 != S2,
option(S1, O1, V1), option(S2, O2, V2),
nonconsecutive_order(S1, S2).

nonconsecutive_order_2_tuple_2(S, O1, V1, S, O2, V2)
:- O1 < O2,
option(S, O1, V1), option(S, O2, V2).

nonconsecutive_order(A, B)
:- reaches(A, C), reaches(C, B), A != B, B != C.

More information on how entity definitions are generated for different t′ node order-
ings and t parameter combinations can be found in Appendix A.

coverage_criterion.ucit: As can be seen from the sample
coverage_criterion.ucit file given in Figure 4.18, once the entities are
determined, entity rules defining the coverage criterion can be created as follows:

entity(any_order, A, O1, V1, B, O2, V2)
:- any_order_2_tuple_2(A, O1, V1, B, O2, V2).

So far, it has been discussed how to determine testable entities with ASP-based
formulation. On the other hand, these entities can also be computed with Python
scripts by using graph theory. The following ASP directives can be used to compute
entities by using graph theoretical approaches:

## graphs.graph_theory.path_aware_any_order ${‘t1’,‘t2’}$ ##
## graphs.graph_theory.path_aware_consecutive_order ${‘t1’,‘t2’}$ ##
## graphs.graph_theory.path_aware_nonconsecutive_order ${‘t1’,‘t2’}$ ##
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test_space.ucit. A valid test case for this scenario is a path from the start node
to the end node, as shown in Figure 4.19.

4.5.3 Experiment

In this section, the related experiment information will be provided on comput-
ing path aware covering arrays as U-CIT objects. In the rest of the section, we
will present respectively our experiment setup, evaluation framework, operational
framework, data and analysis of experiment results, and finally, the discussion of
experiment results.

4.5.3.1 Setup

A series of experiments have been carried out to evaluate the proposed method. In
these experiments, 15 graphs obtained from real software were used as graph models
(Çalpur (2012)). Graph variations were obtained by using the cross product of the
following independent variables for each graph used:

• the number of parameters per node: {3,4}

• the number of values per parameters: {2,3}

• ordering-interaction strength pairs: {(2,2), (3,3)}

To run the experiments, by computing the cross-product of experiment setup pa-
rameters, graphs are populated with parameters and their value sets. As a result,
for each graph, 4 different graph models were obtained.

4.5.3.2 Operational Framework

Unless otherwise is stated, all the experiments were repeated 3 times and carried out
on Google Cloud machines using Intel Xeon 2.30GHz CPU with 4Gb of RAM, and
running 64-bit Ubuntu 18.04 as the operating system. The time limit configuration
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parameter of UCIT-ASP, which is used to limit test case generation time for each
test case generation step, is set to 45 seconds for these experiments.

4.5.3.3 Evaluation Framework

Except for the size improvement metric, all evaluation metrics introduced in Section
4.1.3.2 have been used to evaluate the proposed approach in the experiments.

4.5.3.4 Data and Analysis

Table 4.15 and Table 4.16 summarize the results obtained from the experiments. Due
to the size of the experiment space used, this table has been presented by dividing
experiments into four groups by determining each group based on the number of
entities in experiments (in a way that we gathered experiments with a similar number
of entities in the same group) and taking averages of each group statistics for specific
experiment setup aforementioned in Section 4.5.3.1.

In these experiments, we observed that when experiment parameters such as cov-
erage strength, the number of parameters per node and the number of values each
parameter defined can take, are increased, the number of testable entities and con-
struction times increase dramatically. To better see the impact of this change, let’s
consider model group 4, and review entities, U-CIT object sizes, and time measure-
ments. For example, let’s consider any-ordered path aware U-CIT objects in this
group since experiments in complex graphs show the differences better as they scale.
Increasing coverage strength from (2,2) to (3,3) lead to 48x times increase on the
average entity sizes. Also, average U-CIT object sizes and U-CIT object computa-
tion time respectively have increased 4.38x and 12.46x times for this model group
and set of experiment configuration.

4.5.3.5 Discussion
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enumeration time (s)
model group order params values entities graph based ASP based size construction time (s)

1

any

3 2 2520.0 0.00 0.17 12.00 416.83
3 3 5670.0 0.42 0.42 24.84 962.09
4 2 4512.0 0.17 0.33 13.00 501.67
4 3 10152.0 0.42 0.67 26.58 1067.50

consecutive

3 2 576.0 0.00 0.17 8.00 190.50
3 3 1296.0 0.08 0.08 24.00 563.42
4 2 1056.0 0.25 0.00 10.00 274.67
4 3 2376.0 0.42 0.33 26.00 734.17

nonconsecutive

3 2 2124.0 0.08 0.25 11.00 458.50
3 3 4779.0 0.58 0.17 21.83 1142.00
4 2 3808.0 0.42 0.50 12.00 547.33
4 3 8568.0 1.00 0.67 25.58 1297.58

2

any

3 2 4512.0 0.44 0.50 12.00 502.56
3 3 10152.0 0.56 0.67 26.55 1068.61
4 2 8064.0 0.67 0.50 14.00 553.17
4 3 18144.0 1.22 1.17 28.39 1198.11

consecutive

3 2 840.0 0.22 0.22 12.00 274.50
3 3 1890.0 0.39 0.11 33.00 783.17
4 2 1536.0 0.39 0.00 14.11 321.22
4 3 3456.0 0.56 0.17 34.00 973.61

nonconsecutive

3 2 3972.0 0.45 0.22 12.00 548.55
3 3 8937.0 0.83 0.61 25.00 1357.72
4 2 7104.0 0.78 0.61 12.06 613.56
4 3 15984.0 1.22 1.06 27.28 1510.56

3

any

3 2 5724.0 0.50 0.34 14.00 505.84
3 3 12879.0 0.50 0.84 27.84 1123.67
4 2 10224.0 0.67 1.00 14.50 554.17
4 3 23004.0 1.17 1.67 29.17 1253.67

consecutive

3 2 900.0 0.17 0.00 13.00 272.50
3 3 2025.0 0.17 0.50 33.00 646.50
4 2 1648.0 0.17 0.17 14.00 321.00
4 3 3708.0 0.50 0.34 37.67 798.17

nonconsecutive

3 2 5112.0 0.17 0.33 12.00 552.00
3 3 11502.0 1.00 0.84 26.50 1416.83
4 2 9136.0 0.50 0.50 13.00 676.00
4 3 20556.0 1.84 1.17 28.34 1586.84

4

any

3 2 3996.0 0.00 0.44 13.33 485.11
3 3 8991.0 0.67 0.33 26.11 1036.89
4 2 7144.0 0.67 0.56 14.00 524.78
4 3 16074.0 1.00 0.67 28.11 1168.89

consecutive

3 2 732.0 0.11 0.11 10.67 247.56
3 3 1647.0 0.11 0.33 28.33 628.56
4 2 1341.3 0.11 0.33 11.67 286.00
4 3 3018.0 0.33 0.33 30.33 734.67

nonconsecutive

3 2 3492.0 0.11 0.22 11.67 523.11
3 3 7857.0 0.78 0.33 25.45 1304.11
4 2 6248.0 0.89 0.44 12.33 616.78
4 3 14058.0 1.11 1.11 26.56 1472.45

Table 4.15 Information about the (2,2)-way path aware U-CIT objects computed
in the experiments.
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enumeration time (s)
model group order params values entities graph theoretic ASP based size construction time (s)

1

any

3 2 57120.0 6.75 4.92 32.33 1475.25
3 3 192780.0 26.25 19.34 117.00 7411.67
4 2 138368.0 19.25 12.92 36.00 1841.58
4 3 466992.0 72.75 51.84 136.00 13337.83

consecutive

3 2 6144.0 1.00 0.50 34.00 732.08
3 3 20736.0 3.33 1.92 125.84 4697.75
4 2 15744.0 2.50 1.67 40.59 1101.17
4 3 53136.0 8.84 5.67 147.92 7151.92

nonconsecutive

3 2 54960.0 8.08 5.25 31.84 1906.83
3 3 185490.0 30.25 20.25 116.67 9756.83
4 2 133248.0 22.92 14.00 36.17 2469.25
4 3 449712.0 87.00 54.83 134.42 17473.33

2

any

3 2 138368.0 18.11 14.17 36.39 2009.72
3 3 466992.0 69.61 52.22 135.06 13271.17
4 2 333312.0 51.17 35.56 41.28 3054.22
4 3 1124928.0 190.44 138.11 157.72 26166.22

consecutive

3 2 9632.0 1.72 1.00 50.00 1289.55
3 3 32508.0 5.61 3.44 174.33 7035.89
4 2 24576.0 4.72 2.39 57.17 1919.50
4 3 82944.0 16.17 9.67 208.11 10992.22

nonconsecutive

3 2 135344.0 21.94 15.39 36.06 2605.28
3 3 456786.0 81.84 58.11 134.45 17138.45
4 2 326144.0 57.89 38.89 40.61 3986.78
4 3 1100736.0 228.45 152.61 154.94 34894.17

3

any

3 2 198432.0 27.00 20.34 38.17 2581.17
3 3 669708.0 103.00 78.16 142.83 17306.34
4 2 477120.0 75.00 50.50 42.83 3232.34
4 3 1610280.0 281.34 210.00 202.33 32969.34

consecutive

3 2 10080.0 1.50 0.84 53.00 988.00
3 3 34020.0 6.17 3.50 188.33 7511.67
4 2 25792.0 4.17 2.84 62.34 1875.50
4 3 87048.0 15.34 9.67 221.33 11302.83

nonconsecutive

3 2 194976.0 32.67 22.17 37.67 3337.17
3 3 658044.0 123.34 85.17 143.17 22832.50
4 2 468928.0 89.34 58.00 42.17 4435.67
4 3 1582632.0 342.00 226.00 165.83 41430.50

4

any

3 2 116760.0 14.89 11.67 35.11 1823.55
3 3 394065.0 59.44 42.56 130.55 11366.78
4 2 281482.7 42.22 30.56 39.67 2810.33
4 3 950004.0 161.78 114.22 152.66 24076.78

consecutive

3 2 7872.0 1.44 0.78 39.78 789.89
3 3 26568.0 4.44 2.45 143.33 5513.67
4 2 20149.3 3.56 1.89 46.33 1292.67
4 3 68004.0 12.89 7.78 168.45 8691.00

nonconsecutive

3 2 113952.0 17.78 12.33 35.00 2389.33
3 3 384588.0 66.78 45.67 130.00 15013.00
4 2 274826.7 50.33 32.11 39.44 3630.33
4 3 927540.0 187.89 126.00 149.56 30944.00

Table 4.16 Information about the (3,3)-way path aware U-CIT objects computed
in the experiments.
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As expected, when the number of parameters per node, the number of values per
parameter, and/or the coverage strengths are increased, both the size of path aware
U-CIT objects and the computation times of these objects and the number of testable
entities increased.

In addition, as expected, the number of testable entities in the same experimental
setups is generally ordered from smallest to largest for consecutive ordered, non-
consecutive ordered, and any ordered coverage criterion. Although this situation
caused the sizes of computed path aware U-CIT objects to decrease in the same
order, exceptions were also observed due to the randomness in the computation
methods of these objects and the reachability constraints arising from the graph
models used. When the graph-theory-based and ASP-based approaches are com-
pared in terms of computing testable entities under a given coverage criterion, it is
observed that the ASP-based method computes the testable entities in equal or less
time than the graph-theory-based approach. This shows that the ASP formulation
that we developed is efficient.

62



5. THREATS TO VALIDITY

Internal and external threats to the validity of all empirical studies exist. In our
study, we are concerned about both external and internal validity threats, because
they restrict our approach to generalize the result of our experiments to industrial
practice.

5.1 Internal Validity

The system that we developed to compute U-CIT objects have many configuration
parameters, which are coverage_max_entities, max_entities and time_limit.
We set these parameters based on our observation in experiments to minimize both
computation times and object sizes. However, these configuration values presumably
are not set to the global optimum values of configuration parameters. Hence, we
cannot guarantee that experiment results present covering arrays with the smallest
sizes which can be computed with this approach.

5.2 External Validity

Within the scope of this study, we evaluated our approach proposed by caring out
five different case studies in which different CIT (both already existing in the lit-
erature and newly introduced) objects are generated by using UCIT-ASP. In these
evaluations, one of the possible threats against our approach is the representative-
ness of objects generated in CIT area. We generated well-known three CIT objects
in CIT, which are standard covering arrays, test case aware covering arrays, and
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decision covering arrays. However, since we didn’t compute all CIT objects defined
in the literature, the representativeness of this research can be only measured on
these case studies.

Secondly, in experiments, we tried to test as much as possible models obtained from
real software systems. However, the models might not be representative for testing
all kinds of software systems. Since it is not possible to test our approach with
every software system that exists, we tried to experiment with experiment models
obtained from well-known software systems used in the industry.
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6. RELATED WORK

The computation of traditional standard covering arrays is an NP-complete problem.
Nie and Leung state that approximately 50 papers were published in the last 20 years
and their main theme is only to compute standard covering arrays (Nie & Leung
(2011)). This number emphasizes the importance of efficiency, effectiveness, and
scalability of methods used in CIT object computation, specifically in traditional
covering array generation, for both academic and practical purposes.

Traditional covering array generation methods can be examined 4 broad categories:
opportunistic (greedy) methods (Cohen et al. (1997); Lei et al. (2007); Wang &
He (2013); Wagner, Kleine, Simos, Kuhn & Kacker (2020)), mathematical methods
(Kobayashi (2002); Colbourn (2004)), methods based on random search (Schroeder,
Bolaki & Gopu (2004); Huang, Xie, Chen & Lu (2012)), and meta-heuristic methods
(Bryce & Colbourn (2007); Wu, Nie, Kuo, Leung & Colbourn (2015); Galinier,
Kpodjedo & Antoniol (2017); Jia et al. (2015); Torres-Jimenez & Rodriguez-Tello
(2012))

Opportunistic methods work iteratively (Cohen et al. (1997)). At each iteration,
an uncovered t-way parameter value combination from a set of configurations eval-
uated as candidates that covering the most possible configurations is added to the
covering array and marked as covered in all t-way combinations covered by that
configuration. The iterations end when all t-way combinations are covered by the
selected configurations.

Mathematical methods have also been developed to compute traditional standard
covering arrays (Kobayashi (2002); Hartman (2005); Ji & Yin (2010); Colbourn
(2014)). Generally, while these methods compute standard covering arrays for large
configuration space models (i.e. models with a large number of configuration pa-
rameters), they recursively use covering arrays computed for small parts of these
models (Kobayashi (2002)).

Random search-based methods use a random search without replacement strategy
(Chen, Kuo, Merkel & Tse (2010)). In this method, a configuration is randomly
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selected from the current configuration space model at each iteration. Iterations
continue until the selected set of configurations forms a t-way covering array. This
method is often used where other available methods do not scale.

Meta-heuristic methods, on the other hand, use either search-based techniques such
as hill climbing (Cohen, Colbourn & Ling (2003)), tabu-search (Bryce & Colbourn
(2007)), and simulated annealing (Cohen et al. (2003); Lin, Luo, Cai, Su, Hao &
Zhang (2015); Rodriguez-Cristerna, Torres-Jimenez, Gómez & Pereira (2015)) or
artificial intelligence based techniques such as genetic algorithms (Bansal, Mittal,
Sabharwal & Koul (2014)) and ant colony (Ahmed, Zamli & Lim (2012)) to compute
traditional covering arrays. These methods always have a set of candidate config-
urations, which are iteratively transformed until a traditional t-way covering array
forms.

All these methods have been developed to compute traditional covering arrays. In
this paper, we have developed unique methods to compute both traditional covering
arrays (since these CIT objects are a special case of U-CIT objects) and introduced
novel U-CIT objects (Section 4.4 and 4.5). In theory, the above-mentioned methods
have the potential to be adapted to compute U-CIT objects. However, particularly,
we have adapted opportunistic methods in our studies due to their flexibility in
practice.

In real life, all possible combinations of parameter values in a configuration space
model may not be valid (Calvagna & Gargantini (2010); Garvin, Cohen & Dwyer
(2011); Rao, Li, Lei, Kacker, Kuhn & Guo (2019)). In such cases, marking invalid
combinations is achieved by the constraints added to the configuration space model
and defined over parameter values. For example, a constraint that can be used in a
system defining the operating system (OS) and Web browser (WEB) to be used as
two separate configuration parameters might be that MS Internet Explorer cannot
be used with Linux-based operating systems (OS = Linux =⇒ WEB 6= Internet
Explorer). The reason is that Internet Explorer does not support non-Windows-
based operating systems. These constraints are called system constraints in the rest
of the document.

Cohen et al. have shown that computing covering arrays without complying with
the system constraints might cause cost increases due to invalid configuration com-
binations (Cohen, Dwyer & Shi (2007)). On the other hand, Yılmaz et al. show that
ignored constraints cause masking effects and prevent testing of all parameter com-
binations (Yilmaz, Dumlu, Cohen & Porter (2014)). Grindal et al. propose various
methods to satisfy system constraints (Mats, Jeff & Jonas (2006)). Instead of hard
constraints, Bryce et al. define soft constraints that allow marking combinations
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that are valid but not preferred to be covered more than once (Bryce & Colbourn
(2006)). Yılmaz shows that besides the system constraints, there are also test case-
specific constraints, and he develops a unique covering array, called test case aware
covering array (Yilmaz (2013)). CIT methods have been used many times in testing
software systems containing a large number of constraints (Johansen et al. (2012);
Henard, Papadakis, Perrouin, Klein & Traon (2013); Devroey, Perrouin, Legay,
Cordy, Schobbens & Heymans (2014); Duan, Lei, Kacker & Kuhn (2019)).

In U-CIT, each combination (in general terms, each testable entity) to be covered
is expressed as a constraint (Mercan et al. (2020)). Therefore, UCIT-ASP also
widely uses constraints between parameters (Section 3.1). However, as discussed
in detail in this paper, while U-CIT constraints are applied on the basis of each
selected configuration (each configuration must satisfy only a subset of constraints
that can be solved together, not all constraints), the aforementioned constraints are
applied to the covering array (all configurations in the covering array must satisfy
all system-wide constraints).

In covering arrays, it does not matter in what order values are assigned to each
configuration parameter in a configuration, as long as it has a valid value. In other
words, it is assumed that the system under test will behave in the same way re-
gardless of the order as the configuration parameters are configured. However, in
event-based systems, the behavior of the system usually depends on the event occur-
rence order. Therefore, it is possible to detect different errors by changing the order
of occurrences of events. To test such input spaces, CIT objects have been proposed
under the name of order-based covering arrays where the order of events is important
(Kuhn, Higdon, Lawrence, Kacker & Lei (2012)). An order-based t-way covering
array computed for events in a given system is an ordered set of events constructed
to include all valid event queues of length t at least once (consecutively or not).
Thus, order-based covering arrays allow to efficiently and effectively detect errors
occurred by the order of occurrence of t or fewer events. As with traditional covering
arrays, path aware covering arrays, which extend order-based coverage criterion, are
a special case for U-CIT objects proposed in this paper (Section 4.5).

In cases where the known CIT objects are insufficient, the definition of new coverage
criterion and new CIT objects continues without slowing down (Yuan et al. (2011);
Yang, Yan & Rountev (2013); Yang, Yan, Wu, Wang & Rountev (2015); Terragni &
Cheung (2016); Choudhary, Lu & Pradel (2017)). The one of the main reasons of this
is that CIT methods can be used in many areas. For example; Terragni/Choudhary
et al., for testing multi-threaded systems (Terragni & Cheung (2016); Choudhary
et al. (2017)); Yuan et al. to test graphical interfaces (Yuan et al. (2011)) Colbourn
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et al. to find not only errors but also possible combinations of parameter values
that cause errors (Colbourn & Fan (2016)); Ronneseth et al., to combine traditional
and order based covering arrays (Ronneseth & Colbourn (2009)); Yang et al., on
the other hand, to find the causes of the "program not responding" problem due to
complex operations in Android programs, propose new CIT-based coverage criteria
(Yang et al. (2013); Yang et al. (2015)).

The fact that CIT methods are used in many fields shows the practical and academic
value added from the generalization of these methods, and the definitions of these
objects declaratively are the main purpose of the project.
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7. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a new approach referred as UCIT-ASP to com-
pute U-CIT objects by using a declarative modeling language named as ASP and
implemented a novel U-CIT constructor named as one-test-case-at-a-time construc-
tor to compute U-CIT objects within the scope of this study. The flexibility of
modeling test scenarios declaratively has allowed us to define novel coverage criteria
for different types of systems. To represent systems having different typologies, we
also have developed modeling libraries in UCIT-ASP. Specifically, we have provided
modeling libraries in which ASP directives generate ASP code to define coverage
criterion definitions.

By using these libraries, we carried out 5 different case studies to compute different
U-CIT objects and in these studies we evaluated our approach (proposed in Section
3). Although the motivation of the approach to bring easiness and flexibility to
define novel U-CIT objects under under certain coverage criteria, we have observed
improvements in the covering array sizes generated for already defined CIT objects.
In other words, while we provide a tool to declaratively define coverage criteria, also
our approach shows an improvement in the covering array sizes generated in these
studies.

We consider that as future work many novel coverage criteria can be introduced by
using UCIT-ASP approach. We developed modeling libraries to model graph-based
models and configuration systems. These libraries can be also extended and new
libraries can be developed for other types of software systems as future work. The
coverage criteria for graph-based models that we developed in this paper are impor-
tant to test the interaction between graph nodes for graph-based systems. Therefore,
using these U-CIT objects on the testing of graph-based real-life applications such
as mobile applications and multi-threaded systems can be an interesting study to
see the efficiency of these coverage criteria that we introduced.

ASP provides a certain level of abstraction on modeling of coverage criteria and valid
test spaces. However, even a higher level of a modeling language can be provided
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as a front-end on top of it. For example, as future work, a domain-specific language
can be developed to increase the usability of this approach further.

UCIT-ASP have many configuration parameters such as time_limit,
max_entities, coverage_max_entities, which are tuned before generating
U-CIT objects. In our studies, we used the most optimal configuration setup
by manually tuning the configuration parameters. However, the values of these
configuration parameters dramatically change across different scenarios. Therefore,
an internal hyper-parameter optimization module can be developed to fine-tune
these parameters.
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APPENDIX A

ASP Rules Generated by Directives in UCIT-ASP

In this section, we provide ASP rules generated by directives in UCIT-ASP libraries
within in the scope of this work. Parametrically generated ASP rules are explained
by examples. These directives are adapted for different parameter values and their
functionality can be extended for other value combinations.

Ucit Library

This modeling library contains ASP directives to model decision systems.

decision_system ${‘input_mode’,[‘file’|‘decisions’]}$

This directive takes a decision system as an input and generates ASP rules for the
logical expressions for this decision system. This directive takes two different inputs
as parameters, import and process. If the decision system is to be provided as a
file, the file argument is provided with the file name as the second argument. If
decisions are to be written into the directive, the decision system is inserted into
decision argument made with this argument as the second argument. In both
cases, decisions are expressed in JSON format.

For example, following ASP rules are generated, for JSON file given in Figure A.1:

decision1 :- ucit_condition1.
decision1 :- ucit_condition2.
1{var(ucit_a, 1); var(ucit_a, 2)} 1.
1{var(ucit_b, 1); var(ucit_b, 2)} 1.
ucit_condition1 :- var(ucit_a,UCIT_a), UCIT_a == 1.
ucit_condition2 :- var(ucit_b,UCIT_b), UCIT_b == 2.
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{
"variables":[{

"name":"a",
"values":[ 1, 2 ]

},{
"name":"b",
"values":[ 1, 2 ]

}],
"decisions":[{

"id":“decision1”,
"decision":“(a == 1 and b == 2)”

}]
}

Figure A.1 An example decision file provided in JSON format.

bool_var ${‘vars’}$

This directive generates ASP rules for each Boolean variable in vars variable list.

For example, for the directive below,

## bool_var ${‘vars’: [‘a’, ‘b’]}$ ##

following ASP rules are generated:

parameter(global, a, true).
parameter(global, a, false).
parameter(global, b, true).
parameter(global, b, false).

bool_expr ${‘name’,‘expr’} $

Generates ASP rules for a given Boolean expression. The variables that generates
Boolean expression must have been previously defined using the bool_var directive.

For example, for the directive below,

## bool_expr ${‘name’: ‘decision1’, ‘expr’: ‘(a & b)’}$ ##

the following ASP rule is generated:

decision1 :- parameter(global, a, true), parameter(global, b, true).

76



Configs Library

This modeling library contains ASP directives to model configuration systems.

minimal_forbidden_tuple ${‘tuple’}$

Generates ASP code to defines minimal forbidden parameter value combinations.
For example, for o1 = 1 and o2 = 2 parameter combination, following ASP code is
generated:

minimal_forbidden_tuple(o1, 1, o2, 2).

t_tuple ${‘t’}$

Generates ASP code to express t-tuple parameter value combinations. For example,
this directive generates the following code,

when t= 2,

t_tuple(O1, V1, O2, V2)
:- O1 < O2,
option(O1, V1), option(O2, V2),
not minimal_forbidden_tuple(O1, V1),
not minimal_forbidden_tuple(O2, V2),
not minimal_forbidden_tuple(O1, V1, O2, V2).

and when t= 3,

t_tuple(O1, V1, O2, V2, O3, V3)
:- O1 < O2, O2 < O3,
option(O1, V1), option(O2, V2), option(O3, V3),
not minimal_forbidden_tuple(O1, V1),
not minimal_forbidden_tuple(O2, V2),
not minimal_forbidden_tuple(O3, V3),
not minimal_forbidden_tuple(O1, V1, O2, V2),
not minimal_forbidden_tuple(O1, V1, O3, V3),
not minimal_forbidden_tuple(O2, V2, O3, V3),
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not minimal_forbidden_tuple(O1, V1, O2, V2, O3, V3).

Graphs Library

This modeling library contains ASP directives to model graph-based systems.

any_order ${‘t’}$

Generates ASP code to determine any ordered t nodes. For example, this directive
generates the following code,

when t= 2,

any_order(A, B) :- reaches(A, B).

and when t= 3,

any_order(A, B, C) :- reaches(A, B), reaches(B, C).

consecutive_order ${‘t’}$

Generates ASP code to determine all consecutive ordered t nodes. For example, this
directive generates the following code,

when t= 2,

consecutive_order(A, B) :- edge(A, B), A != B.

and when t= 3,

consecutive_order(A, B, C) :- edge(A, B), edge(B, C), A != B, B != C.
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nonconsecutive_order ${‘t’}$

Generates ASP code to determine all non-consecutive ordered t nodes. For example
following ASP code are generated,

when t= 2,

nonconsecutive_order(A, B)
:- reaches(A, C), reaches(C, B), A != B, B != C.

and when t= 3,

nonconsecutive_order(A, B, C)
:- reaches(A, B), reaches(B, X), reaches(X, C),
A != B, B != C, C != X.

nonconsecutive_order(A, B, C)
:- reaches(A, X), reaches(X, B), reaches(B, C),
A != B, B != C, B != X.

def_use_pair_def

Generates ASP code to determine all def-use pairs in a given graph. This directive
generates following ASP code:

def_use_pair(S1, S2, O)
:- S1 != S2,
def(S1, O), use(S2, O), reaches(S1, S2).

single_def_clear_path_def

Generates ASP code to determine def-clear-paths in a given path. This directive
generates following ASP code:

def_use_pair(S1, S2, O)
:- def(S1, O), use(S2, O),
reaches(S1, S2), not redefs(S1, _, S2, O).

redefs(S1, S2, S3, O)
:- S1 != S2, S2 != S3,
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def(S1, O), def(S2, O), use(S3, O),
reaches(S1, S2), reaches(S2, S3).

multi_path_def_clear_path_def

Generates ASP code to determine def-clear-paths on all possible paths. This direc-
tive generates the following ASP rule:

def_clear_path(S1, S2, O)
:- object(O), edge(S1, S2), not def(S2, O).

def_clear_path(S1, S2, O)
:- object(O), edge(S1, S3), not def(S3, O),
def_clear_path(S3, S2, O).

def_use_pair(S1, S2, O)
:- object(O), def(S1, O), use(S2, O), edge(S1, S2).

def_use_pair(S1, S2, O)
:- object(O), def(S1, O), use(S2, O), edge(S3, S2),
def_clear_path(S1, S3, O).

any_order_t1_tuple_t2 ${‘t1’, ‘t2’}$

Generates ASP code to determine all testable entities to be covered under any
ordered (t1, t2)-way path aware coverage criterion. For example, this directive gen-
erates following ASP code,

when t1 = 2 and t2 = 2,

reaches(S, S) :- state(S).
any_order_2_tuple_2(S1, O1, V1, S2, O2, V2)

:- S1 != S2,
option(S1, O1, V1), option(S2, O2, V2),
any_order(S1, S2).

any_order_2_tuple_2(S, O1, V1, S, O2, V2)
:- O1 < O2,
option(S, O1, V1), option(S, O2, V2).

any_order(A, B) :- reaches(A, B).
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when t1 = 2 and t2 = 3,

reaches(S, S) :- state(S).
any_order_2_tuple_3(S, O1, V1, S, O2, V2, S, O3, V3)

:- O1 < O2, O2 < O3,
option(S, O1, V1), option(S, O2, V2), option(S, O3, V3).

any_order_2_tuple_3(S1, O1, V1, S1, O2, V2, S3, O3, V3)
:- S1!=S3, O1 < O2,
any_order(S1, S3),
option(S1, O1, V1), option(S1, O2, V2), option(S3, O3, V3).

any_order_2_tuple_3(S1, O1, V1, S2, O2, V2, S2, O3, V3)
:- S1!=S2, O2 < O3,
any_order(S1, S2),
option(S1, O1, V1), option(S2, O2, V2), option(S2, O3, V3).

any_order(A, B, C) :- reaches(A, B), reaches(B, C).

when t1 = 3 and t2 = 2,

reaches(S, S) :- state(S).
any_order_3_tuple_2(S1, O1, V1, S2, O2, V2)

:- S1 != S2,
option(S1, O1, V1), option(S2, O2, V2), any_order(S1, S2, _).

any_order_3_tuple_2(S1, O1, V1, S2, O2, V2)
:- S1 != S2,
option(S1, O1, V1), option(S2, O2, V2),
any_order(S1, _, S2).

any_order_3_tuple_2(S1, O1, V1, S2, O2, V2)
:- S1 != S2,
option(S1, O1, V1), option(S2, O2, V2),
any_order(_, S1, S2).

any_order_3_tuple_2(S1, O1, V1, S2, O2, V2)
:- S1 == S2, O1 < O2,
option(S1, O1, V1), option(S2, O2, V2).

any_order(A, B, C) :- reaches(A, B), reaches(B, C).

when t1 = 3 and t3 = 2,

reaches(S, S) :- state(S).
any_order_3_tuple_3(S1, O1, V1, S2, O2, V2, S3, O3, V3)

:- S1 != S2, S2 != S3,
option(S1, O1, V1), option(S2, O2, V2), option(S3, O3, V3),
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any_order(S1, S2, S3).
any_order_3_tuple_3(S1, O1, V1, S2, O2, V2, S3, O3, V3)

:- S1 == S2, S2 != S3, O1 < O2,
option(S1, O1, V1), option(S2, O2, V2), option(S3, O3, V3),
any_order(S1, S2, S3).

any_order_3_tuple_3(S1, O1, V1, S2, O2, V2, S3, O3, V3)
:- S1 != S2, S2 == S3, O2 < O3,
option(S1, O1, V1), option(S2, O2, V2), option(S2, O3, V3),
any_order(S1, S2, S3).

any_order_3_tuple_3(S, O1, V1, S, O2, V2, S, O3, V3)
:- O1 < O2, O2 < O3,
option(S, O1, V1), option(S, O2, V2), option(S, O3, V3).

any_order(A, B, C) :- reaches(A, B), reaches(B, C).

consecutive_order_t1_tuple_t2 ${‘t1’, ‘t2’}$

Generates ASP code to determine all testable entities to be covered under consecu-
tive ordered (t1, t2)-way path aware coverage criterion. For example, this directive
generates following ASP code,

when t1 = 2 and t2 = 2,

edge(S,S) :- state(S).
consecutive_order_2_tuple_2(S1, O1, V1, S2, O2, V2)

:- S1 != S2,
option(S1, O1, V1), option(S2, O2, V2),
consecutive_order(S1, S2).

consecutive_order_2_tuple_2(S, O1, V1, S, O2, V2)
:- O1 < O2,
option(S, O1, V1), option(S, O2, V2).

consecutive_order(A, B) :- edge(A, B), A != B.

when t1 = 2 and t2 = 3,

edge(S,S) :- state(S).
consecutive_order_2_tuple_3(S, O1, V1, S, O2, V2, S, O3, V3)

:- O1 < O2, O2 < O3,
option(S, O1, V1), option(S, O2, V2), option(S, O3, V3).

consecutive_order_2_tuple_3(S1, O1, V1, S1, O2, V2, S3, O3, V3)
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:- S1 != S3, O1 < O2,
consecutive_order(S1, S3),
option(S1, O1, V1), option(S1, O2, V2), option(S3, O3, V3).

consecutive_order_2_tuple_3(S1, O1, V1, S2, O2, V2, S2, O3, V3)
:- S1!=S2, O2 < O3,
consecutive_order(S1, S2),
option(S1, O1, V1), option(S2, O2, V2), option(S2, O3, V3).

consecutive_order(A, B, C) :- edge(A, B), edge(B, C), A != B, B != C.

when t1 = 3 and t2 = 2,

edge(S,S) :- state(S).
consecutive_order_3_tuple_2(S1, O1, V1, S2, O2, V2)

:- S1 != S2,
option(S1, O1, V1), option(S2, O2, V2),
consecutive_order(S1, S2, _).

consecutive_order_3_tuple_2(S1, O1, V1, S2, O2, V2)
:- S1 != S2,
option(S1, O1, V1), option(S2, O2, V2),
consecutive_order(_, S1, S2).

consecutive_order_3_tuple_2(S1, O1, V1, S2, O2, V2)
:- S1 != S2,
option(S1, O1, V1), option(S2, O2, V2),
consecutive_order(S1, _, S2).

consecutive_order_3_tuple_2(S, O1, V1, S, O2, V2)
:- O1 < O2,
option(S, O1, V1), option(S, O2, V2).

consecutive_order(A, B, C) :- edge(A, B), edge(B, C), A != B, B != C.

when t1 = 3 and t2 = 3,

edge(S,S) :- state(S).
consecutive_order_3_tuple_3(S1, O1, V1, S2, O2, V2, S3, O3, V3)

:- S1 != S2, S2 != S3,
option(S1, O1, V1), option(S2, O2, V2), option(S3, O3, V3),
consecutive_order(S1, S2, S3).

consecutive_order_3_tuple_3(S1, O1, V1, S1, O2, V2, S3, O3, V3)
:- S1 != S3, O1 < O2,
option(S1, O1, V1), option(S1, O2, V2), option(S3, O3, V3),
consecutive_order(S1, _, S3).

consecutive_order_3_tuple_3(S1, O1, V1, S1, O2, V2, S3, O3, V3)
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:- S1 != S3, O1 < O2,
option(S1, O1, V1), option(S1, O2, V2), option(S3, O3, V3),
consecutive_order(S1, S3, _).

consecutive_order_3_tuple_3(S1, O1, V1, S1, O2, V2, S3, O3, V3)
:- S1 != S3, O1 < O2,
option(S1, O1, V1), option(S1, O2, V2), option(S3, O3, V3),
consecutive_order(_, S1, S3).

consecutive_order_3_tuple_3(S1, O1, V1, S2, O2, V2, S2, O3, V3)
:- S1 != S2, O2 < O3,
option(S1, O1, V1), option(S2, O2, V2), option(S2, O3, V3),
consecutive_order(S1, S2, _).

consecutive_order_3_tuple_3(S1, O1, V1, S2, O2, V2, S2, O3, V3)
:- S1 != S2, O2 < O3,
option(S1, O1, V1), option(S2, O2, V2), option(S2, O3, V3),
consecutive_order(S1, _, S2).

consecutive_order_3_tuple_3(S1, O1, V1, S2, O2, V2, S2, O3, V3)
:- S1 != S2, O2 < O3,
option(S1, O1, V1), option(S2, O2, V2), option(S2, O3, V3),
consecutive_order(_, S1, S2).

consecutive_order_3_tuple_3(S, O1, V1, S, O2, V2, S, O3, V3)
:- O1 < O2, O2 < O3,
option(S, O1, V1), option(S, O2, V2), option(S, O3, V3).

consecutive_order(A, B, C) :- edge(A, B), edge(B, C), A != B, B != C.

nonconsecutive_order_t1_tuple_t2 ${‘t1’, ‘t2’}$

Generates ASP code to determine all testable entities to be covered under non-
consecutive ordered (t1, t2)-way path aware coverage criterion. For example, this
directive generates following ASP code,

when t1 = 2 and t2 = 2,

edge(S,S) :- state(S).
nonconsecutive_order(A, B)

:- reaches(A, C), reaches(C, B),
A != B, B != C.

nonconsecutive_order_2_tuple_2(S1, O1, V1, S2, O2, V2)
:- S1 != S2,
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option(S1, O1, V1), option(S2, O2, V2),
nonconsecutive_order(S1, S2).

nonconsecutive_order_2_tuple_2(S, O1, V1, S, O2, V2)
:- O1 < O2,
option(S, O1, V1), option(S, O2, V2).

when t1 = 2 and t2 = 3,

edge(S,S) :- state(S).
nonconsecutive_order_2_tuple_3(S, O1, V1, S, O2, V2, S, O3, V3)

:- O1 < O2, O2 < O3,
option(S, O1, V1), option(S, O2, V2), option(S, O3, V3).

nonconsecutive_order_2_tuple_3(S1, O1, V1, S1, O2, V2, S3, O3, V3)
:- S1!=S3, O1 < O2,
nonconsecutive_order(S1, S3),
option(S1, O1, V1), option(S1, O2, V2), option(S3, O3, V3).

nonconsecutive_order_2_tuple_3(S1, O1, V1, S2, O2, V2, S2, O3, V3)
:- S1!=S2, O2 < O3,
nonconsecutive_order(S1, S2),
option(S1, O1, V1), option(S2, O2, V2), option(S2, O3, V3).

nonconsecutive_order(A, B, C)
:- reaches(A, B), reaches(B, X), reaches(X, C),
A != B, B != C, C != X.

nonconsecutive_order(A, B, C)
:- reaches(A, X), reaches(X, B), reaches(B, C),
A != B, B != C, B != X.

when t1 = 3 and t2 = 2,

edge(S,S) :- state(S).
nonconsecutive_order_3_tuple_2(S1, O1, V1, S2, O2, V2)

:- S1 != S2,
option(S1, O1, V1), option(S2, O2, V2),
nonconsecutive_order(S1, S2, _).

nonconsecutive_order_3_tuple_2(S1, O1, V1, S2, O2, V2)
:- S1 != S2,
option(S1, O1, V1), option(S2, O2, V2),
nonconsecutive_order(S1, _, S2).

nonconsecutive_order_3_tuple_2(S1, O1, V1, S2, O2, V2)
:- S1 != S2,
option(S1, O1, V1), option(S2, O2, V2),
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nonconsecutive_order(_, S1, S2).
nonconsecutive_order_3_tuple_2(S, O1, V1, S, O2, V2)

:- O1 < O2,
option(S, O1, V1), option(S, O2, V2).

nonconsecutive_order(A, B, C)
:- reaches(A, B), reaches(B, X), reaches(X, C),
A != B, B != C, C != X.

nonconsecutive_order(A, B, C)
:- reaches(A, X), reaches(X, B), reaches(B, C),
A != B, B != C, B != X.

when t1 = 3 and t2 = 3,

edge(S,S) :- state(S).
nonconsecutive_order_3_tuple_3(S1, O1, V1, S2, O2, V2, S3, O3, V3)

:- S1 != S2, S2 != S3,
option(S1, O1, V1), option(S2, O2, V2), option(S3, O3, V3),
nonconsecutive_order(S1, S2, S3).

nonconsecutive_order_3_tuple_3(S, O1, V1, S, O2, V2, S, O3, V3)
:- O1 < O2, O2 < O3,
option(S, O1, V1), option(S, O2, V2), option(S, O3, V3).

nonconsecutive_order_3_tuple_3(S1, O1, V1, S1, O2, V2, S3, O3, V3)
:- S1 != S3, O1 < O2,
option(S1, O1, V1), option(S1, O2, V2), option(S3, O3, V3),
nonconsecutive_order(S1 ,_, S3).

nonconsecutive_order_3_tuple_3(S1, O1, V1, S1, O2, V2, S3, O3, V3)
:- S1 != S3, O1 < O2,
option(S1, O1, V1), option(S1, O2, V2), option(S3, O3, V3),
nonconsecutive_order(S1, S3, _).

nonconsecutive_order_3_tuple_3(S1, O1, V1, S1, O2, V2, S3, O3, V3)
:- S1 != S3, O1 < O2,
option(S1, O1, V1), option(S1, O2, V2), option(S3, O3, V3),
nonconsecutive_order(_, S1, S3).

nonconsecutive_order_3_tuple_3(S1, O1, V1, S2, O2, V2, S2, O3, V3)
:- S1 != S2, O2 < O3,
option(S1, O1, V1), option(S2, O2, V2), option(S2, O3, V3),
non-consecutive_order(S1, _, S2).

nonconsecutive_order_3_tuple_3(S1, O1, V1, S2, O2, V2, S2, O3, V3)
:- S1 != S2, O2 < O3,
option(S1, O1, V1), option(S2, O2, V2), option(S2, O3, V3),
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nonconsecutive_order(S1, S2, _).
nonconsecutive_order_3_tuple_3(S1, O1, V1, S2, O2, V2, S2, O3, V3)

:- S1 != S2, O2 < O3,
option(S1, O1, V1), option(S2, O2, V2), option(S2, O3, V3),
non-consecutive_order(_,S1, S2).

nonconsecutive_order(A, B, C)
:- reaches(A, B), reaches(B, X), reaches(X, C),
A != B, B != C, C != X.

nonconsecutive_order(A, B, C)
:- reaches(A, X), reaches(X, B), reaches(B, C),
A != B, B != C, B != X.
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