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We provide a general framework for secure and private multi-label multi-output machine 

learning (ML) algorithms for the semi-honest model in distributed edge IoT (Internet of 

Things) environments enabled by 5G/6G networks. The proposed framework includes the 

special cases of binary, multi-class and multi-label ML algorithms. We deal with both 

horizontally and vertically partitioned datasets. Initially, (i) we propose novel secure feature 

selection protocols by homomorphically evaluating features’ information gains in distributed 

environments, we proceed with (ii) novel secure training protocols over the set of selected 

features, then (iii) we propose novel secure building blocks which are commonly used on 

ML algorithms (e.g. secure sum, comparison, argmax, top-K, sorting, permutation, etc.), as 

well as on secure linear algebra (e.g. secure inner product, cascading matrix-vector and 
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matrix-matrix multiplications, matrix transpose, etc.), and finally (iv) on top of proposed 

secure building blocks we build our novel secure ML classification protocols for various ML 

classifiers such as Deep Neural Networks (DNN), Support Vector Machines (SVM), 

Decision Trees (DT) and Random Forests (RF), different flavors of Naïve Bayes (NB), 

Logistic Regression (LR) and K Nearest Neighbors (KNN). Moreover, our secure 

classification protocols also deal with malicious users that arbitrarily deviate from the 

protocol and they show no loss of accuracy due to secure classifications. In the process, our 

participants interact with each other in order to fulfill strict security. privacy and efficiency 

requirements. To these ends, we provide confidentiality, integrity and authenticity to each 

interaction by signing their hashed contents with the corresponding participants’ private key. 

We assure the consistency among interactions by introducing timestamps and linking them 

with the hashed content(s) of the preceding interaction(s). This makes our protocols a natural 

fit for blockchain technology. Moreover, the proposed cryptographic tools are proven to be 

resistant to quantum computer attacks, making our protocols applicable to the post quantum 

world. We did our theoretical analysis and extensive experimental evaluations over 

benchmark datasets related to cyber-security and health. They show that our protocols have 

an advantage ranging from several times to orders of magnitudes with respect to the state-of-

the-art in terms of computation and communication costs. This makes our protocols among 

the most efficient ones in literature. Also, they are among the best in terms of security and 

privacy properties and allow high rate of fault tolerance and collusion attacks of dataset 

owners with respect to the state-of-the-art. 
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ÖZET 

 

 

KUANTUM SONRASI 5G/6G İLE ETKİNLEŞTİRİLMİŞ ENDÜSTRİYEL 

IoT VE İLGİLİ SİBER GÜVENLİK VE SAĞLIK UYGULAMALARI İÇİN 

BLOK ZİNCİR GÜDÜMLÜ GÜVENLİ VE MAHREMİYET KORUYUCU 

MAKİNE ÖĞRENİMİ ALGORİTMALARI 
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güvenli nesnelerin internet; mahremiyet koruma; öznitelik seçimi; eğitim; sınıflandırma; 

homomorfik şifreleme; gizli anlaşma saldırıları: dağıtık ortamlar; siber güvenlik; Tıbbi 

Nesnelerin İnterneti 

 

 

Bu tezde, 5G/6G ağları ile etkinleştirilmiş dağıtık uç IoT (Nesnelerin İnterneti) ortamlarında 

yarı dürüst modele sahip güvenli ve mahremiyeti koruyucu, çok etiketli ve çok çıkışlı makine 

öğrenimi (ML – Machine Learning) algoritmaları için genel bir çerçeve önerilmiştir.  

Önerilen çerçeve, ikili, çok sınıflı ve çok etiketli ML algoritmalarının özel durumlarını içerir. 

Hem yatay hem de dikey olarak bölümlenmiş veri kümeleriyle çalışılmıştır. İlk olarak, (i) 

özniteliklerin dağıtık ortamlardaki bilgi kazanımlarını homomorfik olarak değerlendiren yeni 

güvenli öznitelik seçim protokolleri önerilmiştir, (ii) seçilen öznitelikler kümesi üzerinde 

yeni güvenli eğitim protokolleri ile ilerlenmiştir, daha sonra (iii) ML algoritmalarında yaygın 

olarak kullanılan yeni güvenli yapı taşları (örn. güvenli toplam, karşılaştırma, argmax, top-
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K, sıralama, permütasyon, vb.) ile lineer cebir işlemlerini (örn. güvenli iç çarpım, sıralı 

matris-vektör ve matris-matris çarpımları, matris transpozu, vb.) güvenli hale getirecek 

yöntemler önerilmiştir ve son olarak (iv) önerilen güvenli yapı taşlarının üzerine, Derin Sinir 

Ağları (DNN - Deep Neural Networks), Destek Vektör Makineleri (SVM - Support Vector 

Machines), Karar Ağaçları (DT - Decision Trees), Rastgele Ormanlar (RF - Random 

Forests), Naïve Bayes (NB)'in değişik varyasyonları, Lojistik Regresyon (LR) ve K En Yakın 

Komşular (KNN - K Nearest Neighbors) gibi çeşitli ML sınıflandırıcıları için yeni güvenli 

ML sınıflandırma protokolleri oluşturulmuştur. Ayrıca, önerilen güvenli sınıflandırma 

protokolleri, keyfi olarak protokolden sapan kötü niyetli kullanıcılarla da baş eder ve güvenli 

sınıflandırma kaynaklı doğruluk kaybı göstermezler. İşlemler sırasında protokol katılımcıları 

sıkı güvenlik, mahremiyet ve verimlilik gereksinimlerini karşılamak üzere birbirleriyle 

etkileşime girerler. Bu amaçla, kriptografik özet fonksiyonundan geçirilen içerikler ilgili 

katılımcıların özel anahtarıyla imzalanarak her mesajlaşmanın gizliliği, bütünlüğü ve 

özgünlüğü sağlanmış olur. Mesajlaşmalar arasındaki tutarlılığı, zaman damgaları ekleyerek 

ve bunları önceki mesajların içerik özetlerine bağlayarak sağlamaktayız. Bu, protokollerimizi 

blok zincir teknolojisine doğal bir şekilde uyumlu hale getirir. Ayrıca, önerilen kriptografik 

araçların kuantum bilgisayar saldırılarına karşı dirençli olduğu da kanıtlanmıştır, bu da 

protokollerimizi kuantum sonrası dünya için kullanışlı kılmaktadır. Teorik analizler ile siber 

güvenlik ve sağlıkla ilgili karşılaştırmalı veri kümeleri üzerinde kapsamlı deneysel 

değerlendirmeler yapılmıştır. Bu analiz ve değerlendirmeler, önerilen protokollerin, 

hesaplama ve iletişim maliyetleri açısından bilinen en iyi duruma göre birkaç kez ila 

büyüklük kertesine kadar değişen oranlarda avantaj sağladığını göstermiştir. Bu durum da 

önerilen protokolleri literatürdeki en verimliler arasına sokmaktadır. Ayrıca, önerilen 

protokoller güvenlik ve gizlilik özellikleri açısından da en iyiler arasındadır ve en son 

teknolojiye göre yüksek hata toleransı oranı ve veri seti sahiplerinin gizli anlaşma 

saldırılarına karşı yüksek direnç gösterirler. 
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LIST OF SYMBOLS 

 

SECURE AND PRIVATE FEATURE SELECTION (Chapter 4) 

Cryptographic notations: 

𝐴_𝑣  An integer vector denoted by “_𝑣” at the end, 𝐴_𝑣 = {𝑎1, … , 𝑎𝑁} = {(𝑎𝑖)𝑖=1
𝑁 }, 

𝐴_𝑝  A CRT encoded plaintext denoted by “_𝑝” at the end, 𝐴_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐴_𝑣)  

𝐴_𝑐  A ciphertext denoted by “_𝑝” at the end, 𝐴_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐴_𝑣) and  

𝐴_𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐴_𝑣), or 𝐴_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐴_𝑣) 

General and common notations for all the (binary, multiclass, MLMO) datasets: 

𝑛  Number of Edge Dataset Owners (EDO) 

EDO𝑘  The k-th EDO, 1 ≤ 𝑘 ≤ 𝑛 

𝑁𝑇(𝑘)  the number of transactions at EDO𝑘, for both textual and non-textual datasets 

NT The number of global transactions (records) in n EDOs, 𝑁𝑇 = ∑ 𝑁𝑇(𝑘)𝑛
𝑘=1  

for both textual and non-textual datasets 

𝑊 words’ set represented by permuted hashes 𝑊 =

{𝜋𝐻(𝑤1), 𝜋𝐻(𝑤2),… , 𝜋𝐻(𝑤|𝑊|)} in textual (binary and multi-label multi-

output - MLMO) datasets (DS). 

Binary textual datasets: 

𝑆𝐹  The set of m selected features (words), 𝑆𝐹 = {𝑤1, … , 𝑤𝑚}, a subset of  𝑊 

𝐶′  The set of classes 𝐶′ = {𝑐ℎ, 𝑐𝑠} which consist of two classes, ham and spam, 

for the binary textual DS 

𝑁(𝑘)(𝑐𝑗) Number of local records belonging to class 𝑐𝑗 at EDO𝑘 

𝑁(𝑐𝑗)  Number of global records belonging to class 𝑐𝑗, 𝑁(𝑐𝑗) = ∑ 𝑁(𝑘)(𝑐𝑗)
𝑛
𝑘=1  

𝑓(𝑘)(𝑤𝑖, 𝑐𝑗) Local frequency of word 𝑤𝑖 in documents classified as belonging to 𝑐𝑗 at at 

EDO𝑘 

𝑓(𝑤𝑖, 𝑐𝑗)  Global frequency of word 𝑤𝑖 in documents classified (labeled) as belonging 

to class 𝑐𝑗 in binary textual DS, where 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠 
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𝑁(𝑘)(𝑤𝑖, 𝑐𝑗) Local count of word 𝑤𝑖 in documents classified as belonging to 𝑐𝑗 at EDO𝑘 

𝑁(𝑤𝑖, 𝑐𝑗) Count (number) of documents where 𝑤𝑖 appears at least once in documents 

classified as 𝑐𝑗 in binary textual DS, where 1 ≤ 𝑖 ≤ 𝑚 and 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠 

𝑁(𝑤𝑖) Global counts (appearances) of word 𝑤𝑖 ∈ 𝑊 for binary textual datasets,   

𝑁(𝑤𝑖) = 𝑁(𝑤𝑖, 𝑐ℎ) + 𝑁(𝑤𝑖, 𝑐𝑠) 

𝑁(𝑤𝑖̅̅ ̅, 𝑐𝑗) The count (number) of documents in the binary textual dataset labeled as 

belonging to class 𝑐𝑗 where word 𝑤𝑖 ∈ 𝑊 does not appear, 𝑁(𝑤𝑖̅̅ ̅, 𝑐𝑗) =

𝑁(𝑐𝑗) − 𝑁(𝑤𝑖, 𝑐𝑗). 

𝑁(𝑤̅)  The count (number) of documents in the binary textual dataset were 𝑤𝑖 ∈ 𝑊 

does not appears at all, 𝑁(𝑤̅) = 𝑁𝑇 −𝑁(𝑤𝑖) 

𝑃(𝑤𝑖)  The probability of 𝑤𝑖 to appear in a document, 𝑃(𝑤𝑖) =
𝑁(𝑤𝑖)

𝑁𝑇
 

𝑃(𝑤𝑖̅̅ ̅)  The probability of  𝑤𝑖 not appearing in a document, 𝑃(𝑤𝑖̅̅ ̅) =
𝑁(𝑤𝑖̅̅̅̅ )

𝑁𝑇
 

𝑃(𝑤𝑖, 𝑐𝑗) The probability of word 𝑤𝑖 to appear in a binary textual document classified 

as 𝑐𝑗, 𝑃(𝑤𝑖, 𝑐𝑗) =
𝑁(𝑤𝑖,𝑐𝑗)

𝑁𝑇
, where 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠.   

𝑃(𝑤𝑖̅̅ ̅, 𝑐𝑗) The probability of word 𝑤𝑖 not appearing in a binary textual document 

classified as 𝑐𝑗, 𝑃(𝑤𝑖̅̅ ̅, 𝑐𝑗) =
𝑁(𝑤𝑖̅̅̅̅ ,𝑐𝑗)

𝑁𝑇
 , where 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠. 

𝐼𝐺(𝑤𝑖)  The information gain of word 𝑤𝑖 in a binary textual dataset. 

𝑃(𝑐𝑗)  The class probabilities 𝑃(𝑐𝑗) =
𝑁(𝑐𝑗)

𝑁𝑇
 for binary textual DS, 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠 

Multi-label multi-output datasets: 

𝐿  The set of labels for a certain multi-label multi-output dataset, 

𝐿 = {𝐿1, … , 𝐿|𝐿|} 

𝐶𝑙 The set of corresponding classes for each label, 𝐶𝑙 = {𝐶1
𝑙 , … , 𝐶|𝐶𝑙|

𝑙}, 1 ≤ 𝑙 ≤

|𝐿| and |𝐶𝑙| is the cardinality of (number of classes belonging to) set 𝐶𝑙 

𝑆𝐹𝑙  The set of 𝑚𝑙 selected features for label 𝑙, 𝑆𝐹𝑙 = {𝐻(𝑤1
𝑙),… , 𝐻(𝑤

𝑚𝑙
𝑙 )},  
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𝑆𝐹𝑀𝐿𝑀𝑂 The set of |𝐿| sets of 𝑚𝑙 selected features for the multi-label multi-output 

(MLMO) scenario, 𝑆𝐹𝑀𝐿𝑀𝑂 = {{𝑆𝐹𝑙}𝑙=1
|𝐿|
} = {{{𝐻(𝑤𝑖

𝑙)}
𝑖=1

𝑚𝑙

}
𝑙=1

|𝐿|

}, where 1 ≤

𝑙 ≤ |𝐿|. 

𝑁(𝐶𝑐
𝑙) The counts (number) of documents belonging to class 𝐶𝑐

𝑙
  

𝑁(𝑤𝑖
𝑙, 𝐶𝑐

𝑙) The counts of documents belonging to class 𝐶𝑐
𝑙
 having at least one appearance 

of the word (feature) 𝑤𝑖
𝑙 ∈ 𝑆𝐹𝑙 in a multi-label multi-output dataset 

 𝑓(𝑤𝑖
𝑙, 𝐶𝑐

𝑙)  The frequency of word 𝑤𝑖
𝑙 ∈ 𝑆𝐹𝑙 appearing in documents belonging to class 

𝐶𝑐
𝑙
 in a multi-label multi-output dataset, for 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤

𝑐 ≤ |𝐶𝑙| 

𝑃(𝐶𝑐
𝑙) The 𝐶𝑐

𝑙  classes probability, 𝑃(𝐶𝑐
𝑙) =

𝑁(𝐶𝑐
𝑙)

𝑁𝑇
 ,1 ≤ 𝑙 ≤ |𝐿| and 1 ≤ 𝑐 ≤ |𝐶𝑙| 

𝑁(𝑤𝑖
𝑙) The count of documents where 𝑤𝑖

𝑙 ∈ 𝑆𝐹𝑙 appears at least once in a MLMO 

scenario, 

  𝑁(𝑤𝑖
𝑙) = ∑ 𝑁(𝑤𝑖

𝑙, 𝐶𝑐
𝑙)

|𝐶𝑙|

𝑐=1 , for 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤ 𝑐 ≤ |𝐶𝑙| 

𝑁(𝑤𝑖
𝑙̅̅̅̅ )  The count of documents where 𝑤𝑖

𝑙 ∈ 𝑆𝐹𝑙 does not appears,  

𝑁(𝑤𝑖
𝑙̅̅̅̅ ) = 𝑁𝑇 − 𝑁(𝑤𝑖

𝑙) 

𝑁(𝑤𝑖
𝑙̅̅̅̅ , 𝐶𝑐

𝑙) Counts of documents of class 𝐶𝑐
𝑙
 where 𝑤𝑖

𝑙 doesn’t appear,  

𝑁(𝑤𝑖
𝑙̅̅̅̅ , 𝐶𝑐

𝑙) = 𝑁(𝐶𝑐
𝑙) − 𝑁(𝑤𝑖

𝑙, 𝐶𝑐
𝑙) 

𝑃(𝑤𝑖
𝑙)  The probability of 𝑤𝑖

𝑙 to appear in a document, 𝑃(𝑤𝑖
𝑙) =

𝑁(𝑤𝑖
𝑙)

𝑁𝑇
 

𝑃(𝑤𝑖
𝑙̅̅̅̅ )  The probability of 𝑤𝑖

𝑙 not to appear in a document, 𝑃(𝑤𝑖
𝑙̅̅̅̅ ) =

𝑁(𝑤𝑖
𝑙̅̅ ̅̅ )

𝑁𝑇
 

𝑃(𝑤𝑖
𝑙 , 𝐶𝑐

𝑙) The probability of word 𝑤𝑖
𝑙 to appear in a document belonging to 𝐶𝑐

𝑙
, 

𝑃(𝑤𝑖
𝑙 , 𝐶𝑐

𝑙) =
𝑁(𝑤𝑖

𝑙
𝑖
,𝐶𝑐

𝑙)

𝑁𝑇
, where 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤ 𝑐 ≤ |𝐶𝑙| 

𝑃(𝑤𝑖
𝑙̅̅̅̅ , 𝐶𝑐

𝑙) The probability of word 𝑤𝑖
𝑙 not appearing in a document belonging to class 

𝐶𝑐
𝑙
,  𝑃(𝑤𝑖

𝑙̅̅̅̅ , 𝐶𝑐
𝑙) =

𝑁(𝑤𝑖
𝑙̅̅ ̅̅ ,𝐶𝑐

𝑙)

𝑁𝑇
, where 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and  

1 ≤ 𝑐 ≤ |𝐶𝑙| 

𝐼𝐺𝑙(𝑤𝑖
𝑙) Information gain of 𝑤𝑖

𝑙 ∈ 𝑆𝐹𝑙 for label 𝑙, where 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 
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SECURE AND PRIVATE MACHINE LEARNING TRAINING (Chapter 5) 

Multiclass non-textual datasets (including the corresponding symbols of the previous 

chapter(s)): 

f     Number of features in a non-textual dataset 

c     Number of classes (labels) in a non-textual dataset 

𝐹𝑖   The values feature i 𝐹𝑖 = {𝑉1,𝐹𝑖, 𝑉2,𝐹𝑖 , … , 𝑉|𝐹𝑖|,𝐹𝑖 } can take for non-textual    

datasets, 𝑉𝑚,𝐹𝑖 is the 𝑚-th element of the feature set 𝐹𝑖, and 1 ≤ 𝑖 ≤ 𝑓 , 1 ≤

𝑚 ≤ |F𝑖|. 

𝐶     The set of classes for non-textual (multiclass) datasets, 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑐} 

𝑁(𝑘)(𝐶𝑗)    The local counts of records belonging to class 𝐶𝑗 at EDO𝑘 

𝑁(𝐶𝑗)      The global (overall) counts of records belonging to class 𝐶𝑗 in n EDOs. 

𝑁(𝑘)(𝑉𝑚,𝐹𝑖; 𝐶𝑗)  The count of the 𝑚-th value of feature 𝐹𝑖  having class 𝐶𝑗 at EDO𝑘 

𝑁(𝑉𝑚,𝐹𝑖; 𝐶𝑗)    The global count of the 𝑚-th value of the feature 𝐹𝑖 having class 𝐶𝑗  

   where 1 ≤ 𝑖 ≤ 𝑓, 1 ≤  𝑗 ≤  𝑐 and 1 ≤  𝑚 ≤  |𝐹𝑖| for non-textual datasets 

𝑃(𝐶𝑗)   The class probability, i.e. the probability for a certain instance to belong to    

class 𝐶𝑗 𝑃(𝐶𝑗) =
𝑁(𝐶𝑗)

𝑁𝑇
,      

𝑃(𝑉𝑚,𝐹𝑖|𝐶𝑗)       The conditional feature value-class probabilities, 𝑃(𝑉𝑚,𝐹𝑖|𝐶𝑗) =
𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

𝑁(𝐶𝑗)
 

     where 1 ≤ 𝑖 ≤ 𝑓, 1 ≤  𝑗 ≤  𝑐 and 1 ≤  𝑚 ≤  |𝐹𝑖|. 

𝐶(∙) The trained MNB/NB model for non-textual DS consisted of  𝑃(𝐶𝑗),     

𝑃(𝑉𝑚,𝐹𝑖|𝐶𝑗), where 1 ≤ 𝑖 ≤ 𝑓, 1 ≤  𝑗 ≤  𝑐 and 1 ≤  𝑚 ≤  |𝐹𝑖|. 

Binary textual datasets (including the corresponding symbols of the previous 

chapter(s)): 

𝑃(𝑤𝑖|𝑐𝑗)  𝑃(𝑤𝑖|𝑐𝑗) =
𝑓(𝑤𝑖,𝑐𝑗)

𝑁(𝑐𝑗)
 and 𝑃(𝑤𝑖|𝑐𝑗) =

𝑁(𝑤𝑖,𝑐𝑗)

𝑁(𝑐𝑗)
 denote the conditional word-  

class probabilities for MNB and NB cases in binary textual DS, respectively. 

𝐶𝑇𝑀(∙) The trained MNB/NB model for binary textual DS consisted of  𝑃(𝑐𝑗), 

𝑃(𝑤𝑖|𝑐𝑗),where 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠 and 𝑤𝑖 ∈ 𝑆𝐹. 
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Multi-label multi-output datasets (including the corresponding symbols of the previous 

chapter(s)):  

𝑃(𝑤𝑖
𝑙|𝐶𝑐

𝑙)        The conditional word-class probability. 𝑃(𝑤𝑖
𝑙|𝐶𝑐

𝑙) =
𝑁(𝑤𝑖

𝑙,𝐶𝑐
𝑙)

𝑁(𝐶𝑐
𝑙)

 for the NB      

classifier, 𝑃(𝑤𝑖
𝑙|𝐶𝑐

𝑙) =
𝑓(𝑤𝑖

𝑙,𝐶𝑐
𝑙)

𝑁(𝐶𝑐
𝑙)

 for the MNB classifier.  

𝑇𝑀𝑀𝐿𝑀𝑂_𝑐 The trained model for the multi-label multi-output datasets, which is 

consisted of 𝑃(𝐶𝑐
𝑙) and 𝑃(𝑤𝑖

𝑙|𝐶𝑐
𝑙) for 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤

𝑐 ≤ |𝐶𝑙|.   

 

 

SECURE AND PRIVATE MACHINE LEARNING CLASSIFICATIONS 

(Chapter 6) 

Multiclass non-textual datasets (including the corresponding symbols of the previous 

chapter(s)): 

𝑋      Unclassified feature vector, 𝑋 = {𝑋1, 𝑋2… ,𝑋𝑓}, where 𝑋𝑖 ∈ 𝐹𝑖 

Binary textual datasets (including the corresponding symbols of the previous 

chapter(s)): 

𝑞_𝑣 The query vector for textual datasets, 𝑞_𝑣 = {1, 𝑓𝑞(𝑤1),… , 𝑓𝑞(𝑤𝑚)}, 𝑓𝑞(𝑤𝑖) 

is the frequency of appearance of word 𝑤𝑖 in the query 𝑞_𝑣 and 𝑤𝑖 ∈ 𝑆𝐹. 

Multi-label multi-output datasets: 

𝑞_𝑣𝑀𝐿𝑀𝑂    The multi-label multi-output unclassified query vector,  

 𝑞_𝑣𝑀𝐿𝑀𝑂 = {{1, {𝑓𝑞
𝑙(𝑤𝑖

𝑙)}
𝑖=1

𝑚𝑙

}
𝑐=1

|𝐶𝑙|

}

𝑙=1

|𝐿|

 

Linear algebra based ML classification (including the corresponding symbols of the 

previous chapter(s)): 

𝑀 The trained model matrix for classification based on linear algebra. For the 

NB case 𝑀 = [{𝐶(𝑗)}
𝑗=1

𝑐
]
𝑐×(𝑓+1)

, where for 1 ≤ 𝑖 ≤ 𝑓, 1 ≤  𝑗 ≤  𝑐 and 

1 ≤  𝑚 ≤  |𝐹𝑖|. 𝐶
(𝑗) = {⌊𝐾𝑙𝑜𝑔𝑃(𝐶𝑗)⌋, ( ⌊𝐾𝑙𝑜𝑔(𝑉𝑚,𝐹𝑖|𝐶𝑗)⌋𝑚=1

|𝐹𝑖|
)

𝑖=1

𝑓

}.  



xxvii 
 

For SVM and LR  M = [{W(j)}
j=1

c
]
c×(f+1)

 , where W(j) = {b(j), w1
(j)
, … , wn

(j)
} 

is the j-th hyperplane. 

For deep neural networks (DNN) 𝑀 is consisted of all the layer matrices 𝑀𝑖 

and activation functions 𝑓𝑖(∙), where 0 ≤ 𝑖 ≤ 𝑙, and l is the number of layers 

in DNN 

𝑋′  The query vector 𝑋 = {1, ( 𝑉𝑚,𝐹𝑖𝑚=1
|𝐹𝑖| )

𝑖=1

𝑓

 } ≅ {1, 𝑋1, … , 𝑋𝑓}, where 𝑋𝑖 ∈ 𝐹𝑖, 

1 ≤ 𝑖 ≤ 𝑓 and 1 ≤  𝑚 ≤  |𝐹𝑖|. If 𝑉𝑚,𝐹𝑖 appears in the original query  

(i.e. 𝑉𝑚,𝐹𝑖 = 𝑋𝑖), its value is 1, otherwise it is 0. 

S A matrix whose columns are 𝑞 query vectors denoted as X(k), for the multi-

query linear algebra based classification, thus S =  [{X(k)}
k=1

q
]
(f+1)×q

 

kNN, decision tree and random forests classifiers: 

𝑌𝑟𝑖 𝑟𝑖-th dataset record, 𝑌𝑟𝑖 = {𝑌1
𝑟𝑖 , 𝑌2

𝑟𝑖 , … , 𝑌𝑓
𝑟𝑖} for kNN. When the records are 

randomly permuted by a permutation 𝜋, they are denoted as 𝑌𝜋(𝑟𝑖) 

𝑑(𝑋, 𝑌𝑟𝑖) the distance between query X and the 𝑟𝑖-th dataset record for kNN 

𝑣𝑎𝑙𝐹𝑖  threshold value of features 𝐹𝑖’s corresponding node in the decision tree,  

  1 ≤ 𝑖 ≤ 𝑓 
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Chapter 1 

 

INTRODUCTION 

 

IPv6 increased the bit size of the IP addresses from 32 to 128 bits. This contributes to the 

estimated increase of IP connected devices in the Internet of Things (IoT) from 8.4 billion in 

2017 to the predicted 30+ billion in 2020 [1]. Together with the emerging trends of other 

information technologies such as ubiquitous (makes computing omnipresent, anytime and 

everywhere), wearable (computing devices worn under, with, or on top of clothing) and cloud 

computing combined, those devices contribute to the rise of the global data volume from 4.4 

zettabytes in 2013 to the predicted 44 zettabytes in 2020 [2] in what is known as Big Data. 

Often those IoT devices collect data to form private datasets, such as different hospitals 

collecting data about their patients’ disease predictions together with the corresponding 

patient symptoms, or different cyber-security companies collecting log files of computer 

systems together with the corresponding host/network attack(s) or normal behavior, etc. If 

those data sets of the same nature are collected in different environments (e.g. different 

hospitals, different IT systems, etc.) and have different statistical properties, it has been 

shown that when they are merged into a single data set to train a machine learning (ML) 

model, the model often ends up being more accurate in its’ classifications (predictions) than 

the human expert of the same field or than the trained models obtained from each of the 

datasets separately [3]. 

Fortunately, in the last couple of decades, many techniques have been proposed that 

enable us to either partially or in total overcome the above mentioned problems. Those 

techniques enable the ML experts to successfully train and get the final trained ML model 

from multiple data set owners with little or no exposure of their data or information related 

to the data. This process is known as privacy preserving (PP) training. On the other hand, 
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those techniques can also be utilized for the case when a user wants to classify his query 

without letting the trained model owner learn anything neither about his query data nor the 

final prediction (classification), while the user also should not learn anything about the 

trained model. This process is known as privacy preserving classification. 

 

 

1.1. Motivation and problem statement  

In 2000, [1] and [2] almost simultaneously came up with research under similar titles where 

they addressed the privacy of the datasets over which ML models were trained. Several others 

followed, some of which are presented in the surveys at [3] and [4]. Those are known as 

privacy preserving training schemes. Common for those early schemes was that they solely 

concentrated on the privacy of the datasets, with little or no concern for the privacy of the 

classification stage. They also payed no attention to the privacy of the trained model as well 

[3-4]. 

Realizing these shortcomings, dozens of schemes followed afterwards, which exclusively 

deal with the classification (inference) stage for different ML classifiers such as Naïve Bayes 

(NB), Deep Neural Networks (DNN), Support Vector Machines (SVM), Logistic Regression 

(LR), Decision Trees (DT), Random Forests (RF), etc. These schemes fall into the privacy 

preserving classification category, such as those in [5-11], to name a few. There are also a 

few schemes that for consistency and continuity reasons addresses both privacy preserving 

training and classification problem under the same system architecture and environment 

settings, such as those proposed in [12-15] and [30-32].  

However, before training an ML model, it is common practice to do some pre-processing 

and feature selection on top of the dataset(s) over which the training is being done. Especially 

this is common for datasets which are highly dimensional (have a huge number of features), 

a typical occurrence for text classification datasets such as SMS spam, e-mail spam, 

document classification, etc., which are known to harbor tens, hundreds of thousands or even 

millions of unique features (words, tokens). By applying some feature selection over such 

datasets, not only we save valuable amount of computation and communication cost during 

the training and classification stages later on, rather trained models obtained over datasets on 
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which a certain feature selection has been applied, in general, are shown to be more accurate 

during the classification stage [23-29].   

Despite this, surprisingly, there is little work done on the area of secure feature selection, 

especially on edge IoT environments. The few existing schemes have one or several setbacks 

and disadvantages, which are elaborated in the next section. Furthermore, they are not 

designed to have in mind the computation and communication environments of edge 

computing in IoT, nor do the existing schemes provide a mechanism for ensuring the end-to-

end integrity, authenticity and consistency (continuity, order of sequence) by which the 

interactions are done among different participants in the system while executing the 

protocols. 

 

 

1.2. Contributions 

Definition 1.1: A blockchain is a list of blocks (records), where each block has a timestamp 

and its transaction data (usually in form of a Merkle tree [16]) and is linked with the previous 

block(s) by including its (theirs) hash(es) in itself, thus forming a chain of blocks 

(blockchain) [17]. 

 

Definition 1.2: Internet of Things (IoT) is a set of cooperating devices (sensors, mobiles, 

etc.) that can collect and transfer data over a wireless network without explicit human 

intervention with the aim of reaching a certain functionality [18] 

 

Definition 1.3: Edge computing refers to the technologies that enable computations to be 

performed at the edge (end) of the network. It’s usually done so to improve response times 

and use less network resources as well as resources of other devices around by doing local 

processing at the edge node (device). For example, a smart phone is an edge device [19]. 

 

Our contributions: In order to overcome the afore mentioned shortcomings (elaborated in 

more details in Chapter II), we propose a novel secure feature selection (filtering) protocol 

based on information theoretic metrics such as entropy. Concretely, we homomorphically 

evaluate features’ information gains on distributed (horizontally and vertically 
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partitioned) datasets over edge IoT devices and select the top 𝑚 ones with the highest 

information gain. We choose the information gain since it is shown to be among the most 

effective feature selecting metrics for text classification [20, 34], and due to the lack of secure 

and private schemes that use it in literature [23-29]. Since in practice we deal with datasets 

with sensitive content and knowing that our protocols use several interactions between the 

participant, for each interaction of each participant we introduce a block (record) of its 

interaction data and provide integrity by hashing the block’s content, confidentiality by 

encrypting the sensitive data and authenticity by encrypting the overall block content with 

participant’s private key. Furthermore, in order to assure the consistency (order of execution) 

by which the interactions among participants are done, in our protocols we introduce 

timestamps to the blocks and link them with the hashed content of the preceding block(s). 

This makes our schemes a natural fit for blockchain technology. In the process each 

participant keeps only the blocks which are generated by him, forming what we call vertically 

partitioned distributed public ledger (Chapter 4).  

To show the effectiveness of our scheme, on top of the selected features, we provide a 

secure and private training and classification protocols over the same context (system 

architecture, environment and security settings). In this sense, we continue our blockchain, 

enabling in the process end-to-end (from raw datasets till the final trained model, i.e. from 

secure feature selection to secure training) security characteristics inherited by blockchain, 

(Chapter 4). During the secure classification stage each client, before classifying his query, 

can verify (check) the correctness, flow and the consistency by which the final trained model 

was obtained using the blockchain. We formally prove the security of all of them under 

the semi-honest model.  

For efficiency purposes, in order not to overload the network and other participants, we 

tend to do local processing at the edge on clear (plain, un-encrypted) data as much as 

possible, rather than homomorphically evaluate them later on. While doing so we take into 

consideration the heterogeneity (in terms of hardware and software platforms) and the 

restricted resources that are characteristic for edge IoT devices [21, 22]. Our schemes have 

high rate of fault tolerance and resistance to collusion attacks so that, out of 𝑛 dataset 

owners, they allow up to 𝑛 − 3 failures or up to 𝑛 − 2  collusions. Moreover, the underlying 

cryptographic tools that we use while executing our protocols are proven to be secure under 
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quantum computer attacks, making our protocols suitable for the post quantum world. This 

makes our schemes one of the rare ones (if not the only one) that utilizes blockchain 

technology to provide an and end-to-end (from raw un-preprocessed datasets to final trained 

model) secure and private framework for ML algorithms in edge IoT environments [21, 22]. 

We should note that our protocols about secure feature selection, training and classification, 

are independent from each other, in terms that, according to the scenario and needs, each 

of them can be used solely or in combination with secure and private protocols from other 

research schemes.  

 

1. Secure feature selection (secFS) protocol - requirements: 

 Privacy of the input features. We achieve this by randomly permuting the hashes 

of the input values (words, tokens) 

 Privacy of the input features’ values 

 Security and privacy of intermediate results. We keep the intermediate results of 

all of our protocols secure and private since they might be used as a trapdoor for 

total or partial leakage of the input or the output of the corresponding protocol.   

 Partial privacy for the output (of the top 𝑚 selected features). The output cannot 

be totally private since it is needed as an entry point (input) for the secure 

classification stage when clients prepare their queries in accordance to the selected 

features. However, the selected features can be kept private for the secure training 

protocol. 

 

2. Secure training (secT) protocol - requirements: 

 Privacy of the input features. The inputs here are the selected features, i.e. the 

output) of the secFS protocol. 

 Privacy of the input features’ values 

 Security and privacy of intermediate results 

 Privacy of the output, i.e. the trained model. We provide the option for the trained 

model not to be revealed to any of the participants, even during the PP 

classification stage. This is one of the rare protocols to keep private the final 

trained model at any stage. 
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3. Secure classification (secC) protocol- requirements: 

 Privacy of the trained model  

 Privacy of the user query for both query features and their corresponding values 

(frequencies)  

 Security and privacy of intermediate results 

 Privacy of the output, i.e. the final classification result 

 No loss of accuracy with respect to the plain classifier 

 

We should note the for the purpose of the secure classification protocols we propose the 

secure comparison protocol based on arithmetic circuits, which securely compares two 

integers. On top of it we also propose the secure comparison of all data slots – SCADS 

protocol, which in turn is needed for the secure argmax and secure top-K protocols. While 

our experimental evaluations show that the proposed secure comparison protocol when used 

isolated (not in combination with our secure classification protocols) doesn’t perfectly hide 

the difference of the two integers that it compares (Section 6.9), yet we theoretically proof 

(in Section 6.10) that when our secure comparison, hence SCADS as well, are used in 

combination with our secure classification protocols, they help us hide the trained model and 

the user query. We base our proof on top of well-established cryptographic primitives 

(assumptions in this case), such as ones based on The Learning With Errors – LWE schemes.   

 

4. Have the remaining characteristics given in the Tables of Chapter 3. 

 

The published/accepted/submitted papers derived from this dissertation are: 

1. Kjamilji, Artrim, Erkay Savaş, and Albert Levi. "Efficient Secure Building Blocks With 

Application to Privacy Preserving Machine Learning Algorithms." IEEE Access 9 (2021): 

8324-8353.” (published) 

2. Kjamilji, Artrim. Albert Levi, Erkay Savaş and Osman Berke Güney "Secure Matrix 

Operations for Machine Learning Classifications Over Encrypted Data in Post Quantum 

Industrial IoT" The International Symposium on Networks, Computers and Communications 

(ISNCC'21). IEEE, 2021 (accepted, Dubai, 31.10-02.11.2021). 



7 
 

3. Kjamilji, Artrim. Albert Levi, Erkay Savaş “Blockchain driven secure feature selection, 

training and classifications in distributed edge IoT environments” (submitted to IEEE Journal 

on Selected Areas in Communications). 

Besides the above papers, there a few of other future papers for which in this dissertation 

we provide their theoretical background, security analysis and proofs, pseudocodes and we 

already have their implementations (codes) which can be found in [98], as well as their 

experimental evaluations. After writing their corresponding manuscripts, they will be 

submitted to related journals/conferences.   

 

1.3. Dissertation organization 

In Chapter 2 we give preliminaries related to the research. Namely, we introduce the concepts 

of NB, multinomial NB (MNB) for multi-label multi-output datasets as well as ML classifiers 

based on linear algebra operations such as DNN, SVM, LR, NB and MNB (again, this time 

represented through linear algebra operations). We proceed with the information gain, as well 

as cryptographic primitives, concepts, definitions and theorems which will be used in later 

chapters. In Chapter 3 we elaborate the related research on secure feature selection, secure 

training and secure classification. In Chapter 4 we give our algorithms on secure and private 

feature selection for multi-label multi-output datasets, while in Chapter 5 we present the 

corresponding secure and private training algorithms. In Chapter 6 we present novel secure 

building blocks for general purpose, such as secure sum, secure permutation and its inverse, 

secure comparison and secure sorting (whose derivatives are secure top-K and secure 

argmax). We proceed with novel secure building blocks on linear algebra such as secure dot 

(inner) product, secure compression of sparsely encoded matrices, a couple of versions of 

secure matrix-vector product, a couple of versions of secure matrix-matrix product, secure 

matrix transpose and secure Frobenius product. On top of those building blocks we built our 

secure and private ML classifiers for KNN, DT, RF, NB, MNB, DNN, SVM and LR. At the 

end of each of the Chapters 3-6 we give theoretical experimental evaluations and 

comparisons of our protocols with the state-of-the-art as well as we provide security proofs 

for all of our protocols under the semi-honest (honest but curious) model. In Chapter 6 we 

deal with malicious users as well during the secure and private classifications. Finally, in 
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Chapter 7 we conclude our research with discussions as well as proposals and ideas for future 

research and directions.    
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Chapter 2 

 

BACKGROUND INFORMATION AND 

PRELIMINARIES 

 

In this chapter, we provide the preliminaries related to all of our schemes throughput the 

dissertation. Namely, we derive NB classifier from Bayes’ Theorem and use it for both 

textual and non-textual multi-label multi-output dataset (which in itself includes the special 

cases of binary classes, multi-class, multinomial and multi-label scenarios). Then we 

introduce the most commonly used classifiers such as KNN, DF, RF and the others that can 

be expressed through linear algebra operations such as SVM, LR, MNB and DNN. We 

proceed with introducing the information gain and cryptographic primitives related to 

security definitions, concepts and theorems which will be our used for proving other 

theorems throughout the dissertation. We conclude with the general system architecture of 

our schemes, participants and their adversary models and briefly introduce our protocol 

flows, which are elaborated in details in their corresponding chapters. 

The notation given here will be valid throughout the paper. We denote a vector of integers 

by adding the term “_𝑣” at  the end of the vector’s name, i.e. 𝑖𝑛𝑡_𝑣 = {𝑎1, 𝑎2, … 𝑎𝑁} =

{(𝑎𝑖)𝑖=1
𝑁 }. By 𝑖𝑛𝑡1_𝑣 + 𝑖𝑛𝑡2_𝑣;  𝑖𝑛𝑡1_𝑣 − 𝑖𝑛𝑡2_𝑣;  𝑖𝑛𝑡1_𝑣 × 𝑖𝑛𝑡2_𝑣;  𝑖𝑛𝑡1_𝑣/𝑖𝑛𝑡2_𝑣, we 

denote the component (index) wise addition, subtraction, multiplication and division of two 

integer vectors, respectively. ⌈∙⌉ denotes the ceiling function (rounding to the closest greater 

integer), while ⌊∙⌋ the floor function (rounding to the closest smaller integer). With 𝐻(∙) we 
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denote a cryptographic hashing function and by |𝑆| we denote the cardinality (number of 

elements) of a certain set S.        

 

2.1. Bayes’ Theorem and Naïve Bayes 

Let 𝐴1, … , 𝐴𝑁 , 𝐵 be random variables. Let 𝑃(𝐵), 𝑃(𝐴1, … , 𝐴𝑁), 𝑃(𝐵|𝐴1, … , 𝐴𝑁) and  

𝑃(𝐴1, … , 𝐴𝑁|𝐵) be the probability of observing 𝐵, the joint probability of observing the 

random variables 𝐴1, … , 𝐴𝑁, the conditional probability of observing 𝐵 after 𝐴1, … , 𝐴𝑁 are 

observed and the conditional probability of observing 𝐴1, … , 𝐴𝑁 after 𝐵 is observed, 

respectively. Then the Bayes’ Theorem can be written as: 

 

𝑃(𝐵|𝐴1, … , 𝐴𝑁) =
𝑃(𝐴1,…,𝐴𝑁|𝐵)𝑃(𝐵)

𝑃(𝐴1,…,𝐴𝑁)
                                    (2.1) 

 

If we are interested on which value of 𝐵 has the highest probability of appearance after 

𝐴1, … , 𝐴𝑁 have been observed, but not on their actual values, then if we Naively assume that 

𝐴1, … , 𝐴𝑁 are independent to each other (thus 𝑃(𝐴1, … , 𝐴𝑁|𝐵) = ∏ 𝑃(𝐴𝑖|𝐵)
𝑁
𝑖=1 ) and knowing 

that logarithm is a monotonically increasing function, then (1) can be written as: 

 

𝐵𝑣𝑚𝑎𝑥 = (
𝑎𝑟𝑔𝑚𝑎𝑥
𝐵𝑣 ∈ 𝐵

𝑃(𝐵|𝐴1, … , 𝐴𝑁)) =
𝑎𝑟𝑔𝑚𝑎𝑥
𝐵𝑣 ∈ 𝐵

∑ 𝑙𝑜𝑔𝑃(𝐴𝑖|𝐵)
𝑁
𝑖=1 𝑃(𝐵𝑣)         (2.2) 

 

where  𝐵𝑣𝑚𝑎𝑥  is the value of 𝐵 which has the highest posterior probability (probability of 

appearance) after 𝐴1, … , 𝐴𝑁 have been observed. Equation (2.2) is known as the Naive Bayes 

formula.  

  

2.1.1. Naïve Bayes for multi-class non-textual datasets  

Naïve Bayes is a supervised machine learning (ML) technique used for classification, hence 

its model is trained from a dataset(s) assumed to be correctly labeled. Such datasets have  

𝑓 + 1 columns, where 𝑓 is the number of features (attributes) and one column is for the class 

(label). We assume that each feature is categorical (if a certain feature is continuous, it can 

be discretized). Each record (transaction, instance, row) in the data set for each of the f 
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features can take one of the values from the feature set 𝐹𝑖  =  {𝑉1,𝐹𝑖, 𝑉2,𝐹𝑖 , … , 𝑉|𝐹𝑖|,𝐹𝑖 }, where 

|𝐹𝑖| is the cardinality (number of elements) of the set 𝐹𝑖 and  𝑉𝑚,𝐹𝑖 is the 𝑚-th element of the 

feature set 𝐹𝑖, and 1 ≤ 𝑖 ≤ 𝑓 , 1 ≤ 𝑚 ≤ |F𝑖|. Let 𝐹 ⊆ 𝑅𝑓 be the set of the Cartesian products 

of all the elements of all features’ set, namely  𝐹 = 𝐹1  ×  𝐹2  × …× 𝐹𝑓. All of the instances 

belong to one class from set of classes 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑐} , so we have 𝑐 classes in total. The 

total number of instances (transactions) in the dataset is NT. In this sense, a dataset is 

comprised of records which are tuples {𝑌𝑟 , 𝑍𝑟}, where 𝑌𝑟 ∈ 𝐹 and 𝑍𝑟 ∈ 𝐶. Let 𝑁(𝐶𝑗) denote 

the global (overall) frequency (counts) of class 𝐶𝑗 and let 𝑁(𝑉𝑚,𝐹𝑖; 𝐶𝑗) denote the frequency 

of the 𝑚-th value of the feature 𝐹𝑖 with class 𝐶𝑗 where 1 ≤ 𝑖 ≤ 𝑓, 1 ≤  𝑗 ≤  𝑐 and  

1 ≤  𝑚 ≤  |𝐹𝑖|. Obviously, 𝑁𝑇 = ∑ 𝑁(𝐶𝑗)
𝑐
𝑗=1 .  For the class and conditional feature value-

class probabilities, we have 𝑃(𝐶𝑗) =
𝑁(𝐶𝑗)

𝑁𝑇
 and 𝑃(𝑉𝑚,𝐹𝑖|𝐶𝑗) =

𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

𝑁(𝐶𝑗)
, respectively, and 

they actually represent the trained model.  

To classify an unclassified feature vector 𝑋 = {𝑋1, 𝑋2… ,𝑋𝑓}, where 𝑋𝑖 ∈ 𝐹𝑖 (therefore 𝑋 ∈

𝐹), means to label it with a class from the set 𝐶 which has the highest posterior probability. 

Assuming that the features are independent from each other, thus  

𝑃(𝑋1, 𝑋2, … , 𝑋𝑓|𝐶𝑗) = ∏ 𝑃(𝑋𝑖|𝐶𝑗)
𝑓
𝑖=1 , then using (2.2) for the NB classifier we have: 

 

𝐶(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑗≤𝑐 [𝑙𝑜𝑔𝑃(𝐶𝑗) + ∑ 𝑙𝑜𝑔𝑃(𝑋𝑖|𝐶𝑗)
𝑓
𝑖=1 ]                   (2.3) 

 

If the main (global) dataset was obtained by merging 𝑛 other data sets, then for the 

frequencies of the dataset we have 𝑁(𝐶𝑗) = ∑ 𝑁(𝑘)(𝐶𝑗) 
𝑛
𝑘=1 ,  

𝑁(𝑉𝑚,𝐹𝑖; 𝐶𝑗) = ∑ 𝑁(𝑘)(𝑉𝑚,𝐹𝑖; 𝐶𝑗)
𝑛
𝑘=1  and 𝑁𝑇 = ∑ 𝑁𝑇(𝑘)𝑛

𝑘=1 , where 𝑁(𝑘)(𝐶𝑗) is the local 

frequency (counts) of class 𝐶𝑗 at the data set 𝑘, while 𝑁(𝑘)(𝑉𝑚,𝐹𝑖; 𝐶𝑗) is the frequency of the 

𝑚-th value of feature 𝐹𝑖  having class 𝐶𝑗 at the dataset 𝑘, and 𝑁𝑇(𝑘) is the number of 

transactions at the dataset 𝑘, where 1 ≤ 𝑖 ≤ 𝑓, 1 ≤  𝑗 ≤  𝑐, 1 ≤ 𝑘 ≤ 𝑛  and 1 ≤ 𝑚 ≤ |𝐹𝑖|. 

Having this in mind, then letting each 𝑋𝑖 = 𝑉𝑚,𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓 and 1 ≤  𝑚 ≤  |𝐹𝑖|, from 

(2.3) we have:  
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𝐶(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑗≤𝑐  [𝑙𝑜𝑔
∑ 𝑁(𝑘)(𝐶𝑗) 
𝑛
𝑘=1

∑ 𝑁𝑇(𝑘)𝑛
𝑘=1

+ ∑ 𝑙𝑜𝑔
∑ 𝑁(𝑘)(𝑉𝑙,𝐹𝑖;𝐶𝑗)
𝑛
𝑖=1

∑ 𝑁(𝑘)(𝐶𝑗) 
𝑛
𝑘=1

 
𝑓
𝑖=1 ]             (2.4) 

 

In order to integerize for encryption purposes, we multiply the probabilities with a constant 

𝐾, so for (2.4) we have: 

 

𝐶(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑗≤𝑐  ⌈𝐾 [𝑙𝑜𝑔
𝑁(𝐶𝑗)

𝑁𝑇
+∑ 𝑙𝑜𝑔

𝑁(𝑉𝑚,𝐹𝑖; 𝐶𝑗)

𝑁(𝐶𝑗)
 

𝑓

𝑖=1
]⌉ ≈ 

𝑙𝑜𝑔𝑃(𝐶𝑗) + ∑ 𝑙𝑜𝑔𝑃(𝑉𝑚,𝐹𝑖|𝐶𝑗)
𝑓
𝑖=1                        (2.5)   

 

2.1.2. Multinomial Naïve Bayes for multi-label multi-output textual 

datasets 

For simplicity and better understanding, we firstly present the scenario with binary textual 

datasets and then generalize it to deal with multi-label multi-output textual datasets.  

Let the transactions (documents, records, instances) of a certain (pre-processed) dataset DS 

have a selected feature set 𝑆𝐹 consisting of 𝑚 words (features), thus 𝑆𝐹 = {𝑤1, … , 𝑤𝑚}. For 

simplicity and without loss of generality, let the set of classes 𝐶 of DS consist of two classes, 

ham and spam, thus 𝐶 = {𝑐ℎ, 𝑐𝑠}. Let 𝑓(𝑤𝑖, 𝑐𝑗) denote the frequency of word 𝑤𝑖 in documents 

classified (labeled) as belonging to class 𝑐𝑗, while 𝑁(𝑤𝑖, 𝑐𝑗) denote the count (number) of 

documents where 𝑤𝑖 appears at least once in documents classified as belonging to 𝑐𝑗, where 

1 ≤ 𝑖 ≤ 𝑚 and 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠. In this sense, if 𝑤𝑖 appears several times in a document 

belonging to 𝑐𝑗 then its frequency 𝑓(𝑤𝑖, 𝑐𝑗) will be incremented as many times as it appears 

in that particular document, while its document count 𝑁(𝑤𝑖, 𝑐𝑗) will be incremented by one. 

Let 𝑁𝑇 and 𝑁(𝑐𝑗) denote the total number of transaction and the number of records belonging 

to class 𝑐𝑗, respectively. Apparently 𝑁𝑇 = ∑ 𝑁(𝑐𝑗)𝑐𝑗=𝑐ℎ,𝑐𝑗=𝑐𝑠
. Let 𝑃(𝑐𝑗) =

𝑁(𝑐𝑗)

𝑁𝑇
 denote the 

class probabilities. Let 𝑃(𝑤𝑖|𝑐𝑗) =
𝑓(𝑤𝑖,𝑐𝑗)

𝑁(𝑐𝑗)
 and 𝑃(𝑤𝑖|𝑐𝑗) =

𝑁(𝑤𝑖,𝑐𝑗)

𝑁(𝑐𝑗)
 denote the conditional 

word-class probabilities for the Multinomial Naïve Bayes (MNB) and Naïve Bayes (NB) 

cases, respectively. Actually 𝑃(𝑐𝑗) and  𝑃(𝑤𝑖|𝑐𝑗), where 1 ≤ 𝑖 ≤ 𝑚 and 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠, 

represent the trained model 𝐶𝑇𝑀(∙)  for the MNB and NB classifier, respectively. In order to 
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give a chance to words whose conditional probability is zero, due to their counts or 

frequencies being zero, we add one to each count (frequency) accompanied by adding the 

vocabulary size (number of unique words) to the denominator of the corresponding 

conditional probabilities. This process is called Laplace Smoothing. For the MNB case un-

classified queries have the form of 𝑞_𝑣 = {1, 𝑓𝑞(𝑤1), … , 𝑓𝑞(𝑤𝑚)}, where 𝑓𝑞(𝑤𝑖) is the 

frequency of appearance of word 𝑤𝑖 in the query 𝑞_𝑣, while for the NB case it has the form 

of the binary vector 𝑞_𝑣 = {1, 𝑁𝑞(𝑤1),… ,𝑁𝑞(𝑤𝑚)} where 𝑁𝑞(𝑤𝑖) = 1 if 𝑤𝑖 appears at least 

once in the query and 𝑁𝑞(𝑤𝑖) = 0 if 𝑤𝑖 doesn’t  appear in the query, for 1 ≤ 𝑖 ≤ 𝑚 and 𝑤𝑖 ∈

𝑆𝐹. Applying Naïve Bayes’ Theorem for multinomial datasets [18], [33], [35], [39], we 

classify 𝑞_𝑣 as: 

𝐶𝑇𝑀(𝑞_𝑣) = 𝑃(𝑐𝑗|𝑞_𝑣) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑐𝑗=𝑐ℎ or 𝑐𝑗=𝑐𝑠

𝑃(𝑐𝑗)(∏ 𝑃(𝑤𝑖|𝑐𝑗)
𝑚
𝑖=1 )             

𝑃(𝑞_𝑣)
         (2.6) 

 

Similar to the reasoning in Chapter 2.1 and (2.2), having in mind that 𝑃(𝑞_𝑣) is always 

the same, that logarithm is a monotonically increasing function and naively assuming that 

appearances of words in a query are independent of each other, i.e.  

𝑃(𝑞_𝑣|𝑐𝑗) = ∏ 𝑃(𝑤𝑖|𝑐𝑗)
𝑓𝑞(𝑤𝑖|𝑐𝑗)𝑚

𝑖=1 , then for the MNB case (2.2) can be written as: 

 

𝐶𝑇𝑀(𝑞_𝑣) = 𝑠𝑖𝑔𝑛[𝐾(𝑙𝑜𝑔𝑃(𝑐ℎ) − 𝑙𝑜𝑔𝑃(𝑐𝑠)) + ∑ 𝐾𝑓𝑞(𝑤𝑖)(𝑙𝑜𝑔𝑃(𝑤𝑖|𝑐ℎ) −
𝑚
𝑖=1

𝑙𝑜𝑔𝑃(𝑤𝑖|𝑐𝑠))]   (2.7) 

 

if 𝐶𝑇𝑀(𝑞_𝑣) > 0, i.e. 𝑠𝑖𝑔𝑛 =  +, then 𝑞_𝑣 is classified as 𝑐ℎ (ham), otherwise as 𝑐𝑠 (spam).  

K is a constant used to integerize terms of 𝐶𝑇𝑀(𝑞_𝑣) for encryption purposes (Chapter 2.4.1). 

If in (2.6) instead of frequencies 𝑓𝑞(𝑤𝑖) we use the counts 𝑁𝑞(𝑤𝑖), then (2.6) is valid for the 

NB case. 

If the dataset DS is obtained by merging 𝑛 other datasets denoted as DS𝑘 for 1 ≤ 𝑘 ≤ 𝑛, 

then 𝑁𝑇 = ∑ 𝑁𝑇(𝑘)𝑛
𝑘=1 , 𝑁(𝑐𝑗) = ∑ 𝑁(𝑘)(𝑐𝑗)

𝑛
𝑘=1 , 𝑓(𝑤𝑖, 𝑐𝑗) = ∑ 𝑓(𝑘)(𝑤𝑖, 𝑐𝑗)

𝑛
𝑘=1  and 

𝑁(𝑤𝑖, 𝑐𝑗) = ∑ 𝑁(𝑘)(𝑤𝑖, 𝑐𝑗)
𝑛
𝑘=1 , where 𝑁𝑇(𝑘), 𝑁(𝑘)(𝑐𝑗), 𝑓

(𝑘)(𝑤𝑖, 𝑐𝑗) and 𝑁(𝑘)(𝑤𝑖, 𝑐𝑗) denote 

the number of transactions (records), number of records labeled as 𝑐𝑗, frequency of word 𝑤𝑖 

in documents labeled as 𝑐𝑗 and the count (number) of at least one appearance of  𝑤𝑖 in 
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documents labeled as 𝑐𝑗 at dataset k, respectively, for 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠. 

For the multi-label multi-output case, where each label is a multiple-classes, let the set of 

labels for a certain dataset be 𝐿 = {𝐿1, … , 𝐿|𝐿|} and let the set of corresponding classes for 

each label be 𝐶𝑙 = {𝐶1
𝑙 , … , 𝐶|𝐶𝑙|

𝑙}, where 1 ≤ 𝑙 ≤ |𝐿| and |𝐶𝑙| is the cardinality of (number 

of classes belonging to) set 𝐶𝑙. Let 𝑆𝐹𝑙 = {𝑤1
𝑙 , … , 𝑤

𝑚𝑙
𝑙 } be the set of 𝑚𝑙 selected features for 

label 𝑙, where 1 ≤ 𝑙 ≤ |𝐿|. Let 𝑁(𝐶𝑐
𝑙), 𝑁(𝑤𝑖

𝑙, 𝐶𝑐
𝑙) and 𝑓(𝑤𝑖

𝑙 , 𝐶𝑐
𝑙), be the counts (number) 

of documents belonging to class 𝐶𝑐
𝑙
, counts of documents belonging to class 𝐶𝑐

𝑙
 having at 

least one appearance of the word (feature) 𝑤𝑖
𝑙 ∈ 𝑆𝐹𝑙 and the frequency of word 𝑤𝑖

𝑙 appearing 

in documents belonging to class 𝐶𝑐
𝑙
, respectively, for 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and  

1 ≤ 𝑐 ≤ |𝐶𝑙|. Let 𝑃(𝐶𝑐
𝑙) =

𝑁(𝐶𝑐
𝑙)

𝑁𝑇
  denote the 𝐶𝑐

𝑙 classes probability and  

𝑃(𝑤𝑖
𝑙|𝐶𝑐

𝑙) =
𝑁(𝑤𝑖

𝑙,𝐶𝑐
𝑙)

𝑁(𝐶𝑐
𝑙)

 or 𝑃(𝑤𝑖
𝑙|𝐶𝑐

𝑙) =
𝑓(𝑤𝑖

𝑙,𝐶𝑐
𝑙)

𝑁(𝐶𝑐
𝑙)

  denote the conditional word-class 

probability for NB, respectively for MNB case. Let 𝑇𝑀𝑀𝐿𝑀𝑂 denote the trained model for 

the multi-label multi-output datasets, which is consisted of 𝑃(𝐶𝑐
𝑙) and 𝑃(𝑤𝑖

𝑙|𝐶𝑐
𝑙) for  

1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤ 𝑐 ≤ |𝐶𝑙|. Then for the query  

𝑞_𝑣𝑀𝐿𝑀𝑂 = {{1, {𝑓𝑞
𝑙(𝑤𝑖

𝑙)}
𝑖=1

𝑚𝑙

}
𝑐=1

|𝐶𝑙|

}

𝑙=1

|𝐿|

, which for label 𝑙 has 𝑚𝑙 words (features), the 

corresponding classification for each label assigns a class to 𝑞_𝑣 according to MNB, thus: 

 

𝑇𝑀𝑀𝐿𝑀𝑂(𝑞_𝑣𝑀𝐿𝑀𝑂) =
𝑃 ({𝐶𝑐

𝑙}
𝑙=1

|𝐿|
|𝑞_𝑣)

1 ≤ 𝑙 ≤ |𝐿|
=

𝑎𝑟𝑔𝑚𝑎𝑥
1≤𝑙≤|𝐿|

1≤𝑐≤|𝐶𝑙| 

[𝐾𝑙𝑜𝑔𝑃(𝐶𝑐
𝑙) + ∑ 𝐾𝑓𝑞

𝑙(𝑤𝑖
𝑙)𝑙𝑜𝑔𝑃(𝑤𝑖

𝑙|𝐶𝑐
𝑙)𝑚𝑙

𝑖=1 ] 

(2.8) 

 

If 𝑓𝑞
𝑙(𝑤𝑖

𝑙)s are substituted by 𝑁𝑞
𝑙(𝑤𝑖

𝑙) in (2.8) and probabilities belong to the NB case, then 

the classification of 𝑞_𝑣 is done according to NB.  

We should emphasize that if each value of each feature is considered as a binary feature 

on its own (that can take two values, 0 or 1, depending on whether its present or not in the 

record or the query), then the scenario for textual multi-label multi-output datasets is also 

valid for the non-textual ones.  
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2.2. Information gain 

For the binary classification case, let 𝑁(𝑤𝑖̅̅ ̅, 𝑐𝑗) = 𝑁(𝑐𝑗) − 𝑁(𝑤𝑖, 𝑐𝑗) denote the count 

(number) of documents in the dataset labeled as belonging to class 𝑐𝑗 where word 𝑤𝑖 does 

not appear, and 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠. Let 𝑁(𝑤𝑖) = 𝑁(𝑤𝑖, 𝑐ℎ) + 𝑁(𝑤𝑖, 𝑐𝑠) be the number of 

documents were word 𝑤𝑖 appears at least once and 𝑁(𝑤̅) = 𝑁𝑇 − 𝑁(𝑤𝑖) be the count 

(number) of documents were 𝑤𝑖 does not appears at all. Let 𝑃(𝑤𝑖) =
𝑁(𝑤𝑖)

𝑁𝑇
 denote the 

probability of 𝑤𝑖 to appear in a document, 𝑃(𝑤𝑖̅̅ ̅) =
𝑁(𝑤𝑖̅̅̅̅ )

𝑁𝑇
 denote the probability of  𝑤𝑖 not 

appearing in a document, 𝑃(𝑤𝑖, 𝑐𝑗) =
𝑁(𝑤𝑖,𝑐𝑗)

𝑁𝑇
 denote the probability of word 𝑤𝑖 to appear in 

a document classified as 𝑐𝑗 and 𝑃(𝑤𝑖̅̅ ̅, 𝑐𝑗) =
𝑁(𝑤𝑖̅̅̅̅ ,𝑐𝑗)

𝑁𝑇
 denote the probability of word 𝑤𝑖 not 

appearing in a document classified as 𝑐𝑗, where 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠. Then, the information gain 

(IG) of a word 𝑤𝑖 is defined as [34-35]:  

 

𝐼𝐺(𝑤𝑖) = ∑ (𝑃(𝑤𝑖, 𝑐𝑗)𝑙𝑜𝑔 (
𝑃(𝑤𝑖,𝑐𝑗)

𝑃(𝑤𝑖)𝑃(𝑐𝑗)
) + 𝑃(𝑤𝑖̅̅ ̅, 𝑐𝑗)𝑙𝑜𝑔 (

𝑃(𝑤𝑖̅̅̅̅ ,𝑐𝑗)

𝑃(𝑤𝑖̅̅̅̅ )𝑃(𝑐𝑗)
))𝑐𝑗=𝑐ℎ,𝑐𝑠

   (2.8) 

 

The information gain is a quantitative metric which measures the reduction of entropy 

(uncertainty) of a query 𝑞_𝑣 to belong to a class 𝑐𝑗 after word 𝑤𝑖 has been observed in the 

query. The higher the entropy reduction, the more information gain the word 𝑤𝑖 offers. This 

is the reason that makes information gain one of the most effective tools in dimension 

reduction (feature selection), especially when choosing the top 𝑚 words with the highest 

information gain in what is known as “bag-of-words” [33],[34],[37]. Substituting the 

probabilities with their counts and having in mind that we want to find the top 𝑚 words with 

the highest IG, but not their exact IG, then (2.8) can be rewritten as: 

 

𝐼𝐺(𝑤𝑖) ~∑ (𝑁(𝑤𝑖, 𝑐𝑗)𝑙𝑜𝑔 (
𝑁(𝑤𝑖,𝑐𝑗)𝑁𝑇

𝑁(𝑤𝑖)𝑁(𝑐𝑗)
) + 𝑁(𝑤𝑖̅̅ ̅, 𝑐𝑗)𝑙𝑜𝑔 (

𝑁(𝑤𝑖̅̅̅̅ ,𝑐𝑗)𝑁𝑇

𝑁(𝑤𝑖̅̅̅̅ )𝑁(𝑐𝑗)
))𝑐𝑗=𝑐ℎ,𝑐𝑠

   (2.9) 
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which makes the homomorphic evaluations and selection of the top 𝑚 words with the highest 

IG easier (Chapter 2.4).  

For the multi-label multi-output datasets let 𝑁(𝑤𝑖
𝑙) = ∑ 𝑁(𝑤𝑖

𝑙 , 𝐶𝑐
𝑙)

|𝐶𝑙|

𝑐=1 ,  

𝑁(𝑤𝑖
𝑙̅̅̅̅ ) = 𝑁𝑇 − 𝑁(𝑤𝑖

𝑙),  and 𝑁(𝑤𝑖
𝑙̅̅̅̅ , 𝐶𝑐

𝑙) = 𝑁(𝐶𝑐
𝑙) − 𝑁(𝑤𝑖

𝑙, 𝐶𝑐
𝑙) denote the count (number) 

of documents where 𝑤𝑖
𝑙 ∈ 𝑆𝐹𝑙 appears at least once, count of documents where 𝑤𝑖

𝑙 doesn’t 

appear at all and counts of documents of class 𝐶𝑐
𝑙
 where 𝑤𝑖

𝑙 doesn’t appear , respectively, 

for 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤ 𝑐 ≤ |𝐶𝑙| . Let 𝑃(𝑤𝑖
𝑙) =

𝑁(𝑤𝑖
𝑙)

𝑁𝑇
 denote the probability of 

𝑤𝑖
𝑙 to appear in a document, 𝑃(𝑤𝑖

𝑙̅̅̅̅ ) =
𝑁(𝑤𝑖

𝑙̅̅ ̅̅ )

𝑁𝑇
 denote the probability of 𝑤𝑖

𝑙 not appearing in a 

document, 𝑃(𝑤𝑖
𝑙, 𝐶𝑐

𝑙) =
𝑁(𝑤𝑖

𝑙
𝑖
,𝐶𝑐

𝑙)

𝑁𝑇
 denote the probability of word 𝑤𝑖

𝑙 to appear in a document 

belonging to 𝐶𝑐
𝑙
 and 𝑃(𝑤𝑖

𝑙̅̅̅̅ , 𝐶𝑐
𝑙) =

𝑁(𝑤𝑖
𝑙̅̅ ̅̅ ,𝐶𝑐

𝑙)

𝑁𝑇
 denote the probability of word 𝑤𝑖

𝑙 not appearing 

in a document belonging to class 𝐶𝑐
𝑙
, where 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤ 𝑐 ≤ |𝐶𝑙|. 

Then, for label 𝑙, where 1 ≤ 𝑙 ≤ |𝐿|, the information gain of word 𝑤𝑖 is 

𝐼𝐺𝑙(𝑤𝑖
𝑙) = ∑ (𝑃(𝑤𝑖

𝑙 , 𝐶𝑐
𝑙)𝑙𝑜𝑔 (

𝑃(𝑤𝑖
𝑙,𝐶𝑐

𝑙)

𝑃(𝑤𝑖
𝑙)𝑃(𝐶𝑐

𝑙)
) + 𝑃(𝑤𝑖

𝑙̅̅̅̅ , 𝐶𝑐
𝑙)𝑙𝑜𝑔 (

𝑃(𝑤𝑖
𝑙̅̅ ̅̅ ,𝐶𝑐

𝑙)

𝑃(𝑤𝑖
𝑙̅̅ ̅̅ )𝑃(𝐶𝑐

𝑙)
))

|𝐶𝑙| 

𝑐=1      (2.10) 

 

Substituting the probabilities with their counts and having in mind that for each label label 𝑙, 

where 1 ≤ 𝑙 ≤ |𝐿|, we want to find the top 𝑚𝑙 words with the highest IG, but not their exact 

IG, then (6) can be rewritten as 

 

𝐼𝐺𝑙(𝑤𝑖
𝑙) ~∑ (𝑁(𝑤𝑖

𝑙, 𝐶𝑐
𝑙)𝑙𝑜𝑔 (

𝑁(𝑤𝑖
𝑙,𝐶𝑐

𝑙)𝑁𝑇

𝑁(𝑤𝑖
𝑙)𝑁(𝐶𝑐

𝑙)
) + 𝑁(𝑤𝑖

𝑙̅̅̅̅ , 𝑐𝑗)𝑙𝑜𝑔 (
𝑁(𝑤𝑖

𝑙̅̅ ̅̅ ,𝐶𝑐
𝑙)𝑁𝑇

𝑁(𝑤𝑖
𝑙̅̅ ̅̅ )𝑁(𝐶𝑐

𝑙)
))

|𝐶𝑙| 

𝑐=1     (2.11) 

 

 

2.3. Machine Learning classifications 

According to Dua [38]: “Machine learning (ML) is the computational process of 

automatically inferring and generalizing a learning model from sample data. In supervised 

machine learning, an algorithm is fed sample data that are labeled in meaningful ways. The 

algorithm uses the labeled samples for training and obtains a model. Then, the trained 
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machine-learning model can label the data points that have never been used by the 

algorithm”.  

Below we give some of the widely used ML techniques with application to cyber security 

and corresponding use-cases. Other case-studies on all of the mentioned classifiers on this 

section are reported in [38] and [39].  

 

2.3.1. K-Nearest Neighbor (KNN) 

Is a widely used classification technique which is simple to implement, although it requires 

a lot of computation power and storage resources. It is simple since it doesn’t require prior 

training, rather, given an observed instance 𝑋 =  {𝑋1, 𝑋2, … 𝑋𝑓} which we want to classify 

(label) and a dataset DS with fairly enough of already correctly classified instances, we want 

to find the instance(s) of DS that are closer to 𝑋 and correspondingly label 𝑋 as belonging to 

its closest instance(s) class in terms of a distance. However, in order to avoid biases, distances 

that do not properly find neighbors, and/or mistakes that might have happened while 

capturing (measuring) the instances 𝑋’s features, when classifying 𝑋, we might consider to 

take into consideration several (say 𝑘) closest neighbors of 𝑋 in DS, hence the name kNN. 

Afterwards the majority voting is applied to determine 𝑋’s final vote. In order to avoid equal 

number of votes for different classes from the neighbors of 𝑋, it is desires 𝑘 to be odd.  

Let 𝑌𝑟𝑖 = {𝑌1
𝑟𝑖 , 𝑌2

𝑟𝑖 , … , 𝑌𝑓
𝑟𝑖} be a record of DS, where 1 ≤ 𝑖 ≤ 𝑁𝑇 and 𝑁𝑇 is the number of 

transactions (records, instances) in DS. As a distance metric between 𝑋 and 𝑌𝑟𝑖 can be 

considered several ones. The most used distance metric is the Euclidian distance, which is 

calculated as: 

 

𝑑(𝑋, 𝑌𝑟𝑖) = √∑ (𝑋𝑖 − 𝑌𝑦
𝑟𝑖)2

𝑓
𝑦=1                                      (2.12) 

 

The squared Euclidean distance between 𝑋 and 𝑌𝑟𝑖 is defined as: 

 

𝑑(𝑋, 𝑌𝑟𝑖) = ∑ (𝑋𝑖 − 𝑌𝑦
𝑟𝑖)

2𝑓
𝑦=1                                      (2.13) 
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The Manhattan distance between 𝑋 and 𝑌𝑟𝑖 is defined as: 

 

𝑑(𝑋, 𝑌𝑟𝑖) = ∑ |𝑋𝑖 − 𝑌𝑦
𝑟𝑖|

𝑓
𝑦=1                                      (2.14) 

 

The cosine similarity between 𝑋 and 𝑌𝑟𝑖 is defined as: 

 

𝑑(𝑋, 𝑌𝑟𝑖) = cos(𝛼) =
𝑋×𝑌𝑟𝑖

|𝑋||𝑌𝑟𝑖|
                             (2.15) 

 

where 𝑋 × 𝑌𝑟𝑖 is the inner product of 𝑋 and 𝑌𝑟𝑖, and |𝑋| and |𝑌𝑟𝑖| are their canonical (L2) 

forms, respectively. Besides those, there are others less used distance metrics such as 

Jaccard’s, Minkowski’s, Chebyshev’s distance, etc. 

Since 𝑋 checks for all of the instances in DS, 𝑘𝑁𝑁 it has a linear complexity with respect 

to the number of records in DS.  

 

2.3.2. Decision Trees and Random Forests 

Decision trees are also one of the most frequently used machine Learning (ML) techniques, 

known also as decision trees. Decision trees (DT) are build based on an observation database 

(dataset) (Fig. 2.1.). After building the tree, those techniques are used to give prediction 

(classification) for a record (instance, raw) that has only its feature values, but not the class 

to which that particular record (instance) belongs to. Thus we want to classify (label) a newly 

observed instance which might not have been seen before as part of the dataset. 

  

 

Fig.2.1. Building a decision tree out of observations (dataset) [27] 
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Starting from the root of the tree and guided by the value(s) of certain attribute(s), we 

follow a link that sends to another node and so on till we reach a leaf node which eventually 

contains the final classification for that record as it is shown in Fig.2.2. A tree is expressed 

as conjunction of disjunctions in terms of if-and-…-and-then rules.  

 

 

Fig.2.2. Finding a binary tree classification guided by attributes and their values [42] 

 

There are several ML binary tree techniques, which are similar and variations of each 

other. The most famous ones are J48, ID3 (proposed by Quinlan [40]), C4.5 (Quinlan [41]) 

and CART (Classification and Regression Tree). Here we will briefly give only ID3, whose 

algorithm (pseudocode) is given in Fig.2 5. 

In order to properly build a DT, we introduce two notions (metrics) that will help us build 

the tree. One of them is the notion of entropy (the degree of uncertainty a system has) which 

is given with the formula (3.22) 

 

𝐻(𝑆) = ∑ −𝑝𝑖𝑙𝑜𝑔(𝑝𝑖)
𝑁
𝑖=0                                         (2.16) 

 

where 𝑝𝑖 is the probability of appearance of a certain value for a certain feature (attribute) .  

Another notion is that of the Information Gain that we introduced in Chapter 2.2. In this 

sense, according to the pseudocode in Fig.2.3, until there are no features (attributes) left 

without being selected, starting from the root of the DT, in each iteration we select the feature 

whose feature values introduce the highest IG are selected to be the root of the DT.  
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Fig.2.3. Pseudocode for the ID3 algorithm [40] 

 

Random forest (RF) on the other hand is an algorithm that is made of multiple DT. Those 

DT are selected in such a way that they complement each-other to give better results. Since 

all of the DT algorithms have strong and week sides, the RF is designed to combine the strong 

sides of several decision tree algorithms. Since different trees might give different 

classification for an un-classified instance, RF uses the majority voting to give the final 

thought of its instance classification (labeling). In order to avoid imbalances that might 

appear due to different natures of individual trees in the RF, techniques such as boosting, 

bagging and others are used [42-43].  

 

2.3.3. Machine Learning classifications based on linear algebra operations  

In this chapter we introduce several classifiers which are based or can be expressed through 

linear algebra operations such as dot (inner) product of two vectors, matrix-vector product, 

single matrix-matrix product and cascading (sequential, one after another) matrix-matrix 

products. Those are SVM, LR and DNN. Also we will re-introduce NB and MNB classifiers, 

but this time expressed through linear algebra operations. In the following sub-chapters, we 

assume that the trained model of the corresponding ML algorithm already exists and we deal 

only with the classification (prediction) stage for unclassified queries. For some of the ML 

algorithms we give a brief overview on how the trained model is obtained 
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2.3.3.1 Naïve Bayes and Multinomial Naïve Bayes (revisited). Having in mind the 

notations for NB in Chapter 2.1.1, for the set of classes 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑐} let us define the 

training integer row-vector 𝐶(𝑗) corresponding to class 𝐶𝑗 as  

𝐶(𝑗) = {⌊𝐾𝑙𝑜𝑔𝑃(𝐶𝑗)⌋, ( ⌊𝐾𝑙𝑜𝑔(𝑉𝑚,𝐹𝑖|𝐶𝑗)⌋,𝑚=1

|𝐹𝑖|
)

𝑖=1

𝑓

} =

{⌊𝐾𝑙𝑜𝑔𝑃(𝐶𝑗)⌋, ⌊𝐾𝑙𝑜𝑔(𝑉1,𝐹1|𝐶𝑗)⌋, ⌊𝐾𝑙𝑜𝑔(𝑉2,𝐹1|𝐶𝑗)⌋,… , ⌊𝐾𝑙𝑜𝑔(𝑉|𝐹𝑛|,𝐹𝑛|𝐶𝑗)⌋}, which makes 

𝐶(𝑗) an 𝑓 + 1 dimensional vector, where 1 ≤ 𝑗 ≤ 𝑐,.  At its first index it has the log of the 

class probability - ⌊𝐾𝑙𝑜𝑔𝑃(𝐶𝑗)⌋, followed by all of the 𝑓 conditional feature value 

probabilities - ⌊𝐾𝑙𝑜𝑔(𝑉𝑚,𝐹𝑖|𝐶𝑗)⌋, s. t. 1 ≤ 𝑖 ≤ 𝑓, 1 ≤ 𝑚 ≤ |𝐹𝑖|- of the remaining 𝑓 indexes in 

sequential order. The  multiplication of the logs of the probabilities by a constant 𝐾 and 

rounding them to the closest smaller integer (⌊∙⌋) is done for encryption purposes. Let we 

have an unclassified query 𝑋′ = {𝑋′1, 𝑋′2, … , 𝑋′𝑛}, where 𝑋′𝑖 ∈ 𝐹𝑖. In similar way, we 

redefine the query vector 𝑋′ as a binary row-vector 𝑋 = {1, ( 𝑉𝑚,𝐹𝑖𝑚=1
|𝐹𝑖| )

𝑖=1

𝑓

 } =

{1, 𝑉1,𝐹1 , 𝑉2,𝐹1 , … , 𝑉|𝐹𝑛|,𝐹𝑛} ≅ {1, 𝑋1, … , 𝑋𝑓}, i.e. it has 1 at the first index followed by a 

sequential order of all of the f feature values of all feature sets. For all 𝑋′𝑖 ∈ 𝐹𝑖 of the original 

query vector 𝑋’ we put 1 (one) at the corresponding index of the redefined query and all other 

values are set to be 0 (zeros). If we define the trained model as an 𝑐 × (𝑓 + 1) dimensional 

matrix, whose rows are all of the 𝑐 training row-vectors - 𝐶(𝑗)s  in sequential order, thus  

𝑀 =  [{𝐶(𝑗)}
𝑗=1

𝑐
]
𝑐×(𝑓+1)

, then the classification of 𝐶𝑀(𝑋) = 𝐶𝑀(𝑋′) can be expressed as: 

 

𝐶𝑀(𝑋) = [𝑀 × 𝑋] 1≤𝑗≤𝑐
𝑎𝑟𝑔𝑚𝑎𝑥

                                   (2.17) 

 

where the matrix column-vector multiplication returns a 𝑐 dimensional column-vector which 

in its indexes contains the posterior probabilities of 𝑋 to belong to the corresponding class 

𝐶𝑗. The term 
𝑎𝑟𝑔𝑚𝑎𝑥
1≤𝑗≤𝑐

 returns the maximum element of the resulting vector, which is the class 

with the highest posterior probability, hence the class label for 𝑋. A similar reasoning can be 

done for the MNB and NB case for textual datasets and queries, where the trained model 

matrix 𝑀 contains the corresponding row-vector class probabilities -𝐶(𝑗)s -in sequential 
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order, obtained having in mind MNB logic (Chapter 2.1.2), whereas the query vector 𝑞_𝑣 

remains the same. 

 

2.3.3.2. Support Vector Machines (SVM). Can directly be used in systems with two classes 

(binary case) that are linearly separable and the separation is done with planes. Since there 

are many planes that separate the instances of the two classes, the separation is done (chosen) 

in such a way that there is a maximum gap between instances of the different classes on each 

side of the plane (Fig. 2.4). This is obviously the optimal separation of the two classes. The 

instance that are closer to the separation plane on both sides of it (i.e. of the different classes) 

make the so called support vectors, hence the name support vector machines (SVM). Let 

those support vectors be the instances (records) {𝑌𝑟+ , 𝑐+} belonging to one of the binary 

classes (denoted as 𝑐+) and the other be {𝑌𝑟− , 𝑐−} belonging to the other class (denoted as 

𝑐−), where 𝑌𝑟+ = {𝑌1
𝑟+ , … , 𝑌𝑓

𝑟+} and 𝑌𝑟− = {𝑌1
𝑟− , … , 𝑌𝑓

𝑟−} are the values of the support 

vectors they have for each of the 𝑓 features (dimensions) of the dataset. Let the record 

{𝑌𝑟+ , 𝑐+} belong to a plane 𝜋+ s.t. 𝑊𝑇𝑌𝑟+ + 𝑏 = 1, where b is constant and 𝑊 is the normal 

vector to the hyperplane 𝜋+. This means that all the f dimensional records 𝑋 = {𝑋1, … , 𝑋𝑓}  

for which 𝑊𝑇𝑋 + 𝑏 ≥ 1 holds, i.e. they are on or above 𝜋+, are labeled as belonging to class 

𝑐+. Similarly, let the records {𝑌𝑟− , 𝑐−} belong to a plane 𝜋− s.t. 𝑊𝑇𝑌𝑟− + 𝑏 = −1 where b is 

the same constant and 𝑊 is also the normal vector to the hyperplane 𝜋−. All the records  

𝑋 = {𝑋1, … , 𝑋𝑓}  for which 𝑊𝑇𝑋 + 𝑏 ≤ −1 holds, i.e. they are on or below 𝜋−, are labeled 

as belonging to class 𝑐−. We can re-write this as 𝑦(𝑊𝑇𝑌𝑟𝑦 + 𝑏) ≥ 1, where 𝑦 = 1 and  

𝑟𝑦 = 𝑟+ if the class is 𝑐+,while 𝑦 = −1 and 𝑟𝑦 = 𝑟− if the class is 𝑐−. This also means that the 

distance between 𝜋+ and 𝜋− is 
2

|𝑊|
, where |𝑊| is the Normal Hesse form of 𝑊. Since we 

want to maximize the distance of the support vectors with the separating plane, that means 

we should minimize |𝑊|. Thus, the plane that in the most optimal ways separates the two 

classes is derived by optimizing those formulas:  

 

𝑎𝑟𝑔𝑚𝑖𝑛(
1

2
|𝑤|2)                                           (2.18) 

 

𝑦(𝑊𝑇𝑌𝑟𝑦 + 𝑏) ≥ 1                                        (2.19) 
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The splitting plane, which is given by its plane equation 𝑊𝑇𝑋 + 𝑏 = 0, afterwards is used 

to classify new instances 𝑋 = {𝑋1, … , 𝑋𝑓} by evaluating 𝑋 into the plane formula. The result 

will be either a positive or a negative number, one for both of the classes.  

 

 

Fig.2.4. Choosing the right class separator plane using SVM [39, 45]. 

 

For the case when binary classes are not linearly separable, kernel tricks are used. Usually 

those kernels add an extra dimension which makes the classes again linearly separable and 

applies the same logic as it is shown above. 

For the cases when there are several classes (more than two, say 𝑐 classes), SVM can be 

used in two modes. In one mode each class is separated from every other class using the 

above logic. This means that for each pair of classes we have a classifier, which in total make 

for 𝑐(𝑐 − 1)/2 plane classifiers. Since in some cases this is a lot, another approach is to have 

“one versus other classes” classifier. This means that in total we have c-1 planes [30]. 

In order to represent SVM multiclass classifiction in term os linear algebra (concretly 

matrix-vector product) operations, let us have 𝑓 features, denoted as 𝐹1, … , 𝐹𝑓 and c classes, 

𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑐}. Each of the 𝑐 classes has its own trined 𝑓 + 1 dimensional hyperplane 

𝑊(𝑗) = {𝑏(𝑗), 𝑤1
(𝑗)
, … , 𝑤𝑛

(𝑗)
}, for 1 ≤ 𝑗 ≤ 𝑐, that tends to maximize the gap between the 

closest instances (support vector machines) of the that class with the rest. In this sense the 

trained model can be expressed as rows of 𝑊(𝑗)s, thus 𝑀 = [{𝑊(𝑗)}
𝑗=1

𝑐
]
𝑐×(𝑓+1)

 . If the query 

vector 𝑋 is expressed as a column vector 𝑋 = {1, 𝑋1, … , 𝑋𝑓}, where 𝑋𝑖 ∈ 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓, 

then the classification of 𝑋 - 𝐶𝑀(𝑋) is done using (2.17) [9-10], [43-44]  
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2.3.3.3. Logistic regression (LR). The trained model 𝑀 and the user query 𝑋 have the same 

construction as in 3.1.2, hence its classification is done using (2) again. LR differes from 

SVM only by the algorithm by which the trained model 𝑀 is obtained [16], [21]. 

 

                    Table 2.1. Common perceptron activation functions [45] 

 
 

 

2.3.3.4. Deep neural networks (DNN). One of the hot research areas recently have been 

DNN. They were designed to imitate (simulate) the way the human brain works. Namely, the 

human brain is consisted from small processing (neurons) that take input signals from other 

processing units, process them and send them to another processing unit. The same is with 

the elementary constituents of DNN that take some weighted input(s) from other processing 

units, do some linear or nonlinear transformation to it and then pass the output to another 

processing unit. These elementary processing units are called perceptrons (shown as circular 

shaped nodes in Fig. 2.5). The function that perceptrons use to transform the (weighted) input 

to an output is called the activation function. Table 2.1 gives the most common activation 

functions. In some cases, if the output is positive it is said that the perceptron fires. Due to 

the limitations of single perceptrons, layers of and later on multiple layer of perceptrons were 

introduced (Fig.2.5). Sometimes DNN can have hundreds if not thousands of layers, each 

with also hundreds or thousands of perceptrons.     

 



25 
 

 
Fig.2.5. A multilayer deep neural network [39] 

 

 

The DNN in Fig.6 has 3 layers. The input (first from the left) has 4 perceptrons, the middle 

layer has 3 and the output layer 2 perceptrons. Although there is a huge research going on 

with ANN and deep learning, still there is no clear policy on how to determine the adequate 

number of layers, the number of perceptrons in a layer, the activation function for perceptrons 

or even the number of inputs in the network. 

As it can be seen from the DNN in fig.6, the input 𝑋 =  {𝑋1, 𝑋2, 𝑋3, 𝑋4} is fed to the four 

perceptrons of the input layer. Inside the perceptrons the activation functions (say one from 

the table 4) transforms the input into an output. For each input layer node (perceptron) there 

is a link to the next (hidden) layer node which has a weight (usually in decimal numbers) 

assigned to it. Initially those weights are randomly assigned and will get fixed during the 

training process. Those weights can be represented as a matrix, in which the rows are the 

inputs and columns the output (target) perceptron nodes, which in Fig.2.6 are denoted as 𝑀1 

matrix, with the corresponding weights (elements in the matrix) denoted as 𝑤𝑖𝑗. For instance, 

the weight of the link that comes out from the second input node and goes to the 3rd node of 

the hidden layer is 𝑤23.  In the second (hidden) layer, all of the nodes some up the products 

of the output that the input layers generate with the weights. Then this sum of products is fed 

to the activation function of the hidden layer perceptron, which in turn comes up with an 

output that will be send to the proceeding layer, which in our case is the output layer. Of 

course, the links between the hidden and the output layer have also their weights, represented 

by the 𝑀2 matrix. The 𝑀2 matrix has j rows and k columns in Fig.2.5, which are the number 

of perceptrons (nodes) in the hidden and the output layer, correspondingly. 
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Let us define  𝑀0 as a column vector which has 𝑓 ones, thus its weights are all 1. Let the 

input layer be denoted as layer 0, let we have 𝑙 layers and let the activation functions for each 

layer 𝑖 be denoted as 𝑓𝑖(∙), where 0 ≤ 𝑖 ≤ 𝑙. Apparently, the trained model 𝑀 of our DNN 

is consisted of all the matrixes 𝑀𝑖 and 𝑓𝑖(∙), for 0 ≤ 𝑖 ≤ 𝑙. Let the output of layer 𝑖 be a 

column vector denoted as 𝑋𝑖+1 and let the input 𝑋 also be denoted as 𝑋0. Then, the final 

output of the DNN can be denoted as 𝐶𝑀(𝑋), which is actually the classification of our input 

query 𝑋 = 𝑋0 according to 𝑀, thus  

 

𝐶𝑀(𝑋) = ∏ (𝑓𝑖(𝑀𝑖 × 𝑋𝑖))𝑙
𝑖=0                                (2.20) 

 

Equation (2.20) is equivalent to (2.17) when the DNN has only layers 0 and 1 and their 

correpodning activation functions are linear, thus 𝑓0(𝑥) = 𝑓1(𝑥) = 𝑥. 

 

 

Fig.2.6. Illustration of our proposed multi-query classifications 

 

2.3.4.5. Multi-query classifications. Since all of the above ML classification schemes use 

the same logic during the ML classification stage, which can be expressed in terms of a 

multiplication of a matrix with a column-vector, intuitively, a matrix-matrix multiplication 

can classify multiple queries at once. Let  𝑆 =  [{𝑋(𝑘)}
𝑘=1

𝑞
]
(𝑓+1)×𝑞

be the (𝑓 + 1) × 𝑞 

dimensional query matrix obtained by appending 𝑞 column vector queries of dimension 𝑛 +

1, s.t. 𝑋(𝑘) = {1, 𝑋1
(𝑘)
, … , 𝑋𝑓

(𝑘)
}, for 1 ≤ 𝑘 ≤ 𝑞. In that case, for SVM, LR, NB and MNB, as 

shown in Fig.2.6, classifying 𝑞 queries at once can be expressed as  

 

 𝐶𝑀(𝑆) = [𝑀 × 𝑆]1≤𝑗≤𝑐,1≤𝑘≤𝑞 
𝑎𝑟𝑔𝑚𝑎𝑥

                               (2.21)   
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Similarly, for the DNN (2.20) can be written as: 

 

𝐶𝑀(𝑆) = ∏ (𝑓𝑖(𝑀𝑖 × 𝑆𝑖))𝑙
𝑖=0                                (2.22) 

 

 

2.4. Cryptographic primitives 

In this section we give introduce some cryptographic primitives, definitions concepts and 

theorems that will be used in our schemes. 

In order to achieve data privacy, in our research we are interested and deal only with 

cryptographic techniques, mainly due to their accuracy and efficiency. Those techniques are 

based on secure Two-Party-Computation (2PC), somewhat homomorphic encryption (allows 

limited number of mathematical and/or Boolean operations on ciphertexts), oblivious transfer 

(OT), private information retrieval (PIR), etc. The pioneering works of these techniques are 

Yao’s circuits [47], ElGamal’s [48] public crypto-system that supports additive homomorphic 

properties, Pailler’s [49] crypto-system that besides the additive homomorphic property also 

allows a multiplication with a constant, the Goldwasser-Micali scheme [50] that enables secure 

XOR operations between two encrypted bits, etc. The secure multi-party computation (MPC) 

given in [51-52] is a generalization of 2PC to more than two parties. MPC however suffers 

from computation and communication cost, making it impractical for many real-case scenarios 

[53]. 

Somewhat homomorphic encryption (SWHE) schemes allow only a limited number of 

homomorphic additions and multiplications on the ciphertexts. Gentry’s seminal work of 

[54], paved the way for the Fully Homomorphic Encryption schemes (FHE), which allows 

arbitrary number of additions and multiplications on the ciphertexts. This is done by 

introducing the bootstrapping (homomorphic re-encryption) technique applied on SWHE 

schemes. Further improvements of [54] were seen in [55-57], which made FHE suitable for 

practical applications, hence resulted in the development of actual libraries such as IBM’s 

HElib [31] based on the BGV scheme from [55] and Microsoft’s SEAL [59] based on both 

the SWHE FV presented scheme in [56] and some characteristics of the BGV scheme.  



28 
 

 

2.4.1. Public Somewhat Homomorphic Encryption schemes 

Homomorphic encryption (HE) schemes allow for certain arithmetic or Boolean operations 

to be evaluated (done) over the ciphertexts without decrypting them (while the ciphertexts 

are still encrypted) [49], [54], [56], [57], [59]. So far, the strongest form of HE are Fully HE 

(FHE) schemes which allow unlimited numbers of homomorphic additions and 

multiplications over the ciphertexts. This is due to the computationally expensive technique 

known as bootstrapping (homomorphic evaluation of the decryption circuit), which as an 

output gives a re-encrypted ciphertext over which new homomorphic operations can be done. 

The first FHE scheme was proposed in 2009 [54], and over the years several others would 

follow [59]. All of the recent FHE scheme are based on the assumption of the hardness of 

Decision-RLWE (Ring Learning With Errors, Section IX), known to be resistant to quantum 

computer attacks [57], [59]. While the security of Somewhat HE (SWHE) schemes is also 

based on Decision-RLWE, they are a weaker variant of FHE in terms that they allow only a 

limited number of homomorphic multiplications (known as the circuit depth), but in the 

process they avoid the costly bootstrapping operation [56], [59]. However, in most of the real 

case scenarios, the circuit depth is known in advance, which allows for the encryption 

parameters to be set in a way that no bootstrapping will be needed. This makes SWHE an 

ideal choice over FHE. The plaintexts and the ciphertexts in FHE and SWHE schemes are 

polynomial rings with modulus 𝑋𝑁 + 1 and their coefficients are integers modulo 𝑡 and 𝑞, 

respectively, s.t. q ≫ 𝑡. Thus, plaintexts belong to the ring 𝑅𝑡 = 𝑍𝑡[𝑋]/(𝑋
𝑁 + 1) and 

ciphertexts to the ring 𝑅𝑞 = 𝑍𝑞[𝑋]/(𝑋
𝑁 + 1). In [57] it has been shown that if the 

polynomial modulus of degree 𝑁 can be expressed as a multiplication of 𝑁 irreducible 

polynomials of degree one, which in turn are automorphic to each other, then, according to 

the Chinese Remainder Theorem (CRT), we can encode 𝑁 integers in a single plaintext or 

ciphertext, one integer for each polynomial coefficient. A single homomorphic operation 

(addition or multiplication) over two ciphertexts encoded in such a way would result in 

simultaneous (parallel) component (index, slot) wise execution of the same operation over 

the encoded integers (Fig.2.7.a)-b)). This allows for a SIMD (Sıngle Instruction Multiple 

Data) fashion of homomorphically evaluating the ciphertexts, enabling massive efficiency 

improvements without extra cost. Furthermore, the automorphism of the irreducible 
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polynomials of degree one allows for the encoded integers to change their places, mainly 

through rotating (shifting) them to the right or left (Fig.2.7c)). SWHE schemes allow SIMD 

operations between a ciphertext and a plaintext as well, where the result is always a 

ciphertext. Throughout the paper we assume that all SWHE encodings-encryptions of the 

plaintexts are done to support SIMD operations. For encoding/encryption purposes plaintexts 

and ciphertexts are denoted by having “_𝑝” and “_𝑐” at the end of their names, respectively. 

Briefly, common functions of a typical public SWHE scheme are [56, 59]: 

 (𝒑𝒌, 𝒔𝒌) = 𝑲𝒆𝒚𝑮𝒆𝒏(𝝀,𝑵, 𝒕, 𝒒). Generates a pair of public key cryptosystem (i.e. a 

public and corresponding secret key) according to the security parameter 𝜆, polynomial 

modulus 𝑁 and coefficient moduluses 𝑡 and 𝑞 for the plaintext and ciphertext, 

respectively.  

 𝒎_𝒑 = 𝑬𝒏𝒄𝒐𝒅𝒆(𝒎_𝒗). SIMD encoding of an integer vector into a plaintext.  

 𝒎_𝒄 = 𝑬𝒏𝒄𝑬𝒏𝒄𝒓(𝒎_𝒗). SIMD Encoding and encryption of an integer vector into a 

ciphertext 

 𝑪_𝒄 = 𝑨_𝒄 + 𝑩_𝒄;  𝑪_𝒄 = 𝑨_𝒄 + 𝑩_𝒑. SIMD addition of a ciphertext with another 

ciphertext or plaintext (Fig. 4a). The result is always a ciphertext.  

 𝑪_𝒄 = 𝑨_𝒄 × 𝑩_𝒄;  𝑪_𝒄 = 𝑨_𝒄 × 𝑩_𝒑. SIMD multiplication of a ciphertext with 

another ciphertext or plaintext (Fig.2.7b). The result is always a ciphertext. 

 𝑩_𝒄 = 𝑹𝒐𝒕𝒂𝒕𝒆(𝑨_𝒄, 𝑹). Rotating a ciphertext for 𝑅 slots (indexes). If 𝑅 > 0 rotations 

are done to the right, otherwise to the left (Fig.2.7c)). 

 𝒎_𝒗=𝑫𝒆𝒄𝒐𝒅𝒆(𝒎_𝒑); Decoding a plaintext into an integer vector 

 𝒎_𝒗=𝑫𝒆𝒄𝒓𝑫𝒆𝒄(𝒎_𝒄): Decrypting then decoding a ciphertext into an integer vector 

 

 

Fig.2.7.Illustration of SWHE SIMD a) addition, b) multiplication and c) Rotation for 2 slots 

Let 𝐴_𝑣 = {𝑎1, … , 𝑎𝑁} = {(𝑎𝑖)𝑖=1
𝑁 },  𝐵_𝑣 = {𝑏1, … , 𝑏𝑁} = {(𝑏𝑖)𝑖=1

𝑁 } be integer vectors and 

their corresponding SIMD encoded&encrypted ciphertexts 𝐵_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐴_𝑣) and  
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𝐵_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐵_𝑣), respectively. Let 𝑅_𝑣 = {𝑅1, … , 𝑅𝑁} = {(𝑅𝑖)𝑖=1
𝑁 } and  

ℎ_𝑣 = {ℎ1, … , ℎ𝑁} = {{(ℎ𝑖)𝑖=1
𝑁 }} be random integer vectors s.t. 𝑅𝑖 > 0, |ℎ𝑖| < 𝑅𝑖 for  

1 ≤ 𝑖 ≤ 𝑁, and let 𝑅_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑅_𝑣), ℎ_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(ℎ_𝑣) be their respective SIMD 

encoding into plaintexts. Then 𝐶_𝑐 = ((𝐴_𝑐 − 𝐵_𝑐) × 𝑅_𝑝) + ℎ_𝑝 is the SIMD secure 

comparison of the index-wise elements of 𝐴_𝑣 and 𝐵_𝑣, firstly proposed in [18] and also 

elaborated in Chapter 6.3.4.  Namely, let 𝐶_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝐶𝑐) = {𝑐1, … , 𝑐𝑁} = {(𝑐𝑖)𝑖=1
𝑁 } =

{(𝑐𝑖 = (𝑎𝑖 − 𝑏𝑖) × 𝑅𝑖 + ℎ𝑖𝑖)𝑖=1
𝑁
}, if 𝑐𝑖 = (𝑎𝑖 − 𝑏𝑖) × 𝑅𝑖 + ℎ𝑖 > 0 then 𝑎𝑖 > 𝑏𝑖, otherwise 

𝑎𝑖 < 𝑏𝑖 for 1 ≤ 𝑖 ≤ 𝑁. 

 

2.4.2. Security definitions, concepts and theorems 

Definition 1: Decision-LWE: for a security parameter 𝜆, let we sample 𝑠 ← 𝑈𝑞
𝑚×1, 𝑎 ←

𝑈𝑞
𝑛×𝑚,  𝑒 ← 𝜒𝑞

𝑛×1, 𝑐 ← 𝑈𝑞
𝑛×1, where 𝑈 is the uniform distribution and 𝜒 is the discrete 

Gaussian distribution. Decision-LWE is the problem to distinguish between (𝑎, 𝑎 · 𝑠 + 𝑒) 

and (a, c). [56, 57]. 

 

Definition 2: Decision-RLWE: Generalizing LWE for rings [56, 57]. 

 

Assumption 1: Hardness of Decision-RLWE: Decision-RLWE is assumed to be a hard and 

resilient problem even for an adversary with a quantum computer [56, 57]. 

 

Semantic security of the RLWE schemes: Due to its probabilistic encryption, RLWE based 

schemes offer semantic security, i.e. for ciphertexts 𝑚0_𝑐 and 𝑚1_𝑐 that encrypt plaintexts 

𝑚0_𝑝 and 𝑚1_𝑝, respectively, an adversary cannot distinguish which ciphertext belongs to 

which plaintext [60]. 

 

Definition 2.2: Secure Multi-Party Computation (SMC) under the semi-honest model 

for deterministic functions:  Let we have 𝑝 parties, 𝑃1, … , 𝑃𝑝, with the corresponding private 

inputs 𝑥1, … , 𝑥𝑝 and let 𝑥̅ = (𝑥1, . . , 𝑥𝑝). With a certain security parameter 𝜆 let them execute 
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protocol Π at the end of which each 𝑃𝑖 gets the corresponding output 𝑂𝑃𝑖
Π (𝜆, 𝑥̅) for 1 ≤ 𝑖 ≤

𝑝, thus the global output is 𝑂𝛱 = {(𝑂𝑃𝑖
𝛱 (𝜆, 𝑥̅))

𝑖=1

𝑝

 }. Let the view of 𝑃𝑖 be  

𝑉𝑃𝑖
𝛱(𝜆, 𝑥̅) = {(𝑚𝑗

𝑃𝑖)
𝑗=1

𝑡

}, where 𝑚𝑗
𝑃𝑖 are the messages that 𝑃𝑖 receives while executing 𝛱. We 

say that 𝛱 is a secure MPC protocol under the semi-honest model if there exists a simulator 

(function) s.t. 𝑆𝑃𝑖
𝛱(𝜆, 𝑥𝑖 , 𝑂𝑃𝑖

𝛱 (𝜆, 𝑥̅)) ≅𝑐 𝑉𝑃𝑖
𝛱(𝜆, 𝑥̅), where ≅𝑐 stands for computational 

indistinguishability against a probabilistic polynomial time adversary [60].  

 

Theorem 2.1: Modular Sequential Composition Theorem: Let 𝛱 be a protocol that 

sequentially calls 𝛱1, … , 𝛱𝛱. If 𝛱1, … , 𝛱𝛱 are SMPC protocols under the semi-honest model, 

then 𝛱 is also. 

Proof: Given in [60]            ∎ 
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Chapter 3 

 

RELATED WORK AND THE STATE-

OF-THE-ART 

 

In this Chapter we provide an overview of the related research related to secure feature 

selection, secure ML training and secure ML classifications 

 

3.1. Secure feature selection 

Early secure feature selection schemes rely mostly on the secure sum protocol [22-26] as 

their building block. In secure sum 𝑛 participants, denoted as 𝑃1, … 𝑃𝑛, securely compute the 

sum of their corresponding private integer inputs, 𝑖1, … 𝑖𝑛, assuming an existence of a ring 

network topology between them, Without loss of generality, the first participants adds a 

random number 𝑅 to his input and passes it to the second one, which in turn adds his private 

input to the received sum and passes the result to the third participants, and so on, until the 

first participant receives the randomized sum (𝑅 + ∑ 𝑖𝑖
𝑛
𝑖=1 ) , subtracts the random R from it 

and broadcasts the result to all the other participants. In this sense, while executing the 

protocol, 𝑃𝑡 receives (𝑅 + ∑ 𝑖𝑖
𝑡−1
𝑖=1 ) from 𝑃𝑡−1 and after adding its private input transmits 

(𝑅 + ∑ 𝑖𝑖
𝑡
𝑖=1 ) to 𝑃𝑡+1, where 1 ≤ 𝑡 ≤ 𝑛. This makes the communication cost of secure sum 

to be 𝑛 ∙ ∑ 𝑓 transmissions and ∑𝑓 broadcasts, where ∑𝑓 is the total number of feature 

values for which we have to find the sum over 𝑛 participants. If 𝑃𝑡−1 and 𝑃𝑡+1 collude, they 

can retrieve 𝑃𝑡’s private input 𝑖𝑡 by subtracting𝑃𝑡’s output and input, thus  
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(𝑅 + ∑ 𝑖𝑖
𝑡
𝑖=1 ) − (𝑅 + ∑ 𝑖𝑖

𝑡−1
𝑖=1 ) = 𝑖𝑡. Also, an eavesdropper that can listen to all 

communicating channels can retrieve the private input of all the participants. Another 

drawback of secure sum is that it suffers from high communication overhead when f is large, 

which is the case with text classification datasets that are known to have hundreds of 

thousands of features (words, tokens), thus making secure sum highly impractical. 

Furthermore, secure sum doesn’t work in the secure two party computation (2PC) scenarios.          

Among the first schemes to address the problem of secure feature selection is [22]. It uses 

the secure sum protocol to calculate features’ misclassification gain [22]. To avoid the 

collision, based on an assumption of the number of colluding participants, they came up with 

a metric that assigns a certain degree of collusion probability to participants and propose for 

each of them to operate in a safe (non-colluding) neighborhood according to a certain 

threshold. However, such a solution does not guarantee that a collusion will indeed be 

avoided. Also, it increases the already high communication overhead. In [23] they use the 

Harsanyi-Farrand-Chang [23] metric for feature selection which, for each feature value, 

needs a few invocations of secure sum to find intermediate metrics such as the correlation or 

the covariance, without addressing any of the drawbacks of secure sum. In [24] they test 

several metrics for feature selection and in the process provide a trade-off between the 

privacy and the accuracy of the trained model. In [25] each participant splits his private input 

into 𝑛 shares such that their sum is equal to the participant’s private input and sends one share 

to each of the other participants. Afterwards all of the participants locally sum up the received 

shares from others and invoke secure sum to find the final result. While this solves the 

collusion attack, it introduces an overhead of 𝑛 ∙ (𝑛 − 1) transmissions to the high 

communication cost of a single secure sum invocation. After giving a brief literature review 

on the topic, [26] proposes ides for a few secure feature selection schemes without engaging 

into implementation details. Among others, [26] inherits all of the drawbacks of secure sum 

since it is supposed to use it as its main building block. None of [22-26] solved the secure 

sum’s shortcomings of an eavesdropper that can intercept all of the communications, of the 

inability to deal with 2PC, and of the high communication overhead, especially knowing that 

the metrics that they propose need several invocation of secure sum for a single feature 

values. In this context, [22-26] use a total of several hundreds of thousands of rounds 

(interactions) compared to only few that our protocol uses to reach the same goal. 
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Table 3.1. Properties among different schemes dealing with secure feature selection 

                  Schemes 

Properties 
[22] [23] [24] [25] [26] [27] [28] Our 

Privacy of the input features 
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ 

Privacy of the input features’ values  
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Security and privacy of 

intermediate results  
✓✖ ✓✖ ✓✖ ✓✖ ✓✖ ✓ ✓✖ ✓ 

Privacy for the output (selec. feat.)  ✖ ✖ ✖ ✖ ✖ ✖ ✓ ✓✖ 

Data Confidentiality, Integrity and 

Authenticity. Protocol consistency 

(blockchain) for interactions 
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ 

Computing on plain in edge to 

avoid costly homomorphic operat. 
✓ ✓ ✓ ✓ ✓ ✓ ✖ ✓ 

Deals with more than two Edge 

Dataset Owners (EDOs) 
✓ ✓ ✓ ✓ ✓ ✖ ✖ ✓ 

Fault tolerance (byzantine failure) 

of up to 𝑛 − 3 out of 𝑛 EDO  
✓✖ ✖ ✖ ✓ ✖ NA ✓✖ ✓ 

Allows up to 𝑛 − 2 out of 𝑛 EDO 

collisions 
✓✖ ✖ ✖ ✓ ✖ NA ✓✖ ✓ 

Uses a centralized server(s) to avoid 

communication overhead  
✖ ✖ ✖ ✖ ✖ NA ✓ ✓ 

Avoids Using multiple (more than 

two) semi-honest non colluding 

servers  
✓ ✓ ✓ ✓ ✓ ✓ ✖ ✓ 

Resistant to eavesdropping  
✖ ✖ ✖ ✖ ✖ ✓ ✓ ✓ 

Enables 2PC (i.e. 2 DOs)  
✖ ✖ ✖ ✖ ✖ ✓ ✓✖ ✖ 

Applicable to the post quantum 

world (resistant to quantum 

computers) 
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ 

cost does not dependent on the total 

number of records among n EDOs 
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ 

Multi-label multi-output EDOs 
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ 

Deals with both horizontally and 

vertically partitioned datasets 
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ 

 

 

Avoiding secure sum, [27] uses Paillier’s additive homomorphic encryption scheme [49] 

to introduce a 4 round 2PC (relatively high for a 2PC in secure ML classification scenarios) 

and doesn’t address the scenario with multiple datasets. The secure feature selection scheme 
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in [28] uses secret sharing for multiple dataset owners to share their data among three non-

colluding servers (3PC), a scenario which is not easily feasible in reality, especial knowing 

that even if two of them collude can reveal the private dataset input values. Furthermore, it 

has a high interaction rate and knowing that each feature value is processed independently, 

makes it have a high communication overhead. Depending on to whom the trained model is 

shown, [28] can also deal with 2 dataset owners when the owner of the trained model is not 

one of the dataset owners, which rarely happens in practice. 

None of the above schemes addresses the issues of authenticity, integrity or protocol 

flow consistency, i.e. blockchain technology. Table 3.1 summarizes security, privacy and 

efficiency of properties among several schemes. 

 

3.2. Secure machine learning training 

The first scheme to address the issue of privacy preserving (PP) NB training is due to 

Kantarcıoğlu et.al. in [61]. As it is the case with almost all of the earlier schemes, it exclusively 

deals with training and doesn’t address the privacy preserving classification problem. In order 

to find the class and the joint class-value frequencies (counts) among all dataset owners, it uses 

the secure integer sum protocol explained in Chapter 3.1, thus inheriting all of the 

disadvantages of it. In the same paper, those attacks were avoided by splitting each private 

integer into integer shares (such that when summed up they give the private value) and each 

share then follows a different route while executing the secure sum protocol. However, both of 

them didn’t address the privacy of the trained model and work only with three and more dataset 

owners. In [62] the same group uses the secure 𝑙𝑛𝑥 algorithm proposed in [63] for training 

purposes, but it has a high communication cost. Those drawbacks were partially removed in 

[64] by utilizing a version of the additive homomorphic ElGamal scheme, where owners 

encrypt and send their data to be aggregated by a central server, removing in the process the 

communication overhead of the decentralized environments of the previous ones, but the final 

trained model is leaked again. Yi et.al [65] use the Paillier scheme, the secure 𝑙𝑛𝑥 algorithm of 

[63] and two non-colliding servers to hide the final trained model, however, it re-trains the 

model for every query, which makes it rather inefficient. 
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Table 3.2. Properties among different schemes dealing with secure training of NB models 

Schemes 

Properties 

[24] 

(sec 

sum) 

[24] 

(sec 

share) 

[25] 

(sec 

log) 

[32] [21] [33] [23] [36] Our 

Multiple EDOs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Flexible (less than three 

EDO) during training 
✖ ✖ ✓ ✓ ✖ ✓ ✓ ✓ ✓ 

Training comput. cost not 

dependent on dataset size 
✓ ✓ ✓ ✓ ✖ ✖ ✖ ✖ ✓ 

Privacy for all Dataset(s) 

paramet. during training 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Total trained model 

security during training 
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ 

Resistant to Collusion 

attack between two or 

more EDOs 
✖ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Resistant to 

eavesdropping 
✖ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Central server(s) while 

training (efficient comm.) 
✖ ✖ ✖ ✓ ✓ ✓ ✓ ✓ ✓ 

Avoiding Unnecessary 

retraining for each query 
✓ ✓ ✓ ✓ ✖ ✓ ✓ ✓ ✓ 

Multiclass datasets ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✖ ✓ 

Avoids multiple public 

key pairs or proxy re-

encryptions 
✓ ✓ ✓ ✓ ✓ ✓ ✖ ✖ ✖ 

The scheme is resistant to 

quantum computers 
✖ ✖ ✖ ✖ ✖ ✓ ✓ ✓ ✓ 

Multi-label multi-output 

EDOs 
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ 

Deals with both 

horizontally and vertically 

partitioned datasets 
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ 

 

Those by Liu et al. in [66] and [67] are among some of the rare papers to address the issues 

of both training and classification in privacy preserving fashion of Naïve Bayes models. While 

[66] suffers from being interactive during the classification, [67] has only one round and hence 

a better communication efficiency. However, they both suffer from the costly process of proxy 

re-encryptions, bootstrapping and the lack of local pre-processing in the plain at the owners’ 

location during the training phase, which hurts the overall performances. Also, [67] suffers 

from doing unnecessary costly homomorphic multiplications due to not using logs of 
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probabilities (which convert products into sums as shown in 3.1). Li et al. [68] has similar 

properties to [67], however it lacks the details and experimentation results. 

Table 3.2 summarizes security, privacy and efficiency of properties among several schemes 

which deal with secure training of NB or MNB models. 

 

3.3. Secure machine learning classifications 

In the abundance of privacy preserving training, the lack of having a privacy preserving 

classification protocols was realized by Bost et. al. in [53]. They use the additive homomorphic 

properties of Paillier and a secure argmax protocol (which in turn uses a multi-round secure 

comparison protocol with two public encryption schemes) to perform secure classification. 

Without addressing the training part, Park et. al [69] also dealt with the classification problem, 

by proposing a one-round scheme to overcome the multi-round communication overhead of 

[53]; but in the process it uses heavy inefficient FHE computations. Li et.al. [70] uses 

Goldwasser-Micali XOR homomorphic encryption scheme [50] and 3 Paillier public keys as 

well as several PIR invocations to get the needed class and value-class probabilities from the 

server and finally uses the secure argmax protocol of [53] to find the final classification. Gao 

et al. [71] uses parallel OT invocations and the Paillier scheme’s additive homomorphic 

properties to find the class and value-class probabilities and then uses the secure comparison 

protocol of [15] to get the final result; however, it works with only two classes, unlike the other 

protocols which enable multi-class classification. While [66] suffers from being interactive 

during the classification, [67] and [72] suffer from doing unnecessary costly homomorphic 

multiplications due to not using logs of probabilities (which convert products into sums as 

shown in 3.1). Li et al. [68] has similar properties to [67], however it lacks the implementation 

details and experimentation results. 

Table 3.3 summarizes security, privacy and efficiency properties among several schemes 

which deal with secure classifications for different ML classifiers. 
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Table 3.3. Comparisons of properties among different secure and private classification schemes 

 

✓=presence; ✓✖=partial presence; ✖ = absence; NR = Not reported 

 

 

SCHEMES 
PROPERTIES   

[53] [66] [67] [68] [69] [73] [74] [75] [71] [72] [76] [77] [50] [51] Our 

Trained model security (privacy)  ✓ ✓ ✓✖ ✓✖ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 

Query security (privacy ✓ ✓ ✓ ✓ ✓ ✖ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Classification result privacy  ✓ ✓ ✖ ✓ ✓ ✓✖ ✖ ✓ ✓ ✓ ✓✖ ✓ ✓ ✓ ✓ 

No loss of accuracy  ✓ NR ✖ NR ✓ NR ✓ ✓ ✓ ✓ NR NR ✖ ✓ ✓ 

Flexibility  (e.g. server vs user centric) ✖ ✖ ✖ ✖ ✓ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ 

Avoiding Unnecessary retraining for 
each query 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Non-interactive classification (exactly 
one round) 

✖ ✖ ✓ ✓ ✓ ✖ ✓ ✖ ✖ ✖ ✓ ✖ ✖ ✖ ✓ 

Resistant to STC attack [34]  ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ ✖ ✖ ✖ ✖ ✖ ✓ 

Simultaneous classification (packing) of 
multiple queries for higher throughput 

✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ ✖ ✓ ✖ ✖ ✓ 

Multiclass algorithms  ✓ ✓ ✖ ✓ ✓ ✓ ✖ ✓ ✖ ✓ ✓ ✓ ✓ ✓ ✓ 

Avoids multiple public key pairs or proxy 
re-encryptions 

✖ ✖ ✖ ✖ ✓ ✓ ✓ ✖ ✖ ✓ ✓ ✓ ✓ ✓ ✓ 

Uses logs of probabilities instead of 
plain probab. avoids costlier multiplicat. 
in favor of additions during NB) 

✓ ✖ ✖ ✖ ✓ ✖ ✖ ✓ ✓ ✖ ✓ ✓ ✖ ✖ ✓ 

Deals with malicious users during 
classification 

✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖  ✖ ✖  ✖ ✖ ✖ ✓ 

The scheme is resistant to quantum 
computers 

✓✖ ✓ ✓ ✓ ✓ ✓ ✓ ✖ ✖ ✓ ✓ ✓ ✓ ✓ ✓ 

Avoids multiple non-colluding servers 
(i.e. has exactly only one such server) 
during classification 

✓ ✖ ✖ ✖ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✖ ✓ ✓ ✓✖ 
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Chapter 4 

 

SECURE AND PRIVATE FEATURE 

SELECTION 

 

Definition 4.1: Feature selection is the process of reducing the dimensions of a feature set 

𝐹 of a labeled dataset DS into 𝑆𝐹 according to an algorithm 𝒜, thus 𝑆𝐹 = 𝒜(DS, 𝐹). 

In this chapter, we introduce the security, privacy and efficiency goals (requirements) for 

our secure feature selection protocols. We proceed with the constituents (participants) of our 

secure feature selection schemes, their adversary models. Also, we provide a brief flow of 

the protocols, which will be elaborated in more details in the later subchapters of this chapter. 

We conclude the chapter by experimentally evaluating and comparing our schemes with the 

related research, which show that our schemes outperform the few state of the art ones for 

several times in terms of computation and communication costs. We conclude the chapter by 

proving the security of our protocols under the semi-honest model. All the necessary 

background information and notations for this chapter was given in Chapter 2. 

 

4.1. Introduction 

The security and privacy requirements for our secure feature protocols are:  

 Privacy of the input features. We achieve this by randomly permuting the hashes of 

the input values (words, tokens) 

 Privacy of the input features’ values (counts, frequencies, etc.) 
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 Security and privacy of intermediate results. We keep the intermediate results of 

all of our protocols secure and private since they might be used as a trapdoor for total 

or partial leakage of the input or the output of the corresponding protocol.   

 Partial privacy for the output of the top m selected features. The output cannot be 

totally private since it is needed as an entry point (input) for the secure classification 

stage when clients prepare their queries in accordance to the selected features. 

However, the selected features can be kept private for the secure training protocol. 

 Have other properties related to secure feature selection mentioned in Table 3.1 

 

4.2. System architecture, adversary models and protocol flows 

Our participants for the secure feature selection protocols are: 1) EDO (The Edge Dataset 

Owner) - We have n such EDOs in our system, denoted as EDO𝑘, each owns a dataset DS𝑘, 

where 1 ≤ 𝑘 ≤ 𝑛, that they are willing to use for training ML models in a secure and private 

fashion. 2) TEAS (The Edge Aggregating Server): a server used to do the bulk of the 

proposed protocols’ homomorphic computation. 3) E2DS (The Edge Encryption Decryption 

Server): It’s the only participant in the system that has a pair of public keys with SWHE 

properties (Chapter 2.4). All the data that are homomorphically evaluated in our protocols 

are encrypted using E2DS’ public key, thus it’s the only one that can decrypt them. All of 

them are illustrated in Fig.4.1. 

 

Adversary models: All the participants are assumed to be in the passive semi-honest (honest 

but curious) model, which means that they follow the protocol but on the background they 

try to infer some private data which they are not supposed to. A formal definition of the semi-

honest model is given in Chapter 2.4.1. We assume that TEAS and E2DS don’t collude. Out 

of 𝑛 EDOs, our environment setting allows for up to 𝑛 − 3 EDO failures and up to 𝑛 − 2 

collusions without jeopardizing the privacy of the remaining and non-colluding EDOs . The 

motivations for participant to behave in the described manners are given in [8-18]. 

 

Protocol flows at-a-glance: Each interaction in each protocol is marked by the interacting 

participant adding its own block with the corresponding data into the blockchain (Fig.4.2). 

All the participants have a pair of public/secret keys used for signing their corresponding 
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blocks of the blockchain and for secure communication. Additionally, E2DS has a pair of 

public/secret key with SWHE properties (Chapter 2.4.1). All of these key pairs form the 

KeySet set. While we designed our protocols having in mind primarily binary textual datasets, 

they are also applicable to non-textual ones and can be easily generalized to multi-class 

scenarios. This choice was done for simplicity and benchmark (comparison) purposes with 

the related research. 

 

GRPV (Generate Random Permutation Vector): it is a secure multi-party computation 

(SMC) protocol through which EDOs agree on a random permutation of their hash bits of 

their private words, needed for the secure feature selection protocol.  

 

 

Fig. 4.1. Protocol flows for secure feature selection (secFS-S1 and secF-S2) 
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Fig.4.2. Illustration of generating the blocks of the vertically partitioned distributed public ledger (blockchain) while executing 

protocols secFS-S1, secFS-S2 and secT. 
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secFS: (secure feature selection – stage 1 and 2): Illustrated in Fig.4.1. Simultaneously, all 

of the 𝑛 EDOs find 𝑊𝑘, the set of hashes of the local unique words (features) of their local 

textual datasets, where 1 ≤ 𝑘 ≤ 𝑛, ❶ and send them to TEAS ①. TEAS finds their union 

(the global set of hashes of unique words) 𝑊 = ⋃ [𝐷𝑒𝑐𝑠𝑘𝑇(𝑊𝑘)]
𝑛
𝑘=1 ❷ and broadcasts it to 

all EDOs ②. Using each word of 𝑊 as an index entry, EDOs simultaneously construct the 

corresponding ciphertexts of the word counts (appearances) in ham and spam documents in 

the local dataset, i.e. ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘, 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘, then they construct the replicated 

ciphertexts of the number of ham and spam documents in the local datasets, 

ℎ𝑎𝑚𝑀_𝑐𝑘, 𝑠𝑝𝑎𝑚𝑀_𝑐𝑘, ❸ and send them to TEAS ③. TEAS finds the global number of 

ham and spam documents, as well as the global ham and spam counts for each word of 𝑊 by 

homomorphically summing up the locally constructed ciphertexts by EDOs, i.e. 

ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐𝑐 = ∑ (ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐𝑐𝑘)
𝑛
𝑘=1 , ℎ𝑎𝑚𝑀𝑐 = ∑ (ℎ𝑎𝑚𝑀𝑐𝑘)

𝑛
𝑘=1 , 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 =

 ∑ (𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)
𝑛
𝑘=1  and 𝑠𝑝𝑎𝑚𝑀_𝑐 = ∑ (𝑠𝑝𝑎𝑚𝑀_𝑐𝑘)

𝑛
𝑘=1 , then proceeds to find the 

terms needed to calculate the information gains of each word, randomizes those terms ❹ 

and sends them to E2DS ④. E2DS decrypts those randomized terms, uses them to compute 

the vector of the randomized logarithmic terms of the information gains for each word, 

encrypts the randomized logarithmic terms ❺ and sends them back to TEAS ⑤. TEAS 

homomorphically removes the randomizations of the logarithmic terms and finds the 

information gain data for each word in the corresponding index (𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐), adds some 

randomizations to get 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 and sends it E2DS ❻ while broadcasts the 

randomizing numbers to each EDO ⑥. E2DS decrypts 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 to get the 

randomized integer vector of information gains 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 ❼ and broadcasts it to 

the EDOs ⑦. Each of the EDOs removes the randomization from  𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 to get 

𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 vector which at the corresponding indexes contains the information gain data 

for each of the words and chooses the top 𝑚 words with the highest information gain as the 

selected features’ set 𝑆𝐹, thus 𝑆𝐹 = {𝑤1, …𝑤𝑚}, where 𝑤1, …𝑤𝑚 for performance reasons 

during the classification stage are sorted according to their hash values  ❽.  
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4.3. Secure feature selection for binary datasets 

GRPV (Generate Random Permutation Vector): Due to our strict security and privacy 

requirements (elaborated in Section I) of keeping private both the words and their counts 

(frequencies), simple hashing of the words will not help. Since the EDO records (emails, 

documents) are in a natural spoken language (say English), by hashing all of dictionary words 

of that language we can relatively easy apply the dictionary attack to find matches with the 

word hashes of the EDOs’ records. Especially this is problematic for EDOs that wish to use 

a single record (mail) for training purposes (a scenario which we don’t exclude), since the 

dictionary attack would reveal much of the record’s (mail’s) content. In order to guard against 

the dictionary attack, EDOs permute the hash bits of each word according to a random 

permutation upon which all EDOs agree. To obtain this random permutation, all of the EDOs 

engage in a secure multi-party computation (SMC) protocol given in Algorithm 4.1. 

 

PROTOCOL 4.1: GRPV (Generate Random Permutation Vector)  

INPUT: 𝒉𝒂𝒔𝒉𝑩𝒊𝒕𝑺𝒊𝒛𝒆 

𝒉𝒂𝒔𝒉𝑩𝒊𝒕𝑺𝒊𝒛𝒆: the size of the hash digest in bits 

OUTPUT: 𝒉𝒂𝒔𝒉𝑩𝒊𝒕𝑷𝒆𝒓𝒎𝑽𝒆𝒄_𝒗 

 𝒉𝒂𝒔𝒉𝑩𝒊𝒕𝑷𝒆𝒓𝒎𝑽𝒆𝒄_𝒗: the vector used to permute bit hashes at EDOs 

PHASE I - EDOs: 

1  for 𝑘 = 1 to 𝑛 do 

2       𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑘 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑒𝑐𝑡𝑜𝑟() 
3       𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑘 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑘) 
4       send 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑘  to TEAS 

Phase II – TEAS: 

5   𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑇 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑒𝑐𝑡𝑜𝑟() 
6   𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑇 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑇) 
7   𝑟𝑛𝑑𝑉𝑒𝑐_𝑐 = ∑  𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑘

𝑘
𝑖=1 + 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑇 

8   send 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐 to E2DS 

9   for 𝑘 = 1 to 𝑛 do 

10    send Enc𝑝𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑇) to EDO𝑘 

Phase III-E2DS 

11 𝑟𝑛𝑑𝑉𝑒𝑐_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝑉𝑒𝑐_𝑐) 
12 for 𝑘 = 1 to 𝑛 do 

13    send Enc𝑝𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣) to EDO𝑘  

Phase IV-EDOs: 

14 for 𝑘 = 1 to 𝑛 do  

15     𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣 = 𝐷𝑒𝑐𝑠𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣) − 𝐷𝑒𝑐𝑠𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑇) 

16     𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣 = 𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣 % ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑆𝑖𝑧𝑒 

17     ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣 = 𝑐𝑎𝑙𝑐𝑃𝑒𝑟𝑚𝑉𝑒𝑐(𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣) 
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GRPV: each of the EDOs locally constructs a random integer vector of ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑆𝑖𝑧𝑒 

elements, encodes and encrypts it and sends it to TEAS (lines 1-4). TEAS homomorphically 

adds them up, adds its own random terms, send its random terms to each EDO by encrypting 

them with EDOs’ corresponding public keys and sends the sums of the random terms to be 

decrypted at E2DS (lines 5-10). E2DS decrypts the randomized sums and sends them to each 

EDO using their corresponding public keys (lines 11-13). EDOs decrypt and subtract the data 

obtained by E2DS and TEAS and apply the modulo operator with modulus 

of ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑆𝑖𝑧𝑒 in component (index)-wise manner to each of them to get the random 

ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑆𝑖𝑧𝑒 numbers placed in the 𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣, which are solely generated by EDOs (lines 

15-16). 𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣 is than used by the 𝑐𝑎𝑙𝑐𝑃𝑒𝑟𝑚𝑉𝑒𝑐(∙) function to generate the 

ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣 by which the EDOs do the permutations of the hash bits of their words 

in the proceeding protocols. E.g. if in slot (index) 0 of  𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣 we have the value of 179, 

that means that the 0th bit of the original hash will be the 179th in the permuted hash bits,. If 

in slot, say 7, of 𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣 we have again the value of 179, which obviously is already used 

in the permuted hash bits, than we try the next slot to the right up until we find an empty 

place.  

 

secFS - Secure Feature selection (Algorithm 4.2 and 4.3 - stage I and II) is done in two 

stages. At the first stage the union of all of the words among 𝑛 datasets is found and those 

that globally appears in less than 𝑣𝑎𝑙 documents from all the datasets are filtered out, while 

at the second stage the top 𝑚 words with the highest IG are selected. All of this is done under 

strict security and privacy requirements by 1) adding the corresponding block into the 

blockchain after each interaction (Fig.3) and 2) participants securely communicate with each 

other either by encrypting their data with E2DS public key with SIMD SWHE properties or 

by using the recipients public key generated for secure communication purposes. 

 

secFS – S1: In Phase I all of the EDOs do some pre-processing on their local datasets, locally 

find all of the unique word and permute their binary hashes according ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣, 

and send them to TEAS (lines1-4). In Phase II TEAS finds the global union of the permuted 

hashes of the words, 𝑊 = {𝜋𝐻(𝑤1), 𝜋(𝑤2),… , 𝜋(𝑤|𝑊|)}, and sends them to all EDOs (lines 

5-8). In Phase IIA each of the EDOs, using the permuted hashes of the words in 𝑊 as vector 
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entries (indexes), locally construct 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘  = {𝑁
(𝑘)(𝑤1),… ,𝑁

(𝑘)(𝑤|𝑊|)} =

{(𝑁(𝑘)(𝑤𝑖, 𝑐ℎ))
𝑖=1

|𝑊|

}, corresponding to EDO𝑘’s counts of words 𝑤1, … , 𝑤|𝑊| in the documents 

of the local dataset DS𝑘, where 1 ≤ 𝑘 ≤ 𝑛, and send this ciphertext to TEAS (lines 9-12). In 

Phase IIB TEAS encodes the replicated vector of 𝑁 integers whose value is 𝑣𝑎𝑙 (line 13), 

then for the needs of secure comparisons generates and encodes random vectors  

𝑅_𝑣 = {𝑅1, … , 𝑅|𝑊|} = {(𝑅𝑖)𝑖=1
𝑁 } and ℎ1_𝑣 = {ℎ11, … ℎ1|𝑊|} = {(ℎ1𝑖)𝑖=1

|𝑊|
} s.t. 𝑅𝑖 >

0, |ℎ1𝑖| < 𝑅𝑖 for 1 ≤ 𝑖 ≤ |𝑊| (see Chapter 2.4.1) and generates ℎ2_𝑣 = {ℎ21, … ℎ2|𝑊|} =

{(ℎ2𝑖)𝑖=1
𝑁 }  for randomizing the secure comparison (line13). Afterwards sums up all of the 

𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 to get 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐, which is an encryption of the vector of global counts 

of words appearing in documents, and performs the secure comparison proceeded with 

randomizations to get 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 (line 14). TEAS sends 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 to E2DS for 

decryption, while sending the randomization vector ℎ2_𝑣 to each EDO (lines 16-18). In Phase 

IIC E2DS decrypts 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐, which looks like 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣 = {((𝑁(𝑤𝑖) − 𝑣𝑎𝑙) ×

𝑅𝑖 + ℎ1,𝑖) + ℎ2,𝑖) )
𝒊=𝟏

|𝑾|

} (line 19), and sends it to each EDO (lines 19-22).  

Finally, in Phase IID each EDO removes the randomization by doing the subtraction 

𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣 − ℎ2_𝑣 to get the secure comparison results 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑣 = {((𝑁(𝑤𝑖) −

𝑣𝑎𝑙) × 𝑅𝑖 + ℎ1,𝑖 )𝑖=1
|𝑊|
} (line 24). The words 𝑤𝑖 for which the  corresponding  

((𝑁(𝑤𝑖) − 𝑣𝑎𝑙) × 𝑅𝑖 + ℎ1,𝑖 )𝑖=1
|𝑊|

 term is negative (i.e. they appear in less than 𝑣𝑎𝑙 global 

documents) are filtered out and are not part of the 𝑊𝐺𝑇ℎ𝑎𝑛𝑉 set which has |𝑊′| elements 

(words)  (line 25). 

 

secFS-S2: In Phase III, using each of the |𝑊′| words in 𝑊𝐺𝑇ℎ𝑎𝑛𝑉 as index entries, each 

EDO locally constructs vectors ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑣𝑘 = {(𝑁(𝑘)(𝑤𝑖, 𝑐ℎ))𝑖=1
|𝑊′|

}, 

𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑣𝑘 = {(𝑁
(𝑘)(𝑤𝑖, 𝑐𝑠))𝑖=1

|𝑊′|
}  as well as the replicated  

ℎ𝑎𝑚𝑀_𝑣𝑘 = {𝑁
(𝑘)(𝑐ℎ),… ,𝑁

(𝑘)(𝑐ℎ)} and 𝑠𝑝𝑎𝑚𝑀_𝑣𝑘 = {𝑁(𝑘)(𝑐𝑠)),… ,𝑁
(𝑘)(𝑐𝑠)}, 

containing the number of local ham and spam mails (documents), respectively, replicated for 

|𝑊′| times. 
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ALGORITHM 4.2: secFS-S1 (secure Feature Selection – Stage I) 

INPUT: 𝒏, {𝑫𝑺𝒌}𝒌=𝟏
𝒏 , 𝑲𝒆𝒚𝑺𝒆𝒕 = {(𝒑𝒌𝒌, 𝒔𝒌𝒌)𝒌=𝟏

𝒏 , (𝒑𝒌𝑻, 𝒔𝒌𝑻), (𝒑𝒌𝑬, 𝒔𝒌𝑬)}, (𝒑𝒌, 𝒔𝒌), 𝒗𝒂𝒍,  
𝒏: the number of EDOs 

{𝑫𝑺𝒌}𝒌=𝟏
𝒏 : the local datasets of EDOs 1 ≤ 𝑘 ≤ 𝑛   

𝑲𝒆𝒚𝑺𝒆𝒕: set of all of the participants’ public key pairs for blockchain and secure. communication  

(𝒑𝒌, 𝒔𝒌): key pairs of E2DS with SWHE properties 

OUTPUT: 𝒘𝒐𝒓𝒅𝒔𝑮𝑻𝒉𝒂𝒏𝑽_𝒗 

𝑾𝑮𝑻𝒉𝒂𝒏𝑽: the set of words with at least 𝑣𝑎𝑙 global document appearances  

PHASE I - EDOs: 

1 for 𝑘 =  1 to 𝑛 do 

2    𝑊𝑘  = 𝜋(𝐻(𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐷𝑆𝑘))) //permut. of hashes of unique words 

3    𝐵_1𝐷𝑂𝑘 = (𝑀𝑇(𝑊𝑘), 𝑇𝑆); 𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_1𝐷𝑂𝑘))                                                            

4    send (𝐸𝑛𝑐𝑝𝑘𝑇(𝑊𝑘), 𝐻(𝐵_1𝐷𝑂𝑘)) to TEAS  

PHASE II – TEAS 

5 𝑊 = ⋃ [𝐷𝑒𝑐𝑠𝑘𝑇(𝑊𝑘)]
𝑛
𝑘=1  //sorted 

6 𝐵_1𝑇 = (𝑀𝑇(⋃ 𝐻(𝐵_1𝐷𝑂𝑘)
𝑛
𝑘=1 ),𝑀𝑇(𝑊), 𝑇𝑆); 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_1𝑇))   

7 for 𝑘 =  1 to 𝑛 do  

8     send (En𝑐𝑝𝑘𝑘(𝑊), 𝐻(𝐵_1𝑇)) to EDO𝑘 

PHASE IIA – EDOs  

9 for 𝑘 =  1 to 𝑛 do 

10    𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘  = 𝑔𝑒𝑡𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡𝑠(𝐷𝑆𝑘 , 𝐷𝑒𝑐𝑠𝑘𝑘(𝑊)) 

11    𝐵_2𝐷𝑂𝑘 = (𝐻(𝐵_1𝐷𝑂𝑘), 𝐻(𝐵_1𝑇),𝑀𝑇(𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘), 𝑇𝑆); 𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘 (𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_2𝐷𝑂𝑘)) 

12    send (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘, 𝐻(𝐵_2𝐷𝑂𝑘)) to TEAS        

PHASE IIB – TEAS 

13 𝑣𝑎𝑙_𝑝 = 𝐸𝑛𝑐({𝑣𝑎𝑙, … , 𝑣𝑎𝑙});(𝑅_𝑣, ℎ1_𝑣, ℎ2_𝑣) = 𝑟𝑛𝑑𝑉𝑒𝑐𝑠𝑓𝑜𝑟𝐶𝑜𝑚𝑝();(𝑅_𝑝, ℎ_𝑝) =
𝐸𝑛𝑐𝑜𝑑𝑒(𝑅_𝑣, (ℎ1_𝑣 − ℎ2_𝑣))  
14 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 = ((∑ 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘

𝑛
𝑘=1 − 𝑣𝑎𝑙_𝑝) × 𝑅_𝑝) + ℎ_𝑝 

15 𝐵_2𝑇 = (𝐻(𝐵_1𝑇),𝑀𝑇(⋃ 𝐻(𝐵_2𝐷𝑂𝑘)
𝑛
𝑘=1 ),𝑀𝑇(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐, ℎ2_𝑣), 𝑇𝑆); 

𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_2𝑇)) 

16 send (𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐, 𝐻(𝐵_2𝑇)) to EDS  
17 for 𝑘 =  1 to 𝑛 do 

18    send (𝐸𝑛𝑐𝑝𝑘𝑘(ℎ2_𝑣), 𝐻(𝐵_2𝑇)) to EDO𝑘 

PHASE IIC – E2DS 

19 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 ) 
20 𝐵_1𝐸 = (𝐻(𝐵_2𝑇),𝑀𝑇(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣), 𝑇𝑆); 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_1𝐸)) 

21 for 𝑘 =  1 to 𝑛 do 

22    𝑠𝑒𝑛𝑑 (𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣), 𝐻(𝐵_1𝐸)) to EDO𝑘 

PHASE IID – EDOs 

23 for 𝑘 =  1 to 𝑛 do 

24    𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑣 = (𝐷𝑒𝑐𝑠𝑘𝑘(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣) − 𝐷𝑒𝑐𝑠𝑘𝑘(ℎ2_𝑣)) 

25    𝑊𝐺𝑇ℎ𝑎𝑛𝑉 = 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛𝑉𝑎𝑙(𝑊,𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑣) 
26    𝐵_3𝐷𝑂𝑘 =

(𝐻(𝐵_2𝐷𝑂𝑘), 𝐻(𝐵_2𝑇), 𝐻(𝐵_1𝐸),𝑀𝑇(𝑊𝐺𝑇ℎ𝑎𝑛𝑉), 𝑇𝑆);  𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_3𝐷𝑂𝑘)) 

       

 

After encoding and encrypting all of them they’re send to TEAS (lines 1-4). In Phase IV 

TEAS homomorphically aggregates (sums up) those vectors to get the global counts for each 

word to appear in ham and spam documents, as well as the global number of ham and spam 
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mails (lines 7-10). Then it finds 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐, 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐, 

𝑤𝑜𝑟𝑑𝑠𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐, ℎ𝑎𝑚𝑊𝑁𝑂𝑇𝑖𝑛𝐷𝑜𝑐_𝑐 and 𝑠𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝑖𝑛𝐷𝑜𝑐_𝑐 (lines 12-15, Fig.4.3), 

which in turn are used to find all of the randomized nominator and denominator terms inside 

the logarithms in (4) for each word (lines 16-23), denoted as 𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐, and all 

of them are send to E2DS (line 25). E.g. in Fig4.4a) we illustrate the SIMD evaluations and 

randomizations of the nominator and denominator of the term 
𝑁(𝑤𝑖,𝑐𝑗)𝑁𝑇

𝑁(𝑤𝑖)𝑁(𝑐𝑗)
 in (4) done in lines 

16 and 20. The nominators and denominators of the other terms in (4) are found in similar 

way. In Phase V E2DS decrypts all of the 𝑎𝑙𝑙𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚𝑅𝑛𝑑_𝑐 sent by TEAS (lines 27) 

and finds the encryption of all of the logarithmic terms of (4) in randomized form, denoted 

as 𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐.  E.g. 𝑙𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔  

(
𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝐼𝑛𝐷𝑚𝑢𝑙𝑛𝑟𝑀𝑣
𝑟𝑑𝑊𝐼𝑛𝐷𝑜𝑐𝑚𝑢𝑙ℎ𝑎𝑚𝑀𝑣

) = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟 (𝐾1 ∙ 𝑙𝑜𝑔 (
𝑁(𝑤𝑖,𝑐ℎ)∙𝑁𝑇∙𝑅1,𝑖

𝑁(𝑤𝑖)∙𝑁(𝑐ℎ)∙𝑅5,1
)
𝑖=1

|𝑊′|

) (upper vector in 

Fig4.4b), where 𝐾1 is a constant used for integerization purposes and 𝑅1,𝑖, 𝑅5,𝑖 are random 

numbers (lines 28-31). Afterwards E2DS sends the 𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐 to TEAS (line 34). In 

Phase VI TEAS removes the randomizations and multiplies each of the 𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐 

with the corresponding term of (4) (lines 35-42). E.g.  

𝑡𝑚𝑝_𝑐1 = ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 × (𝑙𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷_𝑝) in line 39 is 

illustrated in Fig.4.4b, corresponds to term 𝑁(𝑤𝑖, 𝑐𝑗)𝑙𝑜𝑔 (
𝑁(𝑤𝑖,𝑐𝑗)𝑁𝑇

𝑁(𝑤𝑖)𝑁(𝑐𝑗)
) of (4). The other 

logarithmic terms multiplied with the corresponding counts of (4) are found in similar way. 

After homomorphically finding and randomizing the information gains to get 

𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 (lines 43-46), it is send to E2DS for decryption, while a partial portion of 

the randomization is send to each EDO (lines 48-50). In Phase VII E2DS decrypts 

𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐  and sends it to each EDO. Finally, in Phase VIII each of the EDOs 

partially removes the randomization to get 𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = {(𝐼𝐺(𝑤𝑖) × 𝑅 + ℎ)𝑖=1
|𝑊′|

} (line 

58). Since all of the 𝐼𝐺(𝑤𝑖) terms are multiplied and added to the same random 𝑅 and ℎ, 

respectively, it is easy for each of the EDOs to find the top 𝑚 words with the highest IG. 

Afterwards EDOs apply the inverse permutation to word hashes using ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣 

proceeded with sorting with respect to hash values, thus getting the selected features set, SF 

(line 59). Sorting is done for performance reasons when users prepare their queries according 

to the selected 𝑚 words during secC. 
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Algorithm 4.3: secFS-S2 (secure Feature Selection-Stage II) 

INPUT: 𝒏, {𝑫𝑺𝒌}𝒌=𝟏
𝒏 , 𝑲𝒆𝒚𝑺𝒆𝒕, (𝒑𝒌, 𝒔𝒌),𝒎,𝑾𝑮𝑻𝒉𝒂𝒏𝑽  

𝒎: the number of features (words) to be selected at the end 

𝑾𝑮𝑻𝒉𝒂𝒏𝑽: words with at least 𝑣𝑎𝑙 global document appearances 

OUTPUT: 𝑺𝑭 = {𝑯(𝒘𝟏), … ,𝑯(𝒘𝒎)}:  
𝑺𝑭: 𝑚 selected words with the highest IG sorted by their hashes 

PHASE III – EDOs 

1 for 𝑘 = 1 to 𝑛 do 

2  (ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 , 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 , ℎ𝑎𝑚𝑀_𝑐𝑘, 𝑠𝑝𝑎𝑚𝑀_𝑐𝑘) = 

                       = 𝑔𝑒𝑡𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡𝑠(𝐷𝑆𝑘 , 𝑤𝑜𝑟𝑑𝑠𝐺𝑇ℎ𝑎𝑛𝑉_𝑣) 
3   𝐵_4𝐷𝑂𝑘 = (𝐻(𝐵_3𝐷𝑂𝑘),𝑀𝑇(ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 , 

                                 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 , ℎ𝑎𝑚𝑀_𝑐𝑘 , 𝑠𝑝𝑎𝑚𝑀_𝑐𝑘), 𝑇𝑆) 
4   send (ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 , 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 , 
                                     ℎ𝑎𝑚𝑀_𝑐𝑘 , 𝑠𝑝𝑎𝑚𝑀_𝑐𝑘 , 𝐻(𝐵_4𝐷𝑂𝑘)) to TEAS 

5   𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_4𝐷𝑂𝑘))              

PHASE IV-TEAS 

6   (𝑅1_𝑝, … , 𝑅8_𝑝) = 𝑅𝑛𝑑𝐸𝑛𝑐𝑜𝑑𝑒𝑑𝑉𝑒𝑐𝑡𝑜𝑟𝑠() 
7   ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 = ∑ (ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)

𝑛
𝑘=1 , 

8   ℎ𝑎𝑚𝑀_𝑐 = ∑ (ℎ𝑎𝑚𝑀_𝑐𝑘)
𝑛
𝑘=1  

9   𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 = ∑ (𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)
𝑛
𝑘=1 , 

10 𝑠𝑝𝑎𝑚𝑀_𝑐 = ∑ (𝑠𝑝𝑎𝑚𝑀_𝑐𝑘)
𝑛
𝑘=1         

11 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐 = ℎ𝑎𝑚𝑀_𝑐 + 𝑠𝑝𝑎𝑚𝑀_𝑐,  
12 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐 = ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 + 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 
13 𝑤𝑜𝑟𝑑𝑠𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 = 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐 − 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐  
14 ℎ𝑎𝑚𝑊𝑁𝑂𝑇𝑖𝑛𝐷𝑜𝑐_𝑐 = ℎ𝑎𝑚𝑀_𝑐 − ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 

15 𝑠𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝑖𝑛𝐷𝑜𝑐_𝑐 = 𝑠𝑝𝑎𝑚𝑀_𝑐 − 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 

16 𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑐 = (ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 × 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐) × 𝑅1_𝑝 

17 𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑐 = (ℎ𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 × 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐) × 𝑅2_𝑝 

18 𝑟𝑛𝑑𝑆𝑝𝑎𝑚𝑊𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑐 = (𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 × 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐) × 𝑅3_𝑝 

19 𝑟𝑛𝑑𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑐 = (𝑠𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 × 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐) × 𝑅4_𝑝 

20 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_ℎ𝑎𝑚𝑀_𝑐 = (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐 × ℎ𝑎𝑚𝑀_𝑐) × 𝑅5_𝑝 

21 𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_ℎ𝑎𝑚𝑀_𝑐 = (𝑤𝑜𝑟𝑑𝑠𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 × ℎ𝑎𝑚𝑀_𝑐) × 𝑅6_𝑝 

22 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_𝑠𝑝𝑎𝑚𝑀_𝑐 = (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐 × 𝑠𝑝𝑎𝑚𝑀_𝑐) × 𝑅7_𝑝 

23 𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_𝑠𝑝𝑎𝑚𝑀_𝑐 =   (𝑤𝑜𝑟𝑑𝑠𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 × 𝑠𝑝𝑎𝑚𝑀_𝑐) × 𝑅8_𝑝 

24 𝐵_3𝑇 = (𝐻(𝐵_2𝑇),𝑀𝑇(⋃ 𝐻(𝐵_4𝐷𝑂𝑘)
𝑛
𝑘=1 ),𝑀𝑇(𝑎𝑙𝑙𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚𝑅𝑛𝑑_𝑐), 𝑇𝑆) 

25 send (𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐, 𝐻(𝐵_3𝑇)) to E2DS 

26 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_3𝑇)) 

PHASE V – E2DS 

27 (𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣, 𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣,  
     𝑟𝑛𝑑𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣,  

     𝑟𝑛𝑑𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣,  
     𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_ℎ𝑎𝑚𝑀_𝑣, 𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_ℎ𝑎𝑚𝑀_𝑣 

     𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_𝑠𝑝𝑎𝑚𝑀_𝑣, 𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_𝑠𝑝𝑎𝑚𝑀_𝑣) 
= 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐 𝑠𝑒𝑛𝑡 𝑏𝑦 TEAS) 

28 𝑙𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔(𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣/𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_ℎ𝑎𝑚𝑀_𝑣)) 
29 𝑙𝑜𝑔𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔(𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣/
𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_ℎ𝑎𝑚𝑀_𝑣)) 
30 𝑙𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔(𝑟𝑛𝑑𝑆𝑝𝑎𝑚𝑊𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣/
𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_𝑠𝑝𝑎𝑚𝑀_𝑣)) 
31 𝑙𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔(𝑟𝑛𝑑𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣/
𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_𝑠𝑝𝑎𝑚𝑀_𝑣)) 
32 𝐵_2𝐸 = (𝐻(𝐵_1𝐸), 𝐻(𝐵_3𝑇),𝑀𝑇(𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐), 𝑇𝑆) 
33 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_2𝐸)) 
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34 send (𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐,𝐻(𝐵_2𝐸)) to TEAS 

PHASE VI –TEAS 

35 𝑖𝑛𝑣𝐿𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐾1 × 𝑙𝑜𝑔(𝑅5_𝑣/𝑅1_𝑣)) 
36 𝑖𝑛𝑣𝐿𝑜𝑔𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐾1 × 𝑙𝑜𝑔(𝑅6_𝑣/𝑅2_𝑣))      
37 𝑖𝑛𝑣𝐿𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝐼𝑛𝐷_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐾1 × 𝑙𝑜𝑔(𝑅7_𝑣/𝑅3_𝑣)) 
38 𝑖𝑛𝑣𝐿𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐾1 × 𝑙𝑜𝑔(𝑅8_𝑣/𝑅4_𝑣)) 
39 𝑡𝑚𝑝_𝑐1 = ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 × (𝑙𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷_𝑝) 
40 𝑡𝑚𝑝_𝑐2 = ℎ𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 × (𝑙𝑜𝑔𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑝) 
41 𝑡𝑚𝑝_𝑐3 = 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 × (𝑙𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝐼𝑛𝐷_𝑝) 
42 𝑡𝑚𝑝_𝑐4 = 𝑠𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 × (𝑙𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑝) 
43 𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 = ∑ 𝑡𝑚𝑝_𝑐𝑖

4
𝑖=1  

44 𝑅_𝑣 = {𝑅,…𝑅}; ℎ1_𝑣 = {ℎ1,1, … , ℎ𝑁,1}; ℎ2_𝑣 = {ℎ, … , ℎ} 
45 (𝑅_𝑝, ℎ1_𝑝) = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑅_𝑣, ℎ1_𝑣) 
46 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 = (𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 × 𝑅_𝑝) + ℎ1_𝑝 

47 𝐵_4𝑇 = (𝐻(𝐵_3𝑇), 𝐻(𝐵_2𝐸),𝑀𝑇(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐, (ℎ1_𝑣 − ℎ_𝑣)), 𝑇𝑆) 
48 send (𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 , 𝐻(𝐵_4𝑇)) to E2DS 

49 for 𝑘 = 1 to 𝑛 do 

50    send (𝐸𝑛𝑐𝑝𝑘𝑘(ℎ1_𝑣 − ℎ_𝑣), 𝐻(𝐵_4𝑇)) to EDO𝑘 

51 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_4𝑇)) 

PHASE VII-E2DS: 

52 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐) 
53 𝐵_3𝐸 = (𝐻(𝐵_2𝐸), 𝐻(𝐵_4𝑇),𝑀𝑇(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣), 𝑇𝑆) 
54 for 𝑘 = 1 to 𝑛 do 

55   send (𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣), 𝐻(𝐵_3𝐸)) to EDO𝑘 

56 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_3𝐸)) 

PHASE VIII-EDOs 

57 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = 𝐷𝑒𝑐𝑠𝑘𝑘(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣) 

58 𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 −  𝐷𝑒𝑐𝑠𝑘𝑘(ℎ1_𝑣 − ℎ_𝑣) 

59 𝑆𝐹 = 𝑠𝑜𝑟𝑡(𝜋−1(𝑡𝑜𝑝𝑀(𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣)), ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣)  

 

 
 

Fig.4.3. Illustration of SIMD evaluation of values in lines 13-16 of secFS-S2 



51 
 

 

Fig.4.4. Illustration of SWHE SIMD evaluations of terms in (4) in secFS-S2 

   

4.4. Secure feature selection for multi-label multi-output 

datasets 

The background information is given in Chapter 2.2.2. The corresponding secure algorithm 

is given in Algorithm 4.4. Generally, Algorithm 4.4 follows Algorithm 4.3, but adjusted to 

the multi-label multi-output scenario. 

 

 

ALGORITHM 4.4: secFS-MLMO-S2 (secure Feature Selection for Multi-Label Multi-Output datasets 

– Stage II) 

INPUT: 𝒏, {𝑫𝑺𝒌}𝒌=𝟏
𝒏 , 𝑲𝒆𝒚𝑺𝒆𝒕 = {(𝒑𝒌𝒌, 𝒔𝒌𝒌)𝒌=𝟏

𝒏 , (𝒑𝒌𝑻, 𝒔𝒌𝑻), (𝒑𝒌𝑬, 𝒔𝒌𝑬)}, (𝒑𝒌, 𝒔𝒌),𝒎
𝒍,𝑾𝑮𝑻𝒉𝒂𝒏𝑽, 𝑳, 𝑪𝒍 

𝑳 = {𝑳𝟏, … , 𝑳|𝑳|}: the labels’ set 

𝑪𝒍 = {𝑪𝟏
𝒍 , … , 𝑪|𝑪𝒍|

𝒍}: The label’s 𝑙 set of classes, 1 ≤ 𝑙 ≤ |𝐿| 

𝑺𝑭𝒍: the number of features (words) to be selected at the end for label 𝑙, 1 ≤ 𝑙 ≤ |𝐿| 
𝑾𝑮𝑻𝒉𝒂𝒏𝑽: the set of words with at least 𝑣𝑎𝑙 global document appearances 

OUTPUT: 𝑺𝑭𝑴𝑳𝑴𝑶 = {{𝑺𝑭𝒍}
𝒍=𝟏

|𝑳|
} = {{{𝑯(𝒘𝒊)}𝒊=𝟏

𝒎𝒍
}
𝒍=𝟏

|𝑳|

} 

𝑺𝑭𝑴𝑳𝑴𝑶: the set of |𝐿| set hashes, each of 𝑚𝑙 selected features with the highest IG for each label, 1 ≤ 𝑙 ≤ |𝐿| 

PHASE III – EDOs 

1 for 𝑘 = 1 to 𝑛 do 

2     for 𝑙 = 1 𝑡𝑜 |𝐿| and 𝑐 = 1 𝑡𝑜 |𝐶𝑙| 
3         𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐],𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐] = 𝑔𝑒𝑡𝐸𝑛𝑐𝑦𝑟𝑝𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑠(𝐷𝑆𝑘,𝑊𝐺𝑇ℎ𝑎𝑛𝑉)  
4         𝐵_4𝐷𝑂𝑘 = (𝐻(𝐵_3𝐷𝑂𝑘),𝑀𝑇(𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐],𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐], 𝑇𝑆);      

           𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_4𝐷𝑂𝑘))    

5         send (𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐],𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐], 𝐻(𝐵_4𝐷𝑂𝑘)) to TEAS 

PHASE IV-TEAS 

7 𝑁𝑇_𝑐 = ∑ (∑ 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[1][𝑐]
|𝐶1|
𝑐=1 )𝑛

𝑘=1   

8 𝑊𝐼𝑛𝐷𝑜𝑐𝐶𝑜𝑢𝑛𝑡_𝑐 = ∑ (∑ 𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[1][𝑐]
|𝐶1|
𝑐=1 )𝑛

𝑘=1   

9 𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐𝐶𝑜𝑢𝑛𝑡_𝑐 = 𝑁𝑇_𝑐 −𝑊𝐼𝑛𝐷𝑜𝑐𝐶𝑜𝑢𝑛𝑡_𝑐 

 



52 
 

10 for 𝑙 = 1 𝑡𝑜 |𝐿| 
11     for 𝑐 = 1 𝑡𝑜 |𝐶𝑙| 
12       𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡𝑐[𝑙][𝑐] = ∑ 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡𝑐𝑘[𝑙][𝑐]

𝑛
𝑘=1 ; 

           𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] = ∑ 𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐]
𝑛
𝑘=1   

13       𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] = 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐]  − 𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐]    
14       𝑟𝑛𝑑𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑁𝑇_𝑐[𝑙][𝑐] = 𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] × 𝑁𝑇_𝑐 × 𝑅1[𝑙][𝑐] 
15       𝑟𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑊𝐼𝑛𝐷𝑜𝑐_𝑐[𝑙][𝑐] = 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] × 𝑊𝐼𝑛𝐷𝑜𝑐𝐶𝑜𝑢𝑛𝑡_𝑐 × 𝑅2[𝑙][𝑐]  
16       𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑁𝑇_𝑐[𝑙][𝑐] = 𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] × 𝑁𝑇_𝑐 × 𝑅3[𝑙][𝑐]     

17       𝑟𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐[𝑙][𝑐] = 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] ×𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐𝐶𝑜𝑢𝑛𝑡_𝑐 × 𝑅4[𝑙][𝑐]    

18 𝐵_3𝑇 = (𝐻(𝐵_2𝑇),𝑀𝑇(⋃ 𝐻(𝐵_4𝐷𝑂𝑘)
𝑛
𝑘=1 ),𝑀𝑇(𝑎𝑙𝑙𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚𝑅𝑛𝑑_𝑐), 𝑇𝑆); 

𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_3𝑇))  

19 send (𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐, 𝐻(𝐵_3𝑇)) to E2DS 

PHASE V – E2DS 

21 for 𝑙 = 1 𝑡𝑜 |𝐿| 
22   for 𝑐 = 1 𝑡𝑜 |𝐶𝑙| 
23      (𝑟𝑛𝑑𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑁𝑇_𝑣[𝑙][𝑐], 𝑟𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑊𝐼𝑛𝐷𝑜𝑐_𝑣[𝑙][𝑐],  
24       𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑁𝑇_𝑣[𝑙][𝑐], 𝑟𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑣[𝑙][𝑐]) 
25      = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐 𝑠𝑒𝑛𝑡 𝑏𝑦 TEAS) 
26       𝑙𝑜𝑔𝑊𝐼𝑛𝐶𝑙_𝑐[𝑙][𝑐] = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔(𝑟𝑛𝑑𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑁𝑇_𝑣[𝑙][𝑐]/
                                                                                                       𝑟𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑊𝐼𝑛𝐷𝑜𝑐_𝑣[𝑙][𝑐]))               
27      𝑙𝑜𝑔𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙_𝑐[𝑙][𝑐] = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔(𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑁𝑇_𝑣[𝑙][𝑐]/
                                                                                                                 𝑟𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑣[𝑙][𝑐])) 
28 𝐵_2𝐸 = (𝐻(𝐵_1𝐸), 𝐻(𝐵_3𝑇),𝑀𝑇(𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_2𝐸)) 

30 send (𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐,𝐻(𝐵_2𝐸)) to TEAS 

PHASE VI –TEAS 

31 for 𝑙 = 1 𝑡𝑜 |𝐿| 
32   for 𝑐 = 1 𝑡𝑜 |𝐶𝑙| 
33      𝑖𝑛𝑣𝐿𝑜𝑔𝑊𝐼𝑛𝐶_𝑝[𝑙][𝑐]  = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐾1 × 𝑙𝑜𝑔(𝑅2_𝑣[𝑙][𝑐]/𝑅1_𝑣[𝑙][𝑐])) 
34      𝑖𝑛𝑣𝐿𝑜𝑔𝑊𝑁𝑂𝑇𝐼𝑛𝐶_𝑝[𝑙][𝑐]  = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐾1 × 𝑙𝑜𝑔(𝑅4_𝑣[𝑙][𝑐]/𝑅3_𝑣[𝑙][𝑐])) 
35      𝑡𝑚𝑝_𝑐1[𝑙][𝑐] = 𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] × (𝑙𝑜𝑔𝑊𝐼𝑛𝐶𝑙_𝑐[𝑙][𝑐] + 𝑖𝑛𝑣𝐿𝑜𝑔𝑊𝐼𝑛𝐶_𝑝[𝑙][𝑐]) 
36      𝑡𝑚𝑝_𝑐2[𝑙][𝑐] = 𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] × (𝑙𝑜𝑔𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙_𝑐[𝑙][𝑐] +   𝑖𝑛𝑣𝐿𝑜𝑔𝑊𝑁𝑂𝑇𝐼𝑛𝐶_𝑝[𝑙][𝑐]) 

37   𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐[𝑙]  = ∑ ((∑ 𝑡𝑚𝑝_𝑐𝑖[𝑙][𝑐])
2
𝑖=1 ))

|𝐶𝑙|
𝑐=1  

38 𝑅_𝑣[𝑙] = {𝑅𝑙, … 𝑅𝑙}; ℎ1_𝑣[𝑙] = {ℎ1,1
𝑙, … , ℎ𝑁,1

𝑙}; ℎ2_𝑣[𝑙] = {ℎ𝑙, … , ℎ𝑙}; 

      (𝑅_𝑝[𝑙], ℎ1_𝑝[𝑙]) =  𝐸𝑛𝑐𝑜𝑑𝑒(𝑅_𝑣[𝑙], ℎ1_𝑣[𝑙]) 
39   𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐[𝑙]  = (𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐[𝑙]  × 𝑅_𝑝[𝑙]) + ℎ1_𝑝[𝑙] 
40   send (𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐[𝑙] , 𝐻(𝐵_4𝑇)) to E2DS 

41   for 𝑘 = 1 to 𝑛 do 

42      send (𝐸𝑛𝑐𝑝𝑘𝑘(ℎ1_𝑣[𝑙] − ℎ_𝑣[𝑙]), 𝐻(𝐵_4𝑇)) to EDO𝑘 

43 𝐵_4𝑇 = (𝐻(𝐵_3𝑇), 𝐻(𝐵_2𝐸),𝑀𝑇(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐, (ℎ1_𝑣 − ℎ_𝑣)), 𝑇𝑆); 

𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_4𝑇)) 

PHASE VII-E2DS: 

45 for 𝑙 = 1 𝑡𝑜 |𝐿| 
46     𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐) 
47     for 𝑘 = 1 to 𝑛 do 

48        send (𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣), 𝐻(𝐵_3𝐸)) to EDO𝑘 

49 𝐵_3𝐸 = (𝐻(𝐵_2𝐸), 𝐻(𝐵_4𝑇),𝑀𝑇(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣), 𝑇𝑆); 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_3𝐸)) 

PHASE VIII-EDOs 

51 for 𝑙 = 1 𝑡𝑜 |𝐿| 
51     𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = 𝐷𝑒𝑐𝑠𝑘𝑘(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣) 

52     𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 −  𝐷𝑒𝑐𝑠𝑘𝑘(ℎ1_𝑣 − ℎ_𝑣) 

53     𝑆𝐹𝑙 = {𝐻(𝑤1), … , 𝐻(𝑤𝑚𝑙)} = 𝑠𝑜𝑟𝑡(𝜋−1(𝑡𝑜𝑝𝑀𝑙(𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣[𝑙]))) //inverse permut of hashes 

54 𝑟𝑒𝑡𝑢𝑟𝑛 𝑆𝐹𝑀𝐿𝑀𝑂 //words are sorted according to their hashes for performance reasons 
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Improvement 4.1. For computational and communicational efficiency purposes, whenever 

possible we apply polynomial switching technique proposed in [55], use multiple cores and 

threads (parallelize to the maximum extend) and simultaneously execute parts of the protocol 

in different participants whenever it’s possible (e.g. adding block to blockchain after sending 

data to other participants). Those techniques alone give an improvement of several folds.  

    

4.5. Experimental evaluations and comparisons 

We run our codes in a machine with Intel Core i3-4000M processor with two physical cores, 

each of 2.4GHz (we utilize one core only in our implementations) with 4GB of DDR3 RAM 

and 64-bit Wındows 10 Pro as an OS. For SWHE purposes we use C++ based Microsoft’s 

SEAL 3.2 library [40] which implements a version of [59]. 

For benchmark and comparison purposes with the state-of-the-art schemes, we used the email 

textual dataset Enron [37]. Its implementations can be found in [81].  for a total of around 9 

000 lines of original C++ code. Enron e-mail dataset is a collection of e-mails from 150 user 

profiles, with a total of 16 555 ham and 17 148 spam e-mails. For the dataset pre-processing 

in line 2 of the 𝑠𝑒𝑐𝐹𝑆 − 𝑆1 (Algorithm 4.2) we applied stop-words removal, partial 

punctuation removal, stemming by using the library in [45] and converting all of the letters 

to lowercase. For our protocols, the input parameter values for the Enron dataset are  

𝑣𝑎𝑙 = 5 𝑎𝑛𝑑 𝐾1 = 100 000.  

For the SWHE parameters (Chapter 2.4.1) for 𝑁 = 8192,16384 we use the corresponding 

values of 𝑡 = 37,60 bits and 𝑞 = 218,438 bits, respectively and security of 𝜆 = 128 bits. 

Table 4.1. gives the cumulative (total) computation and communication costs for Enron 

email dataset for each participant while running Algorithm 4.2 and 4.3 (both stage I and II) 

for different polynomial modulus N and number of dataset owners n. 

In Table 4.2 we compare the best results of our secure feature selection protocol 

(Algorithms 4.2 and 4.3, both secFS-S1 and secFS-S2) with secure feature protocol in [28], 

which is the closest to ours from the related literature. In [28] they use a light version of the 

information gain – the Gini index, for secure feature selection. In [28] they use the non-

textual Speed Dating binary dataset of [47] which has 𝑁𝑇 = 8378 records, |𝐹| =122 initial 

features, from which they select 𝑚 = 67 features and finish the task in 60.57 min. Since [83] 
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is non-textual dataset and the features are known publicly, they don’t engage in a protocol 

similar to ours GRPV and secFS-S1, which makes their task easier. 

 

Table 4.1. Computation and communication costs among different participants for different 

polynomial modulus 𝑁 and number of the dataset owners 𝑛 

𝑵 𝒏 
Computation cost (s) 

Communication cost 

(MB) 

EDO TEAS E2DS EDO TEAS E2DS 

8192 

10 197.7 394.4 2.0 190.2 45.7 16.5 

20 163.3 442.8 2.1 378.5 59.3 22.5 

30 148.5 484.4 2.1 566.4 72.9 28.6 

40 53.3 176.6 2.5 754.3 86.6 34.7 

50 34.1 173.6 1.9 482.1 100.2 40.7 

16384 

10 77.2 141.6 1.5 379.3 77.5 26.8 

20 69.0 195.5 1.1 756.6 91.1 32.8 

30 54.7 240.7 2.3 1133 104.8 38 

40 39.2 323.0 2.1 1510 118.4 45.0 

50 33.3 386.5 2.1 1887 132.0 51.0 
 

 

Table 4.2. Comparison of different secure feature selection schemes 

Scheme 𝑵𝑻 |𝑭| 𝒎=|SF| Comp. Comm. 

Speed Dating [47] 

[29]* 8,378 122 67 60.57 min Not reported 

Enron email dataset [39] 

Ours 33,703 157,458 2047 10.15 min 310 MB 

*4 co-located F32s V2 Azure, each with 32 cores and 64 GB RAM 

 

4.6. Security analysis and proofs 

We proof the security of our protocols under the semi-honest model using the definition 2.2 

given in Chapter 2.4.2.  

 

Theorem 4.1 GRPV (Algorithm 4.1) is secure under the semi-honest model 

Proof: For 1 ≤ 𝑘 ≤ 𝑛, 𝑉𝐸𝐷𝑂𝑘
𝐺𝑅𝑃𝑉(𝜆, 𝑥̅) = {𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣), 𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑇)} is the 

view and 𝑂𝐸𝐷𝑂𝑘
𝐺𝑅𝑃𝑉(𝜆, 𝑥̅) = {ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣} is the output of EDO𝑘. 
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Let 𝑟𝑛𝑑𝑉𝑒𝑐_𝑣̃  be a random vector and let 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑇̃ = ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣 − 𝑟𝑛𝑑𝑉𝑒𝑐_𝑣̃ . 

For the simulator of each eDo we have 𝑆𝐸𝐷𝑂𝑘
𝐺𝑅𝑃𝑉 (𝜆, 𝑂𝐸𝐷𝑂𝑘

𝐺𝑅𝑃𝑉(𝜆, 𝑥̅)) =

{𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣
̃ ),𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑇

̃ )} ≅𝑐 𝑉𝐸𝐷𝑂𝑘
𝐺𝑅𝑃𝑉(𝜆, 𝑥̅). 

For the view of TEAS we have 𝑉𝑇𝐸𝐴𝑆
𝐺𝑅𝑃𝑉(𝜆, 𝑥̅) = {(𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑘 )𝑘=1

𝑛 } and it has no output. For 

the simulator we construct random SWHE ciphertexts, thus   

𝑆𝑇𝐸𝐴𝑆
𝐺𝑅𝑃𝑉(𝜆) = (𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑘̃  )

𝑘=1

𝑛
≅𝑐 𝑉𝑇𝐸𝐴𝑆

𝐺𝑅𝑃𝑉(𝜆, 𝑥̅) due to the semantic security of the RLWE 

SWHE schemes. 

For E2DS the view is 𝑉𝐸2𝐷𝑆
𝐺𝑅𝑃𝑉(𝜆, 𝑥̅) = {𝑟𝑛𝑑𝑉𝑒𝑐_𝑐} and it has no output. For its simulator we 

have 𝑆𝐸2𝐷𝑆
𝐺𝑅𝑃𝑉(𝜆) = {𝑟𝑛𝑑𝑉𝑒𝑐_𝑐̃ } ≅𝑐 𝑉𝐸2𝐷𝑆

𝐺𝑅𝑃𝑉(𝜆, 𝑥̅) since RLWE based SWHE ciphertexts 

𝑟𝑛𝑑𝑉𝑒𝑐_𝑐 and 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐̃  are indistinguishable to each other due to their semantic security. 

None of the participants has a private input in GRPV.             ∎ 

 

Theorem 4.2: secFS-S1 (Algorithm 4.2) is secure under the semi-honest model. 

Proof: For 1 ≤ 𝑘 ≤ 𝑛,  

𝑉𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅) = {𝐸𝑛𝑐𝑝𝑘𝑘(𝑊), 𝐸𝑛𝑐𝑝𝑘𝑘(ℎ2_𝑣), 𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣)} is the view 

(where 𝑥̅ the set of private input of all participants), 𝑥𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1 = {𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐷𝑆𝑘)} is the 

private input and 𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅) = {𝑊𝐺𝑇ℎ𝑎𝑛𝑉} is the output of EDO𝑘. From 𝑥𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆1 and 

𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅) we construct the set of the union of words 𝑊̃ = ⋃(𝑊𝑘,𝑊𝐺𝑇ℎ𝑎𝑛𝑉, 𝑟𝑛𝑑𝑊), 

where 𝑊𝑘 is obtained as in lines 2-4 of secFS-S1 and  𝑟𝑛𝑑𝑊 are permuted hashes of random 

words. ℎ2_𝑣̃ and 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣̃  are randomly chosen such that in the resulting 

𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣̃ −ℎ2_𝑣̃ the indexes that correspond to the words of 𝑊𝐺𝑇ℎ𝑎𝑛𝑉 in 𝑊̃ are 

positive, thus greater than 𝑣𝑎𝑙. For the simulator of EDO𝑘 we have 

𝑆𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1 (𝜆, 𝑥𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆1, 𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅)) =

{𝐸𝑛𝑐𝑝𝑘𝑘(𝑊̃), 𝐸𝑛𝑐𝑝𝑘𝑘(ℎ2_𝑣̃), 𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣
̃ )}, thus 

𝑆𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1 (𝜆, 𝑥𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆1, 𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅)) ≅𝑐 𝑉𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅). For TEAS 𝑉𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅) =

{(𝐸𝑛𝑐𝑝𝑘𝑇(𝑊𝑘))𝑘=1
𝑛

, (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)𝑘=1
𝑛 } is the view, 𝑥𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆1 = ∅ is the input and 

𝑂𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅) = ∅ is the output it receives at the end of the protocol, where ∅ is the empty 

set. Let us construct 𝑛 sets of permuted word hashes  (𝑊𝑘̃)𝑘=1
𝑛  so that TEAS can’t tell apart 
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from them and(𝑊𝑘)𝑘=1
𝑛 , and 𝑛 random ciphertexts (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘̃ )𝑘=1

𝑛  which can’t be 

distinguished from (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)𝑘=1
𝑛  due to the semantic security of the RLWE 

schemes. For the TEAS’ simulator then we have 𝑆𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1 (𝜆, 𝑥𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆1, 𝑂𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅)) =

{(𝐸𝑛𝑐𝑝𝑘𝑇(𝑊𝑘̃))𝑘=1
𝑛

, (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘̃ )
𝑘=1

𝑛
} ≅𝑐 𝑉𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅). 

E2DS’ view is 𝑉𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅) = {𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐} and its input and output is the empty set. 

We construct a random ciphertext 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐̃  which can’t be distinguished from 

𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 to the semantic security of the RLWE based schemes. For the simulator then 

we have  𝑆𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥𝐸2𝐷𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆1, 𝑂𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅)) = {𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐̃ } ≅𝑐 𝑉𝐸2𝐷𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅).   ∎ 

 

Corollary 4.1: secFS-S1  is secure under the semi-honest model when out of 𝑛, 𝑛 − 3 EDOs 

fail or 𝑛 − 2 EDOs collude. 

Proof: Without loss of generality, let the 3 left (not failed) EDOs be EDO𝑘, for 1 ≤ 𝑘 ≤ 3, 

and let us treat the n-2 colluding EDOs as a single entity EDO3, thus we again have 3 

participating EDOs denoted as EDO𝑘, for 1 ≤ 𝑘 ≤ 3. We go through the similar lines as 

Theorem 2 to prove Corollary 1. If there are only 2 non-failed or non-colluding EDOs left, 

then for the words in 𝑊 (line 8 and 14) which don’t appear in one EDO, not only this EDO 

will know that they exist in the other EDO, he will also know whether the counts of those 

words is greater or smaller than 𝑣𝑎𝑙 based on the final 𝑊𝐺𝑇ℎ𝑎𝑛𝑉 words’ set, which 

constitutes a partial leakage that goes against the strict security and privacy requirements set 

in Chapter 4.1.            ∎ 

 

Theorem 4.3: secFS-S2 (Algorithm 4.3) is secure under the semi-honest model. 

Proof: For 1 ≤ 𝑘 ≤ 𝑛, 𝑉𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, 𝑥̅) = {𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣), 𝐸𝑛𝑐𝑝𝑘𝑘(ℎ1_𝑣 −

ℎ_𝑣)} is the view, 𝑥𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆2 = {𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐷𝑆𝑘),𝑊𝐺𝑇ℎ𝑎𝑛𝑉} is the private input and 

𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, 𝑥̅) = {𝑆𝐹} is the output of EDO𝑘. We construct random 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣̃  and 

ℎ1_𝑣 − ℎ_𝑣̃  s.t. after 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣̃ −ℎ1_𝑣 − ℎ_𝑣̃ , the resulting vector, that in its 

corresponding indexes is supposed to store the relative IG of the words in 𝑊𝐺𝑇ℎ𝑎𝑛𝑉, with 

have its top 𝑚 highest values for the indexes that that correspond to the words of the selected 

features’ set 𝑆𝐹. For the corresponding simulator of each of the EDOs we have    
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𝑆𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆2 (𝜆, 𝑥𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆2, 𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, 𝑥̅)) =

{𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣
̃ ),𝐸𝑛𝑐𝑝𝑘𝑘(ℎ1_𝑣 − ℎ_𝑣

̃ )}, thus  

𝑆𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆2 (𝜆, 𝑥𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆2, 𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅)) ≅𝑐 𝑉𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, 𝑥̅). 

For the view of TEAS we have 𝑉𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, 𝑥̅) =

{(ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)𝑘=1
𝑛 , (𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)𝑘=1

𝑛 , (ℎ𝑎𝑚𝑀_𝑐𝑘)𝑘=1
𝑛 , 

(𝑠𝑝𝑎𝑚𝑀_𝑐𝑘)𝑘=1
𝑛 , 𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐}, 𝑥𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆2 = ∅ is the input and 𝑂𝑇𝐸𝐴𝑆
secFS−S2(𝜆, 𝑥̅) = ∅ 

is the output. For the simulator we construct the corresponding ciphertexts randomly, which 

can’t be differentiated from their counterparts due to the semantic security of the RLWE 

schemes, thus 𝑆𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆2 (𝜆, 𝑥𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆2, 𝑂𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥̅)) =

{(ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘̃ )
𝑘=1

𝑛
, (𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘̃ )

𝑘=1

𝑛
, (ℎ𝑎𝑚𝑀_𝑐𝑘̃ )

𝑘=1

𝑛
, 

(𝑠𝑝𝑎𝑚𝑀_𝑐𝑘̃ )
𝑘=1

𝑛
, 𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐̃ } ≅𝑐 𝑉𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, 𝑥̅). 

E2DS’ view is 𝑉𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, 𝑥̅) = {𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐, 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐} and its input 

and output is the empty set. For the simulator we construct random ciphertexts, thus 

𝑆𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆2 (𝜆, 𝑥𝐸2𝐷𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆2, 𝑂𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, 𝑥̅)) =

{𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐̃ ,𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐̃ } ≅𝑐 𝑉𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, 𝑥̅)        

 

Corollary 4.2: secFS-S2 is secure under the semi-honest model when out of 𝑛 𝑛 − 3  EDOs 

fail or 𝑛 − 2 EDOs collude.              ∎ 

 

Theorem 4.4: secFS-MLMO-S2 (Algorithm 4.4) is secure under the semi-honest model 

Proof: We follow similar reasoning as with Theorem 4.4        ∎ 
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Chapter 5 

 

SECURE AND PRIVATE MACHINE 

LEARNING TRAINING 

 

Definition 5.1: ML model training is the process of acquiring parameters of the trained 

model TM from a labeled dataset DS consisted of a selected feature set SF according to an 

algorithm 𝒯, thus 𝑇𝑀 = 𝒯(DS, 𝑆𝐹). 

In this chapter, we introduce the security, privacy and efficiency goals (requirements) for 

our secure training protocols. We proceed with constituents (participants) of our secure 

training schemes, their adversary models as well as we provide a brief flow of the protocols, 

which will be elaborated in more details in the later subchapters of this chapter. We conclude 

the chapter by experimentally evaluating and comparing our schemes with the related 

research as well as we proof their security under the semi-honest model. All the necessary 

background information and notations for this chapter was given in Chapter 2. We should 

note that our secure training protocol(s) can be seen as a natural follow up of the 

corresponding secure feature selection protocol(s). Namely, after securely and privately 

selecting the most suitable features, we proceed to train a ML model based on the selected 

features. 
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5.1. Introduction 

The security and privacy requirements for our secure training protocol are the following: 

 Privacy of the input features. The inputs here are the 𝑚 selected features, i.e. the output 

of the secFS protocol 

 Privacy of the input features’ values 

 Security and privacy of intermediate results 

 Privacy of the output, i.e. the trained model. This is one of the rare protocols to keep 

private the final trained ML model at any stage. 

 Have other properties related to secure training mentioned in Table 3.2 

 

5.2. System architecture, adversary models and protocol-flows-

at-a-glance 

Similarly to the secure feature selection case (Chapter 4.2), our participants for the secure 

feature selection protocols are: 1) EDO (The Edge Dataset Owner) - We have n such EDOs 

in our system, denoted as EDO𝑘, each owns a dataset DS𝑘, where 1 ≤ 𝑘 ≤ 𝑛, that they are 

willing to use for training ML models in a secure and private fashion. 2) TEAS (The Edge 

Aggregating Server): a server used to do the bulk of the proposed protocols’ homomorphic 

computation. 3) E2DS (The Edge Encryption Decryption Server): It’s the only participant in 

the system that has a pair of public keys with SWHE properties (Chapter 2.4). All the data 

that are homomorphically evaluated in our protocols are encrypted using E2DS’ public key, 

thus it’s the only one that can decrypt them. All of them are illustrated in Fig.5.1. 

Adversary models: All the participants are assumed to be in the passive semi-honest (honest 

but curious) model, which means that they follow the protocol but on the background they 

try to infer some private data which they are not supposed to. A formal definition of the semi-

honest model is given in Chapter 2.4.1. We assume that TEAS and E2DS don’t collude. Out 

of 𝑛 EDOs, our environment setting allows for up to 𝑛 − 3 EDO failures and up to 𝑛 − 2 

collusions without jeopardizing the privacy of the remaining and non-colluding EDOs . The 

motivations for participant to behave in the described manners are given in [8-18]. 
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Fig. 5.1. Protocol flows for secure training protocol (secT) 

Protocol flows at-a-glance: In secure training we continue the blockchain (Fig.4.2) started 

in Chapter 4. All the participants have a pair of public/secret keys used for signing their 

corresponding blocks of the blockchain and for secure communication. Additionally, E2DS 

has a pair of public/secret key with SWHE properties (Chapter 2.4.1). All of these key pairs 

form the KeySet set. While we designed our protocols having in mind primarily binary textual 

datasets, they are also applicable to non-textual ones and can be easily generalized to multi-

class scenarios. This choice was done for simplicity and benchmark (comparison) purposes 

with the related research. 

 

secT (secure training): Illustrated in Fig.5.1. Using the selected words of 𝑆𝐹 as index 

entries, 𝑛 EDOs simultaneously construct the ciphertext of the training vector which 

containing the local frequencies of each word, 𝑇𝑉_𝑐𝑘, ❽ and send them to TEAS ⑧. TEAS 

sums them up to get the global frequencies, randomizes this result to get 𝑟𝑛𝑑𝑇𝑉_𝑐 =

(∑ 𝑇𝑉_𝑐𝑘
𝑛
𝑘=1 ) × 𝑅_𝑝 ❾ and sends it to E2DS ⑨. After decrypting it, E2D2 finds the 

randomized class and conditional word-class logarithms of probabilities, integerizes and 

encrypts them to get the randomized trained model 𝑟𝑛𝑑𝑇𝑀_𝑐 ❿ and sends it back to TEAS 

⑩, which homomorphically removes the randomization to get the final trained 

model 𝑇𝑀_𝑐 which represents the Naïve Bayes (NB) or the multinomial NB (MNB) 

classifier ⓫.  
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5.3. Secure training for non-textual datasets 

Considering the notations in Chapter 2.1.1 for the non-textual datasets, the architecture, 

protocol flows and participants in Chapter 5.2, in this chapter we give a detailed pseudocode 

of the privacy preserving training protocol of Naïve Bayes (NB) models for non-textual 

datasets (Algorithm 5.1) which was briefly elaborated in Chapter 5.2. It is also accompanied 

with corresponding illustrations and comments in the pseudocode. 

 

ALGORITHM 5.1: PPTMDO (Privacy Preserving Training From Multiple Dataset Owners) 

INPUT: {𝑫𝑺𝒌}𝒌=𝟏
𝒏 , 𝑭, 𝑪, 𝒏 

{𝑫𝑺𝒌}𝒌=𝟏
𝒏 : The local datasets owned by the 𝑘-th EDO, for 1 ≤ 𝑘 ≤ 𝑛. Each EDO has one private dataset  

𝑭: 𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑓}, where 𝐹𝑖 = {𝑉1,𝐹𝑖 , 𝑉2,𝐹𝑖 , … , 𝑉|𝐹𝑖|,𝐹𝑖}. Fi, st. 1 ≤ 𝑖 ≤ 𝑓  (explained in Chapter 2.1.1) 

𝑪: The set of classes 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑐}  (explained in Chapter 2.1.1) 

𝒏: number of dataset owners 

OUTPUT: 𝑻𝑴_𝒄 

𝑻𝑴_𝒄: the encryption of the SIMD encoded final trained model which will be stored at TEAS 

PHASE VIII - EDOs:       

1  for 𝑘 = 1 to 𝑛 do 

2     𝑇𝑉_𝑣𝑘  =  𝑔𝑒𝑡𝑇𝑉𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑()//the case when we deal with simultaneous classification of 𝑝 queries 

3     𝑇𝑉_𝑐𝑘  =  𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑇𝑉_𝑣𝑘)                                                        
4     send 𝑇𝑉_𝑐𝑘 to TACS       //all of the [𝑇𝑉(𝑘)] training vectors should look as depicted in Fig.5.2-5.3 

PHASE IX - TEAS:     

5   𝐺𝑇𝑉_𝑐 = ∑ 𝑇𝑉_𝑐𝑘  
𝑛
𝑘=1  //sum them up to get the Global Trained Vector-𝐺𝑇𝑉_𝑐, Fig.5.4 

6   𝑅_𝑣 =  {𝑅𝑁(𝐶1), 𝑅𝑁(𝑉1,𝐹1;𝐶1), … }; 𝑅_𝑝 =  𝐸𝑛𝑐𝑜𝑑𝑒(𝑅_𝑣)                              

7   𝑟𝑛𝑑𝐺𝑇𝑉_𝑐 =  𝐺𝑇𝑉_𝑐 ×  𝑅_𝑝       //Fig.5.5                  

8   send 𝑟𝑛𝑑𝐺𝑇𝑉_𝑐 to E2DS                                 

9   𝑟𝑎𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑣 =  𝑐𝑎𝑙𝑐𝑅𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝑓𝑃𝑟𝑜𝑏𝑠(𝑅_𝑣)                                               //equation (5.1) 

10 𝑟𝑎𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑝 =  𝐸𝑛𝑐𝑜𝑑𝑒(𝑟𝑎𝑛𝑑𝑜𝑚𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑣)//eq. (5.1), upper vector in Fig.5.6 

PHASE X – E2DS:      

11  𝑟𝑛𝑑𝐺𝑇𝑉_𝑣 =  𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐷𝑒𝑐𝑜𝑑𝑒(𝑟𝑎𝑛𝑑_𝐺𝑇𝑉_𝑐) 
12  𝑟𝑛𝑑𝑇𝑀_𝑣 =  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐾𝐿𝑜𝑔𝑂𝑓𝑃𝑟𝑜𝑏𝑠(𝑟𝑛𝑑𝐺𝑇𝑉_𝑣)                                                    //equation (5.2) 

13  𝑟𝑛𝑑𝑇𝑀_𝑐 =  𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑟𝑛𝑑𝑇𝑀 _𝑣) //eq. (5.2), middle vector in Fig.5.6 

14  send 𝑟𝑛𝑑𝑇𝑀𝐶_𝑐 to TACS 

PHASE XI - TEAS:    

15  𝑇𝑀_𝑐 = 𝑟𝑛𝑑𝑇𝑀_𝑐 +  𝑟𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑝  //equation (5.3), all illustrated in Fig.5.6 

  

Phase VIII (lines 1-4) is done in parallel at all of the 𝑛 EDOs. Each of the DOs locally 

constructs the training vector (𝑇𝑉_𝑣𝑘) (Fig.5.2-5.3) so that EDO 𝑘 (s.t. 1 ≤ 𝑘 ≤ 𝑛) for a 

certain class 𝐶𝑗 (s.t. 1 ≤ 𝑗 ≤ 𝑐), at the beginning puts the local frequency (counts) 𝑁(𝑘)(𝐶𝑗) 

for that class, proceeded with local joint class-value counts 𝑁(𝑘)(𝑉𝑚,𝐹𝑖 ;  𝐶𝑗) for all the 𝑓 

features (1 ≤ 𝑖 ≤ 𝑓) and all feature-values 𝑚 (1 ≤ 𝑚 ≤ |𝐹𝑖|), as it is shown in Fig.5.2. With 

this approach only (∑|𝐹𝑖| + 1) slots per class are needed. However, for efficiency purposes 

when using the secSum algorithm (Chapter 6.2), we make sure that each class has a portion 
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(number) of slots which is a power of 2, concretely 𝑛𝑠 = 2
⌈𝑙𝑜𝑔 (∑|𝐹𝑖|+1)⌉ slots, where the 

remainder of 2⌈𝑙𝑜𝑔 (∑|𝐹𝑖|+1)⌉ − (∑|𝐹𝑖| + 1) slots are filled up with dummy values (preferably 

zeros), as shown at the portion of the dummy value slots at Fig.5.2. The same is repeated for 

all of the 𝑐 classes, thus each 𝑇𝑉_𝑣𝑘 has 𝑛𝐿 = 𝑐 · 𝑛𝑠 + 1 slots, where the last slot is reserved 

for the number of transactions at EDO 𝑘 −  𝑁𝑇(𝑘) (Fig.5.3). If we want a simultaneous 

classifications of 𝑝 queries, we replicate the 𝑇𝑉_𝑣𝑘 for 𝑝 times (line 2). Then the EDOs 

encode and encrypt their final (replicated) training vectors 𝑇𝑉_𝑐𝑘 and send them to TEAS 

(line 4). 

 

 

Fig. 5.2. Depiction of the portion of the encrypted counts of the training vector of Edge 

Dataset Owner 𝑘 holding counts related to class 𝐶𝑗 

 

 

Fig. 5.3. The overall training vector 𝑇𝑉_𝑣𝑘 (for all classes) at the Edge Dataset Owner 𝑘 

 

In Phase IX TEAS receives all of the trained vectors from EDOs, aggregates (sums them up) 

to get the global training vector ciphertext 𝐺𝑇𝑉_𝑐, which contains the global counts in a 

single ciphertext (line 5, Fig.5.4). Afterwards TEAS constructs a random looking plaintext 

(𝑅_𝑝) (line 6), multiplies 𝐺𝑇𝑉_𝑐 with it to get the randomized 𝑟𝑛𝑑𝐺𝑇𝑉_𝑐 (line 7, Fig.5.5), 

then sends this 𝑟𝑛𝑑𝐺𝑇𝑉_𝑐 to E2DS (lines 8). Meanwhile in lines 9-10 TEAS calculates and 

construct the plaintext of the inverse logs of probabilities of the random vector 𝑅_𝑝 

(𝑟𝑎𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑝), shown at the upper vector at Fig.5.6 and (5.1). For efficiency 

purposes lines 9-10 at TEAS are done in parallel (overlap) with Phase X. 
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Fig.5.4. Aggregating (homomorphically summing up) the local training vectors – 𝑇𝑉_𝑐𝑘 to 

get the global training vector 𝐺𝑇𝑉_𝑐 

 

⌈𝐾 𝑙𝑜𝑔
𝑅𝑁𝑇
𝑅𝑁(𝐶𝑗)

⌉

⌈𝐾𝑙𝑜𝑔
𝑅𝑁(𝐶𝑗)

𝑅𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

⌉ 

                     (5.1) 

 

 

Fig.5.5.  Randomizing 𝐺𝑇𝑉_𝑐 to get 𝑟𝑛𝑑𝐺𝑇𝑉_𝑐 

 

Fig.5.6. Adding 𝑟𝑎𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝑓𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑝 with 𝑟𝑛𝑑𝑇𝑀_𝑐 to get the trained model 𝑇𝑀_𝑐.   
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In Phase X E2DS decrypts and decodes the randomized global training vector to calculate 

the randomized probabilities of the trained model according to (5.2), where 1 ≤ 𝑖 ≤ 𝑓;  

1 ≤ 𝑗 ≤ 𝑐 and 1 ≤ 𝑚 ≤ |𝐹𝑖| (lines 11). As it’s shown in Fig.5.6, after properly encoding and 

encrypting those probabilities into their corresponding places (slots) to get the 𝑟𝑛𝑑𝑇𝑀_𝑐, 

EDS sends back to TEAS the 𝑟𝑛𝑑𝑇𝑀_𝑐 (lines 12-14).  

 

⌈𝐾 log
𝑁(𝐶𝑗)∙𝑅𝑁(𝐶𝑗)

 

𝑁𝑇∙𝑅𝑁𝑇
⌉

⌈𝐾 log
𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)∙𝑅𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

𝑁(𝐶𝑗)∙𝑅𝑁(𝐶𝑗)
⌉ 

                (5.2) 

 

Finally, in Phase IV TEAS gets and de-randomizes the 𝑟𝑛𝑑𝑇𝑀_𝑐 by adding it with 

𝑟𝑎𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑝 to get the final trained model denoted as 𝑇𝑀_𝑐 as its shown in 

(5.3) and Fig.5.6 (line 15). TEAS always holds the 𝑇𝑀_𝑐 in encrypted form at his side to be 

later used for classification purposes. 

 

⌈𝐾 𝑙𝑜𝑔
𝑅𝑁𝑇
𝑅𝑁(𝐶𝑗)

⌉+⌈𝐾 𝑙𝑜𝑔
𝑁(𝐶𝑗)∙𝑅𝑁(𝐶𝑗)

 

𝑁𝑇∙𝑅𝑁𝑇
⌉

≈𝐾𝑙𝑜𝑔
𝑁(𝐶𝑗) 

𝑁𝑇
=𝐾𝑙𝑜𝑔𝑃(𝐶𝑗)

⌈𝐾𝑙𝑜𝑔
𝑅𝑁(𝐶𝑗)

𝑅𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

⌉+⌈𝐾 𝑙𝑜𝑔
𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)∙𝑅𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

𝑁(𝐶𝑗)∙𝑅𝑁(𝐶𝑗)
⌉

≈𝐾𝑙𝑜𝑔
𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

𝑁(𝐶𝑗)
=𝐾𝑙𝑜𝑔𝑃(𝑉𝑚,𝐹𝑖|𝐶𝑗)

                           (5.3) 

 

Terms in (5.3) are the same as the terms in (2.5) for 1 ≤ 𝑖 ≤ 𝑓;  1 ≤ 𝑗 ≤ 𝑐 and  

1 ≤ 𝑚 ≤ |𝐹𝑖|. Actually they represent the Naïve Bayes trained model consisted of the global 

class probabilities and conditional value-class probabilities shown in Chapter 2.1.1 and at the 

trained model ciphertext 𝑇𝑀_𝑐 of  Fig.5.6. 
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5.4. Secure training for binary and multi-label multi-output 

textual datasets 

In Algorithm 5.2. we give the pseudocode for the ML training of the binary textual datasets 

(secT), which is expected to follow up the algorithms for secure feature selection of binary 

textual datasets (Algorithms 4.2 and 4.3). Thus, we train our textual ML models over the 

selected 𝑚 features from Algorithms 4.2 and 4.3. The necessary background related to 

Algorithm 5.2 is given in Chapter 2.1.2. The blockchain started in Algorithms 4.2 and 4.3 is 

continued in Algorithm 5.2 to provide end-to-end security (from raw data till the final trained 

model), for which we proof the security in Chapter 5.6.  

 

ALGORITHM 5.2: secT (secure Training)  

INPUT: 𝒏, {𝑫𝑺𝒌}𝒌=𝟏
𝒏 , 𝑲𝒆𝒚𝑺𝒆𝒕, 𝑺𝑭,𝒎 

𝑺𝑭 = {𝑯(𝒘𝟏), … ,𝑯(𝒘𝒎)}: the set of hashes of 𝑚 selected features with the highest IG 

OUTPUT: 𝑻𝑴_𝒄 = {𝑲(𝑷(𝒄𝒉) − 𝑷(𝒄𝒔)), 𝑲(𝑷(𝒄𝒉|𝒘𝟏) − 𝑷(𝒄𝒔|𝒘𝟏)), … ,𝑲(𝑷(𝒄𝒉|𝒘𝒎) − 𝑷(𝒄𝒔|𝒘𝒎))} 

𝑻𝑴_𝒄: the binary case trained model ciphertext 

PHASE VIII - EDOs: 

1 for 𝑘 = 1 to 𝑛 do 

2    𝑇𝑉_𝑐𝑘 = 𝑔𝑒𝑡𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑇𝑉𝐴𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑇𝑜𝑆𝐹(𝐷𝑆𝑘 , 𝑆𝐹) 

3    𝐵_5𝐷𝑂𝑘 = (𝐻(𝐵_4𝐷𝑂𝑘), 𝐻(𝐵_4𝑇), 𝐻(𝐵_3𝐸),𝑀𝑇(𝑇𝑉_𝑐𝑘), 𝑇𝑆); 𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_5𝐷𝑂𝑘)) 

4    send (𝑇𝑉_𝑐𝑘 , 𝐻(𝐵_5𝐷𝑂𝑘) to TEAS 

PHASE IX - TEAS: 

5 𝑅_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒{𝑅𝐶ℎ , … , 𝑅𝑤𝑖,𝐶ℎ , …𝑅𝐶𝑠 , … , 𝑅𝑤𝑖,𝐶𝑠 , … 𝑅𝑁𝑇}; 𝑟𝑛𝑑𝑇𝑉_𝑐 = (∑ 𝑇𝑉_𝑐𝑘
𝑛
𝑘=1 ) × 𝑅_𝑝 

6 𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑣 = 𝐾 × {⌈
𝑅𝑁𝑇

𝑅𝐶ℎ
⌉ , … , ⌈

𝑅𝐶ℎ

𝑅𝑤𝑖,𝐶ℎ
⌉ , … , ⌈

𝑅𝑁𝑇

𝑅𝐶𝑠
⌉ , … , ⌈

𝑅𝐶ℎ

𝑅𝑤𝑖,𝐶𝑠
⌉} 𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑣) 

7 𝐵_5𝑇 = (𝐻(𝐵_4𝑇),𝑀𝑇(⋃ 𝐻(𝐵_5𝐷𝑂𝑘)
𝑛
𝑘=1 ),𝑀𝑇(𝑟𝑛𝑑𝑇𝑉_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_5𝑇)) 

8 send (𝑟𝑛𝑑𝑇𝑉_𝑐, 𝐻(𝐵_5𝑇)) to E2DS 

PHASE X-E2DS 

9 𝑟𝑛𝑑𝑇𝑉_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝑇𝑉_𝑐); 𝑟𝑛𝑑𝑇𝑀_𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑅𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝑓𝑃𝑟𝑜𝑏𝑠(𝑟𝑛𝑑𝑇𝑉_𝑣) 
10 𝐵_4𝐸 = (𝐻(𝐵_3𝐸), 𝐻(𝐵_5𝑇),𝑀𝑇(𝑟𝑛𝑑𝑇𝑀_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_4𝐸)) 

11 send (𝑟𝑛𝑑𝑇𝑀_𝑐, 𝐻(𝐵_4𝐸)) to TEAS 

12 PHASE XI - TEAS: 

13 𝑇𝑀_𝑐 = 𝑟𝑛𝑑𝑇𝑀_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑝; 𝑇𝑀_𝑐 = 𝑇𝑀_𝑐 − 𝑅𝑜𝑡(𝑇𝑀_𝑐, −(𝑚 + 1)) 

14 𝐵_6𝑇 = (𝐻(𝐵_5𝑇), 𝐻(𝐵_4𝐸),𝑀𝑇(𝑇𝑀_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_6𝑇)) 

15 return 𝑇𝑀_𝑐 

 

 

secT – secure Training. Given in Algorithm 5.2. In Phase VIII each of the EDOs locally 

constructs the training vector , 𝑇𝑉_𝑣𝑘, s.t. the first and the (𝑚 + 1)-th index have the local 

ham 𝑁(𝑘)(𝑐ℎ) and spam 𝑁(𝑘)(𝑐𝑠) counts, respectively, while the indexes from 1 to 𝑚 contain 

the local ham frequencies 𝑓(𝑘)(𝑤𝑖, 𝑐ℎ) , and indexes from 𝑚 + 2 till 2𝑚 + 2 have the local 
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spam frequencies 𝑓(𝑘)(𝑤𝑖, 𝑐𝑠) corresponding to the words of the selected features’ set 𝑆𝐹, 

respectively, where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑘 ≤ 𝑛 (the upper vectors of Fig.5.7, lines 1-4). For 

the needs of Laplace Smoothing (Chapter 2.2.1 and 2.2.2) an arbitrarily chosen EDO adds an 

extra 1 to the indexes corresponding to word frequencies and adds the dictionary size (in our 

case 𝑚) to the first and (𝑚 + 1)-th index corresponding to ham and spam counts. After 

encoding and encrypting 𝑇𝑉_𝑣𝑘 to get 𝑇𝑉_𝑐𝑘, they are send to TEAS, which in Phase IX 

homomorphically sums them up and randomizes this sum to get 𝑟𝑛𝑑𝑇𝑉_𝑐 (line 5, Fig.5.7), 

and sends it to E2DS (line 8). In Phase X E2DS finds the randomized logarithmic terms of 

the MNB trained model (Section IV-A), encrypts them to get 𝑟𝑛𝑑𝑇𝑀_𝑐 (Fig.5.8, line 9) and 

sends it to TEAS (line 11).  

Finally, in Phase XI TEAS removes the randomizations and subtracts the rotated result 

(Fig.5.8, line 13) to get the final MNB trained model according to (2.7).  

Note: if instead of the frequencies 𝑓(𝑘)(𝑤𝑖, 𝑐ℎ) and 𝑓(𝑘)(𝑤𝑖, 𝑐𝑠) we put 𝑁(𝑘)(𝑤𝑖, 𝑐ℎ) and 

𝑁(𝑘)(𝑤𝑖, 𝑐𝑠) at 𝑇𝑉_𝑣𝑘s in Phase I, the final trained model will be the one based on NB 

(Chapter 2.1.1). 

 

Improvement 5.1: after obtaining it, the trained model 𝑇𝑀_𝑐 is rarely changed in practice. 

We can utilize this fact to send it only once to the EC and amortize the communication cost 

among all the secure classification instances which will initiated by the EC. 

 

Fig.5.7. Getting and randomizing the global frequencies in SIMD fashion. 
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Fig.5.8. De-randomizing and rotating 𝑟𝑛𝑑𝑇𝑀_𝑐 to get the final trained model 𝑇𝑀_𝑐 

 

ALGORITHM 5.3: secT-MLMO (secure Training for Multi-Label Multi-Output datasets)  

INPUT: 𝒏, {𝑫𝑺𝒌}𝒌=𝟏
𝒏 , 𝑲𝒆𝒚𝑺𝒆𝒕, 𝑺𝑭𝑴𝑳𝑴𝑶 

𝑺𝑭𝑴𝑳𝑴𝑶: the set of |𝐿| set hashes, each of 𝑚𝑙 selected features with the highest IG 

OUTPUT: 𝑻𝑴𝑴𝑳𝑴𝑶_𝒄 = {{{𝐾𝑙𝑜𝑔𝑃(𝐶𝑐
𝑙), {𝐾𝑙𝑜𝑔𝑃(𝑤𝑖|𝐶𝑐

𝑙)}
𝑖=1

𝑚𝑙

}
𝒄=𝟏

|𝑪𝒍|

}

𝒍=𝟏

|𝑳|

} 

𝑻𝑴𝑴𝑳𝑴𝑶_𝒄: the MLMO trained model ciphertext 

PHASE VIII - EDOs: 

1 for 𝑘 = 1 to 𝑛 do 

2    𝑇𝑉𝑀𝐿𝑀𝑂_𝑐𝑘 = 𝑔𝑒𝑡𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑇𝑉𝐴𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑇𝑜𝑆𝐹 − 𝑀𝐿𝑀𝑂(𝐷𝑆𝑘 , 𝑆𝐹
𝑀𝐿𝑀𝑂) 

3    𝐵_5𝐷𝑂𝑘 = (𝐻(𝐵_4𝐷𝑂𝑘), 𝐻(𝐵_4𝑇), 𝐻(𝐵_3𝐸),𝑀𝑇(𝑇𝑉
𝑀𝐿𝑀𝑂_𝑐𝑘), 𝑇𝑆); 

𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_5𝐷𝑂𝑘)) 

4    send (𝑇𝑉_𝑐𝑘 , 𝐻(𝐵_5𝐷𝑂𝑘) to TEAS 

PHASE IX - TEAS: 

5 𝑅_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒 {{{𝑅𝐶𝑐𝑙 , {𝑅𝑤𝑖|𝐶𝑐𝑙
}
𝑖=1

𝑚𝑙

}
𝒄=𝟏

|𝑪𝒍|

}

𝒍=𝟏

|𝑳|

, 𝑅𝑁𝑇} ; 𝑟𝑛𝑑𝑇𝑉_𝑐 = (∑ 𝑇𝑉𝑀𝐿𝑀𝑂_𝑐𝑘
𝑛
𝑘=1 ) × 𝑅_𝑝 

6 𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑣 = 𝐾 ×

{
 
 

 
 

{{⌈
𝑅𝑁𝑇

𝑅
𝐶𝑐
𝑙
⌉ , {⌈

𝑅
𝐶𝑐
𝑙

𝑅
𝑤𝑖|𝐶𝑐

𝑙
⌉}

𝑖=1

𝑚𝑙

}

𝒄=𝟏

|𝑪𝒍|

}

𝒍=𝟏

|𝑳|

}
 
 

 
 

; 𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑣) 

7 𝐵_5𝑇 = (𝐻(𝐵_4𝑇),𝑀𝑇(⋃ 𝐻(𝐵_5𝐷𝑂𝑘)
𝑛
𝑘=1 ),𝑀𝑇(𝑟𝑛𝑑𝑇𝑉_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_5𝑇)) 

8 send (𝑟𝑛𝑑𝑇𝑉_𝑐, 𝐻(𝐵_5𝑇)) to E2DS 

PHASE X-E2DS 

9 𝑟𝑛𝑑𝑇𝑉_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝑇𝑉_𝑐); 𝑟𝑛𝑑𝑇𝑀𝑴𝐿𝑀𝑂_𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑅𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝑓𝑃𝑟𝑜𝑏𝑠(𝑟𝑛𝑑𝑇𝑉_𝑣) 
10 𝐵_4𝐸 = (𝐻(𝐵_3𝐸), 𝐻(𝐵_5𝑇),𝑀𝑇(𝑟𝑛𝑑𝑇𝑀_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_4𝐸)) 

11 send (𝑟𝑛𝑑𝑇𝑀_𝑐, 𝐻(𝐵_4𝐸)) to TEAS 

12 PHASE XI - TEAS: 

13 𝑇𝑀𝑀𝐿𝑀𝑂_𝑐 = 𝑟𝑛𝑑𝑇𝑀𝑴𝐿𝑀𝑂_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑝;  

14 𝐵_6𝑇 = (𝐻(𝐵_5𝑇), 𝐻(𝐵_4𝐸),𝑀𝑇(𝑇𝑀_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_6𝑇)) 

15 return 𝑇𝑀𝑀𝐿𝑀𝑂_𝑐 

 

Algorithm 5.3, which deals with multi-label multi-output textual datasets goes along similar 

lines with Algorithm 5. Of course, it is designed for such a scenario and in itself incorporates 
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the multi-class scenario missing from Algorithm 5.2 for textual datasets. Algorithm 5.3 can 

be seen as a continuation of Algorithm 4.4 which securely selects the best features according 

to the information gain (Chapter 2.2, eq. (2.8)) for each label. 

 

Improvement 5.2. For computational and communicational efficiency purposes for 

Algorithms 5.1-5.3, whenever possible, we apply the polynomial switching technique 

proposed in [55], use multiple cores and threads (thus parallelize to the maximum extend), 

do simultaneous execution of part of the protocols in different participants whenever it’s 

possible, i.e. adding blocks to blockchain after sending data to other participants or 

generating the participant’s corresponding random data before/after the participants 

receive/send their data, and for multi-query purposes we replicate the ciphertexts at last 

phases of the protocols instead of from the very beginnings. Those techniques alone give an 

improvement of several folds with respect to the original protocols.  

 

Improvement 5.3. If the number of slots needed for the training model is 𝑛𝐿 (Fig.5.3), then 

in a single ciphertext we can pack (replicate) the trained model for 𝑝 =
𝑁

𝑛𝐿
 time for increased 

throughput during the secure classification stage, where 𝑁 is the polynomial modulus of the 

ciphertext. 

 

Improvement 5.4. During the secure classification stage (Chapter 6) we need to 

homomorphically find the sum of 𝑛𝑠 slots, where 𝑛𝑠 is the number of slots dedicated to a 

single class (Fig. 5.2). An old version of the secure sum requires 𝑛𝑠 to be a power of two, 

and if it is not the case dummy zero are appended up until that goal is reach, in the processing 

hurting the throughput of the algorithms due to those dummy zeros. In Chapter 6.2 we 

propose a novel secure sum algorithms (Algortihm 6.1) for which 𝑛𝑠 is not necessarily a 

power of two.     
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5.5. Theoretical and experimental evaluations and comparisons 

Table 5.1. gives the theoretical comparisons for the computation and communication costs 

among different schemes during the PP training. In the process we tend to use the described 

schemes in the most efficient and optimized way they can be utilized. However, we do this 

without losing the generality by making any assumption on the number of features 𝑓, the 

number of classes 𝑐 or the cardinalities of 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓. 

For the experimental evaluations, we run our codes in a machine with Intel Core i3-4000M 

processor with two physical cores, each of 2.4GHz (we utilize one core only in our 

implementations) with 4GB of DDR3 RAM and 64-bit Wındows 10 Pro as an OS. For SWHE 

purposes we use C++ based Microsoft’s SEAL 3.2 library [40] which implements a version 

of [59]. 

For evaluating and comparing our algorithms with the state of the art over the same 

benchmark datasets, we chose the textual SMS spam dataset [84-85]. After closely examining 

the dataset we realized that people tend to avoid vowels in their SMSes in order to make them 

shorter. Also, while writing the words, they make more mistakes when they write the vowels 

than they do with consonants. In this sense, instead of going with the usual preprocessing 

procedure (punctuation removal, stop-word removal, stemming, etc.), we came up with the 



70 
 

Table 5.1. Theoretical comparison for the costs of the PP training algorithm for NB models among different schemes 

Sch. 
Kantarc. et.al [61] 

(sec. sum protocol) 
Kantarc. et. al [61] 
(sec sum of shares) 

Vaidya. et.al 
[62] (sec log) 

Yang et.al [64] Yi et.al [65] Liu et.al [66] Liu et.al [67] 
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idea of using bigrams consisted exclusively of consonants. In this manner we extracted 441 

features (21x21 consonant pairs for a total of 441 consonant bigrams) instead of the few 

thousands features (5000 to 20000 thousands of bag of words) that are usually used for SMS 

spam classification purposes [85]. Depending on whether a bigram is found or not in an SMS, 

its’ value is 0 or 1. E.g., the sms: “hay men, whats ap; ham” has 1 for the columns (features) 

of those bigrams: “hy”, “mn”, “wh”, “ht” and “ts”, while for all the others it has 0s. 

For comparison and benchmark purposes with the other non-textual schemes that deal with 

secure NB training and/or classification, we will also use the Breast Cancer Wisconsin [86] 

and the Acute Inflammation Disease [87] datasets. 

Considering the standardizations of [80], for the polynomial degrees of 𝑁 =

4096, 8192,16384 we use a plain modulus of 𝑡 =  27, 37, 62 bits, respectively, and a 

coefficient modulus of 𝑞 = 109, 218, 438 bits, respectively. 

For the SMS-spam dataset 𝐶 =  {𝑠𝑝𝑎𝑚, ℎ𝑎𝑚}, so the number of classes is 𝑐 = 2. For the 

number of features we have 𝑓 = 441, and for every feature 𝐹𝑖 = {0,1} so |𝐹𝑖| = 2 for all i, 

s.t . 1 ≤  𝑖 ≤  𝑓. We horizontally partition the SMS dataset to simulate for 𝑛 =

10, 20, 30, 40, 50 DOs. In order to construct the training vector which contains the 

frequencies (Fig.5.2 and Fig.5.3), for the SMS-spam dataset we need ∑ |𝐹𝑖| + 1 = 883
441
𝑖=1   

slots per class (Fig.5.2). However, due to the usage of an old version the secSum algorithm 

which works when the number of slots in a ciphertext for which we find the sum is a power 

of two, and if it’s not the case dummy slots with values of zeros are padded to achieve this 

effect  (improved in Chapter 6.2, algorithm 6.1 so the number of slots shouldn’t necessarily 

be a power of two), per class we need 𝑛𝑠 = 2
⌈log (∑ |𝐹𝑖|+1)

441
𝑖=1 ⌉ = 1024 slots, and will fill up 

the remaining slots with dummy values, preferably zeros (Fig.5.2). For both classes in total 

we need 𝑛𝐿 = c · 𝑛𝑠 = 2048 slots (Fig.5.3). This means that we need at least a polynomial 

of degree 𝑁 = 2048 to construct the training vector at DOs. However, due to noise budget 

being consumed because of homomorphic encryptions and the chosen value 𝑡 for the plain 

modulus dictated from the needs of the protocol (we multiply by a constant 𝐾 and sum up 

883 integers whose sum shouldn’t surpass 𝑡), the lowest degree we can use in our scenario is 

𝑁 = 4096 (even when we deal with one query during the classification stage). For the same 

reasons, when 𝑁 = 4096, the random values of 𝑅_𝑝 and ℎ_𝑝 (needed for the secure 

comparison algorithm) were small, however, for higher polynomial degrees 𝑅_𝑝 and ℎ_𝑝 can 
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be integers of 64 or more bits, which is more than enough for real case deployments. In order 

to increase the throughput, for the classification stage we considered packing (batching) of 

𝑝 =
𝑁

𝑛𝐿
 = 2, 4, 8 encrypted queries into one ciphertext using the CPack algorithm (Chapter 

6.2), and for this purpose for the final ciphertext result we used polynomials of degree 𝑁 =

4096, 8192 and 16384, respectively. 

Applying the same logic, for the Breast Cancer dataset we have 𝑓 = 9 since it has 9 features 

(attributes), and each of the features has 10 values, thus 𝐹𝑖 = {1, 2…10} so |𝐹𝑖| = 10 for all 

𝑖, s.t . 1 ≤  𝑖 ≤  𝑓. It has two classes, 𝐶 = {𝑚𝑎𝑙𝑖𝑔𝑛, 𝑏𝑒𝑛𝑖𝑔𝑛}, so 𝑐 = 2. This means that for 

the per class portion of the training vector (Fig.5.2), hence per class query vector as well 

(Fig.5.3), we need 𝑛𝑠 = 2⌈log (∑ |𝐹𝑖|+1)
9
𝑖=1 ⌉ = 128 slots per class, or in total its 𝑛𝐿 = 𝑐 · 𝑛𝑠 =

256 slots for the whole training vector [𝑇𝑉(𝑘)] (Fig.5.3). We also split the Breast Cancer 

dataset to simulate for 𝑛 =  10, 20, 30, 40, 50  DOs. Due to relatively low number of slots 

used for the trained model or the encrypted query, for batching purposes we can pack 𝑝 =

𝑁

𝑛𝐿
 =  16, 32, 64 queries into one ciphertext, which for the reasons explained above, will 

have polynomials of degree 𝑁 =  4096 for 𝑝 = 16, then 𝑁 =  8192 for 𝑝 = 32, and 𝑁 =

 16384 for 𝑝 = 64.   

On the other hand, for the acute inflammation dataset (AID) we have 𝑓 =  6 attributes 

where 5 of the 6 attributes are binary (have two values {𝑦𝑒𝑠, 𝑛𝑜}), while the temperature 

attribute is an integer varying between 35.5 and 41.5oC. If we assign 53 slots for the 

temperature by discretizing the integer value it takes, then knowing that we need 10 slots for 

the other 5 attributes, for the number of slots per class we have 𝑛𝑠 = 2⌈log (∑ |𝐹𝑖|+1)
6
𝑖=1 ⌉ = 64 

slots. Since AID is a multivariate dataset (it has two class labels), one label is for the 

Inflammation of urinary bladder (IUB), thus 𝐶1 = {𝑦𝑒𝑠, 𝑛𝑜} so 𝑐1 = 2, and the other one is 

for the Nephritis of renal pelvis origin (NRPO), thus 𝐶2 = {𝑦𝑒𝑠, 𝑛𝑜} so 𝑐2 = 2 again. In this 

manner for both the labels, which have two classes, we have 𝑐1 · 𝑛𝑐 = 128 slots and 𝑐2 ·

𝑛𝑐 = 128 slots, for a total of 𝑛𝐿 = (𝑐1 + 𝑐2) · 𝑛𝑠 = 256 slots per query of two labels. 

However, here with a single query we do two classifications (labeling). For the training stage 

again we simulate for 𝑛 = 10,20,30,40,50 DOs. For the classification stage we use packing 
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of 𝑝 =
𝑁

𝑛𝐿
 =  16, 32, 64 queries into one ciphertext for polynomial degrees of 𝑁 =

4096, 8192, 16384, respectively. 

For benchmark and comparison purposes with the state-of-the-art schemes dealing with 

secure training over textual datasets, we used the email textual dataset Enron [37]. Its 

implementations can be found in [81].  for a total of around 9 000 lines of original C++ code. 

Enron e-mail dataset is a collection of e-mails from 150 user profiles, with a total of 16 555 

ham and 17 148 spam e-mails. For the dataset pre-processing in line 2 of the 𝑠𝑒𝑐𝐹𝑆 − 𝑆1 

(Algorithm 4.2) we applied stop-words removal, partial punctuation removal, stemming by 

using the library in [45] and converting all of the letters to lowercase. For our protocols, the 

input parameter values for the Enron dataset are 𝑣𝑎𝑙 = 5 𝑎𝑛𝑑 𝐾1 = 100 000.  

For the SWHE parameters (Chapter 2.4.1) for 𝑁 = 8192,16384 we use the corresponding 

values of 𝑡 = 37,60 bits and 𝑞 = 218,438 bits, respectively and security of 𝜆 = 128 bits. 

For our implementation purposes of homomorphic operations, we chose Microsoft’s SEAL 

3.4 library [29] based on the modified FV scheme. Since it works only with integers, for all 

the datasets we had to convert the logarithms of all of the probabilities into integers by 

multiplying them with a constant 𝐾. When 𝐾 = 255 we didn’t have any accuracy loss due 

to the integerization and rounding process for the server-centric classification. For the user-

centric classification that value rose to 𝐾 = 430 due to incorporating the STC guard into our 

protocol against the STC attack given in [10]. Those values for the constant 𝐾 are consistent 

with those found in literature for the Naïve Bayes model which reported that multiplying the 

logarithms of the probabilities with an 8-10 bits constant is enough to avoid any loss of 

classification accuracy [69].  

Fig.5.9 gives the computation cost for PPTMDO (Algorithm 5.1). Since the computation 

in Phase I is done simultaneously at all EDO, for EDOs we take the average cost with respect 

to the number of EDOs involved. As it was expected, the average cost at EDOs and at EDS 

remains pretty much the same (constant) among different number of EDOs, while the cost at 

TACS linearly increases with the number of EDOs since TEAS has to aggregate (sum up) all 

of the ciphertexts send from the EDOs. For the communication cost, we have 𝑛 ciphertext of 

the same size transmitted from each DO to TEAS, one from TECS to E2DS and one from 

E2DS back to TEAS, for a total of (𝑛 + 2) ∙ 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑠𝑖𝑧𝑒 transmitions. The 
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𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑠𝑖𝑧𝑒 size is calculated as 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑠𝑖𝑧𝑒 = 2 ∙ 𝑁 ∙ 𝑞 𝑏𝑖𝑡𝑠 [56], where 𝑁 is the 

polynomial modulus and 𝑞 is the coefficient modulus.  

Regardless of the dataset type or size, the number and type of the expensive homomorphic 

operations is the same in PPTMDO. So, as expected, when experimenting with datasets in 

[84-85], [86] and [87], we got the same communication costs and roughly the same 

computation cost as they are shown in Fig.5.9. 

 

 

Figure 5.9. Computation cost of the participants in PPTMDO (Algorithm 5.1) for different 

polynomial sizes and number of EDOs for datasets in [84-85], [86] and [87] 

 

Table 5.2 gives the cumulative (total) computation and communication costs for each 

participant while running Algorithm 5.2. for the Enron email [37] and SMS dataset [84-85]. 

It report results for different polynomial sizes 𝑁 and numbers of EDOs 𝑛. The size of a single 

ciphertext is 2 ∙ 𝑁 ∙ 𝑞 bits. In Algorithm 5.2, each participant transfers one ciphertext each, 

for a total (cumulative) communication cost of (𝑛 + 2) ciphertext transmissions (𝑛 EDOs, 

TEAS and E2DS), which are reported in the corresponding columns in Table 5.2 in MB.  
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Table 5.2. Algorithm 5.2 costs for different polynomial sizes N and EDO numbers n 

N 

n 

Comput. (ms) 

N=8192 
Commun. 

(MB) 

Computation 

(ms)N=16384 
Commun. 

(MB) 
EDO TEAS E2DS EDO TEAS E2DS 

Enron email dataset [37] 

10 1690 149 65 5.1 803 557 53 20.5 

20 1382 212 62 9.3 582 646 73 37.6 

30 1044 198 70 13.6 530 1581 52 54.7 

40 941.0 203 71 17.8 413 1966 55 71.8 

50 283.3 235 63 22.4 392 1752 48 88.9 

SMS spam corpus dataset [84-85] 

10 16.8 7.8 4 5.1 36.5 34.9 11.9 21.9 

20 16.7 9.5 4.2 9.4 35.8 42.1 1.7 40.2 

30 16.4 13.9 3.7 13.7 36.1 53.4 10.3 58.5 

40 16.3 17.4 4.1 18.0 36.5 65.3 10.8 76.8 

50 16.1 19.8 3.9 22.3 37.8 71.0 11.0 95.0 

 

Table 5.3 gives experimental comparisons for the PP training costs among different schemes 

and datasets among non-textual datasets, where our schemes are represented by secT, 

(Algorithm 5.2) 

 

Table 5.3.  Cumulative experimental results among all participants for PP training of non-

textual datasets for 𝑛 = 5 EDOs. Our scheme is represented by Algorithm 5.1. 

Scheme 

Cost 

Yang et.al 

[32] 

Liu et. al. 

[23] 
Our  Liu et. al. 

[33] 
Our  

Dataset Breast Cancer Wisconsin Data Set 

[86] 

Acute Inflammations 

[87] 

Computation. ≈1.8 s 2951.8 min 22.15 ms 8.848 sec. 22.47 ms 

Communication ≈ 7.76 MB 267.4 MB 763 KB 968 KB 763 KB 

 

Table 5.4 gives experimental comparisons for the PP training costs among different schemes 

applicable to textual datasets and our schemes are represented by secT, (Algorithm 5.2) 
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Table 5.4. Secure training comparisons among different schemes 

Scheme Comp. cost Comm. cost ML algorithm Class. Acc. 

Enron email dataset [37] 

[14]* 11.1 days 120 GB Deep Learning 86.3% 

[14]** 5.04 days 120 GB Deep Learning 86.3% 

Ours 10.16 min 316 MB MNB 99.1% 

SMS spam corpus dataset [84-85] 

[15] 21.57 ms 763 KB NB 93.1% 

Ours 18.20 ms 709 KB NB 93.1% 

MNIST [88] 

[88] 55.5 days Not report. Deep Learning 96.3% 

*utilizing 104 cores of Intel Xeon processors with 2.2 GHz and 482 GB of RAM 

         **Improved version of the same scheme over the same hardware resources 

 

 

5.6. Security analysis and proofs 

While proving the security of our protocols given in this Chapter, we have in mind the 

definitions, concepts and Theorems given in Chapter 2.4.2 

 

Theorem 5.1:  PPTMDO (Algorithm 5.1) is a secure multi-party protocol (SMC) under the 

semi-honest model 

Proof: Here we compute the probabilistic function 𝑓(𝑃𝑘, {𝐷𝐵𝑖}𝑖=1
𝑛 , 𝜙, 𝑠𝑘) =

𝑓 ({𝑓𝐷𝑂𝑖}𝑖=1
𝑛
, 𝑓𝑇𝐴𝐶𝑆, 𝑓𝐸𝐷𝑆) = ({𝜙}𝑖=1

𝑛 , 𝑇𝑀_𝑐, 𝜙) using the protocol 𝑃𝑃𝑇𝑀𝐷𝑂, where 𝜙 

means no input or output for the corresponding participant, respectively. For the outputs of 

the corresponding protocol we have 𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝑃𝑇𝑀𝐷𝑂 =

({𝑜𝑢𝑡𝑝𝑢𝑡𝐷𝑂𝑖
𝑃𝑃𝑇𝑀𝐷𝑂}

𝑖=1

𝑛
, 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝐴𝐶𝑆

𝑃𝑃𝑇𝑀𝐷𝑂 , 𝑜𝑢𝑡𝑝𝑢𝑡𝐸𝐷𝑆
𝑃𝑃𝑇𝑀𝐷𝑂) = ({𝜙}𝑖=1

𝑛 , 𝑇𝑀_𝑐, 𝜙). For the views 

of all of the DOs we have: {𝑉𝐷𝑂𝑖
𝑃𝑃𝑇𝑀𝐷𝑂}

𝑖=1

𝑛
= {(𝑃𝑘, 𝐷𝐵𝑖, 𝑟𝐷𝑂𝑖)}𝑖=1

𝑛
. For the views of TACS 

and EDS we have 𝑉𝑇𝐴𝐶𝑆
𝑃𝑃𝑇𝑀𝐷𝑂 = (𝑃𝐾, 𝑟𝑇𝐴𝐶𝑆, [𝑇𝑉(𝑘)]𝑘=1

𝑛 , 𝑟𝑛𝑑𝑇𝑀_𝑐 ),  

𝑉𝐸𝐷𝑆
𝑃𝑃𝑇𝑀𝐷𝑂 = (𝑃𝑘, 𝑠𝑘, 𝑟𝐸𝐷𝑆, 𝑟𝑛𝑑𝐺𝑇𝑉_𝑐), respectively. Since the DOs don’t receive any 

message or don’t have any output, for them we give the trivial simulator {𝑆𝐷𝑂𝑖
𝑃𝑃𝑇𝑀𝐷𝑂}

𝑖=1

𝑛
=

{(𝑃𝑘, 𝐷𝐵𝑖, 𝑟𝐷𝑂𝑖̃ )}
𝑖=1

𝑛
, where  𝑟𝐷𝑂𝑖 and  𝑟𝐷𝑂𝑖̃  are from the same distribution. For the simulator 

of TACS we have 𝑆𝑇𝐴𝐶𝑆(𝑃𝑘, 𝑓𝑇𝐴𝐶𝑆) = (𝑃𝑘, 𝑟𝑇𝐴𝐶𝑆̃, [𝑇𝑉(𝑘)]𝑘=1
𝑛̃ ,𝑟𝑛𝑑𝑇𝑀_𝑐̃ ),  where 𝑟𝑇𝐴𝐶𝑆̃ has 
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the same distribution as 𝑟𝑇𝐴𝐶𝑆, while  [𝑇𝑉_𝑐𝑘]𝑘=1
𝑛̃  are randomly generated ciphertexts which 

are indistinguishable from their [𝑇𝑉_𝑐𝑘]𝑘=1
𝑛  counterparts due to the semantic security of the 

RLWE schemes. Since TACS as an output has the 𝑇𝑀_𝑐 then we have 𝑟𝑛𝑑𝑇𝑀_𝑐̃ = 𝑇𝑀_𝑐 −

𝑟𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑝, thus  {𝑆𝑇𝐴𝐶𝑆(𝑃𝑘, 𝑓𝑇𝐴𝐶𝑆), 𝑓({𝐷𝐵𝑖}𝑖=1
𝑛 , 𝜙, 𝑠𝑘)} ≅𝐶 {𝑉𝑇𝐴𝐶𝑆

𝑃𝑃𝑇𝑀𝐷𝑂,

𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝑃𝑇𝑀𝐷𝑂). For the simulator of EDS we have 𝑆𝐸𝐷𝑆(𝑃𝑘, 𝑠𝑘, 𝑓𝐸𝐷𝑆) =

(𝑃𝑘, 𝑠𝑘, 𝑟𝐸𝐷𝑆̃ , 𝑟𝑛𝑑_𝐺𝑇𝑉_𝑐̃ ), where random 𝑟𝐸𝐷𝑆 and 𝑟𝐸𝐷𝑆̃  are  from the same distribution, 

while 𝑟𝑛𝑑_𝐺𝑇𝑉_𝑐̃  is a random ciphertext, thus 

{𝑆𝐸𝐷𝑆(𝑠𝑘, 𝑓𝐸𝐷𝑆), 𝑓({𝐷𝐵𝑖}𝑖=1
𝑛 , 𝜙, 𝑠𝑘)} ≅𝐶 {𝑉𝑇𝐴𝐶𝑆

𝑃𝑃𝑇𝑀𝐷𝑂, 𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝑃𝑇𝑀𝐷𝑂)    ∎ 

 

Corollary 5.1: If up to 𝑛 − 1 DOs collude, the PPTMDO is still secure under the semi-honest 

model. 

Proof: Without loss of generality let’s assume that the colluding DOs are 𝑖 = 2,… , 𝑛 and let 

the common view of them be 𝑉
𝐷𝑂
𝑃𝑃𝑇𝑀𝐷𝑂 = (𝑃𝑘, 𝐷𝐵, 𝑟𝐷𝑂), where 𝐷𝐵 = ⋃ 𝐷𝐵𝑖

𝑛
𝑖=2 . Let the 

view of the non-colluding DO be 𝑉𝐷𝑂1
𝑃𝑃𝑇𝑀𝐷𝑂 = (𝑃𝑘, 𝐷𝐵1, 𝑟𝐷𝑂1). Since the DOs don’t get any 

output from the function that needs to be calculated, their simulator is the trivial one 

(outputting only the private inputs and the random number generator from the same 

distribution as the views). Views and simulators for TACS and EDS are the same as in 

Theorem 5.1.             ∎ 

 

Theorem 5.2: secT  (Algorithm 5.2) is secure under the semi-honest model. 

Proof: For 1 ≤ 𝑘 ≤ 𝑛, 𝑉𝐸𝐷𝑂𝑘
secT (𝜆, 𝑥̅) = ∅ is the view, 𝑥𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝑇 = {𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐷𝑆𝑘), 𝑆𝐹} is the 

private input and 𝑂𝐸𝐷𝑂𝑘
secT (𝜆, 𝑥̅) = ∅ is the output of EDO𝑘. The trivial simulator is 𝑆𝐸𝐷𝑂𝑘

secT = ∅. 

For TEAS 𝑉𝑇𝐸𝐴𝑆
secT(𝜆, 𝑥̅) = {(𝑇𝑉_𝑐𝑘)𝑘=1

𝑛 , 𝑟𝑛𝑑𝑇𝑀_𝑐} is the view, 𝑥𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝑇 = ∅ is the input and 

𝑂𝑇𝐸𝐴𝑆
secT (𝜆, 𝑥̅) = 𝑇𝑀_𝑐 is the output. For the simulator we construct random RLWE 

ciphertexts, thus 𝑆𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝑇 (𝜆, 𝑥𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝑇 , 𝑂𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝑇 (𝜆, 𝑥̅)) = {(𝑇𝑉_𝑐𝑘̃)𝑘=1

𝑛
, 𝑟𝑛𝑑𝑇𝑀_𝑐̃ } ≅𝑐 𝑉𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝑇(𝜆, 𝑥̅). 

For E2DS 𝑉𝐸2𝐷𝑆
secT(𝜆, 𝑥̅) = {𝑟𝑛𝑑𝑇𝑉_𝑐}, 𝑆𝐸2𝐷𝑆

secT = {𝑟𝑛𝑑𝑇𝑉_𝑐̃ } ≅𝑐 𝑉𝑇𝐸𝐴𝑆
secT(𝜆, 𝑥̅)    ∎   

 

Corollary 5.2: secT is secure under the semi-honest model when out of 𝑛, 𝑛 − 3 EDOs fail 

or 𝑛 − 2 EDOs collude          ∎ 
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Theorem 5.3: Our end-to-end protocol (unprocessed datasets till the final trained model), is 

secure under the semi-honest model. 

Proof. The end-to-end protocol, denoted as 𝐸2𝐸, sequentially calls GRPV (Algorithm 4.1), 

secFS-S1 (Algorithm 4.2), secFS-S2 (Algorithm 4.3) and secT (Algorithm 4.3), while their 

security was proven in Theorems 4.1-4.3 and Theorem 5.2, respectively. We invoke Theorem 

2.1 to prove the security of E2E.            ∎ 

 

Corollary 5.3: 𝐸2𝐸 protocol is secure under the semi-honest model when out of 𝑛, 𝑛 − 3 

EDOs fail or 𝑛 − 2 EDOs collude. 

Proof: We use Corollaries 4.1, 4.2 and 5.2, then invoke Theorem 2.1.     ∎ 
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Chapter 6 

 

SECURE AND PRIVATE MACHINE 

LEARNING CLASSIFICATIONS 

 

Definition 6.1: Classification is the process of assigning a label to an unlabeled query 𝑞 

according to a trained model TM using an algorithm 𝒞, thus 𝐶𝑇𝑀(𝑞) = 𝒞(𝑇𝑀, 𝑞). 

 

In this chapter, we introduce the strict security, privacy and efficiency requirements we set 

up for the classification stage. In order to do so we propose several novel building blocks 

based on arithmetic circuits used frequently by ML classification algorithms, which we put 

in two groups: the ones belonging to general purpose one and the ones belonging to secure 

linear algebra. They all work in SIMD fashion (enabled by the SIMD properties of SWHE 

schemes proposed in Chapter 2.4.1), thus allow for a single instruction (algorithm, block) to 

be executed oved multiple data (objects, instances). In the general purpose building blocks, 

we introduce blocks, such as secure sum, secure comparison, secure comparison of all data 

slots, secure sorting, secure top-K, secure argmax, secure ciphertext permutation and secure 

ciphertext replication. Among others, in group of building blocks belonging to the secure 

linear algebra we introduce secure inner (dot) product, secure matrix-vector product, secure 

matrix-matrix product, secure matrix transpose, secure cascading matrix-matrix product, etc. 

We then utilize those building block to for our secure classification protocols which deal with 

non-textual, textual, multi-label multi-output datasets as well as secure classifications that 

can be expressed in terms of linear algebra. In the process our algorithms show flexibility in 
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terms of being server centric or client centric, depending on where the bulk of the operations 

are done. To the best of our knowledge, for the first time in literature for the NB classifier 

and for the multiple user (query) scenario where multiple users (queries) simultaneously 

process their queries in secure fashion, we deal with malicious users that arbitrarily deviate 

from the protocol (algorithm) with the aim of fully or partially retrieving data which they are 

not supposed to or with the aim of totally sabotaging the algorithm for other participants. Our 

theoretical comparison and extensive experimental evaluations give an edge to our 

algorithms from several times to orders of magnitude with respect to the state of the art in 

term of computation and communication costs.          

 

6.1. Introduction 

Main requirements for our secure classification algorithms are: 

 Privacy of the trained model  

 Privacy of the user query for both query features and their corresponding values 

(frequencies, counts, etc.)  

 Security and privacy of intermediate results 

 Privacy of the output, i.e. the final classification result 

 No loss of accuracy with respect to the plain classifier 

 Have other properties related to secure classification mentioned in Table 3.3 

 

6.2. System architecture, adversary models and protocol-flows-

at-a-glance 

Participants: 1) TEAS (The Edge Aggregating Server): a server used to do the bulk of the 

proposed protocols’ homomorphic computation. 2) E2DS (The Edge Encryption 

Decryption Server): It’s the only participant in the system that has a pair of public keys with 

SWHE properties (Chapter 2.4.1). All the data that that are homomorphically evaluated in 

our protocols are encrypted using E2DS’ public key, thus it’s the only one that can decrypt 

them. 3) EC (Edge Client): has an unclassified query that he wishes to classify in secure and 

private manner. Since the trained model TM_c doesn’t change frequently, EC keeps the 
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trained model in encrypted form using E2DS public key with SWHE properties. .All of them 

are illustrated in Fig.6.1. 

 

Adversary models: All the participants are assumed to be in the passive semi-honest (honest 

but curious) model, which means that they follow the protocol but on the background they 

try to infer some private data which they are not supposed to. A formal definition of the semi-

honest model is given in Chapter 2.4.2. We assume that TEAS and E2DS don’t collude. Also, 

during the secure classification stage we assume a more active EC that performs the STC-

attack proposed in [10]. Furthermore, for the server based classification and for the multi-

user (query) classification we deal with malicious users. The motivations for participant to 

behave in the described manners are given in [8-18]. All the participants have a pair of 

public/secret keys used for secure communications. Additionally, E2DS has a pair of 

public/secret key with SWHE properties (Chapter 2.4.1). All of these key pairs form the 

KeySet set (Chapter 5 and 6). While we designed our protocols having in mind primarily 

binary textual datasets, they are also applicable to non-textual ones and can be easily 

generalized to multi-class scenarios. This choice was done for benchmark purposes with the 

related research.   

 

Protocol flows at-a-glance. secC (secure classification): Shown in Fig.6.1. EC multiplies 

its query 𝑞_𝑝 with the trained model 𝑇𝑀_𝑐 ⓬ and sends the result to TEAS ⑫ for 

homomorphic processing and randomization ⓭.The randomized query result is send to 

E2DS while the randomizing data to EC ⑬. E2DS decrypts the randomized query result ⓮ 

and sends it back to the EC ⑭, which in turn de-randomizes the query result to get the final 

classification ⓯. Depending on where the bulk of the execution is done, which ML classifier 

we are dealing with, the number of ECs in our algorithms as well as other factors and 

scenarios, we offer several flavors of secure classification algorithms which slightly change 

their order of execution, but the main idea remains the same. They are elaborated in details 

in their corresponding sub-chapters of this chapter.    
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Fig. 6.1. Protocol flows for our secure classification algorithms 

 

6.3. General purpose secure building blocks 

 

6.3.1. Secure sums of blocks of d slots  

Given in Algorithm 6.1. All of the known schemes in literature the deal with finding the sum 

of d numbers encoded and encrypted in SIMD fashion according to a SWHE scheme 

(Chapter 2.4.1), assume that 𝑑 is a power of. If it is not the case, then slots of dummy zeros 

are padded up until it is the case two [18], [89-90]. This results in waste of slots and in 

throughput due to the padded dummy zeros since they take the place of beneficial (real) data 

that can be encoded into those slots. In Algorithm 6.1 we overcome this drawback since we 

don’t make the assumption of d being a power of two, hence we don’t lose any slots. In this 

way we can pack and simultaneously process (find the sums of) N/d sets of integers with d 

elements (integers) in SIMD fashion where d is not necessarily a power of two.  

In order to find the sum of d encoded slots, we use the binary representation of d. For this 

purpose in line 1 we find the number of bits of d, denoted as 𝑛𝑟𝐵𝑖𝑡𝑠, and s which has one in 

its most significant bit and zeros at the other bits, thus it’s a power of two. In logs iterations 

(rotations and additions) we find the sum of s slots and if in a certain iteration the 

corresponding bit of d is one, than we store the corresponding intermediate result of sums in 

a temporary ciphertext, denoted as  𝑡𝑚𝑝_𝑐[𝑖] (lines 2-5), To the resulting sum of s slots we 
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add each stored temporary ciphertext after rotating them with the corresponding offset (lines 

7-9). 

 

ALOGRITHM 6.1: secSum  (Secure Sums of blocks) 

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒅  
𝒅: the number of slots per block for which we find the sum, not necessarily a power of 2 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: has the sum of each of the N/d blocks of 𝑑 slots at the first slot of the corresponding block     

1 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑖𝑛𝑝𝑢𝑡_𝑐; 𝑠 = ⌊𝑙𝑜𝑔2
𝑑⌋; 𝑛𝑟𝐵𝑖𝑡𝑠 = 𝑏𝑖𝑡𝑆𝑖𝑧𝑒𝑂𝑓(𝑑)  

2 for 𝑖 = 0 to s − 1 //inclusive 

3    𝑖𝑓(𝑏𝑖𝑡(𝑖, 𝑑) == 1)  
4          𝑡𝑚𝑝_𝑐[𝑖] = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐       

5    𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 + 𝑅𝑜𝑡(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, −2𝑖) 
6 for 𝑖 = 𝑛𝑟𝐵𝑖𝑡𝑠 − 2 to 0       

7    𝑖𝑓(𝑏𝑖𝑡(𝑖, 𝑑) == 1) //the LMB is the zeroth one 

8        𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑡𝑚𝑝_𝑐[𝑖] + 𝑅𝑜𝑡𝑎𝑡𝑒(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, −2𝑖)      
9 𝑚𝑎𝑠𝑘_𝑝 =  𝑠𝑒𝑐𝑆𝑢𝑚𝑀𝑎𝑠𝑘(𝑑)  
10 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 =  𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 × 𝑚𝑎𝑠𝑘_𝑝  

 

In this manner we have the sum of d slots at the beginning (first slot) of the corresponding 

block. Finally, if we want to remove the intermediate results, we multiply the resulting 

ciphertext with a plaintext mask which, starting from the first slot, has ones (1s) after each d 

slots and all other slots have value of zero (lines 9-10). In Fig.6.2a) we illustrate secSum for 

d=6, or in binary d=6=(110)2.  

 

 
Fig. 6.2. Illustration of a) secSums for d=6=(110)2    b) CRep for d=2 and r=5=(101)2 

 

Improvement 6.1. The Algorithm 6.1 does not waste slots, but it can have a relatively high 

cost in terms of numbers of rotations/additions per d slots when the number of ones in the bit 
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representation of d is relatively high, a property which is not often desired. As a consequence, 

we can have a trade-off between the wasted slots and the average number of 

rotations/additions per d slots. In general, experimental results show that the approach of 

Algorithm 6.1 is the best when d is between 0.5 and 0.75 the value of its closest power of 

two that is greater than d. This makes Algorithm 6.1 to be done in logarithmic time with 

respect to d.  

 

Improvement 6.2. The multiplication with the mask (lines 9-10) can be skipped and merged 

with the subsequent algorithm, which comes after secSum.   

 

6.3.2. Ciphertext Replication 

Given in Algorithm 6.2, it replicates for r times an input ciphertext which is assumed to have 

d data slots at its begging and the upcoming 𝑑 ∙ 𝑟 slots are all zeros. The approach in [18] 

assumes that r is a power of two, and if it is not the case then dummy zeros are appended 

until it’s the case. Using a similar approach as we did in Algorithm 6.1, in Algorithm 6.2. we 

provide the secure replication algorithm for which the replication rate r is not necessarily a 

power of two. Initially we find the number of bits in bit representation of r, then s in similar 

fashion as it was done in algorithm 6.1 (line 1). We proceed with replicating the input 

ciphertext for s times in logs iterations and in each iteration we keep (save) the temporary 

result if the bit of r corresponding to that iteration is one (lines 2-5).  

  

ALOGRITHM 6.2: CRep (Ciphertext Replication) 

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒅, 𝒓  
𝒊𝒏𝒑𝒖𝒕_𝒄: a ciphertext that will be homomorphic. replicated 

𝒅: number of data slots in 𝑖𝑛𝑝𝑢𝑡_𝑐 (starting from the first slot (the one with index zero)) 

𝒓: the replication rate   

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: 𝑖𝑛𝑝𝑢𝑡_𝑐’s 𝑑 data slots replicated for 𝑟 times  

1 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑖𝑛𝑝𝑢𝑡_𝑐; 𝑠 = ⌊𝑙𝑜𝑔2
𝑟⌋; 𝑛𝑟𝐵𝑖𝑡𝑠 = 𝑏𝑖𝑡𝑆𝑖𝑧𝑒𝑂𝑓(𝑟) 

2 for 𝑖 = 0 to s − 1 //inclusive 

3     𝑖𝑓(𝑏𝑖𝑡(𝑖, 𝑑) == 1)  
4            𝑡𝑚𝑝_𝑐[𝑖] = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐     

5     𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 + 𝑅𝑜𝑡𝑎𝑡𝑒(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 2𝑖 × 𝑑) 
6 𝑑𝑖𝑠𝑡 = 2𝑠 × 𝑑  

7 for 𝑖 = 𝑛𝑟𝐵𝑖𝑡𝑠 − 2 to 0       

8     𝑖𝑓(𝑏𝑖𝑡(𝑖, 𝑑) == 1) //the LMB is the zeroth bit 

9        𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 + 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[𝑖], 𝑑𝑖𝑠𝑡) 
10        𝑑𝑖𝑠𝑡 = 𝑑𝑖𝑠𝑡 + 2𝑖 × 𝑑        
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Finally, to the replicated ciphertext of s times we add each stored temporary ciphertext after 

rotating them with the corresponding offset (lines 7-10). We illustrate CRep for r=5=(101)2 

and d=2 in Fig.6.2b)   

 

Improvement 6.3. We use the same logic (approach) as it was done in Improvement 6.1 for 

the trade-off between the average rotations/additions per r and the case when r is padded with 

dummy zeros to be a power of two. 

 
6.3.3. Secure Random Ciphertext Permutation and its inverse  

Given in Algorithm 6.3. The input ciphertext is organized in such a way that, starting from 

the first slot (slot with index 0), we have a total of 𝑐 data slots separated by d slots from each 

other (Fig.6.3). This algorithm firstly rotates the input ciphertext for 𝑅1 slots. Afterwards it 

divides the input ciphertext into blocks of 𝑚 data slots and then permutes each data slot inside 

the block according to a random vector 𝑘 = {𝑘1, … , 𝑘𝑚} (Fig.6.4). Finally, does another 

rotation for 𝑅2 slots. 𝑅1 and 𝑅2 are random multiples of 𝑑 (Fig. 6.3). Vector 𝑘 tells by how 

much each of the 𝑚 slots of every block should be rotated inside its block. The pseudocode 

is given in Algorithm 6.3 and a detailed illustration of only the random block permutation 

(lines 3-6) for 𝑚 = 3 and 𝑘 = {2, −1,−1} is given in Fig.6.4. Algorithm 6.3 is an 

improvement of the SRCPer algorithm given in [18] which instead of using 𝑚 masks as it 

done in Algorithm 6.3, it uses one mask and 𝑚 − 1 computationally costly rotations of the 

input ciphertext to get the same effect as we get in lines 3-5.  

 

 

Fig. 6.3. Illustration of SRCPer for 𝑚 = 3 , 𝑘 = {2,−1,−1}. 𝑘,𝑚, 𝑅1 and 𝑅2 are random. 

𝑑 is the number of slots between two neighboring data slots.  
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ALGORITHM 6.3: SRCPer (Secure Random Ciphertext Permutation) and invSRCPer (inverse 

SRCPer) 

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒌, 𝑹𝟏, 𝑹𝟐, 𝒄, 𝒅 

𝒌 = {𝒌𝟏, . . . , 𝒌𝒎}: a random vector of 𝑚 elements, gives the rotation index for each of the 𝑚 data slots inside 

the block  

𝑹𝟏, 𝑹𝟐: random numbers by which the slot rotations are done in the beginning and the end. They are multiples 

of 𝑛s  
𝒄: the number of data slots (slots that carry data for us) 

𝒅: the number of slots between two neighboring data slots  

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: is the finally permuted vector 

1 𝑚𝑎𝑠𝑘𝑠𝑆𝑅𝐶𝑃𝑒𝑟𝑉𝑒𝑐_𝑝[]  =  𝑆𝑅𝐶𝑃𝑒𝑟𝑀𝑎𝑠𝑘𝑠(𝑘, 𝑐, 𝑑) //generates m masks       

2 𝑖𝑛𝑝𝑢𝑡_𝑐 = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑅1) 
3 for 𝑖 = 1 to m  
4    𝑡𝑚𝑝_𝑐[𝑖] = 𝑖𝑛𝑝𝑢𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝑠𝑆𝑅𝐶𝑃𝑒𝑟𝑉𝑒𝑐_𝑝[𝑖] 
5    𝑡𝑚𝑝_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[𝑖], 𝑘𝑖)   
6 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑡𝑚𝑝_𝑐[]) //logm additions                     

7 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 𝑅2) 

 

 
 

Fig.6.4. Detailed illustration (masks, multiplications, addition portion) of the block 

permutations of SRCPer for block size 𝑚 = 3 and rotation index vector 𝑘 = {2,−1,−1} 

done in SIMD fashion. 

 

The inverse of the SRCPer algorithm, called invSRCPer, is the same as SRCPer, but with 𝑅1 

substituted with −𝑅2 in line 2, and −𝑅2with −𝑅1 in line 7. Also, throughout the inverse 

protocol vector 𝑘 = {𝑘1, … , 𝑘𝑚} is substituted with 𝑖𝑛𝑣𝐾 = {𝑘1
′, … , 𝑘𝑚

′}, s.t. 𝑘𝑖+𝑘𝑖
′ = −𝑘𝑖, 

for 1 ≤ 𝑖 ≤ 𝑚.  
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In order to reduce the communication cost, SRCPer and invSRCPer can be modified in a way 

that instead of a ciphertext, as an input it can take an integer which would represent the input 

index of a data slot we are interested in. In this manner we can find out the new index of this 

data slot at the end of the execution of SRCPer or invSRCPer 

 

6.3.4. Secure SIMD Comparison  

The comparison technique that [77-79] use to compare two SIMD encrypted ciphertexts 

𝐴_𝑐 and 𝐵_𝑐 is 𝐴_𝑐 · 𝑅_𝑝 − 𝐵_𝑐 · 𝑅_𝑝, where 𝑅_𝑝 is a random plaintext. In order to reduce 

the number of multiplications we propose to do it as (𝐴_𝑐 − 𝐵_𝑐) · 𝑅_𝑝 (Fig.6.5a). If the 

result is positive, then 𝐴 >  𝐵 and vice-versa. However, if we compare 𝐴_𝑐 and 𝐵_𝑐 several 

times with this technique, then there is a possibility of an adversary to factor the terms  

(𝐴 − 𝐵) and/or 𝑅_𝑝, which is a leakage, so we advise using it only for one-time comparisons. 

To overcome this weakness, we propose comparing by (𝐴_𝑐 − 𝐵_𝑐) · 𝑅_𝑝 + ℎ_𝑝  in SIMD 

fashion as shown in Algorithm 6.4 and illustrated in Fig.6.5b), where 𝑅_𝑝 and ℎ_𝑝  are 

random s.t. 𝑅_𝑝 > 0 and |ℎ_𝑝| < 𝑅 . If the final term (result) is positive then 𝐴 >  𝐵, and 

vice-versa. If the polynomial size is 𝑁, then we do 𝑁 comparisons in SIMD fashion.  

 

 
 

Fig. 6.5 Simultaneous a) secure one-time comparison b) secure comparison (secComp, sC) 

of 𝑁 integer pairs in SIMD fashion 

 

ALGORITHM 6.4: secComp (Secure Comparison)  

INPUT: 𝒊𝒏𝒑𝒖𝒕𝟏_𝒄, 𝒊𝒏𝒑𝒖𝒕𝟐_𝒄 

𝒊𝒏𝒑𝒖𝒕𝟏_𝒄, 𝒊𝒏𝒑𝒖𝒕𝟐_𝒄: the input ciphertext containing data to be compared in each slot. One can be plaintext 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: contains index (component) wise secure comparison results of the input ciphertext 

1 (𝑅_𝑣, ℎ_𝑣) = 𝑟𝑛𝑑𝑆𝑒𝑐𝐶𝑜𝑚𝑝𝑉𝑒𝑐𝑡𝑜𝑟𝑠(); // 𝑅_𝑣 = {(𝑅𝑖)𝑖=1
𝑁 }, 𝑅_𝑣 = {(ℎ𝑖)𝑖=1

𝑁 } s.t. 𝑅𝑖 > 0 and |ℎ𝑖| < 𝑅𝑖 
2 (𝑅_𝑝, ℎ_𝑝) = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑅_𝑣, ℎ_𝑣) 
3 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = ((𝑖𝑛𝑝𝑢𝑡1_𝑐 − 𝑖𝑛𝑝𝑢𝑡2_𝑐) × 𝑅_𝑝) − ℎ_𝑝                     
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6.3.5. Secure comparison of all data slots (SCADS)  

SCADS securely compares all of the data slots using the secure comparison (secComp) 

Algorithm of Chapter 6.3.4. Similarly to the SRCPer algorithm, the data that we want to 

compare are at each 𝒅-th slot, starting from slot 0. In total we have 𝒄 such data slots. The 

pseudocode is given in Algorithm 6.5 and the corresponding illustration in Fig.6.6. We give 

here an improved version of SCADS from [18] where instead of rotating the resulting 

ciphertext by one slot to the right as it is done in line 5, in [18] they rotate it to the right by a 

rotation for a number of slots which is greater than one, which in turn is computationally 

costlier for several times. 

 

 

ALGORITHM 6.5: SCADS (Secure Comparison of All Data Slots)  

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒄, 𝒅 

𝒄: is the total number of data slot values that needs to be compared. In total we should do 𝑐/2 SIMD 

comparisons 

𝒅: the distance in number of slots between two neighboring slots 

OUTPUT: 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 

𝑟𝑒𝑠𝑢𝑙𝑡_𝑐: contains the comparisons between all of the data slot (slots that are multiple of 𝑑, starting from slot 

0)  

1 𝑡𝑚𝑝_𝑐 = 𝑖𝑛𝑝𝑢𝑡_𝑐 

2 for 𝑖 =  1 to 𝑐/2 do 

3    𝑡𝑚𝑝_𝑐 = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐, − 𝑑)   //rot. left for 𝑑 slots 

4    𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = (𝑖𝑛𝑝𝑢𝑡_𝑐  –  𝑡𝑚𝑝_𝑐) + 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 

5    𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 1)                       
6 (𝑅_𝑣, ℎ_𝑣) = 𝑟𝑛𝑑𝑆𝑒𝑐𝐶𝑜𝑚𝑝𝑉𝑒𝑐𝑡𝑜𝑟𝑠(); // 𝑅_𝑣 = {(𝑅𝑖)𝑖=1

𝑁 }, 𝑅_𝑣 = {(ℎ𝑖)𝑖=1
𝑁 } s.t. 𝑅𝑖 > 0 and |ℎ𝑖| < 𝑅𝑖 

7 (𝑅_𝑝, ℎ_𝑝) = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑅_𝑣, ℎ_𝑣)     
8 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = (𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 × 𝑅_𝑝) + ℎ_𝑝            
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Fig.6.6. Illustration of SCADS in SIMD fashion. 

 

6.3.6. Secure sorting  
It is given in Algorithm 6.6. Similarly, to the input in Algorithm 6.5, here also Party A has a 

ciphertext with c data slots, which, starting from the first slot (slot with index 0) are apart of 

each other for d slots. Party A performs SCADS on the input and send it to party B which 

has the decryption key. Upon decrypting, Party B learns the sorted order of the input A, but 

not their values.     

 

ALGORITHM 6.6: secSorting (Secure Sorting)  

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒄, 𝒅 

𝒄: the number of data slots (slots that carry integer data) 

𝒅: the number of slots between two neighboring data slots 

OUTPUT: 𝒔𝒐𝒓𝒕𝒆𝒅𝑰𝒏𝒅𝒆𝒙𝒆𝒔 (𝒎𝒂𝒙𝑰𝒏𝒅𝒆𝒙, 𝒕𝒐𝒑𝑲𝑰𝒏𝒅𝒆𝒙𝒆𝒔) 
𝒔𝒐𝒓𝒕𝒆𝒅𝑰𝒏𝒅𝒆𝒙𝒆𝒔_𝒗: the indexes of the input ciphertext if it was sorted according to the data values      

Party A: 

1  𝑆𝐶𝐴𝐷𝑆_𝑐 = 𝑆𝐶𝐴𝐷𝑆(𝑖𝑛𝑝𝑢𝑡𝑐, 𝑐, 𝑑) 
2  send 𝑆𝐶𝐴𝐷𝑆_𝑐 to Party B 

Party B: 

3  𝑆𝐶𝐴𝐷𝑆_𝑣 =  𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐷𝑒𝑐𝑜𝑑𝑒(𝑆𝐶𝐴𝐷𝑆_𝑐) 
4  𝑠𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣 = 𝑠𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑑𝑒𝑥𝑒𝑠𝐴𝑐𝑐𝑜𝑑𝑖𝑛𝑔𝑇𝑜𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠𝑂𝑓𝐴𝑙𝑙𝐷𝑎𝑡𝑎(𝑆𝐶𝐴𝐷𝑆_𝑣) 
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6.3.7. Secure argmax and secure top-K  

In Algorithm 6.3.7 we present a secure two party protocol (2PC) that finds the top k indexes 

of 𝑐 encrypted integers. Party A has the encrypted integer array encoded and constructed in 

a similar fashion as it was the case with the input ciphertexts at the SCADS, SRCPer and 

secSorting algorithms. Party B has the secret key. At the end of the protocol Party B finds 

the indexes of the data slot that have the top k integers of the input ciphertext and nothing 

else (neither its value, nor the sorted order of the integer array or anything else). Party A 

learns nothing. When k is 1 it is secure argmax. 

 

ALGORITHM 6.7: secArgmax and secTopK 

INPUT: 𝒊𝒏𝒑𝒖𝒕𝒄, 𝒄, 𝒅, 𝒌 

𝒄: the number of data slots (slots that carry integer data) 

𝒅: the number of slots between two neighboring data slots 

k: top k integers we are interested in (the ones with the top k highest values)  

OUTPUT: 𝒎𝒂𝒙𝑰𝒏𝒅𝒆𝒙 𝒂𝒏𝒅 𝒕𝒐𝒑𝑲𝑰𝒏𝒅𝒆𝒙𝒆𝒔 

𝒎𝒂𝒙𝑰𝒏𝒅𝒆𝒙_𝒗: the index of the original input ciphertext with the greatest value 

𝒕𝒐𝒑𝑲𝑰𝒏𝒅𝒆𝒙𝒆𝒔_𝒗: Indexes of the input ciphertext with the top-K values    

Party A: 

1 𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑𝐼𝑛𝑝𝑢𝑡_𝑐 = 𝑆𝑅𝐶𝑃𝑒𝑟(𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑑) 
2 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐 = 𝑆𝐶𝐴𝐷𝑆(𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑𝐼𝑛𝑝𝑢𝑡_𝑐, 𝑐, 𝑑) 
3 send 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐 to Party B 

Party B: 

4 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑣 =  𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐷𝑒𝑐𝑜𝑑𝑒(𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐) 
5 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥 =  𝑓𝑖𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥(𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑣) //finds the index for which the comparis. are all positive  

  //𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣 =  𝑓𝑖𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠(𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑣)  
  //top k indexes for which the comparis. are all positive  

6 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣 =  𝑐𝑜𝑛𝑠𝑡𝑟𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥)  
   //all elements of the vector are 0s, 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥 is 1  

   //𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣 =  𝑐𝑜𝑛𝑠𝑡𝑟𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣)  
   //all elements of the vector are 0s, 𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣 are 1 

7 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣)  
   //𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟( 𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣) 
   send 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐 to Party A // send 𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑐 to Party A                           

Party A 

8 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟(𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐 , 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑛𝑠)  
9 send [𝑟𝑒𝑠𝑢𝑙𝑡] to Party B 

Party B:  

10 𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣 =  𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐷𝑒𝑐𝑜𝑑𝑒(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐)  // 𝑡𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣 =  𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐷𝑒𝑐𝑜𝑑𝑒(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐) 

 

The secTopK (secArgmax) Algorithm (Algorithm 6.7) goes as follows: Party A randomly 

permutes, afterwards compares all the data slots of the input ciphertexts and sends the result 

to A (lines 1-3). Party B decrypts it, finds the permuted index of the top k integers, constructs 

a ciphertext where everything is zero, except the permuted index of the top k integers, which 

are 1 (ones) and sends this to A (lines 4-7). Party A does the inverse permutation of this 
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ciphertext and sends it back to B (lines 8-9). Finally, party B decrypts it and finds the real 

index of the top k (maximum) integer. At the end of secTopK Party B learns only the indexes 

with the top k values, but not their order or actual values, which makes it have strong security 

and privacy properties. secTopK (secArgmax) is a one-round algorithm, which makes it non-

interactive and efficient in terms of communication cost. We should note that we gave the 

secTopK (secArgmax) algorithm only for comparison purposes done in Chapter 6.9, while 

in our privacy preserving classification algorithms we use a similar sequence (logical order) 

of commands, but scattered among three entities (TEAS, E2DS and the EC). We should also 

note that we can easily come up with different flavors of our secTopK (secArgmax) protocol 

in terms of which party gets to know the final outcome (index) of the protocol, just as it is 

the case with the secure comparison and secure argmax protocols in [53]. 

 

 6.4. Secure building blocks for linear algebra 

In [89-90] they pad their input with dummy slots with values zero so their inputs are a power 

of two. Due to utilizing the corresponding secSum (Algorithm 6.1) and CRep (Algorithm 6.2) 

which don’t assume that their inputs are always powers of two, in our secure linear algebra 

algorithms we don’t have this assumption. Two ways of encoding an integer matrix into an 

integer vector are given in Fig.6.7. Row-wise encoded matrices are denoted by having an 𝑅 

as a superscript in their name, i.e. 𝑚𝑎𝑡𝑅, while column-wise encoding ones by having a 𝐶, 

i.e. 𝑚𝑎𝑡𝐶  (Fig.6.7). In this manner in a single plaintext or ciphertext of polynomial degree N 

we can pack 𝑞 =
𝑁

𝑑1∙ 𝑑2
 matrices, where 𝑑1 and 𝑑2 are the dimension (number of rows and 

columns, respectively) of the matrix. Similarly, we can pack 𝑞 =
𝑁

𝑑
 integer vectors of 

dimension d. 

 

 

Fig.6.7. Row and column-wise encoding of integer matrices into vectors 
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6.4.1. Secure Dimension replication 

As an input takes an encoded&encrypted matrix with dimensions 𝑑1 and 𝑑2 and replicates 

each of the input’s first dimension’s elements (rows) for 𝑟 times in sequential order (Fig.6.8). 

It is given in Algorithm 6.8. Initially in line 1 a mask for all of the 𝑑1 dimension is 

constructed, such that the mask of the 𝑖-th dimension has all of the slots set to zero except 

slots from  𝑖 ∙ 𝑑1-th till  (𝑖 + 1) ∙ 𝑑1 − 1 – th slots which are set to one. The bulk of the 

algorithm is done in  𝑑1 iterations such that for the 𝑖-th iteration the input matrix ciphertext 

is multiplied by the corresponding mask and the resulting ciphertext is rotated for  

𝑖 ∙ 𝑑2 ∙ (𝑟 − 1) slots to the right (lines 2-5). The resulting ciphertexts of all of the iterations 

are added into one ciphertext (line 6) which is then replicated by 𝑟 times calling Algorithm 

2 (line 7) to get the desired output. Fig. 6.8 illustrates secDRep for 𝑑1 = 2, 𝑑2 = 2, 𝑟 = 4. 

 

ALOGRITHM 6.8: secDRep - secure Dimension Replication 

INPUT: 𝒎𝒂𝒕_𝒄, 𝒅𝟏, 𝒅𝟐, 𝒓   
𝒎𝒂𝒕_𝒄: an encoded&encrypted matrix 

𝒅𝟏, 𝒅𝟐: first and second dimension of 𝑚𝑎𝑡_𝑐  

𝒓: replication rate 

OUTPUT: 𝒎𝒂𝒕𝑫𝑹𝒆𝒑_𝒄 

𝒎𝒂𝒕𝑫𝑹𝒆𝒑_𝒄: 𝑖𝑛𝑝𝑢𝑡_𝑐’s 𝑑1 dimension replicated for 𝑟 times 

1   𝑚𝑎𝑠𝑘𝑠𝑉𝑒𝑐_𝑝[] = 𝑠𝑒𝑐𝐷𝑅𝑒𝑝𝑀𝑎𝑠𝑘𝑠(𝑑1, 𝑑2) 
2   𝑡𝑚𝑝_𝑐[0] =  𝑚𝑎𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝑠𝑉𝑒𝑐_𝑝[0]   
3   for 𝑖 = 1 to 𝑑1     

4      𝑡𝑚𝑝_𝑐[𝑖]  = 𝑚𝑎𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝑠𝑉𝑒𝑐_𝑝[𝑖] 
5      𝑡𝑚𝑝_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒 (𝑡𝑚𝑝_𝑐[𝑖], 𝑖 × 𝑑2 × (𝑟 − 1)) 
6   𝑚𝑎𝑡𝐷𝑅𝑒𝑝__𝑐 =  𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑡𝑚𝑝_𝑐[]) 
7   𝑚𝑎𝑡𝐷𝑅𝑒𝑝__𝑐 = 𝐶𝑅𝑒𝑝(𝑚𝑎𝑡𝐷𝑅𝑒𝑝__𝑐 , 𝑑2, 𝑟)  

  

 

Fig. 6.8. Illustration of 𝑠𝑒𝑐𝐷𝑅𝑒𝑝(∙) for 𝑑1 = 2, 𝑑2 = 2 and 𝑟 = 4 
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6.4.2. Secure dot (inner) product 

Given in Algorithm 4. It takes two vectors of dimension 𝑑, multiplies them (line 1) and calls 

𝑠𝑒𝑐𝑆𝑢𝑚(∙) to get their final dot product (line 2). 

 

ALOGRITHM 6.9: secDotP - secure Dot (Inner) Product  

INPUT: 𝒗𝒆𝒄𝟏_𝒄, 𝒗𝒆𝒄𝟐_𝒄, 𝒅  
𝒗𝒆𝒄𝟏_𝒄, 𝒗𝒆𝒄𝟐_𝒄: two (packed) encrypted integer vectors  

𝒅: the dimension of the vectors   

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the result of the dot product contained at the first slot (of each block) 

1 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 =   𝑣𝑒𝑐1_𝑐 × 𝑣𝑒𝑐2_𝑐 

2 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝑆𝑢𝑚(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 𝑑) 

        

    

6.4.3. Secure matrix-vector product 

Given in Algorithm 6.10. As input it takes a row-encoded matrix ciphertext and a vector 

ciphertext and translates their corresponding matrix-vector multiplication into a dot product 

(line 2) by firstly replicating the vector for 𝑑1 times (line 1).    

 

ALOGRITHM 6.10: secMatVec - secure Matrix Vector Product  

INPUT: 𝒎𝒂𝒕𝑹_𝒄, 𝒗𝒆𝒄_𝒄, 𝒅𝟏, 𝒅𝟐  
𝒎𝒂𝒕𝑹_𝒄: row-encoded (packed) matrix(es) with dim. 𝑑1 × 𝑑2 

𝒗𝒆𝒄_𝒄: a (packed) column vector(s) with dimension 𝑑2 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the result of the mat-vec product after each 𝑑2  slots 

1 𝑣𝑒𝑐_𝑐 = 𝐶𝑅𝑒𝑝(𝑣𝑒𝑐_𝑐, 𝑑1, 𝑑2) 
2 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝐷𝑜𝑡𝑃(𝑚𝑎𝑡_𝑐, 𝑣𝑒𝑐_𝑐, 𝑑2)  

 

 

6.4.4. Secure matrix-matrix product 

Given in Algorithm 6.  

 

ALOGRITHM 6.11: secMatMat - secure Matrix Matrix Product 

INPUT: 𝒎𝒂𝒕𝑹_𝒄,𝒎𝒂𝒕𝑪_𝒄, 𝒅𝟏, 𝒅𝟐, 𝒅𝟑  
𝒎𝒂𝒕𝑹_𝒄: row-encoded (packed) matrix(es) with dim.  𝑑1 × 𝑑2 

𝒎𝒂𝒕𝑪_𝒄: column-encoded (packed) matrix(es) with dim 𝑑2 × 𝑑3 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the result of the mat-mat product after each 𝑑2  slots 

1 𝑚𝑎𝑡𝑅_𝑐 = 𝐶𝑅𝑒𝑝(𝑚𝑎𝑡𝑅_𝑐, 𝑑1 × 𝑑2, 𝑑3) 
2 𝑚𝑎𝑡𝐶_𝑐 = 𝑠𝑒𝑐𝐷𝑅𝑒𝑝(𝑚𝑎𝑡𝑐

𝐶 , 𝑑3, 𝑑2, 𝑑1)     
3 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝐷𝑜𝑡𝑃(𝑚𝑎𝑡𝑅_𝑐,𝑚𝑎𝑡𝐶_𝑐 , 𝑑2)  
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As an input it takes one row-encoded and one column-encoded matrix. After replicating the 

row-encoded matrix (line 1) and replicating the dimensions of the column-encoded matrix 

(line 2), it simply converts the matrix-matrix multiplication into a single dot product (line 3). 

All of the 𝑑1 × 𝑑2 × 𝑑3 plain matrix multiplications are done by a single SIMD 

homomorphic multiplication in line 3. 

 

6.4.5. Secure ciphertext compression 

Given in Algorithm 6.12. After secure matrix-vector and matrix-matrix product, the resulting 

ciphertext has its data slots scattered (separated) from each other according to the 

corresponding dimension(s) of their input. As an input it takes a ciphertext that has 

𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 number of blocks to be compressed, each with size 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒  separated from 

each other by 𝑑 slots. In the end it compresses (brings them closer) by reducing the distance 

between blocks, or by merging neighboring blocks in each iteration and when necessary in 

certain iteration by multiplying with a corresponding plaintext mask to free up space for 

further mergers in the upcoming iteration (lines 3-11). Depending on the input parameters, 

the resulting ciphertext can have all of the data slots of all of the blocks compressed together 

without any gaps (slot distances) between them, as it is illustrated in Fig.6.9a) for input 

parameters 𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 = 4, 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 1, 𝑑 = 1 and in Fig.6.9b). for input parameters 

𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 = 4, 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 1, 𝑑 = 3.  

 

ALOGRITHM 6.12: CCompress – Ciphertext Compress  

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒃𝒍𝒐𝒄𝒌𝑺𝒊𝒛𝒆, 𝒅, 𝒏𝒓𝑶𝒇𝑩𝒍𝒐𝒄𝒌𝒔  
𝒊𝒏𝒑𝒖𝒕_𝒄: a sparsely encoded (packed) ciphertext 

𝒃𝒍𝒐𝒄𝒌𝑺𝒊𝒛𝒆: number of slots per block 

𝒅: distance between two neighboring blocks in terms of slots 

𝒏𝒓𝑶𝒇𝑩𝒍𝒐𝒄𝒌𝒔: number of blocks to be compressed 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the compressed ciphertext 

1 𝑒𝑚𝑝𝑡𝑦𝑆𝑙𝑜𝑡𝑠 = 𝑑 

2 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 =  𝑖𝑛𝑝𝑢𝑡_𝑐 

3 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 log2(𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠)     
4     𝑡𝑚𝑝_𝑐 = 𝑅𝑜𝑡𝑎𝑡𝑒 (𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 , − 𝑑) 
5     𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 + 𝑡𝑚𝑝_𝑐 

6     𝑒𝑚𝑝𝑡𝑦𝑆𝑙𝑜𝑡𝑠 =  𝑒𝑚𝑝𝑡𝑦𝑆𝑙𝑜𝑡𝑠 − 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒  
7     𝑑 = 2 × 𝑑 

8     𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 2 × 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒    

9     𝑖𝑓(𝑒𝑚𝑝𝑡𝑦𝑆𝑙𝑜𝑡𝑠 == 0) 

10      𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑝[𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, 𝑑] 
11      𝑒𝑚𝑝𝑡𝑦𝑆𝑙𝑜𝑡𝑠 = 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒        
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Fig.6.9 Illustration of 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(∙) for input parameters a) 𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 = 4, 

𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 1, 𝑑 = 1 and b) 𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 = 4, 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 1, 𝑑 = 4   

 

6.4.6. Secure matrix transpose  

Given in Algorithm 6.13, it securely transposes an input matrix with dimensions   𝑑1 × 𝑑2 . 

Using the corresponding 𝑑2 masks, the input ciphertext is multiplied by them and each of 

them has the columns of the input matrix (which are going to be the rows of the resulting 

output) whose elements are scattered (in distance) by  𝑑2 slots from each other. In this way 

we firstly convert the input matrix into sparsely encoded ciphertext (lines 1-4), to which we 

apply 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(∙) to get the transposed matrix result. The illustration of 𝑠𝑒𝑐𝑀𝑎𝑡𝑇(∙) is 

given in Fig.6.10 for 𝑑1 = 2 and 𝑑2 = 2. 

 

ALOGRITHM 6.13: secMatT – Secure Matrix Transponse  

INPUT: 𝒎𝒂𝒕_𝒄, 𝒅𝟏, 𝒅𝟐 

𝒎𝒂𝒕_𝒄: a matrix with dimensions 𝑑1 × 𝑑2 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒎𝒂𝒕𝑻_𝒄: 𝑚𝑎𝑡_𝑐 transposed  

1 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑑2     

2   𝑡𝑚𝑝_𝑐[𝑖] = 𝑚𝑎𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝑀𝑎𝑡𝑇_𝑝(𝑖, 𝑑1, 𝑑2) //starting from slot I you put d1 1s in distance of d2 from eo 

3   𝑡𝑚𝑝_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[𝑖], 𝑖 × (𝑑1 × 𝑑2 − 1)) 
4 𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 = 𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑡𝑚𝑝_𝑐[]) 
5 𝑚𝑎𝑡𝑇_𝑐 =  𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 1, 𝑑2 − 1,  𝑑1 × 𝑑2) //initially block size is 1, and have  𝑑1 × 𝑑2 in dis d2 

from eo  
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Fig.6.10 Illustration of 𝑠𝑒𝑐𝑀𝑎𝑡𝑇(∙) for 𝑑1 = 2 and 𝑑2 = 2. 

 

6.4.7. Secure matrix transpose and dimension replication  

Given in Algorithm 6.14. For efficiency purposes, instead of transposing the matrix using 

𝑠𝑒𝑐𝑀𝑎𝑡𝑇(∙) and then replicating its dimensions using 𝑠𝑒𝑐𝐷𝑅𝑒𝑝(∙), 𝑠𝑒𝑐𝑀𝑎𝑡𝑇𝐷𝑟𝑒𝑝(∙) on the 

fly does them both, thus replicates the dimensions of the transposed input matrix. It is 

illustrated in Fig. 6.11.  

 

ALOGRITHM 6.14: secMatTDRep –secMatT and Dimension Replication  

INPUT: 𝒎𝒂𝒕_𝒄, 𝒅𝟏, 𝒅𝟐, 𝒓 

𝒎𝒂𝒕_𝒄: a matrix with dimensions 𝑑1 × 𝑑2  

𝒓: replication rate 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒎𝒂𝒕𝑻𝑫𝑹𝒆𝒑_𝒄: 𝑚𝑎𝑡_𝑐 transposed and its dimensions replicated by 𝑟 

1 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑑2     

2   𝑡𝑚𝑝_𝑐[𝑖] = 𝑚𝑎𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝑀𝑎𝑡𝑇_𝑝(𝑖, 𝑑1, 𝑑2) //starting from slot I you put d1 1s in distance of d2 from eo 

3   𝑖𝑓(𝑟 > 𝑑2) 
4      𝑡𝑚𝑝_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[𝑖], 𝑖 × (𝑑1 × 𝑟 − 1)) 
5    𝑒𝑙𝑠𝑒 

6      𝑡𝑚𝑝_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[𝑖], 𝑖 × (𝑑1 × 𝑑2 − 1)) 
6 𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 = 𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑡𝑚𝑝_𝑐[]) 
7 𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 =  𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 1, 𝑑2 − 1,  𝑑1) //initlly block size is 1, and have  𝑑1 in dis d2 from eo 

8 𝑖𝑓(𝑟 > 𝑑2) 
9    𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 = 𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 × 𝑚𝑎𝑠𝑘𝑀𝑎𝑡𝑇𝐷𝑅𝑒𝑝(𝑑1, 𝑑1 × (𝑟 − 1)) 
10  𝑚𝑎𝑡𝑇𝐷𝑅𝑒𝑝_𝑐 = 𝐶𝑅𝑒𝑝(𝑡𝑚𝑝𝑅𝑒𝑠_𝑐,  𝑑1, 𝑟) 
11 𝑒𝑙𝑠𝑒 

12   𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 = 𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 × 𝑚𝑎𝑠𝑘𝑀𝑎𝑡𝑇𝐷𝑅𝑒𝑝(𝑑1, 𝑑1 × (𝑑2 − 1)) 
13   𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 = 𝐶𝑅𝑒𝑝(𝑡𝑚𝑝𝑅𝑒𝑠_𝑐,  𝑑1, 𝑟) 
14   𝑚𝑎𝑡𝑇𝐷𝑅𝑒𝑝_𝑐 = 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐,  𝑟 × 𝑑1,  𝑑1 × (𝑑2 − 𝑟),  𝑑2) 
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Fig. 6.11. Illustration of 𝑠𝑒𝑐𝑀𝑎𝑡𝑇𝐷𝑅𝑒𝑝(∙) for 𝑑1 = 2, 𝑑2 = 2 𝑎𝑛𝑑 𝑟 = 2 

 

6.4.8. Secure cascading matrix vector product 

Given in Algorithm 6.15. After secMatVec, the resulting ciphertext has its data slots sparsely 

separated from each other and this makes it unsuitable for cascading (another round) of linear 

algebra multiplication. In order to make the resulting ciphertext suitable for another 

multiplication we compress the data slots using the CCompress algorithm (line 2). 

 

ALOGRITHM 6.15: secMatVecCas - secure Matrix Vector Cascading Product  

INPUT: 𝒎𝒂𝒕𝑹_𝒄, 𝒗𝒆𝒄_𝒄, 𝒅𝟏, 𝒅𝟐  
𝒎𝒂𝒕𝑹_𝒄: row-encoded (packed) matrix(es) with dim. 𝑑1 × 𝑑2 

𝒗𝒆𝒄_𝒄: a (packed) column vector(s) with dimension 𝑑2 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the compressed result of the mat-vec product 

1 𝑡𝑚𝑝_𝑐 = 𝑠𝑒𝑐𝑀𝑎𝑡𝑉𝑒𝑐(𝑚𝑎𝑡𝑅_𝑐, 𝑣𝑒𝑐_𝑐, 𝑑1, 𝑑2) 
2 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑡𝑚𝑝_𝑐, 1, 𝑑2 − 1, 𝑑1)  

 

 

6.4.9. Secure cascading matrix-matrix product 

Given in Algorithm 6.16. After secMatMat, the resulting ciphertext has its data slots sparsely 

separated from each other and this makes it unsuitable for cascading (another round) of linear 

algebra multiplication. In order to make the resulting ciphertext suitable for another 

multiplication we compress the data slots using the CCompress algorithm (line 2). 
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ALOGRITHM 6.16: secMatMatCas - secure Matrix Matrix Cascading Product 

INPUT: 𝒎𝒂𝒕𝑹_𝒄,𝒎𝒂𝒕𝑪_𝒄, 𝒅𝟏, 𝒅𝟐, 𝒅𝟑  
𝒎𝒂𝒕𝑹_𝒄: row-encoded (packed) matrix(es) with dim.  𝑑1 × 𝑑2 

𝒎𝒂𝒕𝑪_𝒄: column-encoded (packed) matrix(es) with dim 𝑑2 × 𝑑3 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the compressed result of the mat-mat product 

1 𝑡𝑚𝑝_𝑐 = 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡(𝑚𝑎𝑡𝑅_𝑐,𝑚𝑎𝑡𝐶_𝑐, 𝑑1, 𝑑2, 𝑑3) 
2 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑡𝑚𝑝_𝑐, 1, 𝑑2 − 1, 𝑑1 × 𝑑3) 

 

 

6.4.10. Secure matrix-matrix product – version 2 

Given in Algorithm 6.17. While Algorithm 6.4 takes one row-encoded and one column-

encoded matrix ciphertext, this one takes both of them as row encoded matrix ciphertexts. It 

firstly replicates the dimensions of the first matrix using CRep (line 1), on the fly transposes 

and replicated the second matrix and finally uses secDotP to find their product with a single 

SIMD multiplication.  

 

ALOGRITHM 6.17: secMatMat_v2 - secure Matrix Matrix – version 2 Product 

INPUT: 𝒎𝒂𝒕𝑹_𝒄,𝒎𝒂𝒕𝑹_𝒄, 𝒅𝟏, 𝒅𝟐, 𝒅𝟑  
𝒎𝒂𝒕𝟏𝑹_𝒄: row-encoded (packed) matrix(es) with dim.  𝑑1 × 𝑑2 

𝒎𝒂𝒕𝟐𝑹_𝒄: row-encoded (packed) matrix(es) with dim 𝑑2 × 𝑑3 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the result of the mat-mat product after each 𝑑2  slots 

1 𝑚𝑎𝑡1𝑅_𝑐 = 𝐶𝑅𝑒𝑝(𝑚𝑎𝑡1𝑅_𝑐, 𝑑1 × 𝑑2, 𝑑3) 
2 𝑚𝑎𝑡2𝑅_𝑐 = 𝑠𝑒𝑐𝑀𝑎𝑡𝑇𝐷𝑅𝑒𝑝( 𝑚𝑎𝑡2𝑅_𝑐, 𝑑2, 𝑑3, 𝑑1)     
3 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝐷𝑜𝑡𝑃(𝑚𝑎𝑡1𝑅_𝑐,𝑚𝑎𝑡2𝑅_𝑐, 𝑑2)  

 

 

6.4.11. Secure cascading matrix-matrix product – version 2  

Given in Algorithm 6.18.  

 

ALOGRITHM 6.18: secMatMatCas_v2 - secure Matrix Matrix Cascading– version 2 Product 

INPUT: 𝒎𝒂𝒕𝑹_𝒄,𝒎𝒂𝒕𝑹_𝒄, 𝒅𝟏, 𝒅𝟐, 𝒅𝟑  
𝒎𝒂𝒕𝟏𝑹_𝒄: row-encoded (packed) matrix(es) with dim.  𝑑1 × 𝑑2 

𝒎𝒂𝒕𝟐𝑹_𝒄: row-encoded (packed) matrix(es) with dim 𝑑2 × 𝑑3 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the result of the mat-mat product after each 𝑑2  slots 

1 𝑡𝑚𝑝_𝑐 = 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡_𝑣2(𝑚𝑎𝑡1𝑅_𝑐,𝑚𝑎𝑡2𝑅_𝑐, 𝑑1, 𝑑2, 𝑑3) 
2 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑡𝑚𝑝_𝑐, 1, 𝑑1 × 𝑑2 − 1, 𝑑1 × 𝑑3) //from column-wise to row wise direct conversion 
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Just as it was the case with secMatMat, after secMatMat_v2 the resulting ciphertext has its 

data sparsely encoded. We use CCompress again to compress these data so the resulting 

ciphertexts is without any gaps (empty slots) between the data, thus making it ready for 

another round of matrix operations. 

 

6.4.12. Secure ciphertext compression – version 2  

Given in Algorithm 6.19. This is a variant of CCompress where at the input parameters the 

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 (number of slots per block) is greater than 𝑑 (the distance between the neighboring 

blocks), which makes the algorithm slightly different than CCompress.    

 

ALOGRITHM 6.19: CCompress2 – Ciphertext Compress – ver. 2  

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒃𝒍𝒐𝒄𝒌𝑺𝒊𝒛𝒆, 𝒅, 𝒏𝒓𝑶𝒇𝑩𝒍𝒐𝒄𝒌𝒔  
𝒊𝒏𝒑𝒖𝒕_𝒄: a sparsely encoded (packed) ciphertext 

𝒃𝒍𝒐𝒄𝒌𝑺𝒊𝒛𝒆: number of slots per block s.t. 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 > 𝑑 

𝒅: distance between two neighboring blocks in terms of slots 

𝒏𝒓𝑶𝒇𝑩𝒍𝒐𝒄𝒌𝒔: number of blocks to be compressed 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the compressed ciphertext 

1 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑖𝑛𝑝𝑢𝑡_𝑐 

2 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 log2(𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠)     
3   𝑡𝑚𝑝_𝑐[1] = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝐶𝐶2_𝑝(0, 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, 𝑑) 
4   𝑡𝑚𝑝_𝑐[2] = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 × 𝑀𝑎𝑠𝑘𝐶𝐶2_𝑝(1, 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, 𝑑) 
5   𝑡𝑚𝑝_𝑐[2] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[2], −𝑑) 
6   𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑡𝑚𝑝_𝑐[1] + 𝑡𝑚𝑝_𝑐[2] 
7   𝑑 = 2 × 𝑑 

8   𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 2 × 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 

  

 

6.4.13. Secure Frobenius Product  

Given in algorithm 6.20. Finds the Frobenius (dot, inner) product of two matrices with the 

same dimensions. Frobenius product is used in Convolutional Neural Networks (CNN) [91].    

 

ALOGRITHM 6.20: secFrobP - secure Frobenius Product 

INPUT: 𝒎𝒂𝒕𝟏_𝒄,𝒎𝒂𝒕𝟐_𝒄, 𝒅𝟏, 𝒅𝟐,  
𝒎𝒂𝒕𝟏_𝒄: encoded (packed) matrix(es) with dim. 𝑑1 × 𝑑2 

𝒎𝒂𝒕𝟐𝒄: encoded (packed) matrix(es) with dim. 𝑑1 × 𝑑2 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the Frobenius inner product between 𝑚𝑎𝑡1_𝑐 and 𝑚𝑎𝑡2_𝑐 

1 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝐷𝑜𝑡𝑃(𝑚𝑎𝑡1_𝑐,𝑚𝑎𝑡2_𝑐, 𝑑1 × 𝑑2) 
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6.4.14. Secure ciphertext packing  

Packs several ciphertexts into one. The pseudocode is given in Algorithm 6.20A, the 

illustration in Fig.8. As an input it takes a vector of 𝑝 ciphertexts (𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟[]) and the 

number of (useful) data slots (𝑛𝐿) which, starting from the first slot, each ciphertext of the 

input vector has,. Instead of a vector of ciphertexts, as an input it can also take one ciphertext 

(the [𝑖𝑛𝑝𝑢𝑡]), which is replicated for 𝑝 times. Lines 1, 2 and 6 can be skipped if all of the 

elements (ciphertexts) of the input vector at their first 𝑛𝐿 slots have their data, and the reaming 

slots are filled up with zeros. It is assumed that all the input ciphertexts (elements) of the 

𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[] have 𝑝 ∙ 𝑛𝐿  slots. 

 

ALGORITHM 6.20A: CPack 

INPUT: 𝒊𝒏𝒑𝒖𝒕𝑽𝒆𝒄𝒕𝒐𝒓_𝒄[], 𝒏𝑳, 𝒑 

𝒊𝒏𝒑𝒖𝒕𝑽𝒆𝒄𝒕𝒐𝒓_𝒄[]: a vector of 𝑝 ciphertexts, each ciphertext has 𝑝 ∙ 𝑛𝐿 slots, at each of them only the first 𝑛𝐿  

slots have data that we are interested in    

𝒏𝑳: starting from the first slot (slot 0), is the number of consecutive data slots that each input ciphertext has 

𝒑: the number of elements (ciphertexts) of 𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟[] 

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄 

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the packed ciphertext that contains all of the 𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟[] ([𝑖𝑛𝑝𝑢𝑡]). It has at least 𝑝 ∙ 𝑛𝐿  slots  

1 𝑚𝑎𝑠𝑘_𝑣 =  {1,1, … , 1, 0, … , 0}     //first 𝑛𝐿  slots are  ones (1s), the rest are zeros. In total it has 𝑝 ∙ 𝑛𝐿 slots   

2 𝑚𝑎𝑠𝑘_𝑝 =  𝐸𝑛𝑐𝑜𝑑𝑒(𝑚𝑎𝑠𝑘_𝑣)  
   𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 =  𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[1]     //only for the single [𝑖𝑛𝑝𝑢𝑡] case                    

3 for 𝑖 =  2 to 𝑝 do   

4      𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[𝑖] =  𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[𝑖] × 𝑚𝑎𝑠𝑘_𝑝            

5      𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[𝑖], 𝑖 ×  𝑛𝐿) 
6 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 =  𝑎𝑑𝑑𝑀𝑎𝑛𝑦(𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[])      //add the input ciphertexts (a total of log𝑝 additions)    

7 return 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐               /  

 

 

Figure 6.12. Illustration of the ciphertext packing (CPack) algorithm 
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6.5. Secure classifications based on NB, kNN, DT and RF 

In this Chapter we provide the NB based classification for non-textual datasets, and also for 

kNN, decision trees as well as random forests. While doing so we have in mind the security 

goals for secure classification set in chapter 1. Depending on where the bulk of the operations 

are done, all of them can be written as server or client (user) centric. We provide both of them 

only for NB case. 

  

6.5.1. Secure classifications for non-textual queries based on NB  

Uses the background information given in Chapter 2.1.1. Depending on where the bulk 

(most) of the processing is done, in this Chapter we give (provide) two types of privacy 

preserving classification schemes: the server-centric and the client (user)-centric. In this 

sense, for each query we offer to the system the flexibility of choosing one of the schemes 

depending on the current workload at the server or the client (user) side. In both of them 

TACS holds the encrypted trained model (denoted as 𝑻𝑴_𝒄) and the user has an unclassified 

query 𝑿. Both of the schemes satisfy the security requirements mentioned in Chapter 1 and 

they both deal with passive participants in the semi-honest model. Furthermore, the client-

centric scheme also deals with a user that can apply the active “substitution-then-

comparison” (STC) attack proposed in [10]. In Chapter 6.8 we deal with an active malicious 

user during the server-centric classification that can arbitrarily deviate from the protocol. 

Although the classification schemes have three participants, both of them are easily 

convertible to secure two party protocols (2PC) where the server has the trained model and 

the user an unclassified query. 

 

 

Fig.6.13. (14). SIMD per class view of the query vector with zeros and ones in 

corresponding places according to the query feature vector 𝑋 
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ALGORITHM 6.21: PPClassServCen (Privacy Preserving Classification - server centric) 

INPUT: 𝑿 = {𝑿𝟏, 𝑿𝟐…𝑿𝒇}, 𝑭, 𝑪, 𝑻𝑴_𝒄 

𝑿 = {𝑿𝟏, 𝑿𝟐…𝑿𝒇}: unclassified query feature vector owned by the User, s.t. 𝑋𝑖 ∈ 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓 

𝑭: 𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑓}, where 𝐹𝑖 = {𝑉1,𝐹𝑖 , 𝑉2,𝐹𝑖 , … , 𝑉|𝐹𝑖|,𝐹𝑖}. 𝐹𝑖, st. 1 ≤ 𝑖 ≤ 𝑓  (as explained in Chapter 2.1.1) 

𝑪: The set of classes 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑐}  (as explained in Se Chapter 2.1.1) 

𝑻𝑴_𝒄 an already SIMD encrypted trained Naïve Bayes model stored at TEAS 

OUTPUT: 𝑪𝑻𝑴(𝑿) 
𝑪𝑻𝑴(𝑿):the classification of the query vector 𝑋 according to the NB trained model 𝑇𝑀_𝑐 

Phase I – EC: 

1  𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣. 𝑖𝑛𝑠𝑒𝑟𝑡(1, 0)   //insert 1 at the first slot for the class probability in the empty 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟 

2  for 𝑖 =  1 to 𝑓                                                                                                                         //for each feature 

3      for 𝑚 =  1 to |𝐹𝑖|                                                            //for each value of the current feature (feature 𝐹𝑖) 
4          if 𝑋𝑖  ==  𝑉𝑚,𝐹𝑖  then                                  //if 𝑋𝑖 is equal to the current 𝑉𝑚,𝐹𝑖 feature value of feature 𝐹𝑖 
5             𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣. 𝑖𝑛𝑠𝑒𝑟𝑡(1)                                  //then insert (put, push) one (1) to the 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟 

6          else                                                                                                                                            //otherwise 

7             𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣. 𝑖𝑛𝑠𝑒𝑟𝑡(0)           //insert zero. At the end, the 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟 should look like Fig.14 

8  for 𝑗 =  2 to 𝑐      //afterwards replicate the 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟 for 𝑐 − 1 times, where 𝑐 is the number of classes 

9      𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣. 𝑖𝑛𝑠𝑒𝑟𝑡(𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣)        //query vector should look like the upper vector of Fig.15 

10 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣)     //𝑛𝐿 = 𝑐 ∙ 𝑛𝑠 slots, where 𝑛𝑠 = 2
⌈log (∑|𝐹𝑖|+1)⌉ 

11 send 𝑘, 𝑅1, 𝑅2, 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 to TEAS                     //𝑘, 𝑅1, 𝑅2 are random, needed for SRCPer (line 17) 

Phase II - TEAS: 

12  receive 𝑘, 𝑅1, 𝑅2, 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐                                     //receives the encrypted query sent by the user  

13  //𝑟𝑒𝑠𝑢𝑙𝑡𝑠_𝑐[]  =  𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑖𝑒𝑠(𝑝)  
       //receives 𝑝 encrypted query vectors from different users  

14  //𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 =  𝐶𝑃𝑎𝑐𝑘(𝑟𝑒𝑠𝑢𝑙𝑡𝑠_𝑐[], 𝑛𝐿 , 𝑝) //packs them into a ciphertext using CPack, 𝑛𝐿 = 𝑐 ∙ 𝑛𝑠  
15  𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 =  𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 ×  [𝑇𝑀_𝑐]                               //as shown in Fig.14-15 

16  𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝑆𝑢𝑚(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 𝑛𝑠) //finds the class prob. for each class 𝐶𝑗 , 1 ≤ 𝑗 ≤ 𝑐, 𝑛𝑠 = 2
⌈log (∑|𝐹𝑖|+1)⌉    

17  𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑆𝑅𝐶𝑃𝑒𝑟(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑛𝑠)     //permut. of the data slots for the class probabilities 

18  𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 =  𝑆𝐶𝐴𝐷𝑆(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 𝑐, 𝑛𝑠) //compare all of the posterior class probab., 𝑐 is the nr. of classes 

19  send [𝑟𝑒𝑠𝑢𝑙𝑡] to EDS 

Phase III – E2DS: 

20   receive 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 

21   𝑟𝑒𝑠𝑢𝑙𝑡_𝑣 =  𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐) 
22   𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑 =  𝑓𝑖𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥(𝑟𝑒𝑠𝑢𝑙𝑡_𝑣)  //the index for which all comparisons are positive (Fig.7) 

23   send 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑 to User          //sends this 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥 in clear (as a pure rand. integer) to the EC 

Phase IV – EC: 

24  receive 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑 //the invSRCPer in line 25 is done by taking an integer index as an input (Section V) 

25  𝐶𝑇𝑀(𝑋) = 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟(𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑, 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑛𝑠)//de-rand. to find the orig. index of 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥  

  

 

 

Fig.6.14. Multiplying 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 with 𝑇𝑀_𝑐 
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The pseudocode for the server-centric NB classification of non-textual datasets case is given 

in Algorithm 6.21. As an input it takes the trained model 𝑇𝑀_𝑐 kept at TEAS and the EC’s 

feature vector 𝑋 =  {𝑋1, 𝑋2, … , 𝑋𝑓}, where 𝑋𝑖 ∈ 𝐹𝑖, for 1 ≤ i ≤ f. In Phase I EC(s) 

construct(s) the query vector to look like the upper vector in Fig.6.13 (lines 1-7), i.e. for each 

of the ordered feature set 𝐹𝑖 s.t. 1 ≤ 𝑖 ≤ 𝑓  and 1 ≤ 𝑚 ≤ |𝐹𝑖|, if 𝑋𝑖 == 𝑉𝑚,𝐹𝑖 we put 1 (one) 

to that corresponding slot, otherwise everything else is zero. In the beginning of the query 

we have the slot associated with class probabilities 𝑃(𝐶𝑗) for 1 ≤ 𝑗 ≤ 𝑐 , and its value is 

always 1 (one) (Fig.6.13). The user then replicates the same vector for 𝑐 − 1 times (lines 8-

9), where 𝑐 is the number of classes, and afterwards encodes and encrypts this vector to get 

the final [𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟] (Fig.6.14) which is send to TEAS (lines 10-11) together 

with the random 𝑘 = {𝑘1, … 𝑘𝑚}, 𝑅1 and 𝑅2 needed for the SRCPer algorithm. In Phase II 

TEAS receives the 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 (line 12). In order to increase the throughput, TEAS 

might receive multiple (say 𝑝) encrypted query vectors, and if so he first runs the CPack 

(Algorithm 6.2, lines 13-14) to pack them into a single ciphertext. Here the size of a single 

encrypted query vector is 𝑛𝐿 = 𝑐 · 𝑛𝑠 (a single class has 𝑛𝑠 = 2⌈log (∑|𝐹𝑖|+1)⌉ slots, thus a 

single query has 𝑛𝐿 = 𝑐 · 𝑛𝑠 slots). We should note that if there are 𝑝 multiple queries 

involved, the trained model should be replicated p times (shown during the training phase – 

line 10). Then TEAS multiplies the (packed) 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 with the (packed) trained 

model 𝑇𝑀_𝑐 (line 15, Fig.6.13-6.14), and afterwards runs the secSum (Algorithm 6.1) (line 

16) to find the posterior class probabilities at the beginning of each of the 𝑛𝑠 − 𝑡ℎ slots, 

starting from slot zero. After randomly permuting the data slots containing the posterior 

probabilities (line 17) and securely comparing all of them with each other (line 18), TEAS 

sends the final result to E2DS (line 19). 

It Phase III E2DS receives, decrypts and decodes the final results to get the randomized 

index of the class with highest posterior probability before sending it to the User(s) in plain 

(lines 20-22). Finally, EC(s) in Phase IV remove the randomization by running the 

invSRCPer (Chapter 6.3.3) to get the final classification(s) (lines 24-26). 

 

6.5.2. Secure classifications based on kNN  

The 2PC is given in Algorithm 6.22. No prior training is done since kNN doesn’t need it. In 

our scenario, an EDO owns a dataset that he wishes to be used for secure classifications and 
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(an) EC(s) user has(have) queries that he (they) wish to classify having in mind the security 

requirements during the classification stage set in Chapter 1. The EDO’s dataset has 

𝑁𝑇 transactions (records), each with 𝑓 attributes and the corresponding class for that record. 

Thus a record 𝑟𝑖 looks like 𝑌𝑟𝑖 = {𝑌1
𝑟𝑖 , … , 𝑌𝑓

𝑟𝑖 , 𝐶𝑟𝑖}, where 1 ≤ 𝑖 ≤ 𝑁𝑇 and 𝐶𝑟𝑖 is the 𝑟𝑖’s 

class. The EDO randomly permutes his 𝑁𝑇 transaction (records) according to a random 

permutation 𝜋, and encodes the feature values of each record in a sequential order in a 

plaintext(s) denoted as 𝑝𝑒𝑟𝐷𝑆_𝑝[], with a corresponding plaintext where he encode his 

classes, denoted as 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝. In a single plaintext of polynomial N we can encode  𝑞 = 𝑁/𝑓 

features, thus we need 𝑛𝑟𝑃𝑙𝑎𝑖𝑛𝑇𝑒𝑥𝑡𝑠 = ⌈𝑁𝑇/𝑞⌉ plaintexts at the EDO to encode only the 

feature values of each record in the dataset. To this ends, if a single plaintext is not enough 

for 𝑝𝑒𝑟𝐷𝑆_𝑝[], then at the first plaintext of 𝑝𝑒𝑟𝐷𝑆_𝑝[] EDO encodes the first 𝑞 permuted 

records, at the second plaintext of 𝑝𝑒𝑟𝐷𝑆_𝑝[] encodes the second 𝑞 queries etc., as it is 

illustrated in Fig. 6.15. For the 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 plaintext at the first f slots we put the classes for 

the permuted records which are in distance of 𝑞 to each other, thus the first 𝑓 spot are for 

classes 𝐶𝜋(𝑟1), 𝐶𝜋(𝑟𝑞+1), … , 𝐶𝜋(𝑟𝑓−1), the second f spots are for  𝐶𝜋(𝑟2), 𝐶𝜋(𝑟𝑞+1), … , 𝐶𝜋(𝑟𝑓+1), 

etc. (Fig.6.15). The EC replicates his query for 𝑞 times, encodes and encrypts to get 𝑋_𝑐 and 

sends it to the EDO (lines 1-2). If all of the dataset can be put in a single 𝑝𝑒𝑟𝐷𝑆_𝑝[] plaintext, 

EDO then subtracts the 𝑝𝑒𝑟𝐷𝑆_𝑝 with the 𝑋_𝑐, squares the result and finds the sum of the 

corresponding f slots in SIMD fashion according to one of the distances proposed in Chapter 

2, which in this case is the Euclidian distance (lines 4-6). If the dataset doesn’t fit in a single 

𝑝𝑒𝑟𝐷𝑆_𝑝[] plaintext, then the same process is repeated for all of the plaintexts, in the process 

utilizing multiple cores of the processor (lines 8-13). Making the necessary rotations and 

additions 𝑝𝑒𝑟𝐷𝑆_𝑝[] plaintexts, EDO makes the calculated packed distances of each dataset 

record with the query into 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 to correspond to the record’s classes in 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 (lines 

4-12). In order to guard against any eventual data leakage, in SIMD fashion EDO multiples 

each distance with the same random 𝑅 proceed by adding another random ℎ (line 13) and 

sends it to EC (line 14). EC decrypts the randomized result, constructs a vector by putting 

ones at  the slots of the k distances with the minim value, encodes and encrypts it to get 

𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐  and sends it to EDO (lines 15-18). EDO multiplies 
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𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐  with the 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 and send the result back to EC (lines 19-20). Finally, 

EC decrypt this result which contains 𝑘 classes corresponding to the top-K classifier.          

 

ALGORITHM 6.22: secKNN (secure K Nearest Neighbors) 

INPUT: 𝒑𝒆𝒓𝑫𝑺_𝒑[], 𝒄𝒍𝒂𝒔𝒔𝒆𝒔_𝒑, 𝒇, 𝒅, 𝒌, 𝑿_𝒗  

𝒑𝒆𝒓𝑫𝑺_𝒑[]: permuted according to 𝜋 and encoded records of the dataset DS residing at the server, who is 

also the owner of it 

𝒄𝒍𝒂𝒔𝒔𝒆𝒔_𝒑: the vector of classes of the corresponding permuted records 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑣 = {(𝐶𝜋(𝑟𝑖))
𝑖=1

𝑁𝑇
}, 

𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑣) 
𝒇: the dimension of the dataset (number of features, i.e. number of slots needed for each record) 

𝒌: the number of the closest neighbors by which the classification is done  

𝑿_𝒗: the client’s query vector of dimension f replicated by 𝑞 = 𝑁/𝑓 times, where 𝑞 is also the number of 

records in a single plaintext  

OUTPUT: 𝒎𝒂𝒙𝑰𝒏𝒅𝒆𝒙 𝒂𝒏𝒅 𝒕𝒐𝒑𝑲𝑰𝒏𝒅𝒆𝒙𝒆𝒔 

𝑪𝒌𝑵𝑵(𝑿): the final classification of 𝑞_𝑣 according to 𝑘𝑁𝑁 and dataset DS:    

EC: 

1 𝑋_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑋_𝑣) 
2 send 𝑋_𝑐 to EDO 

EDO: 

3 𝑛𝑟𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑠𝐹𝑜𝑟𝐷𝑆 = ⌈(𝑁𝑇 × 𝑓)/𝑁⌉; 𝑅_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒{𝑅,… , 𝑅}; ℎ_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒{ℎ, … , ℎ} 
4 𝑖𝑓(𝑛𝑟𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑠𝐹𝑜𝑟𝐷𝑆 == 1) 

5     𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑞𝑢𝑎𝑟𝑒(𝑝𝑒𝑟𝐷𝑆_𝑝 − 𝑋_𝑐) 
6     𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝑆𝑢𝑚(𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐, 𝑑) 
7 else 

8     for 𝑖 = 0 to 𝑛𝑟𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑠𝐹𝑜𝑟𝐷𝑆 − 1 //done in parallel among several processor cores 

9        𝑡𝑚𝑝_𝑐[𝑖] = 𝑠𝑞𝑢𝑎𝑟𝑒(𝑝𝑒𝑟𝐷𝑆_𝑝[𝑖] − 𝑋_𝑐) 
10      𝑡𝑚𝑝_𝑐[𝑖]  = 𝑠𝑒𝑐𝑆𝑢𝑚(𝑡𝑚𝑝_𝑐[𝑖], 𝑓) 
11      𝑡𝑚𝑝_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[𝑖], 𝑖) 
12   𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑡𝑚𝑝_𝑐[]) 
13 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 × 𝑅_𝑝 + ℎ_𝑝 

14 send 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 to EC 

EC: 

15 𝑟𝑒𝑠𝑢𝑙𝑡_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐) 
16 𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑣 = 𝑔𝑒𝑡𝑇𝑜𝑝𝐾𝑉𝑎𝑙𝑢𝑒𝑠(𝑟𝑒𝑠𝑢𝑙𝑡_𝑣) 
      //ones in the indexes containing the smallest k values, 0’s elsewhere 

17 𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑣) 
18 send 𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐 to EDO 

EDO: 

19 𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐 = 𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐 × 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 

20 send 𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐 to EC   

EC: 

21 𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐  
22 𝐶𝑘𝑁𝑁(𝑋) = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦𝐴𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑇𝑜𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐾𝐶𝑙𝑎𝑠𝑠𝑒𝑠(𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑣) 
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Fig. 6.15. Illustration of construction of 𝑝𝑒𝑟𝐷𝑆_𝑝[] and 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 for the secKNN. 

 

6.5.3. Secure classifications based on DT and RF 

Given in algorithm 6.23. If the trained model consisted of a decision tree is not binary, it can 

be easily converted to one [9,73, 92]. Unlike [92] which reveals the depth of the tree, in our 

algorithm in order to hide the depth of the binary tree 1) we can add a dummy root which on 

both sides has the exact replica of the original binary tree, and/or 2) we can add one or more 

levels at the leaves by putting a couple of dummy nodes (one on each side of every leaf), 

which will point to the same class that the corresponding leaf (now parent node) used to 

point. The obtained binary tree then can be encoded into a vector in a way that, start from the 

root, each node’s value of each level is put (encoded) into the vector in sequential order, as 

it is shown in Fig. 6.16. This represents the trained model 𝑇𝑀_𝑝 plaintext. In the 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 

plaintext in sequential order, from left to right, we put the classes to which the leaves point. 

Using SRCPer (Chapter 6.3.3) in plain, the server publishes the permuted order of the 𝑇𝑀_𝑝 

by which the clients should encode their feature values. According to this published order, 

EC encodes and encrypts the values of its features to get 𝑋_𝑐 and sends it to the Server (lines 

1-2). The Server then homomorphically performs the invSRCPer over 𝑋_𝑐 using the same 

parameters it used while performing the SRCPer in plain, and in SIMD fashion securely 

compares 𝑋_𝑐 with 𝑇𝑀_𝑐 using secComp (Chapter 6.3.4) and sends the result to EC (lines 3-

5). EC decrypts and decodes the result and based on the comparison results it construct a 
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vector will all zeros, except for the slot which belongs to the final classification which is one. 

Encodes and encrypts this vector to get 𝑜𝑛𝑒𝑠_𝑐  and send it to the Server (lines 6-9). The 

server multiplies 𝑜𝑛𝑒𝑠_𝑐 with 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 and sends the result to EC (lines 10-11). EC 

decrypts and decodes it to get the final classification result. For increased throughput we can 

classify up to 𝑞 = 𝑁/𝑓 queries, where 𝑁 is the polynomial modulus.  

For the RF cases we have several DT encoded one after the other at 𝑇𝑀_𝑝, 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝, 

while the general idea and protocol flow remains pretty much the same. 

    

ALGORITHM 6.23: secDT_RF (secure Decision Tree and Random Forest) 

INPUT: 𝑻𝑴_𝒑, 𝒄𝒍𝒂𝒔𝒔𝒆𝒔_𝒑,𝑿_𝒗, 𝒇  

𝑻𝑴_𝒑: the decision trees or random forests’ ciphertext kept privately at the server (owner) 

𝒄𝒍𝒂𝒔𝒔𝒆𝒔_𝒑: the vector of classes of the corresponding tree(s) 

𝑿_𝒗 = {𝑿𝟏, … , 𝑿𝒇}: the EC’s query vector of dimension f. We can have 𝑞 = 𝑁/𝑓 such queries  

OUTPUT: 𝒎𝒂𝒙𝑰𝒏𝒅𝒆𝒙 𝒂𝒏𝒅 𝒕𝒐𝒑𝑲𝑰𝒏𝒅𝒆𝒙𝒆𝒔 

𝑪𝑫𝑻(𝑿): the final classification of 𝑞_𝑣 according to 𝐷𝑇 𝑜𝑟 𝑅𝐹 a    

Server:  

using SRCPer in plain, publishes the permuted order by which the clients should encode their feature values 

EC: 

1 𝑋_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑋_𝑣) 
2 send 𝑋_𝑐 to Server 
Server: 

3 𝑋_𝑐 = 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟(𝑘, 𝑅1, 𝑅2, 𝑁, 1) 
4 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝐶𝑜𝑚𝑝(𝑋_𝑐, 𝑇𝑀_𝑝) 
5 send 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 to EC 

EC: 

6 𝑟𝑒𝑠𝑢𝑙𝑡_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐) 
7 𝑜𝑛𝑒𝑠_𝑣 = 𝑝𝑢𝑡𝑂𝑛𝑒𝑠𝑇𝑜 𝑇ℎ𝑒𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝑆𝑝𝑜𝑡𝑠(𝑟𝑒𝑠𝑢𝑙𝑡_𝑣)  
8 𝑜𝑛𝑒𝑠_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑜𝑛𝑒𝑠_𝑣) 
9 send 𝑜𝑛𝑒𝑠_𝑐 to Server 
Server:  

10 𝐶𝐷𝑇(𝑋_𝑣)_𝑐 = 𝑜𝑛𝑒𝑠_𝑐 × 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 

11 send 𝐶𝐷𝑇(𝑋_𝑣)_𝑐 to EC 

EC: 

12 𝐶𝐷𝑇(𝑋_𝑣) = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝐶𝐷𝑇(𝑞_𝑣)_𝑐) 
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Fig. 6.16. Encoding the values of each level’s node into the trained model plaintext 𝑇𝑀_𝑝 

for DT and RF classifier when 𝑓 = 7  

 

6.6. Secure MNB and NB classifications for binary and multi-

label multi-output textual datasets 

In Algorithm 6.24 we provide the MNB secure classification scheme for binary textual 

queries (datasets). It can be seen as a natural continuation of Algorithm 5.2. The necessary 

information background and notations are given in Chapter 2.1.2. In Phase XII EC encodes 

its query 𝑞_𝑣, which has 1 in the first slot (index), proceeded by the query frequencies of 

each word in the query ordered according to the words arrangement in the selected features 

sets 𝑆𝐹 (line 1, Fig.6.17). After multiplying the encoded query with the trained model 𝑇𝑀_𝑐 

it sends the result to TEAS (lines 2-3, Fig. 6.17). In Phase XIII, in accordance to (2.7), TEAS 

homomorphically finds the sums of each of the (𝑚 + 1) slots in 𝑙𝑜𝑔2(𝑚 + 1) rotations and 

additions with the result residing in the first slot (lines 5-6). To do this  (𝑚 + 1) should be a 

power of two. If it is not the case, then we can pad extra slots with dummy values (usually 

zeros). Then, for secure comparison purposes (Chapter 6.3.4), multiplies this result with a 

random 𝑅_𝑝 followed by adding ℎ_𝑝 s.t. 𝑅_𝑝 and ℎ_𝑝 are constructed having in mind the 

secure comparisons requirements for them in Section IVC. To protect the result from the 

STC (substitute-then-compare) attack from [10], TEAS adds an extra random  
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ℎ2_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(ℎ_𝑣) to the result, sends the randomized result to E2DS and the ℎ2_𝑣 to EC 

(lines 7-10). In Phase XIV E2DS decrypts the randomized classification result and sends it 

to EC (lines 11-12). Finally, in Phase XV EC subtracts ℎ2_𝑣 from the randomized 

classification result and, according to (2.7), gets the final classification based on the sign of 

the result (lines 14-15). If the query 𝑞_𝑣 instead of the frequencies contains the counts 

(𝑁𝑞(𝑤𝑖)) of words appearing in the query, then instead of MNB, we’re dealing with the NB 

for textual classifications. 

 

 

Fig.6.17. SWHE SIMD multiplication of the trained model 𝑇𝑀_𝑐 obtained in Algorithm 

5.2 with query 𝑞_𝑝. 

 

ALGORITHM 6.24: secC (secure Classification)  

INPUT: 𝑺𝑭, 𝑻𝑴_𝒄, 𝑿_𝒗 , (𝒑𝒌, 𝒔𝒌) 
(𝒑𝒌, 𝒔𝒌): key pairs of E2DS with SWHE properties 

𝑺𝑭 = {𝐻(𝑤1), … , 𝐻(𝑤𝑚)}: the set of hashes of 𝑚 selected features with the highest IG 

𝑻𝑴_𝒄: the binary trained model ciphertext residing at EC 

𝑿_𝒗 = {𝟏, 𝒇𝒒(𝒘𝟏), … , 𝒇𝒒(𝒘𝒎)}: the EC’s query vector 

OUTPUT: 𝑪𝑻𝑴(𝒒)  
𝑪𝑻𝑴(𝑿): the 𝑞_𝑣’s final classification 

PHASE XII - EC: 

1 𝑋_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑋_𝑣) 
2 𝐶𝑇𝑀(𝑋)_𝑐 = 𝑇𝑀_𝑐 × 𝑋_𝑝 //so the TM_c already resides at EC (tell the reason behind it) 

3 send 𝐶𝑇𝑀(𝑋)_𝑐 to TEAS 

PHASE XIII-TEAS 

4 𝑡𝑚𝑝_𝑐 = 𝐶𝑇𝑀(𝑋)_𝑐 

5 for 𝑖 = 0 to ⌈𝑙𝑜𝑔(𝑚 + 1)⌉ 
6    𝐶𝑇𝑀(𝑋)_𝑐 = 𝐶𝑇𝑀(𝑋)_𝑐 + 𝑅𝑜𝑡𝑎𝑡𝑒(𝐶𝑇𝑀(𝑋)_𝑐, −2

𝑖) 
7  (𝑅_𝑣, ℎ_𝑣, ℎ2_𝑣) = 𝑟𝑛𝑑𝑉𝑒𝑐𝑡𝑜𝑟𝑠𝑓𝑜𝑟𝐶𝑜𝑚𝑝(); (𝑅_𝑝, ℎ_𝑝, ℎ2_𝑝) = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑅_𝑣, ℎ_𝑣, ℎ2_𝑣)  
8   𝑟𝑛𝑑𝐶𝑇𝑀(𝑋)_𝑐 = ((𝐶𝑇𝑀(𝑋)_𝑐 × 𝑅_𝑝) + ℎ_𝑝) + ℎ2_𝑝 //to protect from the STC attack 

9 𝑠𝑒𝑛𝑑 𝑟𝑛𝑑𝐶𝑇𝑀(𝑋)_𝑐 to E2DS 

10 send 𝐸𝑛𝑐𝑝𝑘𝐸𝐶(ℎ2_𝑣) to EC 

PHASE XIV-E2DS 

11 𝑟𝑛𝑑𝐶𝑇𝑀(𝑋)_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐹𝑖𝑛𝐶𝑙𝑎𝑠_𝑐) 
12 send 𝐸𝑛𝑐𝑝𝑘𝐸𝐶(𝑟𝑛𝑑𝐶𝑇𝑀(𝑋)_𝑣) to EC 

PHASE XV-EC 

13 𝑟𝑒𝑠_𝑣 = 𝐷𝑒𝑐𝑠𝑘𝐸𝐶(𝑟𝑛𝑑𝐶𝑇𝑀(𝑋)_𝑣) − 𝐷𝑒𝑐𝑠𝑘𝐸𝐶(ℎ2_𝑣) 

14 if (𝑟𝑒𝑠_𝑣 ≥ 0)   return 𝐶𝑇𝑀(𝑞) = ”ham” 
15 else return 𝐶𝑇𝑀(𝑋) = ”spam” 
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Having in mind the notations and the corresponding background information in chapter 2.1.2, 

in Algorithm 6.25 we provide a multi-label multi-output secure classification algorithm for 

textual queries (datasets). Algorithm 6.25 can be seen as naturally following Algorithm 5.3. 

and, in general lines, it has the same logic as Algorithm 6.24, but expanded to deal with multi-

label multi-output queries. 

 

ALGORITHM 6.25: secC-MLMO (secure Classification for Multi-Label Multi-Output queries)  

INPUT: 𝑺𝑭𝑴𝑳𝑴𝑶 = {{𝑺𝑭𝒍}
𝒍=𝟏

|𝑳|
} = {{{𝑯(𝒘𝒊)}𝒊=𝟏

𝒎𝒍
}
𝒍=𝟏

|𝑳|

} ,𝒎𝒍, 𝑻𝑴𝑴𝑳𝑴𝑶_𝒄, 𝒒_𝒗𝑴𝑳𝑴𝑶 , (𝒑𝒌, 𝒔𝒌) 

(𝒑𝒌, 𝒔𝒌): key pairs of E2DS with SWHE properties 

𝑺𝑭𝑴𝑳𝑴𝑶 the set of |𝐿| set hashes, each of 𝑚𝑙 selected features with the highest IG 

𝑻𝑴𝑴𝑳𝑴𝑶_𝒄: the MLMO trained model ciphertext residing at EC 

𝒒_𝒗𝑴𝑳𝑴𝑶 = {{1, {𝑓𝑞
𝑙
(𝑤𝑖

𝑙)}
𝑖=1

𝑚𝑙

}
𝑐=1

|𝐶𝑙|

}

𝑙=1

|𝐿|

: the EC’s MLMO query vector, for the classes of the same label, 

it’s replicated for |𝐶𝑙|times  

OUTPUT: 𝑪𝑻𝑴
𝑴𝑳𝑴𝑶(𝑿)  

𝑪𝑻𝑴
𝑴𝑳𝑴𝑶(𝑿): the 𝑞_𝑣𝑀𝐿𝑀𝑂’s final classification 

PHASE XII - EC: 

1 𝑋_𝑝𝑀𝐿𝑀𝑂 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑞_𝑣𝑀𝐿𝑀𝑂) 
2 𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐 = 𝑇𝑀𝑀𝐿𝑀𝑂_𝑐 × 𝑋_𝑝𝑀𝐿𝑀𝑂  //so the TM_c already resides at EC (tell the reason behind it) 

3 send𝐶𝑇𝑀
𝑀𝐿𝑀𝑂(𝑋)_𝑐 to TEAS 

PHASE XIII-TEAS 

4 𝑚 =
𝑎𝑟𝑔𝑚𝑎𝑥
1 ≤ 𝑙 ≤ |𝐿|

(𝑚𝑙) 

5 for 𝑖 = 0 to ⌈𝑙𝑜𝑔(𝑚 + 1)⌉ 
6    𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐 = 𝐶𝑇𝑀
𝑀𝐿𝑀𝑂(𝑋)_𝑐 + 𝑅𝑜𝑡(𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐, −2𝑖) 
7 𝑟𝑛𝑑𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐 = 𝑆𝑅𝐶𝑃𝑒𝑟(𝐶𝑇𝑀
𝑀𝐿𝑀𝑂(𝑋)_𝑐)// creates 𝑝𝑒𝑟𝑚𝑢𝑡𝐷𝑎𝑡𝑎_𝑣 needed for the permutations 

8 𝑟𝑛𝑑𝐶𝑇𝑀
𝑀𝐿𝑀𝑂(𝑋)_𝑐 = 𝑆𝐶𝐴𝐷𝑆(𝑟𝑛𝑑𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐) 
9 𝑠𝑒𝑛𝑑 𝑟𝑛𝑑𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐 to E2DS 

10 send 𝐸𝑛𝑐𝑝𝑘𝐸𝐶(𝑝𝑒𝑟𝑚𝑢𝑡𝐷𝑎𝑡𝑎_𝑣) to EC 

PHASE XIV-E2DS 

11 𝑟𝑛𝑑𝐶𝑇𝑀
𝑀𝐿𝑀𝑂(𝑋)_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐) 
12 send 𝐸𝑛𝑐𝑝𝑘𝐸𝐶(𝑟𝑛𝑑𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑣) to EC 

PHASE XV-EC 

13 𝐶𝑇𝑀
𝑀𝐿𝑀𝑂(𝑋) = 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟(𝐷𝑒𝑐𝑠𝑘𝐸𝐶(𝑟𝑛𝑑𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐), 𝐷𝑒𝑐𝑠𝑘𝐸𝐶(𝑝𝑒𝑟𝑚𝑢𝑡𝐷𝑎𝑡𝑎_𝑣)) 

 

 

6.7. Secure classifications based on linear algebra operations 

In Chapter 2.3.3 we give the necessary notations and background information related to ML 

classification based on linear algebra. Utilizing the secure algebra building blocks introduced 

in Chapter 6.4, in Algorithm 6.26 and 6.27 we give a general secure classification scheme 

which is applicable to any ML classification algorithm that can be expressed in terms of 
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linear algebra operations, particularly in vector and matrix operations. Depending on where 

the bulk of the operations are being done, they are either client (like algorithm 6.26) or Server 

centric (Algorithm 6.27) 

 

Secure linear algebra based ML classification algorithm flows at-a-glance. We give both 

the client and the server centric flavors. The server owns a trained model which he wants to 

keep private, while the client wants to use it for secure ML classifications based on linear 

algebra operations having in mind the security, privacy and efficiency requirements given in 

Chapter 1. 

 

Client Centric (Fig. 6.18): the trained model 𝑀 resides  at the client encrypted by the server’s 

public key. All encryptions are done using the server’s public key with SWHE properties 

(Chapter 2.4.1). The client(s) construct(s) his/their queries 𝑋(𝑖)(❶), encode and (depending 

on the circumstances, might also) encrypt them to get the packed queries in a single plaintext 

(𝑆_𝑝) or ciphertext (𝑆_𝑐) (❷). Using the encrypted trained model M they do computations 

over encrypted data to get the classification result 𝐶𝑀(𝑆) in encrypted form (❸). After 

randomizing the result they get the encrypted 𝑟𝑛𝑑𝐶𝑀(𝑆) and send it to the server (❹). After 

decrypting and decoding it, the server obtains the randomized result in plain, 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣, 

and sends it back to the client(❺). Finally, the client de-randomizes 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 to get the 

final classification for the query(ies), 𝐶𝑀(𝑆) (❻). More details are given in Algorithm 6.26. 

 

 

Fig.6.18. Secure linear algebra ML classification algorithm flow-client centric 
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Server centric (Fig.6.19): the trained model 𝑀 resides  at the server un-encrypted. All 

encryptions are done using the client’s public key with SWHE properties (Chapter 2.4.1). 

The client(s) construct(s) his/their queries 𝑋(𝑖)(❶), encode and encrypt them and send them 

to the Server (❷). The server adds the encrypted queries up and does the computations over 

encrypted queries to get the classification result 𝐶𝑀(𝑆) in encrypted form (❸). Afterwards 

randomizes the result to get the encrypted 𝑟𝑛𝑑𝐶𝑀(𝑆) and send it to the client(s) (❹). After 

decrypting and decoding it, the server obtains the randomized result in plain, 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 

(❺), and based on it constructs, encode and encrypts a new 𝑟𝑛𝑑𝐶𝑀(𝑆) which is send back 

to the server (❻). The server removes the randomization to get the final encrypted 

classification 𝐶𝑀(𝑆), which is send to the clinet(s) that decrypt it to get the final classification 

for the(ir) query(ies), 𝐶𝑀(𝑆). More details are given in Algorithm 6.27. 

    

 

Fig.6.19. Secure linear algebra ML classification algorithm flow-server centric 

 

The client centric version (Algorithm 6.26) as an input takes the row-encoded trained model 

ciphertext and the queries of 𝑞 =
𝑁

𝑐∙(𝑓+1)
 users in a scenario where we have 𝑓 features and 𝑐 

classes (Chapter 2.3.3). IoT devices/clients encrypt their queries and rotate them, in a way 

that when homomorphically added up, they form a column-wise encrypted matrix (lines 1-

4). Then homormorphcally classify their queries with the trained model according to (2.21) 
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(lines 5-6). In line 6 SCADS(∙) -Chapter 6.3.5-, is used for the argmax purposes of (3). The 

input ciphertext of SCADS(∙) looks exactly what 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡(∙) returns in line 5. After 

randomization with SRCPer(∙) (Chapter 6.3.3), the results are send to the server (line 7-8). 

The server decrypts and sends back the randomized results in plain (lines 9-10). The clients 

de-randomize them to get the final classifications (line 11). SRCPer(∙) and it’s inverse, 

invSRCPer(∙), proposed in Chapter 6.3.3, are used for randomization and de-randomization 

purposes (lines 7, 11). The values we give to the random parameters that SRCPer(∙) and 

invSRCPer(∙) take are 𝑅1 = 0,  𝑅2 = 0, while the random input vector 𝑘 has 𝑚 = 𝑐 elements 

and it is used to randomly permute inside the block the positions of the comparisons results 

for each of the 𝑐 data slots (corresponding to 𝑐 classes) for each of the 𝑞 blocks (queries), 

simultaneously.  

 

ALOGRITHM 6.26: secMLClass – (secure ML Classifications – Client Centric)  

INPUT: 𝑴𝑹_𝒄, 𝑺 = {𝑿(𝒊)}
𝒊=𝟏

𝒒
, 𝒄, 𝒇  

𝑴𝑹_𝒄: row-wise encrypted Trained Model 

 𝑺 = {𝑿(𝒊)}
𝒊=𝟏

𝒒
,: the set of 𝑞 user queries, 𝑞 =

𝑁

𝑐∙(𝑓+1)
 

 𝒄, 𝒇: the number of classes and features, respectively   

OUTPUT: 𝑪𝑴(𝑺)_𝒗 

𝑪𝑴(𝑺)_𝒗: vector of the final classification of 𝑞 queries 

Client:  
1   for 𝑖 = 1 to 𝑞     

2      𝑋_𝑐[𝑖] = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑋(𝑖)) 

3      𝑋_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑞𝑉𝑒𝑐_𝑐[𝑖], 𝑖 × (𝑓 + 1)) 

4   𝑆𝐶_𝑐 = 𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑋_𝑐[]) 
5   𝑡𝑚𝑝_𝑐 = 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡(𝑀𝑅_𝑐, 𝑆𝐶_𝑐, 𝑐, 𝑓 + 1, 𝑞) 
6   𝐶𝑀(𝑆)_𝑐 = 𝑆𝐶𝐴𝐷𝑆(𝑡𝑚𝑝_𝑐, 𝑐, 𝑓 + 1) 
7   𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 = 𝑆𝑅𝐶𝑃𝑒𝑟(𝐶𝑀(𝑆)_𝑐, 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑓 + 1) 
8   send 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 to Server 
Server: 
9   𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐶𝑀(𝑋)_𝑐) 
10 send 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 to Client  
Client:  
11𝐶𝑀(𝑆)_𝑣 = 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟(𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣, 𝑘, 𝑅1𝑅2, 𝑐, 𝑓 + 1) 

 

 

Algorithm 6.27 (server centric) in general is similar with Algorithm 6.26 (client centric), with 

the difference that in Algorithm 6.27 all encryptions are done using client’s public key with 

SWHE properties, whereas in Algorithm 6.26 using servers public key with SWHE 

properties. What is more important, the bulk of the heavy homomorphic computations at the 
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server centric algorithm are done at the server, whereas at the client centric algorithm they 

are done at the client. While the client centric algorithm is done in one round, the server 

centric one is done in two rounds, having in the process slightly heavier computation cost.    

 

ALOGRITHM 6.27: secMLClass  (secure ML Classifications – Server Centric)   

INPUT: 𝑴𝑹_𝒄, 𝑺 = {𝑿(𝒊)}
𝒊=𝟏

𝒒
, 𝒄, 𝒇  

𝑴𝑹_𝒄: row-wise encrypted Trained Model 

 𝑺 = {𝑿(𝒊)}
𝒊=𝟏

𝒒
,: the set of 𝑞 user queries, 𝑞 =

𝑁

𝑐∙(𝑓+1)
 

 𝒄, 𝒇: the number of classes and features, respectively   

OUTPUT: 𝑪𝑴(𝑺)_𝒗 

𝑪𝑴(𝑺)_𝒗: vector of the final classification of 𝑞 queries 

Client(s) 
1   for 𝑖 = 1 to 𝑞     

2      𝑋_𝑐[𝑖] = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑋(𝑖)) 

3      𝑋_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑞𝑉𝑒𝑐_𝑐[𝑖], 𝑖 × (𝑓 + 1)) 

4      send 𝑋_𝑐[𝑖] 𝑡𝑜 Server 
Server: 
5   𝑆𝐶_𝑐 = 𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑋_𝑐[]) 
6   𝑡𝑚𝑝_𝑐 = 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡(𝑀𝑅_𝑐, 𝑆𝐶_𝑐, 𝑐, 𝑓 + 1, 𝑞) 
7   𝐶𝑀(𝑆)_𝑐 = 𝑆𝐶𝐴𝐷𝑆(𝑡𝑚𝑝_𝑐, 𝑐, 𝑓 + 1) 
8   𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 = 𝑆𝑅𝐶𝑃𝑒𝑟(𝐶𝑀(𝑋)_𝑐, 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑓 + 1) 
9   send 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 to Client(s) 
Client(s) 
10  𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐) 
11  𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 = 𝑝𝑢𝑡𝑂𝑛𝑒𝑠𝑇𝑜𝑇ℎ𝑒𝑀𝑎𝑥𝐶𝑙𝑎𝑠𝑠𝑂𝑓𝐴𝑙𝑙𝑄𝑢𝑒𝑟𝑖𝑒𝑠() 
12  𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣) 
13  send 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 to Server 
 Server: 
14  𝐶𝑀(𝑆)_𝑐 = 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟(𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣, 𝑘, 𝑅1𝑅2, 𝑐, 𝑓 + 1) 
15  send 𝐶𝑀(𝑆)_𝑐 to Client(s) 
Client(s):  
16  𝐶𝑀(𝑆)_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐) 

 

Note: for the DNN with 𝑙 layers, the trained model 𝑀𝑅_𝑐 in Algorithms 6.26 and 6.27 is 

made of 𝑙 matrices denoted as 𝑀𝑅𝑖_𝑐, where 1 ≤ 𝑖 ≤ 𝑙, the activation functions 𝑓𝑖, where 

1 ≤ 𝑖 ≤ 𝑙, are polynomial ones (usually square or linear functions) and 𝑆𝐶𝑖 is the output of 

the previous layer, where for the input in the first layer we have 𝑆𝐶0 = 𝑆𝐶. In this sense, to 

abide to (2.22), for a DNN with 𝑙 layers line 5 in Algorithm 6.26 (i.e. line 6 in Algorithm 

6.27) should be changed to 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡𝐶𝑎𝑠(𝑓𝑖(𝑀𝑅𝑖_𝑐, 𝑆𝐶𝑖_𝑐, 𝑐, 𝑓 + 1, 𝑞)) which is executed 

for 𝑙 times. Algorithm 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡𝐶𝑎𝑠(∙) is explained in Chapter 6.4.   
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Improvement 6.1: For algorithms 6.26 and 6.27, if the users know their order, instead of 

encoding their data at the beginning of the ciphertext’s slots, they can directly put them to 

their corresponding place, i.e. EC 𝑖 put his 𝑓 + 1 data from slot (𝑖 − 1)(𝑓 + 1) till 𝑖(𝑓 + 1) 

slots. In this way they both avoid the costly operation of rotations in line 3. 

 

Improvement 6.2. Unlike it was the case up until now in literature, for efficiency purposes, 

no need for slots in Algorithms 6.20-6.27 to be powers of two anymore due to introducing 

Algorithms 6.1 and 6.2.  

 

Improvement 6.3. Whenever possible in Algorithms 6.20-6.27 we introduce the poly-

switching technique proposed in [55]. We also use multiple-cores for increasing furthermore 

the throughput of processed queries by simultaneously classifying them among multiple 

processor cores. For this each core should have a copy of the trained model in the core’s local 

cache memory. Those couple of techniques alone give an improved computational and 

communicational cost for several times.  

 

Improvement 6.4. The 3PC algorithms that exist in some of the Algorithms in 6.20-6.25 can 

be converted to 2PC. Furthermore, having in mind Improvement 5.1 and knowing that 𝑇𝑀_𝑐  

rarely changes, it can be send to the user only once for the client-centric classification, thus 

amortizing this cost for all of the subsequent classifications to follow. 

 

Improvement 6.5: Besides Algorithms 6.26-6.27, for high throughput, in Algorithms 6.20-

6.25 we can also simultaneously process several queries by replicating the trained model and 

packing several queries in the query vector. E.g. for secC (Algorithm 6.24) we can process 

up to 𝑞 = ⌊
𝑁

(𝑚+1)
⌋ queries by obtaining a replicated 𝑇𝑀_𝑐 during 𝑠𝑒𝑐𝑇 (Algorithm 5.2), 

which can be done without extra costs, and encoding (packing) 𝑞 queries to 𝑞_𝑝 during 𝑠𝑒𝑐𝐶.   

 

 

 

 

 



116 
 

6.8. Dealing with malicious users during classifications 

Unlike the semi-honest model (Chapter 2.4.2), malicious users are active adversaries that 

arbitrarily deviate from the protocol with the aim of retrieving partially or totally the data 

that they are not supposed to or with the aim of sabotaging the protocol. 

In algorithm 6.28 we deal with a malicious EC user for the Algorithm in 6.21. thus it is 

valid for non-textual data dealing with NB classifiers. One of the attacks that such a malicious 

user might come up with during the server-centric classification stage in Algorithm 6.21 is 

to put 1s (ones) in only two slots corresponding to the same feature-value but different 

classes, i.e. put ones to 𝐾𝑙𝑜𝑔𝑃(𝑉𝑚,𝐹𝑖; 𝐶𝑗), s.t. 𝑚 and 𝐹𝑖 are the same but 𝐶𝑗 is different) or 

put ones to two different class probabilities (𝐾𝑙𝑜𝑔𝑃(𝐶𝑗) and all the other slots are set to zeros 

(Fig.6.13 and 6.14). In this way, while running PPClassServCen (Algorithm in 6.21), the 

user can find which of the two probabilities is greater than the other. Furthermore, if instead 

of ones, in the same fashion the user puts some random values 𝑅1 and 𝑅2 into two slots 

corresponding to the same feature-value but different classes, then after executing 

PPClassServCen for several times with different random values for 𝑅1 and 𝑅2, ultimately the 

user can find the ratio of those two probabilities. In both cases we have a leakage that goes 

against the strict classification goals mentioned in Chapter 1. Algorithm 6.28 deals with such 

active malicious users. 

 

Fig.6.20. SIMD construction of the 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 with padded zeros added for the 

need of the secSum Algorithm 

 

We assume that TEAS and E2DS are still in the semi-honest model and they don’t collude. 

To avoid any attack, we should make sure that the malicious user behaves properly while 

executing the protocol, especially while constructing the 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟, hence the 

q𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 (Fig.6.13 and 6.14), which for the case of the malicious user will be slightly 

altered and named as 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 and 𝑀𝑈𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐, 

respectively. By proper behavior from the malicious user we mean that for each feature 𝐹𝑖 
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s.t. 1 ≤ 𝑖 ≤ 𝑓, exactly one slot per feature should have 1 (one) inserted at the corresponding 

feature–value slot and all others slots should bet set to zeros, just as it is explained in Phase 

I of Algorithm 6.21 (Fig.6.13 and 6.14). To make sure that this is the case we run secSum 

(Algorithm 6.1) to simultaneously and privately find the sum of block of slots corresponding 

to each feature and check whether each of those sums are 1 or not. Based on this outcome, 

the other participants (TEAS and E2DS) decide whether to continue or abort the protocol. In 

order to do this, due to the needs of the old version of secSum, we will have to allocate 

𝑠𝑙𝑜𝑡𝐹 = 2⌈log (𝑚𝑎𝑥𝐹)⌉ slots per feature, where 𝑚𝑎𝑥𝐹 is the feature with the biggest cardinality 

(number of elements), i.e 𝑚𝑎𝑥𝐹 = max (|𝐹𝑖|) for 1 ≤ 𝑖 ≤ 𝑓. Since we have 𝑓 features, and 

in order to find the posterior probabilities for each class we should again use the secSum 

algorithm for the second time, then for each class we need 𝑠𝑙𝑜𝑡𝐶 = 2⌈𝑓∙log(𝑠𝑙𝑜𝑡𝐹)+1⌉ slots, 

where the term+1 (extra one slot) is the slot for the class probability. All the extra added slots 

are padded with (have values) of 0 (zero). Malicious user’s 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 is 

illustrated in Fig.6.20. The corresponding pseudocode that builds this 𝑀𝑈 −

𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟 − 𝑐 is given in lines 1-9 for Phase I of Algorithm 6.29. In Phase II when TEAS 

gets this query, firstly it runs the secSum algorithms to find the sum of each feature block and 

sends the result to E2DS for checking (lines 10-12). Then constructs a plaintext named 

𝑜𝑛𝑒𝑠_𝑝 which, starting from the first slot, has ones in every 𝑠𝑙𝑜𝑡𝐶 slot and everything else is 

zero (lines 13-14). Afterwards TACS firstly rotates 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 to the right by 

one slot (upper vector of Fig.6.21), replicates it for 𝑐 times by calling the CPack algorithm 

from Chapter 6.4.14 and adds the 𝑜𝑛𝑒𝑠_𝑝 plaintexts to it to get the final 𝑀𝑈 −

𝐸𝑛𝑐𝑦𝑟𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_c as shown in Fig.6.22 (lines 15-17), which has 𝑠𝑙𝑜𝑡𝑄 = 𝑐 ∙

𝑠𝑙𝑜𝑡𝐶 slots (𝑠𝑙𝑜𝑡𝐶 slots for each of the 𝑐 classes).  

 

 
Fig.6.21. 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 and portion of the 𝑀𝑈 − 𝑇𝑀_𝑐 depicting slots related to 

class 𝐶𝑗 
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ALGORITHM 6.28: MU-PPClassServCen (PP Classification With Malicious User - server centric) 

INPUT: 𝑿 = {𝑿𝟏, 𝑿𝟐…𝑿𝒇}, 𝑭, 𝑪, 𝑻𝑴_𝒄 

𝑿 = {𝑿𝟏, 𝑿𝟐…𝑿𝒇}: unclassified query feature vector owned by the User, s.t. 𝑋𝑖 ∈ 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓 

𝑭: 𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑓}, where 𝐹𝑖 = {𝑉1,𝐹𝑖 , 𝑉2,𝐹𝑖 , … , 𝑉|𝐹𝑖|,𝐹𝑖}. 𝐹𝑖, st. 1 ≤ 𝑖 ≤ 𝑓  (as explained in Section III-A) 

𝑪: The set of classes 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑐}  (as explained in Section III-A) 

𝑻𝑴_𝒄: an already SIMD encrypted trained Naïve Bayes model stored at TEAS 

OUTPUT: 𝑪𝑻𝑴(𝑿) 
𝑪𝑻𝑴(𝑿):the classification of the query feature vector X according to 𝑇𝑀_𝑐 

Phase I – EC User:       

1  𝑚𝑎𝑥𝐹 = 𝑓𝑖𝑛𝑑𝑀𝑎𝑥𝐹𝑒𝑎𝑡𝑆𝑖𝑧𝑒(𝐹)        //find the feature with the biggest cardinality (number of elements) 

2  𝑠𝑙𝑜𝑡𝐹 = 2⌈𝑙𝑜𝑔(𝑚𝑎𝑥𝐹)⌉;   𝑠𝑙𝑜𝑡𝐶 = 2⌈𝑓·𝑙𝑜𝑔(𝑠𝑙𝑜𝑡𝐹)+1⌉;  𝑠𝑙𝑜𝑡𝑄 = 𝑐 · 𝑠𝑙𝑜𝑡𝐶 = 𝑐 · 2⌈𝑓·𝑙𝑜𝑔(𝑠𝑙𝑜𝑡𝐹)+1⌉ 
3  𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣. 𝑖𝑛𝑠𝑒𝑟𝑡(𝑠𝑙𝑜𝑡𝑄, 0)               //insert 𝑠𝑙𝑜𝑡𝑄 = 𝑐 · 𝑠𝑙𝑜𝑡𝐶 0s (zeros) to the 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣  

4  for 𝑖 =  1 to 𝑓                                  //for each feature 

5      for 𝑚 =  1 to |𝐹𝑖|                                  //for each value of the current feature (feature 𝐹𝑖) 
6          if 𝑋𝑖  ==  𝑉𝑚,𝐹𝑖  then                      //if 𝑋𝑖 is equal to the current 𝑉𝑚,𝐹𝑖 feature value of feature 𝐹𝑖 
7             𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣[𝑖 ∙ 𝑚𝑎𝑥𝐹 + 𝑚] = 1                              //then insert one to index 𝑖 ∙ 𝑚𝑎𝑥𝐹 +𝑚              

8  𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 = 𝐸𝑛𝑐𝑜𝑑𝑒_𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣) //SIMD encod. then encrypt., Fig.A.1                                                                        

9  send 𝑘, 𝑅1, 𝑅2, 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 to TACS  //send the malicious users’ random k, R1, R2 to TEAS      

Phase II – TEAS: 

10 receive 𝑘, 𝑅1, 𝑅2, 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 
11 𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝑆𝑢𝑚(𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐, 𝑠𝑙𝑜𝑡𝐹)   //finds the sum of the (1s) for each feature   

12 send 𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐 to EDS                 //lines 13-17 can be done in parallel with Phase III 

13 𝑜𝑛𝑒𝑠_𝑣 =  {1,0, … ,0,1,0, … , } //a vector that has 𝑐 ones after each 𝑠𝑙𝑜𝑡𝐶 slots, starting from the first slot 

14 𝑜𝑛𝑒𝑠_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑜𝑛𝑒𝑠_𝑣)    //constructing a plaintext, rather than a ciphertext for performance reasons  

15 𝑀𝑈𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐, 1)//rotation for 1 place to the right to make place 

//for 1 in the begin. is needed to be multiplied with the class-conditional prob. (upper vector Fig.A.2) 

16 𝑀𝑈𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 = 𝐶𝑃𝑎𝑐𝑘(𝑀𝑈𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐, 𝑠𝑙𝑜𝑡𝐶, 𝑐) //replicates the 

//𝑀𝑈𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐  for 𝑐 times to get the upper vector of Fig.A.3, without the 1s (ones) in the beginning of 

//each class slot     

17 𝑀𝑈𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 = 𝑀𝑈𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 + 𝑜𝑛𝑒𝑠_𝑝             

 //here we add the 1s (ones) at the beginning of each class slot to finally get the upper vector shown in Fig.A.3 

Phase III – E2DS: 

18 receive 𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐                    //𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐 was obtained from line 11 

19 𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑣 =  𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐷𝑒𝑐𝑜𝑑𝑒(𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐)  
      //HasOnes(·) checks whether there are ones at the beginning of each features’ slot at 𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐  

20 if(𝐻𝑎𝑠𝑂𝑛𝑒𝑠(𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑣))                                                           //if it is the case  

21    send (𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑡𝑟𝑢𝑒) to TEAS                 //send true to TEAS so we can continue with the protocol 

22 else                        //otherwise 

23    send (𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑓𝑎𝑙𝑠𝑒) to TEAS                                         //send false to abort the protocol 

Phase IV – TACS: 

24 recieve 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 

25 if(outcome == false) abort the protocol 
26 else  

27 return 𝑃𝑃𝐶𝑙𝑎𝑠𝑠𝑆𝑒𝑟𝑣𝐶𝑒𝑛(𝑀𝑈 − 𝑇𝑀_𝐶,𝑀𝑈𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐, 𝑘, 𝑅1, 𝑅2) from line 13 

//PPClassServCen (Algorithm 6.21) is executed from line 13, during the execution 𝑛𝐿 = 𝑠𝑙𝑜𝑡𝑄, 𝑛𝑐 = 𝑠𝑙𝑜𝑡𝐶,  

//as shown in Fig. A.3 

//𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 is replaced by 𝑀𝑈𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 and 𝑇𝑀_𝑐 replaced by 𝑀𝑈 − 𝑇𝑀_𝐶  

 
In Algorithm 6.21 the replication is done at the user side (EC), but here we do it at TEAS 

since the malicious user might put a different query vector (Fig.6.13 and 6.14) for each class. 

Lines 13-17 can be done in parallel with Phase III. 
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In Phase III E2DS receives, decrypts and checks whether the result of the secSum done at 

TEAS is proper (it should have one at the begging of each feature slot, i.e. ones after each 

𝑠𝑙𝑜𝑡𝐹 slots) (lines 18-23). If that’s the case then TEAS is informed to proceed, otherwise it 

should abort.  

In Phase IV, if TEAS is signaled to abort, it does so (line 25). If not, TACS proceeds by 

executing 𝑃𝑃𝐶𝑙𝑎𝑠𝑠𝑆𝑒𝑟𝑣𝐶𝑒𝑛 (Algorithm 6.21) from line 13, and while doing so the 

𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 is replaced by 𝑀𝑈𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_c, and the 𝑇𝑀_𝑐 is replaced 

by 𝑀𝑈 − 𝑇𝑀_𝑐 so that their corresponding slot constructions are illustrated in Fig.6.21 for 

one class and in Fig.6.22 for the whole construction (all classes). 

 

 

Fig.6.22. 𝑀𝑈𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 multiplies 𝑀𝑈 − 𝑇𝑀_𝑐 

 

 

Improvement 6.6: Unlike it was the case till now in the literature, no need for slots to be 

powers of two anymore due to Algorithms 6.1 and 6.2.  

 

In Algorithm 6.29 we deal with malicious user(s) (client(s)) for the cases of secure ML 

classifications based on linear algebra operations, which were presented in Algorithms 6.26 

and 6.27. In those scenarios a malicious EC user instead of putting zeros into slots that are 

not meant (not designated) for him, in order to disrupt the secure classifications for the other 

EC’s, the malicious EC can put dummy values other than zeros, which will sabotage the 

protocol for the other EC’s by having them get inaccurate classifications. In order to protect 

from such malicious EC users, before adding (summing, packing) up the EC’s queries into 

one query, each EC’s query is firstly multiplied by a plaintext mask which has 𝑓 1s (ones) at 
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the slots which are designated for that particular EC and zeros elsewhere (lines 1-4). 

Afterwards it can be continued with both Algorithms 6.26 and 6.27 from line 4.    

 

ALOGRITHM 6.29: secMLClass-MU  (secure ML Classifications – Malicious Users)   

INPUT: 𝑴𝑹_𝒄, 𝑺 = {𝑿(𝒊)}
𝒊=𝟏

𝒒
, 𝒄, 𝒇  

OUTPUT: 𝑪𝑴(𝑺)_𝒗 

𝑪𝑴(𝑺)_𝒗: vector of the final classification of 𝑞 queries 

Client(s) 
1  𝑚𝑎𝑠𝑘𝑆𝑒𝑐𝑀𝐿𝐶𝑙𝑎𝑠𝑠_𝑝[] = 𝑚𝑎𝑠𝑘𝑠𝐹𝑜𝑟𝑆𝑒𝑐𝑀𝑙𝐶𝑙𝑎𝑠𝑠() 
2  for 𝑖 = 0 to 𝑞     

3     𝑋_𝑐[𝑖] = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑋𝑖) 
4     𝑋_𝑐[𝑖] = 𝑋_𝑐[𝑖] × 𝑚𝑎𝑠𝑘𝑆𝑒𝑐𝑀𝑙𝐶𝑙𝑎𝑠𝑠_𝑝[𝑖] 

//continue with line 4 for both Algorithm 6.26 and 6.27 
 

 

6.9. Theoretical and Experimental evaluations and comparisons 

In this Chapter we provide the theoretical and experimental evaluations and comparisons 

among building blocks and secure classifications algorithms (protocols) from different 

schemes (research papers). We should note that the experimental evaluations of our proposed 

secure comparison protocol - secComp, hence of our secure comparison of all data slots – 

SCADS as well (since it is built on top of secComp), show that it doesn’t offer a perfect 

hiding of the difference of the two numbers that are being compared (Section 5.9.1). Yet, our 

theoretical analysis show that when SCADS is used in combination with the our secure and 

private ML classification protocols it offers a total privacy of the trained model and the user 

query. We do this by giving a polynomial time reduction of the hardness of getting the trained 

model and the user query to the hardness of LWE (Section II). This is due to the fact that the 

matrix-vector product of the trained model matrix TM and the user query vector X of our 

Machine Learning classification protocols help us “convert” (polynomially reduce) SCADS 

into an LWE problem, as it is proven in Section 6.9.2.     

 

6.9.1. Theoretical analysis and comparisons  

Since secure comparison and secure argmax (secure top-K) are among the most important 

and most used building blocks in secure ML classification algorithms, in Table 6.1 and 6.2 

we provide and compare their security, privacy and efficiency properties among different 
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schemes. In this Section we use the notations we mentioned in Chapter 2. Briefly, 𝑁 is the 

number of slots, 𝑐 is the number of classes, 𝑓 number of features and |𝐹𝑖|  is the number of 

elements (cardinality) of feature’s value set 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓, 𝑏 is the number of bits a single 

ciphertext encoded in one slot has and 𝑛 is the number of Edge Dataset Owners (EDOs). 

During the theoretical comparisons, for both the computation and communication purposes, 

except for schemes [61-62], we mostly take into consideration only the costliest terms which 

usually are due to the cryptographic techniques such as homomorphic encryption (HE), 

oblivious transfer (OT), private information retrieval (PIR), etc. In the process in bold we 

give a reference to the papers of corresponding cryptographic technique together with the 

number of invocations of the scheme or any of its’ subroutine(s) (e.g. multiplication, addition, 

rotation for FHE or SWHE). Furthermore, for the scheme at [67], letters 𝑂 and 𝛺 represent 

the big-O and the 𝛺 notation, respectively.    

In Tables 6.1 and 6.2 we provide theoretical comparisons for the computation and 

computational costs for secure comparison (secComp) and secure argmax (secArgmax) 

protocols among different state-of-the-art schemes, respectively. At those secure schemes 

one of the parties has the encrypted data (two integers or an array of integers for the argmax 

case) and the other one has the secret key. At the end one finds the index or the maximum of 

two integers (or of an array of integers for the argmax case) while the other party usually 

learns nothing. During the secure argmax protocol, almost all of the schemes, several times 

invoke the corresponding secure comparison scheme of the same paper. In this manner all 

the computation and communication costs should be correspondingly added to both parties 

for each secure comparison invocation.   

In our proposed scheme, during the secArgmax protocol, Party A executes once all of the 

SRCPer, invSRCPer and SCADS protocols described in Chapter 6.3. SRCPer has 𝑚 plain 

multiplications, (𝑚 + 2) rotations and log𝑚 additions, where 𝑚 is the number of data slots 

in a block and it’s a small integer (usually not greater than 6 or 7). The same applies for 

invSRCPer. SCADS has 𝑐 rotations, (𝑐/2 +  log𝑐 +  1) additions and 1 plain multiplication. 

Thus we have (2𝑚 +  1) plain multiplications, (2𝑚 +  4 +  𝑐) rotations and (2log𝑚 +

 𝑐/2 +  log𝑐 + 1) additions for the overall computation cost at Party A, which is shown in 

Table 6.2. 
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Table 6.3 gives the theoretical comparisons for the computation and communication costs 

among different schemes during the PP NB classification stage. For our scheme we put 

Algorithm 6.21. In the process we tend to use the described schemes in the most efficient and 

optimized way they can be utilized (especially the scheme described in [69]). However, we 

do this without losing the generality by making any assumption on the number of features 𝑓, 

classes 𝑐 or cardinalities of  𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓. Also, during the PP classification, almost all 

of the schemes invoke the corresponding secure argmax or, when they deal with binary 

classification only (such as Gao et. al. [71]), the corresponding comparison protocol, which 

should be kept in mind while estimating the overall computation and communication cost for 

both (or all) of the participants. Furthermore, some of them several times call other 

cryptographic protocols or their subroutines such as OT, PIR, Pailler [49] etc., which should 

also be considered when estimating the overall communication and computation cost for both 

(or all) parties.  

For the server-centric classification scheme of Park et.al. [69], for the Assign module we 

need 1 multiplication + 1 addition while for SlotCopy we need |𝐹𝑗| − 1 rotations and |𝐹𝑗| − 1  

additions. Since for each feature we repeat both of the process once, and also having in mind 

the |𝐹𝑗|  rotation for the MaskGen module, in total we have 𝑇𝑋𝑞𝑢𝑒𝑟𝑦 = f ·

(1 multipliplication + (2|𝐹𝑗| − 1) rotations + |𝐹𝑗| additions). 
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Table 6.1. Theoretical comparison of the secure comparison (secComp) algorithm among different schemes 
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Table 6.2. Theoretical comparison and properties of the secure argmax (secArgmax) algorithm among different schemes 
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Table 6.3 Theoretical comparison for the costs of the PP Naïve Bayes classification algorithm among different schemes 
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For maximum performances we will have to pack those outputs into one ciphertext, thus 

we need extra 𝑇𝑝𝑎𝑐𝑘 = (𝑓 − 1)(rotation + addition). Assuming that the 𝑇 and 𝑆 tables are 

also packed correspondingly into ⌈
𝑁

𝑏∙𝑢∙𝑐∙∑ 𝐹𝑖𝑖
⌉ ciphertexts, we have 𝑇𝑟𝑒𝑚 =

⌈
𝑁

𝑏∙𝑢∙𝑐∙∑ 𝐹𝑖𝑖
⌉ (|𝐹𝑗| multiplications + |𝐹𝑗|  additions) + (𝑙𝑜𝑔1.5(𝑓 + 1) + ⌈𝑙𝑜𝑔𝑞 + 2⌉) 

multiplications for the remaining part, where the term (𝑙𝑜𝑔1.5(𝑓 + 1) + ⌈𝑙𝑜𝑔𝑏 + 2⌉) comes 

from the WallaceTree and K-S adder, 𝑏 is the number of bits per encrypted integer and u is 

the number of slots between two neighboring bits. Thus for the server-centric classification 

in [69], in total we need 𝑇𝑡𝑜𝑡 = 𝑇𝑋𝑞𝑢𝑒𝑟𝑦 + 𝑇𝑝𝑎𝑐𝑘 + 𝑇𝑟𝑒𝑚 of BGV-like operations and the 

corresponding secure argmax scheme, which is the value of [69] provided in Table 6.3. 

Table 6.4 shows the homomorphic complexity and circuit depth (the number of consecutive 

multiplications) of some of our secure linear operations compared with the best reported 

results of the related research schemes in [89-90], since they are known to be among the best. 

All of our algorithms have a 𝑂(𝑙𝑜𝑔𝑑) (logarithmic) complexity wrt. to the matrix (vector) 

dimensions, except for secMatMat which is linear since it uses secDRep(∙), which is linear 

itself.  

 

Table 6.4. Complexity and comparisons of secure linear algebra operations  

Algorithm ADD CMUL ROT MUL DEPTH 

secSum logd 1 logd 0 1 CMUL 

CRep logd 0 logd 0 0 

secDRep 2logd d d+logd 0 2 CMUL 

secDotP logd 1 logd 1 1 MUL+1 CMUL 

secMatVec 2logd 1 2logd 1 0 

secMatVec (C)* logd 2 logd 0 2 CMUL 

secMatVec [89] d d d-1 0 2 CMUL 

secMatMat 4logd d + 1 d+3logd 1 1 MUL+2 CMUL 

secMatMat [90] 6d 4d 3d+5√𝑑 d 1 MUL+2 CMUL 

*For benchmark purposes with [89] the vector is packed and in plain 

**it is assumed that the matrixes are squared. All logs are in base 2  

***ADD = Ciphertext Addition, CMUL = Constant (plain) Multiplication,    

      ROT = Rotation, MUL = Ciphertext Multiplication 
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6.9.2. Experimental evaluations and comparisons  

Table 6.5 gives the computation cost to securely sum up 𝑑 integers. Due to the SIMD packing 

of integers into polynomials with size 𝑁, in our scheme we can simultaneously sum up 
𝑁

𝑑
 sets 

of 𝑑 integers, so all of the results for our scheme are aggregated (divided by𝑁/𝑑) to include 

this speed-up. Table 6.6 shows the results for secure comparison of two integers, and for the 

same reasons the results of our scheme are aggregated (divided by 𝑁) to include 𝑁 

simultaneous comparisons. For our scheme in Table 6.6 for the costs of our secComp 

algorithm we consider party A to actually execute our secComp algorithm and party B to 

decrypt it. Table 6.7 results of our block are aggregated to include simultaneous secure 

argmax of 𝑁/𝑐 pairs of c integers. Table 6.8 and 6.9 give the results for different polynomial 

sizes of 𝑆𝑅𝐶𝑃𝑒𝑟, 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟 and 𝐶𝑃𝑎𝑐𝑘, among different block sizes – 𝑘, and number of 

ciphertexts to pack – 𝑝, respectively. 

 

Table 6.5. Computation cost for secure sum (secSum) of 𝑑 integers among different 

schemes (in milliseconds) 

    scheme 

 

𝒅 

Our scheme - secSum 

(Algorithm 6.1) 
Liu et. 

al. [67] 

Park et. al. 

[69] 

Khedr et. 

al. [74] 

Bost 

et.al.[53] 
N = 4096 N = 8192 N= 16384 

32 0.093826 0.138688 0.443816 256 ≈106000 192 168 

64 0.192583 0.336359 1.05018 512 ≈202000 384 336 

128 0.399319 0.768558 2.48382 1024 ≈778000 768 672 

256 0.910869 1.763741 5.648328 2048 NA 1536 1344 

512 1.992125 3.984806 12.65613 4096 NA 3072 2688 

1024 4.2552 8.57455 28.14 8192 NA 6144 5376 

 

Table 6.6. Computation cost for the SIMD secure comparison (secComp) protocol of two 

encrypted integers among different schemes  

S
c
h

e
m

e Our scheme (secComp) 

(in milliseconds) 
[53], [70]  

[71] 

(in ms.) 

[67] 

(in sec.) 

[69] 

(in sec.) 

[73] 

(in ms.) 
N = 4096 N = 8192 N = 16384 

Place A B A B A B A B A B A B A B 

Cost 0.33 0.24 0.72 0.42 2.03 0.69 45.3 43.7 2.5 NR 8 NR 110 NR 

*NR = Not reported 

 



128 
 

Table 6.7. Computation cost of secure argmax (secArgmax) of 𝑐 integers among different 

schemes (in milliseconds, unless otherwise stated) 

S
ch . Our scheme – secArgmax (Algorithm 6.7) [53] 

[75] 
[69] [73] 

N = 4096 N = 8192 N = 16384 
Place  

c 
A B A B A B A B  All All 

4 0.01 0.01 0.0267 0.0132 0.09 0.02 ≈250 ≈150 ≈20 s 
440 

sec. 

8 0.11 0.02 0.2321 0.0250 0.76 0.03 ≈550 ≈400 
≈120 

s 

880 

sec. 

16 0.32 0.04 0.6609 0.0544 2.25 0.07 ≈1100 ≈800 
≈900 

s 

1760 

sec. 

32 0.98 0.08 2.0322 0.1115 6.99 0.16 ≈250 ≈150 ≈20 s 
3520 

sec. 

64 3.51 0.21 7.2732 0.2059 26.6 0.31 ≈550 ≈400 
≈120 

s 

7040 

s 
 

Table 6.8. Comparison of computational costs for SRCPer and invSRCPER for different 

block) sizes k and polynomial modulus N (results are in milliseconds)  

        k 

N 
2 3 4 5 6 7 

4096 8.66 15.07 21.18 25.05 31.71 36.86 

8192 45.82 55.28 83.06 101.97 130.49 156.87 

16384 239.09 377.19 566.71 680.13 904.02 997.20 

 

Table 6.9. Comparison of computational costs of CPack for different ciphertext numbers p 

and polynomial modulus N (results are in milliseconds) 

        p 

 N 
2 4 8 16 32 64 

4096 2.04 5.63 17.82 37.45 209.53 209.53 

8192 8.01 23.08 60.87 150.9 887.60 887.60 

16384 50.81 138.8 426.6 1024.56 6752.1 6852.1 

 

Tables 6.10 and 6.11 give the computation cost of some of our secure linear algebra 

operations compared with the best known results from the state-of-the-art schemes. 
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Table 6.10. Comparisons of amortized secure linear algebra operation costs (in ms) 

Dimension 4 8 16 32 64 

secSum 10−4 0.005 0.011 0.045 0.081 

CRep 0.006 0.035 0.21 1.625 6.01 

secDRep 0.15 3.906 80.4 352.5 450 

secDotP 9 ∙ 10−4 0.024 0.04 0.107 0.194 

secMatVec;  0.05 0.24 1.19 5.2 22.6 

secMatMat 0.54 9.6 145 575 895 

secMatMat (HE-

MatMult) of [90] 
3 NR 162 NR 104 

 

Table 6.11. Comparisons of amortized cost of secMatVec costs (in ms) 

Matrix dim. Naive [89] Diagonal [89] Hybrid [89] Our* 

1024 × 128 880.0 192.4 16.2 30.8 

1024 × 16 110.3 192.4 7.8 3.79 

128 × 16 77.4 25.4 5.3 0.48 

* multiplication of a plaintext matrix with a packed ciphertext vector  

 

Table 6.12 compares the best PP classification results per query as reported at the 

corresponding schemes. In Table 6.10 scheme we report our results for Algorithm 6.21 for 

datasets in [84-87], also introduced in Chapter 5.5.  

 

Table 6.12. Per query comparison of the cumulative (among all participants) costs for the PP 

classification case among different schemes and datasets  

S
ch

em
e 

[73] [69] [53] [67] [71] [75] [72] [76] [77] [78] [79] Our [66] Our Our 

D
a

ta
se

t 

Breast Cancer Wisconsin (Original) Data Set [86] 

Acute 

Inflammat

ions Data 

Set [87] 

SMS 

Spam  

[84] 

C
o

m
p

. 

co
st

 

48 

ms 

70 

sec. 

479 

ms. 

349.

min. 

555 

ms. 

few 

min. 

14 

ms 

35.7

ms 

1.5 

sec 

0.62 

sec. 

0.40 

sec. 
0.84 

ms 

196 

sec. 
0.9 

ms 

6.75 

ms 

C
o
m

m
. 

co
st

 

NR 

2 

cip

her. 

72.9 

  KB 

1.24 

MB 

19.3 

KB 
NR 

109

KB 
43.1 

KB 
4 

MB 
256 

KB 

306 

KB 
13 

KB 

40 

KB 
13 

KB 

109 

KB 

*NR = Not reported 
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Table 6.13. Amortized query costs for the NB classifier based on linear algebra operations 

         Cost 

Scheme 
Computation cost Communication cost 

Original Wisconsin Breast Cancer Dataset [86] 

[53] 479 milliseconds 72.5 KB 

[10] 555 milliseconds 19.3 KB 

[6] 2900 milliseconds 800 KB 

[44] 349 minutes 1.24 MB 

[73] 48.79 milliseconds Not reported 

[69] 70 seconds 2 ciphertexts 

[72] 14 milliseconds 109 KB 

[76] 35.74 milliseconds 43.13 KB 

Our 2.37 milliseconds 13.7 KB 

 

Table 6.14. Amortized query costs for the SVM classifier based on linear algebra operations 

              Cost                         

Scheme 
Computation cost Communication cost 

Original Wisconsin Breast Cancer Dataset [86] 

[53] 204 milliseconds 35.84 KB 

[44] 3100 milliseconds 7.5 MB 

[73] 2.41 milliseconds Not reported 

[97] 3.47 milliseconds 0.92 KB 

Our 0.19 milliseconds 0.43 KB 

UNSW-NB 15 cybersecurity dataset [94] 

Our 0.20 milliseconds 0.43 KB 

 

Table 6.15. Amortized query costs for the LR classifier based on linear algebra operations 

        Cost 

Scheme 
Computation cost Communication cost 

Original Wisconsin Breast Cancer Dataset [86] 

[53] 204 milliseconds 35.84 KB 

[97] 3.55 milliseconds 0.92 KB 

Our 0.21 milliseconds 0.43 KB 

UNSW-NB 15 cybersecurity dataset [94] 

Our 0.19 milliseconds 0.43 KB 

 

Tables 6.13-6.15 compare the amortized (per query) computation and communication costs 

of our schemes based on secure linear algebra operations (Algorithm 6.26) and the related 

PP classifications for NB, SVM and LR among different datasets, respectively. One of the 

datasets is the Wisconsin Breast Cancer dataset [86], while the other is the UNSW-NB 15 



131 
 

cybersecurity dataset [94], which is also a binary-class dataset, thus 𝑐 = 2, has 𝑓 = 42 

original features, but after extensive feature selection in plain we used only 𝑓 = 15 of them. 

For both datasets our PP classification scheme (Algorithm 6.26) showed no loss of accuracy 

due to PP classification. If a certain scheme provides several results for the same purpose due 

to different security parameters or improved scenarios, in Tables 6.13-6.15 we give the best 

results of the corresponding schemes. In all of them for our scheme we provide the 

implementation results of the improved version of the server centric secMLClass (Algorithm 

6.26). For all of the datasets the trained model for NB in plain was obtained using C++ code, 

while for SVM and LR the trained models were obtained by WEKA [93].  

 

Table 6.16. Amortized per query costs for (secC, Algorithm 6.24) 

Comput. cost 

(ms) 

Commun. cost  

(KB) 

Comput. cost 

(ms) 

Commun. cost  

(KB) 

EC E2DS EC E2DS EC E2DS EC E2DS 

Enron Email dataset [37], N=8192 Enron Email dataset [37], N=16384 

15.03 0.28 27.5 0 17.3 0.27 27.5 0 

SMS spam dataset [84],  N=8192 SMS spam dataset [84],  N=16384 

6.5 0.2 13.75 0 6.95 0.72 13.75 0 

 

Table 6.16 gives the amortized (per query) costs of the improved 2PC version of Algorithm 

6.24 for different 𝑁. In this sense, for the Enron dataset [37], already presented in Chapters 

4.5 and 5.5, the number of packed queries in a single ciphertext is 𝑞 = ⌊
𝑁

(𝑚+1)
⌋ = ⌊

𝑁

(2047+1)
⌋ = 

4 and 8 queries for 𝑁 = 8192 and 𝑁 = 16384, respectively, while for the SMS spam corpus 

dataset [84] it is 8 and 16 queries, respectively. 

In Table 6.17 we report and compare the costs and characteristics of several related 

schemes (mainly related to binary textual datasets) dealing with PP classification. Since they 

report several costs and properties, we present the best of each one of each scheme. 
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Table 6.17. Amortized per query costs for PP classifications among different binary textual 

datasets (queries)  

Scheme Comp. cost Comm. cost ML algorithm Class. Acc. 

Enron email dataset [37] 

[11] ≈8 s Not reported NB Not report. 

 [12] 350 ms ≈110 KB MNB,NB 98.8% 

   [17]* 3.79s (SEAL) 40.63 MB Deep Learning 86.3% 

  [17]** 0.17s (GPU) 40.63 MB Deep Learning 86.3% 

 [21] 78 min Not reported NB 99.1% 

Ours 15.31 ms 27.5 KB MNB 99.1% 

SMS spam corpus dataset [84] 

[20] 21 ms Not reported NB 95.6% 

[18] 6.75 ms 109 KB NB 93.1% 

Ours 3.38 ms 11.37 KB NB 93.1% 

Hate speech against immigrants and women in Twitter dataset [19] 

[19] 25.579 s Not reported Ensemble trees 74.4% 

[19] 0.953 s Not reported Logis. Regress. 72.4% 

*26 cores of 2.1 GHz Intel Xeon Platinum processor with 188 GB of RAM 

** 1 TESLA (5120 cores of 1.38 GHz) and 3 P100 (3584 cores of 1.19 GHz) 

 

We evaluate the performances of the proposed secure comparison-secComp protocol over 

arithmetic circuits when it is used isolated (not in combination with other building blocks or 

protocols), which is given as 𝑦 = (𝑎 − 𝑏)𝑟 + ℎ = 𝑥𝑟 +h, s.t. 𝑟 > 0 and |ℎ| < 𝑟  (Section 

6.3.4). We assume that variables 𝑎 and 𝑏 are samples from a uniform distribution in the range 

of (−2𝑛−1, 2𝑛−1 − 1), thus 𝑎 ← 𝐴 = 𝑈(−2𝑛−1, 2𝑛−1 − 1),, 𝑏 ← 𝐵 = 𝑈(−2𝑛−1, 2𝑛−1 − 1),

𝑟 is a positive sample from a discrete Gaussian distribution with mean 2𝑛−1 and standard 

deviation of 3.2, thus 𝑟 ← 𝑅 = 𝑁(2𝑛−1, 3.2), while ℎ is a sample from uniform distribution 

in the range (−𝑟 + 1, 𝑟 − 1), ℎ ← 𝐻 = 𝑈(−𝑟 + 1, 𝑟 − 1),  where 𝑛 is the number of bits that 

the variables have. The distribution type of r, its mean and dispersion where chosen due to 

showing better experimental performances and were inspired by LWE. For the distribution 

of the variable x we have 𝑥 ← 𝑋 = 𝐴 − 𝐵.   

In Fig.6.23-6.25 we show joint probability of 𝑋 and 𝑌 -𝑃(𝑋, 𝑌) − by plotting 10.000 

points when the numbers of bits are 𝑛=2,3 and 4, respectively.     

What we want to idelly see in Fig.4-6 is a projection of Y which is uniform and a projection 

of X which is the same for each value of Y. In this case, observing any value of Y will give 

the conditional entorpy for X, thus there would be no information gain for  any observerd 
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value of Y. However, this is not the case with Fig.4-6, thus there is some information leakage 

about the difference of numbers a and b.  

 

  

 

Fig.6.23 The joint probability of 𝑋 and 𝑌, 𝑃(𝑋, 𝑌), for n=2 bits 

 

 

Fig.6.24. The joint probability of 𝑋 and 𝑌, 𝑃(𝑋, 𝑌), for n=3 bits 
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Fig.6.25. The joint probability of 𝑋 and 𝑌, 𝑃(𝑋, 𝑌), for n=4 bits 

 

In Fig.6.26-6.28 we show the probability of 𝑌- 𝑃(𝑌), by plotting 10.000 points when the 

numbers of bits are 𝑛=8,12 and 16 bits, respectively. 

 

 

 

Fig.6.26.Plotting 10.000 points to draw P(Y) when n=8 bits 
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Fig.6.27.Plotting 10.000 points to draw P(Y) when n=12 bits 

 

 

 

Fig.6.28.Plotting 10.000 points to draw P(Y) when n=16 bits 

 

Fig.6.26-6.28 show that the security characteristics of Y improve as the number of bits gets 

larger by making the dispersion of Y greater. This is especialy good knowing that Algorithm 

1 can be expressed with the Paillier that can have thousands of bits and the SWHE scheme 

which can offer close to one thousand bits when 𝑁 = 32𝐾. 
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6.10. Security analysis and proofs 

Theorem 6.1: Let 𝑎 ← 𝑈𝑞
𝑛×𝑚 and let 𝑎′ be obtained by 𝑎 s.t. each of the rows of 𝑎 is 

subtracted in index (component-wise) manner with all the other rows (in total we have 
𝑛(𝑛−1)

2
 

such subtractions, thus 𝑎′ has 
𝑛(𝑛−1)

2
 rows). Let 𝑠′ ← 𝑈𝑞

𝑚×1, 𝑅 ← 𝑈𝑞

𝑛(𝑛−1)

2
×1

 and ℎ ←

𝑋𝑞

𝑛(𝑛−1)

2
×1

, s.t. each element (entry, index) of R is greater than zero, thus R>0 and |ℎ| < 𝑅, 

thus the absolute value of each element of h is smaller than the corresponding index value of 

R. Let 𝑐′ ← 𝑈𝑞
𝑛×1. If Decision-LWE is hard (Section 2.4.2), then distinguishing between 

(𝑎′, 𝑎′𝑠′ × 𝑅 + ℎ) and  (𝑎′, 𝑐′) is also hard. Here × stand for index (component-wise) 

multiplication. 

Proof: We get 𝑎′ in polynomial time of operations (subtractions). Apparently 𝑎′ 𝜖 𝑈𝑞

𝑛(𝑛−1)

2
×𝑛

, 

since subtracting a uniform variable from another uniform variable in modular arithmetic still 

gives a random uniform variable. The same reasoning can be given for the multiplication of 

two uniform random variables in modular arithmetic.  Simply put, before adding ℎ to 𝑎′𝑠′, 

we furthermore randomized all of 𝑎′𝑠′ components (indexes) by multiplying them with a 

random uniform R, thus 𝑎′𝑠′ × 𝑅 + ℎ ≅ 𝑈𝑞

𝑛(𝑛−1)

2
×𝑛

. This means that we can’t distinguish 

between (𝑎′, 𝑎′𝑠′ × 𝑅 + ℎ) and (𝑎′, 𝑐′).       ∎ 

Theorem 6.2 (Symmetry of Decision-LWE): Let 𝑠 ← 𝑈𝑞
𝑚×1, 𝑎 ← 𝑈𝑞

𝑛×𝑚,  𝑒 ← 𝜒𝑞
𝑛×1, 𝑐 ←

𝑈𝑞
𝑛×1. If Decision-LWE is hard, then distinguishing between (𝑠, 𝑎 · 𝑠 + 𝑒) and (s, c) is also 

hard. Thus, here, instead of a, we share s. 

Proof: if there is a way to find 𝑎 𝜖 𝑈𝑞
𝑛×𝑚 from 𝑠 𝜖 𝑈𝑞

𝑚×1, then it is even easier to find 𝑠 

when 𝑎 is given, which contradicts Assumption 1 (Decision-LWE).    ∎ 

 

Theorem 6.3: Using SCADS (Algorithm 2) after secure ML classifications (equation (1)), 

reveals nothing about the trained model M or the user query X. 

Proof: Let 𝑋 ← 𝑈𝑞
𝑚×1, 𝑀 ← 𝑈𝑞

𝑛×𝑚,  𝑅 ← 𝑈𝑞

𝑛(𝑛−1)

2
×1

 and ℎ ← 𝑋𝑞

𝑛(𝑛−1)

2
×1

, where R and h are 

the random integer vectors needed for SCADS (hence for secure comparison) in  SIMD 

fashion. At the end of SCADS the output will be 𝑀′𝑋 × 𝑅 + ℎ, where 𝑀′𝜖 𝑈𝑞

𝑛(𝑛−1)

2
×𝑛

. We 
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invoke Theorem 1 to show that the user query X is kept private. We invoke Theorem 2 to 

show that the trained model M is also kept private.      ∎ 

 

Theorem 6.4: Let 𝑠 ← 𝑈𝑞
𝑚×1, 𝑎 ← 𝑈𝑞

𝑛×𝑚, ℎ ← 𝜒𝑞
𝑛×1 𝑅′ ← 𝜒𝑞

𝑛×1, s.t. each element (entry, 

index) of R is greater than zero, thus R>0 and |ℎ| < 𝑅, thus the absolute value of each 

element of h is smaller than the corresponding index value of R. Let 𝑐 ← 𝑈𝑞
𝑛×1. If 

Decision–LWE holds, then we also can’t distinguish between (𝑎, (𝑎 · 𝑠)2𝑅′ + ℎ) and (a, c).  

Proof: We invoke Theorem 1, where R is  (𝑎 · 𝑠)𝑅′.     ∎ 

 

Theorem 6.5: Let 𝑠0 ← 𝑈𝑞
𝑚×1, 𝑎𝑖 ← 𝑈𝑞

𝑛×𝑚, where 0 ≤ 𝑖 ≤ 𝑙, ℎ ← 𝜒𝑞
𝑛×1 𝑅′ ← 𝜒𝑞

𝑛×1, s.t. 

each element (entry, index) of R is greater than zero, thus R>0 and |ℎ| < 𝑅, thus the 

absolute value of each element of h is smaller than the corresponding index value of R. If 

Decision–LWE holds, then we can’t distinguish between (𝑎𝑙, (𝑎𝑙 ∙ 𝑠𝑙)
2𝑅′ + ℎ) and (𝑎𝑙, c). 

Here 𝑠𝑖 = (𝑎𝑙−1 ∙ 𝑠𝑙−1)
2. 

Proof: We will use Mathematical induction. For 𝑖 = 0 we invoke Theorem 3. Let’s assume 

that the theorem holds for 𝑖 = 𝑘. Then for 𝑖 = 𝑘 + 1 we have 𝑠𝑘+1 = (𝑎𝑘 ∙ 𝑠𝑘)
2, which is 

is also uniformly random, thus  (𝑎, (𝑎𝑘+1 ∙ 𝑠𝑘+1)
2𝑅′ + ℎ) and (a, c) can’t be distinguished 

according to Theorem 4.   

 

Theorem 6.6: Using SCADS (Algorithm 2) after secure ML classifications over DNN 

(equation (2)), doesn’t reveal anything about the trained model M of the DNN or the user 

query X 

Proof: If the DNN has one layer, then 𝑋 ← 𝑈𝑞
𝑚×1, 𝑀0 ← 𝑈𝑞

𝑛×𝑚, ℎ ← 𝜒𝑞
𝑛×1 𝑅 ← 𝜒𝑞

𝑛×1 and 

the output of the DNN will be  (𝑀 ∙ 𝑋)2𝑅′ + ℎ. We invoke Theorem 4 and Theorem 2 to 

proof that there is no leakage of 𝑀 or 𝑋.  

If the DNN has more 𝑙 layers, then 𝑋0 ← 𝑈𝑞
𝑚×1 𝑀𝑖 ← 𝑈𝑞

𝑛×𝑚, for 0 ≤ 𝑖 ≤ 𝑙, ℎ ← 𝜒𝑞
𝑛×1 𝑅 ←

𝜒𝑞
𝑛×1. and 𝑋𝑖 = (𝑋𝑖 ∙ 𝑀𝑖)2. The output of the DNN at the l-th layes is (𝑀𝑙 ∙ 𝑋𝑙)2𝑅 + ℎ. We 

invoke Theorem 5 and Theorem 2 to proof that there is no leakage of the trained model 𝑀 

and the user query 𝑋 
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Theorem 6.7: secArgmax (Algorithm 6.7) is a secure two-party protocol under the semi-

honest model.  

Proof: Here 𝑓 is the deterministic function 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘), where the public key 

𝑃𝑘 and the input ciphertext 𝑖𝑛𝑝𝑢𝑡_𝑐are the private inputs of party A and the secret key 𝑠𝑘 is 

the private input of party B. For the output of the function we have 

𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐴(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘),𝑎𝑟𝑔𝑚𝑎𝑥𝐵(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘)) =

(𝜙,𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣), where 𝜙 means no output. The protocol 𝛱 that securely computes 

𝑎𝑟𝑔𝑚𝑎𝑥 is 𝑠𝑒𝑐𝐴𝑟𝑔𝑚𝑎𝑥(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘). For the output of the protocol 𝛱 we have 

𝑜𝑢𝑡𝑝𝑢𝑡𝛱(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘) = (𝑜𝑢𝑡𝑝𝑢𝑡𝐴
𝛱, 𝑜𝑢𝑡𝑝𝑢𝑡𝐵

𝛱) = (𝜙,𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣).  

The view of party A is 𝑉𝐴 = (𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑟𝐴, 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐), where 𝑃𝑘 is the public key 

and r𝐴 are random coin tosses at A. We build the simulator for party A as  

𝑆𝐴((𝑥𝐴), 𝑓𝐴(𝑥̅)) = 𝑆𝐴((𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐), 𝑠𝑒𝑐𝐴𝑟𝑔𝑚𝑎𝑥𝐴(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘)) =

𝑆𝐴((𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐), 𝜙) =  (𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑟𝐴̃, 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐̃ ), where 𝑟𝐴̃ is chosen from the 

same distribution as 𝑟𝐴 and 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐̃  is a random ciphertext. Due to the semantic 

security of the RLWE scheme an adversary cannot distinguish between 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐 

and 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐̃ , hence 𝑆𝐴 ≅𝐶 𝑉𝐴.     

Similarly, for the view of party B we have 𝑉𝐵 = (𝑠𝑘, 𝑟𝐵, 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐, 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐), where 𝑠𝑘 

is the secret key and 𝑟𝐵 are random coin tosses at B. We construct the simulator for the party 

B as 𝑆𝐵(𝑥𝐵, 𝑓𝐵(𝑥̅)) = 𝑆𝐵((𝑠𝑘), 𝑠𝑒𝑐𝐴𝑟𝑔𝑚𝑎𝑥𝐵(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘)) = 𝑆𝐵(𝑠𝑘,𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥) =

(𝑠𝑘, 𝑟𝐵̃, 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐̃ ,𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃ ), where 𝑟𝐵̃ has same random distribution as 𝑟𝐵, 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐̃  

is a random ciphertext and 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃  is done by first constructing a vector 𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣 from 

the output 𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥 and then having 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃ =  𝐸𝑛𝑐𝑜𝑑𝑒_𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣). Due 

to the semantic security of the ciphertexts, an adversary cannot distinguish between 

𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐 and 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐̃ , as well as between 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐  and 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃ , so 𝑆𝐵 ≅𝐶 𝑉𝐵. ∎ 

 

Theorem 6.8: PPClassServCen (Algorithm 6.21) is a secure multi-party protocol under the 

semi-honest model 

Proof: The function 𝑓((𝑋, 𝑘, 𝑅), 𝑇𝑀_𝑐, 𝜙) = (𝑓𝑈𝑠𝑒𝑟1, 𝑓𝑇𝐴𝐶𝑆, 𝑓𝐸𝐷𝑆) = (𝐶𝑇𝑀(𝑋), 𝜙, 𝜙), is 

computed by the protocol PPClassServCen = Π, which we split into two protocols called 

consecutively. Namely 𝜌1 computes lines 1-12 and 𝜌2 computes lines 13-26, so 
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PPClassServCen = 𝛱 = 𝜌1𝜌2. For the corresponding protocol outputs we have 

𝑜𝑢𝑡𝑝𝑢𝑡𝛱(𝑋, 𝑘, 𝑅, 𝑇𝑀_𝑐, 𝜙) = (𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑠𝑒𝑟1
𝛱 , 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝐴𝐶𝑆

𝛱 , 𝑜𝑢𝑡𝑝𝑢𝑡𝐸𝐷𝑆
𝛱 ) = (𝐶𝑇𝑀(𝑋), 𝜙, 𝜙). 

𝑜𝑢𝑡𝑝𝑢𝑡𝜌1((𝑋, 𝑘, 𝑅), 𝜙, 𝜙) = (𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑠𝑒𝑟1
𝜌1 , 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝐴𝐶𝑆

𝜌1 , 𝑜𝑢𝑡𝑝𝑢𝑡𝐸𝐷𝑆
𝜌1 )  =

(𝜙, (𝑘, 𝑅, 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑡𝑜𝑟_𝑐), 𝜙), 

𝑜𝑢𝑡𝑝𝑢𝑡𝜌2((𝑘, 𝑅), (𝑘, 𝑅, 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑡𝑜𝑟_𝑐, 𝑇𝑀_𝑐), 𝜙) =

(𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑠𝑒𝑟1
𝜌2 , 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝐴𝐶𝑆

𝜌2 , 𝑜𝑢𝑡𝑝𝑢𝑡𝐸𝐷𝑆
𝜌2 ) = (𝐶𝑇𝑀(𝑋), 𝜙, 𝜙). 

For the views and simulators for 𝜌1 we have the trivial ones, thus 𝑉𝑈𝑠𝑒𝑟1
𝜌1 =

(𝑋, 𝑟𝑈) ≅𝐶 (𝑋, 𝑟𝑈̃) = 𝑆𝑈𝑠𝑒𝑟1
𝜌1 (𝑋, 𝜙), 𝑉𝑇𝐴𝐶𝑆

𝜌1 = (𝑇𝑀_𝑐, 𝑟𝑇𝐴𝐶𝑆) ≅𝐶 (𝑇𝑀_𝑐, 𝑟𝑇𝐴𝐶𝑆̃) =

𝑆𝑇𝐴𝐶𝑆
𝜌1 (𝑇𝑀_𝑐, 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝐴𝐶𝑆

𝜌1 ).  

For 𝜌2 for TACS we have the trivial view and simulator. For EDS we have 𝑉𝐸𝐷𝑆
𝜌2 =

(𝑘, 𝑅, 𝑟𝐸𝐷𝑆, 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐) ≅𝐶 (𝑘, 𝑅, 𝑟𝐸𝐷𝑆̃ , 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃ ) = 𝑆𝐸𝐷𝑆
𝜌2 , where for 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃  we first 

construct a random vector 𝑟𝑛𝑑_𝑣, then encode and encrypt it 𝑟𝑛𝑑_𝑐 =

𝐸𝑛𝑐𝑜𝑑𝑒𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑟𝑛𝑑_𝑣) and set 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃ = 𝑆𝐶𝐴𝐷𝑆(𝑟𝑛𝑑_𝑐, ([𝑐], 𝑛𝑐 , 𝑐)).For the user’s 

view and corresponding simulator we have 𝑉𝑈𝑠𝑒𝑟1
𝜌2 = (𝜙, 𝑟𝑈𝑠𝑒𝑟 , 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥) ≅𝐶 𝑆𝑈𝑠𝑒𝑟

𝜌2 =

(𝜙, 𝑟𝑈𝑠𝑒𝑟̃ , 𝑖𝑛𝑑), and 𝑖𝑛𝑑 = 𝑆𝑅𝐶𝑃𝑒𝑟(𝐶𝑇𝑀(𝑋), 𝑘, 𝑅, 𝑐, 𝑛𝑐). We invoke Theorem 3.1 to prove 

that PPClassServCen = 𝜌1𝜌2 is secure       ∎ 

 

Corollary 6.1: protocol 𝜌1 is a secure protocol under the semi-honest model   ∎ 

 

Corollary 6.2: protocol 𝜌2 is a secure protocol under the semi-honest model   ∎ 

 

Theorem 6.9: secMLClass (Algorithm 6.26) is a secure 2PC protocol under the semi-honest 

model. 

Proof: The client’s view is 𝑉𝐶{𝜆, 𝑆} = 𝑉𝐶 = {𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣}, where 𝜆 = {𝑁, 𝑞, 𝑡} (as in 

Section III-B). Let  𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣̃  = 𝑆𝑅𝐶𝑃𝑒𝑟(𝐶𝑀(𝑆)_𝑣 , 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑓 + 1), where the random 

parameters 𝑘, 𝑅1, 𝑅2 have the same values that the client used while executing Algorithm 

6.26. Apparently  𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣̃  and 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 are the same. Let the simulator view for the 

client be 𝑆𝐶(𝜆, 𝑂) = {𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣̃ }, thus 𝑆𝐶(𝜆, 𝑂) ≅𝑐 𝑉𝐶. 
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Server’s view is 𝑉𝑆{𝜆, 𝑆} = 𝑉𝑆 = {𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐}. For the server’s simulator 𝑆𝑠(𝜆, 𝑂) we 

construct a matrix of random queries 𝑆̃ = {𝑋(𝑖)̃ }
𝑖=1

𝑞
 and use it as our input to proceed with 

lines 1-7 of Algorithm 6.26 to get  𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐̃ . Since the server cannot distinguish 

between𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 and 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐̃   due to the semantic security of the underlying RLWE 

scheme (he can’t even distinguish the genuity between the decrypted and decoded 

𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 and 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣̃ ), by having 𝑆𝑠(𝜆, 𝑂) = {𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐̃ } we proof 

𝑆𝑆(𝜆, 𝑂) ≅𝑐 𝑉𝑆                             ∎ 

 

Theorem 6.10: secC (Algorithm 6.24) is secure under the semi-honest model. 

Proof: EC’s view is 𝑉𝐸𝐶
𝑠𝑒𝑐𝐶(𝜆, 𝑥̅) = {𝑟𝑛𝑑𝐶𝑇𝑀(𝑞)_𝑣, ℎ2_𝑣} its private input 𝑥𝐸𝐶

𝑠𝑒𝑐𝐶 = 𝑞_𝑣 and 

output 𝑂𝐸𝐶
𝑠𝑒𝑐𝐶(𝜆, 𝑥̅) = 𝐶𝑇𝑀(𝑞). For the EC’s simulator we construct random 

𝑟𝑛𝑑𝐶𝑇𝑀(𝑞)_𝑣̃ ,ℎ2_𝑣̃ s.t. their subtraction will give the same output when EC executes lines 

14-18, thus 𝑆𝐸𝐶
𝑠𝑒𝑐𝐶 (𝜆, 𝑥𝐸𝐶

𝑠𝑒𝑐𝐶 , 𝑂𝐸𝐶
𝑠𝑒𝑐𝐶(𝜆, 𝑥̅)) = {𝑟𝑛𝑑𝐶𝑇𝑀(𝑞)_𝑣̃ ,ℎ2_𝑣̃} ≅𝑐 𝑉𝐸𝐶

𝑠𝑒𝑐𝐶(𝜆, 𝑥̅). The 

views of TEAS and E2DS are 𝑉𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐶(𝜆, 𝑥̅) = {𝐶𝑇𝑀(𝑞)_𝑐} and is 𝑉𝐸2𝐷𝑆

𝑠𝑒𝑐𝐶(𝜆, 𝑥̅) =

{𝑟𝑛𝑑𝐶𝑇𝑀(𝑞)_𝑐}, respectively. We construct random ciphertexts 𝐶𝑇𝑀(𝑞)_𝑐̃  and 𝑟𝑛𝑑𝐶𝑇𝑀(𝑞)_𝑐̃  

for their corresponding  simulators.               ∎ 

 

Theorem 6.11: MU-PPClassServCen (Algorithm 6.28) is a secure multi-party protocol 

under the semi-honest model 

Proof: MU-PPClassServCen will not change if we execute lines 13-17 after line 27 at TACS.  

Let 𝜌1′ be a protocol that computes lines 1-10 of MU-PPClassServCen. By applying the same 

reasoning as in protocol 𝜌1(Corollary 6.1) we deduce that it is a secure protocol under the 

semi-honest model.  Lines 11-12 and line 18 are the secSum protocol which we proved to be 

secure (theorem 3). Let 𝜌2
′  be the protocol that computes lines 19-27 and lines 13-17 (when 

putting them after line 27) which can be seen as a deterministic function. For the views and 

simulators of EDS in 𝜌2
′  we have  𝑉𝐸𝐷𝑆

 𝜌2
′

= (𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐, 𝑟𝐸𝐷𝑆) = 𝑆𝐸𝐷𝑆
 𝜌2
′

. For the view of 

TACS we have 𝑉𝑇𝐴𝐶𝑆
 𝜌2
′

= (𝑀𝑈 − 𝑇𝑀_𝑐,𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐, 𝑘, 𝑅, 𝑟𝑇𝐴𝐶𝑆, 𝑜𝑢𝑡𝑐𝑜𝑚𝑒). For 

the simulator we have 𝑆𝑇𝐴𝐶𝑆
 𝜌2
′

= (𝑀𝑈 − 𝑇𝑀_𝑐,𝑀𝑈 −

𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐, 𝑘, 𝑅, 𝑟𝑇𝐴𝐶𝑆, 𝑜𝑢𝑡𝑐𝑜𝑚𝑒̃ ), where we set 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑓𝑎𝑙𝑠𝑒 if we abort in line 
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26, otherwise it’s true. Line 28 executes protocol 𝜌2 which was proven to be secure in 

Corollary 6.2.   

If MU-PPClassServCen is substituted by sequential calls to protocols 𝜌1′, secSum, 𝜌2
′  and 

𝜌2,  then by invoking the Modular Sequential Composition Theorem (Theorem 3.1) we proof 

that MU-PPClassServCen is secure under the semi-honest model. In the process we used the 

techniques (ideas) mentioned in Chapter 7 of [60] of forcing the correct behavior of malicious 

models (users) by using protocols under the semi-honest model. In other words, we apply 

protocols of the semi-honest model to detect cheatings (misbehaviors) of the malicious 

models, and if so we abort the protocol, otherwise we execute the protocol till the end ∎ 

 

Theorem 6.12: secMLClass-MU (Algorithm 6.29) is a secure multi-party protocol under the 

semi-honest model 

Proof: Let 𝜌 denote the protocol that executes the first 4 lines of secMLClass-MU. Proving 

𝜌 is trivial, while in Theorem 6.3 we proved the security of secMLClass. Since secMLClass-

MU is executed by sequentially calling 𝜌 and secMLClass, we invoke Theorem 3.1 to proof 

secMLClass-MU’s security under the semi-honest model      ∎ 
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Chapter 7 

 

CONCLUSIONS   

 

 

In this dissertation, initially, we provide a novel secure feature selection scheme of 

homomorphically evaluating features’ information gains (a variant of information theoretic 

entropy) over distributed multi-label multi-output datasets in edge IoT environments. We 

proceed with secure training and classification of multi-label multi-output datasets over the 

selected features on the same environment settings (context). Since multi-label multi-output 

datasets in itself incorporate the special cases of single label multi-class and binary classes 

datasets, our schemes are valid for them as well. While doing so we take into consideration 

the heterogeneity (in terms of hardware and software platforms) and the restricted resources 

that are characteristic for edge IoT devices. We formally prove the security of all of our 

schemes (protocols, algorithms) under the semi-honest model. In the process, our participants 

interact with each other under strict security. privacy and efficiency requirements. To these 

ends, we provide confidentiality, integrity and authenticity to each interaction by signing 

their hashed contents with the corresponding participant’s private key. We assure the 

consistency among interactions by introducing timestamps and linking them with the hashed 

content(s) of the preceding interaction(s). This makes our protocols a natural fit for 

blockchain technology. Our underlying cryptographic tools are proven to be resistant to 

quantum computer attacks, making our protocols applicable to the post quantum World. All 

of our protocols (secure feature selection, training and classification) are independent from 

each other, in terms that, according to the scenario and needs, each of them can be used solely 
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or in combination with secure and private protocols from other research schemes. Our 

protocols show no loss of classification (prediction) accuracy due to applying ML algorithms 

in private and secure fashion. Also, they show high rate of fault tolerance (byzantine failures) 

and resistance to collusion attacks among dataset owners during the secure feature selection 

and secure training stages. 

Our secure feature selection protocols satisfy several strict security and privacy goals by 

not only keeping private feature values and intermediate results while executing the 

protocols, rather they keep private the features (or words) themselves as well as the final 

output (which is the top m selected features). Extensive experimental evaluations show that 

our protocols outperform the state of the art in terms of computation and communication 

costs for dozen times. In the process the state-of-the art schemes operate under weaker 

privacy and security constraints. Compared to our protocols, they also suffer from a high 

level of interactions between the participants. In this sense, for textual datasets they need 

hundreds of thousands of interaction between the participants, compared to only a few ones 

needed in our protocols. 

We transfer the security, privacy and efficiency properties of secure feature selection 

protocols to our secure training protocols as well. Namely, during our secure training 

protocols, besides the feature values, we also keep private the features themselves, the 

intermediate results while running the protocols as well as the final trained model. This makes 

our secure training protocols among the rare schemes to do so in literature. Our theoretical 

analysis and extensive experimental evaluations over benchmark datasets show that our 

schemes outperform the state-of-the-art in terms of computation and communication costs 

from several times to orders of magnitudes, not only when state-of-the-art schemes proceed 

to securely train their ML models without prior feature selection, rather it is the case when 

they also do it. In this sense, while it takes few minutes to our secure schemes to obtain the 

final ML trained model over raw datasets (secure feature selection proceeded by secure 

training), the state-of-the-art schemes do the same for several days or weeks. Besides, state-

of-the-art schemes operate under weaker security and privacy requirements, while many of 

them suffer from high levels of interaction between participants 

For the purposes of our secure classification protocol, we propose several novel secure 

building blocks for general purpose (which are commonly needed for secure ML 
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classifications), as well as building blocks related to secure linear algebra. Our theoretical 

analysis and experimental evaluations show that our proposed blocks outperform the state-

of-the-art in terms of computation and communication costs. Since our secure classification 

protocols are based on the proposed building blocks, our further theoretical analysis and 

extensive experimental evaluations over benchmark datasets show that our secure 

classification protocols outperform the state-of-the-art ones in terms of computation and 

communication costs, sometimes from several times to orders of magnitude. These results 

were observed for secure ML classifiers such as Deep Neural Networks, Naïve Bayes, 

Multinomial Naïve Bayes, Support Vector Machines, Logistic Regression, Decision Trees, 

Random Forests and K Nearest Neighbors.  Similar to the security and privacy properties of 

the above mentioned secure protocols, during our secure classifications protocols the owner 

of the trained ML model learns nothing about the users queries, their final classifications or 

the intermediate results, while the users learn only their respective final classifications and 

nothing else. All of these goals are achieved by our protocols while operating in a non-

interactive fashion (in a single round only). This makes our protocols among the rare ones to 

achieve those security, privacy and efficiency requirements under those circumstances, since 

the ones that do so usually suffer from high computation or communication cost. 

Furthermore, we extend the efficiency of our schemes to also deal with malicious users 

(which arbitrarily deviate from the protocol with the aim of illegally retrieving any 

information for the trained ML model or at least with the aim of sabotaging the protocol) 

during secure NB classifications as well as during multi-users (multi-query) scenarios. To 

the best of our knowledge, this makes our schemes among the rare (if not the only ones) to 

address malicious users during secure classifications.  

We should note that the experimental evaluations of our secure comparison protocol based 

on arithmetic circuits showed that when it is used solely (isolated, as a single entity) it doesn’t 

provide a perfect privacy for the difference of the two numbers that it compares. Since 

SCADS (secure comparison of all data slots) is based on it, SCADS by default inherits the 

privacy properties of the secure comparison protocol. However, when those two are used in 

combination with our secure classification protocols, we proof that in polynomial time they 

can be theoretically reduced to well established cryptographic problems assumed to be hard 

even for quantum computers, such as LWE. This is due to the fact that our secure 
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classification protocols in their initial phase have the form of matrix-vector multiplication 

(the trained model multiplied by the user query), proceeded by the proposed secure 

comparison protocol which adds some noise (random value), which is also the case with the 

construction of LWE schemes.    

We plan to extend these security, privacy and efficiency characteristics of our schemes to 

deal with other secure multi-label multi-output ML algorithms in distributed environments. 

E.g., knowing that decision trees use the features’ information gains to choose the nodes for 

each tree levels, one such ML algorithm can be federated (distributed) tree learning, for 

which we can adjust our proposed protocol of securely evaluating the information gains in 

distributed environments (secFS-S2). Other such secure ML algorithms can be secure 

distributed training of SVM models or secure kNN over multiple edge IoT dataset owners. 

Also, they should deal with both horizontally and vertically partitioned datasets.  

One of the less explored areas is PP graph theory, especially over multiple graphs, which 

we also plan to address in near future. It can be used for secure routing, for different 

companies that use graph theory to represent data in their businesses (such as internet service 

providers, cargo companies, etc.) to securely aggregate their data with other companies, for 

Google Maps-like applications to hide the user query to the server while showing the user 

only the best path (route) and hiding the other paths, etc. 
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