BLOCKCHAIN DRIVEN SECURE AND PRIVATE MACHINE LEARNING
ALGORITHMS FOR POST-QUANTUM 5G/6G ENABLED INDUSTRIAL IoT WITH
APPLICATIONS TO CYBER-SECURITY AND HEALTH

ARTRIM KJAMILJI

Submitted to the Institute of Engineering and Natural Sciences
in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

SABANCI UNIVERSITY
JULY 2021

BLOCKCHAIN DRIVEN SECURE AND PRIVATE MACHINE LEARNING
ALGORITHMS FOR POST-QUANTUM 5G/6G ENABLED INDUSTRIAL IoT WITH
APPLICATIONS TO CYBER-SECURITY AND HEALTH

APPROVED BY:

DATE OF APPROVAL: ..o,

© Artrim Kjamilji 2021
All Rights Reserved

ABSTRACT

BLOCKCHAIN DRIVEN SECURE AND PRIVATE MACHINE
LEARNING ALGORITHMS FOR POST-QUANTUM 5G/6G ENABLED
INDUSTRIAL IoT WITH APPLICATIONS TO CYBER-SECURITY AND
HEALTH

ARTRIM KJAMILIJI
Ph.D. Dissertation, July 2021
Supervisor: Prof. Albert Levi
Co-Supervisor: Prof. Erkay Savas

Keywords: blockchain; multi-label multi-output machine learning algorithms; secure 1oT;
privacy preserving; feature selection; training; classification; homomorphic encryption;

collusion attacks; distributed environments; cyber-security; Internet of Medical Things

We provide a general framework for secure and private multi-label multi-output machine
learning (ML) algorithms for the semi-honest model in distributed edge [oT (Internet of
Things) environments enabled by 5G/6G networks. The proposed framework includes the
special cases of binary, multi-class and multi-label ML algorithms. We deal with both
horizontally and vertically partitioned datasets. Initially, (i) we propose novel secure feature
selection protocols by homomorphically evaluating features’ information gains in distributed
environments, we proceed with (ii) novel secure training protocols over the set of selected
features, then (iii) we propose novel secure building blocks which are commonly used on
ML algorithms (e.g. secure sum, comparison, argmax, top-K, sorting, permutation, etc.), as

well as on secure linear algebra (e.g. secure inner product, cascading matrix-vector and

v

matrix-matrix multiplications, matrix transpose, etc.), and finally (iv) on top of proposed
secure building blocks we build our novel secure ML classification protocols for various ML
classifiers such as Deep Neural Networks (DNN), Support Vector Machines (SVM),
Decision Trees (DT) and Random Forests (RF), different flavors of Naive Bayes (NB),
Logistic Regression (LR) and K Nearest Neighbors (KNN). Moreover, our secure
classification protocols also deal with malicious users that arbitrarily deviate from the
protocol and they show no loss of accuracy due to secure classifications. In the process, our
participants interact with each other in order to fulfill strict security. privacy and efficiency
requirements. To these ends, we provide confidentiality, integrity and authenticity to each
interaction by signing their hashed contents with the corresponding participants’ private key.
We assure the consistency among interactions by introducing timestamps and linking them
with the hashed content(s) of the preceding interaction(s). This makes our protocols a natural
fit for blockchain technology. Moreover, the proposed cryptographic tools are proven to be
resistant to quantum computer attacks, making our protocols applicable to the post quantum
world. We did our theoretical analysis and extensive experimental evaluations over
benchmark datasets related to cyber-security and health. They show that our protocols have
an advantage ranging from several times to orders of magnitudes with respect to the state-of-
the-art in terms of computation and communication costs. This makes our protocols among
the most efficient ones in literature. Also, they are among the best in terms of security and
privacy properties and allow high rate of fault tolerance and collusion attacks of dataset

owners with respect to the state-of-the-art.

OZET

KUANTUM SONRASI 5G/6G iLE ETKINLESTIRILMIS ENDUSTRIYEL

IoT VE ILGILI SIBER GUVENLIK VE SAGLIK UYGULAMALARI ICIN

BLOK ZINCIR GUDUMLU GUVENLI VE MAHREMIYET KORUYUCU
MAKINE OGRENIMI ALGORITMALARI

ARTRIM KJAMILJI
Doktora Tezi, Temmuz 2021
Damisman: Prof. Dr. Albert Levi
Es-Danmisman: Prof. Dr. Erkay Savas

Anahtar sozciikler: blok zincir; ¢ok etiketli ¢ok ¢iktili makine 6grenimi algoritmalari;
giivenli nesnelerin internet; mahremiyet koruma; 6znitelik se¢imi; egitim; siniflandirma;
homomorfik sifreleme; gizli anlagsma saldirilart: dagitik ortamlar; siber giivenlik; Tibbi

Nesnelerin Interneti

Bu tezde, 5G/6G aglar ile etkinlestirilmis dagitik ug IoT (Nesnelerin Interneti) ortamlarinda
yar1 diiriist modele sahip giivenli ve mahremiyeti koruyucu, ¢ok etiketli ve ¢ok ¢ikisl makine
O0grenimi (ML — Machine Learning) algoritmalar1 icin genel bir gerceve Onerilmistir.
Onerilen cerceve, ikili, cok sinifl1 ve cok etiketli ML algoritmalarinin 6zel durumlarin igerir.
Hem yatay hem de dikey olarak boliimlenmis veri kiimeleriyle ¢alisitlmistir. ilk olarak, (i)
ozniteliklerin dagitik ortamlardaki bilgi kazanimlarint homomorfik olarak degerlendiren yeni
giivenli 6znitelik secim protokolleri onerilmistir, (i1) secilen 6znitelikler kiimesi {izerinde
yeni giivenli egitim protokolleri ile ilerlenmistir, daha sonra (iii) ML algoritmalarinda yaygin

olarak kullanilan yeni giivenli yapi taslar1 (6rn. giivenli toplam, karsilastirma, argmax, top-

Vi

K, siralama, permiitasyon, vb.) ile lineer cebir iglemlerini (6rn. giivenli i¢ ¢arpim, siral
matris-vektor ve matris-matris ¢arpimlari, matris transpozu, vb.) gilivenli hale getirecek
yontemler 6nerilmistir ve son olarak (iv) 6nerilen giivenli yapi taglarinin lizerine, Derin Sinir
Aglar1 (DNN - Deep Neural Networks), Destek Vektor Makineleri (SVM - Support Vector
Machines), Karar Agaglart (DT - Decision Trees), Rastgele Ormanlar (RF - Random
Forests), Naive Bayes (NB)'in degisik varyasyonlari, Lojistik Regresyon (LR) ve K En Yakin
Komsular (KNN - K Nearest Neighbors) gibi ¢esitli ML siniflandiricilart i¢in yeni giivenli
ML smiflandirma protokolleri olusturulmustur. Ayrica, Onerilen giivenli smiflandirma
protokolleri, keyfi olarak protokolden sapan kotii niyetli kullanicilarla da bas eder ve giivenli
siniflandirma kaynakli dogruluk kaybi gostermezler. Islemler sirasinda protokol katilimeilart
sik1 glivenlik, mahremiyet ve verimlilik gereksinimlerini karsilamak {izere birbirleriyle
etkilesime girerler. Bu amagla, kriptografik 6zet fonksiyonundan gecirilen icerikler ilgili
katilimcilarin 6zel anahtariyla imzalanarak her mesajlagsmanin gizliligi, biitiinligi ve
Ozglnliigii saglanmis olur. Mesajlasmalar arasindaki tutarliligi, zaman damgalar1 ekleyerek
ve bunlar1 6nceki mesajlarin icerik 6zetlerine baglayarak saglamaktayiz. Bu, protokollerimizi
blok zincir teknolojisine dogal bir sekilde uyumlu hale getirir. Ayrica, dnerilen kriptografik
araglarin kuantum bilgisayar saldirilarina karsi direngli oldugu da kanitlanmistir, bu da
protokollerimizi kuantum sonrasi diinya i¢in kullanish kilmaktadir. Teorik analizler ile siber
giivenlik ve saglikla ilgili karsilastirmali veri kiimeleri lizerinde kapsamli deneysel
degerlendirmeler yapilmistir. Bu analiz ve degerlendirmeler, Onerilen protokollerin,
hesaplama ve iletisim maliyetleri agisindan bilinen en iyi duruma gore birka¢ kez ila
bliytiikliik kertesine kadar degisen oranlarda avantaj sagladigin1 gostermistir. Bu durum da
onerilen protokolleri literatlirdeki en verimliler arasina sokmaktadir. Ayrica, Onerilen
protokoller giivenlik ve gizlilik 6zellikleri agisindan da en iyiler arasindadir ve en son
teknolojiye gore yiiksek hata toleransi orani ve veri seti sahiplerinin gizli anlasma

saldirilarina kars1 yiiksek direnc gosterirler.

vii

to my beloved family

viii

ACKNOLEDGMENTS

I got to know my PhD thesis advisor, Prof. Albert Levi, during my PhD application
interview. It was an instant respect and admiration for a researcher of his caliber, which
would further grow when I took his “Security in wireless networks” course and while
working as his TA. Similarly, I got acquainted with my co-advisor, Prof. Erkay Savas, on
that fateful day when out of curiosity I decided to only attend the first lecture of his
“Cryptography” course without the intention of taking it. At the end of that day, not only that
I learned from him that “there are no un-doable or hard things, rather there are challenging
things”, I was also so impressed by him that I decided to take the course. At the end of the
semester [was so taken from the way he explained applied cryptography that, eventually, I
decided that it will be part of my PhD research. Both of my advisors showed high level of
professionalism, support, care and patience while they were guiding me through my PhD
dissertation. It was a privilege to be supervised by them. I will always feel indebted to them
for the rest of my life and I am thankful from the bottom of my heart for everything they did
for me.

Special thanks go to my dissertation committee members, Prof. Cem Giineri and Prof.
Yiicel Saygin for their invaluable comments, feedback and help during my PhD dissertation
progresses. I am also very grateful to Assoc. Prof. Alptekin Kiip¢ii from Kog¢ University and
Asst. Prof. Ahmet Onur Durahim from Bogazici University for being kind enough to review
my dissertation, provide useful comments and be jury members of my dissertation.

I want to acknowledge the contribution of TUBITAK (The Scientific and Technological
Research Council of Turkey) which was generous enough to select me for their quota from
North Macedonia for their International BIDEB 2215 Scholarship Grant. I express my most
sincere appreciations for Sabanci University for providing a warm environment which made
me feel as if [am at my home, for their continuous support throughout my tough times, for

the excellent research environment and for the conference grants.

X

Worm thanks go to my father Irfan, mother Nebika and sister Ardiana for their support
and special treatment they had towards me by sparing me from the daily family duties,
especially in the final phases of my thesis. | owe them a public apology for misusing their
kindness towards me by pretending to still be working on my thesis when actually I was
already done with the bulk of it, so as to just to enjoy the special treatment. Mom, dad, sis, I
love you!

At last, but not least, or maybe most, I would like to express my heartfelt thanks to my
wife Ferihane and my 9 months old son Yahya, without whom this dissertation would have
been finished at least a couple of years earlier. Though, I have to give credits to them for
making it up. My wife through her unconditional support, patience, love, care and motivation
throughout all of our marriage, including the stressful situations during my dissertation. My
son by crying early in the mornings and in the process waking me up so I could work on my

dissertation. I love you both the most!

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

LIST OF SYMBOLS

1. INTRODUCTION

1.1. Motivation and problem statement
1.2. Contributions

1.3. Dissertation organization

2. BACKGROUND INFORMATION AND PRELIMINARIES
2.1. Bayes’ Theorem and Naive Bayes

2.1.1. Naive Bayes for multi-class non-textual datasets
2.1.2. Multinomial Naive Bayes for binary and multi-label multi-output
textual datasets
2.2. Information gain
2.3. Machine Learning classifications
2.3.1. K-Nearest Neighbor (KNN)
2.3.2. Decision Trees and Random Forests

2.3.3. Machine Learning classifications based on linear algebra operations

xi

XV

Xvii

XX

xxii

~N W N e

10
10

12
15
16
17
18
20

2.4. Cryptographic primitives 27

2.4.1. Public Somewhat Homomorphic Encryption schemes 28

2.4.2. Security definitions, concepts and theorems 30
3. RELATED RESREARCH AND STATE-OF-THE-ART 32
3.1. Secure feature selection 32
3.2. Secure machine learning training 35
3.3. Secure machine learning classification 37
4. SECURE AND PRIVATE FEATURE SELECTION 39
4.1. Introduction 39
4.2. System architecture, adversary models and protocol-flows-at-a-glance 40
4.3. Secure feature selection for binary datasets 44
4.4. Secure feature selection for multi-label multi-output datasets 51
4.5. Experimental evaluations and comparisons 53
4.6. Security analysis and proofs 77

5. SECURE AND PRIVATE MACHINE LEARNING TRAINING 58

5.1. Introduction 59
5.2. System architecture, adversary models and protocol-flows-at-a-glance 59
5.3. Secure training of NB models for non-textual datasets 61

5.4. Secure training of NB and MNB models for binary and multi-label

multi-output textual datasets 65
5.5. Theoretical and experimental evaluations and comparisons 69
5.6. Security analysis and proofs 76

6. SECURE AND PRIVATE MACHINE LEARNING

CLASSIFICATIONS 79
6.1. Introduction 80

6.2. System architecture, adversary models and protocol-flows-at-a-glance 80

xii

6.3.

6.4.

6.5.

6.6.

6.7.
6.8.

General purpose secure building blocks

6.3.1. Secure sums of blocks of d slots

6.3.2. Ciphertext Replication.

6.3.3. Secure Random Ciphertext Permutation and its inverse
6.3.4. Secure SIMD Comparison

6.3.5. Secure comparison of all data slots (SCADS)

6.3.6. Secure sorting

6.3.7. Secure argmax and secure top-K

Secure building blocks for linear algebra

6.4.1. Secure Dimension Replication

6.4.2. Secure dot (inner) product

6.4.3. Secure matrix-vector product

6.4.4. Secure matrix-matrix product

6.4.5. Secure ciphertext compression

6.4.6. Secure matrix transpose

6.4.7. Secure matrix transpose and dimension replication
6.4.8. Secure cascading matrix vector product

6.4.9. Secure cascading matrix-matrix product

6.4.10. Secure matrix-matrix product — version 2

6.4.11. Secure cascading matrix-matrix product — version 2
6.4.12. Secure ciphertext compression — version 2

6.4.13. Secure Frobenius Product

6.4.14. Secure ciphertext packing

Secure classifications based on NB, kNN, DT and RF

6.5.1. Secure classifications for non-textual queries based on NB.
6.5.2. Secure classifications based on kNN.

6.5.3. Secure classifications based on DT and RF

Secure MNB and NB classifications for binary and multi-label multi-output
textual datasets

Secure classifications based on linear algebra operations

Dealing with malicious users during classifications

xiil

82
82
84
85
87
88
89
90
91
92
93
93
93
94
95
96
97
97
98
98
99
99
100
101
101
103
106

108
110
116

6.9. Theoretical and experimental evaluations and comparisons
6.9.1. Theoretical analysis
6.9.2. Experimental evaluations and comparisons

6.10. Security analysis and proofs

7. DISCUSSIONS AND FUTURE DIRECTIONS

X1V

120
120
127
136

142

LIST OF TABLES

Table 2.1. Common perceptron activation functions 24
Table 3.1. Properties among different schemes dealing with secure feature

selection 34
Table 3.2. Properties among different schemes dealing with secure training

of NB models 36
Table 3.3. Comparisons of properties among different secure and private

classification schemes 38
Table 4.1. Computation and communication costs among different participants

for different polynomial modulus N and number of the dataset

owners n 54
Table 4.2. Comparison of different secure feature selection schemes 54
Table 5.1. Theoretical comparison for the costs of the PP training algorithm for

NB models among different schemes 70
Table 5.2. Algorithm 5.2 costs for different polynomial sizes N and EDO

numbers 7 75
Table 5.3. Cumulative experimental results among all participants for PP

training of non-textual datasets for n =5 EDOs. Our scheme is

represented by Algorithm 5.1 75
Table 5.4. Secure training comparisons among different schemes 76
Table 6.1. Theoretical comparison of the secure comparison (secComp)

algorithm among different schemes 123
Table 6.2. Theoretical comparison and properties of the secure argmax

(secArgmax) algorithm among different schemes 124
Table 6.3 Theoretical comparison for the costs of the PP Naive Bayes

classification algorithm among different schemes 125

Table 6.4. Complexity and comparisons of secure linear algebra operations 126

XV

Table 6.5. Computation cost for secure sum (secSum) of d integers among

different schemes (in milliseconds) 127

Table 6.6. Computation cost for the SIMD secure comparison (secComp)
protocol of two encrypted integers among different schemes 127
Table 6.7. Computation cost of secure argmax (secArgmax) of ¢ integers among
different schemes (in milliseconds, unless otherwise stated) 128
Table 6.8. Comparison of computational costs for SRCPer and invSRCPER for
different block) sizes k and polynomial modulus N (results are in
milliseconds) 128

Table 6.9. Comparison of computational costs of CPack for different ciphertext

numbers p and polynomial modulus N (results are in milliseconds) 128
Table 6.10. Comparisons of amortized secure linear algebra operation costs 129
Table 6.11. Comparisons of amortized cost of secMatVec costs (in ms) 129

Table 6.12. Per query comparison of the cumulative (among all participants)
costs for the PP classification case among different schemes
and datasets 129

Table 6.13. Amortized query costs for the NB classifier based on linear algebra
operations 130
Table 6.14. Amortized query costs for the SVM classifier based on linear algebra
operations 130
Table 6.15. Amortized query costs for the LR classifier based on linear algebra
Operations 130
Table 6.16. Amortized per query costs for (secC, Algorithm 6.24) 131
Table 6.17. Amortized per query costs for PP classifications among different

binary textual datasets (queries) 132

XVi

LIST OF FIGURES

Fig.2.1. Building a decision tree out of observations (dataset)

Fig.2.2. Finding a binary tree classification guided by attributes and their values

Fig.2.3. Pseudocode for the ID3 algorithm

Fig.2.4. Choosing the right class separator plane using SVM

Fig.2.5. A multilayer deep neural network

Fig.2.6. Illustration of our proposed multi-query classifications

Fig.2.7. Tllustration of SWHE SIMD a) addition, b) multiplication and
¢) Rotation for 2 slots

Fig.4.1. Protocol flows for secure feature selection (secF'S-SI and secF-S2)

Fig.4.2. Tllustration of generating the blocks of the vertically partitioned
distributed public ledger (blockchain) while executing protocols
secF'S-S1, secFS-S2 and secT

Fig.4.3. Illustration of SIMD evaluation of values in lines 13-16 of secFS-S2

Fig.4.4. lllustration of SWHE SIMD evaluations of terms in (4) in secFS-S2

Fig. 5.1. Protocol flows for secure training protocol (secT)

Fig. 5.2. Depiction of the portion of the encrypted counts of the training vector

of Edge Dataset Owner k holding counts related to class C;
Fig. 5.3. The overall training vector TV _v;, (for all classes) at the Edge Dataset
Owner k

Fig.5.4. Aggregating (homomorphically summing up) the local training vectors
— TV _cy, to get the global training vector GTV _c

Fig.5.5. Randomizing GTV _c to get rndGTV _c

Fig.5.6. Adding randLogsOfInvProbs_p with rndTM_c to get the trained
model TM_c.

Fig.5.7. Getting and randomizing the global frequencies in SIMD fashion

Xvil

18
19
20
23
25
26

29

41

42
50
51
60

62

62

63
63

63
66

Fig.5.8. De-randomizing and rotating rndTM_c to get the final trained model
TM_c 67
Fig 5.9. Computation cost of the participants in PPTMDO (Algorithm 5.1) for
Different polynomial sizes and number of EDOs for datasets in [84-85],

[86] and [87] 74
Fig. 6.1. Protocol flows for our secure classification algorithms 82
Fig. 6.2. Illustration of a) secSums for d=6=(110)2 b) CRep for d=2 and

r=5=(101)> 83

Fig. 6.3. Illustration of SRCPer form = 3,k = {2,—1,—1}. k,m,R, and R,
are random. d is the number of slots between two data slots 85
Fig.6.4. Detailed illustration (masks, multiplications, addition portion) of the

block permutations of SRCPer for block size m = 3 and rotation index

vector k = {2, —1,—1} done in SIMD fashion 86
Fig.6.5 Simultaneous a) secure one-time comparison b) secure comparison

(secComp, sC) of N integer pairs in SIMD fashion 87
Fig.6.6. Illustration of SCADS in SIMD fashion 89
Fig.6.7. Row and column-wise encoding of integer matrices into vectors 91
Fig.6.8. Illustration of secDRep(:) ford, = 2,d, = 2andr =4 92

Fig.6.9 Illustration of CCompress(-) for input parameters a) nrOfBlocks = 4,
blockSize = 1,d = 1 and b) nrOf Blocks = 4, blockSize =1,d =4 95

Fig.6.10 Illustration of secMatT(+) ford, = 2and d, = 2. 96
Fig.6.11. Illustration of secMatTDRep(*) ford, = 2,d, =2andr = 2 97
Fig.6.12. Illustration of the ciphertext packing (CPack) algorithm 100
Fig.6.13. SIMD per class view of the query vector with zeros and ones at
corresponding places according to the query feature vector X 101
Fig.6.14. Multiplying queryVector_c with TM _c 102

Fig. 6.15. Illustration of construction of perDS_p[] and classes_p for the
secKNN 106
Fig. 6.16. Encoding the values of each level’s node into the trained model

plaintext TM_p for DT and RF classifier when f = 7 108

xXviil

Fig.6.17. SWHE SIMD multiplication of the trained model TM_c obtained in
Algorithm 5.2 with query q_p. 109
Fig.6.18. Secure linear algebra ML classification algorithm flow-client centric 111
Fig.6.19. Secure linear algebra ML classification algorithm flow-server centric 112
Fig.6.20. SIMD construction of the MU — QueryVector_c with padded zeros
added for the need of the secSum Algorithm 116
Fig.6.21. MU — QueryVector_c and portion of the MU — TM_c depicting

slots related to class C; 117
Fig.6.22. MUencryptedQueryVector_c multiplies MU — TM_c 119
Fig.6.23. The joint probability of X and Y, P(X,Y), for n=2 bits 133
Fig.6.24. The joint probability of X and Y, P(X,Y), for n=3 bits 133
Fig.6.25. The joint probability of X and Y, P(X,Y), for n=4 bits 134
Fig.6.26. Plotting 10.000 points to draw P(Y) when n=8 bits 134
Fig.6.27. Plotting 10.000 points to draw P(Y) when n=12 bits 135
Fig.6.28. Plotting 10.000 points to draw P(Y) when n=16 bits 135

X1X

Al
CNN
CRT
DT
DM
DNN
DS
E2DS
EC
EDO
FHE

HE
IoT
IIoT
kNN
LR
LWE
ML
MNB
MLMO
NB
PP
RF

LIST OF ABBREVIATIONS

Artificial Intelligence
Convolutional Neural Networks
Chinese Remainder Theorem
Decision Trees

Data Mining

Deep Neural Networks

Dataset

The Edge Encryption/Decryption Server
Edge Client

Edge Dataset Owner

Fully Homomorphic Encryption
Hash function

Homomorphic Encryption
Internet Of Things

Industrial Internet Of Things
K-Nearest Neighbor

Logistic Regression

Learning With Errors

Machine Learning

Multinomial Naive Bayes
Multi-label multi-output

Naive Bayes

Privacy Preserving

Random Forests

XX

RLWE

SF
SIMD

SMC
STC
SVM
SWHE
TEAS
2PC
3PC

Ring Learning With Errors

Selected Features

Single Instruction Multiple Data
Secure Multi Party Computation
Substitution-Then-Comparison Attack
Support Vector Machines

Somewhat Homomorphic Encryption
The Edge Aggregation Server

Two Party Computation

Three Party Computation

xxi

LIST OF SYMBOLS

SECURE AND PRIVATE FEATURE SELECTION (Chapter 4)
Cryptographic notations:

Av
Ap

Ac

An integer vector denoted by “_v” atthe end, A_v = {ay, ..., ay} = {(ap)V,},
A CRT encoded plaintext denoted by “_p” at the end, A_p = Encode(A_v)
A ciphertext denoted by “_p” at the end, A_p = Encode(A_v) and

A_c = Encrypt(A_v), or A_c = EncEncr(A_v)

General and common notations for all the (binary, multiclass, MLMOQO) datasets:

n
EDO,
NT (k)
NT

Number of Edge Dataset Owners (EDO)

The k~th EDO, 1 <k <n

the number of transactions at EDOy,, for both textual and non-textual datasets
The number of global transactions (records) in n EDOs, NT = Y,2_; NT (k)
for both textual and non-textual datasets

words’ set represented by permuted hashes W=
{mH (wy), TH (W), ..., TH (w)y|)} in textual (binary and multi-label multi-
output - MLMO) datasets (DS).

Binary textual datasets:

SF
CI

N® ()
N(cj)
fO(wy)

f(wig)

The set of m selected features (words), SF = {wy, ..., W, }, a subset of W
The set of classes C' = {cy, ¢s} which consist of two classes, ham and spam,
for the binary textual DS

Number of local records belonging to class ¢; at EDOy

Number of global records belonging to class ¢;, N (cj) =Yr=1 N (k)(cj)
Local frequency of word w; in documents classified as belonging to ¢; at at
EDO,

Global frequency of word w; in documents classified (labeled) as belonging

to class ¢; in binary textual DS, where ¢; = ¢ or ¢; = ¢

Xxii

N(k)(Wi, C])

N(Wl', C])
N(wy)

N(w, ¢;)

N ()

P(w;)
P(w,)

P(Wi, C])

P(W, ¢;)

1G(wy)

P(c;)

Local count of word w; in documents classified as belonging to ¢; at EDOy
Count (number) of documents where w; appears at least once in documents
classified as ¢; in binary textual DS, where 1 < i <m and ¢; = ¢, or ¢; = ¢
Global counts (appearances) of word w; € W for binary textual datasets,
N(w;) = N(w;, cp) + N(w;, ¢5)

The count (number) of documents in the binary textual dataset labeled as

belonging to class ¢; where word w; € W does not appear, N (Wl, Cj) =

N(e) = N(wi).
The count (number) of documents in the binary textual dataset were w; € W
does not appears at all, N(w) = NT — N(w;)

N(w;)

The probability of w; to appear in a document, P(w;) = o

Nwy)
NT

The probability of w; not appearing in a document, P(w,) =

The probability of word w; to appear in a binary textual document classified
N(wj,c;
as Cj, P(Wi, Cj) = %’ where Cj = cp Or Cj = c,.

The probability of word w; not appearing in a binary textual document

N(Wy.c))

classified as c;, P(wl, Cj) =—

, Where ¢; = ¢, or ¢j = .

The information gain of word w; in a binary textual dataset.

N(c;)
€D for binary textual DS, ¢; = ¢j or ¢; = ¢,

The class probabilities P(cj) =7

Multi-label multi-output datasets:

L

Cl

SF!

The set of labels for a certain multi-label multi-output dataset,
L={Ly,..,Ly}
The set of corresponding classes for each label, C! = {Cll, ...,C|Cz|l}, 1<1<

|L| and |C!| is the cardinality of (number of classes belonging to) set C*

The set of m' selected features for label I, SF* = {H(wY), ..., H(w! 1)},

xxiii

SFMLMO

N(C")
N(whch)

fwi,c)

P(c.h)

N(wi)

N(w!)

N(w,C)

()

P(w)

P(Wil, Ccl)

PG, C.)

16'(w!)

The set of |L| sets of m! selected features for the multi-label multi-output
(MLMO) scenario, SFMIMO = {{SFI}LLJl = {{{H(w})}:i}'lul}, where 1 <
<L

The counts (number) of documents belonging to class Ccl

The counts of documents belonging to class Ccl having at least one appearance
of the word (feature) Wl-l € SF! in a multi-label multi-output dataset

The frequency of word Wl-l € SF! appearing in documents belonging to class
Ccl in a multi-label multi-output dataset, for 1 < [< |L|,1 < i <mland1 <
c<|cY

The C.' classes probability, P(Ccl) = %;l) Jd1<i<|Lland1l <c<|CY
The count of documents where w} € SF! appears at least once in a MLMO
scenario,

N(wj) = zLﬂN(w}, Cl),for1<i<|L,1<i<mland1<c<|C!
The count of documents where Wil € SF! does not appears,

NGWT) = NT = N(w})

Counts of documents of class C,' where w! doesn’t appear,
N(wlc)=nN(cH) - NwlchH

N(w})

(
NT

aqe 1 . 7 N(;ll)
The probability of w; not to appear in a document, P(Wll) =

The probability of Wil to appear in a document, P(wil) =

The probability of word Wil to appear in a document belonging to C Cl,

Ly N(whed) . l !
P(wj,C')=——L—~ wherel1<I<|L,1<i<mland1l<c<|Cl
l NT

The probability of word w} not appearing in a document belonging to class

— N(whe!
c.t, P(wll, Ccl) = %, where 1<I<|L|,1<i<m'and
1<c<|cY

Information gain of w} € SF! for label [, where 1 < [< |L|,1 < i < m!

XX1V

SECURE AND PRIVATE MACHINE LEARNING TRAINING (Chapter 5)

Multiclass non-textual datasets (including the corresponding symbols of the previous

chapter(s)):
f

c

E;

C

N(c)
N(G)

N® (Vi 5 G)
N (Vin,ri; Gj)

P(G)

P(VinrilC})

cC)

Number of features in a non-textual dataset

Number of classes (labels) in a non-textual dataset

The values feature i F; = {Vy i, Vo pis - Vipipri } can take for non-textual
datasets, Vy,, r; is the m-th element of the feature set F;,and 1 <i < f,1 <
m < |F;|.

The set of classes for non-textual (multiclass) datasets, C = {C;, C5, ... C;}
The local counts of records belonging to class C; at EDOy

The global (overall) counts of records belonging to class C; in n EDOs.
The count of the m-th value of feature F; having class C; at EDOy

The global count of the m-th value of the feature F; having class C;
where1<i<f, 1 <j < cand1l < m < |F]| for non-textual datasets

The class probability, i.e. the probability for a certain instance to belong to

N(C))
class G P(C;) = o
Th .. e _ NWmrFi; Cj)
e conditional feature value-class probabilities, P(V;y, ;| C j) =iy
J

where 1<i<f, 1 <j < candl <m < |F|.

The trained MNB/NB model for non-textual DS consisted of P(Cj),

P(VmpilCj),where 1< i< f, 1 < j < cand1 < m < |Fj.

Binary textual datasets (including the corresponding symbols of the previous

chapter(s)):

P(wilc;)

Cru ()

P(Wi|cj) = fl(vw_;c]) and P(Wi|Cj) = N](VW—;C]) denote the conditional word-
(]) (J)

class probabilities for MNB and NB cases in binary textual DS, respectively.
The trained MNB/NB model for binary textual DS consisted of P(c]-),

P(Wi|cj),where ¢j =cporcj =cgandw; € SF.

XXV

Multi-label multi-output datasets (including the corresponding symbols of the previous

chapter(s)):

l
P(wil|Ccl) The conditional word-class probability. P(W |C. l) (N)) for the NB

. Iy~ 1 f(Wil'Ccl) .
classifier, P(Wi |C.) = e for the MNB classifier.

TMMLMO The trained model for the multi-label multi-output datasets, which is
consisted of P(Ccl) and P(WHCCl) for 1<I<|L|,1<i<mb‘and 1<

c <|CY.

SECURE AND PRIVATE MACHINE LEARNING CLASSIFICATIONS
(Chapter 6)

Multiclass non-textual datasets (including the corresponding symbols of the previous

chapter(s)):

X Unclassified feature vector, X = {X;,X; ..., X¢}, where X; € F;

Binary textual datasets (including the corresponding symbols of the previous

chapter(s)):

quv The query vector for textual datasets, g_v = {1, f;(wy), ..., fy (W)}, fo(W;)
is the frequency of appearance of word w; in the query q_v and w; € SF.

Multi-label multi-output datasets:

MLMO The multi-label multi-output unclassified query vector,

g0 — {{1 {f (W) 1}|=l|1}

Linear algebra based ML classification (including the corresponding symbols of the

q_v
IL|

=1

previous chapter(s)):

M The trained model matrix for classification based on linear algebra. For the

NB case M = [{C(j)};-l]cx(m)’ where for 1<i<f, 1 <j < cand

1<m< |FcY —{[KlogP(C)J (g ll[Kl 09V r, |C)J)}.

XXV1

XI

C

ForSVMandLR M = [{w0)} .where WO = (b0, w?, .., w?}

i=1]cx(f+1)
is the j-th hyperplane.
For deep neural networks (DNN) M is consisted of all the layer matrices M*
and activation functions f*(-), where 0 < i < [, and 1 is the number of layers
in DNN
f

i_l(mlii1|Vm,Fi) } = {1,Xy, ..., X¢}, where X; € F;,

The query vector X = {1,

1<i<fand1l < m < |F|. IfV,,r, appears in the original query
(i.e. Vi p, = X)), its value is 1, otherwise it is 0.

A matrix whose columns are q query vectors denoted as X&), for the multi-

q

query linear algebra based classification, thus S = [{X(k)}k_l](f)
- +1)Xq

kNN, decision tree and random forests classifiers:

&

d(X, Y™

valg,

r;-th dataset record, Y"i = {er", eri, - Yfr"} for KNN. When the records are

randomly permuted by a permutation 7, they are denoted as Y(")
the distance between query X and the 7;-th dataset record for kNN

threshold value of features F;’s corresponding node in the decision tree,

1<i<f

XXVil

Chapter 1

INTRODUCTION

IPv6 increased the bit size of the IP addresses from 32 to 128 bits. This contributes to the
estimated increase of IP connected devices in the Internet of Things (IoT) from 8.4 billion in
2017 to the predicted 30+ billion in 2020 [1]. Together with the emerging trends of other
information technologies such as ubiquitous (makes computing omnipresent, anytime and
everywhere), wearable (computing devices worn under, with, or on top of clothing) and cloud
computing combined, those devices contribute to the rise of the global data volume from 4.4
zettabytes in 2013 to the predicted 44 zettabytes in 2020 [2] in what is known as Big Data.
Often those 10T devices collect data to form private datasets, such as different hospitals
collecting data about their patients’ disease predictions together with the corresponding
patient symptoms, or different cyber-security companies collecting log files of computer
systems together with the corresponding host/network attack(s) or normal behavior, etc. If
those data sets of the same nature are collected in different environments (e.g. different
hospitals, different IT systems, etc.) and have different statistical properties, it has been
shown that when they are merged into a single data set to train a machine learning (ML)
model, the model often ends up being more accurate in its’ classifications (predictions) than
the human expert of the same field or than the trained models obtained from each of the
datasets separately [3].

Fortunately, in the last couple of decades, many techniques have been proposed that
enable us to either partially or in total overcome the above mentioned problems. Those
techniques enable the ML experts to successfully train and get the final trained ML model
from multiple data set owners with little or no exposure of their data or information related

to the data. This process is known as privacy preserving (PP) training. On the other hand,

those techniques can also be utilized for the case when a user wants to classify his query
without letting the trained model owner learn anything neither about his query data nor the
final prediction (classification), while the user also should not learn anything about the

trained model. This process is known as privacy preserving classification.

1.1. Motivation and problem statement

In 2000, [1] and [2] almost simultaneously came up with research under similar titles where
they addressed the privacy of the datasets over which ML models were trained. Several others
followed, some of which are presented in the surveys at [3] and [4]. Those are known as
privacy preserving training schemes. Common for those early schemes was that they solely
concentrated on the privacy of the datasets, with little or no concern for the privacy of the
classification stage. They also payed no attention to the privacy of the trained model as well
[3-4].

Realizing these shortcomings, dozens of schemes followed afterwards, which exclusively
deal with the classification (inference) stage for different ML classifiers such as Naive Bayes
(NB), Deep Neural Networks (DNN), Support Vector Machines (SVM), Logistic Regression
(LR), Decision Trees (DT), Random Forests (RF), etc. These schemes fall into the privacy
preserving classification category, such as those in [5-11], to name a few. There are also a
few schemes that for consistency and continuity reasons addresses both privacy preserving
training and classification problem under the same system architecture and environment
settings, such as those proposed in [12-15] and [30-32].

However, before training an ML model, it is common practice to do some pre-processing
and feature selection on top of the dataset(s) over which the training is being done. Especially
this is common for datasets which are highly dimensional (have a huge number of features),
a typical occurrence for text classification datasets such as SMS spam, e-mail spam,
document classification, etc., which are known to harbor tens, hundreds of thousands or even
millions of unique features (words, tokens). By applying some feature selection over such
datasets, not only we save valuable amount of computation and communication cost during

the training and classification stages later on, rather trained models obtained over datasets on

which a certain feature selection has been applied, in general, are shown to be more accurate
during the classification stage [23-29].

Despite this, surprisingly, there is little work done on the area of secure feature selection,
especially on edge IoT environments. The few existing schemes have one or several setbacks
and disadvantages, which are elaborated in the next section. Furthermore, they are not
designed to have in mind the computation and communication environments of edge
computing in IoT, nor do the existing schemes provide a mechanism for ensuring the end-to-
end integrity, authenticity and consistency (continuity, order of sequence) by which the
interactions are done among different participants in the system while executing the

protocols.

1.2. Contributions

Definition 1.1: A blockchain is a list of blocks (records), where each block has a timestamp
and its transaction data (usually in form of a Merkle tree [16]) and is linked with the previous
block(s) by including its (theirs) hash(es) in itself, thus forming a chain of blocks
(blockchain) [17].

Definition 1.2: Internet of Things (IoT) is a set of cooperating devices (sensors, mobiles,
etc.) that can collect and transfer data over a wireless network without explicit human

intervention with the aim of reaching a certain functionality [18]

Definition 1.3: Edge computing refers to the technologies that enable computations to be
performed at the edge (end) of the network. It’s usually done so to improve response times
and use less network resources as well as resources of other devices around by doing local

processing at the edge node (device). For example, a smart phone is an edge device [19].

Our contributions: In order to overcome the afore mentioned shortcomings (elaborated in
more details in Chapter II), we propose a novel secure feature selection (filtering) protocol
based on information theoretic metrics such as entropy. Concretely, we homomorphically

evaluate features’ information gains on distributed (horizontally and vertically

partitioned) datasets over edge IoT devices and select the top m ones with the highest
information gain. We choose the information gain since it is shown to be among the most
effective feature selecting metrics for text classification [20, 34], and due to the lack of secure
and private schemes that use it in literature [23-29]. Since in practice we deal with datasets
with sensitive content and knowing that our protocols use several interactions between the
participant, for each interaction of each participant we introduce a block (record) of its
interaction data and provide integrity by hashing the block’s content, confidentiality by
encrypting the sensitive data and authenticity by encrypting the overall block content with
participant’s private key. Furthermore, in order to assure the consistency (order of execution)
by which the interactions among participants are done, in our protocols we introduce
timestamps to the blocks and link them with the hashed content of the preceding block(s).
This makes our schemes a natural fit for blockchain technology. In the process each
participant keeps only the blocks which are generated by him, forming what we call vertically
partitioned distributed public ledger (Chapter 4).

To show the effectiveness of our scheme, on top of the selected features, we provide a
secure and private training and classification protocols over the same context (system
architecture, environment and security settings). In this sense, we continue our blockchain,
enabling in the process end-to-end (from raw datasets till the final trained model, i.e. from
secure feature selection to secure training) security characteristics inherited by blockchain,
(Chapter 4). During the secure classification stage each client, before classifying his query,
can verify (check) the correctness, flow and the consistency by which the final trained model
was obtained using the blockchain. We formally prove the security of all of them under
the semi-honest model.

For efficiency purposes, in order not to overload the network and other participants, we
tend to do local processing at the edge on clear (plain, un-encrypted) data as much as
possible, rather than homomorphically evaluate them later on. While doing so we take into
consideration the heterogeneity (in terms of hardware and software platforms) and the
restricted resources that are characteristic for edge IoT devices [21, 22]. Our schemes have
high rate of fault tolerance and resistance to collusion attacks so that, out of n dataset
owners, they allow up to n — 3 failures or up to n — 2 collusions. Moreover, the underlying

cryptographic tools that we use while executing our protocols are proven to be secure under

quantum computer attacks, making our protocols suitable for the post quantum world. This

makes our schemes one of the rare ones (if not the only one) that utilizes blockchain

technology to provide an and end-to-end (from raw un-preprocessed datasets to final trained

model) secure and private framework for ML algorithms in edge IoT environments [21, 22].

We should note that our protocols about secure feature selection, training and classification,

are independent from each other, in terms that, according to the scenario and needs, each

of them can be used solely or in combination with secure and private protocols from other

research schemes.

1. Secure feature selection (secFS) protocol - requirements:

Privacy of the input features. We achieve this by randomly permuting the hashes
of the input values (words, tokens)

Privacy of the input features’ values

Security and privacy of intermediate results. We keep the intermediate results of
all of our protocols secure and private since they might be used as a trapdoor for
total or partial leakage of the input or the output of the corresponding protocol.
Partial privacy for the output (of the top m selected features). The output cannot
be totally private since it is needed as an entry point (input) for the secure
classification stage when clients prepare their queries in accordance to the selected
features. However, the selected features can be kept private for the secure training

protocol.

2. Secure training (secT) protocol - requirements:

Privacy of the input features. The inputs here are the selected features, i.e. the
output) of the secFS protocol.

Privacy of the input features’ values

Security and privacy of intermediate results

Privacy of the output, i.e. the trained model. We provide the option for the trained
model not to be revealed to any of the participants, even during the PP
classification stage. This is one of the rare protocols to keep private the final

trained model at any stage.

3. Secure classification (secC) protocol- requirements:
e Privacy of the trained model
e Privacy of the user query for both query features and their corresponding values
(frequencies)
e Security and privacy of intermediate results
e Privacy of the output, i.e. the final classification result

e No loss of accuracy with respect to the plain classifier

We should note the for the purpose of the secure classification protocols we propose the
secure comparison protocol based on arithmetic circuits, which securely compares two
integers. On top of it we also propose the secure comparison of all data slots — SCADS
protocol, which in turn is needed for the secure argmax and secure top-K protocols. While
our experimental evaluations show that the proposed secure comparison protocol when used
isolated (not in combination with our secure classification protocols) doesn’t perfectly hide
the difference of the two integers that it compares (Section 6.9), yet we theoretically proof
(in Section 6.10) that when our secure comparison, hence SCADS as well, are used in
combination with our secure classification protocols, they help us hide the trained model and
the user query. We base our proof on top of well-established cryptographic primitives

(assumptions in this case), such as ones based on The Learning With Errors — LWE schemes.

4. Have the remaining characteristics given in the Tables of Chapter 3.

The published/accepted/submitted papers derived from this dissertation are:

1. Kjamilji, Artrim, Erkay Savas, and Albert Levi. "Efficient Secure Building Blocks With
Application to Privacy Preserving Machine Learning Algorithms." IEEE Access 9 (2021):
8324-8353.” (published)

2. Kjamilji, Artrim. Albert Levi, Erkay Savas and Osman Berke Giiney "Secure Matrix
Operations for Machine Learning Classifications Over Encrypted Data in Post Quantum
Industrial [oT" The International Symposium on Networks, Computers and Communications

(ISNCC21). IEEE, 2021 (accepted, Dubai, 31.10-02.11.2021).

3. Kjamilji, Artrim. Albert Levi, Erkay Savas “Blockchain driven secure feature selection,
training and classifications in distributed edge loT environments” (submitted to IEEE Journal
on Selected Areas in Communications).

Besides the above papers, there a few of other future papers for which in this dissertation
we provide their theoretical background, security analysis and proofs, pseudocodes and we
already have their implementations (codes) which can be found in [98], as well as their
experimental evaluations. After writing their corresponding manuscripts, they will be

submitted to related journals/conferences.

1.3. Dissertation organization

In Chapter 2 we give preliminaries related to the research. Namely, we introduce the concepts
of NB, multinomial NB (MNB) for multi-label multi-output datasets as well as ML classifiers
based on linear algebra operations such as DNN, SVM, LR, NB and MNB (again, this time
represented through linear algebra operations). We proceed with the information gain, as well
as cryptographic primitives, concepts, definitions and theorems which will be used in later
chapters. In Chapter 3 we elaborate the related research on secure feature selection, secure
training and secure classification. In Chapter 4 we give our algorithms on secure and private
feature selection for multi-label multi-output datasets, while in Chapter 5 we present the
corresponding secure and private training algorithms. In Chapter 6 we present novel secure
building blocks for general purpose, such as secure sum, secure permutation and its inverse,
secure comparison and secure sorting (whose derivatives are secure top-K and secure
argmax). We proceed with novel secure building blocks on linear algebra such as secure dot
(inner) product, secure compression of sparsely encoded matrices, a couple of versions of
secure matrix-vector product, a couple of versions of secure matrix-matrix product, secure
matrix transpose and secure Frobenius product. On top of those building blocks we built our
secure and private ML classifiers for KNN, DT, RF, NB, MNB, DNN, SVM and LR. At the
end of each of the Chapters 3-6 we give theoretical experimental evaluations and
comparisons of our protocols with the state-of-the-art as well as we provide security proofs
for all of our protocols under the semi-honest (honest but curious) model. In Chapter 6 we

deal with malicious users as well during the secure and private classifications. Finally, in

Chapter 7 we conclude our research with discussions as well as proposals and ideas for future

research and directions.

Chapter 2

BACKGROUND INFORMATION AND
PRELIMINARIES

In this chapter, we provide the preliminaries related to all of our schemes throughput the
dissertation. Namely, we derive NB classifier from Bayes’ Theorem and use it for both
textual and non-textual multi-label multi-output dataset (which in itself includes the special
cases of binary classes, multi-class, multinomial and multi-label scenarios). Then we
introduce the most commonly used classifiers such as KNN, DF, RF and the others that can
be expressed through linear algebra operations such as SVM, LR, MNB and DNN. We
proceed with introducing the information gain and cryptographic primitives related to
security definitions, concepts and theorems which will be our used for proving other
theorems throughout the dissertation. We conclude with the general system architecture of
our schemes, participants and their adversary models and briefly introduce our protocol
flows, which are elaborated in details in their corresponding chapters.

The notation given here will be valid throughout the paper. We denote a vector of integers
by adding the term “_v” at the end of the vector’s name, i.e. int_v = {ay,a,,..ay} =
{(ai)’l-vzl}. By intl_v+ int2_v; intl_v — int2_v; intl_v X int2_v; intl_v/int2_v, we
denote the component (index) wise addition, subtraction, multiplication and division of two
integer vectors, respectively. [-] denotes the ceiling function (rounding to the closest greater

integer), while |-] the floor function (rounding to the closest smaller integer). With H(-) we

denote a cryptographic hashing function and by |S| we denote the cardinality (number of

elements) of a certain set S.

2.1. Bayes’ Theorem and Naive Bayes

Let A4,..,Ay,B be random variables. Let P(B), P(A4,...,Ay), P(B|44,...,Ay) and
P(A4,...,Ay|B) be the probability of observing B, the joint probability of observing the
random variables A4, ..., Ay, the conditional probability of observing B after 44, ..., Ay are
observed and the conditional probability of observing Aj,...,Ay after B is observed,

respectively. Then the Bayes’ Theorem can be written as:

P(A4,...,AN|B)P(B)

P(B|Ay, ..., An) = =05

2.1)

If we are interested on which value of B has the highest probability of appearance after
A, ..., Ay have been observed, but not on their actual values, then if we Naively assume that
A4, ..., Ay are independent to each other (thus P (4, ..., Ay|B) = [1\-, P(4;|B)) and knowing

that logarithm is a monotonically increasing function, then (1) can be written as:

argmax argmax
wmee = (B € B PBIAL -, A0) = g ¢ g Dl logP(IB)P(B,) (22)

where B, is the value of B which has the highest posterior probability (probability of

appearance) after 44, ..., Ay have been observed. Equation (2.2) is known as the Naive Bayes

formula.

2.1.1. Naive Bayes for multi-class non-textual datasets

Naive Bayes is a supervised machine learning (ML) technique used for classification, hence
its model is trained from a dataset(s) assumed to be correctly labeled. Such datasets have
f + 1 columns, where f is the number of features (attributes) and one column is for the class
(label). We assume that each feature is categorical (if a certain feature is continuous, it can

be discretized). Each record (transaction, instance, row) in the data set for each of the f

10

features can take one of the values from the feature set F; = {Vy g, Vopi, e, ViFi) i }, Where
|F;| is the cardinality (number of elements) of the set F; and V,, p; is the m-th element of the
feature set F;,and 1 < i < f,1 < m < |F;|. Let F € R/ be the set of the Cartesian products
of all the elements of all features’ set, namely F = F; X F, X ...X Fz. All of the instances
belong to one class from set of classes C = {C;, C5, ... C.} , so we have c classes in total. The
total number of instances (transactions) in the dataset is N7. In this sense, a dataset is
comprised of records which are tuples {Y;, Z,.}, where ¥,. € F and Z,. € C. Let N((;) denote
the global (overall) frequency (counts) of class C; and let N (V,, f;; C;) denote the frequency
of the m-th value of the feature F; with class C; where 1<i<f, 1 <j < cand

1 < m < |F]|. Obviously, NT = }5_; N(C;). For the class and conditional feature value-

N(Cj)
NT

NWVmFi; Cj)
N(C))

class probabilities, we have P(C]) = and P (Vm_pilC j) = , respectively, and

they actually represent the trained model.
To classify an unclassified feature vector X = {X;, X, ..., Xy}, where X; € F; (therefore X €
F), means to label it with a class from the set C which has the highest posterior probability.

Assuming that the features are independent from each other, thus

P(Xl,XZ, s Xf|Cj) = H{zl P(X;|C;), then using (2.2) for the NB classifier we have:
C(X) = argmax;<j<, [logP(Cj) + Z{zl logP(Xi|Cj)] (2.3)

If the main (global) dataset was obtained by merging n other data sets, then for the
frequencies of the dataset we have N (C]) =Yr=1 N (k)(Cj) ,
N(Viris G) = TRy NO (Vo pis G) and NT = ¥f_; NT(k), where N®)(C;) is the local
frequency (counts) of class C; at the data set k, while N () (Vm, Fi C}) is the frequency of the
m-th value of feature F; having class C; at the dataset k, and NT (k) is the number of
transactions at the dataset k, where 1 <i<f, 1 < j < ¢, 1<k<n andl1l<m<|F.
Having this in mind, then letting each X; =V, p; for 1 < i< fand1 < m < |F|, from

(2.3) we have:

11

Yk=1 N(k)(cj) + Zf Yic1 N(k)(Vz,Fi;Cj)

C(X) = argmax,<j<. |log n_NT(K) i=1log i NO(c))

(2.4)

In order to integerize for encryption purposes, we multiply the probabilities with a constant

K, so for (2.4) we have:

MG), 57 Wi

C(X) = argmax;<j<, [llog NT N(C)

logP(C;) + Zi=1 10gP (Vi il C;) (2.5)

2.1.2. Multinomial Naive Bayes for multi-label multi-output textual

datasets
For simplicity and better understanding, we firstly present the scenario with binary textual
datasets and then generalize it to deal with multi-label multi-output textual datasets.

Let the transactions (documents, records, instances) of a certain (pre-processed) dataset DS
have a selected feature set SF consisting of m words (features), thus SF = {wy, ..., w,, }. For

simplicity and without loss of generality, let the set of classes C of DS consist of two classes,
ham and spam, thus C = {cp, ¢s}. Let f (Wi, cj) denote the frequency of word w; in documents
classified (labeled) as belonging to class ¢;, while N (wi, cj) denote the count (number) of
documents where w; appears at least once in documents classified as belonging to ¢;, where
1<i<mandc = cp or¢c; = ¢. In this sense, if w; appears several times in a document
belonging to ¢; then its frequency f (Wi, cj) will be incremented as many times as it appears
in that particular document, while its document count N (Wi, cj) will be incremented by one.
Let NT and N (c;) denote the total number of transaction and the number of records belonging

N(cj)

to class ¢;, respectively. Apparently NT = chzchjcjzcs N(c;j). Let P(cj) = denote the

class probabilities. Let P(w;|c;) = Flwic)) and P(wi|c;) = (—l)’) denote the conditional

N(cj) ¢j

word-class probabilities for the Multinomial Naive Bayes (MNB) and Naive Bayes (NB)
cases, respectively. Actually P(cj) and P(Wi|cj), where 1 < i <mandc¢; = ¢ or ¢; = cq,
represent the trained model Cry(+) for the MNB and NB classifier, respectively. In order to

12

give a chance to words whose conditional probability is zero, due to their counts or
frequencies being zero, we add one to each count (frequency) accompanied by adding the
vocabulary size (number of unique words) to the denominator of the corresponding
conditional probabilities. This process is called Laplace Smoothing. For the MNB case un-
classified queries have the form of q_v = {1, f,(wy), ..., fz(Wy,)}, where fi(w;) is the
frequency of appearance of word w; in the query g_v, while for the NB case it has the form
of the binary vector g_v = {1, N;(wy), ..., Nqg(wp,)} where N, (w;) = 1 if w; appears at least
once in the query and N, (w;) = 0 if w; doesn’t appear in the query, for 1 <i <mandw; €
SF. Applying Naive Bayes’ Theorem for multinomial datasets [18], [33], [35], [39], we

classify q_v as:

P(cp)(ITiZ, P(Wi|C;
Cruta.0) = lale) = 22 D

(2.6)

Similar to the reasoning in Chapter 2.1 and (2.2), having in mind that P(g_v) is always
the same, that logarithm is a monotonically increasing function and naively assuming that

appearances of words in a query are independent of each other, i.e.

P(q_v|cj) =1, P(Wi|cj)fq(wilcj), then for the MNB case (2.2) can be written as:

Cru(q_v) = sign[K(logP(cy) — logP(cs)) + X%y K f (W) (logP (wilcp) —
logP(wl-|cs))] (2.7)

if Cry(q_v) > 0, 1i.e. sign = +, then q_v is classified as ¢, (ham), otherwise as cg (spam).
K is a constant used to integerize terms of Cry,(q_v) for encryption purposes (Chapter 2.4.1).
If in (2.6) instead of frequencies f; (w;) we use the counts N, (w;), then (2.6) is valid for the
NB case.

If the dataset DS is obtained by merging n other datasets denoted as DS for 1 < k < n,
then NT =Y} NT(k), N(¢)=3Xp1N®(), f(wic)=Tie1 f®(wic;) and
N(Wl-, cj) =yn_ N® (Wl', cj), where NT (k), N® (c), o (Wi, Cj) and N (Wl-, Cj) denote
the number of transactions (records), number of records labeled as ¢;, frequency of word w;

in documents labeled as ¢; and the count (number) of at least one appearance of w; in

13

documents labeled as ¢; at dataset , respectively, for ¢; = ¢y or ¢; = c;.
For the multi-label multi-output case, where each label is a multiple-classes, let the set of

labels for a certain dataset be L = {Ll, wr Ly L|} and let the set of corresponding classes for
each label be C! = {Cll, . Clczll}, where 1 < [< |L| and |C!] is the cardinality of (number
of classes belonging to) set C'. Let SF* = {w}, ...,w’ |} be the set of m' selected features for
label [, where 1 <[< |L|. Let N(Ccl), N(wil, Ccl) and f(wil, Ccl), be the counts (number)
of documents belonging to class Ccl, counts of documents belonging to class Ccl having at

least one appearance of the word (feature) w} € SF! and the frequency of word w} appearing

in documents belonging to class CCZ, respectively, for 1 <1 <|L|, 1<i<m!and

1<c<|CY. |Let P(C l) = N(CC) denote the C,'classes probability and

P(W |C. l) = LCLCL) or P(W |C. l) Lclcl) denote the conditional word-class
N(c:') N(ce')

probability for NB, respectively for MNB case. Let TMMMO denote the trained model for

the multi-label multi-output datasets, which is consisted of P(Ccl) and P(Wl-l|Ccl) for

1<I<|L], 1<i<mland 1<c<|CY. Then for the query
Y| L]

quMLMO — {{1 {f} (Wl)}l 1} } , which for label | has m'! words (features), the
==

corresponding classification for each label assigns a class to g_v according to MNB, thus:

L]
TMMLEMO (g yMLMOY = P (1{C<c Elzllzl‘v) - Tﬁ;’ii}; [KlogP(c.t) + B, Kff (whlogP(whiCh)]
Sl = 1=c<|C

(2.8)

If fql (w})s are substituted by Né (w}) in (2.8) and probabilities belong to the NB case, then
the classification of g_v is done according to NB.

We should emphasize that if each value of each feature is considered as a binary feature
on its own (that can take two values, 0 or 1, depending on whether its present or not in the
record or the query), then the scenario for textual multi-label multi-output datasets is also

valid for the non-textual ones.

14

2.2. Information gain

For the binary classification case, let N (Wl, c]-) =N (cj) - N (Wl-, cj) denote the count
(number) of documents in the dataset labeled as belonging to class ¢; where word w; does
not appear, and ¢; = ¢ or ¢; = ¢. Let N(w;) = N(w;, cp) + N(w;, ¢5) be the number of
documents were word w; appears at least once and N(w) = NT — N(w;) be the count

(number) of documents were w; does not appears at all. Let P(w;) = % denote the

probability of w; to appear in a document, P(w,) = % denote the probability of w; not

denote the probability of word w; to appear in

)) N i .
appearing in a document, P (Wi, Cj) = _(ZLTC])

a document classified as ¢; and P(Wl, cj) = Nwic;) denote the probability of word w; not
NT

appearing in a document classified as ¢;, where ¢; = ¢, or ¢; = ¢. Then, the information gain

(IG) of a word w; is defined as [34-35]:

160w = Se menes (P(wi, 1)log (soomedds) + P(%, ;iog ((;W)—()))) 2.8)

The information gain is a quantitative metric which measures the reduction of entropy
(uncertainty) of a query gq_v to belong to a class ¢; after word w; has been observed in the
query. The higher the entropy reduction, the more information gain the word w; offers. This
is the reason that makes information gain one of the most effective tools in dimension
reduction (feature selection), especially when choosing the top m words with the highest
information gain in what is known as “bag-of-words” [33],[34],[37]. Substituting the
probabilities with their counts and having in mind that we want to find the top m words with

the highest 1G, but not their exact IG, then (2.8) can be rewritten as:

Nwy)N(c;) NW)N(cj)

1G(w;) ~ chzch,cs (N(Wi, cj)log (M> + N(w,, cj)log (N(Wl—cj)m)) (2.9)

15

which makes the homomorphic evaluations and selection of the top m words with the highest

IG easier (Chapter 2.4).

For the multi-label multi-output datasets let N (Wll) = Z|CC=1|1 N (Wil, CCZ),
N(W_}) = NT — N(wil), and N(W_}, Ccl) = N(Ccl) -~ NWw}, Ccl) denote the count (number)
of documents where w} € SF! appears at least once, count of documents where w} doesn’t

appear at all and counts of documents of class C,' where w/ doesn’t appear , respectively,
l
for1<I<|Ll,1<i<m'and1<c<|C!.Let P(Wil) = %denote the probability of

l . _l _ N(@ eqe l . .
w; to appear in a document, P(Wl) =7 denote the probability of w; not appearing in a

(Wil i'CCl)

N
document, P(Wl-l, CCZ) =— denote the probability of word w/ to appear in a document

. l — 1 N (W_ll'CCl) o [.
belonging to €, and P(w}, C.) =— denote the probability of word w; not appearing

in a document belonging to class C.', where 1 <1< |L,1<i<mland1<c<]|C!.

Then, for label [, where 1 < [< |L|, the information gain of word w; is
_ ylct] ! P(wice') — A P(wicc!)
IGl(Wll) _Zc=1 P(Wil,Cc)lOg W +P(Wll,CC)log W (210)

Substituting the probabilities with their counts and having in mind that for each label label [,
where 1 < [< |L|, we want to find the top m! words with the highest IG, but not their exact
IG, then (6) can be rewritten as

N(whcc Nt

-1 whcc!
1GY(w}) ~ 2'f=l|1 (N(w{, c.log <W> + N(wl, ¢j)log (%)) (2.11)

2.3. Machine Learning classifications

According to Dua [38]: “Machine learning (ML) is the computational process of
automatically inferring and generalizing a learning model from sample data. In supervised
machine learning, an algorithm is fed sample data that are labeled in meaningful ways. The

algorithm uses the labeled samples for training and obtains a model. Then, the trained

16

machine-learning model can label the data points that have never been used by the
algorithm”.

Below we give some of the widely used ML techniques with application to cyber security
and corresponding use-cases. Other case-studies on all of the mentioned classifiers on this

section are reported in [38] and [39].

2.3.1. K-Nearest Neighbor (KNN)

Is a widely used classification technique which is simple to implement, although it requires
a lot of computation power and storage resources. It is simple since it doesn’t require prior
training, rather, given an observed instance X = {Xj, X3, ... Xf} which we want to classify
(label) and a dataset DS with fairly enough of already correctly classified instances, we want
to find the instance(s) of DS that are closer to X and correspondingly label X as belonging to
its closest instance(s) class in terms of a distance. However, in order to avoid biases, distances
that do not properly find neighbors, and/or mistakes that might have happened while
capturing (measuring) the instances X’s features, when classifying X, we might consider to
take into consideration several (say k) closest neighbors of X in DS, hence the name ANN.
Afterwards the majority voting is applied to determine X’s final vote. In order to avoid equal

number of votes for different classes from the neighbors of X, it is desires k to be odd.
Let YTi = {er", Y, .., Yfri} be a record of DS, where 1 < i < NT and NT is the number of

transactions (records, instances) in DS. As a distance metric between X and Y"i can be
considered several ones. The most used distance metric is the Euclidian distance, which is

calculated as:

d(X,Y™) = \/zf;zl(xi — Y2 (2.12)

The squared Euclidean distance between X and Y is defined as:

dX, Y™ =3 (X - vy (2.13)

17

The Manhattan distance between X and Y is defined as:

r

dX, Yy =% _ 1%, - v, (2.14)
The cosine similarity between X and Y™ is defined as:
Y — _ xxyTi
d(X,Y") = cos(a) X (2.15)

where X X Y7i is the inner product of X and Y"¢, and |X| and |Y"¢| are their canonical (L2)
forms, respectively. Besides those, there are others less used distance metrics such as
Jaccard’s, Minkowski’s, Chebyshev’s distance, etc.

Since X checks for all of the instances in DS, kNN it has a linear complexity with respect

to the number of records in DS.

2.3.2. Decision Trees and Random Forests

Decision trees are also one of the most frequently used machine Learning (ML) techniques,
known also as decision trees. Decision trees (DT) are build based on an observation database
(dataset) (Fig. 2.1.). After building the tree, those techniques are used to give prediction
(classification) for a record (instance, raw) that has only its feature values, but not the class
to which that particular record (instance) belongs to. Thus we want to classify (label) a newly

observed instance which might not have been seen before as part of the dataset.

[A
T
)y = | co
Induction
Facts or Observations Theory

Fig.2.1. Building a decision tree out of observations (dataset) [27]

18

Starting from the root of the tree and guided by the value(s) of certain attribute(s), we
follow a link that sends to another node and so on till we reach a leaf node which eventually
contains the final classification for that record as it is shown in Fig.2.2. A tree is expressed

as conjunction of disjunctions in terms of if-and-...-and-then rules.

R e)
Vo CSunny D Overcast Rain
‘-\ \7 /
\ \Jigh) Normal Srrong eak
) Yes Ao Yes

Fig.2.2. Finding a binary tree classification guided by attributes and their values [42]

There are several ML binary tree techniques, which are similar and variations of each
other. The most famous ones are J48, ID3 (proposed by Quinlan [40]), C4.5 (Quinlan [41])
and CART (Classification and Regression Tree). Here we will briefly give only ID3, whose
algorithm (pseudocode) is given in Fig.2 5.

In order to properly build a DT, we introduce two notions (metrics) that will help us build
the tree. One of them is the notion of entropy (the degree of uncertainty a system has) which

is given with the formula (3.22)

H(S) = X o—pilog(p;) (2.16)

where p; is the probability of appearance of a certain value for a certain feature (attribute) .
Another notion is that of the Information Gain that we introduced in Chapter 2.2. In this

sense, according to the pseudocode in Fig.2.3, until there are no features (attributes) left

without being selected, starting from the root of the DT, in each iteration we select the feature

whose feature values introduce the highest IG are selected to be the root of the DT.

19

ID3(D,X) =
Let Tbe a new tree
If all instances in D have same class ¢
Label(T) = ¢; Return T
If X = @ or no attribute has positive information gain
Label(T) = most common class in D; return T
X + attribute with highest information gain
Label(T) = X
For each value x of X
D, «+ instances in D with X=x
If D, is empty
Let T, be a new tree
Label(Tx) = most common class in D
Else
T,=1D3(D,, X—-{ X})
Add a branch from Tto T, labeled by x
Return T

Fig.2.3. Pseudocode for the ID3 algorithm [40]

Random forest (RF) on the other hand is an algorithm that is made of multiple DT. Those
DT are selected in such a way that they complement each-other to give better results. Since
all of the DT algorithms have strong and week sides, the RF is designed to combine the strong
sides of several decision tree algorithms. Since different trees might give different
classification for an un-classified instance, RF uses the majority voting to give the final
thought of its instance classification (labeling). In order to avoid imbalances that might
appear due to different natures of individual trees in the RF, techniques such as boosting,

bagging and others are used [42-43].

2.3.3. Machine Learning classifications based on linear algebra operations
In this chapter we introduce several classifiers which are based or can be expressed through
linear algebra operations such as dot (inner) product of two vectors, matrix-vector product,
single matrix-matrix product and cascading (sequential, one after another) matrix-matrix
products. Those are SVM, LR and DNN. Also we will re-introduce NB and MNB classifiers,
but this time expressed through linear algebra operations. In the following sub-chapters, we
assume that the trained model of the corresponding ML algorithm already exists and we deal
only with the classification (prediction) stage for unclassified queries. For some of the ML

algorithms we give a brief overview on how the trained model is obtained

20

2.3.3.1 Naive Bayes and Multinomial Naive Bayes (revisited). Having in mind the
notations for NB in Chapter 2.1.1, for the set of classes C = {Cy, C,, ... C;.} let us define the
training integer row-vector co) corresponding to class G as

cO) = {[KlogP(C,-)J, ii(mliilllmog Vmr 1G],)} N

{[KlogP(Cj)], [Klog(Vl’FJCj)J, [Klog(Vz’FJCj)J, s [Klog(V]FnLFnle)J}, which makes
CY an f + 1 dimensional vector, where 1 < j < ¢,. At its first index it has the log of the
class probability - [K logP (C])J, followed by all of the f conditional feature value
probabilities - [Klog(Vm,FJCj)J,s.t. 1<i<f,1<m<|F]l-ofthe remaining f indexes in
sequential order. The multiplication of the logs of the probabilities by a constant K and
rounding them to the closest smaller integer (|-]) is done for encryption purposes. Let we

have an unclassified query X' = {X'{,X'5, ..., X',,}, where X'; € F;. In similar way, we

: - _{ (o _

redefine the query vector X' as a binary row-vector X =11, (m:le,Fi) =
i=1

{1, Vir Vaps e VIFnI,Fn} = {1,X, ... ,Xf}, i.e. it has 1 at the first index followed by a
sequential order of all of the f feature values of all feature sets. For all X’; € F; of the original
query vector X’ we put 1 (one) at the corresponding index of the redefined query and all other
values are set to be 0 (zeros). If we define the trained model as an ¢ X (f + 1) dimensional

matrix, whose rows are all of the ¢ training row-vectors - C¥)s in sequential order, thus

M= [{C U)}C,] , then the classification of C;(X) = Cp(X") can be expressed as:
=Uex(r+1)
Cu(X) = {5 5IM x X] (2.17)

where the matrix column-vector multiplication returns a ¢ dimensional column-vector which
in its indexes contains the posterior probabilities of X to belong to the corresponding class

C;. The term a:g}.";‘zx returns the maximum element of the resulting vector, which is the class

with the highest posterior probability, hence the class label for X. A similar reasoning can be
done for the MNB and NB case for textual datasets and queries, where the trained model

matrix M contains the corresponding row-vector class probabilities -CU)s -in sequential

21

order, obtained having in mind MNB logic (Chapter 2.1.2), whereas the query vector q_v

remains the same.

2.3.3.2. Support Vector Machines (SVM). Can directly be used in systems with two classes
(binary case) that are linearly separable and the separation is done with planes. Since there
are many planes that separate the instances of the two classes, the separation is done (chosen)
in such a way that there is a maximum gap between instances of the different classes on each
side of the plane (Fig. 2.4). This is obviously the optimal separation of the two classes. The
instance that are closer to the separation plane on both sides of it (i.e. of the different classes)
make the so called support vectors, hence the name support vector machines (SVM). Let
those support vectors be the instances (records) {Y"+, c,} belonging to one of the binary
classes (denoted as c,) and the other be {Y"-, c_} belonging to the other class (denoted as
c_), where Y™ = {¥;"*,...,Y;"*} and Y"- = {Y;",...,¥;""} are the values of the support
vectors they have for each of the f features (dimensions) of the dataset. Let the record
{Y™, c,} belong to a plane 7, s.t. WTY™ + b = 1, where b is constant and W is the normal
vector to the hyperplane 7. This means that all the /' dimensional records X = {X;, ..., Xf}
for which WTX + b > 1 holds, i.e. they are on or above 7, are labeled as belonging to class
c4. Similarly, let the records {Y"-, c_} belong to a plane _ s.t. WTY™ + b = —1 where b is
the same constant and W is also the normal vector to the hyperplane m_. All the records

X ={Xy,...,X¢} for which WTX + b < —1 holds, i.e. they are on or below m_, are labeled

as belonging to class c_. We can re-write this as y(WTY" + b) > 1, where y = 1 and

r, = 1y if the class is c;,while y = —1 and 3, = r_ if the class is c_. This also means that the
. .2 : .
distance between m, and m_ is Wi where |W] is the Normal Hesse form of W. Since we

want to maximize the distance of the support vectors with the separating plane, that means
we should minimize |W|. Thus, the plane that in the most optimal ways separates the two

classes is derived by optimizing those formulas:
argmin(; [w|?) (2.18)

y(WTY™ +b) > 1 (2.19)

22

The splitting plane, which is given by its plane equation WTX + b = 0, afterwards is used
to classify new instances X = {Xj, ..., X¢} by evaluating X into the plane formula. The result

will be either a positive or a negative number, one for both of the classes.

Optimal hyperplane

Class 1 wlx+b=0 N
- S, 'Y X @
& wixsbzo A \\‘ ° e NN 8,
Class 2 . 2 W N X, O
. \
. NN
wlix +b<0 ° :\\ - 0N N 5\
o~ - s ™ 0\ \ /
L = \\:\ 3 N S5 \\ weight v
. e g ® N 2 . R
Support vectors AT Y 4
[] A T T L] N R,
N TR N N \
N \ N
. ° . s . LA
\\ marg
> > Voxel 1 Voxel 1

Fig.2.4. Choosing the right class separator plane using SVM [39, 45].

For the case when binary classes are not linearly separable, kernel tricks are used. Usually
those kernels add an extra dimension which makes the classes again linearly separable and
applies the same logic as it is shown above.

For the cases when there are several classes (more than two, say c classes), SVM can be
used in two modes. In one mode each class is separated from every other class using the
above logic. This means that for each pair of classes we have a classifier, which in total make
for c(c — 1) /2 plane classifiers. Since in some cases this is a lot, another approach is to have
“one versus other classes” classifier. This means that in total we have c-1 planes [30].

In order to represent SVM multiclass classifiction in term os linear algebra (concretly

matrix-vector product) operations, let us have f features, denoted as Fj, ..., Fr and c classes,
C = {Cy,C,, ..., C.}. Each of the c classes has its own trined f + 1 dimensional hyperplane
wl) = {b(j), Wl(j), ...,w,Ej)}, for 1 <j < c, that tends to maximize the gap between the
closest instances (support vector machines) of the that class with the rest. In this sense the

trained model can be expressed as rows of W)s, thus M = [{W(j)}]C,_l] . If the query
T Hex(f+1)

vector X is expressed as a column vector X = {1,X1, ...,Xf}, where X; EF; for 1 <i < f,

then the classification of X - Cy,(X) is done using (2.17) [9-10], [43-44]

23

2.3.3.3. Logistic regression (LR). The trained model M and the user query X have the same
construction as in 3.1.2, hence its classification is done using (2) again. LR differes from

SVM only by the algorithm by which the trained model M is obtained [16], [21].

Table 2.1. Common perceptron activation functions [45]

Sigmoid Vs = ﬁ Z—f] = [Z_E] ﬁ
s s vl (1+e*s)(1+e™*s)
Tanh ¥, = tanh(xy) [Z—i]s = [Z_i]sms}ll—zxs
RelLu ¥, = max(0, x,) [Z—f]s = [Z—i]s I{x; > 0}
Ramp ¥s = min(—1,max(1,x,)) [B_iL = [:_5]3 =1 <xe< 13
Square y=%(x—d)2 %= (x-d)Tg—f
Log c=+#1 y =log(1+ ™) g_i =].-i-_l:‘“:_i
Hinge c=+1 ¥ = max(0,m — cx) g_i: -][{"C(m}g_i
LogSoftMax c=1..k ¥ =log(E e) —x, [3—1 = (e*s/Eye™ - 556)2_5
MaxMargin c=1.x ¥ = [I}clgé‘{xk"' m] — xc]+ ja | = Oge = 85) I(E> 0}%

2.3.3.4. Deep neural networks (DNN). One of the hot research areas recently have been
DNN. They were designed to imitate (simulate) the way the human brain works. Namely, the
human brain is consisted from small processing (neurons) that take input signals from other
processing units, process them and send them to another processing unit. The same is with
the elementary constituents of DNN that take some weighted input(s) from other processing
units, do some linear or nonlinear transformation to it and then pass the output to another
processing unit. These elementary processing units are called perceptrons (shown as circular
shaped nodes in Fig. 2.5). The function that perceptrons use to transform the (weighted) input
to an output is called the activation function. Table 2.1 gives the most common activation
functions. In some cases, if the output is positive it is said that the perceptron fires. Due to
the limitations of single perceptrons, layers of and later on multiple layer of perceptrons were
introduced (Fig.2.5). Sometimes DNN can have hundreds if not thousands of layers, each

with also hundreds or thousands of perceptrons.

24

Fig.2.5. A multilayer deep neural network [39]

The DNN in Fig.6 has 3 layers. The input (first from the left) has 4 perceptrons, the middle
layer has 3 and the output layer 2 perceptrons. Although there is a huge research going on
with ANN and deep learning, still there is no clear policy on how to determine the adequate
number of layers, the number of perceptrons in a layer, the activation function for perceptrons
or even the number of inputs in the network.

As it can be seen from the DNN in fig.6, the input X = {X;, X,, X3, X,} is fed to the four
perceptrons of the input layer. Inside the perceptrons the activation functions (say one from
the table 4) transforms the input into an output. For each input layer node (perceptron) there
is a link to the next (hidden) layer node which has a weight (usually in decimal numbers)
assigned to it. Initially those weights are randomly assigned and will get fixed during the
training process. Those weights can be represented as a matrix, in which the rows are the
inputs and columns the output (target) perceptron nodes, which in Fig.2.6 are denoted as M?!
matrix, with the corresponding weights (elements in the matrix) denoted as w;;. For instance,
the weight of the link that comes out from the second input node and goes to the 3™ node of
the hidden layer is w,3. In the second (hidden) layer, all of the nodes some up the products
of the output that the input layers generate with the weights. Then this sum of products is fed
to the activation function of the hidden layer perceptron, which in turn comes up with an
output that will be send to the proceeding layer, which in our case is the output layer. Of
course, the links between the hidden and the output layer have also their weights, represented
by the M? matrix. The M? matrix has j rows and k columns in Fig.2.5, which are the number

of perceptrons (nodes) in the hidden and the output layer, correspondingly.

25

Let us define M° as a column vector which has f ones, thus its weights are all 1. Let the
input layer be denoted as layer 0, let we have [layers and let the activation functions for each
layer i be denoted as f!(-), where 0 < i < [. Apparently, the trained model M of our DNN
is consisted of all the matrixes M' and f(-), for 0 < i < [. Let the output of layer i be a
column vector denoted as X'*! and let the input X also be denoted as X°. Then, the final
output of the DNN can be denoted as C),(X), which is actually the classification of our input
query X = X° according to M, thus

Cu(X) = [Tioo(f' (M x X1)) (2.20)

Equation (2.20) is equivalent to (2.17) when the DNN has only layers 0 and 1 and their

correpodning activation functions are linear, thus f°(x) = f1(x) = x.

M

fa s
argmax '_C(;)_' T T q—T)i
1<j<c [[—CP=|x|x® x@_ x@
l=k=g\|_ oo, 1| l

= Cy(S) = [Cu(XD) Cy(XD) ... Cpr(XD)]

Fig.2.6. Illustration of our proposed multi-query classifications

2.3.4.5. Multi-query classifications. Since all of the above ML classification schemes use
the same logic during the ML classification stage, which can be expressed in terms of a

multiplication of a matrix with a column-vector, intuitively, a matrix-matrix multiplication

can classify multiple queries at once. Let S = [{X (k)}Z_l](f N be the (f +1) xq
- +1)Xq

dimensional query matrix obtained by appending q column vector queries of dimension n +
1,5t X0 ={1,x{, . X!} for 1 < k < q.In that case, for SVM, LR, NB and MNB, as

shown in Fig.2.6, classifying q queries at once can be expressed as

Cu(S) = 1jccn IS [M x 5] (2.21)

<j<c,1<k=<q

26

Similarly, for the DNN (2.20) can be written as:

Cu(S) = [Mizo(f*(M" x 5Y)) (222)

2.4. Cryptographic primitives
In this section we give introduce some cryptographic primitives, definitions concepts and
theorems that will be used in our schemes.

In order to achieve data privacy, in our research we are interested and deal only with
cryptographic techniques, mainly due to their accuracy and efficiency. Those techniques are
based on secure Two-Party-Computation (2PC), somewhat homomorphic encryption (allows
limited number of mathematical and/or Boolean operations on ciphertexts), oblivious transfer
(OT), private information retrieval (PIR), etc. The pioneering works of these techniques are
Yao’s circuits [47], ElGamal’s [48] public crypto-system that supports additive homomorphic
properties, Pailler’s [49] crypto-system that besides the additive homomorphic property also
allows a multiplication with a constant, the Goldwasser-Micali scheme [50] that enables secure
XOR operations between two encrypted bits, etc. The secure multi-party computation (MPC)
given in [51-52] is a generalization of 2PC to more than two parties. MPC however suffers
from computation and communication cost, making it impractical for many real-case scenarios
[53].

Somewhat homomorphic encryption (SWHE) schemes allow only a limited number of
homomorphic additions and multiplications on the ciphertexts. Gentry’s seminal work of
[54], paved the way for the Fully Homomorphic Encryption schemes (FHE), which allows
arbitrary number of additions and multiplications on the ciphertexts. This is done by
introducing the bootstrapping (homomorphic re-encryption) technique applied on SWHE
schemes. Further improvements of [54] were seen in [55-57], which made FHE suitable for
practical applications, hence resulted in the development of actual libraries such as IBM’s
HElIib [31] based on the BGV scheme from [55] and Microsoft’s SEAL [59] based on both
the SWHE FV presented scheme in [56] and some characteristics of the BGV scheme.

27

2.4.1. Public Somewhat Homomorphic Encryption schemes

Homomorphic encryption (HE) schemes allow for certain arithmetic or Boolean operations
to be evaluated (done) over the ciphertexts without decrypting them (while the ciphertexts
are still encrypted) [49], [54], [56], [57], [59]. So far, the strongest form of HE are Fully HE
(FHE) schemes which allow unlimited numbers of homomorphic additions and
multiplications over the ciphertexts. This is due to the computationally expensive technique
known as bootstrapping (homomorphic evaluation of the decryption circuit), which as an
output gives a re-encrypted ciphertext over which new homomorphic operations can be done.
The first FHE scheme was proposed in 2009 [54], and over the years several others would
follow [59]. All of the recent FHE scheme are based on the assumption of the hardness of
Decision-RLWE (Ring Learning With Errors, Section IX), known to be resistant to quantum
computer attacks [57], [59]. While the security of Somewhat HE (SWHE) schemes is also
based on Decision-RLWE, they are a weaker variant of FHE in terms that they allow only a
limited number of homomorphic multiplications (known as the circuit depth), but in the
process they avoid the costly bootstrapping operation [56], [59]. However, in most of the real
case scenarios, the circuit depth is known in advance, which allows for the encryption
parameters to be set in a way that no bootstrapping will be needed. This makes SWHE an
ideal choice over FHE. The plaintexts and the ciphertexts in FHE and SWHE schemes are
polynomial rings with modulus X" + 1 and their coefficients are integers modulo t and g,
respectively, s.t. q > t. Thus, plaintexts belong to the ring R, = Z,[X]/(X" + 1) and
ciphertexts to the ring Ry = Z,[X]/(X" 4+ 1). In [57] it has been shown that if the
polynomial modulus of degree N can be expressed as a multiplication of N irreducible
polynomials of degree one, which in turn are automorphic to each other, then, according to
the Chinese Remainder Theorem (CRT), we can encode N integers in a single plaintext or
ciphertext, one integer for each polynomial coefficient. A single homomorphic operation
(addition or multiplication) over two ciphertexts encoded in such a way would result in
simultaneous (parallel) component (index, slot) wise execution of the same operation over
the encoded integers (Fig.2.7.a)-b)). This allows for a SIMD (Single Instruction Multiple
Data) fashion of homomorphically evaluating the ciphertexts, enabling massive efficiency

improvements without extra cost. Furthermore, the automorphism of the irreducible

28

polynomials of degree one allows for the encoded integers to change their places, mainly
through rotating (shifting) them to the right or left (Fig.2.7¢)). SWHE schemes allow SIMD
operations between a ciphertext and a plaintext as well, where the result is always a
ciphertext. Throughout the paper we assume that all SWHE encodings-encryptions of the
plaintexts are done to support SIMD operations. For encoding/encryption purposes plaintexts
and ciphertexts are denoted by having “ p” and “ ¢” at the end of their names, respectively.

Briefly, common functions of a typical public SWHE scheme are [56, 59]:

o (pk,sk) = KeyGen(4,N,t,q). Generates a pair of public key cryptosystem (i.e. a
public and corresponding secret key) according to the security parameter A, polynomial
modulus N and coefficient moduluses t and q for the plaintext and ciphertext,
respectively.

e m_p = Encode(m_v). SIMD encoding of an integer vector into a plaintext.

e m_c = EncEncr(m_v). SIMD Encoding and encryption of an integer vector into a
ciphertext

e Cc=Ac+B.c Cc =A_c+ B_p. SIMD addition of a ciphertext with another
ciphertext or plaintext (Fig. 4a). The result is always a ciphertext.

e Cc=AcXBc Cc =AcxB_p. SIMD multiplication of a ciphertext with
another ciphertext or plaintext (Fig.2.7b). The result is always a ciphertext.

e B _c = Rotate(A_c, R). Rotating a ciphertext for R slots (indexes). If R > 0 rotations
are done to the right, otherwise to the left (Fig.2.7¢)).

e m v=Decode(m _p); Decoding a plaintext into an integer vector

e m v=DecrDec(m c): Decrypting then decoding a ciphertext into an integer vector

Ac = p— A
® cbxc:e:c}:e:cb
Bc=
A_ctB c= A_cxe_c~ [

Fig.2.7.1llustration of SWHE SIMD a) addition, b) multiplication and c¢) Rotation for 2 slots

Let A v ={ay,..,ay} ={(a)X,}, B.v={by,..,by} = {(b)Y,} be integer vectors and

their corresponding SIMD encoded&encrypted ciphertexts B_c = EncEncr(A_v) and

29

B_c = EncEncr(B_v), respectively. Let R.v={Ry..,Ry}={(R)N~,} and
hov={hy, .., hy}={(h)Y¥,}} be random integer vectors s.t. R; >0, |h;| <R; for
1<i<N, and let R_p = Encode(R_v),h_p = Encode(h_v) be their respective SIMD
encoding into plaintexts. Then C_c = ((A_c —B._c) X R_p) + h_p is the SIMD secure
comparison of the index-wise elements of A_v and B_v, firstly proposed in [18] and also

elaborated in Chapter 6.3.4. Namely, let C_v = DecrDec(C.) = {cy,...,cn} = {(c)V,} =
{(Ci = (ai — bl) X Ri + hii)liv_l}a if C; = (ai — bl) X Ri + hi > 0 then a; > bi, otherwise

a; <bjfor1<i<N.

2.4.2. Security definitions, concepts and theorems
Definition 1: Decision-LWE: for a security parameter 4, let we sample s « U;"Xl, a <«

nxi

U™, e« x>, c « U3, where U is the uniform distribution and y is the discrete

Gaussian distribution. Decision-LWE 1is the problem to distinguish between (a,a - s + e)

and (q, ¢). [56, 57].
Definition 2: Decision-RLWE: Generalizing LWE for rings [56, 57].

Assumption 1: Hardness of Decision-RLWE: Decision-RLWE is assumed to be a hard and

resilient problem even for an adversary with a quantum computer [56, 57].

Semantic security of the RLWE schemes: Due to its probabilistic encryption, RLWE based
schemes offer semantic security, i.e. for ciphertexts m_c and m,_c that encrypt plaintexts
mqy_p and m,_p, respectively, an adversary cannot distinguish which ciphertext belongs to

which plaintext [60].

Definition 2.2: Secure Multi-Party Computation (SMC) under the semi-honest model

for deterministic functions: Let we have p parties, Py, ..., B, with the corresponding private

inputs x4, ..., X, and let X = (xl, . xp). With a certain security parameter A let them execute

30

protocol IT at the end of which each P; gets the corresponding output OEL. Ax)for1<i<
p

p, thus the global output is 07 ={(0gi(/1,9?)) } Let the view of P; be

=1

i t i . . .
V,gi 4x) = {(mf‘) }, where mfl are the messages that P; receives while executing I1. We
j=1

say that I1 is a secure MPC protocol under the semi-honest model if there exists a simulator
(function) s.t. Sf(4,x;,0F.(4,%)) =, VH(A,%), where =, stands for computational

indistinguishability against a probabilistic polynomial time adversary [60].

Theorem 2.1: Modular Sequential Composition Theorem: Let I1 be a protocol that
sequentially calls I, ..., II. If 13, ..., I[I;; are SMPC protocols under the semi-honest model,

then I1 is also.

Proof: Given in [60] |

31

Chapter 3

RELATED WORK AND THE STATE-
OF-THE-ART

In this Chapter we provide an overview of the related research related to secure feature

selection, secure ML training and secure ML classifications

3.1. Secure feature selection

Early secure feature selection schemes rely mostly on the secure sum protocol [22-26] as
their building block. In secure sum n participants, denoted as Py, ... B,, securely compute the
sum of their corresponding private integer inputs, i, ... i, assuming an existence of a ring
network topology between them, Without loss of generality, the first participants adds a
random number R to his input and passes it to the second one, which in turn adds his private
input to the received sum and passes the result to the third participants, and so on, until the
first participant receives the randomized sum (R +) i;) , subtracts the random R from it
and broadcasts the result to all the other participants. In this sense, while executing the
protocol, P; receives (R + Y.fZii;) from P,_; and after adding its private input transmits
(R+ XYf_,i;) to Pryq, where 1 < t < n. This makes the communication cost of secure sum
to be n - f transmissions and). f broadcasts, where). f is the total number of feature
values for which we have to find the sum over n participants. If P;_; and P;,, collude, they

can retrieve P.’s private input i; by subtractingP;’s output and input, thus

32

(R+ Xfii)— (R+ XIZ1i) =i,. Also, an eavesdropper that can listen to all
communicating channels can retrieve the private input of all the participants. Another
drawback of secure sum is that it suffers from high communication overhead when f'is large,
which is the case with text classification datasets that are known to have hundreds of
thousands of features (words, tokens), thus making secure sum highly impractical.
Furthermore, secure sum doesn’t work in the secure two party computation (2PC) scenarios.

Among the first schemes to address the problem of secure feature selection is [22]. It uses
the secure sum protocol to calculate features’ misclassification gain [22]. To avoid the
collision, based on an assumption of the number of colluding participants, they came up with
a metric that assigns a certain degree of collusion probability to participants and propose for
each of them to operate in a safe (non-colluding) neighborhood according to a certain
threshold. However, such a solution does not guarantee that a collusion will indeed be
avoided. Also, it increases the already high communication overhead. In [23] they use the
Harsanyi-Farrand-Chang [23] metric for feature selection which, for each feature value,
needs a few invocations of secure sum to find intermediate metrics such as the correlation or
the covariance, without addressing any of the drawbacks of secure sum. In [24] they test
several metrics for feature selection and in the process provide a trade-off between the
privacy and the accuracy of the trained model. In [25] each participant splits his private input
into n shares such that their sum is equal to the participant’s private input and sends one share
to each of the other participants. Afterwards all of the participants locally sum up the received
shares from others and invoke secure sum to find the final result. While this solves the
collusion attack, it introduces an overhead of n:(n— 1) transmissions to the high
communication cost of a single secure sum invocation. After giving a brief literature review
on the topic, [26] proposes ides for a few secure feature selection schemes without engaging
into implementation details. Among others, [26] inherits all of the drawbacks of secure sum
since it is supposed to use it as its main building block. None of [22-26] solved the secure
sum’s shortcomings of an eavesdropper that can intercept all of the communications, of the
inability to deal with 2PC, and of the high communication overhead, especially knowing that
the metrics that they propose need several invocation of secure sum for a single feature
values. In this context, [22-26] use a total of several hundreds of thousands of rounds

(interactions) compared to only few that our protocol uses to reach the same goal.

33

Table 3.1. Properties among different schemes dealing with secure feature selection

Schemes o
ur

Properties [22] | [23] | [24] | [25] | [26] | [27] | [28]
Privacy of the input features %
Privacy of the input features’ values v v v v v v v v
Securlty gnd privacy of U luxluxluxlvx! v lux!| v
intermediate results
Privacy for the output (selec. feat.) X X X X X X v | VX
Data Confidentiality, Integrity and
Authenticity. Protocol consistency X | X | X X X X X v
(blockchain) for interactions
Computing on plain in edge to J
avoid costly homomorphic operat. v v v v v v X
Deals with more than two Edge J
Dataset Owners (EDOs) v v v v v X X
Fault tolerance (byzantine failure) J
of up to n — 3 out of n EDO VX | X X v X | NA | VX
Allows up to n — 2 out of n EDO X x| x| v ixInalvx]|V
collisions
Uses a centralized server(s) to avoid J
communication overhead X X X X X | NA v
Avoids Using multiple (more than
two) semi-honest non colluding v v v v v v X 4
servers
Resistant to eavesdropping % % % % % J v v
Enables 2PC (i.e. 2 DOs) % X X X X IX
Applicable to the post quantum
world (resistant to quantum X X X X X X X 4
computers)
cost does not dependent on the total J
number of records among n EDOs X X X X X . X
Multi-label multi-output EDOs x | X X X X % X v
Deals with both horizontally and J
vertically partitioned datasets X X X X X X X

Avoiding secure sum, [27] uses Paillier’s additive homomorphic encryption scheme [49]
to introduce a 4 round 2PC (relatively high for a 2PC in secure ML classification scenarios)

and doesn’t address the scenario with multiple datasets. The secure feature selection scheme

34

in [28] uses secret sharing for multiple dataset owners to share their data among three non-
colluding servers (3PC), a scenario which is not easily feasible in reality, especial knowing
that even if two of them collude can reveal the private dataset input values. Furthermore, it
has a high interaction rate and knowing that each feature value is processed independently,
makes it have a high communication overhead. Depending on to whom the trained model is
shown, [28] can also deal with 2 dataset owners when the owner of the trained model is not
one of the dataset owners, which rarely happens in practice.
None of the above schemes addresses the issues of authenticity, integrity or protocol

flow consistency, i.e. blockchain technology. Table 3.1 summarizes security, privacy and

efficiency of properties among several schemes.

3.2. Secure machine learning training

The first scheme to address the issue of privacy preserving (PP) NB training is due to
Kantarcioglu et.al. in [61]. As it is the case with almost all of the earlier schemes, it exclusively
deals with training and doesn’t address the privacy preserving classification problem. In order
to find the class and the joint class-value frequencies (counts) among all dataset owners, it uses
the secure integer sum protocol explained in Chapter 3.1, thus inheriting all of the
disadvantages of it. In the same paper, those attacks were avoided by splitting each private
integer into integer shares (such that when summed up they give the private value) and each
share then follows a different route while executing the secure sum protocol. However, both of
them didn’t address the privacy of the trained model and work only with three and more dataset
owners. In [62] the same group uses the secure [nx algorithm proposed in [63] for training
purposes, but it has a high communication cost. Those drawbacks were partially removed in
[64] by utilizing a version of the additive homomorphic ElGamal scheme, where owners
encrypt and send their data to be aggregated by a central server, removing in the process the
communication overhead of the decentralized environments of the previous ones, but the final
trained model is leaked again. Yi et.al [65] use the Paillier scheme, the secure Inx algorithm of
[63] and two non-colliding servers to hide the final trained model, however, it re-trains the

model for every query, which makes it rather inefficient.

35

Table 3.2. Properties among different schemes dealing with secure training of NB models

Schemes | [24] | [24] | [25]
(sec | (sec | (sec | [32] | [21] | [33] | [23] | [36] | Our

Properties sum) | share) | log)
Multiple EDOs v v v
Flexible (less than three

EDO) during training

Training comput. cost not
dependent on dataset size
Privacy for all Dataset(s)
paramet. during training
Total trained model
security during training
Resistant to Collusion
attack between two or

X | NN [X
X | SN |15 X
b SN NS
) SN N B N B N A
X | S| X | X |S
X | SN |1 X | SN |S
X | SN |1 X | SN |S
SN KN KNS

X
<
<
<
N
N
<
<
<

more EDOs

Resistant to‘ x J v v J J v v v
eavesdropping

Ce.nt'ral server.(s) while x x % v v v v v V4
training (efficient comm.)

AV01'd1.ng Unnecessary Y v v v x Y v v V4
retraining for each query

Multiclass datasets v v v v v v v X | Vv
Avoids multiple public

key pairs or proxy re- v v v v v v X X | X
encryptions

The scheme is resistant to
quantum computers
Multi-label multi-output
EDOs

Deals with both
horizontally and vertically | X X X X X X X X v
partitioned datasets

X
X
X
X
X
AN
<
<
<

Those by Liu et al. in [66] and [67] are among some of the rare papers to address the issues
of both training and classification in privacy preserving fashion of Naive Bayes models. While
[66] suffers from being interactive during the classification, [67] has only one round and hence
a better communication efficiency. However, they both suffer from the costly process of proxy
re-encryptions, bootstrapping and the lack of local pre-processing in the plain at the owners’
location during the training phase, which hurts the overall performances. Also, [67] suffers

from doing unnecessary costly homomorphic multiplications due to not using logs of

36

probabilities (which convert products into sums as shown in 3.1). Li et al. [68] has similar
properties to [67], however it lacks the details and experimentation results.
Table 3.2 summarizes security, privacy and efficiency of properties among several schemes

which deal with secure training of NB or MNB models.

3.3. Secure machine learning classifications

In the abundance of privacy preserving training, the lack of having a privacy preserving
classification protocols was realized by Bost et. al. in [53]. They use the additive homomorphic
properties of Paillier and a secure argmax protocol (which in turn uses a multi-round secure
comparison protocol with two public encryption schemes) to perform secure classification.
Without addressing the training part, Park et. al [69] also dealt with the classification problem,
by proposing a one-round scheme to overcome the multi-round communication overhead of
[53]; but in the process it uses heavy inefficient FHE computations. Li et.al. [70] uses
Goldwasser-Micali XOR homomorphic encryption scheme [50] and 3 Paillier public keys as
well as several PIR invocations to get the needed class and value-class probabilities from the
server and finally uses the secure argmax protocol of [53] to find the final classification. Gao
et al. [71] uses parallel OT invocations and the Paillier scheme’s additive homomorphic
properties to find the class and value-class probabilities and then uses the secure comparison
protocol of [15] to get the final result; however, it works with only two classes, unlike the other
protocols which enable multi-class classification. While [66] suffers from being interactive
during the classification, [67] and [72] suffer from doing unnecessary costly homomorphic
multiplications due to not using logs of probabilities (which convert products into sums as
shown in 3.1). Li et al. [68] has similar properties to [67], however it lacks the implementation
details and experimentation results.

Table 3.3 summarizes security, privacy and efficiency properties among several schemes

which deal with secure classifications for different ML classifiers.

37

Table 3.3. Comparisons of properties among different secure and private classification schemes

SCHEMES
PROPERTIES

(53]

(66]

[67]

(68]

[69]

(73]

[75]

[71]

[72]

(51]

Our

Trained model security (privacy)

v

S
X

v

Query security (privacy

X

Classification result privacy

S
X

No loss of accuracy

2
o

2
o

Flexibility (e.g. server vs user centric)

Avoiding Unnecessary retraining for
each query

Non-interactive classification (exactly
one round)

Resistant to STC attack [34]

Simultaneous classification (packing) of
multiple queries for higher throughput

Multiclass algorithms

Avoids multiple public key pairs or proxy
re-encryptions

SIS X(X| X K[X

NI 3 IS RN IS IENEN N

SIS KX X KIXISISNKNS

<] X% x| «|x[x|<|<|<]| 8

Uses logs of probabilities instead of
plain probab. avoids costlier multiplicat.
in favor of additions during NB)

S XIS XX X SIXISISSS

X| XIS XX X| «[X

X| XX X|X| | [%[%[X[<|R

X XS] XX K| K[X[5K]&

SRR NN D 4 4 BN N AN AN ANIENAS

X

X

S XIS XX X KIXISNSNNS

S XX XS X SIXISSSNS

X

< «la] XX] &%

NN TN N P4 I BN

X

X| SN XX X KIXISNSNSNS

SRS BN Y RN RN Y CS N EY N

Deals with malicious users during
classification

X

X

X

The scheme is resistant to quantum
computers

X

Avoids multiple non-colluding servers
(i.e. has exactly only one such server)
during classification

vX

v =presence; v X=partial presence; X = absence; NR = Not reported

38

Chapter 4

SECURE AND PRIVATE FEATURE
SELECTION

Definition 4.1: Feature selection is the process of reducing the dimensions of a feature set
F of a labeled dataset DS into SF according to an algorithm A, thus SF = A (DS, F).

In this chapter, we introduce the security, privacy and efficiency goals (requirements) for
our secure feature selection protocols. We proceed with the constituents (participants) of our
secure feature selection schemes, their adversary models. Also, we provide a brief flow of
the protocols, which will be elaborated in more details in the later subchapters of this chapter.
We conclude the chapter by experimentally evaluating and comparing our schemes with the
related research, which show that our schemes outperform the few state of the art ones for
several times in terms of computation and communication costs. We conclude the chapter by
proving the security of our protocols under the semi-honest model. All the necessary

background information and notations for this chapter was given in Chapter 2.

4.1. Introduction
The security and privacy requirements for our secure feature protocols are:
e Privacy of the input features. We achieve this by randomly permuting the hashes of
the input values (words, tokens)

e Privacy of the input features’ values (counts, frequencies, etc.)

39

e Security and privacy of intermediate results. We keep the intermediate results of
all of our protocols secure and private since they might be used as a trapdoor for total
or partial leakage of the input or the output of the corresponding protocol.

e Partial privacy for the output of the top m selected features. The output cannot be
totally private since it is needed as an entry point (input) for the secure classification
stage when clients prepare their queries in accordance to the selected features.
However, the selected features can be kept private for the secure training protocol.

e Have other properties related to secure feature selection mentioned in Table 3.1

4.2. System architecture, adversary models and protocol flows

Our participants for the secure feature selection protocols are: 1) EDO (The Edge Dataset
Owner) - We have n such EDOs in our system, denoted as EDO,, each owns a dataset DS,
where 1 < k < n, that they are willing to use for training ML models in a secure and private
fashion. 2) TEAS (The Edge Aggregating Server): a server used to do the bulk of the
proposed protocols’ homomorphic computation. 3) E2DS (The Edge Encryption Decryption
Server): It’s the only participant in the system that has a pair of public keys with SWHE
properties (Chapter 2.4). All the data that are homomorphically evaluated in our protocols
are encrypted using E2DS’ public key, thus it’s the only one that can decrypt them. All of

them are illustrated in Fig.4.1.

Adversary models: All the participants are assumed to be in the passive semi-honest (honest
but curious) model, which means that they follow the protocol but on the background they
try to infer some private data which they are not supposed to. A formal definition of the semi-
honest model is given in Chapter 2.4.1. We assume that TEAS and E2DS don’t collude. Out
of n EDOs, our environment setting allows for up to n — 3 EDO failures and up to n — 2
collusions without jeopardizing the privacy of the remaining and non-colluding EDOs . The

motivations for participant to behave in the described manners are given in [8-18].

Protocol flows at-a-glance: Each interaction in each protocol is marked by the interacting
participant adding its own block with the corresponding data into the blockchain (Fig.4.2).

All the participants have a pair of public/secret keys used for signing their corresponding

40

blocks of the blockchain and for secure communication. Additionally, E2DS has a pair of
public/secret key with SWHE properties (Chapter 2.4.1). All of these key pairs form the
KeySet set. While we designed our protocols having in mind primarily binary textual datasets,
they are also applicable to non-textual ones and can be easily generalized to multi-class
scenarios. This choice was done for simplicity and benchmark (comparison) purposes with

the related research.

GRPV (Generate Random Permutation Vector): it is a secure multi-party computation
(SMC) protocol through which EDOs agree on a random permutation of their hash bits of

their private words, needed for the secure feature selection protocol.

- ~
Edge Encryption Decryption Server - E2DS @

The Edge Aggregating Server—TEAS

Dataset 1 - DSy

The Edge Dataset Owner 1 - EDO,

Local processing at the participant (constituent)

Transmission from/to a participant

The Edge Dataset Owner &k - EDO,,

Fig. 4.1. Protocol flows for secure feature selection (secF'S-SI and secF-S2)

41

] (E2DS. B 1, sk B 2 ok [75] B 3, sk, B 4p sk TS|
m‘U data, | = H(dat ixn i B . T : e
(U st = gt o A [i e i)
e ’ * e) 2 b‘tHcJ MT(rndWInDoc v) T (all the log < T(rndInforGains_v IMT (rndTM ¢
&

[idata;;] ... [H{datag .q) \

) T

=yl

TEAS) (7 = -
H(dflm1]|f_i(dﬂtﬂz] I!z(datai]] (datad B1 sk I3 B2 skr B 3r sky

—~ w i i
BCHI™1 m(H(B_1po,)| |l [AB 1 |m H(B 2, [AE 2 |M'T H(B 4
. T ; U, #@cto0)| @ imrr (| #6200, | @z (| #(2 400.)
MT(W MT(rndWlnDoc,c.hZ,v! [MT(all the rnd ¢

..... M H(Bzmlﬂ_T_”frf(H,zM‘)

e =
B 4r skr o = :! L B 6, sky |TS
H(B3,) 0 20) P EE A (|] #(8500,)
- k=1
FM’T(rndInfﬂernsj, (hlv—-hv)) T (rmd TV o) T(TM ¢
10 sy oo 1,0

HB.Spe) .].. H(B 5p0,)
B_4pp, sky 5

MT(:) = Merkle Tree root

B _Nry = participant’s X Nr-th block
=Timestamp

= = B 2pp, sk B 3po, sy B _5po, sky TS
5 0| OB 7

P Bengs, 00, Sk T hamWinboc ey spamWinboc ey [P oo FEAIFE 3]

—» = sending the hash of block from/to Dataset k — DSy T,] PIT(wordsTnDoc <, MIGWcThanv] hamM ¢, spamM c)

Fig.4.2. lllustration of generating the blocks of the vertically partitioned distributed public ledger (blockchain) while executing

protocols secF'S-S1, secF'S-S2 and secT.

42

secFS: (secure feature selection — stage 1 and 2): Illustrated in Fig.4.1. Simultaneously, all
of the n EDOs find Wy, the set of hashes of the local unique words (features) of their local
textual datasets, where 1 < k < n, @) and send them to TEAS (1). TEAS finds their union
(the global set of hashes of unique words) W = U’,}zl[DecskT (Wk)]Q and broadcasts it to
all EDOs (2). Using each word of W as an index entry, EDOs simultaneously construct the
corresponding ciphertexts of the word counts (appearances) in ham and spam documents in
the local dataset, i.e. hamWInDoc_c,, spamWInDoc_cy, then they construct the replicated
ciphertexts of the number of ham and spam documents in the local datasets,
hamM _cy, spamM _cy,, @ and send them to TEAS @ TEAS finds the global number of
ham and spam documents, as well as the global ham and spam counts for each word of W by
homomorphically summing up the locally constructed ciphertexts by EDOs, i.e.
hamWInDoc, = Z=1(hamWInDoch),hamMC = Zﬁ=1(hamMCk),spamWInDoc_c =
Yr=1(spamWinDoc_c,) and spamM_c = };_,(spamM_c;), then proceeds to find the
terms needed to calculate the information gains of each word, randomizes those terms @)
and sends them to E2DS (4). E2DS decrypts those randomized terms, uses them to compute
the vector of the randomized logarithmic terms of the information gains for each word,
encrypts the randomized logarithmic terms @ and sends them back to TEAS (5). TEAS
homomorphically removes the randomizations of the logarithmic terms and finds the
information gain data for each word in the corresponding index (inforGains_c), adds some
randomizations to get rndInforGains_c and sends it E2DS @ while broadcasts the
randomizing numbers to each EDO (6). E2DS decrypts rndInforGains_c to get the
randomized integer vector of information gains rndInforGains_v @ and broadcasts it to
the EDOs (7). Each of the EDOs removes the randomization from rndInforGains_v to get
inforGains_v vector which at the corresponding indexes contains the information gain data
for each of the words and chooses the top m words with the highest information gain as the
selected features’ set SF, thus SF = {wy, ... wp,,}, where wy, ... w,,, for performance reasons

during the classification stage are sorted according to their hash values @.

43

4.3. Secure feature selection for binary datasets

GRPV (Generate Random Permutation Vector): Due to our strict security and privacy
requirements (elaborated in Section I) of keeping private both the words and their counts
(frequencies), simple hashing of the words will not help. Since the EDO records (emails,
documents) are in a natural spoken language (say English), by hashing all of dictionary words
of that language we can relatively easy apply the dictionary attack to find matches with the
word hashes of the EDOs’ records. Especially this is problematic for EDOs that wish to use
a single record (mail) for training purposes (a scenario which we don’t exclude), since the
dictionary attack would reveal much of the record’s (mail’s) content. In order to guard against
the dictionary attack, EDOs permute the hash bits of each word according to a random
permutation upon which all EDOs agree. To obtain this random permutation, all of the EDOs

engage in a secure multi-party computation (SMC) protocol given in Algorithm 4.1.

PROTOCOL 4.1: GRPV (Generate Random Permutation Vector)
INPUT: hashBitSize

hashBitSize: the size of the hash digest in bits

OUTPUT: hashBitPermVec_v

hashBitPermVec_v: the vector used to permute bit hashes at EDOs
PHASE I - EDOs:

1 fork =1tondo

2 | rndVec_v, = generateRandomVector()

3 rndVec_c, = EncEncr(rndVec_vy)

4 end rndVec_c;, to TEAS

Phase 11 — TEAS:

5 rndVec_v; = generateRandomVector()

rndVec_cy = EncEncr(rndVec_vy)

rmdVec_c = ¥¥ |, rndVec_c,+ rndVec_cy

send rndVec_c to E2DS

9 fork =1tondo

10 |_sgnd Encyy, (rndVec_vr) to EDOy

Phase I1I-E2DS

11 rndVec_v = DecrDec(rndVec_c)

12fork = 1tondo

13 |_sgnd Encyy, (rndVec_v) to EDOy

Phase IV-EDOs:

14 fork =1tondo

15| rndVec2_v = Decgy, (rndVec_v) — Decgy, (rndVec_vr)
16| rmdVec2_v = rndVec2_v % hashBitSize

17 [_hgshBitPermVec_v = calcPermVec(rndVec2_v)

[c<BEN B

44

GRPV: each of the EDOs locally constructs a random integer vector of hashBitSize
elements, encodes and encrypts it and sends it to TEAS (lines 1-4). TEAS homomorphically
adds them up, adds its own random terms, send its random terms to each EDO by encrypting
them with EDOs’ corresponding public keys and sends the sums of the random terms to be
decrypted at E2DS (lines 5-10). E2DS decrypts the randomized sums and sends them to each
EDO using their corresponding public keys (lines 11-13). EDOs decrypt and subtract the data
obtained by E2DS and TEAS and apply the modulo operator with modulus
of hashBitSize in component (index)-wise manner to each of them to get the random
hashBitSize numbers placed in the rndVec2_v, which are solely generated by EDOs (lines
15-16). rndVec2_v is than used by the calcPermVec(:) function to generate the
hashBitPermVec_v by which the EDOs do the permutations of the hash bits of their words
in the proceeding protocols. E.g. if in slot (index) 0 of rndVec2_v we have the value of 179,
that means that the 0 bit of the original hash will be the 179" in the permuted hash bits,. If
in slot, say 7, of rndVec2_v we have again the value of 179, which obviously is already used
in the permuted hash bits, than we try the next slot to the right up until we find an empty

place.

secF'S - Secure Feature selection (Algorithm 4.2 and 4.3 - stage I and II) is done in two
stages. At the first stage the union of all of the words among n datasets is found and those
that globally appears in less than val documents from all the datasets are filtered out, while
at the second stage the top m words with the highest IG are selected. All of this is done under
strict security and privacy requirements by 1) adding the corresponding block into the
blockchain after each interaction (Fig.3) and 2) participants securely communicate with each
other either by encrypting their data with E2DS public key with SIMD SWHE properties or

by using the recipients public key generated for secure communication purposes.

secFS —S1: In Phase I all of the EDOs do some pre-processing on their local datasets, locally
find all of the unique word and permute their binary hashes according hashBitPermVec_v,
and send them to TEAS (lines1-4). In Phase II TEAS finds the global union of the permuted
hashes of the words, W = {H (w;), t(Wy), ..., (W)}, and sends them to all EDOs (lines
5-8). In Phase I1A each of the EDOs, using the permuted hashes of the words in W as vector

45

entries (indexes), locally construct wordsIinDoc_cy ={N ® (wy), ..., N (k)(W|W|)} =

{(N) (w;, ch)) } corresponding to EDOy’s counts of words wy, ..., wyy in the documents

of the local dataset DS;, where 1 < k < n, and send this ciphertext to TEAS (lines 9-12). In
Phase IIB TEAS encodes the replicated vector of N integers whose value is val (line 13),

then for the needs of secure comparisons generates and encodes random vectors
Rv={Ry,..Rw} ={(RIX,} and hlv={hly ..hly}={R1)D"} st R >
0,|h1;| < R; for 1 < i < |W| (see Chapter 2.4.1) and generates h2_v = {h2;, ... 2y} =

{(h2))N.;} for randomizing the secure comparison (line13). Afterwards sums up all of the
wordsInDoc_c to get wordsInDoc_c, which is an encryption of the vector of global counts
of words appearing in documents, and performs the secure comparison proceeded with
randomizations to get rndWinDoc_c (line 14). TEAS sends rndWInDoc_c to E2DS for
decryption, while sending the randomization vector h2_v to each EDO (lines 16-18). In Phase

IIC E2DS decrypts rndWInDoc_c, which looks like rndWInDoc_v = {((N (w;) —val) %

wi
Ri+hyi)+ hyy)) } (line 19), and sends it to each EDO (lines 19-22).
i=1
Finally, in Phase IID each EDO removes the randomization by doing the subtraction

rndWInDoc_v — h2_v to get the secure comparison results wordsInDoc_v = {((N (wy) —
val) X R; + hy;)|V=|/1|} (line 24). The words w; for which the corresponding

((N (w;) —val) X R; + hy) V! term is negative (i.e. they appear in less than val global

documents) are filtered out and are not part of the WGThanV set which has |W'| elements

(words) (line 25).

secFS-S2: In Phase III, using each of the |W'| words in WGThanV as index entries, each

EDO locally constructs vectors hamWInDoc_v, = {(N 0 (w;, ch)) WI'}

spamWInDoc_v;, = {(N ®) (w;, cs)) i } as well as the replicated

hamM_v, = {(N® (cy),..,N®(c,)} and spamM_v, = {N®(cy)), ..., N®(c))},
containing the number of local ham and spam mails (documents), respectively, replicated for

|W'| times.

46

ALGORITHM 4.2: secFS-S1 (secure Feature Selection — Stage I)

INPUT: n, {DS}}_,, KeySet = {(pky, ski)-1, 0kr, skr), (Pkg, skg)}, (pk, sk), val,
n: the number of EDOs

{DS) }%=1: the local datasets of EDOs 1 < k <n

KeySet: set of all of the participants’ public key pairs for blockchain and secure. communication
(pk, sk): key pairs of E2DS with SWHE properties

OUTPUT: wordsGThanV _v

WGThanV: the set of words with at least val global document appearances

PHASE I - EDOs:

1 fork = 1tondo

2| W, =n(H(PreProcess(DSy))) //permut. of hashes of unique words

3| B_1p0, = (MT(W,),TS); BCHpy,. AddBlock(Encgy, (B_1po,))

4 [sepd (Encyi, (Wy), H(B_1p0,)) to TEAS

PHASE II - TEAS

S5W= U',;zl[DecskT(Wk)] //sorted

6 B_1; = (MT(UR=, H(B_1po,)), MT(W),TS); BCH;. AddBlock(Encg.,(B_11))
7fork = 1tondo

8 |_§end (Encpkk (W),H(B_lT)) to EDO,,

PHASE IIA — EDOs

9fork = 1tondo

10 | wordsinDoc_c, = getEncryptedCounts(DSy, Decgy, (W))

11| B_2po, = (H(B_1po,), H(B_17), MT (wordsInDoc_c), TS); BCHpo,. AddBlock (Ence, (B 2po,))
12 | segd (wordsInDoc_cy, H(B_2pg,)) to TEAS

PHASE IIB — TEAS

13 val_p = Enc({val, ...,val});(R_v, hl_v, h2_v) = rndVecsforComp();(R_p, h_p) =
Encode(R_v, (hl_v — h2_v))

14 rndWinDoc_c = ((X}=, wordsInDoc_c, —val_p) X R_p) + h_p

15 B_27 = (H(B_17), MT(UR=; H(B_2p0,)), MT (rndWinDoc_c, h2_v), TS);

BCHy. AddBlock(Encg, (B_2r))

16 send (rndWInDoc_c, H(B_2r)) to EDS

17fork = 1tondo

18 Lsgend (Encpp, (h2_v), H(B_27)) to EDO,

PHASE IIC — E2DS

19 rndWInDoc_v = DecrDec(rndWInDoc_c)

20 B_1g = (H(B_27), MT (rndWInDoc_v),TS); BCHg. AddBlock (Encg, (B_1g))

21 fork = 1tondo

22 Lsgend (Encyy, (rmdWInDoc_v), H(B_1g)) to EDO,

PHASE IID — EDOs

23fork = 1tondo

24| wordsIinDoc_v = (Decgy, (rndWinDoc_v) — Decgy, (h2_v))

25| WGThanV = greaterThanVal(W,wordsInDoc_v)

26 B 3pp, =

(H(B_2po,), H(B_27), H(B_15), MT(WGThanV), TS); BCHp,, . AddBlock(Encg, (B_3p0,))

After encoding and encrypting all of them they’re send to TEAS (lines 1-4). In Phase IV
TEAS homomorphically aggregates (sums up) those vectors to get the global counts for each

word to appear in ham and spam documents, as well as the global number of ham and spam

47

mails (lines 7-10). Then it finds nrMails_c,wordsInDoc_c,
wordsNOTInDoc_c, hamWNOTinDoc_c and spamWNOTinDoc_c (lines 12-15, Fig.4.3),
which in turn are used to find all of the randomized nominator and denominator terms inside
the logarithms in (4) for each word (lines 16-23), denoted as allRndNomDenom_c, and all
of them are send to E2DS (line 25). E.g. in Fig4.4a) we illustrate the SIMD evaluations and

N(Wl',Cj)NT .

randomizations of the nominator and denominator of the term NN (C)) in (4) done in lines
i j

16 and 20. The nominators and denominators of the other terms in (4) are found in similar
way. In Phase V E2DS decrypts all of the allNomDenomRnd_c sent by TEAS (lines 27)
and finds the encryption of all of the logarithmic terms of (4) in randomized form, denoted

as allTheRndLogs_c. E.g. logHamWInDoc_c = EncEncr(K1 X log

N(Wi,Ch)'NT'RLi
N(w)-N(cp)Rs1

<rndHamWIanulnr My

rAWINDOCmuly 4 iy
v

(Wi
>=EncEncr (Kl-log()) (upper vector in

i=1

Fig4.4b), where K1 is a constant used for integerization purposes and Ry ;, Rs; are random
numbers (lines 28-31). Afterwards E2DS sends the allTheRndLogs_c to TEAS (line 34). In
Phase VI TEAS removes the randomizations and multiplies each of the allTheRndLogs_c
with the corresponding term of 4) (lines 35-42). E.g.
tmp_c; = hamWInDoc_c X (logHamW InDoc_c + invLogHamWInD_p) in line 39 is

N(wy,cj)NT

" (Wl_)N(C]_)> of (4). The other

illustrated in Fig.4.4b, corresponds to term N (Wi, cj)l0g<

logarithmic terms multiplied with the corresponding counts of (4) are found in similar way.
After homomorphically finding and randomizing the information gains to get
rndInforGains_c (lines 43-46), it is send to E2DS for decryption, while a partial portion of
the randomization is send to each EDO (lines 48-50). In Phase VII E2DS decrypts
rndInforGains_c and sends it to each EDO. Finally, in Phase VIII each of the EDOs

partially removes the randomization to get inforGains_v = {(I Gw;)) XR+h) ll‘fl”} (line
58). Since all of the IG(w;) terms are multiplied and added to the same random R and h,
respectively, it is easy for each of the EDOs to find the top m words with the highest 1G.
Afterwards EDOs apply the inverse permutation to word hashes using hashBitPermVec_v
proceeded with sorting with respect to hash values, thus getting the selected features set, SF'
(line 59). Sorting is done for performance reasons when users prepare their queries according

to the selected m words during secC.

48

Algorithm 4.3: secFS-S2 (secure Feature Selection-Stage II)

INPUT: n,{DS,};-1, KeySet, (pk, sk), m, WGT hanV
m: the number of features (words) to be selected at the end
WGThanV: words with at least val global document appearances

OUTPUT: SF = {H(w,), ..., Hwp)}:
SF: m selected words with the highest IG sorted by their hashes

PHASE III - EDOs

1 fork =1tondo

2| (hamWInDoc_cy, spamWInDoc_c, hamM_c,, spamM _c;) =

= getEncryptedCounts(DSy, wordsGThanV _v)

3| B_4po, = (H(B_3po,), MT (hamWInDoc_cy,
spamWInDoc_cy, hamM _c,, spamM_c;), TS)
4| send (hamWInDoc_cy, spamWInDoc_c,

hamM _c;,, spamM _cy,, H(B_4D0k)) to TEAS
5 BCHD’Ok.AddBlock(Encskk(BADok))
PHASE IV-TEAS
6 (R1.p,..,R8_p) = RndEncodedVectors()
7 hamWInDoc_c = Y }_,(hamWInDoc_cy),
8 hamM_c = Y;_,(hamM _c;)
9 spamWInDoc_c = Y 3-,(spamWInDoc_c;),
10 spamM _c = Y ;-,(spamM _cy,)
11 nrMails_c = hamM_c + spamM _c,
12 wordsInDoc_c = hamWInDoc_c + spamWInDoc_c
13 wordsNOTInDoc_c = nrMails_c —wordsinDoc_c
14 hamWNOTinDoc_c = hamM_c — hamWInDoc_c
15 spamWNOTinDoc_c = spamM_c — spamWInDoc_c
16 rndHamWInD_mul_ nrM_c = (hamWInDoc_c X nrMails_c) X R1_p
17 rndHamWNOTInD _mul_ nrM_c = (hamWNOTInDoc_c X nrMails_c) X R2_p
18 rndSpamWInD_mul_nrM_c = (spamWInDoc_c X nrMails_c) X R3_p
19 rndSpamWNOTInD _mul_nrM_c = (spamWNOTInDoc_c X nrMails_c) X R4_p
20 rndWInDoc_mul_hamM _c = (wordsInDoc_c X hamM _c) X R5_p
21 rndWNOTInDoc_mul_hamM_c = (wordsNOTInDoc_c X hamM _c) X R6_p
22 rndWinDoc_mul_spamM _c = (wordsinDoc_c X spamM _c) X R7_p
23 rndWNOTInDoc_mul_spamM _c = (wordsNOTInDoc_c X spamM _c) X R8_p
24 B_3; = (H(B_27), MT (U}, H(B_4p0,)), MT (allNomDenomRnd), TS)
25 send (allRndNomDenom_c, H(B_37)) to E2DS
26 BCHy. AddBlock(Encg, (B_31))
PHASE V — E2DS
27 (rmdHamW InD _mul_nrM_v,yndHamW NOTInD_mul_nrM _v,
rmdSpamWNOTInD_mul nrM _v,
rndSpamWNOTInD_mul_nrM _v,
rndWIinDoc_mul_hamM_v, rndWNOTInDoc_mul_hamM_v
rndWinDoc_mul_spamM _v,rndWNOTInDoc_mul_spamM _v)
= DecrDec(allRndNomDenom_c sent by TEAS)
28 logHamWInDoc_c = EncEncr (K1 X log(rndHamW InD _mul_nrM_v /rndWInDoc_mul_hamM _v))
29 logHamWNOTInDoc_c = EncEncr(K1 X log(rmdHamWNOTInD_mul nrM_v/
rmdWNOTInDoc_mul_hamM_v))
30 logSpamWInDoc_c = EncEncr(K1 X log(rndSpamWInD_mul nrM_v/
rndWInDoc_mul_spamM _v))
31 logSpamWNOTInDoc_c = EncEncr(K1 X log(rndSpamWNOTInD_mul_nrM_v/
rmndWNOTInDoc_mul_spamM_v))
32 B 2; = (H(B_1g),H(B_37),MT (allTheRndLogs_c), TS)
33 BCHg. AddBlock(Encg,(B_2g))

49

34 send (allTheRndLogs_c,H(B_2g)) to TEAS

PHASE VI -TEAS

35 invLogHamWInD_p = Encode(K1 X log(R5_v/R1_v))

36 invLogHamWNOTInD_p = Encode(K1 X log(R6_v/R2_v))

37 invLogSpamWIinD_p = Encode(K1 X log(R7_v/R3_v))

38 invLogSpamWNOTInD_p = Encode(K1 X log(R8_v/R4_v))

39 tmp_c; = hamWInDoc_c X (logHamWInDoc_c + invLogHamW InD_p)
40 tmp_c, = hamWNOTInDoc_c X (logHamWNOTInDoc_c + invLogHamWNOTInD _p)
41 tmp_c; = spamWinDoc_c X (logSpamWInDoc_c + invLogSpamW InD _p)
42 tmp_c, = spamWNOTInDoc_c X (logSpamWNOTInDoc_c + invLogSpamWNOT InD _p)
43 inforGains_c = Y, tmp_c;

4R v={R,..Rhlv={hyq,...,hy 1}, h2_v ={h, .., h}

45 (R_p,h1_p) = Encode(R_v, hl_v)

46 rndInforGains_c = (inforGains_c X R_p) + hl_p

47 B_4; = (H(B_37),H(B_2g), MT (rndinforGains_c, (h1_v — h_v)),TS)

48 send (rndInforGains_c ,H(B_4)) to E2DS

49 fork = 1tondo

50|_gend (Ency, (h1_v — h_v), H(B_47)) to EDO,

51 BCHy.AddBlock(Encgy, (B_4r1))

PHASE VII-E2DS:

52 rndInforGains_v = DecrDec(rndInforGains_c)

53 B_3; = (H(B_2g),H(B_41), MT (rndInforGains_v), TS)

54fork =1tondo

55 L;end (Encyy, (rmndInforGains_v), H(B_3g)) to EDOy

56 BCHg. AddBlock (Encgy,(B_3g))

PHASE VIII-EDOs

57 rndInforGains_v = Decgy, (rndInforGains_v)

58 inforGains_v = rndInforGains_v — Decgy, (hlv—h_v)

59 SF = sort(m~1(topM (inforGains_v)), hashBitPermVec_v)

H(wy) Hiw,) H(w,.) H(wy) H(w,) H(Wp)
hamWinDoc c; hamM _¢;

NSO w,, el VO el v e v @) IO, v |
T + . el 5%

G- hamWinDoc oo amM_cu

NOwyep)|. NP el INPowvwnen] Hvoe] | v v

hamWinDoc ¢ Tami c
N(wy,cp) II N(w;, €p) I.I N(Ww, €n) I N(cp) II N(cp) II N(cy) I—
spamWinDoc_cy spamM_cy

NOwy e] INOw, el VO wune)] cIvO e Ivoe] vl
Gj gamwrnnac_c,, .- - - spamM _cu - o - =1
BHN e, IvPwcol InPowwc] Hvee] Ivoe] . Ivee,)

spamWInDoc.c SpamiT <

[Y Novieo) |] Noweed L] Vovweed | W wvee) [weeo || wveen H
wordsInDoc ¢ MS_C
Nwo L] Nwo L] Novw)] Nt || N || NT
hamM c L ordsinDoc ¢ SR,
New |] New] New | [row] | oo [vovwnl S

[NhamWinDoc_c wordsNOTInDoc ¢

(I NGwe e [] Novien) |] Nowimrcm | [voro T Tvom [Ivam}—

hamWNOTinDoc_c

A voveew |] vovoen || Nomwnen |

spamM_c

Ne) |] Neo |] e |

T Nowr o L] Novoeo L] Novmneo |

spamWNOT inDoc_c

U Newico [] Noween |] Nowmies) |

Fig.4.3. Tllustration of SIMD evaluation of values in lines 13-16 of secFS-S2

50

logHamWInDoc ¢ H(w,)

K1 % IOg (N(W,—, C.’l) X NT) X JRl.w,
ham hiD::E:'i] wnrd:hrDo’({_[:'vI] - (N(WI) X N(t’h)) X RS‘wi
53l N(wj,cp) I---l ”'I N(wf) |”'I + invLogHamWinD p
X nrMails ¢ X irMails_c - Kl X qu Rs.w,
= ? Riuy
o L] HL ovew [] Ll
X)Rl p K)Rip ()() hamWInDac ¢
I Riw I | Rsw J [l N(w;, cp)
rndHamWinDd_mul nrM c rndHamWinD mul_nrM ¢ b
N(W,€, XN T)X n,.wil | I(N(w,—)xN(c,,))stlwr_I | tmp_c; - —
... B e Wi c)
—H KlXN(Wi,ChJX!ng
irr i Sts
a) b)

Fig.4.4. Illustration of SWHE SIMD evaluations of terms in (4) in secFS-S2

4.4. Secure feature selection for multi-label multi-output

datasets

The background information is given in Chapter 2.2.2. The corresponding secure algorithm
is given in Algorithm 4.4. Generally, Algorithm 4.4 follows Algorithm 4.3, but adjusted to

the multi-label multi-output scenario.

ALGORITHM 4.4: secFS-MLMO-S2 (secure Feature Selection for Multi-Label Multi-Output datasets
— Stage II)
INPUT: n, {DS;}i_1, KeySet = {(pky, ski)i=y, (ky, skr), (Pkg, skg)}, (pk, sk), m', WGThanV, L, C*
L= {Ll, ...,L|L|}: the labels’ set
cl= {Cll, s C|Cl|l}: The label’s [set of classes, 1 < I < |L|
SF!: the number of features (words) to be selected at the end for label 1,1 < [< |L|
WGThanV: the set of words with at least val global document appearances
L
OUTPUT: SFM!M0 = {{spi}! 1 = {{{H(wi)};';’l}llzll}
SFMLMO. the set of |L| set hashes, each of m' selected features with the highest IG for each label, 1 < [< |L|
PHASE IIT — EDOs
l1fork =1tondo
2| forl=1to|Llandc = 1to |C}]
3 classCount_cy[l][c], WInClassCount_ci[l][c] = getEncyrptedCountVectors(DS,, WGThanV)
4 B_4po, = (H(B_3pp,), MT (classCount_ci[l][c], WInClassCount_ci[l][c], TS);
BCHpo,.AddBlock(Encgy, (B_4po,))
5 end (classCount_ci[l][c], WInClassCount_c,[l][c], H(B_4po,)) to TEAS
PHASE IV-TEAS

—_yn lct
TNT c =3 (Zc=1 classCount_ck[l][c])
8 WInDocCount_c = Yjp-, (Zlcll WInClassCount_c[l][c])

c=1

9WNOTInDocCount_c = NT_c — WInDocCount_c

51

10 forl = 1to |L|

11| forc=1to|CY

12 [classCount) = Xi=1 classCount, e ;

WinClassCount_c[l][c] = Xh=1 WInClassCount_c;[l][c]

13| |WNOTInClassCount_c[l][c] = classCount_c[l][c] — WInClassCount_c[l][c]

14| [rndWinClassCount_mul_NT_c[l][c] = WInClassCount_c[l][c] X NT_c X R1[l][c]

15 rndClassCount_mul_WInDoc_c[l][c] = classCount_c[l][c] X WInDocCount_c X R2[l][c]
16| [rndWNOTInClassCount_mul_NT_c[l][c] = WNOTInClassCount_c|[l][c] X NT_c X R3[l][c]
17 rpdClassCount_mul_ WNOTInDoc_c[l][c] = classCount_c[l][c] X WNOTInDocCount_c X R4[l][c]
18 B37°= (H(B_27), MT (U=, H(B_4po,)), MT (allNomDenomRnd _c), TS);

BCHy. AddBlock(Encg,(B_3r))

19 send (allRndNomDenom_c, H(B_3t)) to E2DS

PHASE V - E2DS

21 forl=1to|L|

22 [forc =1to|CY

23 || (rmdWInClassCount_mul_NT_v[l][c], rndClassCount_mul_WinDoc_v[l][c],

24 || rmdWNOTInClassCount_mul_NT_v[l][c], rndClassCount_mul WNOTInDoc_v[l][c])

25 || = DecrDec(allRndNomDenom_c sent by TEAS)

26 || logWInCl_c[l][c] = EncEncr(K1 x log(rndWInClassCount_mul_NT_v[l][c]/
rndClassCount_mul_WInDoc_v[l][c]))

27 || logWNOTInCl_c[l][c] = EncEncr(K1 X log(rndWNOTInClassCount_mul_NT_v[l][c]/
rndClassCount_mul WNOTInDoc_v[l][c]))
28 72 (H(B_1,), H(B_3,), MT (allTheRndLogs._c), TS): BCHy. AddBlock (Encg, (B_25))

30 send (allTheRndLogs_c, H(B_2g)) to TEAS

PHASE VI -TEAS

31 forl=1to|L|

32 |forc =1to|CY

33 || invLogWInC _p[l][c] = Encode(K1 x log(R2_v[l][c]/R1_v[l][c]))

34 || invLogWNOTInC_p[l][c] = Encode(K1 x log(R4_v[l][c]/R3_v[!][c]))

35| | tmp_cq[!][c] = WInClassCount_c[l][c] X (logWInCl_c[l][c] + invLogWInC _p][l][c])

36 | | tmp_c,[l][c] = WNOTInClassCount_c[l][c] X (logWNOTInCl _c[l][c] + invLogWNOTInC _p[l][c])

37 |inforGains_c[l] = ZLﬂ((Z?:l tmp_Cz[l][C])))

38 Rv[l] = (R, ..R'}; 1 v[l] = {hyy), o, byt R2_0[1] = (K, ..., h');
(R_p[l], h1_p[l]) = Encode(R_v[l],h1_v[l])

39 [rndInforGains_c[l] = (inforGains_c[l] X R_p[l]) + h1_p[l]
40 | send (rndinforGains_c[l],H(B_4+)) to E2DS

41 [fork =1tondo

42 g%énd (Encyi, (h1_v[l] — h_v[l]), H(B_4r)) to EDO,

43 B 47 = (H(B_37),H(B_2g), MT (rndinforGains_c, (hl_v — h_v)),TS);

BCHy. AddBlock(Encg, (B_4r))

PHASE VII-E2DS:

45forl =1to L]

46 | rndinforGains_v = DecrDec(rndInforGains_c)

47| fork =1tondo

48 send (Encyy, (rndinforGains_v), H(B_3g)) to EDOy

49 B 3= (H(B_2g), H(B_41), MT (rndInforGains_v), TS); BCHg. AddBlock (Encsy,(B_3))
PHASE VIII-EDOs

51forl=1to|L|

51| rndInforGains_v = Decgy, (rndInforGains_v)

52| inforGains_v = rndinforGains_v — Decgy, (h1lv—h_v)

53| SF!= {H(Wl),) H(wmz)} = sort(m~(topM'(inforGains_v[l]))) //inverse permut of hashes
54 return SFMXMO /iyords are sorted according to their hashes for performance reasons

52

Improvement 4.1. For computational and communicational efficiency purposes, whenever
possible we apply polynomial switching technique proposed in [55], use multiple cores and
threads (parallelize to the maximum extend) and simultaneously execute parts of the protocol
in different participants whenever it’s possible (e.g. adding block to blockchain after sending

data to other participants). Those techniques alone give an improvement of several folds.

4.5. Experimental evaluations and comparisons

We run our codes in a machine with Intel Core 13-4000M processor with two physical cores,
each of 2.4GHz (we utilize one core only in our implementations) with 4GB of DDR3 RAM
and 64-bit Windows 10 Pro as an OS. For SWHE purposes we use C++ based Microsoft’s
SEAL 3.2 library [40] which implements a version of [59].

For benchmark and comparison purposes with the state-of-the-art schemes, we used the email
textual dataset Enron [37]. Its implementations can be found in [81]. for a total of around 9
000 lines of original C++ code. Enron e-mail dataset is a collection of e-mails from 150 user
profiles, with a total of 16 555 ham and 17 148 spam e-mails. For the dataset pre-processing
in line 2 of the secFS —S1 (Algorithm 4.2) we applied stop-words removal, partial
punctuation removal, stemming by using the library in [45] and converting all of the letters
to lowercase. For our protocols, the input parameter values for the Enron dataset are
val =5 and K1 = 100 000.

For the SWHE parameters (Chapter 2.4.1) for N = 8192,16384 we use the corresponding
values of t = 37,60 bits and q = 218,438 bits, respectively and security of A = 128 bits.

Table 4.1. gives the cumulative (total) computation and communication costs for Enron
email dataset for each participant while running Algorithm 4.2 and 4.3 (both stage I and II)
for different polynomial modulus N and number of dataset owners #.

In Table 4.2 we compare the best results of our secure feature selection protocol
(Algorithms 4.2 and 4.3, both secFS-S1 and secFS-S2) with secure feature protocol in [28],
which is the closest to ours from the related literature. In [28] they use a light version of the
information gain — the Gini index, for secure feature selection. In [28] they use the non-
textual Speed Dating binary dataset of [47] which has NT = 8378 records, |F| =122 initial

features, from which they select m = 67 features and finish the task in 60.57 min. Since [83]

53

is non-textual dataset and the features are known publicly, they don’t engage in a protocol

similar to ours GRPV and secFS-S1, which makes their task easier.

Table 4.1. Computation and communication costs among different participants for different

polynomial modulus N and number of the dataset owners n

N n Computation cost (s) Commu(r;lc;;lon cost

EDO | TEAS | E2DS | EDO | TEAS | E2DS
10| 197.7 | 3944 | 2.0 |190.2 | 45.7 | 16.5
20 | 1633 | 4428 | 2.1 |3785| 593 | 225
8192 |30 | 148.5| 4844 | 2.1 |5664| 729 | 28.6
40 | 533 | 176.6 | 2.5 | 7543 | 86.6 | 34.7
50 | 34.1 | 173.6 1.9 |482.1| 100.2 | 40.7
10| 77.2 | 141.6 | 1.5 |3793| 77.5 | 26.8
20| 69.0 | 1955 1.1 |756.6| 91.1 | 32.8
16384 | 30 | 54.7 | 240.7 | 2.3 | 1133 | 104.8 38

40 | 39.2 | 323.0 | 2.1 1510 | 1184 | 45.0
50| 333 | 386.5 | 2.1 | 1887 | 132.0 | 51.0

Table 4.2. Comparison of different secure feature selection schemes

Scheme ‘ NT ‘ |F| ‘ m=|SF| ‘ Comp. ‘ Comm.
Speed Dating [47]
[29]* [8378 | 122 | 67 [60.57 min | Not reported

Enron email dataset [39]
Ours | 33,703][157,458 | 2047 | 10.15min | 310 MB
*4 co-located F32s V2 Azure, each with 32 cores and 64 GB RAM

4.6. Security analysis and proofs

We proof the security of our protocols under the semi-honest model using the definition 2.2

given in Chapter 2.4.2.

Theorem 4.1 GRPV (Algorithm 4.1) is secure under the semi-honest model
Proof: For 1<k <n, Vi, (4,%) = {Encyy, (rndVec_v), Encyy, (rndVec_vr)} is the

view and Ogf4v (1, X) = {hashBitPermVec_v} is the output of EDOy.

54

Let rndVec_v be a random vector and let rndeeE_cT = hashBitPermVec_v — rndVec_v.
For the simulator of each eDo we have Sgf5Y (A, Ofhor (A, f)) =
{Encp, (rndVec_v), Encyy, (rndVec_vr)} =, VEEEV (2, %).

For the view of TEAS we have V2EEY (4, %) = {(rndVec_ci)%~} and it has no output. For
the simulator we construct random SWHE ciphertexts, thus
SERPY(A) = (rndVec_cy)Z=1 =, VERPY (2, %) due to the semantic security of the RLWE
SWHE schemes.

For E2DS the view is Vired (4, %) = {rndVec_c} and it has no output. For its simulator we
have SERPY (1) = {rndVec_c} =, VERY (1, %) since RLWE based SWHE ciphertexts
rndVec_c and rndVec_c are indistinguishable to each other due to their semantic security.

None of the participants has a private input in GRPV. [

Theorem 4.2: secFS-SI (Algorithm 4.2) is secure under the semi-honest model.

Proof: For 1<k<n,
VESFS™S1(A, %) = {Encpy, (W), Encyy, (h2_v), Encyy, (rndWinDoc_v)} is the view
(where x the set of private input of all participants), x,f—%COF]f =51 = {PreProcess(DS),)} is the
private input and 0£55° ' (4, X) = {WGThanV} is the output of EDOy. From x£55° " and
0 E%COF: ~S1(2, x) we construct the set of the union of words W = U(Wy, WGThanV,rndW),
where W, is obtained as in lines 2-4 of secF'S-S1 and rndW are permuted hashes of random
words. h2_v and rndWInDoc_v are randomly chosen such that in the resulting
rndWinDoc_v — h2_v the indexes that correspond to the words of WGThanV in W are
positive, thus greater than wal. For the simulator of EDO, we have
O O Y GO

{Encpkk (w), Encpp, (h22v), Encyy, (rndWinDoc_v)}, thus

secFS—-S1 secFS—-S1 secFS—-S1 = ~ secFS—-S1 = secFS—S1 =\ —
SEnok (/1: XEDOy, OEDOk (4, x)) =¢ Vepo, (4, %). For TEAS Vrggs 1 x) =

{(Encka (Wk)):=1’ (WordsInDoc_ck)ﬁzl} is the view, x3555751 = @ is the input and
03¢F5=51(2,) = @ is the output it receives at the end of the protocol, where @ is the empty

set. Let us construct n sets of permuted word hashes (W,)#_, so that TEAS can’t tell apart

55

from them and(W;)r-,, and n random ciphertexts (wordsInDoc_ci)y~, which can’t be

distinguished from (wordsInDoc_cy)j-, due to the semantic security of the RLWE

schemes. For the TEAS’ simulator then we have S3¢5/5 51 (/1, x3ecFS =51 0secks=S1(, JE)) =

—_— n —_— n - —
{(Encka(Wk))k=1, (wordsInDoc_ck)k=1} =, VSecks=S1(},).
E2DS’ view is VE£5E5751(4, %) = {rmdWInDoc_c} and its input and output is the empty set.
We construct a random ciphertext rndWInDoc_c which can’t be distinguished from

rndWInDoc_c to the semantic security of the RLWE based schemes. For the simulator then

secFS—S1 secFS—S1 secFS—S1 = — ~ secFS—S1 =
we have S¢S, x5555751, 056555751 (4, %)) = {rndWinDoc_c} =, V55 ~51(A,%).

Corollary 4.1: secFS-S1I is secure under the semi-honest model when out of n, n — 3 EDOs
fail or n — 2 EDOs collude.

Proof: Without loss of generality, let the 3 left (not failed) EDOs be EDOy, for 1 < k < 3,
and let us treat the n-2 colluding EDOs as a single entity EDO5, thus we again have 3
participating EDOs denoted as EDOy, for 1 < k < 3. We go through the similar lines as
Theorem 2 to prove Corollary 1. If there are only 2 non-failed or non-colluding EDOs left,
then for the words in W (line 8 and 14) which don’t appear in one EDO, not only this EDO
will know that they exist in the other EDO, he will also know whether the counts of those
words is greater or smaller than val based on the final WGThanV words’ set, which
constitutes a partial leakage that goes against the strict security and privacy requirements set

in Chapter 4.1. u

Theorem 4.3: secF'S-S2 (Algorithm 4.3) is secure under the semi-honest model.

Proof: For 1<k <n, Vi55752(4,%) = {Encyy, (rndInforGains_v), Encyy, (h1_v —
h_v)} is the view, Xzpo. > = {PreProcess(DSy),WGThanV} is the private input and
O35, >2(4, %) = {SF} is the output of EDOy. We construct random rndInforGains_v and

hl_v — h_v s.t. after rndinforGains_v — hl_v — h_v, the resulting vector, that in its
corresponding indexes is supposed to store the relative IG of the words in WGThanV, with
have its top m highest values for the indexes that that correspond to the words of the selected

features’ set SF. For the corresponding simulator of each of the EDOs we have

56

S,figCF: -52 (A xs%cglf -52 Og%cFIf -52(), f)) _

{E NCpi,, (rndl n f%alns_v), Encyy, (hl_??h_v)}, thus
S5 (A, 3585, 08855 (A, = VS,).

For the view of TEAS we have VEEES=S2(4, %) =
{(hamWInDoc_cy)i=1, (spamWInDoc_cy) =1, (hamM _ci)i=1,

(spamM _c, -, allTheRndLogs_c}, x3555752 = @ is the input and 035557 52(1, %) = @
is the output. For the simulator we construct the corresponding ciphertexts randomly, which

can’t be differentiated from their counterparts due to the semantic security of the RLWE

secFS—S2 secFS—S2 secFS—S1 ~d —
schemes, thus Si%as (A,xTEAS , 0755 (A,x))—

{(hamWInDoc_ck)n= , (spamWInDoc_ck)nzl, (hamM_ck):zl,
(spamM_ck) ,allTheRndLogs_c} =, VSeES=52(), %).

E2DS’ view is VS5E5752(4, %) = {allRndNomDenom_c,rndInforGains_c} and its input
and output is the empty set. For the simulator we construct random ciphertexts, thus
S8 =2 (2, xas =52, 03542 (A ®)) =

SecFS—S2

{allRndNomDenom_c,rndInforGains_c} = VE5E552(4, x)

Corollary 4.2: secF'S-S2 is secure under the semi-honest model when out of n n — 3 EDOs

fail or n — 2 EDOs collude. [

Theorem 4.4: secF'S-MLMO-S2 (Algorithm 4.4) is secure under the semi-honest model

Proof: We follow similar reasoning as with Theorem 4.4]

57

Chapter 5

SECURE AND PRIVATE MACHINE
LEARNING TRAINING

Definition 5.1: ML model training is the process of acquiring parameters of the trained
model TM from a labeled dataset DS consisted of a selected feature set SF" according to an
algorithm T, thus TM = T (DS, SF).

In this chapter, we introduce the security, privacy and efficiency goals (requirements) for
our secure training protocols. We proceed with constituents (participants) of our secure
training schemes, their adversary models as well as we provide a brief flow of the protocols,
which will be elaborated in more details in the later subchapters of this chapter. We conclude
the chapter by experimentally evaluating and comparing our schemes with the related
research as well as we proof their security under the semi-honest model. All the necessary
background information and notations for this chapter was given in Chapter 2. We should
note that our secure training protocol(s) can be seen as a natural follow up of the
corresponding secure feature selection protocol(s). Namely, after securely and privately
selecting the most suitable features, we proceed to train a ML model based on the selected

features.

58

5.1. Introduction

The security and privacy requirements for our secure training protocol are the following:
e Privacy of the input features. The inputs here are the m selected features, i.e. the output
of the secF'S protocol
e Privacy of the input features’ values
e Security and privacy of intermediate results
e Privacy of the output, i.e. the trained model. This is one of the rare protocols to keep
private the final trained ML model at any stage.

e Have other properties related to secure training mentioned in Table 3.2

5.2. System architecture, adversary models and protocol-flows-

at-a-glance

Similarly to the secure feature selection case (Chapter 4.2), our participants for the secure
feature selection protocols are: 1) EDO (The Edge Dataset Owner) - We have n such EDOs
in our system, denoted as EDOy, each owns a dataset DS, where 1 < k < n, that they are
willing to use for training ML models in a secure and private fashion. 2) TEAS (The Edge
Aggregating Server): a server used to do the bulk of the proposed protocols’ homomorphic
computation. 3) E2DS (The Edge Encryption Decryption Server): It’s the only participant in
the system that has a pair of public keys with SWHE properties (Chapter 2.4). All the data
that are homomorphically evaluated in our protocols are encrypted using E2DS’ public key,
thus it’s the only one that can decrypt them. All of them are illustrated in Fig.5.1.
Adversary models: All the participants are assumed to be in the passive semi-honest (honest
but curious) model, which means that they follow the protocol but on the background they
try to infer some private data which they are not supposed to. A formal definition of the semi-
honest model is given in Chapter 2.4.1. We assume that TEAS and E2DS don’t collude. Out
of n EDOs, our environment setting allows for up to n — 3 EDO failures and up to n — 2
collusions without jeopardizing the privacy of the remaining and non-colluding EDOs . The

motivations for participant to behave in the described manners are given in [8-18].

59

Edge Client — EC [Edge Encryption Decryption Server — E2DS) Edge Client - EC

Dataset 1 — DS,

The Edge Dataset Owner 1 — EDO,

Local processing at the participant (constituent)

Transmission from/to a participant The Edge Datasct Owner & — EDO,

Fig. 5.1. Protocol flows for secure training protocol (secT)

Protocol flows at-a-glance: In secure training we continue the blockchain (Fig.4.2) started
in Chapter 4. All the participants have a pair of public/secret keys used for signing their
corresponding blocks of the blockchain and for secure communication. Additionally, E2DS
has a pair of public/secret key with SWHE properties (Chapter 2.4.1). All of these key pairs
form the KeySet set. While we designed our protocols having in mind primarily binary textual
datasets, they are also applicable to non-textual ones and can be easily generalized to multi-
class scenarios. This choice was done for simplicity and benchmark (comparison) purposes

with the related research.

secT (secure training): Illustrated in Fig.5.1. Using the selected words of SF as index
entries, n EDOs simultaneously construct the ciphertext of the training vector which
containing the local frequencies of each word, TV _c, @ and send them to TEAS (8). TEAS
sums them up to get the global frequencies, randomizes this result to get rndTV_c =
(XR_,TV_c,) X R_p @ and sends it to E2DS (9). After decrypting it, E2D2 finds the
randomized class and conditional word-class logarithms of probabilities, integerizes and
encrypts them to get the randomized trained model rndTM_c @) and sends it back to TEAS
(10), which homomorphically removes the randomization to get the final trained
model TM_c which represents the Naive Bayes (NB) or the multinomial NB (MNB)
classifier @.

60

5.3. Secure training for non-textual datasets

Considering the notations in Chapter 2.1.1 for the non-textual datasets, the architecture,
protocol flows and participants in Chapter 5.2, in this chapter we give a detailed pseudocode
of the privacy preserving training protocol of Naive Bayes (NB) models for non-textual
datasets (Algorithm 5.1) which was briefly elaborated in Chapter 5.2. It is also accompanied

with corresponding illustrations and comments in the pseudocode.

ALGORITHM 5.1: PPTMDO (Privacy Preserving Training From Multiple Dataset Owners)
INPUT: {DS,}7-1,F,C,n

{DS;}}—1: The local datasets owned by the k-th EDO, for 1 < k < n. Each EDO has one private dataset
F.F = {Fl,FZ, ...,Ff}, where F; = {Vy i, Vo pis oo Vipiri}- Fis st. 1 < 0 < f (explained in Chapter 2.1.1)
C: The set of classes C = {C;,C,, ..., C.} (explained in Chapter 2.1.1)

n: number of dataset owners

OUTPUT: TM_c
TM_c: the encryption of the SIMD encoded final trained model which will be stored at TEAS

PHASE VIII - EDOs:

1 fork =1tondo

2 | TV_v, = getTVReplicated()//the case when we deal with simultaneous classification of p queries

3| TV_c, = EncEncr(TV_vy)

4 | send TV _c, to TACS //all of the [TV (k)] training vectors should look as depicted in Fig.5.2-5.3
PHASE IX - TEAS:

GTV_c = Y-, TV_c, //sum them up to get the Global Trained Vector-GTV _c, Fig.5.4

Rv = {Ryc,) Rnw, pascy)r 1 Rop = Encode(R_v)

™dGTV ¢ = GTV_c X Rp //Fig.5.5

send rdGTV _c to E2DS

9 randLogsOFInvProbs_v = calcRndLogsOfProbs(R_v) /lequation (5.1)
10 randLogsOFInvProbs_p = Encode(randomLogsOFInvProbs_v)//eq. (5.1), upper vector in Fig.5.6
PHASE X — E2DS:

11 ™mdGTV _v = Decrypt_Decode(rand_GTV _c)

12 rmndTM_v = calculateKLogOfProbs(rndGTV _v) /lequation (5.2)

13 ™mdTM_c = EncEncr(rndTM _v) //eq. (5.2), middle vector in Fig.5.6

14 send rndTMC _c to TACS

PHASE XI - TEAS:

15 TM_c = rndTM_c + rndLogsOFInvProbs_p //equation (5.3), all illustrated in Fig.5.6

03 N

Phase VIII (lines 1-4) is done in parallel at all of the n EDOs. Each of the DOs locally
constructs the training vector (TV_v,) (Fig.5.2-5.3) so that EDO k (s.t. 1 <k <n) for a
certain class C; (s.t. 1 < j < ¢), at the beginning puts the local frequency (counts) N (k)(Cj)
for that class, proceeded with local joint class-value counts N *) (Vm,pi ; C]) for all the f
features (1 < i < f) and all feature-values m (1 < m < |F;|), as it is shown in Fig.5.2. With
this approach only (Q}|F;| + 1) slots per class are needed. However, for efficiency purposes

when using the secSum algorithm (Chapter 6.2), we make sure that each class has a portion

61

(number) of slots which is a power of 2, concretely ng = 2/19QEIFil+DI glots, where the
remainder of 2/09CIFil+DI — (Y| F| + 1) slots are filled up with dummy values (preferably
zeros), as shown at the portion of the dummy value slots at Fig.5.2. The same is repeated for
all of the c classes, thus each TV_v; has n; = ¢ - ng + 1 slots, where the last slot is reserved
for the number of transactions at EDO k — NT (k) (Fig.5.3). If we want a simultaneous
classifications of p queries, we replicate the TV_v, for p times (line 2). Then the EDOs
encode and encrypt their final (replicated) training vectors TV _c, and send them to TEAS

(line 4).

k
Class c® j

Feature 1(F;)IF i Feature i (F;) Feature f(F;)—
0 1 1
N"(C,-)N"(VL“;Cj)l |Nk(V|F1|‘F1; [4)] IS Nk(Vl,ri;Cj)l |Nk(V\Fi|.Fi; cp) - Nk (lef;C,-)l |N"(V\rf\..r,;cj) dummyl,cj
|
|: ZIFi| + 1glots
ng = 2llog(XIF;|+1)] slots

Fig. 5.2. Depiction of the portion of the encrypted counts of the training vector of Edge
Dataset Owner k holding counts related to class C;

TRAINING VECTOR k - [TV (k)]
<—ClassC(-k)-laeclassfi-k)za 6ClassC(-")Ca

NT(k)

n; — ¢ - Ng slots —J

Fig. 5.3. The overall training vector TV _v,, (for all classes) at the Edge Dataset Owner k

In Phase IX TEAS receives all of the trained vectors from EDOs, aggregates (sums them up)
to get the global training vector ciphertext GTV _c, which contains the global counts in a
single ciphertext (line 5, Fig.5.4). Afterwards TEAS constructs a random looking plaintext
(R_p) (line 6), multiplies GTV_c with it to get the randomized rndGTV _c (line 7, Fig.5.5),
then sends this rndGTV _c to E2DS (lines 8). Meanwhile in lines 9-10 TEAS calculates and
construct the plaintext of the inverse logs of probabilities of the random vector R_p
(randLogsOFInvProbs_p), shown at the upper vector at Fig.5.6 and (5.1). For efficiency
purposes lines 9-10 at TEAS are done in parallel (overlap) with Phase X.

62

Class C1—>|

|<— Class C;
TRAINING VECTOR 1 -

[TV (1] |

ND(cy |N(U(V1‘HJC'1)| |N(1)(V‘m‘”;c.l)| | NY(c) |N(1)(V1.F1;Cj)| |N(U(V\Ff|fficj)| | NT(1)
+ TRAINING VECTOR 2 - [TV (2)] \
N (cp) WP ppey)] [N® Wiy i) | ¥2(q)) [N Wiy [N 2 WirprrC)| | vr@ |
DI TRAINING VECTOR 1 - [TV (n)] \
N (cy) [NW i) [VoWenepco] | NO(c) (NG [N Wiep i) [Nr(m) |
GLOBAL TRAINING VECTOR - [GTV] |
N(Cy) |N(V1,F1:Cl)| | N(V\m,rf:fﬂl | N(C)) | NV ri,Cp) | | N(Virg FriCp) | | NT |

Fig.5.4. Aggregating (homomorphically summing up) the local training vectors — TV _c;, to

get the global training vector GTV _c

(5.1)

‘ GLOBAL TRAINING VECTOR - [6TV]

N(Cy) I NVypiCy) l b l N(V\F[\.Fﬁcl) I s I N(C[) l N(vl‘}'l;cj) I I N(Wrﬂ ,F’:Cf) I l NT
Ryicp | Ruvippcy) | Ry 1) [] Bvep | Bwwirsep [Ratvirprpicp [T R’ |
‘ RANDOM VECTOR - R_p |
N(Cl)-RMEl,|N(P},‘1:C.)-RN(V“_1‘CI,| I NWierLerCORy(v g gicy) | |N(C;)'Rmc,]|N(V1.n?ci)‘ﬂ~(v.“‘L‘Jul |N(MFII‘FITC;‘)'RN(VW ,,,c,;l l NT le
. RANDOMIZED GTV - [rand_GTV]
k Class C, 3k Class C; o o
Fig.5.5. Randomizing GTV _c to get rndGTV _c
randLogsO fInvProbs_p S|
; : R R R
K log X1 KL Rucy) ‘ [Kl N(Cy) I I I N(C; |K1 N(C;)
I g"mcn] ‘ 0B Buvypyicy - RN gy €1y Klog”'\’lfn e BNwypiicy " Ruvieqeric)

® 9 ® 9

®

N(Cy)Ryic,) N(VoeiCo) By pycy) N(ViegiepC1) Ruwisgapicn)] N(C;)-Ruc)] N(Vy rC;) Ry c/]]

Klog

N(V\:rfrc) Rmfvm,,r | B

Klo, h 1 1o .
5 NT Rz N(Cy) " Ryeyy |Kl(lg N(Cy) - Ryeepy [K ® NT-Ryr Klog N(CJ;)'RM(:N tcloa = N(C) Rye;)
[randTrainedModel]
N(Cy) N(VypiiCy) N(Vigsiep: €y) N(C;) N(Vyp4i C;) NViegieri)
= Kl v LiELY Sklop— it a 1 ~ K1 = 9 ol 2l ol
8 NT Klog =y ey log N ey Klog—yr BTN Klog N(c;)
= KlogP(C,) = KlogP(Vy54|Cy) K1ogP (Vg ¢r1Cy) = KlogP(C;) = KlogP(V, 1C)) = K1ogP(V if1.671C)
[trainedModel]

Class €, |k

Class C;

Fig.5.6. Adding randLogsO fInvProbs_p with rndTM _c to get the trained model TM _c.

63

In Phase X E2DS decrypts and decodes the randomized global training vector to calculate
the randomized probabilities of the trained model according to (5.2), where 1 <i < f;
1<j<cand1 <m < |F| (lines 11). As it’s shown in Fig.5.6, after properly encoding and
encrypting those probabilities into their corresponding places (slots) to get the rndTM_c,
EDS sends back to TEAS the rndTM_c (lines 12-14).

Klog NTRNT

N(¢j)Rcc D ‘

(5.2)

Klog

N(VoFis Cj)'RN(Vm,Fi ; cj)‘

N(C)}Ru(e)

Finally, in Phase IV TEAS gets and de-randomizes the rmdTM_c by adding it with
randLogsOFInvProbs_p to get the final trained model denoted as TM_c as its shown in
(5.3) and Fig.5.6 (line 15). TEAS always holds the TM_c in encrypted form at his side to be

later used for classification purposes.

N(¢s)Rue »
NT-RyT

R
KlogR NT
N

+

N(¢))

NT

Klog

J

~Klog =KlogP(Cj)
N(VinFis Cj)‘RN(Vm,Fi i€
N(CHRy(cj)

+|K log

} (5.3)

N(V,ri: €))

~Klog——Ncp

=KlogP(VinFilCj)

Terms in (5.3) are the same as the terms in (2.5) for 1<i<f;1<j<cand
1 < m < |F;|. Actually they represent the Naive Bayes trained model consisted of the global
class probabilities and conditional value-class probabilities shown in Chapter 2.1.1 and at the

trained model ciphertext TM_c of Fig.5.6.

64

5.4. Secure training for binary and multi-label multi-output

textual datasets

In Algorithm 5.2. we give the pseudocode for the ML training of the binary textual datasets
(secT), which is expected to follow up the algorithms for secure feature selection of binary
textual datasets (Algorithms 4.2 and 4.3). Thus, we train our textual ML models over the
selected m features from Algorithms 4.2 and 4.3. The necessary background related to
Algorithm 5.2 is given in Chapter 2.1.2. The blockchain started in Algorithms 4.2 and 4.3 is
continued in Algorithm 5.2 to provide end-to-end security (from raw data till the final trained

model), for which we proof the security in Chapter 5.6.

ALGORITHM 5.2: secT (secure Training)

INPUT: n, {DS;};-,, KeySet,SF,m

SF = {H(wy), ..., H(wy,)}: the set of hashes of m selected features with the highest IG

OUTPUT: TM_c = {K(P(cy) — P(cy)), K(P(ch|lwq) — P(cs|wy)), ..., K(P(ch|wp) — P(cs|lwn))}

TM_c: the binary case trained model ciphertext

PHASE VIII - EDOs:

1fork =1tondo

2| TV_c, = getEncryptTVAccordingToSF (DS, SF)

3| B_5p0, = (H(B_4po,), H(B_41), H(B_3g), MT(TV_c}), TS); BCHp,,. AddBlock(Encg, (B_5p0,))

4 [send (TV_cy, H(B_5p0,) to TEAS

PHASE IX - TEAS:

5R_p = Encode{Rc,, .., Ry, cps - Regr oos Ruycgr - Rur s TndTV_c = (TR, TV_ i) X Rp

6 invLogP_v =K x{ RNT] [Ren] [RNT . []} invLogP_p = Encode(invLogP_v)
Rcy, Rw;cy, Rcs Rwcs

7B_5; = (H(B_47), MT (U}, H(B_SDOk)), MT (rndTV _c),TS); BCHr. AddBlock (Encgy, (B_57))

8 send (rndTV _c, H(B_57)) to E2DS

PHASE X-E2DS

9 rndTV_v = DecrDec(rndTV _c); rndTM_c = EncryptRndLogsOfProbs(rndTV _v)

10 B_45 = (H(B_3g), H(B_57), MT (rndTM _c), TS); BCHg. AddBlock (Encgy,(B_4g))

11 send (rdTM _c, H(B_4)) to TEAS

12 PHASE XI - TEAS:

13TM_c¢ = rndTM_c + invLogP_p; TM_c = TM_c — Rot(TM_c,—(m + 1))

14 B_6; = (H(B_57), H(B_4g), MT(TM_c), TS); BCHr. AddBlock(Encg,(B_67))

15 return TM _c

secT — secure Training. Given in Algorithm 5.2. In Phase VIII each of the EDOs locally
constructs the training vector , TV_vy, s.t. the first and the (m + 1)-th index have the local
ham N® (¢, and spam N ¥ (c,) counts, respectively, while the indexes from 1 to m contain

the local ham frequencies f®)(w;, c;,) , and indexes from m + 2 till 2m + 2 have the local

65

spam frequencies £ (w;, c) corresponding to the words of the selected features’ set SF,
respectively, where 1 < i <mand 1 < k < n (the upper vectors of Fig.5.7, lines 1-4). For
the needs of Laplace Smoothing (Chapter 2.2.1 and 2.2.2) an arbitrarily chosen EDO adds an
extra 1 to the indexes corresponding to word frequencies and adds the dictionary size (in our
case m) to the first and (m + 1)-th index corresponding to ham and spam counts. After
encoding and encrypting TV _v, to get TV _cy, they are send to TEAS, which in Phase IX
homomorphically sums them up and randomizes this sum to get rndTV _c (line 5, Fig.5.7),
and sends it to E2DS (line 8). In Phase X E2DS finds the randomized logarithmic terms of
the MNB trained model (Section IV-A), encrypts them to get rndTM_c (Fig.5.8, line 9) and
sends it to TEAS (line 11).

Finally, in Phase XI TEAS removes the randomizations and subtracts the rotated result
(Fig.5.8, line 13) to get the final MNB trained model according to (2.7).
Note: if instead of the frequencies f (k) (w;, cp) and f & (w;, cs) we put N (k) (w;, cp) and
N®(w;, cs) at TV_vgs in Phase I, the final trained model will be the one based on NB
(Chapter 2.1.1).

Improvement 5.1: after obtaining it, the trained model TM_c is rarely changed in practice.
We can utilize this fact to send it only once to the EC and amortize the communication cost

among all the secure classification instances which will initiated by the EC.

TV c, g H(w,) m+1 H(w;)
N] O wien) TNV FPwie) [aTO)]
TV ey ==
N | ™ (wien) IN® (] fMwic) [NTGY |
TV ¢

N(cp) | flw cp) || N(cg) || flw;c,) || NT |
R_p

R, | Ruwen [R [Rwe [Rur |
rndTV _c

(Ch)XRc,Jf(WE,Ch)XRwi,C,JEIN(Cs)XRcJEIf(wi,cs)XRwi,CJs |NTXRN7I

Fig.5.7. Getting and randomizing the global frequencies in SIMD fashion.

66

rmdTM_c H(w,;) H(w,;)
I'N(Chjx Rth] . K[f(w,-.ch)XRw,.‘rh :K[N(cijRrs] :K[f(w,-,rs)wai,cs y

NT*Ryt ||, N(cp)x Rep . NTxRyr ||+ N(cg)XR,
+ invLogP p

R R . R . R
NT} K[Cy . K[ar| | K{ Cy I
R¢, R Re, i Wiy

K]

w;,Cp

TM ¢

<§'| = KP(c,) [[] =~ KP(w;|c,)]~ KP(c)] ~ KP(w;]c) [
[&P [= KP(w]cy) Fl——(Rot(-(m+1)))

TM ¢
KP(c;))| KP(wilew) |:
— KP(c)|| — KP(w;|c,)|.

—»

Fig.5.8. De-randomizing and rotating rndT M _c to get the final trained model TM_c

ALGORITHM 5.3: secT-MLMO (secure Training for Multi-Label Multi-Output datasets)
INPUT: n, {DS;}}_,, KeySet, SFMMO
SFMLMO: the set of |L| set hashes, each of m! selected features with the highest IG

N
{KlogP(Ccl), {KlogP(WilCcl)}:zl} 1}
=1

TMMMO _¢: the MLMO trained model ciphertext

PHASE VIII - EDOs:

lfork =1tondo

2| TVMMO ¢ = getEncryptTVAccordingToSF — MLMO(DS,,, SFMMO)
3| B5po, = (H(B_4po,), H(B_41), H(B_3y), MT (TVM10 ¢, TS);
B§Hpg, . AddBlock(Encgy, (B_5p0,))

4 send (TV_¢x, H(B_5po,) to TEAS

PHASE IX - TEAS:

OUTPUT: TMMIMO ¢ =

L]

1
ml €]
5R.p = Encode {RCcl, {Ry i) } ,Ryr ¢ rndTV_c = (SF_, TVMHMO ¢,y x R p
e)i=1) _
c=1 =1
RNT Ret "
6 invLogP_v = K X = R—C ; invLogP_p = Encode(invLogP_v)
cct Wilccl

i=1 =1 l=1}

7B_5¢ = (H(B_47), MT(Ug-, H(B_5p0,)), MT (rndTV _c), TS); BCHy. AddBlock (Encgy,,(B_57))
8 send (rndTV _c, H(B_57)) to E2DS

PHASE X-E2DS

9 rndTV_v = DecrDec(rndTV _c); rndTMM!MO_¢ = EncryptRndLogsOfProbs(rndTV _v)

10 B_4; = (H(B_3g), H(B_57), MT (rndTM _c), TS); BCHg. AddBlock (Encg,,(B_45))

11 send (rndTM _c, H(B_4p)) to TEAS

12 PHASE XI - TEAS:

13 TMMIMO ¢ = yndTMMIMO ¢ + invLogP_p;

14 B_6; = (H(B_57), H(B_4g), MT(TM_c), TS); BCHr. AddBlock(Encg,.(B_67))

15 return TMMMO ¢

Algorithm 5.3, which deals with multi-label multi-output textual datasets goes along similar

lines with Algorithm 5. Of course, it is designed for such a scenario and in itself incorporates

67

the multi-class scenario missing from Algorithm 5.2 for textual datasets. Algorithm 5.3 can
be seen as a continuation of Algorithm 4.4 which securely selects the best features according

to the information gain (Chapter 2.2, eq. (2.8)) for each label.

Improvement 5.2. For computational and communicational efficiency purposes for
Algorithms 5.1-5.3, whenever possible, we apply the polynomial switching technique
proposed in [55], use multiple cores and threads (thus parallelize to the maximum extend),
do simultaneous execution of part of the protocols in different participants whenever it’s
possible, i.e. adding blocks to blockchain after sending data to other participants or
generating the participant’s corresponding random data before/after the participants
receive/send their data, and for multi-query purposes we replicate the ciphertexts at last
phases of the protocols instead of from the very beginnings. Those techniques alone give an

improvement of several folds with respect to the original protocols.

Improvement 5.3. If the number of slots needed for the training model is n; (Fig.5.3), then

in a single ciphertext we can pack (replicate) the trained model for p = ni time for increased
L

throughput during the secure classification stage, where N is the polynomial modulus of the

ciphertext.

Improvement 5.4. During the secure classification stage (Chapter 6) we need to
homomorphically find the sum of ng slots, where ng is the number of slots dedicated to a
single class (Fig. 5.2). An old version of the secure sum requires ng to be a power of two,
and if it is not the case dummy zero are appended up until that goal is reach, in the processing
hurting the throughput of the algorithms due to those dummy zeros. In Chapter 6.2 we
propose a novel secure sum algorithms (Algortihm 6.1) for which ng is not necessarily a

power of two.

68

5.5. Theoretical and experimental evaluations and comparisons

Table 5.1. gives the theoretical comparisons for the computation and communication costs
among different schemes during the PP training. In the process we tend to use the described
schemes in the most efficient and optimized way they can be utilized. However, we do this
without losing the generality by making any assumption on the number of features f, the
number of classes ¢ or the cardinalities of F; for 1 < i < f.

For the experimental evaluations, we run our codes in a machine with Intel Core 13-4000M
processor with two physical cores, each of 2.4GHz (we utilize one core only in our
implementations) with 4GB of DDR3 RAM and 64-bit Windows 10 Pro as an OS. For SWHE
purposes we use C++ based Microsoft’s SEAL 3.2 library [40] which implements a version
of [59].

For evaluating and comparing our algorithms with the state of the art over the same
benchmark datasets, we chose the textual SMS spam dataset [84-85]. After closely examining
the dataset we realized that people tend to avoid vowels in their SMSes in order to make them
shorter. Also, while writing the words, they make more mistakes when they write the vowels
than they do with consonants. In this sense, instead of going with the usual preprocessing

procedure (punctuation removal, stop-word removal, stemming, etc.), we came up with the

69

m M, SI9MIBS uondAioep T + uondAioua T + suonedndiynw
m m uolssiwsues} 3xauaydn 7 :[95] Ad ue|d g + suonippe slydiowowoy u :[95] A4
w %
» |58 soa
m =~ uolssiwsuesy 1xauaydpd u :[95] A4 (0@ yoea 1e auo) suondAioua sixaaydd u :[95] A4
0]
<
2 AjaAizoadsau ‘uoriedljdinw pue uofielol ‘uolippe ADg
= = | sionisg 9|8uls e 1O} SOWI} DY) 34 JUL] PUE ‘2.077 ‘pPD] 249YM
o | = suotssiwsuen ool ((I141x + 1) - Do+ | w2 (idlxow. o + puaulid|xow + qou)o
L e speuaydd (N/(0 + J)) - g :[sS] Ao + (3477 + ppo) (ul1g|xvw +2gou) 0 :[SS] A9
(]
.n...m 3 warTCoy
a0 - soa3l Jad s34 Jo “4u 3y si g ‘|leiwouAjod ay3 Jo sa.39p ayy
m sauaydp (N/(@+) - q- IN:[SSIADE | sI N ‘suondious anis (N/ (2 +) - q- LN :[sS] ADE
T+ ™ —F
m s1oma uoissiwsuesy Ja8aqul ((14|x + 1) -2)U + + suonedidiynw
« —_ s uolssiwsuel} siydiowowoy (9 +) - IN - Z + suondAius
1% M sxawaydpd o 4 S :[gg] sSuiddew Jeaulig -a4-Axoud (0 +) IN :[€€] sSBuiddew Jeaulig
S | =
g m s SOQ U |[e Suowe uoljdesUeI} JO JBGWINU [B10}
/M = 0a3 9yl s! [N dJaym ‘suolssiwusuesy syxanaydid ([g€] ur pasodoud swayds uondAious euidlio)
m (T + 4) - LN :[€€] sBuiddew aeauijig suondAiua (2 +) - LN :[99] :s8uiddew Jesuing
L
m (s1an435) *[g] ul paquasap se [020304d suonesonul (f + 2) -z :[€9] 8o] a4ndas
uh..L W SIBXIN 80| a4ndas ul syuswadedua (f +2) - ¢ (s49AJ3s) s1axiw Yyloq
m M) 40 1502 UOIIEIIUNWIWOD [B301 Y :[S] SO 94ndas e suoneandiynw (f + 1) - 27 Jo [e101 Y :[61/] 43|j1ed
S| g
Wo = s0a3 yoea 11q $Z0T ‘syxouaydi
I (f + 1) -9z 40 |E301 V¥ :[6¥] 43]11Ed suondAiua (f + 1) - 97 Jo [e101 v :[6¥] J3]I1ed
. p—
.m sjuauodxa Jagalul ||jews
b= = i) sia8aul (J14]x +1) -2 AjaA13e|a4 Joy S|els} uondAIdap [eweD-|a + JaAI3S 3y}
m.... L S Y21ym ‘|9pow pauled [euly Y3 4O 1sedpeoug 1e uoneaydninw (([74]x + 1) - 2 - Wy :[8rlIewen-3
©
m - s ‘sstwsuesy syxamuaydn (([24]x +1)-2- WU
m“ w.na 0a3 Jo |e301 e uoy syxamaydp ((|14]x + 1) - 2)U SJ9UMO }3sejep ay} je suopdAioua
w SHWsUE.) JSUMO Jaselep Yoe :[oT]iewen-|3 ((2A1x + 1) -2- Wy 4o |e301 :[8y]|eweD-(3
+—
mbu = (so0a@ jo Joqwinu ays si u ‘J91awesed Aundas ((lerwouAjod) saies
Mw e sju 3y1 sI 7 ‘10 Joj pasn pjaly ayy jo azis ayi st d) | JojAe] parewixoidde ay} Jo 92483p ay1 SI N pUE SISUMO
< |g 2| edpnaed suq ((u+) (@bopo(lidlz +1)-2 19se3ep ||e Suowe spI0daJ 40 Jaquinu (8303 3y si I N)
— kel m nw S Y2Iym ‘(10) s4a4suea suollenuauodxa
©
S e snomyqo ((d)bopo - (I141x +1) -2 nz + [nboy] - 9n)(1dlx +1) -2
=
o
122 I .
‘T |g 8| *emes
m = 2 siseopeouq (([24]x + 1) -2)U
m %% s80| (1412 +1)-2-u
o = E| James (49803u1 4ad saueys Jo JaqWINU Y1 SI S) +suoising (J1glx +1)-2-u
= |t m pue (hdlg +1) -s-2-ujer01 Y| +uonewwns T+ (|14 + 1) -s-2-u
m ¥ 2| s0aid ‘s1a8a3ul (J24|x + 1) - S- 204 Yyoe3 10p JOAJIS pUB JBUMO 13SEIep Yoe]
2
0 —_
m T g| emes
S siseapeouq (|2415 +1) -2
— | m s80| (|141z + 1) -2 - u pue
ﬁ £ 5| 4ames suoissiwsueny (|13 + 1) -2 - u [ea0d uj +suoising (J24]x +1)-9-u
= m g pue ‘uolssiwsuesy Jagaul +suopewwns T+ (1|l +1)-2-u
Pa ¥ 2| soda3 (1412 + 1) - 2 s90p Jaumo 3aserep yoe3 10p |B10} Ul JOAJIDS UIEW SY} PUB JSUMO }3selep yoe3
m 2de|d uonesunwwo) uoneindwo)

70

idea of using bigrams consisted exclusively of consonants. In this manner we extracted 441
features (21x21 consonant pairs for a total of 441 consonant bigrams) instead of the few
thousands features (5000 to 20000 thousands of bag of words) that are usually used for SMS
spam classification purposes [85]. Depending on whether a bigram is found or not in an SMS,
its’ value is O or 1. E.g., the sms: “hay men, whats ap; ham” has 1 for the columns (features)
of those bigrams: “hy”, “mn”, “wh”, “ht” and “ts”, while for all the others it has 0s.

For comparison and benchmark purposes with the other non-textual schemes that deal with
secure NB training and/or classification, we will also use the Breast Cancer Wisconsin [86]
and the Acute Inflammation Disease [87] datasets.

Considering the standardizations of [80], for the polynomial degrees of N =
4096,8192,16384 we use a plain modulus of t = 27,37,62 bits, respectively, and a
coefficient modulus of ¢ = 109, 218, 438 bits, respectively.

For the SMS-spam dataset C = {spam, ham}, so the number of classes is ¢ = 2. For the
number of features we have f = 441, and for every feature F; = {0,1} so |F;| = 2 for all i,
st .1 < i < f. We horizontally partition the SMS dataset to simulate for n =
10,20,30,40,50 DOs. In order to construct the training vector which contains the
frequencies (Fig.5.2 and Fig.5.3), for the SMS-spam dataset we need Y. /21|F;| + 1 = 883
slots per class (Fig.5.2). However, due to the usage of an old version the secSum algorithm
which works when the number of slots in a ciphertext for which we find the sum is a power
of two, and if it’s not the case dummy slots with values of zeros are padded to achieve this

effect (improved in Chapter 6.2, algorithm 6.1 so the number of slots shouldn’t necessarily

be a power of two), per class we need ng = 2/1°8CELIFi+D] = 1024 slots, and will fill up

the remaining slots with dummy values, preferably zeros (Fig.5.2). For both classes in total
we need n;, = ¢ - ng = 2048 slots (Fig.5.3). This means that we need at least a polynomial
of degree N = 2048 to construct the training vector at DOs. However, due to noise budget
being consumed because of homomorphic encryptions and the chosen value t for the plain
modulus dictated from the needs of the protocol (we multiply by a constant K and sum up
883 integers whose sum shouldn’t surpass t), the lowest degree we can use in our scenario is
N = 4096 (even when we deal with one query during the classification stage). For the same
reasons, when N = 4096, the random values of R_p and h_p (needed for the secure

comparison algorithm) were small, however, for higher polynomial degrees R_p and h_p can

71

be integers of 64 or more bits, which is more than enough for real case deployments. In order

to increase the throughput, for the classification stage we considered packing (batching) of

p= LA 2,4, 8 encrypted queries into one ciphertext using the CPack algorithm (Chapter

ny,
6.2), and for this purpose for the final ciphertext result we used polynomials of degree N =
4096, 8192 and 16384, respectively.

Applying the same logic, for the Breast Cancer dataset we have f = 9 since it has 9 features
(attributes), and each of the features has 10 values, thus F; = {1,2...10} so |F;| = 10 for all
i,st.1 < i < f.Ithastwo classes, C = {malign, benign}, so ¢ = 2. This means that for
the per class portion of the training vector (Fig.5.2), hence per class query vector as well
(Fig.5.3), we need ng = 2[108EEalFil+D] = 128 slots per class, or in total its n, = ¢ - ng =
256 slots for the whole training vector [TV (k)] (Fig.5.3). We also split the Breast Cancer
dataset to simulate for n = 10, 20,30,40,50 DOs. Due to relatively low number of slots

used for the trained model or the encrypted query, for batching purposes we can pack p =

nﬁ = 16,32,64 queries into one ciphertext, which for the reasons explained above, will
L

have polynomials of degree N = 4096 forp = 16,then N = 8192 forp = 32,and N =
16384 for p = 64.

On the other hand, for the acute inflammation dataset (AID) we have f = 6 attributes
where 5 of the 6 attributes are binary (have two values {yes, no}), while the temperature
attribute is an integer varying between 35.5 and 41.5°C. If we assign 53 slots for the
temperature by discretizing the integer value it takes, then knowing that we need 10 slots for
the other 5 attributes, for the number of slots per class we have n; = 2log L IFil+ D] = 64
slots. Since AID is a multivariate dataset (it has two class labels), one label is for the
Inflammation of urinary bladder (IUB), thus C; = {yes, no} so ¢; = 2, and the other one is
for the Nephritis of renal pelvis origin (NRPO), thus C, = {yes,no} so ¢, = 2 again. In this
manner for both the labels, which have two classes, we have ¢; - n, = 128 slots and ¢, -
n. = 128 slots, for a total of n; = (c; + ¢,) - ng = 256 slots per query of two labels.
However, here with a single query we do two classifications (labeling). For the training stage

again we simulate for n = 10,20,30,40,50 DOs. For the classification stage we use packing

72

of p= L 16,32,64 queries into one ciphertext for polynomial degrees of N =

nL
4096,8192, 16384, respectively.

For benchmark and comparison purposes with the state-of-the-art schemes dealing with
secure training over textual datasets, we used the email textual dataset Enron [37]. Its
implementations can be found in [81]. for a total of around 9 000 lines of original C++ code.
Enron e-mail dataset is a collection of e-mails from 150 user profiles, with a total of 16 555
ham and 17 148 spam e-mails. For the dataset pre-processing in line 2 of the secFS — S1
(Algorithm 4.2) we applied stop-words removal, partial punctuation removal, stemming by
using the library in [45] and converting all of the letters to lowercase. For our protocols, the
input parameter values for the Enron dataset are val = 5 and K1 = 100 000.

For the SWHE parameters (Chapter 2.4.1) for N = 8192,16384 we use the corresponding
values of t = 37,60 bits and q = 218,438 bits, respectively and security of A = 128 bits.

For our implementation purposes of homomorphic operations, we chose Microsoft’s SEAL
3.4 library [29] based on the modified FV scheme. Since it works only with integers, for all
the datasets we had to convert the logarithms of all of the probabilities into integers by
multiplying them with a constant K. When K = 255 we didn’t have any accuracy loss due
to the integerization and rounding process for the server-centric classification. For the user-
centric classification that value rose to K = 430 due to incorporating the STC guard into our
protocol against the STC attack given in [10]. Those values for the constant K are consistent
with those found in literature for the Naive Bayes model which reported that multiplying the
logarithms of the probabilities with an 8-10 bits constant is enough to avoid any loss of
classification accuracy [69].

Fig.5.9 gives the computation cost for PPTMDO (Algorithm 5.1). Since the computation
in Phase I is done simultaneously at all EDO, for EDOs we take the average cost with respect
to the number of EDOs involved. As it was expected, the average cost at EDOs and at EDS
remains pretty much the same (constant) among different number of EDOs, while the cost at
TACS linearly increases with the number of EDOs since TEAS has to aggregate (sum up) all
of the ciphertexts send from the EDOs. For the communication cost, we have n ciphertext of
the same size transmitted from each DO to TEAS, one from TECS to E2DS and one from
E2DS back to TEAS, for a total of (n+ 2)-ciphertexts,, transmitions. The

73

ciphertextg;,. size is calculated as ciphertexts;,, = 2 - N - q bits [56], where N is the
polynomial modulus and q is the coefficient modulus.

Regardless of the dataset type or size, the number and type of the expensive homomorphic
operations is the same in PPTMDO. So, as expected, when experimenting with datasets in
[84-85], [86] and [87], we got the same communication costs and roughly the same

computation cost as they are shown in Fig.5.9.

120

100

A O X
(= - =

393
(=)

Computation cost (milliseconds)

S

DO@ TACSOO EDSO DO @ TACS@®@® EDSO DO @ TACS@®@® EDSO

N = 4096 N=28192 N = 16384

Number of Dataset Owmers (DOs) n ®10 =20 =30 =40 =50

Figure 5.9. Computation cost of the participants in PPTMDO (Algorithm 5.1) for different
polynomial sizes and number of EDOs for datasets in [84-85], [86] and [87]

Table 5.2 gives the cumulative (total) computation and communication costs for each
participant while running Algorithm 5.2. for the Enron email [37] and SMS dataset [84-85].
It report results for different polynomial sizes N and numbers of EDOs n. The size of a single
ciphertext is 2 - N - g bits. In Algorithm 5.2, each participant transfers one ciphertext each,
for a total (cumulative) communication cost of (n + 2) ciphertext transmissions (n EDOs,

TEAS and E2DS), which are reported in the corresponding columns in Table 5.2 in MB.

74

Table 5.2. Algorithm 5.2 costs for different polynomial sizes N and EDO numbers n

Comput. (ms) Computation
) N N=8192 C"(‘;‘G“l;;‘“' (ms)N=16384 C"(‘;‘;I‘;;‘“'
EDO | TEAS | E2DS EDO | TEAS | E2DS
Enron email dataset [37]
10 [1690 | 149 | 65 5.1 803 | 557 | 53 20.5
20 | 1382] 212 | 62 9.3 582 | 646 | 73 37.6
30 | 1044 | 198 | 70 13.6 530 | 1581 | 52 54.7
40 [941.0| 203 71 17.8 413 | 1966 | 55 71.8
50 |283.3] 235 63 22.4 392 | 1752 | 48 88.9
SMS spam corpus dataset [84-85]
10 | 168 | 78 4 5.1 36.5 | 349 | 11.9 21.9
20 | 167] 95 | 42 9.4 358 | 421 | 1.7 40.2
30 | 164 | 139 | 3.7 13.7 36.1 | 534 | 103 58.5
40 | 163 | 174 | 4.1 18.0 36.5 | 653 | 10.8 76.8
50 | 161 | 198 | 3.9 223 378 | 71.0 | 11.0 95.0

Table 5.3 gives experimental comparisons for the PP training costs among different schemes

and datasets among non-textual datasets, where our schemes are represented by secT,

(Algorithm 5.2)

Table 5.3. Cumulative experimental results among all participants for PP training of non-

textual datasets for n = 5 EDOs. Our scheme is represented by Algorithm 5.1.

Scheme | Yanget.al | Liuet. al. Our Liu et. al. Our
Cost [32] [23] [33]
Dataset Breast Cancer Wisconsin Data Set Acute Inflammations
[86] [87]
Computation. ~1.8s 2951.8 min | 22.15 ms | 8.848 sec. | 22.47 ms
Communication | ~7.76 MB | 267.4 MB 763 KB 968 KB 763 KB

Table 5.4 gives experimental comparisons for the PP training costs among different schemes

applicable to textual datasets and our schemes are represented by secT, (Algorithm 5.2)

75

Table 5.4. Secure training comparisons among different schemes

Scheme | Comp. cost | Comm. cost | ML algorithm | Class. Acc.
Enron email dataset [37]
[14]* 11.1 days 120 GB Deep Learning 86.3%
[14]** 5.04 days 120 GB Deep Learning 86.3%
Ours 10.16 min 316 MB MNB 99.1%
SMS spam corpus dataset [84-85]
[15] 21.57 ms 763 KB NB 93.1%
Ours 18.20 ms 709 KB NB 93.1%
MNIST [88]
[88] | 55.5 days ‘ Not report. ‘ Deep Learning | 96.3%

*utilizing 104 cores of Intel Xeon processors with 2.2 GHz and 482 GB of RAM
**Improved version of the same scheme over the same hardware resources

5.6. Security analysis and proofs

While proving the security of our protocols given in this Chapter, we have in mind the

definitions, concepts and Theorems given in Chapter 2.4.2

Theorem 5.1: PPTMDO (Algorithm 5.1) is a secure multi-party protocol (SMC) under the
semi-honest model

Proof: Here we compute the probabilistic function f(Pk,{DB;}i=,, ¢,sk) =

n .
f({fDOi}i=1’fTACS'fEDS) = ({(P}?:ll TM_C) ¢) using the prOtOCOl PPTMDOa where ¢

means no input or output for the corresponding participant, respectively. For the outputs of

the corresponding protocol we have outputPPT™MDPO =
({outputhiTMDo ?_1, outputfFTHPO, outputgggMDO) = ({¢p3}L1, TM_c, ¢). For the views

of all of the DOs we have: {VggiTMDO}?_l = {(Pk,DBi,rDoi)}:;l. For the views of TACS

and EDS we have VEPITMDO — (PK, vy acs, [TV (K)]R=1, 7ndTM),
VEPIMDO — (Pk, sk, 15ps, TndGTV _c), respectively. Since the DOs don’t receive any
message or don’t have any output, for them we give the trivial simulator {S ggiTMDO}? =

{(Pk, DB;, rb‘{,l)}:lzl, where 150, and 750, are from the same distribution. For the simulator
of TACS we have STACS(Pk' fTACS) = (Pk, TTacs, [TV(k)]‘Ir(lzl, T‘ndTM_C), where YTacs has

76

the same distribution as 1745, While [TVjE,?]Z:l are randomly generated ciphertexts which
are indistinguishable from their [TV _c;]j=; counterparts due to the semantic security of the
RLWE schemes. Since TACS as an output has the TM_c then we have rndTM_c = TM_c —
rndLogsOFInvProbs_p, thus {Sracs(Pk, fracs), f({DBi}y, ¢, 5K)} =¢ {Viaes 2,
outputPP™DP0) For the simulator of EDS we have Sgps(Pk,sk, fzps) =

(Pk, sk, rgps, vnd_GTV _c), where random 15ps and 1gps are from the same distribution,

while rnd_GTV ¢ is a random ciphertext, thus

{Seps(sk, feps), fUDB}1, ¢, sk)} =¢ (VEAEPO, outputPPTMPO)]

Corollary 5.1: If up ton — 1 DOs collude, the PPTMDO is still secure under the semi-honest
model.

Proof: Without loss of generality let’s assume that the colluding DOs are i = 2, ...,n and let
the common view of them be VETMD 0= (Pk, DB, rﬁ), where DB = Ui, DB;. Let the

view of the non-colluding DO be VTP = (Pk, DBy, 7,). Since the DOs don’t get any
output from the function that needs to be calculated, their simulator is the trivial one
(outputting only the private inputs and the random number generator from the same
distribution as the views). Views and simulators for TACS and EDS are the same as in

Theorem 5.1.]

Theorem 5.2: secT (Algorithm 5.2) is secure under the semi-honest model.

Proof: For1 <k <n, V;SCOTR (4, %) = @ is the view, ng)COTk = {PreProcess(DSy), SF} is the
private input and O E%Cgk (4, %) = @ is the output of EDOy. The trivial simulator is S ggcgk =0
For TEAS VS8SL(4, %) = {(TV_ci) ., vndTM_c} is the view, x3¢5%. = @ is the input and

0555k (1,X) = TM_c is the output. For the simulator we construct random RLWE

ciphertexts, thus S35 (4, x555%s, 0559 (4, %)) = {(TV_ck)n= ,rndTM_c} =. VEEE(A,).

For E2DS VESSE(A, %) = {rndTV_c}, S558% = {rndTV_c} =, VESL(A, %) m

Corollary 5.2: secT is secure under the semi-honest model when out of n, n — 3 EDOs fail

orn — 2 EDOs collude [|

77

Theorem 5.3: Our end-to-end protocol (unprocessed datasets till the final trained model), is
secure under the semi-honest model.

Proof. The end-to-end protocol, denoted as E2E, sequentially calls GRPV (Algorithm 4.1),
secFS-S1 (Algorithm 4.2), secFS-S2 (Algorithm 4.3) and secT (Algorithm 4.3), while their
security was proven in Theorems 4.1-4.3 and Theorem 5.2, respectively. We invoke Theorem

2.1 to prove the security of E2E. |
Corollary 5.3: E2E protocol is secure under the semi-honest model when out of n, n — 3

EDOs fail or n — 2 EDOs collude.
Proof: We use Corollaries 4.1, 4.2 and 5.2, then invoke Theorem 2.1. [

78

Chapter 6

SECURE AND PRIVATE MACHINE
LEARNING CLASSIFICATIONS

Definition 6.1: Classification is the process of assigning a label to an unlabeled query g

according to a trained model TM using an algorithm C, thus Cry,(q) = C(TM, q).

In this chapter, we introduce the strict security, privacy and efficiency requirements we set
up for the classification stage. In order to do so we propose several novel building blocks
based on arithmetic circuits used frequently by ML classification algorithms, which we put
in two groups: the ones belonging to general purpose one and the ones belonging to secure
linear algebra. They all work in SIMD fashion (enabled by the SIMD properties of SWHE
schemes proposed in Chapter 2.4.1), thus allow for a single instruction (algorithm, block) to
be executed oved multiple data (objects, instances). In the general purpose building blocks,
we introduce blocks, such as secure sum, secure comparison, secure comparison of all data
slots, secure sorting, secure top-K, secure argmax, secure ciphertext permutation and secure
ciphertext replication. Among others, in group of building blocks belonging to the secure
linear algebra we introduce secure inner (dot) product, secure matrix-vector product, secure
matrix-matrix product, secure matrix transpose, secure cascading matrix-matrix product, etc.
We then utilize those building block to for our secure classification protocols which deal with
non-textual, textual, multi-label multi-output datasets as well as secure classifications that

can be expressed in terms of linear algebra. In the process our algorithms show flexibility in

79

terms of being server centric or client centric, depending on where the bulk of the operations
are done. To the best of our knowledge, for the first time in literature for the NB classifier
and for the multiple user (query) scenario where multiple users (queries) simultaneously
process their queries in secure fashion, we deal with malicious users that arbitrarily deviate
from the protocol (algorithm) with the aim of fully or partially retrieving data which they are
not supposed to or with the aim of totally sabotaging the algorithm for other participants. Our
theoretical comparison and extensive experimental evaluations give an edge to our
algorithms from several times to orders of magnitude with respect to the state of the art in

term of computation and communication costs.

6.1. Introduction

Main requirements for our secure classification algorithms are:
e Privacy of the trained model
e Privacy of the user query for both query features and their corresponding values
(frequencies, counts, etc.)
e Security and privacy of intermediate results
e Privacy of the output, i.e. the final classification result
e No loss of accuracy with respect to the plain classifier

e Have other properties related to secure classification mentioned in Table 3.3

6.2. System architecture, adversary models and protocol-flows-

at-a-glance

Participants: 1) TEAS (The Edge Aggregating Server): a server used to do the bulk of the
proposed protocols’ homomorphic computation. 2) E2DS (The Edge Encryption
Decryption Server): It’s the only participant in the system that has a pair of public keys with
SWHE properties (Chapter 2.4.1). All the data that that are homomorphically evaluated in
our protocols are encrypted using E2DS’ public key, thus it’s the only one that can decrypt
them. 3) EC (Edge Client): has an unclassified query that he wishes to classify in secure and

private manner. Since the trained model TM ¢ doesn’t change frequently, EC keeps the

80

trained model in encrypted form using E2DS public key with SWHE properties. .All of them
are illustrated in Fig.6.1.

Adversary models: All the participants are assumed to be in the passive semi-honest (honest
but curious) model, which means that they follow the protocol but on the background they
try to infer some private data which they are not supposed to. A formal definition of the semi-
honest model is given in Chapter 2.4.2. We assume that TEAS and E2DS don’t collude. Also,
during the secure classification stage we assume a more active EC that performs the STC-
attack proposed in [10]. Furthermore, for the server based classification and for the multi-
user (query) classification we deal with malicious users. The motivations for participant to
behave in the described manners are given in [8-18]. All the participants have a pair of
public/secret keys used for secure communications. Additionally, E2DS has a pair of
public/secret key with SWHE properties (Chapter 2.4.1). All of these key pairs form the
KeySet set (Chapter 5 and 6). While we designed our protocols having in mind primarily
binary textual datasets, they are also applicable to non-textual ones and can be easily
generalized to multi-class scenarios. This choice was done for benchmark purposes with the

related research.

Protocol flows at-a-glance. secC (secure classification): Shown in Fig.6.1. EC multiplies
its query q_p with the trained model TM_c @ and sends the result to TEAS @2 for
homomorphic processing and randomization €).The randomized query result is send to
E2DS while the randomizing data to EC @3). E2DS decrypts the randomized query result)
and sends it back to the EC (4), which in turn de-randomizes the query result to get the final
classification §). Depending on where the bulk of the execution is done, which ML classifier
we are dealing with, the number of ECs in our algorithms as well as other factors and
scenarios, we offer several flavors of secure classification algorithms which slightly change
their order of execution, but the main idea remains the same. They are elaborated in details

in their corresponding sub-chapters of this chapter.

81

(Edge Encryption Decryption Server — E2DS) ‘Edge Client — EC
4
D /@ 4 (o317}

(" The Edge Aggregating Server - TEAS ~ [#———

5
r':“ ® o6 r-:"‘

| m o-o-+0 '_%) Q«—@~‘®
Dataset 1 - DS, ® ‘

The Edge Dataset Owner 1 - EDO,

1
- (8]
@ H

Local processing at the participant (constituent)

e
-

Transmission from/to a participant

Fig. 6.1. Protocol flows for our secure classification algorithms

6.3. General purpose secure building blocks

6.3.1. Secure sums of blocks of d slots

Given in Algorithm 6.1. All of the known schemes in literature the deal with finding the sum
of d numbers encoded and encrypted in SIMD fashion according to a SWHE scheme
(Chapter 2.4.1), assume that d is a power of. If it is not the case, then slots of dummy zeros
are padded up until it is the case two [18], [89-90]. This results in waste of slots and in
throughput due to the padded dummy zeros since they take the place of beneficial (real) data
that can be encoded into those slots. In Algorithm 6.1 we overcome this drawback since we
don’t make the assumption of d being a power of two, hence we don’t lose any slots. In this
way we can pack and simultaneously process (find the sums of) N/d sets of integers with d
elements (integers) in SIMD fashion where d is not necessarily a power of two.

In order to find the sum of d encoded slots, we use the binary representation of d. For this
purpose in line 1 we find the number of bits of d, denoted as nrBits, and s which has one in
its most significant bit and zeros at the other bits, thus it’s a power of two. In logs iterations
(rotations and additions) we find the sum of s slots and if in a certain iteration the
corresponding bit of d is one, than we store the corresponding intermediate result of sums in

a temporary ciphertext, denoted as tmp_c[i] (lines 2-5), To the resulting sum of s slots we

82

add each stored temporary ciphertext after rotating them with the corresponding offset (lines

7-9).

ALOGRITHM 6.1: secSum (Secure Sums of blocks)
INPUT: input_c,d
d: the number of slots per block for which we find the sum, not necessarily a power of 2

OUTPUT: result_c
result_c: has the sum of each of the N/d blocks of d slots at the first slot of the corresponding block

1 result_c = input_c; s = [log?]; nrBits = bitSizeOf (d)
2 fori = 0tos — 1 //inclusive

3| ifbit(i,d) == 1)

4 tmp_c[i] = result_c

5 _r»esult_c = result_c + Rot(result_c, —2%)

6 fori =nrBits —2to 0

7| if (bit(i,d) == 1) //the LMB is the zeroth one

8 esult_c = tmp_c[i] + Rotate(result_c, —2")
9maSk_p = secSumMask(d)

10 result_c¢ = result_c X mask_p

In this manner we have the sum of d slots at the beginning (first slot) of the corresponding
block. Finally, if we want to remove the intermediate results, we multiply the resulting
ciphertext with a plaintext mask which, starting from the first slot, has ones (1s) after each d
slots and all other slots have value of zero (lines 9-10). In Fig.6.2a) we illustrate secSum for

d=6, or in binary d=6=(110)s.

d —»
+12345E aja:JoJojoJoJojojo]o
2[3]a]5]6 |«Rot[1) & PERp T
3[s[7]ofu] | 0JoJaJa:JoJoJoJoJo]o]Rot{d)
] «——2—»

+
7lo k1 ot(-2 aiJaz[aJaz]oJoJoJoJo o} Rot(ad)

————— = —2] —»
1 [of1eps] [oToToToJai[a:[ai]az[0T o]«Rot{2d])

18 ot(-2 . 4d =
T ay|a:|a|az|a;|az|ai]azj0] 0|
21 + — o —™
a) olojJojJo]Jo]o]o]o]ai]a:
" 5d >
(I1|H2Iﬂ1|ﬁ2|ﬂ1|ﬂ2|ﬂ1|ﬂzlﬁ1lﬂz

b)

Fig. 6.2. Illustration of a) secSums for d=6=(110)2 b) CRep for d=2 and r=5=(101),

Improvement 6.1. The Algorithm 6.1 does not waste slots, but it can have a relatively high

cost in terms of numbers of rotations/additions per d slots when the number of ones in the bit

&3

representation of d is relatively high, a property which is not often desired. As a consequence,
we can have a trade-off between the wasted slots and the average number of
rotations/additions per d slots. In general, experimental results show that the approach of
Algorithm 6.1 is the best when d is between 0.5 and 0.75 the value of its closest power of
two that is greater than d. This makes Algorithm 6.1 to be done in logarithmic time with

respect to d.

Improvement 6.2. The multiplication with the mask (lines 9-10) can be skipped and merged

with the subsequent algorithm, which comes after secSum.

6.3.2. Ciphertext Replication

Given in Algorithm 6.2, it replicates for » times an input ciphertext which is assumed to have
d data slots at its begging and the upcoming d - r slots are all zeros. The approach in [18]
assumes that » is a power of two, and if it is not the case then dummy zeros are appended
until it’s the case. Using a similar approach as we did in Algorithm 6.1, in Algorithm 6.2. we
provide the secure replication algorithm for which the replication rate r is not necessarily a
power of two. Initially we find the number of bits in bit representation of 7, then s in similar
fashion as it was done in algorithm 6.1 (line 1). We proceed with replicating the input
ciphertext for s times in logs iterations and in each iteration we keep (save) the temporary

result if the bit of » corresponding to that iteration is one (lines 2-5).

ALOGRITHM 6.2: CRep (Ciphertext Replication)

INPUT: input_c,d,r

input_c: a ciphertext that will be homomorphic. replicated

d: number of data slots in input_c (starting from the first slot (the one with index zero))
7: the replication rate

OUTPUT: result_c

result_c: input_c’s d data slots replicated for r times

1 result_c = input_c; s = |log}|; nrBits = bitSizeOf (r)
2 fori = 0tos — 1 //inclusive
3| if (bit(i,d) == 1)

4 tmp_c[i] = result_c
5| result_c = result_c + Rotate(result_c, 2% x d)
6 dist =25xd

7 fori = nrBits —2to 0

8 | if(bit(i,d) == 1) //the LMB is the zeroth bit

9 result_c = result_c + Rotate(tmp_c|[i], dist)
1 dist = dist + 2! x d

84

Finally, to the replicated ciphertext of s times we add each stored temporary ciphertext after
rotating them with the corresponding offset (lines 7-10). We illustrate CRep for r=5=(101)2
and d=2 in Fig.6.2b)

Improvement 6.3. We use the same logic (approach) as it was done in Improvement 6.1 for
the trade-off between the average rotations/additions per » and the case when r is padded with

dummy zeros to be a power of two.

6.3.3. Secure Random Ciphertext Permutation and its inverse

Given in Algorithm 6.3. The input ciphertext is organized in such a way that, starting from
the first slot (slot with index 0), we have a total of ¢ data slots separated by d slots from each
other (Fig.6.3). This algorithm firstly rotates the input ciphertext for R; slots. Afterwards it
divides the input ciphertext into blocks of m data slots and then permutes each data slot inside
the block according to a random vector k = {k4, ..., k,,} (Fig.6.4). Finally, does another
rotation for R, slots. R; and R, are random multiples of d (Fig. 6.3). Vector k tells by how
much each of the m slots of every block should be rotated inside its block. The pseudocode
is given in Algorithm 6.3 and a detailed illustration of only the random block permutation
(lines 3-6) for m=3and k ={2,—1,—1}is given in Fig.6.4. Algorithm 6.3 is an
improvement of the SRCPer algorithm given in [18] which instead of using m masks as it
done in Algorithm 6.3, it uses one mask and m — 1 computationally costly rotations of the

input ciphertext to get the same effect as we get in lines 3-5.

input c

<~ d slots->= d slots> = d slots—* d slots-% <— d slots—* d slots->
a|.laz].]az].... a; |.|aiq|. @i ... a._o|..la._4|..| a;]
a|.Jas].Ta ... Aiq] - Qi | a@;i | ... a._4]. | a. | . |la._o|
result_c

Fig. 6.3. Illustration of SRCPer form = 3, k = {2,—1,—1}. k,m, R, and R, are random.

d is the number of slots between two neighboring data slots.

85

ALGORITHM 6.3: SRCPer (Secure Random Ciphertext Permutation) and invSRCPer (inverse

SRCPer)

INPUT: input_c,k,R{,R,,c,d

k = {k4,..., k,;,}: arandom vector of m elements, gives the rotation index for each of the m data slots inside

the block

R4, R,: random numbers by which the slot rotations are done in the beginning and the end. They are multiples

of ng

c: the number of data slots (slots that carry data for us)
d: the number of slots between two neighboring data slots

OUTPUT: result_c
result_c: is the finally permuted vector

1 masksSRCPerVec_p[] = SRCPerMasks(k,c,d) //generates m masks

2 input_c = Rotate(input_c,R,)

3fori=1tom

5| tmp_c[i] = Rotate(tmp_c[i], k;)

4 ‘ tmp_c[i] = input_c X masksSRCPerVec_p[i]

6 result_c = AddMany(tmp_c
7 result_c = Rotate(result_c, R;)

[/Nogm additions

input_c

te— d slots->< d slots—>;

e« d slots—ale d slotsr%

< d slots->c d slots—;{

| A4 |

a, |

a3|

a; [.]aiq]- i

ac—Zl"- ac—ll | ac |

masksSRCPerVec_p|0]

1[-]of-]o] [1[-]o[-]o] [1[-]o]-]o

masksSRCPerVec_p[1] |E@

o[-[1].]o] lof-[1[-]ol] o[- lal.-]o |y

masksSRCPerVec_p[2] [Rotate(—d)

of-lof-[1] lo]-[o[.-]1] lof-[o]-]1fTp
[Rotate(—d))

ol-[of-]ail [o]-[o[-]a] [o [-[o [-la o

7 7 75 B B B

o[T@&l 1ol Tol @l Tol — Tollallol—

7Y I 2 T 77 7 7 N P I O B

result_c

<— d slots-><- d slots—>

% d slots-* d slots-%

% d slots-* d slots-%

Fig.6.4. Detailed illustration (masks, multiplications, addition portion) of the block

permutations of SRCPer for block size m = 3 and rotation index vector k = {2,—1, —1}

done in SIMD fashion.

The inverse of the SRCPer algorithm, called invSRCPer, is the same as SRCPer, but with R,

substituted with —R, in line 2, and —R,with —R; in line 7. Also, throughout the inverse

protocol vector k = {ky, ..., ky,} is substituted with invK = {ky', ..., kp'}, s.t ki, = —ki,

forl1<i <m.

86

In order to reduce the communication cost, SRCPer and invSRCPer can be modified in a way
that instead of a ciphertext, as an input it can take an integer which would represent the input
index of a data slot we are interested in. In this manner we can find out the new index of this

data slot at the end of the execution of SRCPer or invSRCPer

6.3.4. Secure SIMD Comparison

The comparison technique that [77-79] use to compare two SIMD encrypted ciphertexts
Acand B_cis A_c-R_p — B_c - R_p, where R_p is a random plaintext. In order to reduce
the number of multiplications we propose to do it as (A_c — B_c) - R_p (Fig.6.5a). If the
result is positive, then A > B and vice-versa. However, if we compare A_c and B_c several
times with this technique, then there is a possibility of an adversary to factor the terms
(A — B) and/or R_p, which is a leakage, so we advise using it only for one-time comparisons.
To overcome this weakness, we propose comparing by (A_c —B_c)-R_p + h_p in SIMD
fashion as shown in Algorithm 6.4 and illustrated in Fig.6.5b), where R_p and h_p are
random s.t. R_p > 0 and |h_p| < R . If the final term (result) is positive then A > B, and

vice-versa. If the polynomial size is N, then we do N comparisons in SIMD fashion.

a, | a, | | av |z4c
a | a | [ey]z4c By | B | sus | De |He
by | b | | by |=Be B, | B | sus | % |xma
® | ® | e | e |sws B | B | oue | Py |E
(o8 R,pzkarbl)xmI(arbz)szI - | (an—bu)¥Ry | (A_c—B_c)xR_p+h_p=[ar—b)xRothy[(@r—b)xRothy] | T (ax—byyRythy |
a) b)

Fig. 6.5 Simultaneous a) secure one-time comparison b) secure comparison (secComp, sC)
of N integer pairs in SIMD fashion

ALGORITHM 6.4: secComp (Secure Comparison)

INPUT: inputl_c, input2_c

inputl_c, input2_c: the input ciphertext containing data to be compared in each slot. One can be plaintext
OUTPUT: result_c

result_c: contains index (component) wise secure comparison results of the input ciphertext

1 (R_v,h_v) = rndSecCompVectors(); // R_v = {(R)N1}, R_v = {(h))~,}s.t. R; > 0 and |h;| < R;

2 (R_p, h_p) = EncEncr(R_v, h_v)

3 result_c = ((inputl_c — input2_c) X R_p) — h_p

87

6.3.5. Secure comparison of all data slots (SCADS)

SCADS securely compares all of the data slots using the secure comparison (secComp)
Algorithm of Chapter 6.3.4. Similarly to the SRCPer algorithm, the data that we want to
compare are at each d-th slot, starting from slot 0. In total we have ¢ such data slots. The
pseudocode is given in Algorithm 6.5 and the corresponding illustration in Fig.6.6. We give
here an improved version of SCADS from [18] where instead of rotating the resulting
ciphertext by one slot to the right as it is done in line 5, in [18] they rotate it to the right by a
rotation for a number of slots which is greater than one, which in turn is computationally

costlier for several times.

ALGORITHM 6.5: SCADS (Secure Comparison of All Data Slots)

INPUT: input_c,c,d

c: is the total number of data slot values that needs to be compared. In total we should do ¢/2 SIMD
comparisons

d: the distance in number of slots between two neighboring slots

OUTPUT: result_c

result_c: contains the comparisons between all of the data slot (slots that are multiple of d, starting from slot
0)

1 tmp_c = input_c

2fori = 1toc/2do

3| tmp_c = Rotate(tmp_c,— d) //rot. left for d slots

4| result_c = (input_c - tmp_c) + result_c

5| result_c = Rotate(result_c,1)

6 (R_v, h_v) = rndSecCompVectors(); // R_v = {(R)N1}, R_.v = {(h)),} s.t. R; > 0 and |h;| < R;
7 (R_p, h_p) = EncEncr(R_v, h_v)

8 result_c = (result_c X R_p) + h.p

88

result_c

[o] o Jo.of o J o Jo.of o] o Jo.o] o J ..]
input_c
— a Jo...... 0] a2 [0........ o] as | o0......... 0] a -
& tmpc Rotate(—
|—| a2 |0 0| as |0 0| as |0 0| ai |
result_c
ai—a;| 0 [0.0[aas| o0 [o.0[as—as| 0 |o.o0|acai|] . |}
Rotate(1)
input_c
— a |0....... ol a Jo...... ol as |o...... 0] a |
& tmpc "\'otate(de-D
LI a Jo....... o] a:s Jo....... o] as | 0. 0] a |
result_c
[a—as [a—a; [o..0] a-as [a;-as Jo...0] as—as [as—as [0..0 [a—a, [a—a: [~ |
Rotate(1)
resulte
— .| aias | a-a; |.| a-as | aas | [.| aca: | aca: ||J
OEI Ri3 Ri,: || Rz,4 | Ra3 | || Rc2 | Re1 IER_p
his | hi» || hs,a | hys | || h.2 | he1 IEh_p
 Secure Comparisons for a; —**Secure Comparisons for a;— —Secure Comparisons for acj
.. [sCavas)[sC(asa;) . [sC(az,aa)sClazas) IsC(ac,a2)|sC(ac,a1)}
result_c

Fig.6.6. Illustration of SCADS in SIMD fashion.

6.3.6. Secure sorting
It is given in Algorithm 6.6. Similarly, to the input in Algorithm 6.5, here also Party A has a

ciphertext with c data slots, which, starting from the first slot (slot with index 0) are apart of
each other for d slots. Party A performs SCADS on the input and send it to party B which
has the decryption key. Upon decrypting, Party B learns the sorted order of the input A, but

not their values.

ALGORITHM 6.6: secSorting (Secure Sortin

INPUT: input_c,c,d

c: the number of data slots (slots that carry integer data)
d: the number of slots between two neighboring data slots

OUTPUT: sortedIndexes (maxIndex, topKIndexes)

sortedIndexes_v: the indexes of the input ciphertext if it was sorted according to the data values
Party A:

1 SCADS_c = SCADS(input,,c,d)

2 send SCADS _c to Party B

Party B:

3 SCADS_ v = Decrypt_Decode(SCADS _c)

4 sortedIndexes_v = sortedIndexesAccodingToComparisonsOfAllData(SCADS_v)

&9

6.3.7. Secure argmax and secure top-K

In Algorithm 6.3.7 we present a secure two party protocol (2PC) that finds the top k indexes
of ¢ encrypted integers. Party A has the encrypted integer array encoded and constructed in
a similar fashion as it was the case with the input ciphertexts at the SCADS, SRCPer and
secSorting algorithms. Party B has the secret key. At the end of the protocol Party B finds
the indexes of the data slot that have the top k integers of the input ciphertext and nothing
else (neither its value, nor the sorted order of the integer array or anything else). Party A

learns nothing. When k is 1 it is secure argmax.

ALGORITHM 6.7: secArgmax and secTopK

INPUT: input,c,d, k

c: the number of data slots (slots that carry integer data)

d: the number of slots between two neighboring data slots

k: top k integers we are interested in (the ones with the top & highest values)

OUTPUT: maxIndex and topKIndexes
maxIndex_v: the index of the original input ciphertext with the greatest value
topKIndexes_v: Indexes of the input ciphertext with the top-K values
Party A:
1 permutedInput_c = SRCPer(input_c, k,R{,R,, c,d)
2 perSCADS _c = SCADS (permutedInput_c,c,d)
3 send perSCADS_c to Party B
Party B:
4 perSCADS_v = Decrypt_Decode(perSCADS_c)
5rndMaxindex = findMaxIndex(perSCADS_v) //finds the index for which the comparis. are all positive
/lrndTopKIndexes_v = findTopKIndexes(perSCADS_v)
//top k indexes for which the comparis. are all positive
6 rndMaxiIndex_v = constrVector(rndMaxindex)
//all elements of the vector are 0s, rndMaxIndex is 1
/lrndTopKIndexes_v = constrVector(rndTopKIndexes_v)
//all elements of the vector are Os, rndTopKIndexes_v are 1
7 rndMaxIndex_c = EncEncr(rndMaxIndex_v)
/lrndTopKIndexes_c = EncEncr(rndTopKIndexes_v)
send rndMaxIndex_c to Party A // send rndTopKIndexes_c to Party A
Party A
8 result_c = invSRCPer(rndMaxIndex_c ,k, Ry, R,, c,ng)
9 send [result] to Party B
Party B:
10 maxindex_v = Decrypt_Decode(result_c) // topKIndexes_v = Decrypt_Decode(result_c)

The secTopK (secArgmax) Algorithm (Algorithm 6.7) goes as follows: Party A randomly
permutes, afterwards compares all the data slots of the input ciphertexts and sends the result
to A (lines 1-3). Party B decrypts it, finds the permuted index of the top k integers, constructs
a ciphertext where everything is zero, except the permuted index of the top k integers, which

are 1 (ones) and sends this to A (lines 4-7). Party A does the inverse permutation of this

90

ciphertext and sends it back to B (lines 8-9). Finally, party B decrypts it and finds the real
index of the top k (maximum) integer. At the end of secTopK Party B learns only the indexes
with the top k values, but not their order or actual values, which makes it have strong security
and privacy properties. secTopK (secArgmax) is a one-round algorithm, which makes it non-
interactive and efficient in terms of communication cost. We should note that we gave the
secTopK (secArgmax) algorithm only for comparison purposes done in Chapter 6.9, while
in our privacy preserving classification algorithms we use a similar sequence (logical order)
of commands, but scattered among three entities (TEAS, E2DS and the EC). We should also
note that we can easily come up with different flavors of our secTopK (secArgmax) protocol
in terms of which party gets to know the final outcome (index) of the protocol, just as it is

the case with the secure comparison and secure argmax protocols in [53].

6.4. Secure building blocks for linear algebra

In [89-90] they pad their input with dummy slots with values zero so their inputs are a power
of two. Due to utilizing the corresponding secSum (Algorithm 6.1) and CRep (Algorithm 6.2)
which don’t assume that their inputs are always powers of two, in our secure linear algebra
algorithms we don’t have this assumption. Two ways of encoding an integer matrix into an
integer vector are given in Fig.6.7. Row-wise encoded matrices are denoted by having an R
as a superscript in their name, i.e. mat®, while column-wise encoding ones by having a C,

i.e. mat® (Fig.6.7). In this manner in a single plaintext or ciphertext of polynomial degree N

N . . .
we can pack g = -, Matrices, where d; and d, are the dimension (number of rows and
1" a2

columns, respectively) of the matrix. Similarly, we can pack g =% integer vectors of

dimension d.

mat®

mat a ga; yasjas J 00
a; a;
a3 ay

G jajaja]l 0] o
LEI}[I.II].I—“’[SG encoding J—— 1110 £

Fig.6.7. Row and column-wise encoding of integer matrices into vectors

91

6.4.1. Secure Dimension replication

As an input takes an encoded&encrypted matrix with dimensions d; and d, and replicates
each of the input’s first dimension’s elements (rows) for r times in sequential order (Fig.6.8).
It is given in Algorithm 6.8. Initially in line 1 a mask for all of the d; dimension is
constructed, such that the mask of the i-th dimension has all of the slots set to zero except
slots from i-dy-th till (i 4+ 1)-d; —1 — th slots which are set to one. The bulk of the
algorithm is done in d; iterations such that for the i-th iteration the input matrix ciphertext
is multiplied by the corresponding mask and the resulting ciphertext is rotated for
i-dy, - (r—1) slots to the right (lines 2-5). The resulting ciphertexts of all of the iterations
are added into one ciphertext (line 6) which is then replicated by r times calling Algorithm

2 (line 7) to get the desired output. Fig. 6.8 illustrates secDRep ford, = 2,d, = 2, r = 4.

ALOGRITHM 6.8: secDRep - secure Dimension Replication
INPUT: mat_c,d4,d,, r

mat_c: an encoded&encrypted matrix

d,, d,: first and second dimension of mat_c

7: replication rate

OUTPUT: matDRep_c

matDRep_c: input_c’s d; dimension replicated for r times

1 masksVec_p[] = secDRepMasks(d,,d,)

2 tmp_c[0] = mat_c X masksVec_p[0]

3 fori=1tod,

4 tmp_c[i] =mat_c x masksVec_pl[i]

5 tmp_c[i] = Rotate (tmp_c[i], i X dy X (r — 1))

6 matDRep_c = AddMany(tmp_c[])

7 matDRep_c = CRep(matDRep_c,d,, 1)

—Rotare(6))
masksVec_p[1]
oJoftfifofofofofofojofofofofofo]
aa, mat c

|-Sla:d e aa;[oToToToToToToTo oo o o]
masksVec pl0]
i]ifofoJofoJoJoJoJoJoJofoJoJofo]
oo fofoJofofofofofofo]ofo]o]
radartam)
oJoJoJoJofofofofasfasfofofofofofol

aza,

Fig. 6.8. Illustration of secDRep () ford, = 2,d, = 2andr =4

92

6.4.2. Secure dot (inner) product
Given in Algorithm 4. It takes two vectors of dimension d, multiplies them (line 1) and calls

secSum(*) to get their final dot product (line 2).

ALOGRITHM 6.9: secDotP - secure Dot (Inner) Product

INPUT: vecl_c,vec2_c,d

vecl_c,vec2_c: two (packed) encrypted integer vectors

d: the dimension of the vectors

OUTPUT: result_c

result_c: the result of the dot product contained at the first slot (of each block)
1 result_ ¢ = wvecl_c Xvec2_c

2 result_c = secSum(result_c,d)

6.4.3. Secure matrix-vector product
Given in Algorithm 6.10. As input it takes a row-encoded matrix ciphertext and a vector
ciphertext and translates their corresponding matrix-vector multiplication into a dot product

(line 2) by firstly replicating the vector for d; times (line 1).

ALOGRITHM 6.10: secMatVec - secure Matrix Vector Product
INPUT: mat®_c,vec_c,d,,d,

matR_c: row-encoded (packed) matrix(es) with dim. d; X d,
vec_c: a (packed) column vector(s) with dimension d,

OUTPUT: result_c

result_c: the result of the mat-vec product after each d, slots

1 vec_c = CRep(vec_c,d,d;)

2 result_c = secDotP(mat_c,vec_c, d,)

6.4.4. Secure matrix-matrix product

Given in Algorithm 6.

ALOGRITHM 6.11: secMatMat - secure Matrix Matrix Product
INPUT: mat®_c,mat®_c,d,, d,, d;

mat®_c: row-encoded (packed) matrix(es) with dim. d; X d,
mat®_c: column-encoded (packed) matrix(es) with dim d, X d;
OUTPUT: result_c

result_c: the result of the mat-mat product after each d, slots

1 mat®_c = CRep(matR_c,d, x d,, d3)

2 mat®_c = secDRep(matf,ds, d,, d,)

3 result_c = secDotP(mat®_c,mat_c,d,)

93

As an input it takes one row-encoded and one column-encoded matrix. After replicating the
row-encoded matrix (line 1) and replicating the dimensions of the column-encoded matrix
(line 2), it simply converts the matrix-matrix multiplication into a single dot product (line 3).
All of the d; X d, X d; plain matrix multiplications are done by a single SIMD

homomorphic multiplication in line 3.

6.4.5. Secure ciphertext compression

Given in Algorithm 6.12. After secure matrix-vector and matrix-matrix product, the resulting
ciphertext has its data slots scattered (separated) from each other according to the
corresponding dimension(s) of their input. As an input it takes a ciphertext that has
nrOfBlocks number of blocks to be compressed, each with size blockSize separated from
each other by d slots. In the end it compresses (brings them closer) by reducing the distance
between blocks, or by merging neighboring blocks in each iteration and when necessary in
certain iteration by multiplying with a corresponding plaintext mask to free up space for
further mergers in the upcoming iteration (lines 3-11). Depending on the input parameters,
the resulting ciphertext can have all of the data slots of all of the blocks compressed together
without any gaps (slot distances) between them, as it is illustrated in Fig.6.9a) for input
parameters nrOfBlocks = 4, blockSize = 1,d = 1 and in Fig.6.9b). for input parameters
nrOfBlocks = 4, blockSize = 1,d = 3.

ALOGRITHM 6.12: CCompress — Ciphertext Compress
INPUT: input_c, blockSize,d, nrOf Blocks

input_c: a sparsely encoded (packed) ciphertext
blockSize: number of slots per block

d: distance between two neighboring blocks in terms of slots
nroOfBlocks: number of blocks to be compressed
OUTPUT: result_c

result_c: the compressed ciphertext

1 emptySlots = d

2 result_c = input_c

3 fori=0tolog,(nrOfBlocks)

4| tmp_c = Rotate (result_c,—d)
result_c =result_ ¢ +tmp_c
emptySlots = emptySlots — blockSize
d=2xd
blockSize = 2 X blockSize
if (emptySlots == 0)

result_c = result_c X maskCCompress_p|[blockSize, d]
mptySlots = blockSize

— = O 00 J O\ W\

_—

94

input_c input_c

ai] 0 Jaz]| 0 Jas| 0 |as|—— jai] o |a3] o |az] o Jas|—
oJaz]oJas] oJas] o *Betll) “HoTaz]oJaa] o x]oJRet(3)
ai|a:z]a; |az|as|as]|as) ai|az]az|aslaz | x |as]
1f1Jaf1jJofofo]

aijazlasfasofofo]
result_c b)

aijaz|azfa4] o Jas] x |
1]1]1]1]o]o0]o]

aijazjasfasfofofo]
result_c ﬂ)

Fig.6.9 [Illustration of CCompress(:) for input parameters a) nrOfBlocks = 4,
blockSize = 1,d = 1 and b) nrOf Blocks = 4, blockSize = 1,d = 4

6.4.6. Secure matrix transpose

Given in Algorithm 6.13, it securely transposes an input matrix with dimensions d; X d, .
Using the corresponding d, masks, the input ciphertext is multiplied by them and each of
them has the columns of the input matrix (which are going to be the rows of the resulting
output) whose elements are scattered (in distance) by d, slots from each other. In this way
we firstly convert the input matrix into sparsely encoded ciphertext (lines 1-4), to which we
apply CCompress(-) to get the transposed matrix result. The illustration of secMatT (*) is
given in Fig.6.10 ford; = 2and d, = 2.

ALOGRITHM 6.13: secMatT — Secure Matrix Transponse

INPUT: mat_c,d4,d,

mat_c: a matrix with dimensions d; X d,

OUTPUT: result_c

matT_c: mat_c transposed

l1fori=0tod,

2 | tmp_c[i] = mat_c X maskMatT _p(i,d,, d,) //starting from slot I you put d1 1s in distance of d2 from eo
3 [gmp_c[i] = Rotate(tmp_c[i],i X (d; X d, — 1))

4 tmpRes_c = AddMany(tmp_c[])

SmatT_c = CCompress(result_c,1,d, — 1, d; X d,) //initially block size is 1, and have d; X d, in dis d2
from eo

95

Roi(3)

maskMatT p[1]
of1Joftfofofo]
X mat c

|-EleJ ez as]a[oToTo]
maskMatT p[0]
1{oftfofofofo]
——{ai] o Jas[ofo]o]o]
AddMany)

|_|' a1| 0 |“3| 0 Iazl 0 |a4|

[CCompress(1,1.4)

[g;gﬂ.':&tzﬂaﬂaq 5 To 0]

matT_c

a;a;
aza,

Fig.6.10 Illustration of secMatT (+) ford; = 2and d, = 2.

6.4.7. Secure matrix transpose and dimension replication

Given in Algorithm 6.14. For efficiency purposes, instead of transposing the matrix using
secMatT (-) and then replicating its dimensions using secDRep (), secMatTDrep(-) on the
fly does them both, thus replicates the dimensions of the transposed input matrix. It is

illustrated in Fig. 6.11.

ALOGRITHM 6.14: secMatTDRep —secMatT and Dimension Replication

INPUT: mat_c,d,, d,,r

mat_c: a matrix with dimensions d; X d,

r: replication rate

OUTPUT: result_c

matTDRep_c: mat_c transposed and its dimensions replicated by r

lfori=0tod,

2| tmp_c[i] = mat_c X maskMatT _p(i,d,, d,) //starting from slot I you put d1 1s in distance of d2 from eo
31if(r >dy)

41 tmp_c[i] = Rotate(tmp_c[i],i X (dy X r — 1))

5| else

6| . tmp_c[i] = Rotate(tmp_c[i],i X (dy X d, — 1))

6 tmpRes_c = AddMany(tmp_c[])

7 tmpRes_c = CCompress(result_c,1,d, — 1, d,) //initlly block size is 1, and have d; in dis d2 from eo
Bif(r>d,)

9 _tTmpRes_c = tmpRes_c X maskMatTDRep(d,,d; X (r — 1))

10| matTDRep_c = CRep(tmpRes_c, d4,1)

11 else

12| tmpRes_c = tmpRes_c X maskMatTDRep(d,,d; X (d, — 1))

13| tmpRes_c = CRep(tmpRes_c, d,,1)

14| matTDRep_c = CCompress(result_c, r X dy, d; X (d, —71), d3)

96

Roi(3)

maskMatT p[1]
oftfJofroJo]o]
mat c
| =ledeaJaoTo o]
maskMatT p[0]
tjofifofofofo]

a;a;
[‘-13 a,

——Jai]o]as]ofo]o]o]
dddMany
oJofofolaz]o]asf

e 0 fas] o [az] 0 [af

AaJao o[zl 0]0]

[CREP(LZZ
a1|a3|a1|a3|a2|a4|a2|a4|
matTDRep_c

Fig. 6.11. Illustration of secMatTDRep(-) ford, = 2,d, =2 and r = 2

6.4.8. Secure cascading matrix vector product

Given in Algorithm 6.15. After secMatVec, the resulting ciphertext has its data slots sparsely
separated from each other and this makes it unsuitable for cascading (another round) of linear
algebra multiplication. In order to make the resulting ciphertext suitable for another

multiplication we compress the data slots using the CCompress algorithm (line 2).

ALOGRITHM 6.15: secMatVecCas - secure Matrix Vector Cascading Product
INPUT: mat®_c,vec_c,d,, d,

matR_c: row-encoded (packed) matrix(es) with dim. d; X d,

vec_c: a (packed) column vector(s) with dimension d,

OUTPUT: result_c

result_c: the compressed result of the mat-vec product

1 tmp_c = secMatVec(matR_c,vec_c,d;,d,)
2 result_c = CCompress(tmp_c,1,d, —1,d,)

6.4.9. Secure cascading matrix-matrix product

Given in Algorithm 6.16. After secMatMat, the resulting ciphertext has its data slots sparsely
separated from each other and this makes it unsuitable for cascading (another round) of linear
algebra multiplication. In order to make the resulting ciphertext suitable for another

multiplication we compress the data slots using the CCompress algorithm (line 2).

97

ALOGRITHM 6.16: secMatMatCas - secure Matrix Matrix Cascading Product
INPUT: mat®_c,mat®_c,d,, d,,d;

matR_c: row-encoded (packed) matrix(es) with dim. d; X d,

mat®_c: column-encoded (packed) matrix(es) with dim d, X ds

OUTPUT: result_c
result_c: the compressed result of the mat-mat product

1tmp_c= secMatMat(matR_c, mat€ c, dy,dy, ds)
2 result_c = CCompress(tmp_c,1,d, —1,d; X d3)

6.4.10. Secure matrix-matrix product — version 2

Given in Algorithm 6.17. While Algorithm 6.4 takes one row-encoded and one column-
encoded matrix ciphertext, this one takes both of them as row encoded matrix ciphertexts. It
firstly replicates the dimensions of the first matrix using CRep (line 1), on the fly transposes
and replicated the second matrix and finally uses secDotP to find their product with a single

SIMD multiplication.

ALOGRITHM 6.17: secMatMat_v2 - secure Matrix Matrix — version 2 Product
INPUT: mat®_c,mat®_c,d,, d,, d;

mat1®_c: row-encoded (packed) matrix(es) with dim. d; X d,

mat2®_c: row-encoded (packed) matrix(es) with dim d, X d;

OUTPUT: result_c

result_c: the result of the mat-mat product after each d, slots

1 mat1®_c = CRep(mat1®_c,d; X d,,d3)

2 mat2®_¢ = secMatTDRep(mat2R _c,d,,d3,d;)

3 result_c = secDotP(mat1®_c,mat2®_c,d,)

6.4.11. Secure cascading matrix-matrix product — version 2

Given in Algorithm 6.18.

ALOGRITHM 6.18: secMatMatCas_v2 - secure Matrix Matrix Cascading— version 2 Product

INPUT: mat®_c,mat®_c,d,,d,, d;

mat1®_c: row-encoded (packed) matrix(es) with dim. d; X d,

mat2®_c: row-encoded (packed) matrix(es) with dim d, X ds

OUTPUT: result_c

result_c: the result of the mat-mat product after each d, slots

1 tmp_c = secMatMat_v2(mat1®_c,mat2R_c,d;,d,,d3)

2 result_c = CCompress(tmp_c,1,d, X d, — 1,d; X d3) //from column-wise to row wise direct conversion

98

Just as it was the case with secMatMat, after secMatMat v2 the resulting ciphertext has its
data sparsely encoded. We use CCompress again to compress these data so the resulting
ciphertexts is without any gaps (empty slots) between the data, thus making it ready for

another round of matrix operations.

6.4.12. Secure ciphertext compression — version 2
Given in Algorithm 6.19. This is a variant of CCompress where at the input parameters the
blocksize (number of slots per block) is greater than d (the distance between the neighboring

blocks), which makes the algorithm slightly different than CCompress.

ALOGRITHM 6.19: CCompress2 — Ciphertext Compress — ver. 2
INPUT: input_c, blockSize,d,nrOf Blocks

input_c: a sparsely encoded (packed) ciphertext

blockSize: number of slots per block s.t. blockSize > d

d: distance between two neighboring blocks in terms of slots
nroOfBlocks: number of blocks to be compressed

OUTPUT: result_c

result_c: the compressed ciphertext

1 result_c = input_c

2 fori=1tolog,(nrOfBlocks)

tmp_c[1] = result_c X maskCC2_p(0, blockSize,d)
tmp_c[2] = result_c X MaskCC2_p(1, blockSize, d)
tmp_c[2] = Rotate(tmp_c[2], —d)

result_c = tmp_c[1] + tmp_c[2]

d=2xd

JockSize = 2 X blockSize

0NN Wn b

6.4.13. Secure Frobenius Product

Given in algorithm 6.20. Finds the Frobenius (dot, inner) product of two matrices with the

same dimensions. Frobenius product is used in Convolutional Neural Networks (CNN) [91].

ALOGRITHM 6.20: secFrobP - secure Frobenius Product
INPUT: matl_c,mat2_c,d4, d,,

matl_c: encoded (packed) matrix(es) with dim. d; X d,
mat2c: encoded (packed) matrix(es) with dim. d; X d,

OUTPUT: result_c
result_c: the Frobenius inner product between mat1_c and mat2_c

1 result_c = secDotP(matl_c,mat2_c,d, X d,)

99

6.4.14. Secure ciphertext packing

Packs several ciphertexts into one. The pseudocode is given in Algorithm 6.20A, the
illustration in Fig.8. As an input it takes a vector of p ciphertexts (inputVector([]) and the
number of (useful) data slots (n;) which, starting from the first slot, each ciphertext of the
input vector has,. Instead of a vector of ciphertexts, as an input it can also take one ciphertext
(the [input]), which is replicated for p times. Lines 1, 2 and 6 can be skipped if all of the
elements (ciphertexts) of the input vector at their first n;, slots have their data, and the reaming
slots are filled up with zeros. It is assumed that all the input ciphertexts (elements) of the

inputVector_c[] have p - n; slots.

ALGORITHM 6.20A: CPack

INPUT: inputVector_c[], n;,p

inputVector_c[]: a vector of p ciphertexts, each ciphertext has p - n; slots, at each of them only the first n,
slots have data that we are interested in

n;: starting from the first slot (slot 0), is the number of consecutive data slots that each input ciphertext has
p: the number of elements (ciphertexts) of inputVector(]

OUTPUT: result_c
result_c: the packed ciphertext that contains all of the inputVector[] ([input]). It has at least p - n; slots

I mask v = {1,1,...,1,0,..,0} //irst n; slots are ones (1s), the rest are zeros. In total it has p - n; slots
2 mask_p = Encode(mask_v)
result_c = inputVector_c[1] //only for the single [input] case
3fori = 2topdo
41 inputVector_c[i] = inputVector_c[i] X mask_p
5| inputVector_c[i] = Rotate(inputVector_c[i],i X n;)
6 result_ ¢ = addMany(inputVector_c[]) //add the input ciphertexts (a total of logp additions)
7 return result_c /

| B | B | wox | i | B | swransrensmusvsmesrmns [0 |
[B 1 B | o [P T 0] ooeooiiieiiiioioes o 1
Rotate(n;)
[e | €& | ... ENAEETTTTTThh [0
Rotate(2-n;)
aila;]...[%,] 0] [o]¢
€o| e O] P B vessmsssmssamans [ol¢
Bl sssessmensunnse @8[]] B [B] mwmmnmns [0l
[21]az]...[@, |by|by]...[Bnfci]C2]...] S [O] 0]

Figure 6.12. Illustration of the ciphertext packing (CPack) algorithm

100

6.5. Secure classifications based on NB, kNN, DT and RF

In this Chapter we provide the NB based classification for non-textual datasets, and also for
kNN, decision trees as well as random forests. While doing so we have in mind the security
goals for secure classification set in chapter 1. Depending on where the bulk of the operations
are done, all of them can be written as server or client (user) centric. We provide both of them

only for NB case.

6.5.1. Secure classifications for non-textual queries based on NB

Uses the background information given in Chapter 2.1.1. Depending on where the bulk
(most) of the processing is done, in this Chapter we give (provide) two types of privacy
preserving classification schemes: the server-centric and the client (user)-centric. In this
sense, for each query we offer to the system the flexibility of choosing one of the schemes
depending on the current workload at the server or the client (user) side. In both of them
TACS holds the encrypted trained model (denoted as TM_c) and the user has an unclassified
query X. Both of the schemes satisfy the security requirements mentioned in Chapter 1 and
they both deal with passive participants in the semi-honest model. Furthermore, the client-
centric scheme also deals with a user that can apply the active “substitution-then-
comparison” (STC) attack proposed in [10]. In Chapter 6.8 we deal with an active malicious
user during the server-centric classification that can arbitrarily deviate from the protocol.
Although the classification schemes have three participants, both of them are easily
convertible to secure two party protocols (2PC) where the server has the trained model and

the user an unclassified query.

|_ queryVector_ v
Y|F;l + 1 slots 'I
l, . PETP— - - Feature f (Fy) 'I
1 o |- 1 1-T o = | w Je] 8 [=] 9 | &
T %
KlogP(C,) [KlogPW rlc)] — |KiogpX,cp] — [KlogPWrunlcd] — kiogrjc)] — | KlogP(xjicy | - [loghwie sl Jdummy,] -
Class C;
L n, = 2Meg@IFil+1] g1a¢q J

Fig.6.13. (14). SIMD per class view of the query vector with zeros and ones in

corresponding places according to the query feature vector X

101

ALGORITHM 6.21: PPClassServCen (Privacy Preserving Classification - server centric)

INPUT: X = {X1,X; ... Xg}, F,C,TM_c

X = {Xy, X5 ... Xf} unclassified query feature vector owned by the User, s.t. X; € F; for1 <i < f

F. F = {Fl,FZ, ...,Ff}, where F; = {Vy i, Vo pis oo Vipigri}- Fis st. 1 <0< f (as explained in Chapter 2.1.1)
C: The set of classes C = {C;,C,, ..., C.} (as explained in Se Chapter 2.1.1)

TM_c an already SIMD encrypted trained Naive Bayes model stored at TEAS

OUTPUT: Cry(X)
Cry (X):the classification of the query vector X according to the NB trained model TM _c

Phase I — EC:
1 queryVector_v.insert(1,0) //insert 1 at the first slot for the class probability in the empty queryVector

2 fori = 1tof //for each feature
3 | form = 1to|F] //[for each value of the current feature (feature F;)
4 if X; == V,, p; then /1if X; is equal to the current V,, r; feature value of feature F;
5 queryVector_v.insert(1) //then insert (put, push) one (1) to the queryVector
6 else //otherwise
7 queryVector_v.insert(0) //insert zero. At the end, the queryVector should look like Fig.14
8 forj = 2toc //afterwards replicate the queryVector for c — 1 times, where c is the number of classes
9 queryVector_v.insert(queryVector_v) //query vector should look like the upper vector of Fig.15

10 queryVector_c = EncEncr(queryVector_v) /In, = ¢ - ng slots, where ng = 2/108&IFil+1)]

11 send k, Ry, R,, queryVector_c to TEAS /lk, Ry, R, are random, needed for SRCPer (line 17)
Phase II - TEAS:
12 receive k, Ry, R,, queryVector_c //receives the encrypted query sent by the user

13 //results_c[] = recieveMultipleEncryptedQueries(p)

//receives p encrypted query vectors from different users
14 //queryVector_c = CPack(results_c[],n.,p) //packs them into a ciphertext using CPack, n;, = c - ng
15 result_c = queryVector_c X [TM_c] //as shown in Fig.14-15
16 result_c = secSum(result_c,ny) //finds the class prob. for each class Cj, 1 < j < ¢, ng = 2[l08@IFil+D]
17 result_c = SRCPer(result_c,k,R{, R,,c,ng) //permut. of the data slots for the class probabilities
18 result_c = SCADS(result_c, c,ny) //compare all of the posterior class probab., c is the nr. of classes
19 send [result] to EDS
Phase III — E2DS:
20 receive result_c
21 result_v = DecrDec(result_c)
22 rndMaxind = findMaxiIndex(result_v) //the index for which all comparisons are positive (Fig.7)
23 send rndMaxInd to User //sends this rndMaxIndex in clear (as a pure rand. integer) to the EC
Phase IV — EC:
24 receive rndMaxInd //the invSRCPer in line 25 is done by taking an integer index as an input (Section V)
25 Cry(X) = invSRCPer(rndMaxInd, k, Ry, R,, ¢, ng)//de-rand. to find the orig. index of rndMaxIndex

queryVector_c

<—queryVector_v—<—queryVector_ v— r—queryVector_v—

«— ClassC; —«— ClassC; — e— ClassC, —

|_ TM_c _|
ny = €N slots

Fig.6.14. Multiplying queryVector_c with TM _c

102

The pseudocode for the server-centric NB classification of non-textual datasets case is given
in Algorithm 6.21. As an input it takes the trained model TM_c kept at TEAS and the EC’s
feature vector X = {X1,X;,..,Xr}, where X; € F;, for 1 <i<f In Phase I EC(s)
construct(s) the query vector to look like the upper vector in Fig.6.13 (lines 1-7), i.e. for each
of the ordered feature set F; s.t. 1 < i < f and 1 < m < |F|, if X; ==V, ; we put 1 (one)
to that corresponding slot, otherwise everything else is zero. In the beginning of the query
we have the slot associated with class probabilities P(C;) for 1 < j < ¢, and its value is
always 1 (one) (Fig.6.13). The user then replicates the same vector for ¢ — 1 times (lines 8-
9), where c is the number of classes, and afterwards encodes and encrypts this vector to get
the final [encryptedQueryVector] (Fig.6.14) which is send to TEAS (lines 10-11) together
with the random k = {k;, ... k;,}, R; and R, needed for the SRCPer algorithm. In Phase II
TEAS receives the queryVector_c (line 12). In order to increase the throughput, TEAS
might receive multiple (say p) encrypted query vectors, and if so he first runs the CPack
(Algorithm 6.2, lines 13-14) to pack them into a single ciphertext. Here the size of a single
encrypted query vector is n, = ¢ - ng (a single class has ng = 2M1°8QIFI+DI glots, thus a
single query has n; = c - n, slots). We should note that if there are p multiple queries
involved, the trained model should be replicated p times (shown during the training phase —
line 10). Then TEAS multiplies the (packed) queryVector_c with the (packed) trained
model TM_c (line 15, Fig.6.13-6.14), and afterwards runs the secSum (Algorithm 6.1) (line
16) to find the posterior class probabilities at the beginning of each of the ng — th slots,
starting from slot zero. After randomly permuting the data slots containing the posterior
probabilities (line 17) and securely comparing all of them with each other (line 18), TEAS
sends the final result to E2DS (line 19).

It Phase IIT E2DS receives, decrypts and decodes the final results to get the randomized
index of the class with highest posterior probability before sending it to the User(s) in plain
(lines 20-22). Finally, EC(s) in Phase IV remove the randomization by running the
invSRCPer (Chapter 6.3.3) to get the final classification(s) (lines 24-26).

6.5.2. Secure classifications based on kNN
The 2PC is given in Algorithm 6.22. No prior training is done since KNN doesn’t need it. In

our scenario, an EDO owns a dataset that he wishes to be used for secure classifications and

103

(an) EC(s) user has(have) queries that he (they) wish to classify having in mind the security
requirements during the classification stage set in Chapter 1. The EDO’s dataset has

NT transactions (records), each with f attributes and the corresponding class for that record.

Thus a record r; looks like Y"i = {eri,

,Yfri,Cri}, where 1 <i < NT and C"i is the 7;’s
class. The EDO randomly permutes his NT transaction (records) according to a random
permutation 7, and encodes the feature values of each record in a sequential order in a
plaintext(s) denoted as perDS_p[], with a corresponding plaintext where he encode his
classes, denoted as classes_p. In a single plaintext of polynomial N we can encode ¢ = N/f
features, thus we need nrPlainTexts = [NT /q] plaintexts at the EDO to encode only the
feature values of each record in the dataset. To this ends, if a single plaintext is not enough
for perDS_p[], then at the first plaintext of perDS_p[] EDO encodes the first g permuted
records, at the second plaintext of perDS_p[] encodes the second g queries etc., as it is
illustrated in Fig. 6.15. For the classes_p plaintext at the first f slots we put the classes for
the permuted records which are in distance of q to each other, thus the first f spot are for
classes C™0D), ¢™(a+1) - C™(f-1) the second f spots are for €702, ¢™(a+1) - C7(Tr+1)
etc. (Fig.6.15). The EC replicates his query for g times, encodes and encrypts to get X_c and
sends it to the EDO (lines 1-2). If all of the dataset can be put in a single perDS_p[] plaintext,
EDO then subtracts the perDS_p with the X_c, squares the result and finds the sum of the
corresponding f slots in SIMD fashion according to one of the distances proposed in Chapter
2, which in this case is the Euclidian distance (lines 4-6). If the dataset doesn’t fit in a single
perDS_p|[] plaintext, then the same process is repeated for all of the plaintexts, in the process
utilizing multiple cores of the processor (lines 8-13). Making the necessary rotations and
additions perDS_p[] plaintexts, EDO makes the calculated packed distances of each dataset
record with the query into result_c to correspond to the record’s classes in classes_p (lines
4-12). In order to guard against any eventual data leakage, in SIMD fashion EDO multiples
each distance with the same random R proceed by adding another random h (line 13) and
sends it to EC (line 14). EC decrypts the randomized result, constructs a vector by putting
ones at the slots of the k distances with the minim value, encodes and encrypts it to get

queryCpyn(X_v)_c and sends it to EDO (lines 15-18). EDO multiplies

104

queryCpnn (X_v)_c with the classes_p and send the result back to EC (lines 19-20). Finally,

EC decrypt this result which contains k classes corresponding to the top-K classifier.

ALGORITHM 6.22: secKNN (secure K Nearest Neighbors)

INPUT: perDS_p[],classes_p,f,d, k,X v
perDS_p[]: permuted according to and encoded records of the dataset DS residing at the server, who is
also the owner of it

classes_p: the vector of classes of the corresponding permuted records classes_v = {(C ”(ri))?,:l},

classes_p = Encode(classes_v)

f: the dimension of the dataset (number of features, i.e. number of slots needed for each record)

k: the number of the closest neighbors by which the classification is done

X _v: the client’s query vector of dimension freplicated by ¢ = N/f times, where q is also the number of
records in a single plaintext

OUTPUT: maxIndex and topKIndexes
C vy (X): the final classification of g_v according to kNN and dataset DS:

EC:
1 X_c = EncEncr(X_v)
2 send X_c to EDO
EDO:
3 nrPlaintextsForDS = [(NT X f)/N]; R_p = Encode{R, ...,R}; h_.p = Encodef{h, ...,h}
4 if (nrPlaintextsForDS == 1)
5| result_c = square(perDS_p — X_c)
6| result_c = secSum(Ciyy(X_v)_c,d)
7 else
8 | fori = 0to nrPlaintextsForDS — 1 //done in parallel among several processor cores
9 tmp_c[i] = square(perDS_pl[i] — X_c)
1 tmp_c[i] = secSum(tmp_c[i], f)
11| | tmp_c[i] = Rotate(tmp_c[i], i)
12| result_c = AddMany(tmp_c[])
13 result_c =result cXR_p+h_p
14 send result_c to EC
EC:
15 result_v = DecrDec(result_c)
16 queryCyyny (X_v)_v = getTopKValues(result_v)
//ones in the indexes containing the smallest & values, 0’s elsewhere
17 queryCyyy(X_v)_c = EncEncr(queryCyyn(X_v)_v)
18 send queryCyy(X_v)_c to EDO
EDO:
19 Coyy(X_v)_c = queryCiyn (X_v)_c X classes_p
20 send Cypyy(X_v)_c to EC
EC:
21 Cyyn(X_v)_v = DecrDecCiyy(X_v)_c
22 Cyyn(X) = classifyAccordingToClosestK Classes (Cyyn (X_v)_v)

105

X c
Ax 1T x L x| sl lxl 1x LLx |- 4 f7 LIx] 1x]]x]

] erDS_p[1] erDS_p[nrPlaintextsForDS — 1]

; |Y;Ffr|)| |y;r(r,,)| |y}l’(rq)| B rr[rqu |Y q+11 |Y:(i'zq)| | Y:(J‘z,,)l'” 1r(l-v1- q1 |YrrL NT- qi | w(rr) I |Y wrl
|s§uare| q
)‘ rr()) T'(] 13 ”l' 1) 2 f 7(r2q) 2 f w(ryr-q) 2 m(ryr) 2
Dl I AR [y S A W T CAREEY S 0 | R)
fot(g-1)
result ¢
rr(r) U) rru) nu J
S S O S TG W TR
Rp
E:,f (n(m X)le (yﬂ(rwu I I):f rr(imq _X; | |Z rr(u,) L%, 1): rr('z.; I IZ ﬂ(’}vr) |
i=1 s S SO] BT s i A, > i [T
h_p
? - 2 =X

o) TRy I A Craa s D S s T i s I TR A O
classes_p

c7(r1) | ¢™(rq:1) | | CTrNT—q) | I c(re) I ¢ (rzq) | | crrar) |

Fig. 6.15. Illustration of construction of perDS_p[] and classes_p for the secKNN.

6.5.3. Secure classifications based on DT and RF

Given in algorithm 6.23. If the trained model consisted of a decision tree is not binary, it can
be easily converted to one [9,73, 92]. Unlike [92] which reveals the depth of the tree, in our
algorithm in order to hide the depth of the binary tree 1) we can add a dummy root which on
both sides has the exact replica of the original binary tree, and/or 2) we can add one or more
levels at the leaves by putting a couple of dummy nodes (one on each side of every leaf),
which will point to the same class that the corresponding leaf (now parent node) used to
point. The obtained binary tree then can be encoded into a vector in a way that, start from the
root, each node’s value of each level is put (encoded) into the vector in sequential order, as
it is shown in Fig. 6.16. This represents the trained model TM_p plaintext. In the classes_p
plaintext in sequential order, from left to right, we put the classes to which the leaves point.
Using SRCPer (Chapter 6.3.3) in plain, the server publishes the permuted order of the TM _p
by which the clients should encode their feature values. According to this published order,
EC encodes and encrypts the values of its features to get X_c and sends it to the Server (lines
1-2). The Server then homomorphically performs the invSRCPer over X_c using the same
parameters it used while performing the SRCPer in plain, and in SIMD fashion securely
compares X_c with TM_c using secComp (Chapter 6.3.4) and sends the result to EC (lines 3-

5). EC decrypts and decodes the result and based on the comparison results it construct a

106

vector will all zeros, except for the slot which belongs to the final classification which is one.
Encodes and encrypts this vector to get ones_c and send it to the Server (lines 6-9). The
server multiplies ones_c with classes_p and sends the result to EC (lines 10-11). EC
decrypts and decodes it to get the final classification result. For increased throughput we can
classify up to g = N/f queries, where N is the polynomial modulus.

For the RF cases we have several DT encoded one after the other at TM _p, classes_p,

while the general idea and protocol flow remains pretty much the same.

ALGORITHM 6.23: secDT RF (secure Decision Tree and Random Forest)

INPUT: TM_p, classes_ p,X v, f

TM_p: the decision trees or random forests’ ciphertext kept privately at the server (owner)
classes_p: the vector of classes of the corresponding tree(s)

X_v = {Xy, ..., Xf}: the EC’s query vector of dimension /. We can have ¢ = N/f such queries

OUTPUT: maxIndex and topKIndexes
Cpr(X): the final classification of q_v according to DT or RF a

Server:

using SRCPer in plain, publishes the permuted order by which the clients should encode their feature values
EC:

1 X_c = EncEncr(X_v)

2 send X_c to Server

Server:

3 X_c = invSRCPer(k,R{,R,, N, 1)

4 result_c = secComp(X_c,TM_p)

5 send result_c to EC

EC:

6 result_v = DecrDec(result_c)

7 ones_v = putOnesTo TheClassesSpots(result_v)
8 ones_c = EncEncr(ones_v)

9 send ones_c to Server

Server:

10 Cpr(X_v)_c = ones_c X classes_p

11 send Cpr(X_v)_c to EC

EC:

12 Cpr(X_v) = DecrDec(Cpr(q_v)_c)

107

Fig. 6.16. Encoding the values of each level’s node into the trained model plaintext TM_p
for DT and RF classifier when f = 7

6.6. Secure MNB and NB classifications for binary and multi-

label multi-output textual datasets

In Algorithm 6.24 we provide the MNB secure classification scheme for binary textual
queries (datasets). It can be seen as a natural continuation of Algorithm 5.2. The necessary
information background and notations are given in Chapter 2.1.2. In Phase XII EC encodes
its query g_v, which has 1 in the first slot (index), proceeded by the query frequencies of
each word in the query ordered according to the words arrangement in the selected features
sets SF (line 1, Fig.6.17). After multiplying the encoded query with the trained model TM_c
it sends the result to TEAS (lines 2-3, Fig. 6.17). In Phase XIII, in accordance to (2.7), TEAS
homomorphically finds the sums of each of the (m + 1) slots in log,(m + 1) rotations and
additions with the result residing in the first slot (lines 5-6). To do this (m + 1) should be a
power of two. If it is not the case, then we can pad extra slots with dummy values (usually
zeros). Then, for secure comparison purposes (Chapter 6.3.4), multiplies this result with a
random R_p followed by adding h_p s.t. R_p and h_p are constructed having in mind the
secure comparisons requirements for them in Section IVC. To protect the result from the

STC (substitute-then-compare) attack from [10], TEAS adds an extra random

108

h2_p = Encode(h_v) to the result, sends the randomized result to E2DS and the h2_v to EC
(lines 7-10). In Phase XIV E2DS decrypts the randomized classification result and sends it
to EC (lines 11-12). Finally, in Phase XV EC subtracts h2_v from the randomized
classification result and, according to (2.7), gets the final classification based on the sign of
the result (lines 14-15). If the query g_v instead of the frequencies contains the counts
(N4 (w;)) of words appearing in the query, then instead of MNB, we’re dealing with the NB

for textual classifications.

T™ c H(wy) H(w;) H(w,,)
KP(CIl) KP(wllch) :K‘P(wtlch) :K‘P(wmlchj i
= KP(CS) - KP(wllcs)'_ KP(W,'IC:)-—KP(WE‘CS =

q_p
1 I fq(wy) || fa(w;) || faWn) ”

Fig.6.17. SWHE SIMD multiplication of the trained model TM_c obtained in Algorithm
5.2 with query q_p.

ALGORITHM 6.24: secC (secure Classification)

INPUT: SF,TM_c,X_v, (pk, sk)

(pk, sk): key pairs of E2DS with SWHE properties

SF = {H(w,), ..., H(w,,)}: the set of hashes of m selected features with the highest IG
TM_c: the binary trained model ciphertext residing at EC

X v={1,f,(wy), .., fq(Wy)]}: the EC’s query vector

OUTPUT: Cry(q)

Cry(X): the q_v’s final classification

PHASE XII - EC:

1 X_p = Encode(X_v)

2 Cry(X)_c =TM_c X X_p //so the TM_c already resides at EC (tell the reason behind it)
3 send Cyp (X)_c to TEAS

PHASE XIII-TEAS

4tmp_c=Cry(X)_c

5fori=0to[log(m+ 1)]

6| CruX)_c = Crpy(X)_c + Rotate(Cry (X)_c, —2Y)

7 (R_v,h_v,h2_v) = rndVectorsforComp(); (R_p, h_p,h2_p) = Encode(R_v,h_v,h2_v)
8 ™dCry(X)_c = ((Cry(X)_c X R_p) + h_p) + h2_p //to protect from the STC attack
9 send rnd Cry (X)_c to E2DS

10 send Encpy,,.(h2_v) to EC

PHASE XIV-E2DS

11 rndCyp (X)_v = DecrDec(rndFinClas_c)

12 send Encpy,.(rndCry (X)_v) to EC

PHASE XV-EC

13 res_v = Decgy, . (rnd Cry (X)_v) — Decsy,(h2_v)

14 if (res_v = 0) return Cry(q) = "ham”

15 else return Cry (X) = ”"spam”

109

Having in mind the notations and the corresponding background information in chapter 2.1.2,
in Algorithm 6.25 we provide a multi-label multi-output secure classification algorithm for
textual queries (datasets). Algorithm 6.25 can be seen as naturally following Algorithm 5.3.
and, in general lines, it has the same logic as Algorithm 6.24, but expanded to deal with multi-

label multi-output queries.

ALGORITHM 6.25: secC-MLMO (secure Classification for Multi-Label Multi-Output queries)

IL] Ll
INPUT: SFMiM0 = {{sF1) " | = {{{H(wi)}?él}l:l} ,m', TMM*™MO ¢, q_v™™MO , (pk, sk)

(pk, sk): key pairs of E2DS with SWHE properties
SFMLMO the set of |L| set hashes, each of m! selected features with the highest IG

TMMIMO _¢: the MLMO trained model ciphertext residing at EC
[L]

!

AN

q_vMMo = {1, { f fl (Wf)}i_l} : the EC’s MLMO query vector, for the classes of the same label,
=1

=1

it’s replicated for |C L |times
OUTPUT: C%{,;Mo X)
CHLMO (X): the q_v™-MO°s final classification
PHASE XII - EC:
1 X_pMMO = Encode(q_vMM9)
2 CMIMO (XY ¢ = TMMIMO ¢ x X pMEMO //so the TM_ c already resides at EC (tell the reason behind it)
3 sendCHMEMO (X)_c to TEAS
PHASE XIII-TEAS

_ argmax
am=y < m)
5fori =0to[log(m+ 1)]
6| CMIMO(X) ¢ = CMIMO(X)_c + Rot(CHMEMO (X)_c,—2Y)
7 rnd CMEMO (X)_c = SRCPer (CMEMO(X)_c)// creates permutData_v needed for the permutations
8 rnd CMEMO (X)_c = SCADS (rnd CMEMO (X) _c)
9 send rnd CMEMO (X)_c to E2DS
10 send Encyy,,.(permutData_v) to EC
PHASE XIV-E2DS
11 rnd CHEMO(X)_v = DecrDec(rnd CHMEMO (X)_c)
12 send Encyy,.(rndCri*° (X)_v) to EC
PHASE XV-EC
13 CrM° (X) = invSRCPer(Decgy, (rd Cri™° (X)_c), Decgy, (permutData_v))

6.7. Secure classifications based on linear algebra operations

In Chapter 2.3.3 we give the necessary notations and background information related to ML
classification based on linear algebra. Utilizing the secure algebra building blocks introduced
in Chapter 6.4, in Algorithm 6.26 and 6.27 we give a general secure classification scheme

which is applicable to any ML classification algorithm that can be expressed in terms of

110

linear algebra operations, particularly in vector and matrix operations. Depending on where
the bulk of the operations are being done, they are either client (like algorithm 6.26) or Server

centric (Algorithm 6.27)

Secure linear algebra based ML classification algorithm flows at-a-glance. We give both
the client and the server centric flavors. The server owns a trained model which he wants to
keep private, while the client wants to use it for secure ML classifications based on linear
algebra operations having in mind the security, privacy and efficiency requirements given in

Chapter 1.

Client Centric (Fig. 6.18): the trained model M resides at the client encrypted by the server’s
public key. All encryptions are done using the server’s public key with SWHE properties
(Chapter 2.4.1). The client(s) construct(s) his/their queries X) (€)), encode and (depending
on the circumstances, might also) encrypt them to get the packed queries in a single plaintext
(S_p) or ciphertext (S_c) (@). Using the encrypted trained model M they do computations
over encrypted data to get the classification result Cy(S) in encrypted form (€)). After
randomizing the result they get the encrypted rnd Cy, (S) and send it to the server (@). After
decrypting and decoding it, the server obtains the randomized result in plain, rndCy(S)_v,
and sends it back to the client(@)). Finally, the client de-randomizes rndCy, (S)_v to get the

final classification for the query(ies), Cy (S) (@). More details are given in Algorithm 6.26.

Sepver Client
DecerDec SRCPer
| | |
| rudCy(5) e i
invSRCPer
N Ei 53] |

-Encrypted data EIUn-cncryptcd data .:IBmh options C]Funclionfoperation

Fig.6.18. Secure linear algebra ML classification algorithm flow-client centric

111

Server centric (Fig.6.19): the trained model M resides at the server un-encrypted. All
encryptions are done using the client’s public key with SWHE properties (Chapter 2.4.1).
The client(s) construct(s) his/their queries X ®(@)), encode and encrypt them and send them
to the Server (@). The server adds the encrypted queries up and does the computations over
encrypted queries to get the classification result Cy;(S) in encrypted form (€)). Afterwards
randomizes the result to get the encrypted rndCy,(S) and send it to the client(s) (@)). After
decrypting and decoding it, the server obtains the randomized result in plain, rndCy(S)_v
(@), and based on it constructs, encode and encrypts a new rndCy(S) which is send back
to the server (@). The server removes the randomization to get the final encrypted
classification Cy;(S), which is send to the clinet(s) that decrypt it to get the final classification
for the(ir) query(ies), Cy;(S). More details are given in Algorithm 6.27.

QQ;Lf JANE 'C]ﬂ;”ﬁ 14 e DecrDec ya
('”(S') P "-::/‘\
| D &
lolgidevice
eSR(Per e DecrDec o EncEncr -
EE— | , :
rndC,,(S) rndC,,(S) rndC,,(S) -‘

<|5 #7 -
<j<e EncEncr EncEncr EncEncr
emm e][’]
4} TP

I—o,\m | wa 0 |6/‘m | /‘_[-2'2\\
I 70

() .
?1[11&(

.Encrypted data DUn-encrypted data GFunction/operatiﬂn

Fig.6.19. Secure linear algebra ML classification algorithm flow-server centric

The client centric version (Algorithm 6.26) as an input takes the row-encoded trained model

ciphertext and the queries of g = users in a scenario where we have f features and ¢

N
c(f+1)
classes (Chapter 2.3.3). IoT devices/clients encrypt their queries and rotate them, in a way
that when homomorphically added up, they form a column-wise encrypted matrix (lines 1-

4). Then homormorphcally classify their queries with the trained model according to (2.21)

112

(lines 5-6). In line 6 SCADS(+) -Chapter 6.3.5-, is used for the argmax purposes of (3). The
input ciphertext of SCADS(-) looks exactly what secMatMat(-) returns in line 5. After
randomization with SRCPer(-) (Chapter 6.3.3), the results are send to the server (line 7-8).
The server decrypts and sends back the randomized results in plain (lines 9-10). The clients
de-randomize them to get the final classifications (line 11). SRCPer(:) and it’s inverse,
invSRCPer(*), proposed in Chapter 6.3.3, are used for randomization and de-randomization
purposes (lines 7, 11). The values we give to the random parameters that SRCPer(-) and
invSRCPer(*) take are Ry = 0, R, = 0, while the random input vector k has m = ¢ elements
and it is used to randomly permute inside the block the positions of the comparisons results
for each of the c¢ data slots (corresponding to ¢ classes) for each of the q blocks (queries),

simultaneously.

ALOGRITHM 6.26: secMLClass — (secure ML Classifications — Client Centric)
INPUT: M® ¢, S = {x®}! ¢ f
MR _c: row-wise encrypted Trained Model

S = {X(i)}?ﬂ': the set of q user queries, q = c-(jlfv+1)

¢, f: the number of classes and features, respectively
OUTPUT: Cy(S)_v
Cy (8)_v: vector of the final classification of g queries

Client:

1 fori=1togq

2 | X_c[i] = EncEncr(X®)

3 _cli] = Rotate(quc_c[i],i x (f + 1))

4 S° c =AddMany(X_c[])

5 tmp_c = secMatMat(M®_c,S¢_c,c,f +1,q)

6 Cy(S)_c =SCADS(tmp_c,c,f +1)

7 rndCy(S)_c = SRCPer(Cy(S)_c,k,R{,R,,c,f+ 1)
8 send rndCy (S)_c to Server

Server:

9 rndCy(S)_v = DecrDec(rndCy(X)_c)

10 send rndCy (S)_v to Client

Client:

11Cy(S)_v = invSRCPer (rndCy (S)_v, k,RiRy,c, f + 1)

Algorithm 6.27 (server centric) in general is similar with Algorithm 6.26 (client centric), with
the difference that in Algorithm 6.27 all encryptions are done using client’s public key with
SWHE properties, whereas in Algorithm 6.26 using servers public key with SWHE

properties. What is more important, the bulk of the heavy homomorphic computations at the

113

server centric algorithm are done at the server, whereas at the client centric algorithm they
are done at the client. While the client centric algorithm is done in one round, the server

centric one is done in two rounds, having in the process slightly heavier computation cost.

ALOGRITHM 6.27: secMLClass (secure ML Classifications — Server Centric)
INPUT: MF ¢,§ = {X®}? ¢ f
MR _¢: row-wise encrypted Trained Model

N
c(f+1)
¢, f: the number of classes and features, respectively
OUTPUT: Cy(S)_v
C 1y (S)_v: vector of the final classification of q queries

Client(s)
1 fori=1togq

2 | X_c[i] = EncEncr(X®)

3 | X_c[i] = Rotate(qVec_c[i],i x (f + 1))

4 | send X_c[i] to Server

Server:

5 S¢c¢ = AddMany(X_c[])

6 tmp_c = secMatMat(MR_c,S¢_c,c,f +1,q)

7 Cy(S)_c=SCADS(tmp_c,c,f +1)

8 mdCy(S)_c = SRCPer(Cy(X)_c,k,Ry,Ry,c, f+ 1)

9 send rndCy(S)_c to Client(s)

Client(s)

10 rndCy(S)_v = DecrDec(rndCy(S)_c)

11 rmdCy (S)_v = putOnesToTheMaxClassOfAllQueries()
12 rmdCy(S)_c = EncEncr(rndCy(S)_v)

13 send rndCy(S)_c to Server

Server:

14 Cy(S)_c = invSRCPer(rndCy(S)_v,k,R{R,,c,f + 1)
15 send Cy(S)_c to Client(s)

Client(s):
16 Cy(S)_v = DecrDec(rndCy(S)_c)

s = {x®)? ,: the set of q user queries, g =
i=1 q

Note: for the DNN with [layers, the trained model M®_c in Algorithms 6.26 and 6.27 is
made of [matrices denoted as M®'_c, where 1 < i < [, the activation functions f*, where
1 < i < I, are polynomial ones (usually square or linear functions) and S¢ is the output of
the previous layer, where for the input in the first layer we have S¢° = S¢. In this sense, to
abide to (2.22), for a DNN with [layers line 5 in Algorithm 6.26 (i.e. line 6 in Algorithm
6.27) should be changed to secMatMatCas(f (M® _c,S¢ c,c, f + 1, q)) which is executed
for [times. Algorithm secMatMatCas() is explained in Chapter 6.4.

114

Improvement 6.1: For algorithms 6.26 and 6.27, if the users know their order, instead of
encoding their data at the beginning of the ciphertext’s slots, they can directly put them to
their corresponding place, i.e. EC i put his f + 1 data from slot (i — 1)(f + 1) till i(f + 1)

slots. In this way they both avoid the costly operation of rotations in line 3.

Improvement 6.2. Unlike it was the case up until now in literature, for efficiency purposes,
no need for slots in Algorithms 6.20-6.27 to be powers of two anymore due to introducing

Algorithms 6.1 and 6.2.

Improvement 6.3. Whenever possible in Algorithms 6.20-6.27 we introduce the poly-
switching technique proposed in [55]. We also use multiple-cores for increasing furthermore
the throughput of processed queries by simultaneously classifying them among multiple
processor cores. For this each core should have a copy of the trained model in the core’s local
cache memory. Those couple of techniques alone give an improved computational and

communicational cost for several times.

Improvement 6.4. The 3PC algorithms that exist in some of the Algorithms in 6.20-6.25 can
be converted to 2PC. Furthermore, having in mind Improvement 5.1 and knowing that TM_c
rarely changes, it can be send to the user only once for the client-centric classification, thus

amortizing this cost for all of the subsequent classifications to follow.

Improvement 6.5: Besides Algorithms 6.26-6.27, for high throughput, in Algorithms 6.20-
6.25 we can also simultaneously process several queries by replicating the trained model and

packing several queries in the query vector. E.g. for secC (Algorithm 6.24) we can process
up to q = lﬁJ queries by obtaining a replicated TM_c during secT (Algorithm 5.2),

which can be done without extra costs, and encoding (packing) g queries to g_p during secC.

115

6.8. Dealing with malicious users during classifications

Unlike the semi-honest model (Chapter 2.4.2), malicious users are active adversaries that
arbitrarily deviate from the protocol with the aim of retrieving partially or totally the data
that they are not supposed to or with the aim of sabotaging the protocol.

In algorithm 6.28 we deal with a malicious EC user for the Algorithm in 6.21. thus it is
valid for non-textual data dealing with NB classifiers. One of the attacks that such a malicious
user might come up with during the server-centric classification stage in Algorithm 6.21 is
to put 1s (ones) in only two slots corresponding to the same feature-value but different

classes, i.e. put ones to KlogP(Vm,Fi; Cj), s.t. m and F; are the same but C; is different) or

put ones to two different class probabilities (Klo gP(Cj) and all the other slots are set to zeros
(Fig.6.13 and 6.14). In this way, while running PPClassServCen (Algorithm in 6.21), the
user can find which of the two probabilities is greater than the other. Furthermore, if instead
of ones, in the same fashion the user puts some random values R; and R, into two slots
corresponding to the same feature-value but different classes, then after executing
PPClassServCen for several times with different random values for R, and R, ultimately the
user can find the ratio of those two probabilities. In both cases we have a leakage that goes
against the strict classification goals mentioned in Chapter 1. Algorithm 6.28 deals with such

active malicious users.

[MU — QueryVector]

l slotF = 2ffoglmax1-']] > . slotF = 2‘*99('""’F]I >

l-Feature 1(F,) «—Feature f (F)

0|...|1|...|0 0|0|... o|...|1|___|o o|o|_._ o|o|___

slotC = 2[f~log(sintf'}+1]

Fig.6.20. SIMD construction of the MU — QueryVector_c with padded zeros added for the
need of the secSum Algorithm

We assume that TEAS and E2DS are still in the semi-honest model and they don’t collude.
To avoid any attack, we should make sure that the malicious user behaves properly while
executing the protocol, especially while constructing the queryVector, hence the
queryVector_c (Fig.6.13 and 6.14), which for the case of the malicious user will be slightly
altered and named as MU — QueryVector_c and MUencryptedQueryVector_c,

respectively. By proper behavior from the malicious user we mean that for each feature F;

116

s.t. 1 < i < f, exactly one slot per feature should have 1 (one) inserted at the corresponding
feature—value slot and all others slots should bet set to zeros, just as it is explained in Phase
I of Algorithm 6.21 (Fig.6.13 and 6.14). To make sure that this is the case we run secSum
(Algorithm 6.1) to simultaneously and privately find the sum of block of slots corresponding
to each feature and check whether each of those sums are 1 or not. Based on this outcome,
the other participants (TEAS and E2DS) decide whether to continue or abort the protocol. In
order to do this, due to the needs of the old version of secSum, we will have to allocate
slotF = 2M08maxF)l glots per feature, where maxF is the feature with the biggest cardinality
(number of elements), i.e maxF = max(|F;|) for 1 < i < f. Since we have f features, and
in order to find the posterior probabilities for each class we should again use the secSum
algorithm for the second time, then for each class we need slotC = 21/ log(slotF)+1] ot
where the term+1 (extra one slot) is the slot for the class probability. All the extra added slots
are padded with (have values) of 0 (zero). Malicious user’s MU — QueryVector_c is
illustrated in Fig.6.20. The corresponding pseudocode that builds this MU —
QueryVector — c is given in lines 1-9 for Phase I of Algorithm 6.29. In Phase Il when TEAS
gets this query, firstly it runs the secSum algorithms to find the sum of each feature block and
sends the result to E2DS for checking (lines 10-12). Then constructs a plaintext named
ones_p which, starting from the first slot, has ones in every slotC slot and everything else is
zero (lines 13-14). Afterwards TACS firstly rotates MU — QueryVector_c to the right by
one slot (upper vector of Fig.6.21), replicates it for ¢ times by calling the CPack algorithm
from Chapter 6.4.14 and adds the ones_p plaintexts to it to get the final MU —
EncyrptedQueryVector _c as shown in Fig.6.22 (lines 15-17), which has slotQ = c -

slotC slots (slotC slots for each of the c classes).

[MU — QueryVector]

slotF = 2llegtmaxPlglors slotF = 2leg(maxF)] g1g¢g
Featurel(F;) ——————» fe————————————— Featuref(Fy)

1 o] 1t || o ¢ Ll o J.J 1« [f] e o |[] o |.
O T S S S S S M N M

KlogP(c;)|klogP(vir|Cp|...| KlogP (x116) |...| KtogP(Vipy ricp|dummyi i | .| ...| Klogp (Vs ilcy)| .. | KloaP(Xfl€p] .. |KtogPep rricy| dummyv ey || dummyyg] .|

MU-Class € ﬁ
slotC = 21/ log(slot)+11 g1oeg

Fig.6.21. MU — QueryVector_c and portion of the MU — TM_c depicting slots related to
class C;
j

117

ALGORITHM 6.28: MU-PPClassServCen (PP Classification With Malicious User - server centric)

INPUT: X = {X1,X; ... Xg}, F,C,TM_c

X = {Xy, X5 ... Xf} unclassified query feature vector owned by the User, s.t. X; € F; for1 <i < f

F. F = {Fl,FZ, ...,Ff}, where F; = {Vy pi, Vo pis oo Vipi ri}- Fis st. 1 <0< f (as explained in Section III-A)
C: The set of classes C = {C;, (5, ..., C.} (as explained in Section III-A)

TM_c: an already SIMD encrypted trained Naive Bayes model stored at TEAS

OUTPUT: Cry(X)
Cry(X):the classification of the query feature vector X according to TM_c

Phase I — EC User:

1 maxF = findMaxFeatSize(F) //find the feature with the biggest cardinality (number of elements)

2 slotF = 2MlegmaxPl. glotC = 2[f10g$loth+11. glot() = ¢ - slotC = ¢ - 21 1og(slotF)+1]

3 queryVector_v.insert(slotQ, 0) //insert slotQ = c - slotC Os (zeros) to the queryVector_v

4 fori = 1tof //for each feature
51 form = 1to |F]| //for each value of the current feature (feature F;)
6 if X; == Vi then //if X; is equal to the current V,, r; feature value of feature F;
7 queryVector_v[i -maxF + m] =1 //then insert one to index i - maxF +m
8 MU — QueryVector_c = Encode_Encrypt(queryVector_v) //SIMD encod. then encrypt., Fig.A.1

9 send k, Ry, R,, MU — QueryVector_c to TACS //send the malicious users’ random k, R, R, to TEAS
Phase I1 — TEAS:
10 receive k, Ry, R,, MU — QueryVector_c
11 sumResult_c = secSum(MU — QueryVector_c, slotF) //finds the sum of the (1s) for each feature
12 send sumResult_c to EDS /Nlines 13-17 can be done in parallel with Phase III
13 ones_v = {1,0,...,0,1,0, ..., } //a vector that has c ones after each slotC slots, starting from the first slot
14 ones_p = Encode(ones_v) //constructing a plaintext, rather than a ciphertext for performance reasons
15 MUQueryVector_c = Rotate(MU — QueryVector_c, 1)//rotation for 1 place to the right to make place
//for 1 in the begin. is needed to be multiplied with the class-conditional prob. (upper vector Fig.A.2)
16 MUEncryptedQueryVector_c = CPack(MUQueryVector_c, slotC, c) //replicates the
/IMUQueryVector_c for c times to get the upper vector of Fig.A.3, without the 1s (ones) in the beginning of
//each class slot
17 MUEncryptedQueryVector_c = MUEncryptedQueryVector_c + ones_p
//here we add the 1s (ones) at the beginning of each class slot to finally get the upper vector shown in Fig.A.3
Phase III — E2DS:
18 receive sumResult_c //sumResult_c was obtained from line 11
19 sumResult_v = Decrypt_Decode(sumResult_c)

//HasOnes(") checks whether there are ones at the beginning of each features’ slot at sumResult_c

20 if(HasOnes(sumResult_v)) //if it is the case

21 send (outcome = true) to TEAS //send true to TEAS so we can continue with the protocol
22 else //otherwise
23 send (outcome = false) to TEAS //send false to abort the protocol

Phase IV — TACS:

24 recieve outcome

25 if(outcome == false) abort the protocol

26 else

27 return PPClassServCen(MU — TM_C, MUEncryptedQueryVector_c, k, Ry, R;) from line 13
//PPClassServCen (Algorithm 6.21) is executed from line 13, during the execution n; = slotQ, n. = slotC,
//as shown in Fig. A.3

//queryVector_c is replaced by MUEncryptedQueryVector_c and TM _c replaced by MU — TM_C

In Algorithm 6.21 the replication is done at the user side (EC), but here we do it at TEAS
since the malicious user might put a different query vector (Fig.6.13 and 6.14) for each class.

Lines 13-17 can be done in parallel with Phase III.

118

In Phase III E2DS receives, decrypts and checks whether the result of the secSum done at
TEAS is proper (it should have one at the begging of each feature slot, i.e. ones after each
slotF slots) (lines 18-23). If that’s the case then TEAS is informed to proceed, otherwise it
should abort.

In Phase IV, if TEAS is signaled to abort, it does so (line 25). If not, TACS proceeds by
executing PPClassServCen (Algorithm 6.21) from line 13, and while doing so the
queryVector_c is replaced by MUEncryptedQueryVector c, and the TM_c is replaced
by MU — TM _c so that their corresponding slot constructions are illustrated in Fig.6.21 for

one class and in Fig.6.22 for the whole construction (all classes).

[MUencryptedQueryVector]

<[MU — QueryVector]= «[MU— QueryVector]» = [MU — QueryVector]=
1 1 T 1
f— MU-Class €, —»«— MU-ClassC, —» «—— MU-ClassC, —>»
slotQ = c - slotC = ¢ 2//1ealslot)+11 g4

[MUtrainedModel]

Fig.6.22. MUencryptedQueryVector_c multiplies MU — TM _c

Improvement 6.6: Unlike it was the case till now in the literature, no need for slots to be

powers of two anymore due to Algorithms 6.1 and 6.2.

In Algorithm 6.29 we deal with malicious user(s) (client(s)) for the cases of secure ML
classifications based on linear algebra operations, which were presented in Algorithms 6.26
and 6.27. In those scenarios a malicious EC user instead of putting zeros into slots that are
not meant (not designated) for him, in order to disrupt the secure classifications for the other
EC’s, the malicious EC can put dummy values other than zeros, which will sabotage the
protocol for the other EC’s by having them get inaccurate classifications. In order to protect
from such malicious EC users, before adding (summing, packing) up the EC’s queries into

one query, each EC’s query is firstly multiplied by a plaintext mask which has f 1s (ones) at

119

the slots which are designated for that particular EC and zeros elsewhere (lines 1-4).

Afterwards it can be continued with both Algorithms 6.26 and 6.27 from line 4.

ALOGRITHM 6.29: secMLClass-MU (secure ML Classifications — Malicious Users)
INPUT: MF ¢,§ = {X®}! ¢ f

OUTPUT: Cy(S)_v
Cy (S)_v: vector of the final classification of q queries

Client(s)
1 maskSecMLClass_p[] = masksForSecMIClass()

2 fori=0toq

3 | X_c[i] = EncEncr(X%)

4 _c[i] = X_c[i] X maskSecMIClass_p|i]

//continue with line 4 for both Algorithm 6.26 and 6.27

6.9. Theoretical and Experimental evaluations and comparisons

In this Chapter we provide the theoretical and experimental evaluations and comparisons
among building blocks and secure classifications algorithms (protocols) from different
schemes (research papers). We should note that the experimental evaluations of our proposed
secure comparison protocol - secComp, hence of our secure comparison of all data slots —
SCADS as well (since it is built on top of secComp), show that it doesn’t offer a perfect
hiding of the difference of the two numbers that are being compared (Section 5.9.1). Yet, our
theoretical analysis show that when SCADS is used in combination with the our secure and
private ML classification protocols it offers a total privacy of the trained model and the user
query. We do this by giving a polynomial time reduction of the hardness of getting the trained
model and the user query to the hardness of LWE (Section II). This is due to the fact that the
matrix-vector product of the trained model matrix 7M and the user query vector X of our
Machine Learning classification protocols help us “convert” (polynomially reduce) SCADS

into an LWE problem, as it is proven in Section 6.9.2.

6.9.1. Theoretical analysis and comparisons

Since secure comparison and secure argmax (secure top-K) are among the most important
and most used building blocks in secure ML classification algorithms, in Table 6.1 and 6.2

we provide and compare their security, privacy and efficiency properties among different

120

schemes. In this Section we use the notations we mentioned in Chapter 2. Briefly, N is the
number of slots, ¢ is the number of classes, f number of features and |F;| is the number of
elements (cardinality) of feature’s value set F; for 1 < i < f, b is the number of bits a single
ciphertext encoded in one slot has and n is the number of Edge Dataset Owners (EDOs).
During the theoretical comparisons, for both the computation and communication purposes,
except for schemes [61-62], we mostly take into consideration only the costliest terms which
usually are due to the cryptographic techniques such as homomorphic encryption (HE),
oblivious transfer (OT), private information retrieval (PIR), etc. In the process in bold we
give a reference to the papers of corresponding cryptographic technique together with the
number of invocations of the scheme or any of its’ subroutine(s) (e.g. multiplication, addition,
rotation for FHE or SWHE). Furthermore, for the scheme at [67], letters O and (2 represent
the big-O and the (2 notation, respectively.

In Tables 6.1 and 6.2 we provide theoretical comparisons for the computation and
computational costs for secure comparison (secComp) and secure argmax (secArgmax)
protocols among different state-of-the-art schemes, respectively. At those secure schemes
one of the parties has the encrypted data (two integers or an array of integers for the argmax
case) and the other one has the secret key. At the end one finds the index or the maximum of
two integers (or of an array of integers for the argmax case) while the other party usually
learns nothing. During the secure argmax protocol, almost all of the schemes, several times
invoke the corresponding secure comparison scheme of the same paper. In this manner all
the computation and communication costs should be correspondingly added to both parties
for each secure comparison invocation.

In our proposed scheme, during the secArgmax protocol, Party A executes once all of the
SRCPer, invSRCPer and SCADS protocols described in Chapter 6.3. SRCPer has m plain
multiplications, (m + 2) rotations and logm additions, where m is the number of data slots
in a block and it’s a small integer (usually not greater than 6 or 7). The same applies for
invSRCPer. SCADS has c rotations, (¢/2 + logc + 1) additions and 1 plain multiplication.
Thus we have (2m + 1) plain multiplications, (2Zm + 4 + c¢) rotations and (2logm +
c/2 + logc + 1) additions for the overall computation cost at Party A, which is shown in

Table 6.2.

121

Table 6.3 gives the theoretical comparisons for the computation and communication costs
among different schemes during the PP NB classification stage. For our scheme we put
Algorithm 6.21. In the process we tend to use the described schemes in the most efficient and
optimized way they can be utilized (especially the scheme described in [69]). However, we
do this without losing the generality by making any assumption on the number of features f,
classes c or cardinalities of F; for 1 < i < f. Also, during the PP classification, almost all
of the schemes invoke the corresponding secure argmax or, when they deal with binary
classification only (such as Gao et. al. [71]), the corresponding comparison protocol, which
should be kept in mind while estimating the overall computation and communication cost for
both (or all) of the participants. Furthermore, some of them several times call other
cryptographic protocols or their subroutines such as OT, PIR, Pailler [49] etc., which should
also be considered when estimating the overall communication and computation cost for both
(or all) parties.

For the server-centric classification scheme of Park et.al. [69], for the Assign module we
need 1 multiplication + 1 addition while for SlotCopy we need |F}| — 1 rotations and |F]| -1
additions. Since for each feature we repeat both of the process once, and also having in mind

the |F}| rotation for the MaskGen module, in total we have TXgyery =1

(1 multipliplication + (2|F;| — 1) rotations + |F;| additions).

122

Table 6.1. Theoretical comparison of the secure comparison (secComp) algorithm among different schemes

o suosiiedwod suosliedwod qNIS N
.rw. ANIS N Ajlenualod uoy Ajjernusiod Joy suonippe ¢ +
& “xauaydid T :[9G] A4 uonedidinw T :[9G] :Ad
awiayds JnQ punoJ Allenaed
<
>
£ auo
S N uondAioep T :[z7] :Ad
(6] ‘I& 12 poom Xauaydp T uonippe 1
[8.] ‘|e"1® Poom @ MI-AD9 +uoneaidninwt :M1-A99 pasodxa Aje101 si
[££] 1613 BUNWESEA puno T sJaqwinu oM} 3y}
< 9UON uondAidap T :)1-ADg JO @2UBJalIp 9y L
suosiedwod gNIS N pasodxa aq ySiw
=) Xapuaydn T Ajjernusiod Joy suonippe T + sIaqUWNU oMy
: uonesydiynw T :
[2£]1e 33 ifjiwely [os] A4 RealdRInul T :[95] Ad punoJst 941 0 3ouaI3Ip
o ay1 ‘sawin
< QUON uondAiep T :[95] A4 |BJDASS UNJ §|
xoLaudi (*diynwi *3su0d + “diyjnw)-q + unou
[£9]e32 N ' .wmm%>wm (vonippe+e101).(q + gBoy) | PUMO'T S3A
. {[ss] Aog
" si1xanaydpd € ‘diyInw TT + ‘uodxa 3suU0d 9
‘[ev]4ained ‘[6v]42ired
[99] [e3m NN punoJt S3A
< sixauaydp ¢ ‘diynw z 40 "Joud 7 +
‘[6v]49]11ed "0Ud T + 409pT :[6v]43]1ed
[9£] ed1aiad J3sn ay1 Aq pa1dAidsp aq ued sanjea 10exs
[¥7£] 1€°33 JpaYy) J19y3 92uls payea| Aj|e1o1 aue sanljigeqoad ssepd ay] ‘||e 3e uosliedwod 94ndas oN
M. 1Xapaydn T suolnppe ¢ + 1eandinw g pasodxa aq 1ySiw
S ‘[e£] panoadwi-pog ‘[e£] panosdwi-pog sIaquWNU oMy
punoJt 9Y1 JO oUaJBIp
[€£] €32 ung)
< suo uondAisp T oy} 'sswi
m N ‘[€£] panosdwi-pog 4935 UN 4|
(-9
(g Avied 4oy Ajuo uondAidep
o SUON T '9°1) UOI3BJ0AUI T
[96] AN
[69] 1e32 3ed puno/ T S3A
< uoied0AUl T :[96] AT UonedoAUl T :[96] AN
o UoIed0AUT :[S6] XDAa uoled0AU T :[S6] ¥DA
. £ 43ydid T :[0S] WD Unw T +10us T:[0S] WD
(1] 1e 2 oeo & 1aydi T :[6plaled | unw € +“1oua T :[srl4a|ied
(0] e3e 1 sounoy
[€5] |e12 3509 P € S3A
< uonedoAul T :[S6] ¥9a
UOI}BJ0AUI T ¢
& T uondAidep T :[6¥]49]11ed
EIVEDR
g (spunou) uonewJoyul Aue
Ayadoud m uojpedunNwWwo) uoneindwo) *JeIDIU| Sunjea splony

123

Table 6.2. Theoretical comparison and properties of the secure argmax (secArgmax) algorithm among different schemes

© -] xauaydnd T :[95] A4 uondAiua T + suondAidap ¢ :[95] A4 \w,
§ e
H ‘mppe (1 + 2601 + /2 + wborg) + |3 ,m Ajlensed
5 < suoneod (9 + ¥ + wyg) |~ s
°© sxaMaydd 7 :[95] A4 +7ea)dnui uield (T + wg) :[95] Ad)

EEREIEINTY
cRwEs |® SUq T — 2 :dI-AD9 suondAioap T — o :aI-ADE " J13Y3 4O ||e pue
m W 2R 1_A 2 ‘s;aquinu ay3 jo
m © .m m < suolmippe (T -2)2 |, m (22uanbas) uapJio
T z= sixauaydp T — 2 :3)1-AD9g +suonedldiynw (T - 2)o :@I-AD9 ay3 syea| Ajjered

4 of
I sixeuaydp 2 :[95] A4 suondA1ap T + ——-:[:[9S] Ad
=R 2 SIA
m © suonedljdiinw o + ¢ 8
85 < s1xauaydn T . 1-7 |~
1+2/(1 —2)2:[95] A4 pue suomippe (T —2) + =2 ‘[9s] A4
o . _T [sT]
89w~ ul duo 3y} Hoddns 03 papuaIxad 3 A[ISES UBD 3 INQ ‘UOIIBIIISSE|D SSB|IIINW YIIM |EDSP JUSIOP SWBYIS 3y |
3 m W |020304d Xew3Je syl ALY J0U S0P 3| "BIUIS UOIILIIHISSe|D Ssejdllnw 11oddns 30U S90P SWaYIS Sy
. g Aved yum “esonul (T — 2) g Avied yum suonesonul(f —2) |«
o [-+] M
© :dwo)293s Suipuodsasio) :dwo)29s Sulpuodsaio) |5
— o
= 5 S3A
w g Aued yum -1esonul (T — 2) g Aved yum suonesonul(T — 2) |
= < :dwo)2as Suipuodsalio) :dwo)29s Suipuodsalio) | o
M XewsJe 34n23s 0} PISU OU OS "SISSE[D OM] SBY YIIYM ‘saAeg SAIEN [BIWOUI}NW YUM S|BSP SWAYIS 3y |
= g Aued yum-aiesonul (T — 2) g Auied yum suonesoaur (T —2) | o,
W “ :dwo)2as Suipuodsalio) :dwo)2as Suipuodsalio)d .m san|eA J1ay3 10U
2 2 ‘s1Iaquinu ayj Jo
()
c < g Aned yum 1esonul (T — 2) g Ayed yum suonesonul (T — 2) 1_A (22uanbas) uapJio
>
2 :dwo)2as Suipuodsalio) :dwo)2as Suipuodsalio) | © aya syea| Ajjeiued
— @ " uoissiwisuey ‘dignuw (T — 2) :[sS] MN-ADE
© . . . T =
55 auaydp T :[SS] aN-Aog 2/(T — 2) :dwo)29s ‘uodsalio) | S SIA
x © o=
& o 2
& < 3UON uondAidap T :[§5] aI-ADE
sixauaydid € :[6v]43)1ed suonedlidninw g :[gr]49]1ed
w
. o T :dwo)23s Suipuodsaiio) T ::dwo)2as Suipuodsaiioy S
4 m :MOJ3q 3y} JO Yoea Jo saw} -0 :MOJ3q 3y} JO Yoea Jo sawl} -0 m
T = — o S3A
° 8 s1xapaydd ¢ :[6v] 19]11ed suorienuauodxa ¢ + suonedndiynw g |
m m T :dwo)23s Suipuodsaiio) +suondAiua z :[er]4oqed | o
(2} < ~
:MoJ9q T :dwo)2as Suipuodsalio) | -
9U3} JO Yoea Josawn | — 2 :Mojaq ay1 Jo Yea josawn T — 2 |~
IWIYIS
)
m m g uonewuoyul Aue
= s 2 Supjeaq sploay
c 5
Q .
Ayiadoud uoneduNWWo) uoneindwo) m W

124

Table 6.3 Theoretical comparison for the costs of the PP Naive Bayes classification algorithm among different schemes

waip

m 93 YyuMm uoiedoau T :xewsse Suipuodsaiio) 1UBI[2 3Y3} YIM uolled0Au| T :xewSae Suipuodsalio)
2 | donss wapaydid T :[95] Ad 1dAiap T ‘suomppe z + (1412)60p “dinwi € :[95] Ad
Q
w
5 J9AJ3S 93 yum xewsse Suipuodsalio)
© 13sN xauaydd T :[95] A4 J9AJS 9y} yum xewsse Suipuodsalio)
. 19AJ3S 9y} yum xewsae Suipuodsalio)
o
o (suonesydiynui (241x)60;
m JEYVEIN J9AJ3S 93 yum xewsse Suipuodsalio) + uoluppe T + uonesidiinw ureid 1) 2 :[95] A4
M, 19A19S 9y} yum xewSae Suipuodsatio) 19AJ9S 9y} yum xewsae Suipuodsalio)
< | 49sn sixauaydd g :[95] A4 uonippe T + suondAioua ¢ :[95] Ad
suoI1ed0AUl 7 :[T /] 49)sued] SNOIANQO |3]jeded suol1ed0AUl 7 :[T/] 43)sued] SnoIAlqO |3)jeded
= | 4amias JanJas 1U31[2 3Y1 Yum uosiiedwod aindas Suipuodsalio)
U. 93 UM uoiledoAul T :*dwod 24ndas dsatio) suondAnua (|14|x + 1)2:[TT] 43|1ed
©
o SuOI1e20AUI Z :[T.] 49jsued] snoIAlqO |3]|eied SuOI1e20AUI Z :[T,] 49jsued] snoIAlqO [3]|eied
S 19sn JanJas JOAJS 3Y} YHM uo3ed0AU] T *dwod aundas *dsali0)
© 93 UM uoledoAul T :*dwod 94ndas dsatio) suoneaidininw Jz :[TT] 49||1ed
suonesonul J :[s/] did U312 341 YUM uoI1ed0AUl T :xewsse Suipuodsalio)
.| 4onms (yoes suonesonul J: [s/] ¥id
g g $Z0T) suoissiwsuesy saydpd 27 :[61] 43||1ed dinw ([2415 + 1)2 ‘suoirdAious 1 :[y] 13))1ed
m PETSEN J9AJ3S 3] YUM UOI1eI0AUI T :Xewsse Suipuodsalio)
5 19sn 9yl yum uonedoaul T:xewsse Suipuodsaiio) suonesonul J:[s/] did
suonesoaul J :[Ss/] did diyinw 5 ‘ndAap (f + 1)2 “suondAious o :[6y] J9)j1ed
— Two™1(zq0 + 2l |xvw + €q)0
G, | samas + w(glrd|xow + ol xow +)0
m. uolssiwsues] xanaydd T :[S5] ADg + (0473 + ppo 1) (2ql14|x¥vW + €q4) 0 :[SS] AO4
()]
.w 19sN uolssiwsuesy xauaydd T :[s5] ADg uondAnua T :[SS] ADG
BUETT U312 343 YHM uOoI1ed0AUl T :Xewse Suipuodsalio)
W FEVVETN 93 UM uoiledoaul T :xewsie Suipuodsaiio) suoledoaul f :[€€] wing a1ndas Suipuodsalio)
= suolledoAul J :[99] wng 94n2as ‘puodsalio) ndinw |1,| 3 + "usuodxa |1.4| 3 :[6¥] 43]1ed
©
.m 9Y1 yum uonedonul T:xewsse Suipuodsalio) J9AJ3S 3] YUM UOI1BI0AUI T :Xewsie Suipuodsalio)
= | sesn suoissiwsues z/]1.4|x :[:[6v] 42111ed suondAnua z/[14| 1 :[6v] 43111ed
. ysey-q s y ‘(8eq-p4om) aseqeiep ay3 ul SPIOM JO “Ju
m SEVVEDN 3yl sl p ataym “ondnjnw y - p . wL “suonippe y . p - w
T (ss1miqeqoad z ay3) sxewnaydid z :[y2] ADN ‘(s43sn ||e Joy paziowe) 1dAUS Y - P (L] ADN
°
.w (Sspsom |leWw?D paljissejoun ayy ||e 1o} saysey S1Iq Ul 3ZIS YSeY 3Y3 SI Y ‘|IBWS 3Y3 Ul SPJOM JO “JU Y3
< sn 1q pa1dAious) syxeuaydd y - wi:[y/] ADO) sl w auaym ‘(sqoud) 1dAidep z “1dAious y - wi:[pL] ADA
= BUETT U312 343 YHM uoI1ed0AUl T :Xewsae Suipuodsalio)
[I EVVETS 941 Yy3m uonedoAu| T :xewsie Suipuodsalio) (s1an @NIS) AW f Jo ynw S - 2 :[g/] panosdwi-ADg
©
° JAAJDS 3Y) Y3IM UOIIBI0AUI T:XewSie “dsali0)
C
3 sn (1xa3uteyd ur Asanb aya) sia8aur f J3AJ3S 3Y} YUM uo11ed0Aul T :xewsse Suipuodsalio)
}nsau J3sn Y3 YUm uoiedonul T :xewsie Suipuodsalio)
Z | 49mnes [BU} BYI YUM Ixa1aydDd T :[SS] NI-ADE waty 4 avdy 4 dionby p = 2975 :[gg] ayyi-ADE
(]
W\ JAAJDS Y3 YUM UOI1EIOAUI T :XewSie
L sn Asanb uasn ay3 4oy 1xapaydid T :[5S] I-ADE Suipuodsauio) Asanb ay3 Joy uonndAioua T :[5S] aI-ADE
U312 YUM "20AUl T :XewSe Suipuodsatio) U312 343 YHM uoI1ed0AUl T :Xewse Suipuodsalio)
W suolssiwsueJ) 1xauaydd (s4asn Auew Suowe paz[3owe oS ‘92U0 3Uop)
= | semss (lndlz + 1) :([sS] -nAoa) [67] 4211ed suondAnua (1415 + 1)2 :([sS] M-AD4) [67] 4311ed
~
= SEVSER J9AJ3S 3Y) YHUM uol3edoAul T :xewsie Suipuodsalio)
=2 19sn 9yl Yy3m uonedoau| T :xewsie Suipuodsalio) suoneaidiynw fo :([sS] aN-AD4Q) [61] 43]11ed
S 2de|d uonesunwwo) uoneindwo)

125

For maximum performances we will have to pack those outputs into one ciphertext, thus

we need extra Tpqc = (f — 1)(rotation + addition). Assuming that the T and S tables are

also packed correspondingly into [] ciphertexts, we have Tpopy =

bu-cy;F;

[b-u-:-]z-p-] (|F;| multiplications + |F;| additions) + (log, s(f + 1) + [logq + 2])

multiplications for the remaining part, where the term (log; s(f + 1) + [logb + 2]) comes
from the WallaceTree and K-S adder, b is the number of bits per encrypted integer and u is
the number of slots between two neighboring bits. Thus for the server-centric classification
in [69], in total we need Tior = TXguery + Tpack + Trem Oof BGV-like operations and the
corresponding secure argmax scheme, which is the value of [69] provided in Table 6.3.
Table 6.4 shows the homomorphic complexity and circuit depth (the number of consecutive
multiplications) of some of our secure linear operations compared with the best reported
results of the related research schemes in [89-90], since they are known to be among the best.
All of our algorithms have a O(logd) (logarithmic) complexity wrt. to the matrix (vector)
dimensions, except for secMatMat which is linear since it uses secDRep(+), which is linear

itself.

Table 6.4. Complexity and comparisons of secure linear algebra operations

Algorithm ADD CMUL | ROT MUL | DEPTH

secSum logd 1 logd 0 1 CMUL

CRep logd 0 logd 0 0

secDRep 2logd d d+logd 0 2 CMUL

secDotP logd 1 logd 1 1 MUL+1 CMUL
secMatVec 2logd 1 2logd 1 0

secMatVec (C)* | logd 2 logd 0 2 CMUL
secMatVec [89] | d d d-1 0 2 CMUL
secMatMat 4logd d+1 d+3logd |1 1 MUL+2 CMUL
secMatMat [90] | 6d 4d 3d+5Vd | d 1 MUL+2 CMUL

*For benchmark purposes with [89] the vector is packed and in plain

**it is assumed that the matrixes are squared. All logs are in base 2

ADD = Ciphertext Addition, CMUL = Constant (plain) Multiplication,
ROT = Rotation, MUL = Ciphertext Multiplication

126

6.9.2. Experimental evaluations and comparisons

Table 6.5 gives the computation cost to securely sum up d integers. Due to the SIMD packing

of integers into polynomials with size N, in our scheme we can simultaneously sum up - sets

of d integers, so all of the results for our scheme are aggregated (divided byN /d) to include

this speed-up. Table 6.6 shows the results for secure comparison of two integers, and for the

same reasons the results of our scheme are aggregated (divided by N) to include N

simultaneous comparisons. For our scheme in Table 6.6 for the costs of our secComp

algorithm we consider party A to actually execute our secComp algorithm and party B to

decrypt it. Table 6.7 results of our block are aggregated to include simultaneous secure

argmax of N /c pairs of c integers. Table 6.8 and 6.9 give the results for different polynomial

sizes of SRCPer, invSRCPer and CPack, among different block sizes — k, and number of

ciphertexts to pack — p, respectively.

Table 6.5. Computation cost for secure sum (secSum) of d integers among different

schemes (in milliseconds)

scheme Ou{ :lcgl:)ililzﬁl-nsg.cgum Liuet. | Parket. al. | Khedr et. Bost
d N=24096 | N=8192 | N=16334 al. [67] [69] al. [74] et.al.[53]
32 0.093826 | 0.138688 | 0.443816 256 ~106000 192 168
64 0.192583 | 0.336359 | 1.05018 512 ~202000 384 336
128 0.399319 | 0.768558 | 2.48382 1024 ~778000 768 672
256 0.910869 | 1.763741 | 5.648328 2048 NA 1536 1344
512 1.992125 | 3.984806 | 12.65613 4096 NA 3072 2688
1024 4.2552 8.57455 28.14 8192 NA 6144 5376

Table 6.6. Computation cost for the SIMD secure comparison (secComp) protocol of two
encrypted integers among different schemes

o Our scheme (secComp) 531. 170

g (in milliseconds) o I) N) I B
& | N=4096 | N=8192 | N=16384 | (inms.) (in sec.) (in sec.) (inms.)
Place | A | B | A | B B|A|B|A|B|A| B | A | B
Cost | 033024 | 0.72 | 0.42]2.03 | 0.69 | 453437 25| NR | 8 | NR | 110 | NR

*NR = Not reported

127

Table 6.7. Computation cost of secure argmax (secArgmax) of ¢ integers among different
schemes (in milliseconds, unless otherwise stated)

< Our scheme — secArgmax (Algorithm 6.7) [53] [69] (73]
2 N = 4096 N=8192 N = 16384 [75]
c“e A B A B A B A B | All All
4 | 0.01 | 0.01 |0.0267|0.0132| 0.09 | 0.02 | =250 | =150 | =20 s ;1:00
8 | 0.11 | 0.02 | 0.2321 | 0.0250 | 0.76 | 0.03 | =550 | =400 :1820 ffco
16 | 0.32 | 0.04 | 0.6609 | 0.0544 | 2.25 | 0.07 | ~1100 | =800 :9800 1;20
3520
32 | 0.98 | 0.08 |2.0322| 0.1115 | 6.99 | 0.16 | =250 | =150 | =205 | "
64 | 351 | 021 |7.2732] 02059 | 26.6 | 031 | =550 | =400 :1820 70840

Table 6.8. Comparison of computational costs for SRCPer and invSRCPER for different
block) sizes & and polynomial modulus N (results are in milliseconds)

k
N 2 3 4 5 6 7

4096 8.66 | 15.07 | 21.18 | 25.05| 31.71 | 36.86
8192 | 4582 | 55.28 | 83.06 | 101.97 | 130.49 | 156.87
16384 | 239.09 | 377.19 | 566.71 | 680.13 | 904.02 | 997.20

Table 6.9. Comparison of computational costs of CPack for different ciphertext numbers p

and polynomial modulus N (results are in milliseconds)

p
N 2 4 8 16 32 64

4096 204 563 17.82 37.45 | 209.53 | 209.53
8192 8.01 | 23.08 | 60.87 150.9 | 887.60 | 887.60
16384 | 50.81 | 138.8 | 426.6 | 1024.56 | 6752.1 | 6852.1

Tables 6.10 and 6.11 give the computation cost of some of our secure linear algebra

operations compared with the best known results from the state-of-the-art schemes.

128

Table 6.10. Comparisons of amortized secure linear algebra operation costs (in ms)

Dimension 4 8 16 32 64

secSum 104 0.005 0.011 0.045 0.081

CRep 0.006 0.035 0.21 1.625 6.01

secDRep 0.15 3.906 80.4 352.5 450

secDotP 9-107% 0.024 0.04 0.107 0.194

secMatVec; 0.05 0.24 1.19 52 22.6

secMatMat 0.54 9.6 145 575 895

secMatMat (HE- 4

MatMult) of [90] 3 NR 162 NR 10
Table 6.11. Comparisons of amortized cost of secMatVec costs (in ms)

Matrix dim. Naive [89] Diagonal [89] Hybrid [89] Our*

1024 x 128 880.0 192.4 16.2 30.8

1024 x 16 110.3 192.4 7.8 3.79

128 X 16 77.4 254 53 0.48

* multiplication of a plaintext matrix with a packed ciphertext vector

Table 6.12 compares the best PP classification results per query as reported at the

corresponding schemes. In Table 6.10 scheme we report our results for Algorithm 6.21 for
datasets in [84-87], also introduced in Chapter 5.5.

Table 6.12. Per query comparison of the cumulative (among all participants) costs for the PP
classification case among different schemes and datasets

[*]

=

S | [731]1691| 1531 | 1671 | [711 | [75] | (721 | [76] | (771 | [78] | [79] | Our | [66] | Our | Our

@

§ Inf?:rl;liat SMS

g Breast Cancer Wisconsin (Original) Data Set [86] ions Data Spam

R Set[s7] | 134
g‘ % | 48 | 70 | 479 | 349. | 555 | few | 14 | 357 | 1.5 0.62 | 0.40 | 0.84 | 196 | 0.9 | 6.75
S S | ms |sec.| ms. | min. | ms. | min. | ms | ms | sec | sec. | sec. | ms | sec. | ms | ms
S 2 | \R c? 72.9 | 1.24 | 19.3 NR 109 | 43.1 | 4 | 256 | 306 | 13 | 40 | 13 | 109
e S helr’ KB | MB | KB KB | KB [MB| KB | KB | KB | KB | KB | KB

*NR = Not reported

129

Table 6.13. Amortized query costs for the NB classifier based on linear algebra operations

Cost Computation cost | Communication cost
Scheme
Original Wisconsin Breast Cancer Dataset [86]
[53] | 479 milliseconds 72.5 KB
[10] | 555 milliseconds 19.3 KB
[6] | 2900 milliseconds | 800 KB
[44] | 349 minutes 1.24 MB
[73] | 48.79 milliseconds | Not reported
[69] | 70 seconds 2 ciphertexts
[72] | 14 milliseconds 109 KB
[76] | 35.74 milliseconds | 43.13 KB
QOur | 2.37 milliseconds | 13.7 KB

Table 6.14. Amortized query costs for the SVM classifier based on linear algebra operations

Cost
Scheme

Computation cost

Communication cost

Original Wisconsin Breast Cancer Dataset [86]

[53] | 204 milliseconds | 35.84 KB
[44] | 3100 milliseconds | 7.5 MB

[73] | 2.41 milliseconds | Not reported
[97] | 3.47 milliseconds | 0.92 KB
Our | 0.19 milliseconds | 0.43 KB

UNSW-NB 15 cybersecurity dataset [94]

Our | 0.20 milliseconds | 0.43 KB

Table 6.15. Amortized query costs for the LR classifier based on linear algebra operations

Cost
Scheme

Computation cost

Communication cost

Original Wisconsin Breast Cancer Dataset [86]

[53] | 204 milliseconds | 35.84 KB
[97] | 3.55 milliseconds | 0.92 KB
Our | 0.21 milliseconds | 0.43 KB

UNSW-NB 15 cybersecurity dataset [94]
Our | 0.19 milliseconds | 0.43 KB

Tables 6.13-6.15 compare the amortized (per query) computation and communication costs
of our schemes based on secure linear algebra operations (Algorithm 6.26) and the related
PP classifications for NB, SVM and LR among different datasets, respectively. One of the
datasets is the Wisconsin Breast Cancer dataset [86], while the other is the UNSW-NB 15

130

cybersecurity dataset [94], which is also a binary-class dataset, thus ¢ = 2, has f = 42
original features, but after extensive feature selection in plain we used only f = 15 of them.
For both datasets our PP classification scheme (Algorithm 6.26) showed no loss of accuracy
due to PP classification. If a certain scheme provides several results for the same purpose due
to different security parameters or improved scenarios, in Tables 6.13-6.15 we give the best
results of the corresponding schemes. In all of them for our scheme we provide the
implementation results of the improved version of the server centric secMLClass (Algorithm
6.26). For all of the datasets the trained model for NB in plain was obtained using C++ code,
while for SVM and LR the trained models were obtained by WEKA [93].

Table 6.16. Amortized per query costs for (secC, Algorithm 6.24)

Comput. cost Commun. cost Comput. cost Commun. cost
(ms) (KB) (ms) (KB)
EC | E2DS | EC | E2DS EC | E2DS | EC | E2DS
Enron Email dataset [37], N=8192 Enron Email dataset [37], N=16384
15.03| 028 | 275 | 0 173] 027 [275 | 0
SMS spam dataset [84], N=8192 SMS spam dataset [84], N=16384
65 | 02 [13.75] 0 695 072 [13.75] 0

Table 6.16 gives the amortized (per query) costs of the improved 2PC version of Algorithm
6.24 for different N. In this sense, for the Enron dataset [37], already presented in Chapters

4.5 and 5.5, the number of packed queries in a single ciphertext is g = [(mlinl = 1(2041\;“)] =

4 and 8 queries for N = 8192 and N = 16384, respectively, while for the SMS spam corpus
dataset [84] it is 8 and 16 queries, respectively.

In Table 6.17 we report and compare the costs and characteristics of several related
schemes (mainly related to binary textual datasets) dealing with PP classification. Since they

report several costs and properties, we present the best of each one of each scheme.

131

Table 6.17. Amortized per query costs for PP classifications among different binary textual

datasets (queries)

Scheme | Comp.cost | Comm.cost | ML algorithm | Class. Acc.
Enron email dataset [37]

[11] ~8 s Not reported NB Not report.
[12] 350 ms ~110 KB MNB,NB 98.8%
[17]* 3.79s (SEAL) 40.63 MB Deep Learning 86.3%
[17]** 0.17s (GPU) 40.63 MB Deep Learning 86.3%
[21] 78 min Not reported NB 99.1%
Ours 15.31 ms 275 KB MNB 99.1%

SMS spam corpus dataset [84]
[20] 21 ms Not reported NB 95.6%
[18] 6.75 ms 109 KB NB 93.1%
Ours 3.38 ms 11.37 KB NB 93.1%
Hate speech against immigrants and women in Twitter dataset [19]

[19] 25.579 s Not reported Ensemble trees 74.4%
[19] 0.953 s Not reported | Logis. Regress. 72.4%

*26 cores of 2.1 GHz Intel Xeon Platinum processor with 188 GB of RAM
** 1 TESLA (5120 cores of 1.38 GHz) and 3 P100 (3584 cores of 1.19 GHz)

We evaluate the performances of the proposed secure comparison-secComp protocol over
arithmetic circuits when it is used isolated (not in combination with other building blocks or
protocols), which is given as y = (a — b)r + h = xr +h, s.t. r > 0 and |h| < r (Section
6.3.4). We assume that variables a and b are samples from a uniform distribution in the range
of (—2"71,2""1 — 1), thusa « A =U(-2""1,2"1-1), b« B=U(-2"12"1-1),
7 is a positive sample from a discrete Gaussian distribution with mean 2"~! and standard
deviation of 3.2, thus 7 « R = N(2""1,3.2), while h is a sample from uniform distribution
intherange (—r +1,r — 1),h « H = U(—r + 1,7 — 1), where n is the number of bits that
the variables have. The distribution type of r, its mean and dispersion where chosen due to
showing better experimental performances and were inspired by LWE. For the distribution
of the variable x we have x « X = A — B.

In Fig.6.23-6.25 we show joint probability of X and Y -P(X,Y) — by plotting 10.000
points when the numbers of bits are n=2,3 and 4, respectively.

What we want to idelly see in Fig.4-6 is a projection of Y which is uniform and a projection
of X which is the same for each value of Y. In this case, observing any value of Y will give

the conditional entorpy for X, thus there would be no information gain for any observerd

132

value of Y. However, this is not the case with Fig.4-6, thus there is some information leakage

about the difference of numbers a and b.

P(X,Y)

° Py

Fig.6.24. The joint probability of X and Y, P(X,Y), for n=3 bits

133

P(X,Y)

Fig.6.25. The joint probability of X and Y, P(X,Y), for n=4 bits

In Fig.6.26-6.28 we show the probability of Y- P(Y), by plotting 10.000 points when the

numbers of bits are n=8,12 and 16 bits, respectively.

Plotting the secure comparison of 10000 uniformly random chosen a, b

2500 4

2000+

1500 -

P(Y)

- JII.-
0-
—15000 -10000 -5000 o 5000 10000 15000
Y=(a-b)R+h

500 +

Fig.6.26.Plotting 10.000 points to draw P(Y) when n=8 bits

134

Plotting the secure comparison of 10000 uniformly random chosen a, b

2500

2000

1500 4

PY)

1000 4 I.
—400000 —200000 o 200000 400000
Y=(a-b)R+h

500 4

Fig.6.27.Plotting 10.000 points to draw P(Y) when n=12 bits

Plotting the secure comparison of 10000 uniformly random chosen a, b

2500

2000 A

PiY)

-1.5 -1.0 -0.5 0.0 0.5 1.0 L5
Y=(a-b)R+h le?

0

Fig.6.28.Plotting 10.000 points to draw P(Y) when n=16 bits

Fig.6.26-6.28 show that the security characteristics of ¥ improve as the number of bits gets
larger by making the dispersion of Y greater. This is especialy good knowing that Algorithm
1 can be expressed with the Paillier that can have thousands of bits and the SWHE scheme

which can offer close to one thousand bits when N = 32K.

135

6.10. Security analysis and proofs

Theorem 6.1: Let a « U7*™ and let a’ be obtained by a s.t. each of the rows of a is

.) . . -1
subtracted in index (component-wise) manner with all the other rows (in total we have %

n(n-1)
rows). Let s' < U™, R< U, * and h «

such subtractions, thus a’ has _n(nz_l)

n(n-1)
X, z , S.t. each element (entry, index) of R is greater than zero, thus R>0 and |h| < R,

thus the absolute value of each element of % is smaller than the corresponding index value of
R. Let ¢’ « UZ!. If Decision-LWE is hard (Section 2.4.2), then distinguishing between
(a’,a’'s" xR+ h) and (a’,c’) is also hard. Here X stand for index (component-wise)

multiplication.

n(n-1)

Proof: We get a’ in polynomial time of operations (subtractions). Apparently a’ € U q 2 Xn,

since subtracting a uniform variable from another uniform variable in modular arithmetic still
gives a random uniform variable. The same reasoning can be given for the multiplication of
two uniform random variables in modular arithmetic. Simply put, before adding h to a's’,

we furthermore randomized all of a’s’ components (indexes) by multiplying them with a

nn-1)
random uniform R, thus a’s"XR+h=U, * . This means that we can’t distinguish

between (a’,a’s’ X R + h) and (a’,c¢"). |
Theorem 6.2 (Symmetry of Decision-LWE): Let s « U7, a « Up™™, e « xg*, ¢ «
Ug**. If Decision-LWE is hard, then distinguishing between (s, a - s + €) and (s, ¢) is also
hard. Thus, here, instead of a, we share s.

Proof: if there is a way to find a € Ug”*™ from s € Ug**", then it is even easier to find s

when a is given, which contradicts Assumption 1 (Decision-LWE).]

Theorem 6.3: Using SCADS (Algorithm 2) after secure ML classifications (equation (1)),

reveals nothing about the trained model M or the user query X.

n(n-1) n(n-1)

Proof: Let X « U”', M « U™™, R « U, ? and h < X, * , where R and h are

the random integer vectors needed for SCADS (hence for secure comparison) in SIMD

n(n-1)

fashion. At the end of SCADS the output will be M'X X R + h, where M'e U, * " We

136

invoke Theorem 1 to show that the user query X is kept private. We invoke Theorem 2 to

show that the trained model M is also kept private. |

Theorem 6.4: Let s « Ug"Y, a « U™, h « y2*' R' « y3*!, s.t. each element (entry,
index) of R is greater than zero, thus R>0 and |h| < R, thus the absolute value of each
element of % is smaller than the corresponding index value of R. Let ¢ « U;‘Xl. It
Decision—LWE holds, then we also can’t distinguish between (a, (a - s)?R’ + h) and (a, c).

Proof: We invoke Theorem 1, where Ris (a - s)R'. n

Theorem 6.5: Let sy « U™, a; « Up”™, where 0 < i < [, h « T R' « ™1, st
each element (entry, index) of R is greater than zero, thus R>0 and |h| < R, thus the
absolute value of each element of 4 is smaller than the corresponding index value of R. If
Decision—LWE holds, then we can’t distinguish between (a;, (a; * s;)?R’ + h) and (a,,).
Here s; = (a;_1 ' S;-1)%.

Proof: We will use Mathematical induction. For i = 0 we invoke Theorem 3. Let’s assume
that the theorem holds for i = k. Then for i = k + 1 we have si,; = (ay * sx)?, which is
is also uniformly random, thus (a, (dy+1 - Sk+1)2R’ + h) and (4, ¢) can’t be distinguished

according to Theorem 4.

Theorem 6.6: Using SCADS (Algorithm 2) after secure ML classifications over DNN
(equation (2)), doesn’t reveal anything about the trained model M of the DNN or the user
query X

Proof: If the DNN has one layer, then X « U™, M® < U™, h « 3! R « x7** and
the output of the DNN will be (M - X)?R’ + h. We invoke Theorem 4 and Theorem 2 to
proof that there is no leakage of M or X.

If the DNN has more [layers, then X° « U™ M' « U™, for0 < i <l h « y*' R «
X7t and X' = (X' M")2. The output of the DNN at the I-th layes is (M' - X')?R + h. We
invoke Theorem 5 and Theorem 2 to proof that there is no leakage of the trained model M

and the user query X

137

Theorem 6.7: secArgmax (Algorithm 6.7) is a secure two-party protocol under the semi-
honest model.

Proof: Here f is the deterministic function argmax(Pk, input_c, sk), where the public key
Pk and the input ciphertext input_care the private inputs of party A and the secret key sk is
the private input of party B. For the output of the function we have
argmax(Pk, input_c, sk) = argmax,(Pk, input_c, sk),argmaxg(Pk, input_c, sk)) =
(¢, maxIndex_v), where ¢ means no output. The protocol IT that securely computes
argmax is secArgmax(Pk,input_c,sk). For the output of the protocol II we have
output(Pk, input_c, sk) = (output,”, outputg™) = (¢, maxindex_v).

The view of party A is V, = (Pk, input_c, 14, rndMaxIndex_c), where Pk is the public key
and ry, are random coin tosses at A. We build the simulator for party A as
SA((xA),fA(JE)) = SA((Pk, input_c), secArgmax,(Pk, input_c, sk)) =
SA((Pk,input_c),¢) = (Pk,input_c, 7z, rndMaxIndex_c), where 7, is chosen from the
same distribution as 4 and rndMaxIndex_c is a random ciphertext. Due to the semantic
security of the RLWE scheme an adversary cannot distinguish between rndMaxIndex_c
and rndMaxIndex_c, hence S, =, V.

Similarly, for the view of party B we have Vy = (sk, 15, perSCADS _c, result_c), where sk
is the secret key and r are random coin tosses at B. We construct the simulator for the party
B as SB(xB,fB(f)) = SB((Sk),secArgmaxB (Pk, input_c, sk)) = Sg(sk,maxindex) =
(sk, 73, perSCADS_c, result_c), where 75 has same random distribution as rg, perSCADS_c
is a random ciphertext and result_c is done by first constructing a vector maxIndex_v from
the output maxindex and then having result_c = Encode_Encrypt(maxindex_v). Due
to the semantic security of the ciphertexts, an adversary cannot distinguish between

perSCADS _c and perSCADS _c, as well as between result_c and result_c,so Sg =, V. &

Theorem 6.8: PPClassServCen (Algorithm 6.21) is a secure multi-party protocol under the

semi-honest model

Proof: The function f((X, k,R), TM_c, ¢) = (fuserv fracs feps) = (Cru(X), @, @), is
computed by the protocol PPClassServCen = I1, which we split into two protocols called

consecutively. Namely p; computes lines 1-12 and p, computes lines 13-26, so

138

PPClassServCen = Il = p,p,. For the corresponding protocol outputs we have
output™ (X, k,R,TM_c, ¢) = (outputll,,,., output?, ¢, outputls) = (Crp (X), d, P).
outputpl((X, k,R), ¢, gb) = (output{]);erl, output’T)leS, outputé%s) =

(¢, (k, R, queryVetor_c),),

outputP2((k,R), (k,R, queryVetor_c, TM_c),) =

(outputl?,.,, outputh? ., outputh?s,) = (Cry(X), ¢, d).
For the views and simulators for p; we have the trivial ones, thus VUpsler1 =
X, 70) =¢ (X, 1) = Spgers (X,), Vides = (TM_¢,Tracs) =¢ (TM_c, Tracs) =

Sracs(TM_c, outputyy).

For p, for TACS we have the trivial view and simulator. For EDS we have V;Elgs =
(k, R, rgps, result_c) =¢ (k,R,15ps, result_c) = SP2., where for result.c we first
construct a random vector rnd_v, then encode and encrypt it rnd_c =

EncodeEncrypt(rnd_v) and set result_c = SCADS(rnd_c, ([c],n., c)).For the user’s

; : ; p2 — ~ P2
view and corresponding simulator we have V;2 ., = (@, Tyser, TndMaxIndex) =¢ S;2,, =

(¢, Tyser» ind), and ind = SRCPer(Cry(X), k, R, c,n.). We invoke Theorem 3.1 to prove

that PPClassServCen = p,p, is secure [
Corollary 6.1: protocol p, is a secure protocol under the semi-honest model]
Corollary 6.2: protocol p, is a secure protocol under the semi-honest model]

Theorem 6.9: secMLClass (Algorithm 6.26) is a secure 2PC protocol under the semi-honest
model.

Proof: The client’s view is V{4,5} =V, = {rndCy(S)_v}, where 1 ={N,q,t} (as in
Section III-B). Let rndEAXS)_v =SRCPer(Cy(S)_v,k,Ry, Ry, ¢, f + 1), where the random
parameters k, Rq, R, have the same values that the client used while executing Algorithm
6.26. Apparently rndCy,(S)_v and rndC,,(S)_v are the same. Let the simulator view for the
client be S¢(1, 0) = {rndCy(S)_v}, thus Sc(4,0) =, V.

139

Server’s view is Vs{A,S} = Vs = {rndCy(S)_c}. For the server’s simulator S;(4,0) we
. . = 74 . . .
construct a matrix of random queries S = {X (1)}i=1 and use it as our input to proceed with

lines 1-7 of Algorithm 6.26 to get rndC,(S)_c. Since the server cannot distinguish
betweenrndCy, (S)_c and rndCy, (S)_c due to the semantic security of the underlying RLWE
scheme (he can’t even distinguish the genuity between the decrypted and decoded
dCy(S)_v and rndCy(S)_v), by having S(4,0) = {rndCy(S)_c} we proof
Ss(A4,0) =, Vs |

Theorem 6.10: secC (Algorithm 6.24) is secure under the semi-honest model.

secC = g_v and

Proof: EC’s view is V3¢ (4, %) = {rndCry(q)_v, h2_v} its private input x5
output 05¢°€(4,%) = Cry(q). For the EC’s simulator we construct random

rndCry(q)_v, h2_v s.t. their subtraction will give the same output when EC executes lines
14-18, thus S (A, %56, 056 (4, 8)) = {rndCry(q).v, h2 0} = VEEC(L%). The
views of TEAS and E2DS are V78%5(A,%) = {Crm(q)_c} and is V3EE5(A, %) =

{rndCrp (q)_c}, respectively. We construct random ciphertexts Cry, (q)_c and rndCrp ((q)_c

for their corresponding simulators.]

Theorem 6.11: MU-PPClassServCen (Algorithm 6.28) is a secure multi-party protocol
under the semi-honest model

Proof: MU-PPClassServCen will not change if we execute lines 13-17 after line 27 at TACS.
Let p,’ be a protocol that computes lines 1-10 of MU-PPClassServCen. By applying the same
reasoning as in protocol p;(Corollary 6.1) we deduce that it is a secure protocol under the
semi-honest model. Lines 11-12 and line 18 are the secSum protocol which we proved to be
secure (theorem 3). Let p, be the protocol that computes lines 19-27 and lines 13-17 (when

putting them after line 27) which can be seen as a deterministic function. For the views and
simulators of EDS in p; we have VEgés = (sumResult_c,rgps) = SE’;;S. For the view of
TACS we have VTZ%S = (MU —TM_c,MU — QueryVector_c,k, R, rr4cs, outcome). For
the simulator we have STp acs = (MU —TM_c, MU —

ueryVector_c,k,R,r ,outcome), where we set outcome = false if we abort in line
TACS)

140

26, otherwise it’s true. Line 28 executes protocol p, which was proven to be secure in
Corollary 6.2.

If MU-PPClassServCen is substituted by sequential calls to protocols p;’, secSum, p; and
P2, then by invoking the Modular Sequential Composition Theorem (Theorem 3.1) we proof
that MU-PPClassServCen is secure under the semi-honest model. In the process we used the
techniques (ideas) mentioned in Chapter 7 of [60] of forcing the correct behavior of malicious
models (users) by using protocols under the semi-honest model. In other words, we apply
protocols of the semi-honest model to detect cheatings (misbehaviors) of the malicious

models, and if so we abort the protocol, otherwise we execute the protocol till the end |

Theorem 6.12: secMLClass-MU (Algorithm 6.29) is a secure multi-party protocol under the
semi-honest model

Proof: Let p denote the protocol that executes the first 4 lines of secMLClass-MU. Proving
p is trivial, while in Theorem 6.3 we proved the security of secMLClass. Since secMLClass-
MU is executed by sequentially calling p and secMLClass, we invoke Theorem 3.1 to proof

secMLClass-MU’s security under the semi-honest model]

141

Chapter 7

CONCLUSIONS

In this dissertation, initially, we provide a novel secure feature selection scheme of
homomorphically evaluating features’ information gains (a variant of information theoretic
entropy) over distributed multi-label multi-output datasets in edge IoT environments. We
proceed with secure training and classification of multi-label multi-output datasets over the
selected features on the same environment settings (context). Since multi-label multi-output
datasets in itself incorporate the special cases of single label multi-class and binary classes
datasets, our schemes are valid for them as well. While doing so we take into consideration
the heterogeneity (in terms of hardware and software platforms) and the restricted resources
that are characteristic for edge IoT devices. We formally prove the security of all of our
schemes (protocols, algorithms) under the semi-honest model. In the process, our participants
interact with each other under strict security. privacy and efficiency requirements. To these
ends, we provide confidentiality, integrity and authenticity to each interaction by signing
their hashed contents with the corresponding participant’s private key. We assure the
consistency among interactions by introducing timestamps and linking them with the hashed
content(s) of the preceding interaction(s). This makes our protocols a natural fit for
blockchain technology. Our underlying cryptographic tools are proven to be resistant to
quantum computer attacks, making our protocols applicable to the post quantum World. All
of our protocols (secure feature selection, training and classification) are independent from

each other, in terms that, according to the scenario and needs, each of them can be used solely

142

or in combination with secure and private protocols from other research schemes. Our
protocols show no loss of classification (prediction) accuracy due to applying ML algorithms
in private and secure fashion. Also, they show high rate of fault tolerance (byzantine failures)
and resistance to collusion attacks among dataset owners during the secure feature selection
and secure training stages.

Our secure feature selection protocols satisfy several strict security and privacy goals by
not only keeping private feature values and intermediate results while executing the
protocols, rather they keep private the features (or words) themselves as well as the final
output (which is the top m selected features). Extensive experimental evaluations show that
our protocols outperform the state of the art in terms of computation and communication
costs for dozen times. In the process the state-of-the art schemes operate under weaker
privacy and security constraints. Compared to our protocols, they also suffer from a high
level of interactions between the participants. In this sense, for textual datasets they need
hundreds of thousands of interaction between the participants, compared to only a few ones
needed in our protocols.

We transfer the security, privacy and efficiency properties of secure feature selection
protocols to our secure training protocols as well. Namely, during our secure training
protocols, besides the feature values, we also keep private the features themselves, the
intermediate results while running the protocols as well as the final trained model. This makes
our secure training protocols among the rare schemes to do so in literature. Our theoretical
analysis and extensive experimental evaluations over benchmark datasets show that our
schemes outperform the state-of-the-art in terms of computation and communication costs
from several times to orders of magnitudes, not only when state-of-the-art schemes proceed
to securely train their ML models without prior feature selection, rather it is the case when
they also do it. In this sense, while it takes few minutes to our secure schemes to obtain the
final ML trained model over raw datasets (secure feature selection proceeded by secure
training), the state-of-the-art schemes do the same for several days or weeks. Besides, state-
of-the-art schemes operate under weaker security and privacy requirements, while many of
them suffer from high levels of interaction between participants

For the purposes of our secure classification protocol, we propose several novel secure

building blocks for general purpose (which are commonly needed for secure ML

143

classifications), as well as building blocks related to secure linear algebra. Our theoretical
analysis and experimental evaluations show that our proposed blocks outperform the state-
of-the-art in terms of computation and communication costs. Since our secure classification
protocols are based on the proposed building blocks, our further theoretical analysis and
extensive experimental evaluations over benchmark datasets show that our secure
classification protocols outperform the state-of-the-art ones in terms of computation and
communication costs, sometimes from several times to orders of magnitude. These results
were observed for secure ML classifiers such as Deep Neural Networks, Naive Bayes,
Multinomial Naive Bayes, Support Vector Machines, Logistic Regression, Decision Trees,
Random Forests and K Nearest Neighbors. Similar to the security and privacy properties of
the above mentioned secure protocols, during our secure classifications protocols the owner
of the trained ML model learns nothing about the users queries, their final classifications or
the intermediate results, while the users learn only their respective final classifications and
nothing else. All of these goals are achieved by our protocols while operating in a non-
interactive fashion (in a single round only). This makes our protocols among the rare ones to
achieve those security, privacy and efficiency requirements under those circumstances, since
the ones that do so usually suffer from high computation or communication cost.
Furthermore, we extend the efficiency of our schemes to also deal with malicious users
(which arbitrarily deviate from the protocol with the aim of illegally retrieving any
information for the trained ML model or at least with the aim of sabotaging the protocol)
during secure NB classifications as well as during multi-users (multi-query) scenarios. To
the best of our knowledge, this makes our schemes among the rare (if not the only ones) to
address malicious users during secure classifications.

We should note that the experimental evaluations of our secure comparison protocol based
on arithmetic circuits showed that when it is used solely (isolated, as a single entity) it doesn’t
provide a perfect privacy for the difference of the two numbers that it compares. Since
SCADS (secure comparison of all data slots) is based on it, SCADS by default inherits the
privacy properties of the secure comparison protocol. However, when those two are used in
combination with our secure classification protocols, we proof that in polynomial time they
can be theoretically reduced to well established cryptographic problems assumed to be hard

even for quantum computers, such as LWE. This is due to the fact that our secure

144

classification protocols in their initial phase have the form of matrix-vector multiplication
(the trained model multiplied by the user query), proceeded by the proposed secure
comparison protocol which adds some noise (random value), which is also the case with the
construction of LWE schemes.

We plan to extend these security, privacy and efficiency characteristics of our schemes to
deal with other secure multi-label multi-output ML algorithms in distributed environments.
E.g., knowing that decision trees use the features’ information gains to choose the nodes for
each tree levels, one such ML algorithm can be federated (distributed) tree learning, for
which we can adjust our proposed protocol of securely evaluating the information gains in
distributed environments (secFS-S2). Other such secure ML algorithms can be secure
distributed training of SVM models or secure kNN over multiple edge IoT dataset owners.
Also, they should deal with both horizontally and vertically partitioned datasets.

One of the less explored areas is PP graph theory, especially over multiple graphs, which
we also plan to address in near future. It can be used for secure routing, for different
companies that use graph theory to represent data in their businesses (such as internet service
providers, cargo companies, etc.) to securely aggregate their data with other companies, for
Google Maps-like applications to hide the user query to the server while showing the user

only the best path (route) and hiding the other paths, etc.

145

BIBLIOGRAPHY

[1] Nordrum, Amy. "Popular internet of things forecast of 50 billion devices by 2020 is
outdated." IEEE spectrum 18 (2016).

[2] Reinsel, David, John Gantz, and John Rydning. "Data age 2025: The evolution of data to
life-critical." Don’t Focus on Big Data (2017).

[3] Shokri, Reza, and Vitaly Shmatikov. "Privacy-preserving deep learning." Proceedings of
the 22nd ACM SIGSAC conference on computer and communications security. ACM, 2015.
[4] Lindell, Yehuda, and Benny Pinkas. "Privacy preserving data mining." Annual
International Cryptology Conference. Springer, Berlin, Heidelberg, 2000.

[5] Agrawal, Rakesh, and Ramakrishnan Srikant. "Privacy-preserving data mining."
Proceedings of the 2000 ACM SIGMOD international conference on Management of data.
2000.

[6] Verykios, V. S., Bertino, E., Fovino, I. N., Provenza, L. P., Saygin, Y., & Theodoridis,
Y. (2004). State-of-the-art in privacy preserving data mining. ACM Sigmod Record, 33(1),
50-57.

[7] Aggarwal, Charu C., and S. Yu Philip. "A general survey of privacy-preserving data
mining models and algorithms." Privacy-preserving data mining. Springer, Boston, MA,
2008. 11-52.

[8] Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., & Wernsing, J.
"Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy." International Conference on Machine Learning. PMLR, 2016.

[9] Bost, Raphael, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser "Machine learning
classification over encrypted data." Network & Distributed System Security Symposium.
Vol. 4324. 2015.

[10] Gao, Chong-zhi, Qiong Cheng, Pei He, Willy Susilo, and Jin Li "Privacy-preserving
Naive Bayes classifiers secure against the substitution-then-comparison attack." Information

Sciences 444 (2018): 72-88.

146

[11] Khedr, Alhassan, Glenn Gulak, and Vinod Vaikuntanathan. "SHIELD: scalable
homomorphic implementation of encrypted data-classifiers." IEEE Transactions on
Computers 65.9 (2015): 2848-2858.

[12] Gupta, Trinabh, Henrique Fingler, Lorenzo Alvisi, and Michael Walfish. "Pretzel: Email
encryption and provider-supplied functions are compatible." Proceedings of the Conference
of the ACM Special Interest Group on Data Communication. 2017.

[13] Kjamilji, Artrim, Arben Idrizi, Shkurte Luma-Osmani, and Ferihane Zenuni-Kjamilji
"Secure Naive Bayes classification without loss of accuracy with application to breast cancer
prediction." Proceeding International Conference on Science and Engineering. Vol. 3. 2020.
[14] Wu, David J., Tony Feng, Michael Naehrig, and Kristin Lauter "Privately evaluating
decision trees and random forests." Proceedings on Privacy Enhancing Technologies 2016.4
(2016): 335-355.

[15] Liu, Ximeng, Rongxing Lu, Jianfeng Ma, Le Chen, and Baodong Qin "Privacy-
preserving patient-centric clinical decision support system on naive Bayesian classification."
IEEE journal of biomedical and health informatics 2012 (2015): 655-668.

[16] Liu, Ximeng, Robert Deng, Kim-Kwang Raymond Choo, and Yang Yang "Privacy-
preserving outsourced clinical decision support system in the cloud." IEEE Transactions on
Services Computing (2017).

[17] Al Badawi, Ahmad, Louie Hoang, Chan Fook Mun, Kim Laine, and Khin Mi Mi Aung
"Privft: Private and fast text classification with homomorphic encryption." IEEE Access 8
(2020): 226544-226556.

[18] Kjamilji, Artrim, Erkay Savas, and Albert Levi. "Efficient Secure Building Blocks With
Application to Privacy Preserving Machine Learning Algorithms." IEEE Access 9: 8324-
8353.

[19] Reich, Devin, Ariel Todoki, Rafael Dowsley, Martine De Cock, and Anderson CA
Nascimento "Privacy-preserving classification of personal text messages with secure multi-
party computation: An application to hate-speech detection." arXiv preprint
arXiv:1906.02325 (2019).

[20] Resende, Amanda, Davis Railsback, Rafael Dowsley, Anderson CA Nascimento, and
Diego F. Aranha "Fast privacy-preserving text classification based on secure multiparty

computation." arXiv preprint arXiv:2101.07365 (2021).

147

[21] Costantino, Gianpiero, Antonio La Marra, Fabio Martinelli, Andrea Saracino, and Mina
Sheikhalishahi. "Privacy-preserving text mining as a service." 2017 IEEE Symposium on
Computers and Communications (ISCC). IEEE, 2017.

[22] Das, Kamalika, Kanishka Bhaduri, and Hillol Kargupta. "A local asynchronous
distributed privacy preserving feature selection algorithm for large peer-to-peer networks."
Knowledge and information systems 24.3 (2010): 341-367.

[23] Banerjee, Madhushri, and Sumit Chakravarty. "Privacy preserving feature selection for
distributed data using virtual dimension." Proceedings of the 20th ACM international
conference on Information and knowledge management. 2011.

[24] Jafer, Yasser, Stan Matwin, and Marina Sokolova. "Privacy-aware filter-based feature
selection." 2014 IEEE International Conference on Big Data (Big Data). IEEE, 2014.

[25] Sheikhalishahi, Mina, and Fabio Martinelli. "Privacy-utility feature selection as a
privacy mechanism in collaborative data classification." 2017 IEEE 26th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE). IEEE, 2017.

[26] Rahimipour Anaraki, Javad, and Saeed Samet. "Privacy-preserving feature selection: A
survey and proposing a new set of protocols." arXiv e-prints (2020): arXiv-2008.

[27] Rao, Vanishree, Yunhui Long, Hoda Eldardiry, Shantanu Rane, Ryan Rossi, and Frank
Torres "Secure Two-Party Feature Selection." arXiv preprint arXiv:1901.00832 (2019).
[28] Li, Xiling, Rafael Dowsley, and Martine De Cock. "Privacy-preserving feature selection
with secure multiparty computation." arXiv preprint arXiv:2102.03517 (2021).

[29] Merkle, Ralph C. "A digital signature based on a conventional encryption function."
Conference on the theory and application of cryptographic techniques. Springer, Berlin,
Heidelberg, 1987.

[30] Bolt, Wilko. "Bitcoin and cryptocurrency technologies: A comprehensive introduction."
(2017): 647-649.

[31] Li, Shancang, Li Da Xu, and Shanshan Zhao. "The internet of things: a survey."
Information Systems Frontiers 17.2 (2015): 243-259.

[32] Shi, Weisong, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. "Edge computing:
Vision and challenges." IEEE internet of things journal 3, no. 5 (2016): 637-646.

148

[33] Androutsopoulos, lon, Georgios Paliouras, and Eirinaios Michelakis. Learning to filter
unsolicited commercial e-mail. NCSR “Demokritos” Technical Report, No. 2004/2, March
2004

[34] Tang, Bo, Steven Kay, and Haibo He. "Toward optimal feature selection in naive Bayes
for text categorization." IEEE Transactions on Knowledge and Data Engineering 28.9
(2016): 2508-2521.

[35] Ranaweera, Pasika, Anca Delia Jurcut, and Madhusanka Liyanage. "Survey on Multi-
Access Edge Computing Security and Privacy." IEEE Communications Surveys & Tutorials
(2021).

[36] Zhao, Wenbing, Congfeng Jiang, Honghao Gao, Shunkun Yang, and Xiong Luo.
"Blockchain-Enabled Cyber-Physical Systems: A Review." IEEE Internet of Things Journal
(2020).

[37] Metsis, Vangelis, lon Androutsopoulos, and Georgios Paliouras. "Spam filtering with
naive bayes-which naive bayes?." CEAS. Vol. 17. 2006.

[38] Buczak, Anna L., and Erhan Guven. "A survey of data mining and machine learning
methods for cyber security intrusion detection." IEEE Communications Surveys & Tutorials
18.2 (2016): 1153-1176.

[39] Dua, Sumeet, and Xian Du. Data mining and machine learning in cybersecurity. CRC
press, 2016.

[40] Quinlan, J. Ross. "Induction of decision trees." Machine learning 1.1 (1986): 81-106.
[41] Quinlan, J. Ross. "Bagging, boosting, and C4. 5." AAAI'96: Proceedings of the
thirteenth national conference on Artificial intelligence - Volume 1 August 1996 Pages 725—
730.

[42] Russell, Stuart, Peter Norvig, and Artificial Intelligence. "A modern approach."
Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs 25 (1995): 27.

[43] Mitchell, Tom M. "Machine learning." (1997).

[44] Li, Tong, Zhengan Huang, Ping Li, Zheli Liu, and Chunfu Jia "Outsourced privacy-
preserving classification service over encrypted data." Journal of Network and Computer
Applications 106 (2018): 100-110.

[45] Mourao-Miranda, J., Reinders, A.A.T.S., Rocha-Rego, V., Lappin, J., Rondina, J.,
Morgan, C., Morgan, K.D., Fearon, P., Jones, P.B., Doody, G.A. and Murray, R.M

149

"Individualized prediction of illness course at the first psychotic episode: a support vector
machine MRI study." Psychological medicine 42.5 (2012): 1037-1047.

[46] Schmidhuber, Jirgen. "Deep learning in neural networks: An overview." Neural
networks 61 (2015): 85-117.

[47] Yao, Andrew C. "Protocols for secure computations." Foundations of Computer
Science, 1982. SFCS'08. 23rd Annual Symposium on. IEEE, 1982.

[48] ElGamal, Taher. "A public key cryptosystem and a signature scheme based on discrete
logarithms." IEEE transactions on information theory 31.4 (1985): 469-472.

[49] Paillier, Pascal. "Public-key cryptosystems based on composite degree residuosity
classes." International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, Berlin, Heidelberg, 1999.

[50] Shafi, Goldwasser, Silvio Micali."Probabilistic encryption."Journal of computer and
system sciences 28.2 (1984):270-299.

[51] Henecka, Wilko, et al. "TASTY: tool for automating secure two-party computations."
Proceedings of the 17th ACM conference on Computer and communications security. ACM,
2010.

[52] Ben-David, Assaf, Noam Nisan, and Benny Pinkas. "FairplayMP: a system for secure
multi-party computation." In Proceedings of the 15th ACM conference on Computer and
communications security, pp. 257-266. ACM, 2008.

[53] Bost, Raphael, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. "Machine learning
classification over encrypted data." In Network & Distributed System Security Symposium,
2015.

[54] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in ACM Symposium
on Theory of Computing, 2009, pp. 169-178.

[55] Brakerski, Zvika, Craig Gentry, and Vinod Vaikuntanathan. "(Leveled) fully
homomorphic encryption without bootstrapping." ACM Transactions on Computation
Theory (TOCT) 6, no. 3 (2014): 13.

[56] Fan, Junfeng, and Frederik Vercauteren. "Somewhat Practical Fully Homomorphic
Encryption." IACR Cryptology ePrint Archive 2012 (2012): 144.

[57] Smart, Nigel P., and Frederik Vercauteren. "Fully homomorphic SIMD operations."
Designs, codes and cryptography 71, no. 1 (2014): 57-81.

150

[58] Halevi, Shai, and Victor Shoup. "Algorithms in helib." In International Cryptology
Conference, CRYPTO, pp. 554-571. Springer, Berlin, Heidelberg, 2014.

[59] Martins, Paulo, Leonel Sousa, and Artur Mariano. "A survey on fully homomorphic
encryption: An engineering perspective." ACM Computing Surveys (CSUR) 50.6 (2017): 1-
33.

[60] Goldreich, Oded. Foundations of cryptography: volume 2, basic applications.
Cambridge university press, 2009.

[61] Kantarcioglu, Murat, Jaideep Vaidya, and C. Clifton. "Privacy preserving naive bayes
classifier for horizontally partitioned data." In IEEE ICDM workshop on privacy preserving
data mining, pp. 3-9. 2003.

[62] Vaidya, Jaideep, Murat Kantarcioglu, and Chris Clifton. "Privacy-preserving naive
bayes classification." The VLDB Journal 17, no. 4 (2008): 879-898.

[63] Lindell, Yehuda, and Benny Pinkas. "Privacy preserving data mining." Annual
International Cryptology Conference, CRYPTO. Springer, Berlin, Heidelberg, 2000.

[64] Yang, Zhigiang, Sheng Zhong, and Rebecca N. Wright. "Privacy-preserving
classification of customer data without loss of accuracy." In Proceedings of the 2005 SIAM
International Conference on Data Mining, pp. 92-102. Society for Industrial and Applied
Mathematics, 2005

[65] Yi, Xun, and Yanchun Zhang. "Privacy-preserving naive Bayes classification on
distributed data via semi-trusted mixers." Information systems 34, no. 3 (2009): 371-380.
[66] Liu, Ximeng, Rongxing Lu, Jianfeng Ma, Le Chen, and Baodong Qin. "Privacy-
preserving patient-centric clinical decision support system on naive Bayesian classification."
IEEE journal of biomedical and health informatics 20, no. 2 (2016): 655-668.

[67] Liu, Ximeng, Robert Deng, Kim-Kwang Raymond Choo, and Yang Yang. "Privacy-
Preserving Outsourced Clinical Decision Support System in the Cloud." IEEE Transactions
on Services Computing, Volume: 14, Issue: 1 (2021): 222 —234

[68] Li, Ping, et al. "Privacy-preserving outsourced classification in cloud computing."

Cluster Computing 21.1 (2018): 277-286.

151

[69] Park, Heejin, Pyung Kim, Heeyoul Kim, Ki-Woong Park, and Younho Lee. "Efficient
machine learning over encrypted data with non-interactive communication." Computer
Standards & Interfaces 58 (2018): 87-108.

[70] Li, Tong, Zhengan Huang, Ping Li, Zheli Liu, and Chunfu Jia "Outsourced privacy-
preserving classification service over encrypted data." Journal of Network and Computer
Applications 106 (2018): 100-110.

[71] Gao, Chong-zhi, Qiong Cheng, Pei He, Willy Susilo, and Jin Li "Privacy-preserving
Naive Bayes classifiers secure against the substitution-then-comparison attack." Information
Sciences 444 (2018): 72-88.

[72] Kjamilji, Artrim, Arben Idrizi, Shkurte Luma-Osmani, and Ferihane Zenuni-Kjamilji
"Secure Naive Bayes classification without loss of accuracy with application to breast cancer
prediction." Proceeding International Conference on Science and Engineering. Vol. 3. 2020.
[73] Sun, Xiaoqiang, Peng Zhang, Joseph K. Liu, Jianping Yu, and Weixin Xie "Private
machine learning classification based on fully homomorphic encryption." IEEE Transactions
on Emerging Topics in Computing 8.2 (2018): 352-364.

[74] Khedr, Alhassan, Glenn Gulak, and Vinod Vaikuntanathan. "SHIELD: scalable
homomorphic implementation of encrypted data-classifiers." IEEE Transactions on
Computers 65.9 (2015): 2848-2858.

[75] Li, Tong, Zhengan Huang, Ping Li, Zheli Liu, and Chunfu Jia. "Outsourced privacy-
preserving classification service over encrypted data." Journal of Network and Computer
Applications 106 (2018): 100-110.

[76] Pereira, Hilder VL. "Efficient AGCD-based homomorphic encryption for matrix and
vector arithmetic." IJACR Cryptol. ePrint Arch. 2020 (2020): 491.

[77] Yasumura, Yoshiko, Yu Ishimaki, and Hayato Yamana. "Secure Naive Bayes
Classification Protocol over Encrypted Data Using Fully Homomorphic Encryption."
Proceedings of the 21st International Conference on Information Integration and Web-based
Applications & Services. 2019.

[78] Wood, Alexander, Vladimir Shpilrain, Kayvan Najarian, Ali Mostashari, and Delaram
Kahrobaei "Private-Key Fully Homomorphic Encryption for Private Classification.”

International Congress on Mathematical Software. Springer, Cham, 2018.

152

[79] Wood, Alexander, Vladimir Shpilrain, Kayvan Najarian, and Delaram Kahrobaei",
Private naive bayes classification of personal biomedical data: Application in cancer data
analysis." Computers in biology and medicine 105 (2019): 144-150.

[80] Kim Laine, “Microsoft/SEAL”, last accessed on 01.07.2021 from
https://github.com/Microsoft/SEAL

[81] Artrim Kjamilji, “artrimk/secMNB _ Email”, last accessed on 01.07.2021 from
https://github.com/artrimk/secMNB_Email

[82] Oleander Software, “OleanderSoftware”, last accessed on 01.07.2021 from
https://github.com/OleanderSoftware/OleanderStemmingLibrary

[83] Joaquin Vanschoren, “OpenmML Speed Dating”, last accessed on 01.07.2021 from
https://www.openml.org/d/40536

[84] Tiago A. Almeida and José¢ Maria Goémez Hidalgo, “SMS spam collection”, last
accessed on 01.07.2021 from http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/

[85] Almeida, Tiago A., José Maria G. Hidalgo, and Akebo Yamakami. "Contributions to
the study of SMS spam filtering: new collection and results." Proceedings of the 11th ACM
symposium on Document engineering. ACM, 2011.

[86] Dr. Wllliam H. Wolberg, “Breast Cancer Wisconsin (Original) Data Set”, last accessed
on 01.07.2021 from
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)

[87] Jacek Czerniak, “Acute Inflammations Data Set”, last accessed on 01.07.2021 from
http://archive.ics.uci.edu/ml/datasets/acute+inflammations

[88] Nandakumar, Karthik, Nalini Ratha, Sharath Pankanti, and Shai Halevi "Towards deep
neural network training on encrypted data." Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops. 2019.

[89] Juvekar, Chiraag, Vinod Vaikuntanathan, and Anantha Chandrakasan. "GAZELLE: A
low latency framework for secure neural network inference." 27th USENIX Security
Symposium (USENIX Security 18). 2018.

[90] Jiang, Xiaoqian, Miran Kim, Kristin Lauter, and Yongsoo Song "Secure outsourced
matrix computation and application to neural networks." Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security. 2018.

153

[91] Kalchbrenner, Nal, Edward Grefenstette, and Phil Blunsom. "A convolutional neural
network for modelling sentences." arXiv preprint arXiv:1404.2188 (2014).

[92] Wu, David J., et al. " Wu, David J., Tony Feng, Michael Naehrig, and Kristin Lauter."
Proceedings on Privacy Enhancing Technologies 2016.4 (2016): 335-355.

[93] University of Waikato, Craig Nevill-Manning, Mark Hall, “Weka”, last accessed
01.07.2021 from http://old-www.cms.waikato.ac.nz/~ml/weka/

[94] Cyber Range Lab of UNSW Canberra, “The UNSW-NB15 Dataset”, last accessed on
01.07.2021 from https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ ADFA-
NB15-Datasets/

[95] Damgard, Ivan, Martin Geisler, and Mikkel Krgigaard. "Efficient and secure comparison
for on-line auctions." Australasian Conference on Information Security and Privacy.
Springer, Berlin, Heidelberg, 2007.

[96] Kim, Pyung, Younho Lee, and Hyunsoo Yoon. "Sorting method for fully homomorphic
encrypted data using the cryptographic single-instruction multiple-data operation." IEICE
Transactions on Communications 99.5 (2016): 1070-1086.

[97] De Cock, Martine, et al. "Efficient and private scoring of decision trees, support vector
machines and logistic regression models based on pre-computation." IEEE Transactions on
Dependable and Secure Computing 16.2 (2017): 217-230.

[98] Artrimk Kjamilji, “PhD Dissertation codes”, last accessed on 01.07.2021 from
https://github.com/artrimk.

154

