
BLOCKCHAIN DRIVEN SECURE AND PRIVATE MACHINE LEARNING

ALGORITHMS FOR POST-QUANTUM 5G/6G ENABLED INDUSTRIAL IoT WITH

APPLICATIONS TO CYBER-SECURITY AND HEALTH

by

ARTRIM KJAMILJI

Submitted to the Institute of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

SABANCI UNIVERSITY

JULY 2021

BLOCKCHAIN DRIVEN SECURE AND PRIVATE MACHINE LEARNING

ALGORITHMS FOR POST-QUANTUM 5G/6G ENABLED INDUSTRIAL IoT WITH

APPLICATIONS TO CYBER-SECURITY AND HEALTH

APPROVED BY:

DATE OF APPROVAL: ………………………..

© Artrim Kjamilji 2021

All Rights Reserved

iv

ABSTRACT

BLOCKCHAIN DRIVEN SECURE AND PRIVATE MACHINE

LEARNING ALGORITHMS FOR POST-QUANTUM 5G/6G ENABLED

INDUSTRIAL IoT WITH APPLICATIONS TO CYBER-SECURITY AND

HEALTH

ARTRIM KJAMILJI

Ph.D. Dissertation, July 2021

Supervisor: Prof. Albert Levi

Co-Supervisor: Prof. Erkay Savaş

Keywords: blockchain; multi-label multi-output machine learning algorithms; secure IoT;

privacy preserving; feature selection; training; classification; homomorphic encryption;

collusion attacks; distributed environments; cyber-security; Internet of Medical Things

We provide a general framework for secure and private multi-label multi-output machine

learning (ML) algorithms for the semi-honest model in distributed edge IoT (Internet of

Things) environments enabled by 5G/6G networks. The proposed framework includes the

special cases of binary, multi-class and multi-label ML algorithms. We deal with both

horizontally and vertically partitioned datasets. Initially, (i) we propose novel secure feature

selection protocols by homomorphically evaluating features’ information gains in distributed

environments, we proceed with (ii) novel secure training protocols over the set of selected

features, then (iii) we propose novel secure building blocks which are commonly used on

ML algorithms (e.g. secure sum, comparison, argmax, top-K, sorting, permutation, etc.), as

well as on secure linear algebra (e.g. secure inner product, cascading matrix-vector and

v

matrix-matrix multiplications, matrix transpose, etc.), and finally (iv) on top of proposed

secure building blocks we build our novel secure ML classification protocols for various ML

classifiers such as Deep Neural Networks (DNN), Support Vector Machines (SVM),

Decision Trees (DT) and Random Forests (RF), different flavors of Naïve Bayes (NB),

Logistic Regression (LR) and K Nearest Neighbors (KNN). Moreover, our secure

classification protocols also deal with malicious users that arbitrarily deviate from the

protocol and they show no loss of accuracy due to secure classifications. In the process, our

participants interact with each other in order to fulfill strict security. privacy and efficiency

requirements. To these ends, we provide confidentiality, integrity and authenticity to each

interaction by signing their hashed contents with the corresponding participants’ private key.

We assure the consistency among interactions by introducing timestamps and linking them

with the hashed content(s) of the preceding interaction(s). This makes our protocols a natural

fit for blockchain technology. Moreover, the proposed cryptographic tools are proven to be

resistant to quantum computer attacks, making our protocols applicable to the post quantum

world. We did our theoretical analysis and extensive experimental evaluations over

benchmark datasets related to cyber-security and health. They show that our protocols have

an advantage ranging from several times to orders of magnitudes with respect to the state-of-

the-art in terms of computation and communication costs. This makes our protocols among

the most efficient ones in literature. Also, they are among the best in terms of security and

privacy properties and allow high rate of fault tolerance and collusion attacks of dataset

owners with respect to the state-of-the-art.

vi

ÖZET

KUANTUM SONRASI 5G/6G İLE ETKİNLEŞTİRİLMİŞ ENDÜSTRİYEL

IoT VE İLGİLİ SİBER GÜVENLİK VE SAĞLIK UYGULAMALARI İÇİN

BLOK ZİNCİR GÜDÜMLÜ GÜVENLİ VE MAHREMİYET KORUYUCU

MAKİNE ÖĞRENİMİ ALGORİTMALARI

ARTRIM KJAMILJI

Doktora Tezi, Temmuz 2021

Danışman: Prof. Dr. Albert Levi

Eş-Danışman: Prof. Dr. Erkay Savaş

Anahtar sözcükler: blok zincir; çok etiketli çok çıktılı makine öğrenimi algoritmaları;

güvenli nesnelerin internet; mahremiyet koruma; öznitelik seçimi; eğitim; sınıflandırma;

homomorfik şifreleme; gizli anlaşma saldırıları: dağıtık ortamlar; siber güvenlik; Tıbbi

Nesnelerin İnterneti

Bu tezde, 5G/6G ağları ile etkinleştirilmiş dağıtık uç IoT (Nesnelerin İnterneti) ortamlarında

yarı dürüst modele sahip güvenli ve mahremiyeti koruyucu, çok etiketli ve çok çıkışlı makine

öğrenimi (ML – Machine Learning) algoritmaları için genel bir çerçeve önerilmiştir.

Önerilen çerçeve, ikili, çok sınıflı ve çok etiketli ML algoritmalarının özel durumlarını içerir.

Hem yatay hem de dikey olarak bölümlenmiş veri kümeleriyle çalışılmıştır. İlk olarak, (i)

özniteliklerin dağıtık ortamlardaki bilgi kazanımlarını homomorfik olarak değerlendiren yeni

güvenli öznitelik seçim protokolleri önerilmiştir, (ii) seçilen öznitelikler kümesi üzerinde

yeni güvenli eğitim protokolleri ile ilerlenmiştir, daha sonra (iii) ML algoritmalarında yaygın

olarak kullanılan yeni güvenli yapı taşları (örn. güvenli toplam, karşılaştırma, argmax, top-

vii

K, sıralama, permütasyon, vb.) ile lineer cebir işlemlerini (örn. güvenli iç çarpım, sıralı

matris-vektör ve matris-matris çarpımları, matris transpozu, vb.) güvenli hale getirecek

yöntemler önerilmiştir ve son olarak (iv) önerilen güvenli yapı taşlarının üzerine, Derin Sinir

Ağları (DNN - Deep Neural Networks), Destek Vektör Makineleri (SVM - Support Vector

Machines), Karar Ağaçları (DT - Decision Trees), Rastgele Ormanlar (RF - Random

Forests), Naïve Bayes (NB)'in değişik varyasyonları, Lojistik Regresyon (LR) ve K En Yakın

Komşular (KNN - K Nearest Neighbors) gibi çeşitli ML sınıflandırıcıları için yeni güvenli

ML sınıflandırma protokolleri oluşturulmuştur. Ayrıca, önerilen güvenli sınıflandırma

protokolleri, keyfi olarak protokolden sapan kötü niyetli kullanıcılarla da baş eder ve güvenli

sınıflandırma kaynaklı doğruluk kaybı göstermezler. İşlemler sırasında protokol katılımcıları

sıkı güvenlik, mahremiyet ve verimlilik gereksinimlerini karşılamak üzere birbirleriyle

etkileşime girerler. Bu amaçla, kriptografik özet fonksiyonundan geçirilen içerikler ilgili

katılımcıların özel anahtarıyla imzalanarak her mesajlaşmanın gizliliği, bütünlüğü ve

özgünlüğü sağlanmış olur. Mesajlaşmalar arasındaki tutarlılığı, zaman damgaları ekleyerek

ve bunları önceki mesajların içerik özetlerine bağlayarak sağlamaktayız. Bu, protokollerimizi

blok zincir teknolojisine doğal bir şekilde uyumlu hale getirir. Ayrıca, önerilen kriptografik

araçların kuantum bilgisayar saldırılarına karşı dirençli olduğu da kanıtlanmıştır, bu da

protokollerimizi kuantum sonrası dünya için kullanışlı kılmaktadır. Teorik analizler ile siber

güvenlik ve sağlıkla ilgili karşılaştırmalı veri kümeleri üzerinde kapsamlı deneysel

değerlendirmeler yapılmıştır. Bu analiz ve değerlendirmeler, önerilen protokollerin,

hesaplama ve iletişim maliyetleri açısından bilinen en iyi duruma göre birkaç kez ila

büyüklük kertesine kadar değişen oranlarda avantaj sağladığını göstermiştir. Bu durum da

önerilen protokolleri literatürdeki en verimliler arasına sokmaktadır. Ayrıca, önerilen

protokoller güvenlik ve gizlilik özellikleri açısından da en iyiler arasındadır ve en son

teknolojiye göre yüksek hata toleransı oranı ve veri seti sahiplerinin gizli anlaşma

saldırılarına karşı yüksek direnç gösterirler.

viii

to my beloved family

ix

ACKNOLEDGMENTS

I got to know my PhD thesis advisor, Prof. Albert Levi, during my PhD application

interview. It was an instant respect and admiration for a researcher of his caliber, which

would further grow when I took his “Security in wireless networks” course and while

working as his TA. Similarly, I got acquainted with my co-advisor, Prof. Erkay Savaş, on

that fateful day when out of curiosity I decided to only attend the first lecture of his

“Cryptography” course without the intention of taking it. At the end of that day, not only that

I learned from him that “there are no un-doable or hard things, rather there are challenging

things”, I was also so impressed by him that I decided to take the course. At the end of the

semester I was so taken from the way he explained applied cryptography that, eventually, I

decided that it will be part of my PhD research. Both of my advisors showed high level of

professionalism, support, care and patience while they were guiding me through my PhD

dissertation. It was a privilege to be supervised by them. I will always feel indebted to them

for the rest of my life and I am thankful from the bottom of my heart for everything they did

for me.

Special thanks go to my dissertation committee members, Prof. Cem Güneri and Prof.

Yücel Saygın for their invaluable comments, feedback and help during my PhD dissertation

progresses. I am also very grateful to Assoc. Prof. Alptekin Küpçü from Koç University and

Asst. Prof. Ahmet Onur Durahim from Boğaziçi University for being kind enough to review

my dissertation, provide useful comments and be jury members of my dissertation.

I want to acknowledge the contribution of TÜBİTAK (The Scientific and Technological

Research Council of Turkey) which was generous enough to select me for their quota from

North Macedonia for their International BIDEB 2215 Scholarship Grant. I express my most

sincere appreciations for Sabancı University for providing a warm environment which made

me feel as if I am at my home, for their continuous support throughout my tough times, for

the excellent research environment and for the conference grants.

x

Worm thanks go to my father Irfan, mother Nebika and sister Ardiana for their support

and special treatment they had towards me by sparing me from the daily family duties,

especially in the final phases of my thesis. I owe them a public apology for misusing their

kindness towards me by pretending to still be working on my thesis when actually I was

already done with the bulk of it, so as to just to enjoy the special treatment. Mom, dad, sis, I

love you!

At last, but not least, or maybe most, I would like to express my heartfelt thanks to my

wife Ferihane and my 9 months old son Yahya, without whom this dissertation would have

been finished at least a couple of years earlier. Though, I have to give credits to them for

making it up. My wife through her unconditional support, patience, love, care and motivation

throughout all of our marriage, including the stressful situations during my dissertation. My

son by crying early in the mornings and in the process waking me up so I could work on my

dissertation. I love you both the most!

xi

TABLE OF CONTENTS

LIST OF TABLES xv

LIST OF FIGURES xvii

LIST OF ABBREVIATIONS xx

LIST OF SYMBOLS xxii

1. INTRODUCTION 1

 1.1. Motivation and problem statement 2

 1.2. Contributions 3

 1.3. Dissertation organization 7

2. BACKGROUND INFORMATION AND PRELIMINARIES 9

2.1. Bayes’ Theorem and Naïve Bayes 10

 2.1.1. Naïve Bayes for multi-class non-textual datasets 10

 2.1.2. Multinomial Naïve Bayes for binary and multi-label multi-output

 textual datasets 12

2.2. Information gain 15

2.3. Machine Learning classifications 16

 2.3.1. K-Nearest Neighbor (KNN) 17

 2.3.2. Decision Trees and Random Forests 18

 2.3.3. Machine Learning classifications based on linear algebra operations 20

xii

2.4. Cryptographic primitives 27

2.4.1. Public Somewhat Homomorphic Encryption schemes 28

2.4.2. Security definitions, concepts and theorems 30

3. RELATED RESREARCH AND STATE-OF-THE-ART 32

3.1. Secure feature selection 32

3.2. Secure machine learning training 35

3.3. Secure machine learning classification 37

4. SECURE AND PRIVATE FEATURE SELECTION 39

4.1. Introduction 39

4.2. System architecture, adversary models and protocol-flows-at-a-glance 40

4.3. Secure feature selection for binary datasets 44

4.4. Secure feature selection for multi-label multi-output datasets 51

4.5. Experimental evaluations and comparisons 53

4.6. Security analysis and proofs 77

5. SECURE AND PRIVATE MACHINE LEARNING TRAINING 58

5.1. Introduction 59

5.2. System architecture, adversary models and protocol-flows-at-a-glance 59

5.3. Secure training of NB models for non-textual datasets 61

5.4. Secure training of NB and MNB models for binary and multi-label

 multi-output textual datasets 65

5.5. Theoretical and experimental evaluations and comparisons 69

5.6. Security analysis and proofs 76

6. SECURE AND PRIVATE MACHINE LEARNING

CLASSIFICATIONS 79

6.1. Introduction 80

6.2. System architecture, adversary models and protocol-flows-at-a-glance 80

xiii

6.3. General purpose secure building blocks 82

6.3.1. Secure sums of blocks of d slots 82

6.3.2. Ciphertext Replication. 84

6.3.3. Secure Random Ciphertext Permutation and its inverse 85

6.3.4. Secure SIMD Comparison 87

6.3.5. Secure comparison of all data slots (SCADS) 88

6.3.6. Secure sorting 89

6.3.7. Secure argmax and secure top-K 90

6.4. Secure building blocks for linear algebra 91

 6.4.1. Secure Dimension Replication 92

 6.4.2. Secure dot (inner) product 93

 6.4.3. Secure matrix-vector product 93

 6.4.4. Secure matrix-matrix product 93

 6.4.5. Secure ciphertext compression 94

 6.4.6. Secure matrix transpose 95

 6.4.7. Secure matrix transpose and dimension replication 96

 6.4.8. Secure cascading matrix vector product 97

 6.4.9. Secure cascading matrix-matrix product 97

 6.4.10. Secure matrix-matrix product – version 2 98

 6.4.11. Secure cascading matrix-matrix product – version 2 98

 6.4.12. Secure ciphertext compression – version 2 99

 6.4.13. Secure Frobenius Product 99

 6.4.14. Secure ciphertext packing 100

6.5. Secure classifications based on NB, kNN, DT and RF 101

6.5.1. Secure classifications for non-textual queries based on NB. 101

6.5.2. Secure classifications based on kNN. 103

6.5.3. Secure classifications based on DT and RF 106

6.6. Secure MNB and NB classifications for binary and multi-label multi-output

 textual datasets 108

6.7. Secure classifications based on linear algebra operations 110

6.8. Dealing with malicious users during classifications 116

xiv

6.9. Theoretical and experimental evaluations and comparisons 120

 6.9.1. Theoretical analysis 120

 6.9.2. Experimental evaluations and comparisons 127

6.10. Security analysis and proofs 136

7. DISCUSSIONS AND FUTURE DIRECTIONS 142

xv

LIST OF TABLES

Table 2.1. Common perceptron activation functions 24

Table 3.1. Properties among different schemes dealing with secure feature

 selection 34

Table 3.2. Properties among different schemes dealing with secure training

 of NB models 36

Table 3.3. Comparisons of properties among different secure and private

 classification schemes 38

Table 4.1. Computation and communication costs among different participants

 for different polynomial modulus 𝑁 and number of the dataset

 owners 𝑛 54

Table 4.2. Comparison of different secure feature selection schemes 54

Table 5.1. Theoretical comparison for the costs of the PP training algorithm for

 NB models among different schemes 70

Table 5.2. Algorithm 5.2 costs for different polynomial sizes N and EDO

 numbers n 75

Table 5.3. Cumulative experimental results among all participants for PP

 training of non-textual datasets for n = 5 EDOs. Our scheme is

 represented by Algorithm 5.1 75

Table 5.4. Secure training comparisons among different schemes 76

Table 6.1. Theoretical comparison of the secure comparison (secComp)

 algorithm among different schemes 123

Table 6.2. Theoretical comparison and properties of the secure argmax

 (secArgmax) algorithm among different schemes 124

Table 6.3 Theoretical comparison for the costs of the PP Naïve Bayes

 classification algorithm among different schemes 125

Table 6.4. Complexity and comparisons of secure linear algebra operations 126

xvi

Table 6.5. Computation cost for secure sum (secSum) of 𝑑 integers among

 different schemes (in milliseconds) 127

Table 6.6. Computation cost for the SIMD secure comparison (secComp)

 protocol of two encrypted integers among different schemes 127

Table 6.7. Computation cost of secure argmax (secArgmax) of c integers among

 different schemes (in milliseconds, unless otherwise stated) 128

Table 6.8. Comparison of computational costs for SRCPer and invSRCPER for

 different block) sizes k and polynomial modulus N (results are in

 milliseconds) 128

Table 6.9. Comparison of computational costs of CPack for different ciphertext

 numbers p and polynomial modulus N (results are in milliseconds) 128

Table 6.10. Comparisons of amortized secure linear algebra operation costs 129

Table 6.11. Comparisons of amortized cost of secMatVec costs (in ms) 129

Table 6.12. Per query comparison of the cumulative (among all participants)

 costs for the PP classification case among different schemes

 and datasets 129

Table 6.13. Amortized query costs for the NB classifier based on linear algebra

 operations 130

Table 6.14. Amortized query costs for the SVM classifier based on linear algebra

 operations 130

Table 6.15. Amortized query costs for the LR classifier based on linear algebra

 Operations 130

Table 6.16. Amortized per query costs for (secC, Algorithm 6.24) 131

Table 6.17. Amortized per query costs for PP classifications among different

 binary textual datasets (queries) 132

xvii

LIST OF FIGURES

Fig.2.1. Building a decision tree out of observations (dataset) 18

Fig.2.2. Finding a binary tree classification guided by attributes and their values 19

Fig.2.3. Pseudocode for the ID3 algorithm 20

Fig.2.4. Choosing the right class separator plane using SVM 23

Fig.2.5. A multilayer deep neural network 25

Fig.2.6. Illustration of our proposed multi-query classifications 26

Fig.2.7. Illustration of SWHE SIMD a) addition, b) multiplication and

 c) Rotation for 2 slots 29

Fig.4.1. Protocol flows for secure feature selection (secFS-S1 and secF-S2) 41

Fig.4.2. Illustration of generating the blocks of the vertically partitioned

 distributed public ledger (blockchain) while executing protocols

 secFS-S1, secFS-S2 and secT 42

Fig.4.3. Illustration of SIMD evaluation of values in lines 13-16 of secFS-S2 50

Fig.4.4. Illustration of SWHE SIMD evaluations of terms in (4) in secFS-S2 51

Fig. 5.1. Protocol flows for secure training protocol (secT) 60

Fig. 5.2. Depiction of the portion of the encrypted counts of the training vector

 of Edge Dataset Owner 𝑘 holding counts related to class 𝐶𝑗 62

Fig. 5.3. The overall training vector 𝑇𝑉_𝑣𝑘 (for all classes) at the Edge Dataset

 Owner 𝑘 62

Fig.5.4. Aggregating (homomorphically summing up) the local training vectors

 – 𝑇𝑉_𝑐𝑘 to get the global training vector 𝐺𝑇𝑉_𝑐 63

Fig.5.5. Randomizing 𝐺𝑇𝑉_𝑐 to get 𝑟𝑛𝑑𝐺𝑇𝑉_𝑐 63

Fig.5.6. Adding 𝑟𝑎𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝑓𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑝 with 𝑟𝑛𝑑𝑇𝑀_𝑐 to get the trained

 model 𝑇𝑀_𝑐. 63

Fig.5.7. Getting and randomizing the global frequencies in SIMD fashion 66

xviii

Fig.5.8. De-randomizing and rotating 𝑟𝑛𝑑𝑇𝑀_𝑐 to get the final trained model

 𝑇𝑀_𝑐 67

Fig 5.9. Computation cost of the participants in PPTMDO (Algorithm 5.1) for

 Different polynomial sizes and number of EDOs for datasets in [84-85],

 [86] and [87] 74

Fig. 6.1. Protocol flows for our secure classification algorithms 82

Fig. 6.2. Illustration of a) secSums for d=6=(110)2 b) CRep for d=2 and

 r=5=(101)2 83

Fig. 6.3. Illustration of SRCPer for 𝑚 = 3 , 𝑘 = {2,−1,−1}. 𝑘,𝑚, 𝑅1 and 𝑅2

 are random. 𝑑 is the number of slots between two data slots 85

Fig.6.4. Detailed illustration (masks, multiplications, addition portion) of the

 block permutations of SRCPer for block size 𝑚 = 3 and rotation index

 vector 𝑘 = {2,−1,−1} done in SIMD fashion 86

Fig.6.5 Simultaneous a) secure one-time comparison b) secure comparison

 (secComp, sC) of 𝑁 integer pairs in SIMD fashion 87

Fig.6.6. Illustration of SCADS in SIMD fashion 89

Fig.6.7. Row and column-wise encoding of integer matrices into vectors 91

Fig.6.8. Illustration of 𝑠𝑒𝑐𝐷𝑅𝑒𝑝(∙) for 𝑑1 = 2, 𝑑2 = 2 and 𝑟 = 4 92

Fig.6.9 Illustration of 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(∙) for input parameters a) 𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 = 4,

 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 1, 𝑑 = 1 and b) 𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 = 4, 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 1, 𝑑 = 4 95

Fig.6.10 Illustration of 𝑠𝑒𝑐𝑀𝑎𝑡𝑇(∙) for 𝑑1 = 2 and 𝑑2 = 2. 96

Fig.6.11. Illustration of 𝑠𝑒𝑐𝑀𝑎𝑡𝑇𝐷𝑅𝑒𝑝(∙) for 𝑑1 = 2, 𝑑2 = 2 𝑎𝑛𝑑 𝑟 = 2 97

Fig.6.12. Illustration of the ciphertext packing (CPack) algorithm 100

Fig.6.13. SIMD per class view of the query vector with zeros and ones at

 corresponding places according to the query feature vector 𝑋 101

Fig.6.14. Multiplying 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 with 𝑇𝑀_𝑐 102

Fig. 6.15. Illustration of construction of 𝑝𝑒𝑟𝐷𝑆_𝑝[] and 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 for the

 secKNN 106

Fig. 6.16. Encoding the values of each level’s node into the trained model

 plaintext 𝑇𝑀_𝑝 for DT and RF classifier when 𝑓 = 7 108

xix

Fig.6.17. SWHE SIMD multiplication of the trained model 𝑇𝑀_𝑐 obtained in

 Algorithm 5.2 with query 𝑞_𝑝. 109

Fig.6.18. Secure linear algebra ML classification algorithm flow-client centric 111

Fig.6.19. Secure linear algebra ML classification algorithm flow-server centric 112

Fig.6.20. SIMD construction of the 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 with padded zeros

 added for the need of the secSum Algorithm 116

Fig.6.21. 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 and portion of the 𝑀𝑈 − 𝑇𝑀_𝑐 depicting

 slots related to class 𝐶𝑗 117

Fig.6.22. 𝑀𝑈𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 multiplies 𝑀𝑈 − 𝑇𝑀_𝑐 119

Fig.6.23. The joint probability of X and Y, P(X,Y), for n=2 bits 133

Fig.6.24. The joint probability of X and Y, P(X,Y), for n=3 bits 133

Fig.6.25. The joint probability of X and Y, P(X,Y), for n=4 bits 134

Fig.6.26. Plotting 10.000 points to draw P(Y) when n=8 bits 134

Fig.6.27. Plotting 10.000 points to draw P(Y) when n=12 bits 135

Fig.6.28. Plotting 10.000 points to draw P(Y) when n=16 bits 135

xx

LIST OF ABBREVIATIONS

AI Artificial Intelligence

CNN Convolutional Neural Networks

CRT Chinese Remainder Theorem

DT Decision Trees

DM Data Mining

DNN Deep Neural Networks

DS Dataset

E2DS The Edge Encryption/Decryption Server

EC Edge Client

EDO Edge Dataset Owner

FHE Fully Homomorphic Encryption

H Hash function

HE Homomorphic Encryption

IoT Internet Of Things

IIoT Industrial Internet Of Things

kNN K-Nearest Neighbor

LR Logistic Regression

LWE Learning With Errors

ML Machine Learning

MNB Multinomial Naïve Bayes

MLMO Multi-label multi-output

NB Naïve Bayes

PP Privacy Preserving

RF Random Forests

xxi

RLWE Ring Learning With Errors

SF Selected Features

SIMD Single Instruction Multiple Data

SMC Secure Multi Party Computation

STC Substitution-Then-Comparison Attack

SVM Support Vector Machines

SWHE Somewhat Homomorphic Encryption

TEAS The Edge Aggregation Server

2PC Two Party Computation

3PC Three Party Computation

xxii

LIST OF SYMBOLS

SECURE AND PRIVATE FEATURE SELECTION (Chapter 4)

Cryptographic notations:

𝐴_𝑣 An integer vector denoted by “_𝑣” at the end, 𝐴_𝑣 = {𝑎1, … , 𝑎𝑁} = {(𝑎𝑖)𝑖=1
𝑁 },

𝐴_𝑝 A CRT encoded plaintext denoted by “_𝑝” at the end, 𝐴_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐴_𝑣)

𝐴_𝑐 A ciphertext denoted by “_𝑝” at the end, 𝐴_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐴_𝑣) and

𝐴_𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐴_𝑣), or 𝐴_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐴_𝑣)

General and common notations for all the (binary, multiclass, MLMO) datasets:

𝑛 Number of Edge Dataset Owners (EDO)

EDO𝑘 The k-th EDO, 1 ≤ 𝑘 ≤ 𝑛

𝑁𝑇(𝑘) the number of transactions at EDO𝑘, for both textual and non-textual datasets

NT The number of global transactions (records) in n EDOs, 𝑁𝑇 = ∑ 𝑁𝑇(𝑘)𝑛
𝑘=1

for both textual and non-textual datasets

𝑊 words’ set represented by permuted hashes 𝑊 =

{𝜋𝐻(𝑤1), 𝜋𝐻(𝑤2),… , 𝜋𝐻(𝑤|𝑊|)} in textual (binary and multi-label multi-

output - MLMO) datasets (DS).

Binary textual datasets:

𝑆𝐹 The set of m selected features (words), 𝑆𝐹 = {𝑤1, … , 𝑤𝑚}, a subset of 𝑊

𝐶′ The set of classes 𝐶′ = {𝑐ℎ, 𝑐𝑠} which consist of two classes, ham and spam,

for the binary textual DS

𝑁(𝑘)(𝑐𝑗) Number of local records belonging to class 𝑐𝑗 at EDO𝑘

𝑁(𝑐𝑗) Number of global records belonging to class 𝑐𝑗, 𝑁(𝑐𝑗) = ∑ 𝑁(𝑘)(𝑐𝑗)
𝑛
𝑘=1

𝑓(𝑘)(𝑤𝑖, 𝑐𝑗) Local frequency of word 𝑤𝑖 in documents classified as belonging to 𝑐𝑗 at at

EDO𝑘

𝑓(𝑤𝑖, 𝑐𝑗) Global frequency of word 𝑤𝑖 in documents classified (labeled) as belonging

to class 𝑐𝑗 in binary textual DS, where 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠

xxiii

𝑁(𝑘)(𝑤𝑖, 𝑐𝑗) Local count of word 𝑤𝑖 in documents classified as belonging to 𝑐𝑗 at EDO𝑘

𝑁(𝑤𝑖, 𝑐𝑗) Count (number) of documents where 𝑤𝑖 appears at least once in documents

classified as 𝑐𝑗 in binary textual DS, where 1 ≤ 𝑖 ≤ 𝑚 and 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠

𝑁(𝑤𝑖) Global counts (appearances) of word 𝑤𝑖 ∈ 𝑊 for binary textual datasets,

𝑁(𝑤𝑖) = 𝑁(𝑤𝑖, 𝑐ℎ) + 𝑁(𝑤𝑖, 𝑐𝑠)

𝑁(𝑤𝑖̅̅ ̅, 𝑐𝑗) The count (number) of documents in the binary textual dataset labeled as

belonging to class 𝑐𝑗 where word 𝑤𝑖 ∈ 𝑊 does not appear, 𝑁(𝑤𝑖̅̅ ̅, 𝑐𝑗) =

𝑁(𝑐𝑗) − 𝑁(𝑤𝑖, 𝑐𝑗).

𝑁(�̅�) The count (number) of documents in the binary textual dataset were 𝑤𝑖 ∈ 𝑊

does not appears at all, 𝑁(�̅�) = 𝑁𝑇 −𝑁(𝑤𝑖)

𝑃(𝑤𝑖) The probability of 𝑤𝑖 to appear in a document, 𝑃(𝑤𝑖) =
𝑁(𝑤𝑖)

𝑁𝑇

𝑃(𝑤𝑖̅̅ ̅) The probability of 𝑤𝑖 not appearing in a document, 𝑃(𝑤𝑖̅̅ ̅) =
𝑁(𝑤𝑖̅̅̅̅)

𝑁𝑇

𝑃(𝑤𝑖, 𝑐𝑗) The probability of word 𝑤𝑖 to appear in a binary textual document classified

as 𝑐𝑗, 𝑃(𝑤𝑖, 𝑐𝑗) =
𝑁(𝑤𝑖,𝑐𝑗)

𝑁𝑇
, where 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠.

𝑃(𝑤𝑖̅̅ ̅, 𝑐𝑗) The probability of word 𝑤𝑖 not appearing in a binary textual document

classified as 𝑐𝑗, 𝑃(𝑤𝑖̅̅ ̅, 𝑐𝑗) =
𝑁(𝑤𝑖̅̅̅̅ ,𝑐𝑗)

𝑁𝑇
 , where 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠.

𝐼𝐺(𝑤𝑖) The information gain of word 𝑤𝑖 in a binary textual dataset.

𝑃(𝑐𝑗) The class probabilities 𝑃(𝑐𝑗) =
𝑁(𝑐𝑗)

𝑁𝑇
 for binary textual DS, 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠

Multi-label multi-output datasets:

𝐿 The set of labels for a certain multi-label multi-output dataset,

𝐿 = {𝐿1, … , 𝐿|𝐿|}

𝐶𝑙 The set of corresponding classes for each label, 𝐶𝑙 = {𝐶1
𝑙 , … , 𝐶|𝐶𝑙|

𝑙}, 1 ≤ 𝑙 ≤

|𝐿| and |𝐶𝑙| is the cardinality of (number of classes belonging to) set 𝐶𝑙

𝑆𝐹𝑙 The set of 𝑚𝑙 selected features for label 𝑙, 𝑆𝐹𝑙 = {𝐻(𝑤1
𝑙),… , 𝐻(𝑤

𝑚𝑙
𝑙)},

xxiv

𝑆𝐹𝑀𝐿𝑀𝑂 The set of |𝐿| sets of 𝑚𝑙 selected features for the multi-label multi-output

(MLMO) scenario, 𝑆𝐹𝑀𝐿𝑀𝑂 = {{𝑆𝐹𝑙}𝑙=1
|𝐿|
} = {{{𝐻(𝑤𝑖

𝑙)}
𝑖=1

𝑚𝑙

}
𝑙=1

|𝐿|

}, where 1 ≤

𝑙 ≤ |𝐿|.

𝑁(𝐶𝑐
𝑙) The counts (number) of documents belonging to class 𝐶𝑐

𝑙

𝑁(𝑤𝑖
𝑙, 𝐶𝑐

𝑙) The counts of documents belonging to class 𝐶𝑐
𝑙
 having at least one appearance

of the word (feature) 𝑤𝑖
𝑙 ∈ 𝑆𝐹𝑙 in a multi-label multi-output dataset

 𝑓(𝑤𝑖
𝑙, 𝐶𝑐

𝑙) The frequency of word 𝑤𝑖
𝑙 ∈ 𝑆𝐹𝑙 appearing in documents belonging to class

𝐶𝑐
𝑙
 in a multi-label multi-output dataset, for 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤

𝑐 ≤ |𝐶𝑙|

𝑃(𝐶𝑐
𝑙) The 𝐶𝑐

𝑙 classes probability, 𝑃(𝐶𝑐
𝑙) =

𝑁(𝐶𝑐
𝑙)

𝑁𝑇
 ,1 ≤ 𝑙 ≤ |𝐿| and 1 ≤ 𝑐 ≤ |𝐶𝑙|

𝑁(𝑤𝑖
𝑙) The count of documents where 𝑤𝑖

𝑙 ∈ 𝑆𝐹𝑙 appears at least once in a MLMO

scenario,

 𝑁(𝑤𝑖
𝑙) = ∑ 𝑁(𝑤𝑖

𝑙, 𝐶𝑐
𝑙)

|𝐶𝑙|

𝑐=1 , for 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤ 𝑐 ≤ |𝐶𝑙|

𝑁(𝑤𝑖
𝑙̅̅̅̅) The count of documents where 𝑤𝑖

𝑙 ∈ 𝑆𝐹𝑙 does not appears,

𝑁(𝑤𝑖
𝑙̅̅̅̅) = 𝑁𝑇 − 𝑁(𝑤𝑖

𝑙)

𝑁(𝑤𝑖
𝑙̅̅̅̅ , 𝐶𝑐

𝑙) Counts of documents of class 𝐶𝑐
𝑙
 where 𝑤𝑖

𝑙 doesn’t appear,

𝑁(𝑤𝑖
𝑙̅̅̅̅ , 𝐶𝑐

𝑙) = 𝑁(𝐶𝑐
𝑙) − 𝑁(𝑤𝑖

𝑙, 𝐶𝑐
𝑙)

𝑃(𝑤𝑖
𝑙) The probability of 𝑤𝑖

𝑙 to appear in a document, 𝑃(𝑤𝑖
𝑙) =

𝑁(𝑤𝑖
𝑙)

𝑁𝑇

𝑃(𝑤𝑖
𝑙̅̅̅̅) The probability of 𝑤𝑖

𝑙 not to appear in a document, 𝑃(𝑤𝑖
𝑙̅̅̅̅) =

𝑁(𝑤𝑖
𝑙̅̅ ̅̅)

𝑁𝑇

𝑃(𝑤𝑖
𝑙 , 𝐶𝑐

𝑙) The probability of word 𝑤𝑖
𝑙 to appear in a document belonging to 𝐶𝑐

𝑙
,

𝑃(𝑤𝑖
𝑙 , 𝐶𝑐

𝑙) =
𝑁(𝑤𝑖

𝑙
𝑖
,𝐶𝑐

𝑙)

𝑁𝑇
, where 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤ 𝑐 ≤ |𝐶𝑙|

𝑃(𝑤𝑖
𝑙̅̅̅̅ , 𝐶𝑐

𝑙) The probability of word 𝑤𝑖
𝑙 not appearing in a document belonging to class

𝐶𝑐
𝑙
, 𝑃(𝑤𝑖

𝑙̅̅̅̅ , 𝐶𝑐
𝑙) =

𝑁(𝑤𝑖
𝑙̅̅ ̅̅ ,𝐶𝑐

𝑙)

𝑁𝑇
, where 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and

1 ≤ 𝑐 ≤ |𝐶𝑙|

𝐼𝐺𝑙(𝑤𝑖
𝑙) Information gain of 𝑤𝑖

𝑙 ∈ 𝑆𝐹𝑙 for label 𝑙, where 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙

xxv

SECURE AND PRIVATE MACHINE LEARNING TRAINING (Chapter 5)

Multiclass non-textual datasets (including the corresponding symbols of the previous

chapter(s)):

f Number of features in a non-textual dataset

c Number of classes (labels) in a non-textual dataset

𝐹𝑖 The values feature i 𝐹𝑖 = {𝑉1,𝐹𝑖, 𝑉2,𝐹𝑖 , … , 𝑉|𝐹𝑖|,𝐹𝑖 } can take for non-textual

datasets, 𝑉𝑚,𝐹𝑖 is the 𝑚-th element of the feature set 𝐹𝑖, and 1 ≤ 𝑖 ≤ 𝑓 , 1 ≤

𝑚 ≤ |F𝑖|.

𝐶 The set of classes for non-textual (multiclass) datasets, 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑐}

𝑁(𝑘)(𝐶𝑗) The local counts of records belonging to class 𝐶𝑗 at EDO𝑘

𝑁(𝐶𝑗) The global (overall) counts of records belonging to class 𝐶𝑗 in n EDOs.

𝑁(𝑘)(𝑉𝑚,𝐹𝑖; 𝐶𝑗) The count of the 𝑚-th value of feature 𝐹𝑖 having class 𝐶𝑗 at EDO𝑘

𝑁(𝑉𝑚,𝐹𝑖; 𝐶𝑗) The global count of the 𝑚-th value of the feature 𝐹𝑖 having class 𝐶𝑗

 where 1 ≤ 𝑖 ≤ 𝑓, 1 ≤ 𝑗 ≤ 𝑐 and 1 ≤ 𝑚 ≤ |𝐹𝑖| for non-textual datasets

𝑃(𝐶𝑗) The class probability, i.e. the probability for a certain instance to belong to

class 𝐶𝑗 𝑃(𝐶𝑗) =
𝑁(𝐶𝑗)

𝑁𝑇
,

𝑃(𝑉𝑚,𝐹𝑖|𝐶𝑗) The conditional feature value-class probabilities, 𝑃(𝑉𝑚,𝐹𝑖|𝐶𝑗) =
𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

𝑁(𝐶𝑗)

 where 1 ≤ 𝑖 ≤ 𝑓, 1 ≤ 𝑗 ≤ 𝑐 and 1 ≤ 𝑚 ≤ |𝐹𝑖|.

𝐶(∙) The trained MNB/NB model for non-textual DS consisted of 𝑃(𝐶𝑗),

𝑃(𝑉𝑚,𝐹𝑖|𝐶𝑗), where 1 ≤ 𝑖 ≤ 𝑓, 1 ≤ 𝑗 ≤ 𝑐 and 1 ≤ 𝑚 ≤ |𝐹𝑖|.

Binary textual datasets (including the corresponding symbols of the previous

chapter(s)):

𝑃(𝑤𝑖|𝑐𝑗) 𝑃(𝑤𝑖|𝑐𝑗) =
𝑓(𝑤𝑖,𝑐𝑗)

𝑁(𝑐𝑗)
 and 𝑃(𝑤𝑖|𝑐𝑗) =

𝑁(𝑤𝑖,𝑐𝑗)

𝑁(𝑐𝑗)
 denote the conditional word-

class probabilities for MNB and NB cases in binary textual DS, respectively.

𝐶𝑇𝑀(∙) The trained MNB/NB model for binary textual DS consisted of 𝑃(𝑐𝑗),

𝑃(𝑤𝑖|𝑐𝑗),where 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠 and 𝑤𝑖 ∈ 𝑆𝐹.

xxvi

Multi-label multi-output datasets (including the corresponding symbols of the previous

chapter(s)):

𝑃(𝑤𝑖
𝑙|𝐶𝑐

𝑙) The conditional word-class probability. 𝑃(𝑤𝑖
𝑙|𝐶𝑐

𝑙) =
𝑁(𝑤𝑖

𝑙,𝐶𝑐
𝑙)

𝑁(𝐶𝑐
𝑙)

 for the NB

classifier, 𝑃(𝑤𝑖
𝑙|𝐶𝑐

𝑙) =
𝑓(𝑤𝑖

𝑙,𝐶𝑐
𝑙)

𝑁(𝐶𝑐
𝑙)

 for the MNB classifier.

𝑇𝑀𝑀𝐿𝑀𝑂_𝑐 The trained model for the multi-label multi-output datasets, which is

consisted of 𝑃(𝐶𝑐
𝑙) and 𝑃(𝑤𝑖

𝑙|𝐶𝑐
𝑙) for 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤

𝑐 ≤ |𝐶𝑙|.

SECURE AND PRIVATE MACHINE LEARNING CLASSIFICATIONS

(Chapter 6)

Multiclass non-textual datasets (including the corresponding symbols of the previous

chapter(s)):

𝑋 Unclassified feature vector, 𝑋 = {𝑋1, 𝑋2… ,𝑋𝑓}, where 𝑋𝑖 ∈ 𝐹𝑖

Binary textual datasets (including the corresponding symbols of the previous

chapter(s)):

𝑞_𝑣 The query vector for textual datasets, 𝑞_𝑣 = {1, 𝑓𝑞(𝑤1),… , 𝑓𝑞(𝑤𝑚)}, 𝑓𝑞(𝑤𝑖)

is the frequency of appearance of word 𝑤𝑖 in the query 𝑞_𝑣 and 𝑤𝑖 ∈ 𝑆𝐹.

Multi-label multi-output datasets:

𝑞_𝑣𝑀𝐿𝑀𝑂 The multi-label multi-output unclassified query vector,

 𝑞_𝑣𝑀𝐿𝑀𝑂 = {{1, {𝑓𝑞
𝑙(𝑤𝑖

𝑙)}
𝑖=1

𝑚𝑙

}
𝑐=1

|𝐶𝑙|

}

𝑙=1

|𝐿|

Linear algebra based ML classification (including the corresponding symbols of the

previous chapter(s)):

𝑀 The trained model matrix for classification based on linear algebra. For the

NB case 𝑀 = [{𝐶(𝑗)}
𝑗=1

𝑐
]
𝑐×(𝑓+1)

, where for 1 ≤ 𝑖 ≤ 𝑓, 1 ≤ 𝑗 ≤ 𝑐 and

1 ≤ 𝑚 ≤ |𝐹𝑖|. 𝐶
(𝑗) = {⌊𝐾𝑙𝑜𝑔𝑃(𝐶𝑗)⌋, (⌊𝐾𝑙𝑜𝑔(𝑉𝑚,𝐹𝑖|𝐶𝑗)⌋𝑚=1

|𝐹𝑖|
)

𝑖=1

𝑓

}.

xxvii

For SVM and LR M = [{W(j)}
j=1

c
]
c×(f+1)

 , where W(j) = {b(j), w1
(j)
, … , wn

(j)
}

is the j-th hyperplane.

For deep neural networks (DNN) 𝑀 is consisted of all the layer matrices 𝑀𝑖

and activation functions 𝑓𝑖(∙), where 0 ≤ 𝑖 ≤ 𝑙, and l is the number of layers

in DNN

𝑋′ The query vector 𝑋 = {1, (𝑉𝑚,𝐹𝑖𝑚=1
|𝐹𝑖|)

𝑖=1

𝑓

 } ≅ {1, 𝑋1, … , 𝑋𝑓}, where 𝑋𝑖 ∈ 𝐹𝑖,

1 ≤ 𝑖 ≤ 𝑓 and 1 ≤ 𝑚 ≤ |𝐹𝑖|. If 𝑉𝑚,𝐹𝑖 appears in the original query

(i.e. 𝑉𝑚,𝐹𝑖 = 𝑋𝑖), its value is 1, otherwise it is 0.

S A matrix whose columns are 𝑞 query vectors denoted as X(k), for the multi-

query linear algebra based classification, thus S = [{X(k)}
k=1

q
]
(f+1)×q

kNN, decision tree and random forests classifiers:

𝑌𝑟𝑖 𝑟𝑖-th dataset record, 𝑌𝑟𝑖 = {𝑌1
𝑟𝑖 , 𝑌2

𝑟𝑖 , … , 𝑌𝑓
𝑟𝑖} for kNN. When the records are

randomly permuted by a permutation 𝜋, they are denoted as 𝑌𝜋(𝑟𝑖)

𝑑(𝑋, 𝑌𝑟𝑖) the distance between query X and the 𝑟𝑖-th dataset record for kNN

𝑣𝑎𝑙𝐹𝑖 threshold value of features 𝐹𝑖’s corresponding node in the decision tree,

 1 ≤ 𝑖 ≤ 𝑓

1

Chapter 1

INTRODUCTION

IPv6 increased the bit size of the IP addresses from 32 to 128 bits. This contributes to the

estimated increase of IP connected devices in the Internet of Things (IoT) from 8.4 billion in

2017 to the predicted 30+ billion in 2020 [1]. Together with the emerging trends of other

information technologies such as ubiquitous (makes computing omnipresent, anytime and

everywhere), wearable (computing devices worn under, with, or on top of clothing) and cloud

computing combined, those devices contribute to the rise of the global data volume from 4.4

zettabytes in 2013 to the predicted 44 zettabytes in 2020 [2] in what is known as Big Data.

Often those IoT devices collect data to form private datasets, such as different hospitals

collecting data about their patients’ disease predictions together with the corresponding

patient symptoms, or different cyber-security companies collecting log files of computer

systems together with the corresponding host/network attack(s) or normal behavior, etc. If

those data sets of the same nature are collected in different environments (e.g. different

hospitals, different IT systems, etc.) and have different statistical properties, it has been

shown that when they are merged into a single data set to train a machine learning (ML)

model, the model often ends up being more accurate in its’ classifications (predictions) than

the human expert of the same field or than the trained models obtained from each of the

datasets separately [3].

Fortunately, in the last couple of decades, many techniques have been proposed that

enable us to either partially or in total overcome the above mentioned problems. Those

techniques enable the ML experts to successfully train and get the final trained ML model

from multiple data set owners with little or no exposure of their data or information related

to the data. This process is known as privacy preserving (PP) training. On the other hand,

2

those techniques can also be utilized for the case when a user wants to classify his query

without letting the trained model owner learn anything neither about his query data nor the

final prediction (classification), while the user also should not learn anything about the

trained model. This process is known as privacy preserving classification.

1.1. Motivation and problem statement

In 2000, [1] and [2] almost simultaneously came up with research under similar titles where

they addressed the privacy of the datasets over which ML models were trained. Several others

followed, some of which are presented in the surveys at [3] and [4]. Those are known as

privacy preserving training schemes. Common for those early schemes was that they solely

concentrated on the privacy of the datasets, with little or no concern for the privacy of the

classification stage. They also payed no attention to the privacy of the trained model as well

[3-4].

Realizing these shortcomings, dozens of schemes followed afterwards, which exclusively

deal with the classification (inference) stage for different ML classifiers such as Naïve Bayes

(NB), Deep Neural Networks (DNN), Support Vector Machines (SVM), Logistic Regression

(LR), Decision Trees (DT), Random Forests (RF), etc. These schemes fall into the privacy

preserving classification category, such as those in [5-11], to name a few. There are also a

few schemes that for consistency and continuity reasons addresses both privacy preserving

training and classification problem under the same system architecture and environment

settings, such as those proposed in [12-15] and [30-32].

However, before training an ML model, it is common practice to do some pre-processing

and feature selection on top of the dataset(s) over which the training is being done. Especially

this is common for datasets which are highly dimensional (have a huge number of features),

a typical occurrence for text classification datasets such as SMS spam, e-mail spam,

document classification, etc., which are known to harbor tens, hundreds of thousands or even

millions of unique features (words, tokens). By applying some feature selection over such

datasets, not only we save valuable amount of computation and communication cost during

the training and classification stages later on, rather trained models obtained over datasets on

3

which a certain feature selection has been applied, in general, are shown to be more accurate

during the classification stage [23-29].

Despite this, surprisingly, there is little work done on the area of secure feature selection,

especially on edge IoT environments. The few existing schemes have one or several setbacks

and disadvantages, which are elaborated in the next section. Furthermore, they are not

designed to have in mind the computation and communication environments of edge

computing in IoT, nor do the existing schemes provide a mechanism for ensuring the end-to-

end integrity, authenticity and consistency (continuity, order of sequence) by which the

interactions are done among different participants in the system while executing the

protocols.

1.2. Contributions

Definition 1.1: A blockchain is a list of blocks (records), where each block has a timestamp

and its transaction data (usually in form of a Merkle tree [16]) and is linked with the previous

block(s) by including its (theirs) hash(es) in itself, thus forming a chain of blocks

(blockchain) [17].

Definition 1.2: Internet of Things (IoT) is a set of cooperating devices (sensors, mobiles,

etc.) that can collect and transfer data over a wireless network without explicit human

intervention with the aim of reaching a certain functionality [18]

Definition 1.3: Edge computing refers to the technologies that enable computations to be

performed at the edge (end) of the network. It’s usually done so to improve response times

and use less network resources as well as resources of other devices around by doing local

processing at the edge node (device). For example, a smart phone is an edge device [19].

Our contributions: In order to overcome the afore mentioned shortcomings (elaborated in

more details in Chapter II), we propose a novel secure feature selection (filtering) protocol

based on information theoretic metrics such as entropy. Concretely, we homomorphically

evaluate features’ information gains on distributed (horizontally and vertically

4

partitioned) datasets over edge IoT devices and select the top 𝑚 ones with the highest

information gain. We choose the information gain since it is shown to be among the most

effective feature selecting metrics for text classification [20, 34], and due to the lack of secure

and private schemes that use it in literature [23-29]. Since in practice we deal with datasets

with sensitive content and knowing that our protocols use several interactions between the

participant, for each interaction of each participant we introduce a block (record) of its

interaction data and provide integrity by hashing the block’s content, confidentiality by

encrypting the sensitive data and authenticity by encrypting the overall block content with

participant’s private key. Furthermore, in order to assure the consistency (order of execution)

by which the interactions among participants are done, in our protocols we introduce

timestamps to the blocks and link them with the hashed content of the preceding block(s).

This makes our schemes a natural fit for blockchain technology. In the process each

participant keeps only the blocks which are generated by him, forming what we call vertically

partitioned distributed public ledger (Chapter 4).

To show the effectiveness of our scheme, on top of the selected features, we provide a

secure and private training and classification protocols over the same context (system

architecture, environment and security settings). In this sense, we continue our blockchain,

enabling in the process end-to-end (from raw datasets till the final trained model, i.e. from

secure feature selection to secure training) security characteristics inherited by blockchain,

(Chapter 4). During the secure classification stage each client, before classifying his query,

can verify (check) the correctness, flow and the consistency by which the final trained model

was obtained using the blockchain. We formally prove the security of all of them under

the semi-honest model.

For efficiency purposes, in order not to overload the network and other participants, we

tend to do local processing at the edge on clear (plain, un-encrypted) data as much as

possible, rather than homomorphically evaluate them later on. While doing so we take into

consideration the heterogeneity (in terms of hardware and software platforms) and the

restricted resources that are characteristic for edge IoT devices [21, 22]. Our schemes have

high rate of fault tolerance and resistance to collusion attacks so that, out of 𝑛 dataset

owners, they allow up to 𝑛 − 3 failures or up to 𝑛 − 2 collusions. Moreover, the underlying

cryptographic tools that we use while executing our protocols are proven to be secure under

5

quantum computer attacks, making our protocols suitable for the post quantum world. This

makes our schemes one of the rare ones (if not the only one) that utilizes blockchain

technology to provide an and end-to-end (from raw un-preprocessed datasets to final trained

model) secure and private framework for ML algorithms in edge IoT environments [21, 22].

We should note that our protocols about secure feature selection, training and classification,

are independent from each other, in terms that, according to the scenario and needs, each

of them can be used solely or in combination with secure and private protocols from other

research schemes.

1. Secure feature selection (secFS) protocol - requirements:

 Privacy of the input features. We achieve this by randomly permuting the hashes

of the input values (words, tokens)

 Privacy of the input features’ values

 Security and privacy of intermediate results. We keep the intermediate results of

all of our protocols secure and private since they might be used as a trapdoor for

total or partial leakage of the input or the output of the corresponding protocol.

 Partial privacy for the output (of the top 𝑚 selected features). The output cannot

be totally private since it is needed as an entry point (input) for the secure

classification stage when clients prepare their queries in accordance to the selected

features. However, the selected features can be kept private for the secure training

protocol.

2. Secure training (secT) protocol - requirements:

 Privacy of the input features. The inputs here are the selected features, i.e. the

output) of the secFS protocol.

 Privacy of the input features’ values

 Security and privacy of intermediate results

 Privacy of the output, i.e. the trained model. We provide the option for the trained

model not to be revealed to any of the participants, even during the PP

classification stage. This is one of the rare protocols to keep private the final

trained model at any stage.

6

3. Secure classification (secC) protocol- requirements:

 Privacy of the trained model

 Privacy of the user query for both query features and their corresponding values

(frequencies)

 Security and privacy of intermediate results

 Privacy of the output, i.e. the final classification result

 No loss of accuracy with respect to the plain classifier

We should note the for the purpose of the secure classification protocols we propose the

secure comparison protocol based on arithmetic circuits, which securely compares two

integers. On top of it we also propose the secure comparison of all data slots – SCADS

protocol, which in turn is needed for the secure argmax and secure top-K protocols. While

our experimental evaluations show that the proposed secure comparison protocol when used

isolated (not in combination with our secure classification protocols) doesn’t perfectly hide

the difference of the two integers that it compares (Section 6.9), yet we theoretically proof

(in Section 6.10) that when our secure comparison, hence SCADS as well, are used in

combination with our secure classification protocols, they help us hide the trained model and

the user query. We base our proof on top of well-established cryptographic primitives

(assumptions in this case), such as ones based on The Learning With Errors – LWE schemes.

4. Have the remaining characteristics given in the Tables of Chapter 3.

The published/accepted/submitted papers derived from this dissertation are:

1. Kjamilji, Artrim, Erkay Savaş, and Albert Levi. "Efficient Secure Building Blocks With

Application to Privacy Preserving Machine Learning Algorithms." IEEE Access 9 (2021):

8324-8353.” (published)

2. Kjamilji, Artrim. Albert Levi, Erkay Savaş and Osman Berke Güney "Secure Matrix

Operations for Machine Learning Classifications Over Encrypted Data in Post Quantum

Industrial IoT" The International Symposium on Networks, Computers and Communications

(ISNCC'21). IEEE, 2021 (accepted, Dubai, 31.10-02.11.2021).

7

3. Kjamilji, Artrim. Albert Levi, Erkay Savaş “Blockchain driven secure feature selection,

training and classifications in distributed edge IoT environments” (submitted to IEEE Journal

on Selected Areas in Communications).

Besides the above papers, there a few of other future papers for which in this dissertation

we provide their theoretical background, security analysis and proofs, pseudocodes and we

already have their implementations (codes) which can be found in [98], as well as their

experimental evaluations. After writing their corresponding manuscripts, they will be

submitted to related journals/conferences.

1.3. Dissertation organization

In Chapter 2 we give preliminaries related to the research. Namely, we introduce the concepts

of NB, multinomial NB (MNB) for multi-label multi-output datasets as well as ML classifiers

based on linear algebra operations such as DNN, SVM, LR, NB and MNB (again, this time

represented through linear algebra operations). We proceed with the information gain, as well

as cryptographic primitives, concepts, definitions and theorems which will be used in later

chapters. In Chapter 3 we elaborate the related research on secure feature selection, secure

training and secure classification. In Chapter 4 we give our algorithms on secure and private

feature selection for multi-label multi-output datasets, while in Chapter 5 we present the

corresponding secure and private training algorithms. In Chapter 6 we present novel secure

building blocks for general purpose, such as secure sum, secure permutation and its inverse,

secure comparison and secure sorting (whose derivatives are secure top-K and secure

argmax). We proceed with novel secure building blocks on linear algebra such as secure dot

(inner) product, secure compression of sparsely encoded matrices, a couple of versions of

secure matrix-vector product, a couple of versions of secure matrix-matrix product, secure

matrix transpose and secure Frobenius product. On top of those building blocks we built our

secure and private ML classifiers for KNN, DT, RF, NB, MNB, DNN, SVM and LR. At the

end of each of the Chapters 3-6 we give theoretical experimental evaluations and

comparisons of our protocols with the state-of-the-art as well as we provide security proofs

for all of our protocols under the semi-honest (honest but curious) model. In Chapter 6 we

deal with malicious users as well during the secure and private classifications. Finally, in

8

Chapter 7 we conclude our research with discussions as well as proposals and ideas for future

research and directions.

9

Chapter 2

BACKGROUND INFORMATION AND

PRELIMINARIES

In this chapter, we provide the preliminaries related to all of our schemes throughput the

dissertation. Namely, we derive NB classifier from Bayes’ Theorem and use it for both

textual and non-textual multi-label multi-output dataset (which in itself includes the special

cases of binary classes, multi-class, multinomial and multi-label scenarios). Then we

introduce the most commonly used classifiers such as KNN, DF, RF and the others that can

be expressed through linear algebra operations such as SVM, LR, MNB and DNN. We

proceed with introducing the information gain and cryptographic primitives related to

security definitions, concepts and theorems which will be our used for proving other

theorems throughout the dissertation. We conclude with the general system architecture of

our schemes, participants and their adversary models and briefly introduce our protocol

flows, which are elaborated in details in their corresponding chapters.

The notation given here will be valid throughout the paper. We denote a vector of integers

by adding the term “_𝑣” at the end of the vector’s name, i.e. 𝑖𝑛𝑡_𝑣 = {𝑎1, 𝑎2, … 𝑎𝑁} =

{(𝑎𝑖)𝑖=1
𝑁 }. By 𝑖𝑛𝑡1_𝑣 + 𝑖𝑛𝑡2_𝑣; 𝑖𝑛𝑡1_𝑣 − 𝑖𝑛𝑡2_𝑣; 𝑖𝑛𝑡1_𝑣 × 𝑖𝑛𝑡2_𝑣; 𝑖𝑛𝑡1_𝑣/𝑖𝑛𝑡2_𝑣, we

denote the component (index) wise addition, subtraction, multiplication and division of two

integer vectors, respectively. ⌈∙⌉ denotes the ceiling function (rounding to the closest greater

integer), while ⌊∙⌋ the floor function (rounding to the closest smaller integer). With 𝐻(∙) we

10

denote a cryptographic hashing function and by |𝑆| we denote the cardinality (number of

elements) of a certain set S.

2.1. Bayes’ Theorem and Naïve Bayes

Let 𝐴1, … , 𝐴𝑁 , 𝐵 be random variables. Let 𝑃(𝐵), 𝑃(𝐴1, … , 𝐴𝑁), 𝑃(𝐵|𝐴1, … , 𝐴𝑁) and

𝑃(𝐴1, … , 𝐴𝑁|𝐵) be the probability of observing 𝐵, the joint probability of observing the

random variables 𝐴1, … , 𝐴𝑁, the conditional probability of observing 𝐵 after 𝐴1, … , 𝐴𝑁 are

observed and the conditional probability of observing 𝐴1, … , 𝐴𝑁 after 𝐵 is observed,

respectively. Then the Bayes’ Theorem can be written as:

𝑃(𝐵|𝐴1, … , 𝐴𝑁) =
𝑃(𝐴1,…,𝐴𝑁|𝐵)𝑃(𝐵)

𝑃(𝐴1,…,𝐴𝑁)
 (2.1)

If we are interested on which value of 𝐵 has the highest probability of appearance after

𝐴1, … , 𝐴𝑁 have been observed, but not on their actual values, then if we Naively assume that

𝐴1, … , 𝐴𝑁 are independent to each other (thus 𝑃(𝐴1, … , 𝐴𝑁|𝐵) = ∏ 𝑃(𝐴𝑖|𝐵)
𝑁
𝑖=1) and knowing

that logarithm is a monotonically increasing function, then (1) can be written as:

𝐵𝑣𝑚𝑎𝑥 = (
𝑎𝑟𝑔𝑚𝑎𝑥
𝐵𝑣 ∈ 𝐵

𝑃(𝐵|𝐴1, … , 𝐴𝑁)) =
𝑎𝑟𝑔𝑚𝑎𝑥
𝐵𝑣 ∈ 𝐵

∑ 𝑙𝑜𝑔𝑃(𝐴𝑖|𝐵)
𝑁
𝑖=1 𝑃(𝐵𝑣) (2.2)

where 𝐵𝑣𝑚𝑎𝑥 is the value of 𝐵 which has the highest posterior probability (probability of

appearance) after 𝐴1, … , 𝐴𝑁 have been observed. Equation (2.2) is known as the Naive Bayes

formula.

2.1.1. Naïve Bayes for multi-class non-textual datasets

Naïve Bayes is a supervised machine learning (ML) technique used for classification, hence

its model is trained from a dataset(s) assumed to be correctly labeled. Such datasets have

𝑓 + 1 columns, where 𝑓 is the number of features (attributes) and one column is for the class

(label). We assume that each feature is categorical (if a certain feature is continuous, it can

be discretized). Each record (transaction, instance, row) in the data set for each of the f

11

features can take one of the values from the feature set 𝐹𝑖 = {𝑉1,𝐹𝑖, 𝑉2,𝐹𝑖 , … , 𝑉|𝐹𝑖|,𝐹𝑖 }, where

|𝐹𝑖| is the cardinality (number of elements) of the set 𝐹𝑖 and 𝑉𝑚,𝐹𝑖 is the 𝑚-th element of the

feature set 𝐹𝑖, and 1 ≤ 𝑖 ≤ 𝑓 , 1 ≤ 𝑚 ≤ |F𝑖|. Let 𝐹 ⊆ 𝑅𝑓 be the set of the Cartesian products

of all the elements of all features’ set, namely 𝐹 = 𝐹1 × 𝐹2 × …× 𝐹𝑓. All of the instances

belong to one class from set of classes 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑐} , so we have 𝑐 classes in total. The

total number of instances (transactions) in the dataset is NT. In this sense, a dataset is

comprised of records which are tuples {𝑌𝑟 , 𝑍𝑟}, where 𝑌𝑟 ∈ 𝐹 and 𝑍𝑟 ∈ 𝐶. Let 𝑁(𝐶𝑗) denote

the global (overall) frequency (counts) of class 𝐶𝑗 and let 𝑁(𝑉𝑚,𝐹𝑖; 𝐶𝑗) denote the frequency

of the 𝑚-th value of the feature 𝐹𝑖 with class 𝐶𝑗 where 1 ≤ 𝑖 ≤ 𝑓, 1 ≤ 𝑗 ≤ 𝑐 and

1 ≤ 𝑚 ≤ |𝐹𝑖|. Obviously, 𝑁𝑇 = ∑ 𝑁(𝐶𝑗)
𝑐
𝑗=1 . For the class and conditional feature value-

class probabilities, we have 𝑃(𝐶𝑗) =
𝑁(𝐶𝑗)

𝑁𝑇
 and 𝑃(𝑉𝑚,𝐹𝑖|𝐶𝑗) =

𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

𝑁(𝐶𝑗)
, respectively, and

they actually represent the trained model.

To classify an unclassified feature vector 𝑋 = {𝑋1, 𝑋2… ,𝑋𝑓}, where 𝑋𝑖 ∈ 𝐹𝑖 (therefore 𝑋 ∈

𝐹), means to label it with a class from the set 𝐶 which has the highest posterior probability.

Assuming that the features are independent from each other, thus

𝑃(𝑋1, 𝑋2, … , 𝑋𝑓|𝐶𝑗) = ∏ 𝑃(𝑋𝑖|𝐶𝑗)
𝑓
𝑖=1 , then using (2.2) for the NB classifier we have:

𝐶(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑗≤𝑐 [𝑙𝑜𝑔𝑃(𝐶𝑗) + ∑ 𝑙𝑜𝑔𝑃(𝑋𝑖|𝐶𝑗)
𝑓
𝑖=1] (2.3)

If the main (global) dataset was obtained by merging 𝑛 other data sets, then for the

frequencies of the dataset we have 𝑁(𝐶𝑗) = ∑ 𝑁(𝑘)(𝐶𝑗)
𝑛
𝑘=1 ,

𝑁(𝑉𝑚,𝐹𝑖; 𝐶𝑗) = ∑ 𝑁(𝑘)(𝑉𝑚,𝐹𝑖; 𝐶𝑗)
𝑛
𝑘=1 and 𝑁𝑇 = ∑ 𝑁𝑇(𝑘)𝑛

𝑘=1 , where 𝑁(𝑘)(𝐶𝑗) is the local

frequency (counts) of class 𝐶𝑗 at the data set 𝑘, while 𝑁(𝑘)(𝑉𝑚,𝐹𝑖; 𝐶𝑗) is the frequency of the

𝑚-th value of feature 𝐹𝑖 having class 𝐶𝑗 at the dataset 𝑘, and 𝑁𝑇(𝑘) is the number of

transactions at the dataset 𝑘, where 1 ≤ 𝑖 ≤ 𝑓, 1 ≤ 𝑗 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑛 and 1 ≤ 𝑚 ≤ |𝐹𝑖|.

Having this in mind, then letting each 𝑋𝑖 = 𝑉𝑚,𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓 and 1 ≤ 𝑚 ≤ |𝐹𝑖|, from

(2.3) we have:

12

𝐶(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑗≤𝑐 [𝑙𝑜𝑔
∑ 𝑁(𝑘)(𝐶𝑗)
𝑛
𝑘=1

∑ 𝑁𝑇(𝑘)𝑛
𝑘=1

+ ∑ 𝑙𝑜𝑔
∑ 𝑁(𝑘)(𝑉𝑙,𝐹𝑖;𝐶𝑗)
𝑛
𝑖=1

∑ 𝑁(𝑘)(𝐶𝑗)
𝑛
𝑘=1

𝑓
𝑖=1] (2.4)

In order to integerize for encryption purposes, we multiply the probabilities with a constant

𝐾, so for (2.4) we have:

𝐶(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑗≤𝑐 ⌈𝐾 [𝑙𝑜𝑔
𝑁(𝐶𝑗)

𝑁𝑇
+∑ 𝑙𝑜𝑔

𝑁(𝑉𝑚,𝐹𝑖; 𝐶𝑗)

𝑁(𝐶𝑗)

𝑓

𝑖=1
]⌉ ≈

𝑙𝑜𝑔𝑃(𝐶𝑗) + ∑ 𝑙𝑜𝑔𝑃(𝑉𝑚,𝐹𝑖|𝐶𝑗)
𝑓
𝑖=1 (2.5)

2.1.2. Multinomial Naïve Bayes for multi-label multi-output textual

datasets

For simplicity and better understanding, we firstly present the scenario with binary textual

datasets and then generalize it to deal with multi-label multi-output textual datasets.

Let the transactions (documents, records, instances) of a certain (pre-processed) dataset DS

have a selected feature set 𝑆𝐹 consisting of 𝑚 words (features), thus 𝑆𝐹 = {𝑤1, … , 𝑤𝑚}. For

simplicity and without loss of generality, let the set of classes 𝐶 of DS consist of two classes,

ham and spam, thus 𝐶 = {𝑐ℎ, 𝑐𝑠}. Let 𝑓(𝑤𝑖, 𝑐𝑗) denote the frequency of word 𝑤𝑖 in documents

classified (labeled) as belonging to class 𝑐𝑗, while 𝑁(𝑤𝑖, 𝑐𝑗) denote the count (number) of

documents where 𝑤𝑖 appears at least once in documents classified as belonging to 𝑐𝑗, where

1 ≤ 𝑖 ≤ 𝑚 and 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠. In this sense, if 𝑤𝑖 appears several times in a document

belonging to 𝑐𝑗 then its frequency 𝑓(𝑤𝑖, 𝑐𝑗) will be incremented as many times as it appears

in that particular document, while its document count 𝑁(𝑤𝑖, 𝑐𝑗) will be incremented by one.

Let 𝑁𝑇 and 𝑁(𝑐𝑗) denote the total number of transaction and the number of records belonging

to class 𝑐𝑗, respectively. Apparently 𝑁𝑇 = ∑ 𝑁(𝑐𝑗)𝑐𝑗=𝑐ℎ,𝑐𝑗=𝑐𝑠
. Let 𝑃(𝑐𝑗) =

𝑁(𝑐𝑗)

𝑁𝑇
 denote the

class probabilities. Let 𝑃(𝑤𝑖|𝑐𝑗) =
𝑓(𝑤𝑖,𝑐𝑗)

𝑁(𝑐𝑗)
 and 𝑃(𝑤𝑖|𝑐𝑗) =

𝑁(𝑤𝑖,𝑐𝑗)

𝑁(𝑐𝑗)
 denote the conditional

word-class probabilities for the Multinomial Naïve Bayes (MNB) and Naïve Bayes (NB)

cases, respectively. Actually 𝑃(𝑐𝑗) and 𝑃(𝑤𝑖|𝑐𝑗), where 1 ≤ 𝑖 ≤ 𝑚 and 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠,

represent the trained model 𝐶𝑇𝑀(∙) for the MNB and NB classifier, respectively. In order to

13

give a chance to words whose conditional probability is zero, due to their counts or

frequencies being zero, we add one to each count (frequency) accompanied by adding the

vocabulary size (number of unique words) to the denominator of the corresponding

conditional probabilities. This process is called Laplace Smoothing. For the MNB case un-

classified queries have the form of 𝑞_𝑣 = {1, 𝑓𝑞(𝑤1), … , 𝑓𝑞(𝑤𝑚)}, where 𝑓𝑞(𝑤𝑖) is the

frequency of appearance of word 𝑤𝑖 in the query 𝑞_𝑣, while for the NB case it has the form

of the binary vector 𝑞_𝑣 = {1, 𝑁𝑞(𝑤1),… ,𝑁𝑞(𝑤𝑚)} where 𝑁𝑞(𝑤𝑖) = 1 if 𝑤𝑖 appears at least

once in the query and 𝑁𝑞(𝑤𝑖) = 0 if 𝑤𝑖 doesn’t appear in the query, for 1 ≤ 𝑖 ≤ 𝑚 and 𝑤𝑖 ∈

𝑆𝐹. Applying Naïve Bayes’ Theorem for multinomial datasets [18], [33], [35], [39], we

classify 𝑞_𝑣 as:

𝐶𝑇𝑀(𝑞_𝑣) = 𝑃(𝑐𝑗|𝑞_𝑣) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑐𝑗=𝑐ℎ or 𝑐𝑗=𝑐𝑠

𝑃(𝑐𝑗)(∏ 𝑃(𝑤𝑖|𝑐𝑗)
𝑚
𝑖=1)

𝑃(𝑞_𝑣)
 (2.6)

Similar to the reasoning in Chapter 2.1 and (2.2), having in mind that 𝑃(𝑞_𝑣) is always

the same, that logarithm is a monotonically increasing function and naively assuming that

appearances of words in a query are independent of each other, i.e.

𝑃(𝑞_𝑣|𝑐𝑗) = ∏ 𝑃(𝑤𝑖|𝑐𝑗)
𝑓𝑞(𝑤𝑖|𝑐𝑗)𝑚

𝑖=1 , then for the MNB case (2.2) can be written as:

𝐶𝑇𝑀(𝑞_𝑣) = 𝑠𝑖𝑔𝑛[𝐾(𝑙𝑜𝑔𝑃(𝑐ℎ) − 𝑙𝑜𝑔𝑃(𝑐𝑠)) + ∑ 𝐾𝑓𝑞(𝑤𝑖)(𝑙𝑜𝑔𝑃(𝑤𝑖|𝑐ℎ) −
𝑚
𝑖=1

𝑙𝑜𝑔𝑃(𝑤𝑖|𝑐𝑠))] (2.7)

if 𝐶𝑇𝑀(𝑞_𝑣) > 0, i.e. 𝑠𝑖𝑔𝑛 = +, then 𝑞_𝑣 is classified as 𝑐ℎ (ham), otherwise as 𝑐𝑠 (spam).

K is a constant used to integerize terms of 𝐶𝑇𝑀(𝑞_𝑣) for encryption purposes (Chapter 2.4.1).

If in (2.6) instead of frequencies 𝑓𝑞(𝑤𝑖) we use the counts 𝑁𝑞(𝑤𝑖), then (2.6) is valid for the

NB case.

If the dataset DS is obtained by merging 𝑛 other datasets denoted as DS𝑘 for 1 ≤ 𝑘 ≤ 𝑛,

then 𝑁𝑇 = ∑ 𝑁𝑇(𝑘)𝑛
𝑘=1 , 𝑁(𝑐𝑗) = ∑ 𝑁(𝑘)(𝑐𝑗)

𝑛
𝑘=1 , 𝑓(𝑤𝑖, 𝑐𝑗) = ∑ 𝑓(𝑘)(𝑤𝑖, 𝑐𝑗)

𝑛
𝑘=1 and

𝑁(𝑤𝑖, 𝑐𝑗) = ∑ 𝑁(𝑘)(𝑤𝑖, 𝑐𝑗)
𝑛
𝑘=1 , where 𝑁𝑇(𝑘), 𝑁(𝑘)(𝑐𝑗), 𝑓

(𝑘)(𝑤𝑖, 𝑐𝑗) and 𝑁(𝑘)(𝑤𝑖, 𝑐𝑗) denote

the number of transactions (records), number of records labeled as 𝑐𝑗, frequency of word 𝑤𝑖

in documents labeled as 𝑐𝑗 and the count (number) of at least one appearance of 𝑤𝑖 in

14

documents labeled as 𝑐𝑗 at dataset k, respectively, for 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠.

For the multi-label multi-output case, where each label is a multiple-classes, let the set of

labels for a certain dataset be 𝐿 = {𝐿1, … , 𝐿|𝐿|} and let the set of corresponding classes for

each label be 𝐶𝑙 = {𝐶1
𝑙 , … , 𝐶|𝐶𝑙|

𝑙}, where 1 ≤ 𝑙 ≤ |𝐿| and |𝐶𝑙| is the cardinality of (number

of classes belonging to) set 𝐶𝑙. Let 𝑆𝐹𝑙 = {𝑤1
𝑙 , … , 𝑤

𝑚𝑙
𝑙 } be the set of 𝑚𝑙 selected features for

label 𝑙, where 1 ≤ 𝑙 ≤ |𝐿|. Let 𝑁(𝐶𝑐
𝑙), 𝑁(𝑤𝑖

𝑙, 𝐶𝑐
𝑙) and 𝑓(𝑤𝑖

𝑙 , 𝐶𝑐
𝑙), be the counts (number)

of documents belonging to class 𝐶𝑐
𝑙
, counts of documents belonging to class 𝐶𝑐

𝑙
 having at

least one appearance of the word (feature) 𝑤𝑖
𝑙 ∈ 𝑆𝐹𝑙 and the frequency of word 𝑤𝑖

𝑙 appearing

in documents belonging to class 𝐶𝑐
𝑙
, respectively, for 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and

1 ≤ 𝑐 ≤ |𝐶𝑙|. Let 𝑃(𝐶𝑐
𝑙) =

𝑁(𝐶𝑐
𝑙)

𝑁𝑇
 denote the 𝐶𝑐

𝑙 classes probability and

𝑃(𝑤𝑖
𝑙|𝐶𝑐

𝑙) =
𝑁(𝑤𝑖

𝑙,𝐶𝑐
𝑙)

𝑁(𝐶𝑐
𝑙)

 or 𝑃(𝑤𝑖
𝑙|𝐶𝑐

𝑙) =
𝑓(𝑤𝑖

𝑙,𝐶𝑐
𝑙)

𝑁(𝐶𝑐
𝑙)

 denote the conditional word-class

probability for NB, respectively for MNB case. Let 𝑇𝑀𝑀𝐿𝑀𝑂 denote the trained model for

the multi-label multi-output datasets, which is consisted of 𝑃(𝐶𝑐
𝑙) and 𝑃(𝑤𝑖

𝑙|𝐶𝑐
𝑙) for

1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤ 𝑐 ≤ |𝐶𝑙|. Then for the query

𝑞_𝑣𝑀𝐿𝑀𝑂 = {{1, {𝑓𝑞
𝑙(𝑤𝑖

𝑙)}
𝑖=1

𝑚𝑙

}
𝑐=1

|𝐶𝑙|

}

𝑙=1

|𝐿|

, which for label 𝑙 has 𝑚𝑙 words (features), the

corresponding classification for each label assigns a class to 𝑞_𝑣 according to MNB, thus:

𝑇𝑀𝑀𝐿𝑀𝑂(𝑞_𝑣𝑀𝐿𝑀𝑂) =
𝑃 ({𝐶𝑐

𝑙}
𝑙=1

|𝐿|
|𝑞_𝑣)

1 ≤ 𝑙 ≤ |𝐿|
=

𝑎𝑟𝑔𝑚𝑎𝑥
1≤𝑙≤|𝐿|

1≤𝑐≤|𝐶𝑙|

[𝐾𝑙𝑜𝑔𝑃(𝐶𝑐
𝑙) + ∑ 𝐾𝑓𝑞

𝑙(𝑤𝑖
𝑙)𝑙𝑜𝑔𝑃(𝑤𝑖

𝑙|𝐶𝑐
𝑙)𝑚𝑙

𝑖=1]

(2.8)

If 𝑓𝑞
𝑙(𝑤𝑖

𝑙)s are substituted by 𝑁𝑞
𝑙(𝑤𝑖

𝑙) in (2.8) and probabilities belong to the NB case, then

the classification of 𝑞_𝑣 is done according to NB.

We should emphasize that if each value of each feature is considered as a binary feature

on its own (that can take two values, 0 or 1, depending on whether its present or not in the

record or the query), then the scenario for textual multi-label multi-output datasets is also

valid for the non-textual ones.

15

2.2. Information gain

For the binary classification case, let 𝑁(𝑤𝑖̅̅ ̅, 𝑐𝑗) = 𝑁(𝑐𝑗) − 𝑁(𝑤𝑖, 𝑐𝑗) denote the count

(number) of documents in the dataset labeled as belonging to class 𝑐𝑗 where word 𝑤𝑖 does

not appear, and 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠. Let 𝑁(𝑤𝑖) = 𝑁(𝑤𝑖, 𝑐ℎ) + 𝑁(𝑤𝑖, 𝑐𝑠) be the number of

documents were word 𝑤𝑖 appears at least once and 𝑁(�̅�) = 𝑁𝑇 − 𝑁(𝑤𝑖) be the count

(number) of documents were 𝑤𝑖 does not appears at all. Let 𝑃(𝑤𝑖) =
𝑁(𝑤𝑖)

𝑁𝑇
 denote the

probability of 𝑤𝑖 to appear in a document, 𝑃(𝑤𝑖̅̅ ̅) =
𝑁(𝑤𝑖̅̅̅̅)

𝑁𝑇
 denote the probability of 𝑤𝑖 not

appearing in a document, 𝑃(𝑤𝑖, 𝑐𝑗) =
𝑁(𝑤𝑖,𝑐𝑗)

𝑁𝑇
 denote the probability of word 𝑤𝑖 to appear in

a document classified as 𝑐𝑗 and 𝑃(𝑤𝑖̅̅ ̅, 𝑐𝑗) =
𝑁(𝑤𝑖̅̅̅̅ ,𝑐𝑗)

𝑁𝑇
 denote the probability of word 𝑤𝑖 not

appearing in a document classified as 𝑐𝑗, where 𝑐𝑗 = 𝑐ℎ or 𝑐𝑗 = 𝑐𝑠. Then, the information gain

(IG) of a word 𝑤𝑖 is defined as [34-35]:

𝐼𝐺(𝑤𝑖) = ∑ (𝑃(𝑤𝑖, 𝑐𝑗)𝑙𝑜𝑔 (
𝑃(𝑤𝑖,𝑐𝑗)

𝑃(𝑤𝑖)𝑃(𝑐𝑗)
) + 𝑃(𝑤𝑖̅̅ ̅, 𝑐𝑗)𝑙𝑜𝑔 (

𝑃(𝑤𝑖̅̅̅̅ ,𝑐𝑗)

𝑃(𝑤𝑖̅̅̅̅)𝑃(𝑐𝑗)
))𝑐𝑗=𝑐ℎ,𝑐𝑠

 (2.8)

The information gain is a quantitative metric which measures the reduction of entropy

(uncertainty) of a query 𝑞_𝑣 to belong to a class 𝑐𝑗 after word 𝑤𝑖 has been observed in the

query. The higher the entropy reduction, the more information gain the word 𝑤𝑖 offers. This

is the reason that makes information gain one of the most effective tools in dimension

reduction (feature selection), especially when choosing the top 𝑚 words with the highest

information gain in what is known as “bag-of-words” [33],[34],[37]. Substituting the

probabilities with their counts and having in mind that we want to find the top 𝑚 words with

the highest IG, but not their exact IG, then (2.8) can be rewritten as:

𝐼𝐺(𝑤𝑖) ~∑ (𝑁(𝑤𝑖, 𝑐𝑗)𝑙𝑜𝑔 (
𝑁(𝑤𝑖,𝑐𝑗)𝑁𝑇

𝑁(𝑤𝑖)𝑁(𝑐𝑗)
) + 𝑁(𝑤𝑖̅̅ ̅, 𝑐𝑗)𝑙𝑜𝑔 (

𝑁(𝑤𝑖̅̅̅̅ ,𝑐𝑗)𝑁𝑇

𝑁(𝑤𝑖̅̅̅̅)𝑁(𝑐𝑗)
))𝑐𝑗=𝑐ℎ,𝑐𝑠

 (2.9)

16

which makes the homomorphic evaluations and selection of the top 𝑚 words with the highest

IG easier (Chapter 2.4).

For the multi-label multi-output datasets let 𝑁(𝑤𝑖
𝑙) = ∑ 𝑁(𝑤𝑖

𝑙 , 𝐶𝑐
𝑙)

|𝐶𝑙|

𝑐=1 ,

𝑁(𝑤𝑖
𝑙̅̅̅̅) = 𝑁𝑇 − 𝑁(𝑤𝑖

𝑙), and 𝑁(𝑤𝑖
𝑙̅̅̅̅ , 𝐶𝑐

𝑙) = 𝑁(𝐶𝑐
𝑙) − 𝑁(𝑤𝑖

𝑙, 𝐶𝑐
𝑙) denote the count (number)

of documents where 𝑤𝑖
𝑙 ∈ 𝑆𝐹𝑙 appears at least once, count of documents where 𝑤𝑖

𝑙 doesn’t

appear at all and counts of documents of class 𝐶𝑐
𝑙
 where 𝑤𝑖

𝑙 doesn’t appear , respectively,

for 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤ 𝑐 ≤ |𝐶𝑙| . Let 𝑃(𝑤𝑖
𝑙) =

𝑁(𝑤𝑖
𝑙)

𝑁𝑇
 denote the probability of

𝑤𝑖
𝑙 to appear in a document, 𝑃(𝑤𝑖

𝑙̅̅̅̅) =
𝑁(𝑤𝑖

𝑙̅̅ ̅̅)

𝑁𝑇
 denote the probability of 𝑤𝑖

𝑙 not appearing in a

document, 𝑃(𝑤𝑖
𝑙, 𝐶𝑐

𝑙) =
𝑁(𝑤𝑖

𝑙
𝑖
,𝐶𝑐

𝑙)

𝑁𝑇
 denote the probability of word 𝑤𝑖

𝑙 to appear in a document

belonging to 𝐶𝑐
𝑙
 and 𝑃(𝑤𝑖

𝑙̅̅̅̅ , 𝐶𝑐
𝑙) =

𝑁(𝑤𝑖
𝑙̅̅ ̅̅ ,𝐶𝑐

𝑙)

𝑁𝑇
 denote the probability of word 𝑤𝑖

𝑙 not appearing

in a document belonging to class 𝐶𝑐
𝑙
, where 1 ≤ 𝑙 ≤ |𝐿|, 1 ≤ 𝑖 ≤ 𝑚𝑙 and 1 ≤ 𝑐 ≤ |𝐶𝑙|.

Then, for label 𝑙, where 1 ≤ 𝑙 ≤ |𝐿|, the information gain of word 𝑤𝑖 is

𝐼𝐺𝑙(𝑤𝑖
𝑙) = ∑ (𝑃(𝑤𝑖

𝑙 , 𝐶𝑐
𝑙)𝑙𝑜𝑔 (

𝑃(𝑤𝑖
𝑙,𝐶𝑐

𝑙)

𝑃(𝑤𝑖
𝑙)𝑃(𝐶𝑐

𝑙)
) + 𝑃(𝑤𝑖

𝑙̅̅̅̅ , 𝐶𝑐
𝑙)𝑙𝑜𝑔 (

𝑃(𝑤𝑖
𝑙̅̅ ̅̅ ,𝐶𝑐

𝑙)

𝑃(𝑤𝑖
𝑙̅̅ ̅̅)𝑃(𝐶𝑐

𝑙)
))

|𝐶𝑙|

𝑐=1 (2.10)

Substituting the probabilities with their counts and having in mind that for each label label 𝑙,

where 1 ≤ 𝑙 ≤ |𝐿|, we want to find the top 𝑚𝑙 words with the highest IG, but not their exact

IG, then (6) can be rewritten as

𝐼𝐺𝑙(𝑤𝑖
𝑙) ~∑ (𝑁(𝑤𝑖

𝑙, 𝐶𝑐
𝑙)𝑙𝑜𝑔 (

𝑁(𝑤𝑖
𝑙,𝐶𝑐

𝑙)𝑁𝑇

𝑁(𝑤𝑖
𝑙)𝑁(𝐶𝑐

𝑙)
) + 𝑁(𝑤𝑖

𝑙̅̅̅̅ , 𝑐𝑗)𝑙𝑜𝑔 (
𝑁(𝑤𝑖

𝑙̅̅ ̅̅ ,𝐶𝑐
𝑙)𝑁𝑇

𝑁(𝑤𝑖
𝑙̅̅ ̅̅)𝑁(𝐶𝑐

𝑙)
))

|𝐶𝑙|

𝑐=1 (2.11)

2.3. Machine Learning classifications

According to Dua [38]: “Machine learning (ML) is the computational process of

automatically inferring and generalizing a learning model from sample data. In supervised

machine learning, an algorithm is fed sample data that are labeled in meaningful ways. The

algorithm uses the labeled samples for training and obtains a model. Then, the trained

17

machine-learning model can label the data points that have never been used by the

algorithm”.

Below we give some of the widely used ML techniques with application to cyber security

and corresponding use-cases. Other case-studies on all of the mentioned classifiers on this

section are reported in [38] and [39].

2.3.1. K-Nearest Neighbor (KNN)

Is a widely used classification technique which is simple to implement, although it requires

a lot of computation power and storage resources. It is simple since it doesn’t require prior

training, rather, given an observed instance 𝑋 = {𝑋1, 𝑋2, … 𝑋𝑓} which we want to classify

(label) and a dataset DS with fairly enough of already correctly classified instances, we want

to find the instance(s) of DS that are closer to 𝑋 and correspondingly label 𝑋 as belonging to

its closest instance(s) class in terms of a distance. However, in order to avoid biases, distances

that do not properly find neighbors, and/or mistakes that might have happened while

capturing (measuring) the instances 𝑋’s features, when classifying 𝑋, we might consider to

take into consideration several (say 𝑘) closest neighbors of 𝑋 in DS, hence the name kNN.

Afterwards the majority voting is applied to determine 𝑋’s final vote. In order to avoid equal

number of votes for different classes from the neighbors of 𝑋, it is desires 𝑘 to be odd.

Let 𝑌𝑟𝑖 = {𝑌1
𝑟𝑖 , 𝑌2

𝑟𝑖 , … , 𝑌𝑓
𝑟𝑖} be a record of DS, where 1 ≤ 𝑖 ≤ 𝑁𝑇 and 𝑁𝑇 is the number of

transactions (records, instances) in DS. As a distance metric between 𝑋 and 𝑌𝑟𝑖 can be

considered several ones. The most used distance metric is the Euclidian distance, which is

calculated as:

𝑑(𝑋, 𝑌𝑟𝑖) = √∑ (𝑋𝑖 − 𝑌𝑦
𝑟𝑖)2

𝑓
𝑦=1 (2.12)

The squared Euclidean distance between 𝑋 and 𝑌𝑟𝑖 is defined as:

𝑑(𝑋, 𝑌𝑟𝑖) = ∑ (𝑋𝑖 − 𝑌𝑦
𝑟𝑖)

2𝑓
𝑦=1 (2.13)

18

The Manhattan distance between 𝑋 and 𝑌𝑟𝑖 is defined as:

𝑑(𝑋, 𝑌𝑟𝑖) = ∑ |𝑋𝑖 − 𝑌𝑦
𝑟𝑖|

𝑓
𝑦=1 (2.14)

The cosine similarity between 𝑋 and 𝑌𝑟𝑖 is defined as:

𝑑(𝑋, 𝑌𝑟𝑖) = cos(𝛼) =
𝑋×𝑌𝑟𝑖

|𝑋||𝑌𝑟𝑖|
 (2.15)

where 𝑋 × 𝑌𝑟𝑖 is the inner product of 𝑋 and 𝑌𝑟𝑖, and |𝑋| and |𝑌𝑟𝑖| are their canonical (L2)

forms, respectively. Besides those, there are others less used distance metrics such as

Jaccard’s, Minkowski’s, Chebyshev’s distance, etc.

Since 𝑋 checks for all of the instances in DS, 𝑘𝑁𝑁 it has a linear complexity with respect

to the number of records in DS.

2.3.2. Decision Trees and Random Forests

Decision trees are also one of the most frequently used machine Learning (ML) techniques,

known also as decision trees. Decision trees (DT) are build based on an observation database

(dataset) (Fig. 2.1.). After building the tree, those techniques are used to give prediction

(classification) for a record (instance, raw) that has only its feature values, but not the class

to which that particular record (instance) belongs to. Thus we want to classify (label) a newly

observed instance which might not have been seen before as part of the dataset.

Fig.2.1. Building a decision tree out of observations (dataset) [27]

19

Starting from the root of the tree and guided by the value(s) of certain attribute(s), we

follow a link that sends to another node and so on till we reach a leaf node which eventually

contains the final classification for that record as it is shown in Fig.2.2. A tree is expressed

as conjunction of disjunctions in terms of if-and-…-and-then rules.

Fig.2.2. Finding a binary tree classification guided by attributes and their values [42]

There are several ML binary tree techniques, which are similar and variations of each

other. The most famous ones are J48, ID3 (proposed by Quinlan [40]), C4.5 (Quinlan [41])

and CART (Classification and Regression Tree). Here we will briefly give only ID3, whose

algorithm (pseudocode) is given in Fig.2 5.

In order to properly build a DT, we introduce two notions (metrics) that will help us build

the tree. One of them is the notion of entropy (the degree of uncertainty a system has) which

is given with the formula (3.22)

𝐻(𝑆) = ∑ −𝑝𝑖𝑙𝑜𝑔(𝑝𝑖)
𝑁
𝑖=0 (2.16)

where 𝑝𝑖 is the probability of appearance of a certain value for a certain feature (attribute) .

Another notion is that of the Information Gain that we introduced in Chapter 2.2. In this

sense, according to the pseudocode in Fig.2.3, until there are no features (attributes) left

without being selected, starting from the root of the DT, in each iteration we select the feature

whose feature values introduce the highest IG are selected to be the root of the DT.

20

Fig.2.3. Pseudocode for the ID3 algorithm [40]

Random forest (RF) on the other hand is an algorithm that is made of multiple DT. Those

DT are selected in such a way that they complement each-other to give better results. Since

all of the DT algorithms have strong and week sides, the RF is designed to combine the strong

sides of several decision tree algorithms. Since different trees might give different

classification for an un-classified instance, RF uses the majority voting to give the final

thought of its instance classification (labeling). In order to avoid imbalances that might

appear due to different natures of individual trees in the RF, techniques such as boosting,

bagging and others are used [42-43].

2.3.3. Machine Learning classifications based on linear algebra operations

In this chapter we introduce several classifiers which are based or can be expressed through

linear algebra operations such as dot (inner) product of two vectors, matrix-vector product,

single matrix-matrix product and cascading (sequential, one after another) matrix-matrix

products. Those are SVM, LR and DNN. Also we will re-introduce NB and MNB classifiers,

but this time expressed through linear algebra operations. In the following sub-chapters, we

assume that the trained model of the corresponding ML algorithm already exists and we deal

only with the classification (prediction) stage for unclassified queries. For some of the ML

algorithms we give a brief overview on how the trained model is obtained

21

2.3.3.1 Naïve Bayes and Multinomial Naïve Bayes (revisited). Having in mind the

notations for NB in Chapter 2.1.1, for the set of classes 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑐} let us define the

training integer row-vector 𝐶(𝑗) corresponding to class 𝐶𝑗 as

𝐶(𝑗) = {⌊𝐾𝑙𝑜𝑔𝑃(𝐶𝑗)⌋, (⌊𝐾𝑙𝑜𝑔(𝑉𝑚,𝐹𝑖|𝐶𝑗)⌋,𝑚=1

|𝐹𝑖|
)

𝑖=1

𝑓

} =

{⌊𝐾𝑙𝑜𝑔𝑃(𝐶𝑗)⌋, ⌊𝐾𝑙𝑜𝑔(𝑉1,𝐹1|𝐶𝑗)⌋, ⌊𝐾𝑙𝑜𝑔(𝑉2,𝐹1|𝐶𝑗)⌋,… , ⌊𝐾𝑙𝑜𝑔(𝑉|𝐹𝑛|,𝐹𝑛|𝐶𝑗)⌋}, which makes

𝐶(𝑗) an 𝑓 + 1 dimensional vector, where 1 ≤ 𝑗 ≤ 𝑐,. At its first index it has the log of the

class probability - ⌊𝐾𝑙𝑜𝑔𝑃(𝐶𝑗)⌋, followed by all of the 𝑓 conditional feature value

probabilities - ⌊𝐾𝑙𝑜𝑔(𝑉𝑚,𝐹𝑖|𝐶𝑗)⌋, s. t. 1 ≤ 𝑖 ≤ 𝑓, 1 ≤ 𝑚 ≤ |𝐹𝑖|- of the remaining 𝑓 indexes in

sequential order. The multiplication of the logs of the probabilities by a constant 𝐾 and

rounding them to the closest smaller integer (⌊∙⌋) is done for encryption purposes. Let we

have an unclassified query 𝑋′ = {𝑋′1, 𝑋′2, … , 𝑋′𝑛}, where 𝑋′𝑖 ∈ 𝐹𝑖. In similar way, we

redefine the query vector 𝑋′ as a binary row-vector 𝑋 = {1, (𝑉𝑚,𝐹𝑖𝑚=1
|𝐹𝑖|)

𝑖=1

𝑓

 } =

{1, 𝑉1,𝐹1 , 𝑉2,𝐹1 , … , 𝑉|𝐹𝑛|,𝐹𝑛} ≅ {1, 𝑋1, … , 𝑋𝑓}, i.e. it has 1 at the first index followed by a

sequential order of all of the f feature values of all feature sets. For all 𝑋′𝑖 ∈ 𝐹𝑖 of the original

query vector 𝑋’ we put 1 (one) at the corresponding index of the redefined query and all other

values are set to be 0 (zeros). If we define the trained model as an 𝑐 × (𝑓 + 1) dimensional

matrix, whose rows are all of the 𝑐 training row-vectors - 𝐶(𝑗)s in sequential order, thus

𝑀 = [{𝐶(𝑗)}
𝑗=1

𝑐
]
𝑐×(𝑓+1)

, then the classification of 𝐶𝑀(𝑋) = 𝐶𝑀(𝑋′) can be expressed as:

𝐶𝑀(𝑋) = [𝑀 × 𝑋] 1≤𝑗≤𝑐
𝑎𝑟𝑔𝑚𝑎𝑥

 (2.17)

where the matrix column-vector multiplication returns a 𝑐 dimensional column-vector which

in its indexes contains the posterior probabilities of 𝑋 to belong to the corresponding class

𝐶𝑗. The term
𝑎𝑟𝑔𝑚𝑎𝑥
1≤𝑗≤𝑐

 returns the maximum element of the resulting vector, which is the class

with the highest posterior probability, hence the class label for 𝑋. A similar reasoning can be

done for the MNB and NB case for textual datasets and queries, where the trained model

matrix 𝑀 contains the corresponding row-vector class probabilities -𝐶(𝑗)s -in sequential

22

order, obtained having in mind MNB logic (Chapter 2.1.2), whereas the query vector 𝑞_𝑣

remains the same.

2.3.3.2. Support Vector Machines (SVM). Can directly be used in systems with two classes

(binary case) that are linearly separable and the separation is done with planes. Since there

are many planes that separate the instances of the two classes, the separation is done (chosen)

in such a way that there is a maximum gap between instances of the different classes on each

side of the plane (Fig. 2.4). This is obviously the optimal separation of the two classes. The

instance that are closer to the separation plane on both sides of it (i.e. of the different classes)

make the so called support vectors, hence the name support vector machines (SVM). Let

those support vectors be the instances (records) {𝑌𝑟+ , 𝑐+} belonging to one of the binary

classes (denoted as 𝑐+) and the other be {𝑌𝑟− , 𝑐−} belonging to the other class (denoted as

𝑐−), where 𝑌𝑟+ = {𝑌1
𝑟+ , … , 𝑌𝑓

𝑟+} and 𝑌𝑟− = {𝑌1
𝑟− , … , 𝑌𝑓

𝑟−} are the values of the support

vectors they have for each of the 𝑓 features (dimensions) of the dataset. Let the record

{𝑌𝑟+ , 𝑐+} belong to a plane 𝜋+ s.t. 𝑊𝑇𝑌𝑟+ + 𝑏 = 1, where b is constant and 𝑊 is the normal

vector to the hyperplane 𝜋+. This means that all the f dimensional records 𝑋 = {𝑋1, … , 𝑋𝑓}

for which 𝑊𝑇𝑋 + 𝑏 ≥ 1 holds, i.e. they are on or above 𝜋+, are labeled as belonging to class

𝑐+. Similarly, let the records {𝑌𝑟− , 𝑐−} belong to a plane 𝜋− s.t. 𝑊𝑇𝑌𝑟− + 𝑏 = −1 where b is

the same constant and 𝑊 is also the normal vector to the hyperplane 𝜋−. All the records

𝑋 = {𝑋1, … , 𝑋𝑓} for which 𝑊𝑇𝑋 + 𝑏 ≤ −1 holds, i.e. they are on or below 𝜋−, are labeled

as belonging to class 𝑐−. We can re-write this as 𝑦(𝑊𝑇𝑌𝑟𝑦 + 𝑏) ≥ 1, where 𝑦 = 1 and

𝑟𝑦 = 𝑟+ if the class is 𝑐+,while 𝑦 = −1 and 𝑟𝑦 = 𝑟− if the class is 𝑐−. This also means that the

distance between 𝜋+ and 𝜋− is
2

|𝑊|
, where |𝑊| is the Normal Hesse form of 𝑊. Since we

want to maximize the distance of the support vectors with the separating plane, that means

we should minimize |𝑊|. Thus, the plane that in the most optimal ways separates the two

classes is derived by optimizing those formulas:

𝑎𝑟𝑔𝑚𝑖𝑛(
1

2
|𝑤|2) (2.18)

𝑦(𝑊𝑇𝑌𝑟𝑦 + 𝑏) ≥ 1 (2.19)

23

The splitting plane, which is given by its plane equation 𝑊𝑇𝑋 + 𝑏 = 0, afterwards is used

to classify new instances 𝑋 = {𝑋1, … , 𝑋𝑓} by evaluating 𝑋 into the plane formula. The result

will be either a positive or a negative number, one for both of the classes.

Fig.2.4. Choosing the right class separator plane using SVM [39, 45].

For the case when binary classes are not linearly separable, kernel tricks are used. Usually

those kernels add an extra dimension which makes the classes again linearly separable and

applies the same logic as it is shown above.

For the cases when there are several classes (more than two, say 𝑐 classes), SVM can be

used in two modes. In one mode each class is separated from every other class using the

above logic. This means that for each pair of classes we have a classifier, which in total make

for 𝑐(𝑐 − 1)/2 plane classifiers. Since in some cases this is a lot, another approach is to have

“one versus other classes” classifier. This means that in total we have c-1 planes [30].

In order to represent SVM multiclass classifiction in term os linear algebra (concretly

matrix-vector product) operations, let us have 𝑓 features, denoted as 𝐹1, … , 𝐹𝑓 and c classes,

𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑐}. Each of the 𝑐 classes has its own trined 𝑓 + 1 dimensional hyperplane

𝑊(𝑗) = {𝑏(𝑗), 𝑤1
(𝑗)
, … , 𝑤𝑛

(𝑗)
}, for 1 ≤ 𝑗 ≤ 𝑐, that tends to maximize the gap between the

closest instances (support vector machines) of the that class with the rest. In this sense the

trained model can be expressed as rows of 𝑊(𝑗)s, thus 𝑀 = [{𝑊(𝑗)}
𝑗=1

𝑐
]
𝑐×(𝑓+1)

 . If the query

vector 𝑋 is expressed as a column vector 𝑋 = {1, 𝑋1, … , 𝑋𝑓}, where 𝑋𝑖 ∈ 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓,

then the classification of 𝑋 - 𝐶𝑀(𝑋) is done using (2.17) [9-10], [43-44]

24

2.3.3.3. Logistic regression (LR). The trained model 𝑀 and the user query 𝑋 have the same

construction as in 3.1.2, hence its classification is done using (2) again. LR differes from

SVM only by the algorithm by which the trained model 𝑀 is obtained [16], [21].

 Table 2.1. Common perceptron activation functions [45]

2.3.3.4. Deep neural networks (DNN). One of the hot research areas recently have been

DNN. They were designed to imitate (simulate) the way the human brain works. Namely, the

human brain is consisted from small processing (neurons) that take input signals from other

processing units, process them and send them to another processing unit. The same is with

the elementary constituents of DNN that take some weighted input(s) from other processing

units, do some linear or nonlinear transformation to it and then pass the output to another

processing unit. These elementary processing units are called perceptrons (shown as circular

shaped nodes in Fig. 2.5). The function that perceptrons use to transform the (weighted) input

to an output is called the activation function. Table 2.1 gives the most common activation

functions. In some cases, if the output is positive it is said that the perceptron fires. Due to

the limitations of single perceptrons, layers of and later on multiple layer of perceptrons were

introduced (Fig.2.5). Sometimes DNN can have hundreds if not thousands of layers, each

with also hundreds or thousands of perceptrons.

25

Fig.2.5. A multilayer deep neural network [39]

The DNN in Fig.6 has 3 layers. The input (first from the left) has 4 perceptrons, the middle

layer has 3 and the output layer 2 perceptrons. Although there is a huge research going on

with ANN and deep learning, still there is no clear policy on how to determine the adequate

number of layers, the number of perceptrons in a layer, the activation function for perceptrons

or even the number of inputs in the network.

As it can be seen from the DNN in fig.6, the input 𝑋 = {𝑋1, 𝑋2, 𝑋3, 𝑋4} is fed to the four

perceptrons of the input layer. Inside the perceptrons the activation functions (say one from

the table 4) transforms the input into an output. For each input layer node (perceptron) there

is a link to the next (hidden) layer node which has a weight (usually in decimal numbers)

assigned to it. Initially those weights are randomly assigned and will get fixed during the

training process. Those weights can be represented as a matrix, in which the rows are the

inputs and columns the output (target) perceptron nodes, which in Fig.2.6 are denoted as 𝑀1

matrix, with the corresponding weights (elements in the matrix) denoted as 𝑤𝑖𝑗. For instance,

the weight of the link that comes out from the second input node and goes to the 3rd node of

the hidden layer is 𝑤23. In the second (hidden) layer, all of the nodes some up the products

of the output that the input layers generate with the weights. Then this sum of products is fed

to the activation function of the hidden layer perceptron, which in turn comes up with an

output that will be send to the proceeding layer, which in our case is the output layer. Of

course, the links between the hidden and the output layer have also their weights, represented

by the 𝑀2 matrix. The 𝑀2 matrix has j rows and k columns in Fig.2.5, which are the number

of perceptrons (nodes) in the hidden and the output layer, correspondingly.

26

Let us define 𝑀0 as a column vector which has 𝑓 ones, thus its weights are all 1. Let the

input layer be denoted as layer 0, let we have 𝑙 layers and let the activation functions for each

layer 𝑖 be denoted as 𝑓𝑖(∙), where 0 ≤ 𝑖 ≤ 𝑙. Apparently, the trained model 𝑀 of our DNN

is consisted of all the matrixes 𝑀𝑖 and 𝑓𝑖(∙), for 0 ≤ 𝑖 ≤ 𝑙. Let the output of layer 𝑖 be a

column vector denoted as 𝑋𝑖+1 and let the input 𝑋 also be denoted as 𝑋0. Then, the final

output of the DNN can be denoted as 𝐶𝑀(𝑋), which is actually the classification of our input

query 𝑋 = 𝑋0 according to 𝑀, thus

𝐶𝑀(𝑋) = ∏ (𝑓𝑖(𝑀𝑖 × 𝑋𝑖))𝑙
𝑖=0 (2.20)

Equation (2.20) is equivalent to (2.17) when the DNN has only layers 0 and 1 and their

correpodning activation functions are linear, thus 𝑓0(𝑥) = 𝑓1(𝑥) = 𝑥.

Fig.2.6. Illustration of our proposed multi-query classifications

2.3.4.5. Multi-query classifications. Since all of the above ML classification schemes use

the same logic during the ML classification stage, which can be expressed in terms of a

multiplication of a matrix with a column-vector, intuitively, a matrix-matrix multiplication

can classify multiple queries at once. Let 𝑆 = [{𝑋(𝑘)}
𝑘=1

𝑞
]
(𝑓+1)×𝑞

be the (𝑓 + 1) × 𝑞

dimensional query matrix obtained by appending 𝑞 column vector queries of dimension 𝑛 +

1, s.t. 𝑋(𝑘) = {1, 𝑋1
(𝑘)
, … , 𝑋𝑓

(𝑘)
}, for 1 ≤ 𝑘 ≤ 𝑞. In that case, for SVM, LR, NB and MNB, as

shown in Fig.2.6, classifying 𝑞 queries at once can be expressed as

 𝐶𝑀(𝑆) = [𝑀 × 𝑆]1≤𝑗≤𝑐,1≤𝑘≤𝑞
𝑎𝑟𝑔𝑚𝑎𝑥

 (2.21)

27

Similarly, for the DNN (2.20) can be written as:

𝐶𝑀(𝑆) = ∏ (𝑓𝑖(𝑀𝑖 × 𝑆𝑖))𝑙
𝑖=0 (2.22)

2.4. Cryptographic primitives

In this section we give introduce some cryptographic primitives, definitions concepts and

theorems that will be used in our schemes.

In order to achieve data privacy, in our research we are interested and deal only with

cryptographic techniques, mainly due to their accuracy and efficiency. Those techniques are

based on secure Two-Party-Computation (2PC), somewhat homomorphic encryption (allows

limited number of mathematical and/or Boolean operations on ciphertexts), oblivious transfer

(OT), private information retrieval (PIR), etc. The pioneering works of these techniques are

Yao’s circuits [47], ElGamal’s [48] public crypto-system that supports additive homomorphic

properties, Pailler’s [49] crypto-system that besides the additive homomorphic property also

allows a multiplication with a constant, the Goldwasser-Micali scheme [50] that enables secure

XOR operations between two encrypted bits, etc. The secure multi-party computation (MPC)

given in [51-52] is a generalization of 2PC to more than two parties. MPC however suffers

from computation and communication cost, making it impractical for many real-case scenarios

[53].

Somewhat homomorphic encryption (SWHE) schemes allow only a limited number of

homomorphic additions and multiplications on the ciphertexts. Gentry’s seminal work of

[54], paved the way for the Fully Homomorphic Encryption schemes (FHE), which allows

arbitrary number of additions and multiplications on the ciphertexts. This is done by

introducing the bootstrapping (homomorphic re-encryption) technique applied on SWHE

schemes. Further improvements of [54] were seen in [55-57], which made FHE suitable for

practical applications, hence resulted in the development of actual libraries such as IBM’s

HElib [31] based on the BGV scheme from [55] and Microsoft’s SEAL [59] based on both

the SWHE FV presented scheme in [56] and some characteristics of the BGV scheme.

28

2.4.1. Public Somewhat Homomorphic Encryption schemes

Homomorphic encryption (HE) schemes allow for certain arithmetic or Boolean operations

to be evaluated (done) over the ciphertexts without decrypting them (while the ciphertexts

are still encrypted) [49], [54], [56], [57], [59]. So far, the strongest form of HE are Fully HE

(FHE) schemes which allow unlimited numbers of homomorphic additions and

multiplications over the ciphertexts. This is due to the computationally expensive technique

known as bootstrapping (homomorphic evaluation of the decryption circuit), which as an

output gives a re-encrypted ciphertext over which new homomorphic operations can be done.

The first FHE scheme was proposed in 2009 [54], and over the years several others would

follow [59]. All of the recent FHE scheme are based on the assumption of the hardness of

Decision-RLWE (Ring Learning With Errors, Section IX), known to be resistant to quantum

computer attacks [57], [59]. While the security of Somewhat HE (SWHE) schemes is also

based on Decision-RLWE, they are a weaker variant of FHE in terms that they allow only a

limited number of homomorphic multiplications (known as the circuit depth), but in the

process they avoid the costly bootstrapping operation [56], [59]. However, in most of the real

case scenarios, the circuit depth is known in advance, which allows for the encryption

parameters to be set in a way that no bootstrapping will be needed. This makes SWHE an

ideal choice over FHE. The plaintexts and the ciphertexts in FHE and SWHE schemes are

polynomial rings with modulus 𝑋𝑁 + 1 and their coefficients are integers modulo 𝑡 and 𝑞,

respectively, s.t. q ≫ 𝑡. Thus, plaintexts belong to the ring 𝑅𝑡 = 𝑍𝑡[𝑋]/(𝑋
𝑁 + 1) and

ciphertexts to the ring 𝑅𝑞 = 𝑍𝑞[𝑋]/(𝑋
𝑁 + 1). In [57] it has been shown that if the

polynomial modulus of degree 𝑁 can be expressed as a multiplication of 𝑁 irreducible

polynomials of degree one, which in turn are automorphic to each other, then, according to

the Chinese Remainder Theorem (CRT), we can encode 𝑁 integers in a single plaintext or

ciphertext, one integer for each polynomial coefficient. A single homomorphic operation

(addition or multiplication) over two ciphertexts encoded in such a way would result in

simultaneous (parallel) component (index, slot) wise execution of the same operation over

the encoded integers (Fig.2.7.a)-b)). This allows for a SIMD (Sıngle Instruction Multiple

Data) fashion of homomorphically evaluating the ciphertexts, enabling massive efficiency

improvements without extra cost. Furthermore, the automorphism of the irreducible

29

polynomials of degree one allows for the encoded integers to change their places, mainly

through rotating (shifting) them to the right or left (Fig.2.7c)). SWHE schemes allow SIMD

operations between a ciphertext and a plaintext as well, where the result is always a

ciphertext. Throughout the paper we assume that all SWHE encodings-encryptions of the

plaintexts are done to support SIMD operations. For encoding/encryption purposes plaintexts

and ciphertexts are denoted by having “_𝑝” and “_𝑐” at the end of their names, respectively.

Briefly, common functions of a typical public SWHE scheme are [56, 59]:

 (𝒑𝒌, 𝒔𝒌) = 𝑲𝒆𝒚𝑮𝒆𝒏(𝝀,𝑵, 𝒕, 𝒒). Generates a pair of public key cryptosystem (i.e. a

public and corresponding secret key) according to the security parameter 𝜆, polynomial

modulus 𝑁 and coefficient moduluses 𝑡 and 𝑞 for the plaintext and ciphertext,

respectively.

 𝒎_𝒑 = 𝑬𝒏𝒄𝒐𝒅𝒆(𝒎_𝒗). SIMD encoding of an integer vector into a plaintext.

 𝒎_𝒄 = 𝑬𝒏𝒄𝑬𝒏𝒄𝒓(𝒎_𝒗). SIMD Encoding and encryption of an integer vector into a

ciphertext

 𝑪_𝒄 = 𝑨_𝒄 + 𝑩_𝒄; 𝑪_𝒄 = 𝑨_𝒄 + 𝑩_𝒑. SIMD addition of a ciphertext with another

ciphertext or plaintext (Fig. 4a). The result is always a ciphertext.

 𝑪_𝒄 = 𝑨_𝒄 × 𝑩_𝒄; 𝑪_𝒄 = 𝑨_𝒄 × 𝑩_𝒑. SIMD multiplication of a ciphertext with

another ciphertext or plaintext (Fig.2.7b). The result is always a ciphertext.

 𝑩_𝒄 = 𝑹𝒐𝒕𝒂𝒕𝒆(𝑨_𝒄, 𝑹). Rotating a ciphertext for 𝑅 slots (indexes). If 𝑅 > 0 rotations

are done to the right, otherwise to the left (Fig.2.7c)).

 𝒎_𝒗=𝑫𝒆𝒄𝒐𝒅𝒆(𝒎_𝒑); Decoding a plaintext into an integer vector

 𝒎_𝒗=𝑫𝒆𝒄𝒓𝑫𝒆𝒄(𝒎_𝒄): Decrypting then decoding a ciphertext into an integer vector

Fig.2.7.Illustration of SWHE SIMD a) addition, b) multiplication and c) Rotation for 2 slots

Let 𝐴_𝑣 = {𝑎1, … , 𝑎𝑁} = {(𝑎𝑖)𝑖=1
𝑁 }, 𝐵_𝑣 = {𝑏1, … , 𝑏𝑁} = {(𝑏𝑖)𝑖=1

𝑁 } be integer vectors and

their corresponding SIMD encoded&encrypted ciphertexts 𝐵_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐴_𝑣) and

30

𝐵_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐵_𝑣), respectively. Let 𝑅_𝑣 = {𝑅1, … , 𝑅𝑁} = {(𝑅𝑖)𝑖=1
𝑁 } and

ℎ_𝑣 = {ℎ1, … , ℎ𝑁} = {{(ℎ𝑖)𝑖=1
𝑁 }} be random integer vectors s.t. 𝑅𝑖 > 0, |ℎ𝑖| < 𝑅𝑖 for

1 ≤ 𝑖 ≤ 𝑁, and let 𝑅_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑅_𝑣), ℎ_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(ℎ_𝑣) be their respective SIMD

encoding into plaintexts. Then 𝐶_𝑐 = ((𝐴_𝑐 − 𝐵_𝑐) × 𝑅_𝑝) + ℎ_𝑝 is the SIMD secure

comparison of the index-wise elements of 𝐴_𝑣 and 𝐵_𝑣, firstly proposed in [18] and also

elaborated in Chapter 6.3.4. Namely, let 𝐶_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝐶𝑐) = {𝑐1, … , 𝑐𝑁} = {(𝑐𝑖)𝑖=1
𝑁 } =

{(𝑐𝑖 = (𝑎𝑖 − 𝑏𝑖) × 𝑅𝑖 + ℎ𝑖𝑖)𝑖=1
𝑁
}, if 𝑐𝑖 = (𝑎𝑖 − 𝑏𝑖) × 𝑅𝑖 + ℎ𝑖 > 0 then 𝑎𝑖 > 𝑏𝑖, otherwise

𝑎𝑖 < 𝑏𝑖 for 1 ≤ 𝑖 ≤ 𝑁.

2.4.2. Security definitions, concepts and theorems

Definition 1: Decision-LWE: for a security parameter 𝜆, let we sample 𝑠 ← 𝑈𝑞
𝑚×1, 𝑎 ←

𝑈𝑞
𝑛×𝑚, 𝑒 ← 𝜒𝑞

𝑛×1, 𝑐 ← 𝑈𝑞
𝑛×1, where 𝑈 is the uniform distribution and 𝜒 is the discrete

Gaussian distribution. Decision-LWE is the problem to distinguish between (𝑎, 𝑎 · 𝑠 + 𝑒)

and (a, c). [56, 57].

Definition 2: Decision-RLWE: Generalizing LWE for rings [56, 57].

Assumption 1: Hardness of Decision-RLWE: Decision-RLWE is assumed to be a hard and

resilient problem even for an adversary with a quantum computer [56, 57].

Semantic security of the RLWE schemes: Due to its probabilistic encryption, RLWE based

schemes offer semantic security, i.e. for ciphertexts 𝑚0_𝑐 and 𝑚1_𝑐 that encrypt plaintexts

𝑚0_𝑝 and 𝑚1_𝑝, respectively, an adversary cannot distinguish which ciphertext belongs to

which plaintext [60].

Definition 2.2: Secure Multi-Party Computation (SMC) under the semi-honest model

for deterministic functions: Let we have 𝑝 parties, 𝑃1, … , 𝑃𝑝, with the corresponding private

inputs 𝑥1, … , 𝑥𝑝 and let �̅� = (𝑥1, . . , 𝑥𝑝). With a certain security parameter 𝜆 let them execute

31

protocol Π at the end of which each 𝑃𝑖 gets the corresponding output 𝑂𝑃𝑖
Π (𝜆, �̅�) for 1 ≤ 𝑖 ≤

𝑝, thus the global output is 𝑂𝛱 = {(𝑂𝑃𝑖
𝛱 (𝜆, �̅�))

𝑖=1

𝑝

 }. Let the view of 𝑃𝑖 be

𝑉𝑃𝑖
𝛱(𝜆, �̅�) = {(𝑚𝑗

𝑃𝑖)
𝑗=1

𝑡

}, where 𝑚𝑗
𝑃𝑖 are the messages that 𝑃𝑖 receives while executing 𝛱. We

say that 𝛱 is a secure MPC protocol under the semi-honest model if there exists a simulator

(function) s.t. 𝑆𝑃𝑖
𝛱(𝜆, 𝑥𝑖 , 𝑂𝑃𝑖

𝛱 (𝜆, �̅�)) ≅𝑐 𝑉𝑃𝑖
𝛱(𝜆, �̅�), where ≅𝑐 stands for computational

indistinguishability against a probabilistic polynomial time adversary [60].

Theorem 2.1: Modular Sequential Composition Theorem: Let 𝛱 be a protocol that

sequentially calls 𝛱1, … , 𝛱𝛱. If 𝛱1, … , 𝛱𝛱 are SMPC protocols under the semi-honest model,

then 𝛱 is also.

Proof: Given in [60] ∎

32

Chapter 3

RELATED WORK AND THE STATE-

OF-THE-ART

In this Chapter we provide an overview of the related research related to secure feature

selection, secure ML training and secure ML classifications

3.1. Secure feature selection

Early secure feature selection schemes rely mostly on the secure sum protocol [22-26] as

their building block. In secure sum 𝑛 participants, denoted as 𝑃1, … 𝑃𝑛, securely compute the

sum of their corresponding private integer inputs, 𝑖1, … 𝑖𝑛, assuming an existence of a ring

network topology between them, Without loss of generality, the first participants adds a

random number 𝑅 to his input and passes it to the second one, which in turn adds his private

input to the received sum and passes the result to the third participants, and so on, until the

first participant receives the randomized sum (𝑅 + ∑ 𝑖𝑖
𝑛
𝑖=1) , subtracts the random R from it

and broadcasts the result to all the other participants. In this sense, while executing the

protocol, 𝑃𝑡 receives (𝑅 + ∑ 𝑖𝑖
𝑡−1
𝑖=1) from 𝑃𝑡−1 and after adding its private input transmits

(𝑅 + ∑ 𝑖𝑖
𝑡
𝑖=1) to 𝑃𝑡+1, where 1 ≤ 𝑡 ≤ 𝑛. This makes the communication cost of secure sum

to be 𝑛 ∙ ∑ 𝑓 transmissions and ∑𝑓 broadcasts, where ∑𝑓 is the total number of feature

values for which we have to find the sum over 𝑛 participants. If 𝑃𝑡−1 and 𝑃𝑡+1 collude, they

can retrieve 𝑃𝑡’s private input 𝑖𝑡 by subtracting𝑃𝑡’s output and input, thus

33

(𝑅 + ∑ 𝑖𝑖
𝑡
𝑖=1) − (𝑅 + ∑ 𝑖𝑖

𝑡−1
𝑖=1) = 𝑖𝑡. Also, an eavesdropper that can listen to all

communicating channels can retrieve the private input of all the participants. Another

drawback of secure sum is that it suffers from high communication overhead when f is large,

which is the case with text classification datasets that are known to have hundreds of

thousands of features (words, tokens), thus making secure sum highly impractical.

Furthermore, secure sum doesn’t work in the secure two party computation (2PC) scenarios.

Among the first schemes to address the problem of secure feature selection is [22]. It uses

the secure sum protocol to calculate features’ misclassification gain [22]. To avoid the

collision, based on an assumption of the number of colluding participants, they came up with

a metric that assigns a certain degree of collusion probability to participants and propose for

each of them to operate in a safe (non-colluding) neighborhood according to a certain

threshold. However, such a solution does not guarantee that a collusion will indeed be

avoided. Also, it increases the already high communication overhead. In [23] they use the

Harsanyi-Farrand-Chang [23] metric for feature selection which, for each feature value,

needs a few invocations of secure sum to find intermediate metrics such as the correlation or

the covariance, without addressing any of the drawbacks of secure sum. In [24] they test

several metrics for feature selection and in the process provide a trade-off between the

privacy and the accuracy of the trained model. In [25] each participant splits his private input

into 𝑛 shares such that their sum is equal to the participant’s private input and sends one share

to each of the other participants. Afterwards all of the participants locally sum up the received

shares from others and invoke secure sum to find the final result. While this solves the

collusion attack, it introduces an overhead of 𝑛 ∙ (𝑛 − 1) transmissions to the high

communication cost of a single secure sum invocation. After giving a brief literature review

on the topic, [26] proposes ides for a few secure feature selection schemes without engaging

into implementation details. Among others, [26] inherits all of the drawbacks of secure sum

since it is supposed to use it as its main building block. None of [22-26] solved the secure

sum’s shortcomings of an eavesdropper that can intercept all of the communications, of the

inability to deal with 2PC, and of the high communication overhead, especially knowing that

the metrics that they propose need several invocation of secure sum for a single feature

values. In this context, [22-26] use a total of several hundreds of thousands of rounds

(interactions) compared to only few that our protocol uses to reach the same goal.

34

Table 3.1. Properties among different schemes dealing with secure feature selection

 Schemes

Properties
[22] [23] [24] [25] [26] [27] [28] Our

Privacy of the input features
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓

Privacy of the input features’ values
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Security and privacy of

intermediate results
✓✖ ✓✖ ✓✖ ✓✖ ✓✖ ✓ ✓✖ ✓

Privacy for the output (selec. feat.) ✖ ✖ ✖ ✖ ✖ ✖ ✓ ✓✖

Data Confidentiality, Integrity and

Authenticity. Protocol consistency

(blockchain) for interactions
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓

Computing on plain in edge to

avoid costly homomorphic operat.
✓ ✓ ✓ ✓ ✓ ✓ ✖ ✓

Deals with more than two Edge

Dataset Owners (EDOs)
✓ ✓ ✓ ✓ ✓ ✖ ✖ ✓

Fault tolerance (byzantine failure)

of up to 𝑛 − 3 out of 𝑛 EDO
✓✖ ✖ ✖ ✓ ✖ NA ✓✖ ✓

Allows up to 𝑛 − 2 out of 𝑛 EDO

collisions
✓✖ ✖ ✖ ✓ ✖ NA ✓✖ ✓

Uses a centralized server(s) to avoid

communication overhead
✖ ✖ ✖ ✖ ✖ NA ✓ ✓

Avoids Using multiple (more than

two) semi-honest non colluding

servers
✓ ✓ ✓ ✓ ✓ ✓ ✖ ✓

Resistant to eavesdropping
✖ ✖ ✖ ✖ ✖ ✓ ✓ ✓

Enables 2PC (i.e. 2 DOs)
✖ ✖ ✖ ✖ ✖ ✓ ✓✖ ✖

Applicable to the post quantum

world (resistant to quantum

computers)
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓

cost does not dependent on the total

number of records among n EDOs
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓

Multi-label multi-output EDOs
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓

Deals with both horizontally and

vertically partitioned datasets
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓

Avoiding secure sum, [27] uses Paillier’s additive homomorphic encryption scheme [49]

to introduce a 4 round 2PC (relatively high for a 2PC in secure ML classification scenarios)

and doesn’t address the scenario with multiple datasets. The secure feature selection scheme

35

in [28] uses secret sharing for multiple dataset owners to share their data among three non-

colluding servers (3PC), a scenario which is not easily feasible in reality, especial knowing

that even if two of them collude can reveal the private dataset input values. Furthermore, it

has a high interaction rate and knowing that each feature value is processed independently,

makes it have a high communication overhead. Depending on to whom the trained model is

shown, [28] can also deal with 2 dataset owners when the owner of the trained model is not

one of the dataset owners, which rarely happens in practice.

None of the above schemes addresses the issues of authenticity, integrity or protocol

flow consistency, i.e. blockchain technology. Table 3.1 summarizes security, privacy and

efficiency of properties among several schemes.

3.2. Secure machine learning training

The first scheme to address the issue of privacy preserving (PP) NB training is due to

Kantarcıoğlu et.al. in [61]. As it is the case with almost all of the earlier schemes, it exclusively

deals with training and doesn’t address the privacy preserving classification problem. In order

to find the class and the joint class-value frequencies (counts) among all dataset owners, it uses

the secure integer sum protocol explained in Chapter 3.1, thus inheriting all of the

disadvantages of it. In the same paper, those attacks were avoided by splitting each private

integer into integer shares (such that when summed up they give the private value) and each

share then follows a different route while executing the secure sum protocol. However, both of

them didn’t address the privacy of the trained model and work only with three and more dataset

owners. In [62] the same group uses the secure 𝑙𝑛𝑥 algorithm proposed in [63] for training

purposes, but it has a high communication cost. Those drawbacks were partially removed in

[64] by utilizing a version of the additive homomorphic ElGamal scheme, where owners

encrypt and send their data to be aggregated by a central server, removing in the process the

communication overhead of the decentralized environments of the previous ones, but the final

trained model is leaked again. Yi et.al [65] use the Paillier scheme, the secure 𝑙𝑛𝑥 algorithm of

[63] and two non-colliding servers to hide the final trained model, however, it re-trains the

model for every query, which makes it rather inefficient.

36

Table 3.2. Properties among different schemes dealing with secure training of NB models

Schemes

Properties

[24]

(sec

sum)

[24]

(sec

share)

[25]

(sec

log)

[32] [21] [33] [23] [36] Our

Multiple EDOs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Flexible (less than three

EDO) during training
✖ ✖ ✓ ✓ ✖ ✓ ✓ ✓ ✓

Training comput. cost not

dependent on dataset size
✓ ✓ ✓ ✓ ✖ ✖ ✖ ✖ ✓

Privacy for all Dataset(s)

paramet. during training
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Total trained model

security during training
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓

Resistant to Collusion

attack between two or

more EDOs
✖ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Resistant to

eavesdropping
✖ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Central server(s) while

training (efficient comm.)
✖ ✖ ✖ ✓ ✓ ✓ ✓ ✓ ✓

Avoiding Unnecessary

retraining for each query
✓ ✓ ✓ ✓ ✖ ✓ ✓ ✓ ✓

Multiclass datasets ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✖ ✓

Avoids multiple public

key pairs or proxy re-

encryptions
✓ ✓ ✓ ✓ ✓ ✓ ✖ ✖ ✖

The scheme is resistant to

quantum computers
✖ ✖ ✖ ✖ ✖ ✓ ✓ ✓ ✓

Multi-label multi-output

EDOs
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓

Deals with both

horizontally and vertically

partitioned datasets
✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓

Those by Liu et al. in [66] and [67] are among some of the rare papers to address the issues

of both training and classification in privacy preserving fashion of Naïve Bayes models. While

[66] suffers from being interactive during the classification, [67] has only one round and hence

a better communication efficiency. However, they both suffer from the costly process of proxy

re-encryptions, bootstrapping and the lack of local pre-processing in the plain at the owners’

location during the training phase, which hurts the overall performances. Also, [67] suffers

from doing unnecessary costly homomorphic multiplications due to not using logs of

37

probabilities (which convert products into sums as shown in 3.1). Li et al. [68] has similar

properties to [67], however it lacks the details and experimentation results.

Table 3.2 summarizes security, privacy and efficiency of properties among several schemes

which deal with secure training of NB or MNB models.

3.3. Secure machine learning classifications

In the abundance of privacy preserving training, the lack of having a privacy preserving

classification protocols was realized by Bost et. al. in [53]. They use the additive homomorphic

properties of Paillier and a secure argmax protocol (which in turn uses a multi-round secure

comparison protocol with two public encryption schemes) to perform secure classification.

Without addressing the training part, Park et. al [69] also dealt with the classification problem,

by proposing a one-round scheme to overcome the multi-round communication overhead of

[53]; but in the process it uses heavy inefficient FHE computations. Li et.al. [70] uses

Goldwasser-Micali XOR homomorphic encryption scheme [50] and 3 Paillier public keys as

well as several PIR invocations to get the needed class and value-class probabilities from the

server and finally uses the secure argmax protocol of [53] to find the final classification. Gao

et al. [71] uses parallel OT invocations and the Paillier scheme’s additive homomorphic

properties to find the class and value-class probabilities and then uses the secure comparison

protocol of [15] to get the final result; however, it works with only two classes, unlike the other

protocols which enable multi-class classification. While [66] suffers from being interactive

during the classification, [67] and [72] suffer from doing unnecessary costly homomorphic

multiplications due to not using logs of probabilities (which convert products into sums as

shown in 3.1). Li et al. [68] has similar properties to [67], however it lacks the implementation

details and experimentation results.

Table 3.3 summarizes security, privacy and efficiency properties among several schemes

which deal with secure classifications for different ML classifiers.

38

Table 3.3. Comparisons of properties among different secure and private classification schemes

✓=presence; ✓✖=partial presence; ✖ = absence; NR = Not reported

SCHEMES
PROPERTIES

[53] [66] [67] [68] [69] [73] [74] [75] [71] [72] [76] [77] [50] [51] Our

Trained model security (privacy) ✓ ✓ ✓✖ ✓✖ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Query security (privacy ✓ ✓ ✓ ✓ ✓ ✖ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Classification result privacy ✓ ✓ ✖ ✓ ✓ ✓✖ ✖ ✓ ✓ ✓ ✓✖ ✓ ✓ ✓ ✓

No loss of accuracy ✓ NR ✖ NR ✓ NR ✓ ✓ ✓ ✓ NR NR ✖ ✓ ✓

Flexibility (e.g. server vs user centric) ✖ ✖ ✖ ✖ ✓ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓

Avoiding Unnecessary retraining for
each query

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Non-interactive classification (exactly
one round)

✖ ✖ ✓ ✓ ✓ ✖ ✓ ✖ ✖ ✖ ✓ ✖ ✖ ✖ ✓

Resistant to STC attack [34] ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ ✖ ✖ ✖ ✖ ✖ ✓

Simultaneous classification (packing) of
multiple queries for higher throughput

✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓ ✖ ✓ ✖ ✖ ✓

Multiclass algorithms ✓ ✓ ✖ ✓ ✓ ✓ ✖ ✓ ✖ ✓ ✓ ✓ ✓ ✓ ✓

Avoids multiple public key pairs or proxy
re-encryptions

✖ ✖ ✖ ✖ ✓ ✓ ✓ ✖ ✖ ✓ ✓ ✓ ✓ ✓ ✓

Uses logs of probabilities instead of
plain probab. avoids costlier multiplicat.
in favor of additions during NB)

✓ ✖ ✖ ✖ ✓ ✖ ✖ ✓ ✓ ✖ ✓ ✓ ✖ ✖ ✓

Deals with malicious users during
classification

✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✓

The scheme is resistant to quantum
computers

✓✖ ✓ ✓ ✓ ✓ ✓ ✓ ✖ ✖ ✓ ✓ ✓ ✓ ✓ ✓

Avoids multiple non-colluding servers
(i.e. has exactly only one such server)
during classification

✓ ✖ ✖ ✖ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✖ ✓ ✓ ✓✖

39

Chapter 4

SECURE AND PRIVATE FEATURE

SELECTION

Definition 4.1: Feature selection is the process of reducing the dimensions of a feature set

𝐹 of a labeled dataset DS into 𝑆𝐹 according to an algorithm 𝒜, thus 𝑆𝐹 = 𝒜(DS, 𝐹).

In this chapter, we introduce the security, privacy and efficiency goals (requirements) for

our secure feature selection protocols. We proceed with the constituents (participants) of our

secure feature selection schemes, their adversary models. Also, we provide a brief flow of

the protocols, which will be elaborated in more details in the later subchapters of this chapter.

We conclude the chapter by experimentally evaluating and comparing our schemes with the

related research, which show that our schemes outperform the few state of the art ones for

several times in terms of computation and communication costs. We conclude the chapter by

proving the security of our protocols under the semi-honest model. All the necessary

background information and notations for this chapter was given in Chapter 2.

4.1. Introduction

The security and privacy requirements for our secure feature protocols are:

 Privacy of the input features. We achieve this by randomly permuting the hashes of

the input values (words, tokens)

 Privacy of the input features’ values (counts, frequencies, etc.)

40

 Security and privacy of intermediate results. We keep the intermediate results of

all of our protocols secure and private since they might be used as a trapdoor for total

or partial leakage of the input or the output of the corresponding protocol.

 Partial privacy for the output of the top m selected features. The output cannot be

totally private since it is needed as an entry point (input) for the secure classification

stage when clients prepare their queries in accordance to the selected features.

However, the selected features can be kept private for the secure training protocol.

 Have other properties related to secure feature selection mentioned in Table 3.1

4.2. System architecture, adversary models and protocol flows

Our participants for the secure feature selection protocols are: 1) EDO (The Edge Dataset

Owner) - We have n such EDOs in our system, denoted as EDO𝑘, each owns a dataset DS𝑘,

where 1 ≤ 𝑘 ≤ 𝑛, that they are willing to use for training ML models in a secure and private

fashion. 2) TEAS (The Edge Aggregating Server): a server used to do the bulk of the

proposed protocols’ homomorphic computation. 3) E2DS (The Edge Encryption Decryption

Server): It’s the only participant in the system that has a pair of public keys with SWHE

properties (Chapter 2.4). All the data that are homomorphically evaluated in our protocols

are encrypted using E2DS’ public key, thus it’s the only one that can decrypt them. All of

them are illustrated in Fig.4.1.

Adversary models: All the participants are assumed to be in the passive semi-honest (honest

but curious) model, which means that they follow the protocol but on the background they

try to infer some private data which they are not supposed to. A formal definition of the semi-

honest model is given in Chapter 2.4.1. We assume that TEAS and E2DS don’t collude. Out

of 𝑛 EDOs, our environment setting allows for up to 𝑛 − 3 EDO failures and up to 𝑛 − 2

collusions without jeopardizing the privacy of the remaining and non-colluding EDOs . The

motivations for participant to behave in the described manners are given in [8-18].

Protocol flows at-a-glance: Each interaction in each protocol is marked by the interacting

participant adding its own block with the corresponding data into the blockchain (Fig.4.2).

All the participants have a pair of public/secret keys used for signing their corresponding

41

blocks of the blockchain and for secure communication. Additionally, E2DS has a pair of

public/secret key with SWHE properties (Chapter 2.4.1). All of these key pairs form the

KeySet set. While we designed our protocols having in mind primarily binary textual datasets,

they are also applicable to non-textual ones and can be easily generalized to multi-class

scenarios. This choice was done for simplicity and benchmark (comparison) purposes with

the related research.

GRPV (Generate Random Permutation Vector): it is a secure multi-party computation

(SMC) protocol through which EDOs agree on a random permutation of their hash bits of

their private words, needed for the secure feature selection protocol.

Fig. 4.1. Protocol flows for secure feature selection (secFS-S1 and secF-S2)

42

Fig.4.2. Illustration of generating the blocks of the vertically partitioned distributed public ledger (blockchain) while executing

protocols secFS-S1, secFS-S2 and secT.

43

secFS: (secure feature selection – stage 1 and 2): Illustrated in Fig.4.1. Simultaneously, all

of the 𝑛 EDOs find 𝑊𝑘, the set of hashes of the local unique words (features) of their local

textual datasets, where 1 ≤ 𝑘 ≤ 𝑛, ❶ and send them to TEAS ①. TEAS finds their union

(the global set of hashes of unique words) 𝑊 = ⋃ [𝐷𝑒𝑐𝑠𝑘𝑇(𝑊𝑘)]
𝑛
𝑘=1 ❷ and broadcasts it to

all EDOs ②. Using each word of 𝑊 as an index entry, EDOs simultaneously construct the

corresponding ciphertexts of the word counts (appearances) in ham and spam documents in

the local dataset, i.e. ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘, 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘, then they construct the replicated

ciphertexts of the number of ham and spam documents in the local datasets,

ℎ𝑎𝑚𝑀_𝑐𝑘, 𝑠𝑝𝑎𝑚𝑀_𝑐𝑘, ❸ and send them to TEAS ③. TEAS finds the global number of

ham and spam documents, as well as the global ham and spam counts for each word of 𝑊 by

homomorphically summing up the locally constructed ciphertexts by EDOs, i.e.

ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐𝑐 = ∑ (ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐𝑐𝑘)
𝑛
𝑘=1 , ℎ𝑎𝑚𝑀𝑐 = ∑ (ℎ𝑎𝑚𝑀𝑐𝑘)

𝑛
𝑘=1 , 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 =

 ∑ (𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)
𝑛
𝑘=1 and 𝑠𝑝𝑎𝑚𝑀_𝑐 = ∑ (𝑠𝑝𝑎𝑚𝑀_𝑐𝑘)

𝑛
𝑘=1 , then proceeds to find the

terms needed to calculate the information gains of each word, randomizes those terms ❹

and sends them to E2DS ④. E2DS decrypts those randomized terms, uses them to compute

the vector of the randomized logarithmic terms of the information gains for each word,

encrypts the randomized logarithmic terms ❺ and sends them back to TEAS ⑤. TEAS

homomorphically removes the randomizations of the logarithmic terms and finds the

information gain data for each word in the corresponding index (𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐), adds some

randomizations to get 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 and sends it E2DS ❻ while broadcasts the

randomizing numbers to each EDO ⑥. E2DS decrypts 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 to get the

randomized integer vector of information gains 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 ❼ and broadcasts it to

the EDOs ⑦. Each of the EDOs removes the randomization from 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 to get

𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 vector which at the corresponding indexes contains the information gain data

for each of the words and chooses the top 𝑚 words with the highest information gain as the

selected features’ set 𝑆𝐹, thus 𝑆𝐹 = {𝑤1, …𝑤𝑚}, where 𝑤1, …𝑤𝑚 for performance reasons

during the classification stage are sorted according to their hash values ❽.

44

4.3. Secure feature selection for binary datasets

GRPV (Generate Random Permutation Vector): Due to our strict security and privacy

requirements (elaborated in Section I) of keeping private both the words and their counts

(frequencies), simple hashing of the words will not help. Since the EDO records (emails,

documents) are in a natural spoken language (say English), by hashing all of dictionary words

of that language we can relatively easy apply the dictionary attack to find matches with the

word hashes of the EDOs’ records. Especially this is problematic for EDOs that wish to use

a single record (mail) for training purposes (a scenario which we don’t exclude), since the

dictionary attack would reveal much of the record’s (mail’s) content. In order to guard against

the dictionary attack, EDOs permute the hash bits of each word according to a random

permutation upon which all EDOs agree. To obtain this random permutation, all of the EDOs

engage in a secure multi-party computation (SMC) protocol given in Algorithm 4.1.

PROTOCOL 4.1: GRPV (Generate Random Permutation Vector)

INPUT: 𝒉𝒂𝒔𝒉𝑩𝒊𝒕𝑺𝒊𝒛𝒆

𝒉𝒂𝒔𝒉𝑩𝒊𝒕𝑺𝒊𝒛𝒆: the size of the hash digest in bits

OUTPUT: 𝒉𝒂𝒔𝒉𝑩𝒊𝒕𝑷𝒆𝒓𝒎𝑽𝒆𝒄_𝒗

 𝒉𝒂𝒔𝒉𝑩𝒊𝒕𝑷𝒆𝒓𝒎𝑽𝒆𝒄_𝒗: the vector used to permute bit hashes at EDOs

PHASE I - EDOs:

1 for 𝑘 = 1 to 𝑛 do

2 𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑘 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑒𝑐𝑡𝑜𝑟()
3 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑘 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑘)
4 send 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑘 to TEAS

Phase II – TEAS:

5 𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑇 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑒𝑐𝑡𝑜𝑟()
6 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑇 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑇)
7 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐 = ∑ 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑘

𝑘
𝑖=1 + 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑇

8 send 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐 to E2DS

9 for 𝑘 = 1 to 𝑛 do

10 send Enc𝑝𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑇) to EDO𝑘

Phase III-E2DS

11 𝑟𝑛𝑑𝑉𝑒𝑐_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝑉𝑒𝑐_𝑐)
12 for 𝑘 = 1 to 𝑛 do

13 send Enc𝑝𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣) to EDO𝑘

Phase IV-EDOs:

14 for 𝑘 = 1 to 𝑛 do

15 𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣 = 𝐷𝑒𝑐𝑠𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣) − 𝐷𝑒𝑐𝑠𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑇)

16 𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣 = 𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣 % ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑆𝑖𝑧𝑒

17 ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣 = 𝑐𝑎𝑙𝑐𝑃𝑒𝑟𝑚𝑉𝑒𝑐(𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣)

45

GRPV: each of the EDOs locally constructs a random integer vector of ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑆𝑖𝑧𝑒

elements, encodes and encrypts it and sends it to TEAS (lines 1-4). TEAS homomorphically

adds them up, adds its own random terms, send its random terms to each EDO by encrypting

them with EDOs’ corresponding public keys and sends the sums of the random terms to be

decrypted at E2DS (lines 5-10). E2DS decrypts the randomized sums and sends them to each

EDO using their corresponding public keys (lines 11-13). EDOs decrypt and subtract the data

obtained by E2DS and TEAS and apply the modulo operator with modulus

of ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑆𝑖𝑧𝑒 in component (index)-wise manner to each of them to get the random

ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑆𝑖𝑧𝑒 numbers placed in the 𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣, which are solely generated by EDOs (lines

15-16). 𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣 is than used by the 𝑐𝑎𝑙𝑐𝑃𝑒𝑟𝑚𝑉𝑒𝑐(∙) function to generate the

ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣 by which the EDOs do the permutations of the hash bits of their words

in the proceeding protocols. E.g. if in slot (index) 0 of 𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣 we have the value of 179,

that means that the 0th bit of the original hash will be the 179th in the permuted hash bits,. If

in slot, say 7, of 𝑟𝑛𝑑𝑉𝑒𝑐2_𝑣 we have again the value of 179, which obviously is already used

in the permuted hash bits, than we try the next slot to the right up until we find an empty

place.

secFS - Secure Feature selection (Algorithm 4.2 and 4.3 - stage I and II) is done in two

stages. At the first stage the union of all of the words among 𝑛 datasets is found and those

that globally appears in less than 𝑣𝑎𝑙 documents from all the datasets are filtered out, while

at the second stage the top 𝑚 words with the highest IG are selected. All of this is done under

strict security and privacy requirements by 1) adding the corresponding block into the

blockchain after each interaction (Fig.3) and 2) participants securely communicate with each

other either by encrypting their data with E2DS public key with SIMD SWHE properties or

by using the recipients public key generated for secure communication purposes.

secFS – S1: In Phase I all of the EDOs do some pre-processing on their local datasets, locally

find all of the unique word and permute their binary hashes according ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣,

and send them to TEAS (lines1-4). In Phase II TEAS finds the global union of the permuted

hashes of the words, 𝑊 = {𝜋𝐻(𝑤1), 𝜋(𝑤2),… , 𝜋(𝑤|𝑊|)}, and sends them to all EDOs (lines

5-8). In Phase IIA each of the EDOs, using the permuted hashes of the words in 𝑊 as vector

46

entries (indexes), locally construct 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 = {𝑁
(𝑘)(𝑤1),… ,𝑁

(𝑘)(𝑤|𝑊|)} =

{(𝑁(𝑘)(𝑤𝑖, 𝑐ℎ))
𝑖=1

|𝑊|

}, corresponding to EDO𝑘’s counts of words 𝑤1, … , 𝑤|𝑊| in the documents

of the local dataset DS𝑘, where 1 ≤ 𝑘 ≤ 𝑛, and send this ciphertext to TEAS (lines 9-12). In

Phase IIB TEAS encodes the replicated vector of 𝑁 integers whose value is 𝑣𝑎𝑙 (line 13),

then for the needs of secure comparisons generates and encodes random vectors

𝑅_𝑣 = {𝑅1, … , 𝑅|𝑊|} = {(𝑅𝑖)𝑖=1
𝑁 } and ℎ1_𝑣 = {ℎ11, … ℎ1|𝑊|} = {(ℎ1𝑖)𝑖=1

|𝑊|
} s.t. 𝑅𝑖 >

0, |ℎ1𝑖| < 𝑅𝑖 for 1 ≤ 𝑖 ≤ |𝑊| (see Chapter 2.4.1) and generates ℎ2_𝑣 = {ℎ21, … ℎ2|𝑊|} =

{(ℎ2𝑖)𝑖=1
𝑁 } for randomizing the secure comparison (line13). Afterwards sums up all of the

𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 to get 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐, which is an encryption of the vector of global counts

of words appearing in documents, and performs the secure comparison proceeded with

randomizations to get 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 (line 14). TEAS sends 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 to E2DS for

decryption, while sending the randomization vector ℎ2_𝑣 to each EDO (lines 16-18). In Phase

IIC E2DS decrypts 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐, which looks like 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣 = {((𝑁(𝑤𝑖) − 𝑣𝑎𝑙) ×

𝑅𝑖 + ℎ1,𝑖) + ℎ2,𝑖))
𝒊=𝟏

|𝑾|

} (line 19), and sends it to each EDO (lines 19-22).

Finally, in Phase IID each EDO removes the randomization by doing the subtraction

𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣 − ℎ2_𝑣 to get the secure comparison results 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑣 = {((𝑁(𝑤𝑖) −

𝑣𝑎𝑙) × 𝑅𝑖 + ℎ1,𝑖)𝑖=1
|𝑊|
} (line 24). The words 𝑤𝑖 for which the corresponding

((𝑁(𝑤𝑖) − 𝑣𝑎𝑙) × 𝑅𝑖 + ℎ1,𝑖)𝑖=1
|𝑊|

 term is negative (i.e. they appear in less than 𝑣𝑎𝑙 global

documents) are filtered out and are not part of the 𝑊𝐺𝑇ℎ𝑎𝑛𝑉 set which has |𝑊′| elements

(words) (line 25).

secFS-S2: In Phase III, using each of the |𝑊′| words in 𝑊𝐺𝑇ℎ𝑎𝑛𝑉 as index entries, each

EDO locally constructs vectors ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑣𝑘 = {(𝑁(𝑘)(𝑤𝑖, 𝑐ℎ))𝑖=1
|𝑊′|

},

𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑣𝑘 = {(𝑁
(𝑘)(𝑤𝑖, 𝑐𝑠))𝑖=1

|𝑊′|
} as well as the replicated

ℎ𝑎𝑚𝑀_𝑣𝑘 = {𝑁
(𝑘)(𝑐ℎ),… ,𝑁

(𝑘)(𝑐ℎ)} and 𝑠𝑝𝑎𝑚𝑀_𝑣𝑘 = {𝑁(𝑘)(𝑐𝑠)),… ,𝑁
(𝑘)(𝑐𝑠)},

containing the number of local ham and spam mails (documents), respectively, replicated for

|𝑊′| times.

47

ALGORITHM 4.2: secFS-S1 (secure Feature Selection – Stage I)

INPUT: 𝒏, {𝑫𝑺𝒌}𝒌=𝟏
𝒏 , 𝑲𝒆𝒚𝑺𝒆𝒕 = {(𝒑𝒌𝒌, 𝒔𝒌𝒌)𝒌=𝟏

𝒏 , (𝒑𝒌𝑻, 𝒔𝒌𝑻), (𝒑𝒌𝑬, 𝒔𝒌𝑬)}, (𝒑𝒌, 𝒔𝒌), 𝒗𝒂𝒍,
𝒏: the number of EDOs

{𝑫𝑺𝒌}𝒌=𝟏
𝒏 : the local datasets of EDOs 1 ≤ 𝑘 ≤ 𝑛

𝑲𝒆𝒚𝑺𝒆𝒕: set of all of the participants’ public key pairs for blockchain and secure. communication

(𝒑𝒌, 𝒔𝒌): key pairs of E2DS with SWHE properties

OUTPUT: 𝒘𝒐𝒓𝒅𝒔𝑮𝑻𝒉𝒂𝒏𝑽_𝒗

𝑾𝑮𝑻𝒉𝒂𝒏𝑽: the set of words with at least 𝑣𝑎𝑙 global document appearances

PHASE I - EDOs:

1 for 𝑘 = 1 to 𝑛 do

2 𝑊𝑘 = 𝜋(𝐻(𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐷𝑆𝑘))) //permut. of hashes of unique words

3 𝐵_1𝐷𝑂𝑘 = (𝑀𝑇(𝑊𝑘), 𝑇𝑆); 𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_1𝐷𝑂𝑘))

4 send (𝐸𝑛𝑐𝑝𝑘𝑇(𝑊𝑘), 𝐻(𝐵_1𝐷𝑂𝑘)) to TEAS

PHASE II – TEAS

5 𝑊 = ⋃ [𝐷𝑒𝑐𝑠𝑘𝑇(𝑊𝑘)]
𝑛
𝑘=1 //sorted

6 𝐵_1𝑇 = (𝑀𝑇(⋃ 𝐻(𝐵_1𝐷𝑂𝑘)
𝑛
𝑘=1),𝑀𝑇(𝑊), 𝑇𝑆); 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_1𝑇))

7 for 𝑘 = 1 to 𝑛 do

8 send (En𝑐𝑝𝑘𝑘(𝑊), 𝐻(𝐵_1𝑇)) to EDO𝑘

PHASE IIA – EDOs

9 for 𝑘 = 1 to 𝑛 do

10 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 = 𝑔𝑒𝑡𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡𝑠(𝐷𝑆𝑘 , 𝐷𝑒𝑐𝑠𝑘𝑘(𝑊))

11 𝐵_2𝐷𝑂𝑘 = (𝐻(𝐵_1𝐷𝑂𝑘), 𝐻(𝐵_1𝑇),𝑀𝑇(𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘), 𝑇𝑆); 𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘 (𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_2𝐷𝑂𝑘))

12 send (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘, 𝐻(𝐵_2𝐷𝑂𝑘)) to TEAS

PHASE IIB – TEAS

13 𝑣𝑎𝑙_𝑝 = 𝐸𝑛𝑐({𝑣𝑎𝑙, … , 𝑣𝑎𝑙});(𝑅_𝑣, ℎ1_𝑣, ℎ2_𝑣) = 𝑟𝑛𝑑𝑉𝑒𝑐𝑠𝑓𝑜𝑟𝐶𝑜𝑚𝑝();(𝑅_𝑝, ℎ_𝑝) =
𝐸𝑛𝑐𝑜𝑑𝑒(𝑅_𝑣, (ℎ1_𝑣 − ℎ2_𝑣))
14 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 = ((∑ 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘

𝑛
𝑘=1 − 𝑣𝑎𝑙_𝑝) × 𝑅_𝑝) + ℎ_𝑝

15 𝐵_2𝑇 = (𝐻(𝐵_1𝑇),𝑀𝑇(⋃ 𝐻(𝐵_2𝐷𝑂𝑘)
𝑛
𝑘=1),𝑀𝑇(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐, ℎ2_𝑣), 𝑇𝑆);

𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_2𝑇))

16 send (𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐, 𝐻(𝐵_2𝑇)) to EDS
17 for 𝑘 = 1 to 𝑛 do

18 send (𝐸𝑛𝑐𝑝𝑘𝑘(ℎ2_𝑣), 𝐻(𝐵_2𝑇)) to EDO𝑘

PHASE IIC – E2DS

19 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐)
20 𝐵_1𝐸 = (𝐻(𝐵_2𝑇),𝑀𝑇(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣), 𝑇𝑆); 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_1𝐸))

21 for 𝑘 = 1 to 𝑛 do

22 𝑠𝑒𝑛𝑑 (𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣), 𝐻(𝐵_1𝐸)) to EDO𝑘

PHASE IID – EDOs

23 for 𝑘 = 1 to 𝑛 do

24 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑣 = (𝐷𝑒𝑐𝑠𝑘𝑘(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣) − 𝐷𝑒𝑐𝑠𝑘𝑘(ℎ2_𝑣))

25 𝑊𝐺𝑇ℎ𝑎𝑛𝑉 = 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛𝑉𝑎𝑙(𝑊,𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑣)
26 𝐵_3𝐷𝑂𝑘 =

(𝐻(𝐵_2𝐷𝑂𝑘), 𝐻(𝐵_2𝑇), 𝐻(𝐵_1𝐸),𝑀𝑇(𝑊𝐺𝑇ℎ𝑎𝑛𝑉), 𝑇𝑆); 𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_3𝐷𝑂𝑘))

After encoding and encrypting all of them they’re send to TEAS (lines 1-4). In Phase IV

TEAS homomorphically aggregates (sums up) those vectors to get the global counts for each

word to appear in ham and spam documents, as well as the global number of ham and spam

48

mails (lines 7-10). Then it finds 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐, 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐,

𝑤𝑜𝑟𝑑𝑠𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐, ℎ𝑎𝑚𝑊𝑁𝑂𝑇𝑖𝑛𝐷𝑜𝑐_𝑐 and 𝑠𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝑖𝑛𝐷𝑜𝑐_𝑐 (lines 12-15, Fig.4.3),

which in turn are used to find all of the randomized nominator and denominator terms inside

the logarithms in (4) for each word (lines 16-23), denoted as 𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐, and all

of them are send to E2DS (line 25). E.g. in Fig4.4a) we illustrate the SIMD evaluations and

randomizations of the nominator and denominator of the term
𝑁(𝑤𝑖,𝑐𝑗)𝑁𝑇

𝑁(𝑤𝑖)𝑁(𝑐𝑗)
 in (4) done in lines

16 and 20. The nominators and denominators of the other terms in (4) are found in similar

way. In Phase V E2DS decrypts all of the 𝑎𝑙𝑙𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚𝑅𝑛𝑑_𝑐 sent by TEAS (lines 27)

and finds the encryption of all of the logarithmic terms of (4) in randomized form, denoted

as 𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐. E.g. 𝑙𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔

(
𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝐼𝑛𝐷𝑚𝑢𝑙𝑛𝑟𝑀𝑣
𝑟𝑑𝑊𝐼𝑛𝐷𝑜𝑐𝑚𝑢𝑙ℎ𝑎𝑚𝑀𝑣

) = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟 (𝐾1 ∙ 𝑙𝑜𝑔 (
𝑁(𝑤𝑖,𝑐ℎ)∙𝑁𝑇∙𝑅1,𝑖

𝑁(𝑤𝑖)∙𝑁(𝑐ℎ)∙𝑅5,1
)
𝑖=1

|𝑊′|

) (upper vector in

Fig4.4b), where 𝐾1 is a constant used for integerization purposes and 𝑅1,𝑖, 𝑅5,𝑖 are random

numbers (lines 28-31). Afterwards E2DS sends the 𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐 to TEAS (line 34). In

Phase VI TEAS removes the randomizations and multiplies each of the 𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐

with the corresponding term of (4) (lines 35-42). E.g.

𝑡𝑚𝑝_𝑐1 = ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 × (𝑙𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷_𝑝) in line 39 is

illustrated in Fig.4.4b, corresponds to term 𝑁(𝑤𝑖, 𝑐𝑗)𝑙𝑜𝑔 (
𝑁(𝑤𝑖,𝑐𝑗)𝑁𝑇

𝑁(𝑤𝑖)𝑁(𝑐𝑗)
) of (4). The other

logarithmic terms multiplied with the corresponding counts of (4) are found in similar way.

After homomorphically finding and randomizing the information gains to get

𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 (lines 43-46), it is send to E2DS for decryption, while a partial portion of

the randomization is send to each EDO (lines 48-50). In Phase VII E2DS decrypts

𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 and sends it to each EDO. Finally, in Phase VIII each of the EDOs

partially removes the randomization to get 𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = {(𝐼𝐺(𝑤𝑖) × 𝑅 + ℎ)𝑖=1
|𝑊′|

} (line

58). Since all of the 𝐼𝐺(𝑤𝑖) terms are multiplied and added to the same random 𝑅 and ℎ,

respectively, it is easy for each of the EDOs to find the top 𝑚 words with the highest IG.

Afterwards EDOs apply the inverse permutation to word hashes using ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣

proceeded with sorting with respect to hash values, thus getting the selected features set, SF

(line 59). Sorting is done for performance reasons when users prepare their queries according

to the selected 𝑚 words during secC.

49

Algorithm 4.3: secFS-S2 (secure Feature Selection-Stage II)

INPUT: 𝒏, {𝑫𝑺𝒌}𝒌=𝟏
𝒏 , 𝑲𝒆𝒚𝑺𝒆𝒕, (𝒑𝒌, 𝒔𝒌),𝒎,𝑾𝑮𝑻𝒉𝒂𝒏𝑽

𝒎: the number of features (words) to be selected at the end

𝑾𝑮𝑻𝒉𝒂𝒏𝑽: words with at least 𝑣𝑎𝑙 global document appearances

OUTPUT: 𝑺𝑭 = {𝑯(𝒘𝟏), … ,𝑯(𝒘𝒎)}:
𝑺𝑭: 𝑚 selected words with the highest IG sorted by their hashes

PHASE III – EDOs

1 for 𝑘 = 1 to 𝑛 do

2 (ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 , 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 , ℎ𝑎𝑚𝑀_𝑐𝑘, 𝑠𝑝𝑎𝑚𝑀_𝑐𝑘) =

 = 𝑔𝑒𝑡𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡𝑠(𝐷𝑆𝑘 , 𝑤𝑜𝑟𝑑𝑠𝐺𝑇ℎ𝑎𝑛𝑉_𝑣)
3 𝐵_4𝐷𝑂𝑘 = (𝐻(𝐵_3𝐷𝑂𝑘),𝑀𝑇(ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 ,

 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 , ℎ𝑎𝑚𝑀_𝑐𝑘 , 𝑠𝑝𝑎𝑚𝑀_𝑐𝑘), 𝑇𝑆)
4 send (ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 , 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘 ,
 ℎ𝑎𝑚𝑀_𝑐𝑘 , 𝑠𝑝𝑎𝑚𝑀_𝑐𝑘 , 𝐻(𝐵_4𝐷𝑂𝑘)) to TEAS

5 𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_4𝐷𝑂𝑘))

PHASE IV-TEAS

6 (𝑅1_𝑝, … , 𝑅8_𝑝) = 𝑅𝑛𝑑𝐸𝑛𝑐𝑜𝑑𝑒𝑑𝑉𝑒𝑐𝑡𝑜𝑟𝑠()
7 ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 = ∑ (ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)

𝑛
𝑘=1 ,

8 ℎ𝑎𝑚𝑀_𝑐 = ∑ (ℎ𝑎𝑚𝑀_𝑐𝑘)
𝑛
𝑘=1

9 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 = ∑ (𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)
𝑛
𝑘=1 ,

10 𝑠𝑝𝑎𝑚𝑀_𝑐 = ∑ (𝑠𝑝𝑎𝑚𝑀_𝑐𝑘)
𝑛
𝑘=1

11 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐 = ℎ𝑎𝑚𝑀_𝑐 + 𝑠𝑝𝑎𝑚𝑀_𝑐,
12 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐 = ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 + 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐
13 𝑤𝑜𝑟𝑑𝑠𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 = 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐 − 𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐
14 ℎ𝑎𝑚𝑊𝑁𝑂𝑇𝑖𝑛𝐷𝑜𝑐_𝑐 = ℎ𝑎𝑚𝑀_𝑐 − ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐

15 𝑠𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝑖𝑛𝐷𝑜𝑐_𝑐 = 𝑠𝑝𝑎𝑚𝑀_𝑐 − 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐

16 𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑐 = (ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 × 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐) × 𝑅1_𝑝

17 𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑐 = (ℎ𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 × 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐) × 𝑅2_𝑝

18 𝑟𝑛𝑑𝑆𝑝𝑎𝑚𝑊𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑐 = (𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 × 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐) × 𝑅3_𝑝

19 𝑟𝑛𝑑𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑐 = (𝑠𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 × 𝑛𝑟𝑀𝑎𝑖𝑙𝑠_𝑐) × 𝑅4_𝑝

20 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_ℎ𝑎𝑚𝑀_𝑐 = (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐 × ℎ𝑎𝑚𝑀_𝑐) × 𝑅5_𝑝

21 𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_ℎ𝑎𝑚𝑀_𝑐 = (𝑤𝑜𝑟𝑑𝑠𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 × ℎ𝑎𝑚𝑀_𝑐) × 𝑅6_𝑝

22 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_𝑠𝑝𝑎𝑚𝑀_𝑐 = (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐 × 𝑠𝑝𝑎𝑚𝑀_𝑐) × 𝑅7_𝑝

23 𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_𝑠𝑝𝑎𝑚𝑀_𝑐 = (𝑤𝑜𝑟𝑑𝑠𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 × 𝑠𝑝𝑎𝑚𝑀_𝑐) × 𝑅8_𝑝

24 𝐵_3𝑇 = (𝐻(𝐵_2𝑇),𝑀𝑇(⋃ 𝐻(𝐵_4𝐷𝑂𝑘)
𝑛
𝑘=1),𝑀𝑇(𝑎𝑙𝑙𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚𝑅𝑛𝑑_𝑐), 𝑇𝑆)

25 send (𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐, 𝐻(𝐵_3𝑇)) to E2DS

26 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_3𝑇))

PHASE V – E2DS

27 (𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣, 𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣,
 𝑟𝑛𝑑𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣,

 𝑟𝑛𝑑𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣,
 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_ℎ𝑎𝑚𝑀_𝑣, 𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_ℎ𝑎𝑚𝑀_𝑣

 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_𝑠𝑝𝑎𝑚𝑀_𝑣, 𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_𝑠𝑝𝑎𝑚𝑀_𝑣)
= 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐 𝑠𝑒𝑛𝑡 𝑏𝑦 TEAS)

28 𝑙𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔(𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣/𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_ℎ𝑎𝑚𝑀_𝑣))
29 𝑙𝑜𝑔𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔(𝑟𝑛𝑑𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣/
𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_ℎ𝑎𝑚𝑀_𝑣))
30 𝑙𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔(𝑟𝑛𝑑𝑆𝑝𝑎𝑚𝑊𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣/
𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_𝑠𝑝𝑎𝑚𝑀_𝑣))
31 𝑙𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔(𝑟𝑛𝑑𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑚𝑢𝑙_𝑛𝑟𝑀_𝑣/
𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑚𝑢𝑙_𝑠𝑝𝑎𝑚𝑀_𝑣))
32 𝐵_2𝐸 = (𝐻(𝐵_1𝐸), 𝐻(𝐵_3𝑇),𝑀𝑇(𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐), 𝑇𝑆)
33 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_2𝐸))

50

34 send (𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐,𝐻(𝐵_2𝐸)) to TEAS

PHASE VI –TEAS

35 𝑖𝑛𝑣𝐿𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐾1 × 𝑙𝑜𝑔(𝑅5_𝑣/𝑅1_𝑣))
36 𝑖𝑛𝑣𝐿𝑜𝑔𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐾1 × 𝑙𝑜𝑔(𝑅6_𝑣/𝑅2_𝑣))
37 𝑖𝑛𝑣𝐿𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝐼𝑛𝐷_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐾1 × 𝑙𝑜𝑔(𝑅7_𝑣/𝑅3_𝑣))
38 𝑖𝑛𝑣𝐿𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐾1 × 𝑙𝑜𝑔(𝑅8_𝑣/𝑅4_𝑣))
39 𝑡𝑚𝑝_𝑐1 = ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 × (𝑙𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝐻𝑎𝑚𝑊𝐼𝑛𝐷_𝑝)
40 𝑡𝑚𝑝_𝑐2 = ℎ𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 × (𝑙𝑜𝑔𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝐻𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑝)
41 𝑡𝑚𝑝_𝑐3 = 𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 × (𝑙𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝐼𝑛𝐷_𝑝)
42 𝑡𝑚𝑝_𝑐4 = 𝑠𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 × (𝑙𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝑆𝑝𝑎𝑚𝑊𝑁𝑂𝑇𝐼𝑛𝐷_𝑝)
43 𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 = ∑ 𝑡𝑚𝑝_𝑐𝑖

4
𝑖=1

44 𝑅_𝑣 = {𝑅,…𝑅}; ℎ1_𝑣 = {ℎ1,1, … , ℎ𝑁,1}; ℎ2_𝑣 = {ℎ, … , ℎ}
45 (𝑅_𝑝, ℎ1_𝑝) = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑅_𝑣, ℎ1_𝑣)
46 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 = (𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 × 𝑅_𝑝) + ℎ1_𝑝

47 𝐵_4𝑇 = (𝐻(𝐵_3𝑇), 𝐻(𝐵_2𝐸),𝑀𝑇(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐, (ℎ1_𝑣 − ℎ_𝑣)), 𝑇𝑆)
48 send (𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐 , 𝐻(𝐵_4𝑇)) to E2DS

49 for 𝑘 = 1 to 𝑛 do

50 send (𝐸𝑛𝑐𝑝𝑘𝑘(ℎ1_𝑣 − ℎ_𝑣), 𝐻(𝐵_4𝑇)) to EDO𝑘

51 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_4𝑇))

PHASE VII-E2DS:

52 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐)
53 𝐵_3𝐸 = (𝐻(𝐵_2𝐸), 𝐻(𝐵_4𝑇),𝑀𝑇(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣), 𝑇𝑆)
54 for 𝑘 = 1 to 𝑛 do

55 send (𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣), 𝐻(𝐵_3𝐸)) to EDO𝑘

56 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_3𝐸))

PHASE VIII-EDOs

57 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = 𝐷𝑒𝑐𝑠𝑘𝑘(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣)

58 𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 − 𝐷𝑒𝑐𝑠𝑘𝑘(ℎ1_𝑣 − ℎ_𝑣)

59 𝑆𝐹 = 𝑠𝑜𝑟𝑡(𝜋−1(𝑡𝑜𝑝𝑀(𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣)), ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣)

Fig.4.3. Illustration of SIMD evaluation of values in lines 13-16 of secFS-S2

51

Fig.4.4. Illustration of SWHE SIMD evaluations of terms in (4) in secFS-S2

4.4. Secure feature selection for multi-label multi-output

datasets

The background information is given in Chapter 2.2.2. The corresponding secure algorithm

is given in Algorithm 4.4. Generally, Algorithm 4.4 follows Algorithm 4.3, but adjusted to

the multi-label multi-output scenario.

ALGORITHM 4.4: secFS-MLMO-S2 (secure Feature Selection for Multi-Label Multi-Output datasets

– Stage II)

INPUT: 𝒏, {𝑫𝑺𝒌}𝒌=𝟏
𝒏 , 𝑲𝒆𝒚𝑺𝒆𝒕 = {(𝒑𝒌𝒌, 𝒔𝒌𝒌)𝒌=𝟏

𝒏 , (𝒑𝒌𝑻, 𝒔𝒌𝑻), (𝒑𝒌𝑬, 𝒔𝒌𝑬)}, (𝒑𝒌, 𝒔𝒌),𝒎
𝒍,𝑾𝑮𝑻𝒉𝒂𝒏𝑽, 𝑳, 𝑪𝒍

𝑳 = {𝑳𝟏, … , 𝑳|𝑳|}: the labels’ set

𝑪𝒍 = {𝑪𝟏
𝒍 , … , 𝑪|𝑪𝒍|

𝒍}: The label’s 𝑙 set of classes, 1 ≤ 𝑙 ≤ |𝐿|

𝑺𝑭𝒍: the number of features (words) to be selected at the end for label 𝑙, 1 ≤ 𝑙 ≤ |𝐿|
𝑾𝑮𝑻𝒉𝒂𝒏𝑽: the set of words with at least 𝑣𝑎𝑙 global document appearances

OUTPUT: 𝑺𝑭𝑴𝑳𝑴𝑶 = {{𝑺𝑭𝒍}
𝒍=𝟏

|𝑳|
} = {{{𝑯(𝒘𝒊)}𝒊=𝟏

𝒎𝒍
}
𝒍=𝟏

|𝑳|

}

𝑺𝑭𝑴𝑳𝑴𝑶: the set of |𝐿| set hashes, each of 𝑚𝑙 selected features with the highest IG for each label, 1 ≤ 𝑙 ≤ |𝐿|

PHASE III – EDOs

1 for 𝑘 = 1 to 𝑛 do

2 for 𝑙 = 1 𝑡𝑜 |𝐿| and 𝑐 = 1 𝑡𝑜 |𝐶𝑙|
3 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐],𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐] = 𝑔𝑒𝑡𝐸𝑛𝑐𝑦𝑟𝑝𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑠(𝐷𝑆𝑘,𝑊𝐺𝑇ℎ𝑎𝑛𝑉)
4 𝐵_4𝐷𝑂𝑘 = (𝐻(𝐵_3𝐷𝑂𝑘),𝑀𝑇(𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐],𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐], 𝑇𝑆);

 𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_4𝐷𝑂𝑘))

5 send (𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐],𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐], 𝐻(𝐵_4𝐷𝑂𝑘)) to TEAS

PHASE IV-TEAS

7 𝑁𝑇_𝑐 = ∑ (∑ 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[1][𝑐]
|𝐶1|
𝑐=1)𝑛

𝑘=1

8 𝑊𝐼𝑛𝐷𝑜𝑐𝐶𝑜𝑢𝑛𝑡_𝑐 = ∑ (∑ 𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[1][𝑐]
|𝐶1|
𝑐=1)𝑛

𝑘=1

9 𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐𝐶𝑜𝑢𝑛𝑡_𝑐 = 𝑁𝑇_𝑐 −𝑊𝐼𝑛𝐷𝑜𝑐𝐶𝑜𝑢𝑛𝑡_𝑐

52

10 for 𝑙 = 1 𝑡𝑜 |𝐿|
11 for 𝑐 = 1 𝑡𝑜 |𝐶𝑙|
12 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡𝑐[𝑙][𝑐] = ∑ 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡𝑐𝑘[𝑙][𝑐]

𝑛
𝑘=1 ;

 𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] = ∑ 𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐𝑘[𝑙][𝑐]
𝑛
𝑘=1

13 𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] = 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] − 𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐]
14 𝑟𝑛𝑑𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑁𝑇_𝑐[𝑙][𝑐] = 𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] × 𝑁𝑇_𝑐 × 𝑅1[𝑙][𝑐]
15 𝑟𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑊𝐼𝑛𝐷𝑜𝑐_𝑐[𝑙][𝑐] = 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] × 𝑊𝐼𝑛𝐷𝑜𝑐𝐶𝑜𝑢𝑛𝑡_𝑐 × 𝑅2[𝑙][𝑐]
16 𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑁𝑇_𝑐[𝑙][𝑐] = 𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] × 𝑁𝑇_𝑐 × 𝑅3[𝑙][𝑐]

17 𝑟𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑐[𝑙][𝑐] = 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] ×𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐𝐶𝑜𝑢𝑛𝑡_𝑐 × 𝑅4[𝑙][𝑐]

18 𝐵_3𝑇 = (𝐻(𝐵_2𝑇),𝑀𝑇(⋃ 𝐻(𝐵_4𝐷𝑂𝑘)
𝑛
𝑘=1),𝑀𝑇(𝑎𝑙𝑙𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚𝑅𝑛𝑑_𝑐), 𝑇𝑆);

𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_3𝑇))

19 send (𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐, 𝐻(𝐵_3𝑇)) to E2DS

PHASE V – E2DS

21 for 𝑙 = 1 𝑡𝑜 |𝐿|
22 for 𝑐 = 1 𝑡𝑜 |𝐶𝑙|
23 (𝑟𝑛𝑑𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑁𝑇_𝑣[𝑙][𝑐], 𝑟𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑊𝐼𝑛𝐷𝑜𝑐_𝑣[𝑙][𝑐],
24 𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑁𝑇_𝑣[𝑙][𝑐], 𝑟𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑣[𝑙][𝑐])
25 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐 𝑠𝑒𝑛𝑡 𝑏𝑦 TEAS)
26 𝑙𝑜𝑔𝑊𝐼𝑛𝐶𝑙_𝑐[𝑙][𝑐] = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔(𝑟𝑛𝑑𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑁𝑇_𝑣[𝑙][𝑐]/
 𝑟𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑊𝐼𝑛𝐷𝑜𝑐_𝑣[𝑙][𝑐]))
27 𝑙𝑜𝑔𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙_𝑐[𝑙][𝑐] = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝐾1 × 𝑙𝑜𝑔(𝑟𝑛𝑑𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑁𝑇_𝑣[𝑙][𝑐]/
 𝑟𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑚𝑢𝑙_𝑊𝑁𝑂𝑇𝐼𝑛𝐷𝑜𝑐_𝑣[𝑙][𝑐]))
28 𝐵_2𝐸 = (𝐻(𝐵_1𝐸), 𝐻(𝐵_3𝑇),𝑀𝑇(𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_2𝐸))

30 send (𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐,𝐻(𝐵_2𝐸)) to TEAS

PHASE VI –TEAS

31 for 𝑙 = 1 𝑡𝑜 |𝐿|
32 for 𝑐 = 1 𝑡𝑜 |𝐶𝑙|
33 𝑖𝑛𝑣𝐿𝑜𝑔𝑊𝐼𝑛𝐶_𝑝[𝑙][𝑐] = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐾1 × 𝑙𝑜𝑔(𝑅2_𝑣[𝑙][𝑐]/𝑅1_𝑣[𝑙][𝑐]))
34 𝑖𝑛𝑣𝐿𝑜𝑔𝑊𝑁𝑂𝑇𝐼𝑛𝐶_𝑝[𝑙][𝑐] = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐾1 × 𝑙𝑜𝑔(𝑅4_𝑣[𝑙][𝑐]/𝑅3_𝑣[𝑙][𝑐]))
35 𝑡𝑚𝑝_𝑐1[𝑙][𝑐] = 𝑊𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] × (𝑙𝑜𝑔𝑊𝐼𝑛𝐶𝑙_𝑐[𝑙][𝑐] + 𝑖𝑛𝑣𝐿𝑜𝑔𝑊𝐼𝑛𝐶_𝑝[𝑙][𝑐])
36 𝑡𝑚𝑝_𝑐2[𝑙][𝑐] = 𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡_𝑐[𝑙][𝑐] × (𝑙𝑜𝑔𝑊𝑁𝑂𝑇𝐼𝑛𝐶𝑙_𝑐[𝑙][𝑐] + 𝑖𝑛𝑣𝐿𝑜𝑔𝑊𝑁𝑂𝑇𝐼𝑛𝐶_𝑝[𝑙][𝑐])

37 𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐[𝑙] = ∑ ((∑ 𝑡𝑚𝑝_𝑐𝑖[𝑙][𝑐])
2
𝑖=1))

|𝐶𝑙|
𝑐=1

38 𝑅_𝑣[𝑙] = {𝑅𝑙, … 𝑅𝑙}; ℎ1_𝑣[𝑙] = {ℎ1,1
𝑙, … , ℎ𝑁,1

𝑙}; ℎ2_𝑣[𝑙] = {ℎ𝑙, … , ℎ𝑙};

 (𝑅_𝑝[𝑙], ℎ1_𝑝[𝑙]) = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑅_𝑣[𝑙], ℎ1_𝑣[𝑙])
39 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐[𝑙] = (𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐[𝑙] × 𝑅_𝑝[𝑙]) + ℎ1_𝑝[𝑙]
40 send (𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐[𝑙] , 𝐻(𝐵_4𝑇)) to E2DS

41 for 𝑘 = 1 to 𝑛 do

42 send (𝐸𝑛𝑐𝑝𝑘𝑘(ℎ1_𝑣[𝑙] − ℎ_𝑣[𝑙]), 𝐻(𝐵_4𝑇)) to EDO𝑘

43 𝐵_4𝑇 = (𝐻(𝐵_3𝑇), 𝐻(𝐵_2𝐸),𝑀𝑇(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐, (ℎ1_𝑣 − ℎ_𝑣)), 𝑇𝑆);

𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_4𝑇))

PHASE VII-E2DS:

45 for 𝑙 = 1 𝑡𝑜 |𝐿|
46 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐)
47 for 𝑘 = 1 to 𝑛 do

48 send (𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣), 𝐻(𝐵_3𝐸)) to EDO𝑘

49 𝐵_3𝐸 = (𝐻(𝐵_2𝐸), 𝐻(𝐵_4𝑇),𝑀𝑇(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣), 𝑇𝑆); 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_3𝐸))

PHASE VIII-EDOs

51 for 𝑙 = 1 𝑡𝑜 |𝐿|
51 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = 𝐷𝑒𝑐𝑠𝑘𝑘(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣)

52 𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 = 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣 − 𝐷𝑒𝑐𝑠𝑘𝑘(ℎ1_𝑣 − ℎ_𝑣)

53 𝑆𝐹𝑙 = {𝐻(𝑤1), … , 𝐻(𝑤𝑚𝑙)} = 𝑠𝑜𝑟𝑡(𝜋−1(𝑡𝑜𝑝𝑀𝑙(𝑖𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣[𝑙]))) //inverse permut of hashes

54 𝑟𝑒𝑡𝑢𝑟𝑛 𝑆𝐹𝑀𝐿𝑀𝑂 //words are sorted according to their hashes for performance reasons

53

Improvement 4.1. For computational and communicational efficiency purposes, whenever

possible we apply polynomial switching technique proposed in [55], use multiple cores and

threads (parallelize to the maximum extend) and simultaneously execute parts of the protocol

in different participants whenever it’s possible (e.g. adding block to blockchain after sending

data to other participants). Those techniques alone give an improvement of several folds.

4.5. Experimental evaluations and comparisons

We run our codes in a machine with Intel Core i3-4000M processor with two physical cores,

each of 2.4GHz (we utilize one core only in our implementations) with 4GB of DDR3 RAM

and 64-bit Wındows 10 Pro as an OS. For SWHE purposes we use C++ based Microsoft’s

SEAL 3.2 library [40] which implements a version of [59].

For benchmark and comparison purposes with the state-of-the-art schemes, we used the email

textual dataset Enron [37]. Its implementations can be found in [81]. for a total of around 9

000 lines of original C++ code. Enron e-mail dataset is a collection of e-mails from 150 user

profiles, with a total of 16 555 ham and 17 148 spam e-mails. For the dataset pre-processing

in line 2 of the 𝑠𝑒𝑐𝐹𝑆 − 𝑆1 (Algorithm 4.2) we applied stop-words removal, partial

punctuation removal, stemming by using the library in [45] and converting all of the letters

to lowercase. For our protocols, the input parameter values for the Enron dataset are

𝑣𝑎𝑙 = 5 𝑎𝑛𝑑 𝐾1 = 100 000.

For the SWHE parameters (Chapter 2.4.1) for 𝑁 = 8192,16384 we use the corresponding

values of 𝑡 = 37,60 bits and 𝑞 = 218,438 bits, respectively and security of 𝜆 = 128 bits.

Table 4.1. gives the cumulative (total) computation and communication costs for Enron

email dataset for each participant while running Algorithm 4.2 and 4.3 (both stage I and II)

for different polynomial modulus N and number of dataset owners n.

In Table 4.2 we compare the best results of our secure feature selection protocol

(Algorithms 4.2 and 4.3, both secFS-S1 and secFS-S2) with secure feature protocol in [28],

which is the closest to ours from the related literature. In [28] they use a light version of the

information gain – the Gini index, for secure feature selection. In [28] they use the non-

textual Speed Dating binary dataset of [47] which has 𝑁𝑇 = 8378 records, |𝐹| =122 initial

features, from which they select 𝑚 = 67 features and finish the task in 60.57 min. Since [83]

54

is non-textual dataset and the features are known publicly, they don’t engage in a protocol

similar to ours GRPV and secFS-S1, which makes their task easier.

Table 4.1. Computation and communication costs among different participants for different

polynomial modulus 𝑁 and number of the dataset owners 𝑛

𝑵 𝒏
Computation cost (s)

Communication cost

(MB)

EDO TEAS E2DS EDO TEAS E2DS

8192

10 197.7 394.4 2.0 190.2 45.7 16.5

20 163.3 442.8 2.1 378.5 59.3 22.5

30 148.5 484.4 2.1 566.4 72.9 28.6

40 53.3 176.6 2.5 754.3 86.6 34.7

50 34.1 173.6 1.9 482.1 100.2 40.7

16384

10 77.2 141.6 1.5 379.3 77.5 26.8

20 69.0 195.5 1.1 756.6 91.1 32.8

30 54.7 240.7 2.3 1133 104.8 38

40 39.2 323.0 2.1 1510 118.4 45.0

50 33.3 386.5 2.1 1887 132.0 51.0

Table 4.2. Comparison of different secure feature selection schemes

Scheme 𝑵𝑻 |𝑭| 𝒎=|SF| Comp. Comm.

Speed Dating [47]

[29]* 8,378 122 67 60.57 min Not reported

Enron email dataset [39]

Ours 33,703 157,458 2047 10.15 min 310 MB

*4 co-located F32s V2 Azure, each with 32 cores and 64 GB RAM

4.6. Security analysis and proofs

We proof the security of our protocols under the semi-honest model using the definition 2.2

given in Chapter 2.4.2.

Theorem 4.1 GRPV (Algorithm 4.1) is secure under the semi-honest model

Proof: For 1 ≤ 𝑘 ≤ 𝑛, 𝑉𝐸𝐷𝑂𝑘
𝐺𝑅𝑃𝑉(𝜆, �̅�) = {𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣), 𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑇)} is the

view and 𝑂𝐸𝐷𝑂𝑘
𝐺𝑅𝑃𝑉(𝜆, �̅�) = {ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣} is the output of EDO𝑘.

55

Let 𝑟𝑛𝑑𝑉𝑒𝑐_𝑣̃ be a random vector and let 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑇̃ = ℎ𝑎𝑠ℎ𝐵𝑖𝑡𝑃𝑒𝑟𝑚𝑉𝑒𝑐_𝑣 − 𝑟𝑛𝑑𝑉𝑒𝑐_𝑣̃ .

For the simulator of each eDo we have 𝑆𝐸𝐷𝑂𝑘
𝐺𝑅𝑃𝑉 (𝜆, 𝑂𝐸𝐷𝑂𝑘

𝐺𝑅𝑃𝑉(𝜆, �̅�)) =

{𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣
̃),𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑉𝑒𝑐_𝑣𝑇

̃)} ≅𝑐 𝑉𝐸𝐷𝑂𝑘
𝐺𝑅𝑃𝑉(𝜆, �̅�).

For the view of TEAS we have 𝑉𝑇𝐸𝐴𝑆
𝐺𝑅𝑃𝑉(𝜆, �̅�) = {(𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑘)𝑘=1

𝑛 } and it has no output. For

the simulator we construct random SWHE ciphertexts, thus

𝑆𝑇𝐸𝐴𝑆
𝐺𝑅𝑃𝑉(𝜆) = (𝑟𝑛𝑑𝑉𝑒𝑐_𝑐𝑘̃)

𝑘=1

𝑛
≅𝑐 𝑉𝑇𝐸𝐴𝑆

𝐺𝑅𝑃𝑉(𝜆, �̅�) due to the semantic security of the RLWE

SWHE schemes.

For E2DS the view is 𝑉𝐸2𝐷𝑆
𝐺𝑅𝑃𝑉(𝜆, �̅�) = {𝑟𝑛𝑑𝑉𝑒𝑐_𝑐} and it has no output. For its simulator we

have 𝑆𝐸2𝐷𝑆
𝐺𝑅𝑃𝑉(𝜆) = {𝑟𝑛𝑑𝑉𝑒𝑐_𝑐̃ } ≅𝑐 𝑉𝐸2𝐷𝑆

𝐺𝑅𝑃𝑉(𝜆, �̅�) since RLWE based SWHE ciphertexts

𝑟𝑛𝑑𝑉𝑒𝑐_𝑐 and 𝑟𝑛𝑑𝑉𝑒𝑐_𝑐̃ are indistinguishable to each other due to their semantic security.

None of the participants has a private input in GRPV. ∎

Theorem 4.2: secFS-S1 (Algorithm 4.2) is secure under the semi-honest model.

Proof: For 1 ≤ 𝑘 ≤ 𝑛,

𝑉𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�) = {𝐸𝑛𝑐𝑝𝑘𝑘(𝑊), 𝐸𝑛𝑐𝑝𝑘𝑘(ℎ2_𝑣), 𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣)} is the view

(where �̅� the set of private input of all participants), 𝑥𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1 = {𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐷𝑆𝑘)} is the

private input and 𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�) = {𝑊𝐺𝑇ℎ𝑎𝑛𝑉} is the output of EDO𝑘. From 𝑥𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆1 and

𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�) we construct the set of the union of words �̃� = ⋃(𝑊𝑘,𝑊𝐺𝑇ℎ𝑎𝑛𝑉, 𝑟𝑛𝑑𝑊),

where 𝑊𝑘 is obtained as in lines 2-4 of secFS-S1 and 𝑟𝑛𝑑𝑊 are permuted hashes of random

words. ℎ2_�̃� and 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣̃ are randomly chosen such that in the resulting

𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣̃ −ℎ2_�̃� the indexes that correspond to the words of 𝑊𝐺𝑇ℎ𝑎𝑛𝑉 in �̃� are

positive, thus greater than 𝑣𝑎𝑙. For the simulator of EDO𝑘 we have

𝑆𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1 (𝜆, 𝑥𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆1, 𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�)) =

{𝐸𝑛𝑐𝑝𝑘𝑘(�̃�), 𝐸𝑛𝑐𝑝𝑘𝑘(ℎ2_�̃�), 𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑣
̃)}, thus

𝑆𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1 (𝜆, 𝑥𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆1, 𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�)) ≅𝑐 𝑉𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�). For TEAS 𝑉𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�) =

{(𝐸𝑛𝑐𝑝𝑘𝑇(𝑊𝑘))𝑘=1
𝑛

, (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)𝑘=1
𝑛 } is the view, 𝑥𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆1 = ∅ is the input and

𝑂𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�) = ∅ is the output it receives at the end of the protocol, where ∅ is the empty

set. Let us construct 𝑛 sets of permuted word hashes (𝑊�̃�)𝑘=1
𝑛 so that TEAS can’t tell apart

56

from them and(𝑊𝑘)𝑘=1
𝑛 , and 𝑛 random ciphertexts (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘̃)𝑘=1

𝑛 which can’t be

distinguished from (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)𝑘=1
𝑛 due to the semantic security of the RLWE

schemes. For the TEAS’ simulator then we have 𝑆𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1 (𝜆, 𝑥𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆1, 𝑂𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�)) =

{(𝐸𝑛𝑐𝑝𝑘𝑇(𝑊�̃�))𝑘=1
𝑛

, (𝑤𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐_𝑐𝑘̃)
𝑘=1

𝑛
} ≅𝑐 𝑉𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�).

E2DS’ view is 𝑉𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�) = {𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐} and its input and output is the empty set.

We construct a random ciphertext 𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐̃ which can’t be distinguished from

𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐 to the semantic security of the RLWE based schemes. For the simulator then

we have 𝑆𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, 𝑥𝐸2𝐷𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆1, 𝑂𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�)) = {𝑟𝑛𝑑𝑊𝐼𝑛𝐷𝑜𝑐_𝑐̃ } ≅𝑐 𝑉𝐸2𝐷𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�). ∎

Corollary 4.1: secFS-S1 is secure under the semi-honest model when out of 𝑛, 𝑛 − 3 EDOs

fail or 𝑛 − 2 EDOs collude.

Proof: Without loss of generality, let the 3 left (not failed) EDOs be EDO𝑘, for 1 ≤ 𝑘 ≤ 3,

and let us treat the n-2 colluding EDOs as a single entity EDO3, thus we again have 3

participating EDOs denoted as EDO𝑘, for 1 ≤ 𝑘 ≤ 3. We go through the similar lines as

Theorem 2 to prove Corollary 1. If there are only 2 non-failed or non-colluding EDOs left,

then for the words in 𝑊 (line 8 and 14) which don’t appear in one EDO, not only this EDO

will know that they exist in the other EDO, he will also know whether the counts of those

words is greater or smaller than 𝑣𝑎𝑙 based on the final 𝑊𝐺𝑇ℎ𝑎𝑛𝑉 words’ set, which

constitutes a partial leakage that goes against the strict security and privacy requirements set

in Chapter 4.1. ∎

Theorem 4.3: secFS-S2 (Algorithm 4.3) is secure under the semi-honest model.

Proof: For 1 ≤ 𝑘 ≤ 𝑛, 𝑉𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, �̅�) = {𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣), 𝐸𝑛𝑐𝑝𝑘𝑘(ℎ1_𝑣 −

ℎ_𝑣)} is the view, 𝑥𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆2 = {𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐷𝑆𝑘),𝑊𝐺𝑇ℎ𝑎𝑛𝑉} is the private input and

𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, �̅�) = {𝑆𝐹} is the output of EDO𝑘. We construct random 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣̃ and

ℎ1_𝑣 − ℎ_𝑣̃ s.t. after 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣̃ −ℎ1_𝑣 − ℎ_𝑣̃ , the resulting vector, that in its

corresponding indexes is supposed to store the relative IG of the words in 𝑊𝐺𝑇ℎ𝑎𝑛𝑉, with

have its top 𝑚 highest values for the indexes that that correspond to the words of the selected

features’ set 𝑆𝐹. For the corresponding simulator of each of the EDOs we have

57

𝑆𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆2 (𝜆, 𝑥𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆2, 𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, �̅�)) =

{𝐸𝑛𝑐𝑝𝑘𝑘(𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑣
̃),𝐸𝑛𝑐𝑝𝑘𝑘(ℎ1_𝑣 − ℎ_𝑣

̃)}, thus

𝑆𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆2 (𝜆, 𝑥𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆2, 𝑂𝐸𝐷𝑂𝑘
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�)) ≅𝑐 𝑉𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, �̅�).

For the view of TEAS we have 𝑉𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, �̅�) =

{(ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)𝑘=1
𝑛 , (𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘)𝑘=1

𝑛 , (ℎ𝑎𝑚𝑀_𝑐𝑘)𝑘=1
𝑛 ,

(𝑠𝑝𝑎𝑚𝑀_𝑐𝑘)𝑘=1
𝑛 , 𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐}, 𝑥𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆2 = ∅ is the input and 𝑂𝑇𝐸𝐴𝑆
secFS−S2(𝜆, �̅�) = ∅

is the output. For the simulator we construct the corresponding ciphertexts randomly, which

can’t be differentiated from their counterparts due to the semantic security of the RLWE

schemes, thus 𝑆𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆2 (𝜆, 𝑥𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆2, 𝑂𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆1(𝜆, �̅�)) =

{(ℎ𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘̃)
𝑘=1

𝑛
, (𝑠𝑝𝑎𝑚𝑊𝐼𝑛𝐷𝑜𝑐_𝑐𝑘̃)

𝑘=1

𝑛
, (ℎ𝑎𝑚𝑀_𝑐𝑘̃)

𝑘=1

𝑛
,

(𝑠𝑝𝑎𝑚𝑀_𝑐𝑘̃)
𝑘=1

𝑛
, 𝑎𝑙𝑙𝑇ℎ𝑒𝑅𝑛𝑑𝐿𝑜𝑔𝑠_𝑐̃ } ≅𝑐 𝑉𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, �̅�).

E2DS’ view is 𝑉𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, �̅�) = {𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐, 𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐} and its input

and output is the empty set. For the simulator we construct random ciphertexts, thus

𝑆𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆2 (𝜆, 𝑥𝐸2𝐷𝑆

𝑠𝑒𝑐𝐹𝑆−𝑆2, 𝑂𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, �̅�)) =

{𝑎𝑙𝑙𝑅𝑛𝑑𝑁𝑜𝑚𝐷𝑒𝑛𝑜𝑚_𝑐̃ ,𝑟𝑛𝑑𝐼𝑛𝑓𝑜𝑟𝐺𝑎𝑖𝑛𝑠_𝑐̃ } ≅𝑐 𝑉𝐸2𝐷𝑆
𝑠𝑒𝑐𝐹𝑆−𝑆2(𝜆, �̅�)

Corollary 4.2: secFS-S2 is secure under the semi-honest model when out of 𝑛 𝑛 − 3 EDOs

fail or 𝑛 − 2 EDOs collude. ∎

Theorem 4.4: secFS-MLMO-S2 (Algorithm 4.4) is secure under the semi-honest model

Proof: We follow similar reasoning as with Theorem 4.4 ∎

58

Chapter 5

SECURE AND PRIVATE MACHINE

LEARNING TRAINING

Definition 5.1: ML model training is the process of acquiring parameters of the trained

model TM from a labeled dataset DS consisted of a selected feature set SF according to an

algorithm 𝒯, thus 𝑇𝑀 = 𝒯(DS, 𝑆𝐹).

In this chapter, we introduce the security, privacy and efficiency goals (requirements) for

our secure training protocols. We proceed with constituents (participants) of our secure

training schemes, their adversary models as well as we provide a brief flow of the protocols,

which will be elaborated in more details in the later subchapters of this chapter. We conclude

the chapter by experimentally evaluating and comparing our schemes with the related

research as well as we proof their security under the semi-honest model. All the necessary

background information and notations for this chapter was given in Chapter 2. We should

note that our secure training protocol(s) can be seen as a natural follow up of the

corresponding secure feature selection protocol(s). Namely, after securely and privately

selecting the most suitable features, we proceed to train a ML model based on the selected

features.

59

5.1. Introduction

The security and privacy requirements for our secure training protocol are the following:

 Privacy of the input features. The inputs here are the 𝑚 selected features, i.e. the output

of the secFS protocol

 Privacy of the input features’ values

 Security and privacy of intermediate results

 Privacy of the output, i.e. the trained model. This is one of the rare protocols to keep

private the final trained ML model at any stage.

 Have other properties related to secure training mentioned in Table 3.2

5.2. System architecture, adversary models and protocol-flows-

at-a-glance

Similarly to the secure feature selection case (Chapter 4.2), our participants for the secure

feature selection protocols are: 1) EDO (The Edge Dataset Owner) - We have n such EDOs

in our system, denoted as EDO𝑘, each owns a dataset DS𝑘, where 1 ≤ 𝑘 ≤ 𝑛, that they are

willing to use for training ML models in a secure and private fashion. 2) TEAS (The Edge

Aggregating Server): a server used to do the bulk of the proposed protocols’ homomorphic

computation. 3) E2DS (The Edge Encryption Decryption Server): It’s the only participant in

the system that has a pair of public keys with SWHE properties (Chapter 2.4). All the data

that are homomorphically evaluated in our protocols are encrypted using E2DS’ public key,

thus it’s the only one that can decrypt them. All of them are illustrated in Fig.5.1.

Adversary models: All the participants are assumed to be in the passive semi-honest (honest

but curious) model, which means that they follow the protocol but on the background they

try to infer some private data which they are not supposed to. A formal definition of the semi-

honest model is given in Chapter 2.4.1. We assume that TEAS and E2DS don’t collude. Out

of 𝑛 EDOs, our environment setting allows for up to 𝑛 − 3 EDO failures and up to 𝑛 − 2

collusions without jeopardizing the privacy of the remaining and non-colluding EDOs . The

motivations for participant to behave in the described manners are given in [8-18].

60

Fig. 5.1. Protocol flows for secure training protocol (secT)

Protocol flows at-a-glance: In secure training we continue the blockchain (Fig.4.2) started

in Chapter 4. All the participants have a pair of public/secret keys used for signing their

corresponding blocks of the blockchain and for secure communication. Additionally, E2DS

has a pair of public/secret key with SWHE properties (Chapter 2.4.1). All of these key pairs

form the KeySet set. While we designed our protocols having in mind primarily binary textual

datasets, they are also applicable to non-textual ones and can be easily generalized to multi-

class scenarios. This choice was done for simplicity and benchmark (comparison) purposes

with the related research.

secT (secure training): Illustrated in Fig.5.1. Using the selected words of 𝑆𝐹 as index

entries, 𝑛 EDOs simultaneously construct the ciphertext of the training vector which

containing the local frequencies of each word, 𝑇𝑉_𝑐𝑘, ❽ and send them to TEAS ⑧. TEAS

sums them up to get the global frequencies, randomizes this result to get 𝑟𝑛𝑑𝑇𝑉_𝑐 =

(∑ 𝑇𝑉_𝑐𝑘
𝑛
𝑘=1) × 𝑅_𝑝 ❾ and sends it to E2DS ⑨. After decrypting it, E2D2 finds the

randomized class and conditional word-class logarithms of probabilities, integerizes and

encrypts them to get the randomized trained model 𝑟𝑛𝑑𝑇𝑀_𝑐 ❿ and sends it back to TEAS

⑩, which homomorphically removes the randomization to get the final trained

model 𝑇𝑀_𝑐 which represents the Naïve Bayes (NB) or the multinomial NB (MNB)

classifier ⓫.

61

5.3. Secure training for non-textual datasets

Considering the notations in Chapter 2.1.1 for the non-textual datasets, the architecture,

protocol flows and participants in Chapter 5.2, in this chapter we give a detailed pseudocode

of the privacy preserving training protocol of Naïve Bayes (NB) models for non-textual

datasets (Algorithm 5.1) which was briefly elaborated in Chapter 5.2. It is also accompanied

with corresponding illustrations and comments in the pseudocode.

ALGORITHM 5.1: PPTMDO (Privacy Preserving Training From Multiple Dataset Owners)

INPUT: {𝑫𝑺𝒌}𝒌=𝟏
𝒏 , 𝑭, 𝑪, 𝒏

{𝑫𝑺𝒌}𝒌=𝟏
𝒏 : The local datasets owned by the 𝑘-th EDO, for 1 ≤ 𝑘 ≤ 𝑛. Each EDO has one private dataset

𝑭: 𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑓}, where 𝐹𝑖 = {𝑉1,𝐹𝑖 , 𝑉2,𝐹𝑖 , … , 𝑉|𝐹𝑖|,𝐹𝑖}. Fi, st. 1 ≤ 𝑖 ≤ 𝑓 (explained in Chapter 2.1.1)

𝑪: The set of classes 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑐} (explained in Chapter 2.1.1)

𝒏: number of dataset owners

OUTPUT: 𝑻𝑴_𝒄

𝑻𝑴_𝒄: the encryption of the SIMD encoded final trained model which will be stored at TEAS

PHASE VIII - EDOs:

1 for 𝑘 = 1 to 𝑛 do

2 𝑇𝑉_𝑣𝑘 = 𝑔𝑒𝑡𝑇𝑉𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑()//the case when we deal with simultaneous classification of 𝑝 queries

3 𝑇𝑉_𝑐𝑘 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑇𝑉_𝑣𝑘)
4 send 𝑇𝑉_𝑐𝑘 to TACS //all of the [𝑇𝑉(𝑘)] training vectors should look as depicted in Fig.5.2-5.3

PHASE IX - TEAS:

5 𝐺𝑇𝑉_𝑐 = ∑ 𝑇𝑉_𝑐𝑘
𝑛
𝑘=1 //sum them up to get the Global Trained Vector-𝐺𝑇𝑉_𝑐, Fig.5.4

6 𝑅_𝑣 = {𝑅𝑁(𝐶1), 𝑅𝑁(𝑉1,𝐹1;𝐶1), … }; 𝑅_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑅_𝑣)

7 𝑟𝑛𝑑𝐺𝑇𝑉_𝑐 = 𝐺𝑇𝑉_𝑐 × 𝑅_𝑝 //Fig.5.5

8 send 𝑟𝑛𝑑𝐺𝑇𝑉_𝑐 to E2DS

9 𝑟𝑎𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑣 = 𝑐𝑎𝑙𝑐𝑅𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝑓𝑃𝑟𝑜𝑏𝑠(𝑅_𝑣) //equation (5.1)

10 𝑟𝑎𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑟𝑎𝑛𝑑𝑜𝑚𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑣)//eq. (5.1), upper vector in Fig.5.6

PHASE X – E2DS:

11 𝑟𝑛𝑑𝐺𝑇𝑉_𝑣 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐷𝑒𝑐𝑜𝑑𝑒(𝑟𝑎𝑛𝑑_𝐺𝑇𝑉_𝑐)
12 𝑟𝑛𝑑𝑇𝑀_𝑣 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐾𝐿𝑜𝑔𝑂𝑓𝑃𝑟𝑜𝑏𝑠(𝑟𝑛𝑑𝐺𝑇𝑉_𝑣) //equation (5.2)

13 𝑟𝑛𝑑𝑇𝑀_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑟𝑛𝑑𝑇𝑀 _𝑣) //eq. (5.2), middle vector in Fig.5.6

14 send 𝑟𝑛𝑑𝑇𝑀𝐶_𝑐 to TACS

PHASE XI - TEAS:

15 𝑇𝑀_𝑐 = 𝑟𝑛𝑑𝑇𝑀_𝑐 + 𝑟𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑝 //equation (5.3), all illustrated in Fig.5.6

Phase VIII (lines 1-4) is done in parallel at all of the 𝑛 EDOs. Each of the DOs locally

constructs the training vector (𝑇𝑉_𝑣𝑘) (Fig.5.2-5.3) so that EDO 𝑘 (s.t. 1 ≤ 𝑘 ≤ 𝑛) for a

certain class 𝐶𝑗 (s.t. 1 ≤ 𝑗 ≤ 𝑐), at the beginning puts the local frequency (counts) 𝑁(𝑘)(𝐶𝑗)

for that class, proceeded with local joint class-value counts 𝑁(𝑘)(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗) for all the 𝑓

features (1 ≤ 𝑖 ≤ 𝑓) and all feature-values 𝑚 (1 ≤ 𝑚 ≤ |𝐹𝑖|), as it is shown in Fig.5.2. With

this approach only (∑|𝐹𝑖| + 1) slots per class are needed. However, for efficiency purposes

when using the secSum algorithm (Chapter 6.2), we make sure that each class has a portion

62

(number) of slots which is a power of 2, concretely 𝑛𝑠 = 2
⌈𝑙𝑜𝑔 (∑|𝐹𝑖|+1)⌉ slots, where the

remainder of 2⌈𝑙𝑜𝑔 (∑|𝐹𝑖|+1)⌉ − (∑|𝐹𝑖| + 1) slots are filled up with dummy values (preferably

zeros), as shown at the portion of the dummy value slots at Fig.5.2. The same is repeated for

all of the 𝑐 classes, thus each 𝑇𝑉_𝑣𝑘 has 𝑛𝐿 = 𝑐 · 𝑛𝑠 + 1 slots, where the last slot is reserved

for the number of transactions at EDO 𝑘 − 𝑁𝑇(𝑘) (Fig.5.3). If we want a simultaneous

classifications of 𝑝 queries, we replicate the 𝑇𝑉_𝑣𝑘 for 𝑝 times (line 2). Then the EDOs

encode and encrypt their final (replicated) training vectors 𝑇𝑉_𝑐𝑘 and send them to TEAS

(line 4).

Fig. 5.2. Depiction of the portion of the encrypted counts of the training vector of Edge

Dataset Owner 𝑘 holding counts related to class 𝐶𝑗

Fig. 5.3. The overall training vector 𝑇𝑉_𝑣𝑘 (for all classes) at the Edge Dataset Owner 𝑘

In Phase IX TEAS receives all of the trained vectors from EDOs, aggregates (sums them up)

to get the global training vector ciphertext 𝐺𝑇𝑉_𝑐, which contains the global counts in a

single ciphertext (line 5, Fig.5.4). Afterwards TEAS constructs a random looking plaintext

(𝑅_𝑝) (line 6), multiplies 𝐺𝑇𝑉_𝑐 with it to get the randomized 𝑟𝑛𝑑𝐺𝑇𝑉_𝑐 (line 7, Fig.5.5),

then sends this 𝑟𝑛𝑑𝐺𝑇𝑉_𝑐 to E2DS (lines 8). Meanwhile in lines 9-10 TEAS calculates and

construct the plaintext of the inverse logs of probabilities of the random vector 𝑅_𝑝

(𝑟𝑎𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑝), shown at the upper vector at Fig.5.6 and (5.1). For efficiency

purposes lines 9-10 at TEAS are done in parallel (overlap) with Phase X.

63

Fig.5.4. Aggregating (homomorphically summing up) the local training vectors – 𝑇𝑉_𝑐𝑘 to

get the global training vector 𝐺𝑇𝑉_𝑐

⌈𝐾 𝑙𝑜𝑔
𝑅𝑁𝑇
𝑅𝑁(𝐶𝑗)

⌉

⌈𝐾𝑙𝑜𝑔
𝑅𝑁(𝐶𝑗)

𝑅𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

⌉

 (5.1)

Fig.5.5. Randomizing 𝐺𝑇𝑉_𝑐 to get 𝑟𝑛𝑑𝐺𝑇𝑉_𝑐

Fig.5.6. Adding 𝑟𝑎𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝑓𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑝 with 𝑟𝑛𝑑𝑇𝑀_𝑐 to get the trained model 𝑇𝑀_𝑐.

64

In Phase X E2DS decrypts and decodes the randomized global training vector to calculate

the randomized probabilities of the trained model according to (5.2), where 1 ≤ 𝑖 ≤ 𝑓;

1 ≤ 𝑗 ≤ 𝑐 and 1 ≤ 𝑚 ≤ |𝐹𝑖| (lines 11). As it’s shown in Fig.5.6, after properly encoding and

encrypting those probabilities into their corresponding places (slots) to get the 𝑟𝑛𝑑𝑇𝑀_𝑐,

EDS sends back to TEAS the 𝑟𝑛𝑑𝑇𝑀_𝑐 (lines 12-14).

⌈𝐾 log
𝑁(𝐶𝑗)∙𝑅𝑁(𝐶𝑗)

𝑁𝑇∙𝑅𝑁𝑇
⌉

⌈𝐾 log
𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)∙𝑅𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

𝑁(𝐶𝑗)∙𝑅𝑁(𝐶𝑗)
⌉

 (5.2)

Finally, in Phase IV TEAS gets and de-randomizes the 𝑟𝑛𝑑𝑇𝑀_𝑐 by adding it with

𝑟𝑎𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑝 to get the final trained model denoted as 𝑇𝑀_𝑐 as its shown in

(5.3) and Fig.5.6 (line 15). TEAS always holds the 𝑇𝑀_𝑐 in encrypted form at his side to be

later used for classification purposes.

⌈𝐾 𝑙𝑜𝑔
𝑅𝑁𝑇
𝑅𝑁(𝐶𝑗)

⌉+⌈𝐾 𝑙𝑜𝑔
𝑁(𝐶𝑗)∙𝑅𝑁(𝐶𝑗)

𝑁𝑇∙𝑅𝑁𝑇
⌉

≈𝐾𝑙𝑜𝑔
𝑁(𝐶𝑗)

𝑁𝑇
=𝐾𝑙𝑜𝑔𝑃(𝐶𝑗)

⌈𝐾𝑙𝑜𝑔
𝑅𝑁(𝐶𝑗)

𝑅𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

⌉+⌈𝐾 𝑙𝑜𝑔
𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)∙𝑅𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

𝑁(𝐶𝑗)∙𝑅𝑁(𝐶𝑗)
⌉

≈𝐾𝑙𝑜𝑔
𝑁(𝑉𝑚,𝐹𝑖 ; 𝐶𝑗)

𝑁(𝐶𝑗)
=𝐾𝑙𝑜𝑔𝑃(𝑉𝑚,𝐹𝑖|𝐶𝑗)

 (5.3)

Terms in (5.3) are the same as the terms in (2.5) for 1 ≤ 𝑖 ≤ 𝑓; 1 ≤ 𝑗 ≤ 𝑐 and

1 ≤ 𝑚 ≤ |𝐹𝑖|. Actually they represent the Naïve Bayes trained model consisted of the global

class probabilities and conditional value-class probabilities shown in Chapter 2.1.1 and at the

trained model ciphertext 𝑇𝑀_𝑐 of Fig.5.6.

65

5.4. Secure training for binary and multi-label multi-output

textual datasets

In Algorithm 5.2. we give the pseudocode for the ML training of the binary textual datasets

(secT), which is expected to follow up the algorithms for secure feature selection of binary

textual datasets (Algorithms 4.2 and 4.3). Thus, we train our textual ML models over the

selected 𝑚 features from Algorithms 4.2 and 4.3. The necessary background related to

Algorithm 5.2 is given in Chapter 2.1.2. The blockchain started in Algorithms 4.2 and 4.3 is

continued in Algorithm 5.2 to provide end-to-end security (from raw data till the final trained

model), for which we proof the security in Chapter 5.6.

ALGORITHM 5.2: secT (secure Training)

INPUT: 𝒏, {𝑫𝑺𝒌}𝒌=𝟏
𝒏 , 𝑲𝒆𝒚𝑺𝒆𝒕, 𝑺𝑭,𝒎

𝑺𝑭 = {𝑯(𝒘𝟏), … ,𝑯(𝒘𝒎)}: the set of hashes of 𝑚 selected features with the highest IG

OUTPUT: 𝑻𝑴_𝒄 = {𝑲(𝑷(𝒄𝒉) − 𝑷(𝒄𝒔)), 𝑲(𝑷(𝒄𝒉|𝒘𝟏) − 𝑷(𝒄𝒔|𝒘𝟏)), … ,𝑲(𝑷(𝒄𝒉|𝒘𝒎) − 𝑷(𝒄𝒔|𝒘𝒎))}

𝑻𝑴_𝒄: the binary case trained model ciphertext

PHASE VIII - EDOs:

1 for 𝑘 = 1 to 𝑛 do

2 𝑇𝑉_𝑐𝑘 = 𝑔𝑒𝑡𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑇𝑉𝐴𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑇𝑜𝑆𝐹(𝐷𝑆𝑘 , 𝑆𝐹)

3 𝐵_5𝐷𝑂𝑘 = (𝐻(𝐵_4𝐷𝑂𝑘), 𝐻(𝐵_4𝑇), 𝐻(𝐵_3𝐸),𝑀𝑇(𝑇𝑉_𝑐𝑘), 𝑇𝑆); 𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_5𝐷𝑂𝑘))

4 send (𝑇𝑉_𝑐𝑘 , 𝐻(𝐵_5𝐷𝑂𝑘) to TEAS

PHASE IX - TEAS:

5 𝑅_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒{𝑅𝐶ℎ , … , 𝑅𝑤𝑖,𝐶ℎ , …𝑅𝐶𝑠 , … , 𝑅𝑤𝑖,𝐶𝑠 , … 𝑅𝑁𝑇}; 𝑟𝑛𝑑𝑇𝑉_𝑐 = (∑ 𝑇𝑉_𝑐𝑘
𝑛
𝑘=1) × 𝑅_𝑝

6 𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑣 = 𝐾 × {⌈
𝑅𝑁𝑇

𝑅𝐶ℎ
⌉ , … , ⌈

𝑅𝐶ℎ

𝑅𝑤𝑖,𝐶ℎ
⌉ , … , ⌈

𝑅𝑁𝑇

𝑅𝐶𝑠
⌉ , … , ⌈

𝑅𝐶ℎ

𝑅𝑤𝑖,𝐶𝑠
⌉} 𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑣)

7 𝐵_5𝑇 = (𝐻(𝐵_4𝑇),𝑀𝑇(⋃ 𝐻(𝐵_5𝐷𝑂𝑘)
𝑛
𝑘=1),𝑀𝑇(𝑟𝑛𝑑𝑇𝑉_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_5𝑇))

8 send (𝑟𝑛𝑑𝑇𝑉_𝑐, 𝐻(𝐵_5𝑇)) to E2DS

PHASE X-E2DS

9 𝑟𝑛𝑑𝑇𝑉_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝑇𝑉_𝑐); 𝑟𝑛𝑑𝑇𝑀_𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑅𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝑓𝑃𝑟𝑜𝑏𝑠(𝑟𝑛𝑑𝑇𝑉_𝑣)
10 𝐵_4𝐸 = (𝐻(𝐵_3𝐸), 𝐻(𝐵_5𝑇),𝑀𝑇(𝑟𝑛𝑑𝑇𝑀_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_4𝐸))

11 send (𝑟𝑛𝑑𝑇𝑀_𝑐, 𝐻(𝐵_4𝐸)) to TEAS

12 PHASE XI - TEAS:

13 𝑇𝑀_𝑐 = 𝑟𝑛𝑑𝑇𝑀_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑝; 𝑇𝑀_𝑐 = 𝑇𝑀_𝑐 − 𝑅𝑜𝑡(𝑇𝑀_𝑐, −(𝑚 + 1))

14 𝐵_6𝑇 = (𝐻(𝐵_5𝑇), 𝐻(𝐵_4𝐸),𝑀𝑇(𝑇𝑀_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_6𝑇))

15 return 𝑇𝑀_𝑐

secT – secure Training. Given in Algorithm 5.2. In Phase VIII each of the EDOs locally

constructs the training vector , 𝑇𝑉_𝑣𝑘, s.t. the first and the (𝑚 + 1)-th index have the local

ham 𝑁(𝑘)(𝑐ℎ) and spam 𝑁(𝑘)(𝑐𝑠) counts, respectively, while the indexes from 1 to 𝑚 contain

the local ham frequencies 𝑓(𝑘)(𝑤𝑖, 𝑐ℎ) , and indexes from 𝑚 + 2 till 2𝑚 + 2 have the local

66

spam frequencies 𝑓(𝑘)(𝑤𝑖, 𝑐𝑠) corresponding to the words of the selected features’ set 𝑆𝐹,

respectively, where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑘 ≤ 𝑛 (the upper vectors of Fig.5.7, lines 1-4). For

the needs of Laplace Smoothing (Chapter 2.2.1 and 2.2.2) an arbitrarily chosen EDO adds an

extra 1 to the indexes corresponding to word frequencies and adds the dictionary size (in our

case 𝑚) to the first and (𝑚 + 1)-th index corresponding to ham and spam counts. After

encoding and encrypting 𝑇𝑉_𝑣𝑘 to get 𝑇𝑉_𝑐𝑘, they are send to TEAS, which in Phase IX

homomorphically sums them up and randomizes this sum to get 𝑟𝑛𝑑𝑇𝑉_𝑐 (line 5, Fig.5.7),

and sends it to E2DS (line 8). In Phase X E2DS finds the randomized logarithmic terms of

the MNB trained model (Section IV-A), encrypts them to get 𝑟𝑛𝑑𝑇𝑀_𝑐 (Fig.5.8, line 9) and

sends it to TEAS (line 11).

Finally, in Phase XI TEAS removes the randomizations and subtracts the rotated result

(Fig.5.8, line 13) to get the final MNB trained model according to (2.7).

Note: if instead of the frequencies 𝑓(𝑘)(𝑤𝑖, 𝑐ℎ) and 𝑓(𝑘)(𝑤𝑖, 𝑐𝑠) we put 𝑁(𝑘)(𝑤𝑖, 𝑐ℎ) and

𝑁(𝑘)(𝑤𝑖, 𝑐𝑠) at 𝑇𝑉_𝑣𝑘s in Phase I, the final trained model will be the one based on NB

(Chapter 2.1.1).

Improvement 5.1: after obtaining it, the trained model 𝑇𝑀_𝑐 is rarely changed in practice.

We can utilize this fact to send it only once to the EC and amortize the communication cost

among all the secure classification instances which will initiated by the EC.

Fig.5.7. Getting and randomizing the global frequencies in SIMD fashion.

67

Fig.5.8. De-randomizing and rotating 𝑟𝑛𝑑𝑇𝑀_𝑐 to get the final trained model 𝑇𝑀_𝑐

ALGORITHM 5.3: secT-MLMO (secure Training for Multi-Label Multi-Output datasets)

INPUT: 𝒏, {𝑫𝑺𝒌}𝒌=𝟏
𝒏 , 𝑲𝒆𝒚𝑺𝒆𝒕, 𝑺𝑭𝑴𝑳𝑴𝑶

𝑺𝑭𝑴𝑳𝑴𝑶: the set of |𝐿| set hashes, each of 𝑚𝑙 selected features with the highest IG

OUTPUT: 𝑻𝑴𝑴𝑳𝑴𝑶_𝒄 = {{{𝐾𝑙𝑜𝑔𝑃(𝐶𝑐
𝑙), {𝐾𝑙𝑜𝑔𝑃(𝑤𝑖|𝐶𝑐

𝑙)}
𝑖=1

𝑚𝑙

}
𝒄=𝟏

|𝑪𝒍|

}

𝒍=𝟏

|𝑳|

}

𝑻𝑴𝑴𝑳𝑴𝑶_𝒄: the MLMO trained model ciphertext

PHASE VIII - EDOs:

1 for 𝑘 = 1 to 𝑛 do

2 𝑇𝑉𝑀𝐿𝑀𝑂_𝑐𝑘 = 𝑔𝑒𝑡𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑇𝑉𝐴𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑇𝑜𝑆𝐹 − 𝑀𝐿𝑀𝑂(𝐷𝑆𝑘 , 𝑆𝐹
𝑀𝐿𝑀𝑂)

3 𝐵_5𝐷𝑂𝑘 = (𝐻(𝐵_4𝐷𝑂𝑘), 𝐻(𝐵_4𝑇), 𝐻(𝐵_3𝐸),𝑀𝑇(𝑇𝑉
𝑀𝐿𝑀𝑂_𝑐𝑘), 𝑇𝑆);

𝐵𝐶𝐻𝐷𝑂𝑘 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑘(𝐵_5𝐷𝑂𝑘))

4 send (𝑇𝑉_𝑐𝑘 , 𝐻(𝐵_5𝐷𝑂𝑘) to TEAS

PHASE IX - TEAS:

5 𝑅_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒 {{{𝑅𝐶𝑐𝑙 , {𝑅𝑤𝑖|𝐶𝑐𝑙
}
𝑖=1

𝑚𝑙

}
𝒄=𝟏

|𝑪𝒍|

}

𝒍=𝟏

|𝑳|

, 𝑅𝑁𝑇} ; 𝑟𝑛𝑑𝑇𝑉_𝑐 = (∑ 𝑇𝑉𝑀𝐿𝑀𝑂_𝑐𝑘
𝑛
𝑘=1) × 𝑅_𝑝

6 𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑣 = 𝐾 ×

{

{{⌈
𝑅𝑁𝑇

𝑅
𝐶𝑐
𝑙
⌉ , {⌈

𝑅
𝐶𝑐
𝑙

𝑅
𝑤𝑖|𝐶𝑐

𝑙
⌉}

𝑖=1

𝑚𝑙

}

𝒄=𝟏

|𝑪𝒍|

}

𝒍=𝟏

|𝑳|

}

; 𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑣)

7 𝐵_5𝑇 = (𝐻(𝐵_4𝑇),𝑀𝑇(⋃ 𝐻(𝐵_5𝐷𝑂𝑘)
𝑛
𝑘=1),𝑀𝑇(𝑟𝑛𝑑𝑇𝑉_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_5𝑇))

8 send (𝑟𝑛𝑑𝑇𝑉_𝑐, 𝐻(𝐵_5𝑇)) to E2DS

PHASE X-E2DS

9 𝑟𝑛𝑑𝑇𝑉_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝑇𝑉_𝑐); 𝑟𝑛𝑑𝑇𝑀𝑴𝐿𝑀𝑂_𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑅𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝑓𝑃𝑟𝑜𝑏𝑠(𝑟𝑛𝑑𝑇𝑉_𝑣)
10 𝐵_4𝐸 = (𝐻(𝐵_3𝐸), 𝐻(𝐵_5𝑇),𝑀𝑇(𝑟𝑛𝑑𝑇𝑀_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝐸 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝐸(𝐵_4𝐸))

11 send (𝑟𝑛𝑑𝑇𝑀_𝑐, 𝐻(𝐵_4𝐸)) to TEAS

12 PHASE XI - TEAS:

13 𝑇𝑀𝑀𝐿𝑀𝑂_𝑐 = 𝑟𝑛𝑑𝑇𝑀𝑴𝐿𝑀𝑂_𝑐 + 𝑖𝑛𝑣𝐿𝑜𝑔𝑃_𝑝;

14 𝐵_6𝑇 = (𝐻(𝐵_5𝑇), 𝐻(𝐵_4𝐸),𝑀𝑇(𝑇𝑀_𝑐), 𝑇𝑆); 𝐵𝐶𝐻𝑇 . 𝐴𝑑𝑑𝐵𝑙𝑜𝑐𝑘(𝐸𝑛𝑐𝑠𝑘𝑇(𝐵_6𝑇))

15 return 𝑇𝑀𝑀𝐿𝑀𝑂_𝑐

Algorithm 5.3, which deals with multi-label multi-output textual datasets goes along similar

lines with Algorithm 5. Of course, it is designed for such a scenario and in itself incorporates

68

the multi-class scenario missing from Algorithm 5.2 for textual datasets. Algorithm 5.3 can

be seen as a continuation of Algorithm 4.4 which securely selects the best features according

to the information gain (Chapter 2.2, eq. (2.8)) for each label.

Improvement 5.2. For computational and communicational efficiency purposes for

Algorithms 5.1-5.3, whenever possible, we apply the polynomial switching technique

proposed in [55], use multiple cores and threads (thus parallelize to the maximum extend),

do simultaneous execution of part of the protocols in different participants whenever it’s

possible, i.e. adding blocks to blockchain after sending data to other participants or

generating the participant’s corresponding random data before/after the participants

receive/send their data, and for multi-query purposes we replicate the ciphertexts at last

phases of the protocols instead of from the very beginnings. Those techniques alone give an

improvement of several folds with respect to the original protocols.

Improvement 5.3. If the number of slots needed for the training model is 𝑛𝐿 (Fig.5.3), then

in a single ciphertext we can pack (replicate) the trained model for 𝑝 =
𝑁

𝑛𝐿
 time for increased

throughput during the secure classification stage, where 𝑁 is the polynomial modulus of the

ciphertext.

Improvement 5.4. During the secure classification stage (Chapter 6) we need to

homomorphically find the sum of 𝑛𝑠 slots, where 𝑛𝑠 is the number of slots dedicated to a

single class (Fig. 5.2). An old version of the secure sum requires 𝑛𝑠 to be a power of two,

and if it is not the case dummy zero are appended up until that goal is reach, in the processing

hurting the throughput of the algorithms due to those dummy zeros. In Chapter 6.2 we

propose a novel secure sum algorithms (Algortihm 6.1) for which 𝑛𝑠 is not necessarily a

power of two.

69

5.5. Theoretical and experimental evaluations and comparisons

Table 5.1. gives the theoretical comparisons for the computation and communication costs

among different schemes during the PP training. In the process we tend to use the described

schemes in the most efficient and optimized way they can be utilized. However, we do this

without losing the generality by making any assumption on the number of features 𝑓, the

number of classes 𝑐 or the cardinalities of 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓.

For the experimental evaluations, we run our codes in a machine with Intel Core i3-4000M

processor with two physical cores, each of 2.4GHz (we utilize one core only in our

implementations) with 4GB of DDR3 RAM and 64-bit Wındows 10 Pro as an OS. For SWHE

purposes we use C++ based Microsoft’s SEAL 3.2 library [40] which implements a version

of [59].

For evaluating and comparing our algorithms with the state of the art over the same

benchmark datasets, we chose the textual SMS spam dataset [84-85]. After closely examining

the dataset we realized that people tend to avoid vowels in their SMSes in order to make them

shorter. Also, while writing the words, they make more mistakes when they write the vowels

than they do with consonants. In this sense, instead of going with the usual preprocessing

procedure (punctuation removal, stop-word removal, stemming, etc.), we came up with the

70

Table 5.1. Theoretical comparison for the costs of the PP training algorithm for NB models among different schemes

Sch.
Kantarc. et.al [61]

(sec. sum protocol)
Kantarc. et. al [61]
(sec sum of shares)

Vaidya. et.al
[62] (sec log)

Yang et.al [64] Yi et.al [65] Liu et.al [66] Liu et.al [67]
Our scheme

(non-textual)

P
la

ce

ED
O

s
an

d

se
rv

e
r

Se
rv

e
r

ED
O

s
an

d

se
rv

e
r

Se
rv

e
r

A
ll

p
ar

ti
ci

p
a

n
ts

ED

O
s

Se

rv
e

r

ED
O

s

M
ix

e
rs

(S

e
rv

er
s)

ED

O
s

Se
rv

e
rs

ED
O

s

Se
rv

e
rs

ED
O

s

Se
rv

e
rs

C
o

m
m

u
n

ic
at

io
n

Ea
ch

 d
at

as
et

 o
w

n
er

 d
o

es
 𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
)

in
te

ge
r

tr
an

sm
is

si
o

n
.

In
 t

o
ta

l 𝑛
∙𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
)

tr
an

sm
is

si
o

n
s

 𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
)

b
ro

ad
ca

st
s

Ea
ch

 D
O

 𝑐
∙𝑠
∙(
1
+
 𝛴
|𝐹
𝑖|
)

in
te

ge
rs

.

In
 t

o
ta

l 𝑛
∙𝑐
∙𝑠
∙
(1
+
 𝛴
|𝐹
𝑖|
)

(𝑠
 is

 t
h

e
n

u
m

b
er

 o
f

sh
ar

es
 p

er
 in

te
ge

r)

 𝛺
(𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
))

 b
ro

ad
ca

st
s

𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
)
∙𝑂
(𝑙
𝑜
𝑔
(𝑝
))

 o
b

liv
io

u
s

tr
an

sf
er

s
(O

T)
, w

h
ic

h
 is

𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
)𝑂
(𝑙
𝑜
𝑔
(𝑝
)(
𝑡
+
𝑛
))

 b
it

s

(𝑝
 is

 t
h

e
si

ze
 o

f
th

e
fi

e
ld

 u
se

d
 f

o
r

O
T,

 𝑡
 is

 t
h

e

se
cu

ri
ty

 p
ar

am
et

er
, n

 is
 t

h
e

n
u

m
b

er
 o

f
D

O
s)

 El
-G

am
al

[1
0

]:
 E

ac
h

 d
at

as
et

 o
w

n
er

 t
ra

n
sm

it
s

𝛺
(𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
))

 c
ip

h
er

te
xt

s
fo

r
a

to
ta

l o
f

𝛺
(𝑛
∙𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
))

 c
ip

h
er

te
xt

s
tr

an
sm

is
s.

 B

ro
ad

ca
st

 o
f

th
e

fi
n

al
 t

ra
in

ed
 m

o
d

el
, w

h
ic

h
 is

𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
)

in
te

ge
rs

P
ai

lle
r

[4
9]

: A
 t

o
ta

l o
f
2
𝑐
∙(
1
+
𝑓
)

ci
p

h
er

te
xt

s,
 1

0
2

4
 b

it
 e

ac
h

Se
cu

re
 lo

g
[5

]:
 A

 t
o

ta
l c

o
m

m
u

n
ic

at
io

n
 c

o
st

 o
f

2
∙(
𝑐
+
𝑓
)

en
ga

ge
m

en
ts

 in
 s

ec
u

re
 lo

g

p
ro

to
co

l a
s

d
es

cr
ib

ed
 in

 [
5

].

B
ili

n
e

ar
 m

ap
p

in
gs

 [
3

3]
: 𝑁
𝑇
∙(
𝑓
+
1
)

ci
p

h
er

te
xt

s
tr

an
sm

is
si

o
n

s,
 w

h
er

e
𝑁
𝑇

 is
 t

h
e

to
ta

l n
u

m
b

er
 o

f
tr

an
sa

ct
io

n
 a

m
o

n
g

al
l 𝑛

 D
O

s

B
ili

n
e

ar
 m

ap
p

in
gs

 [
3

3]
: 𝑓
+
𝑐

ci
p

h
er

te
xt

s

tr
an

sm
is

si
o

n

+
𝛺
(𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
))

 In
te

ge
r

tr
an

sm
is

si
o

n

B
G

V
 [

55
]:

 𝑁
𝑇
∙𝑏
∙
((
𝑓
+
𝑐)
/𝑁
)

ci
p

h
er

te
xt

s

B
G

V
 [

55
]:

 𝑏
∙(
(𝑓
+
𝑐)
/𝑁
)

ci
p

h
er

te
xt

s

+
𝛺
(𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
))

 In
te

ge
r

tr
an

sm
is

si
o

n
s

FV
 [

5
6

]:
 𝑛

 c
ip

h
e

rt
ex

t
tr

an
sm

is
si

o
n

FV
 [

5
6

]:
 2

 c
ip

h
er

te
xt

 t
ra

n
sm

is
si

o
n

C
o

m
p

u
ta

ti
o

n

Ea
ch

 d
at

as
et

 o
w

n
er

 a
n

d
 t

h
e

m
ai

n
 s

er
ve

r
in

 t
o

ta
l d

o
:

𝑛
∙𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
)
 +
1

 s
u

m
m

at
io

n
s

+

𝑛
∙𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
)

D
iv

is
io

n
s

+

an
d

 𝑛
∙𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
)

lo
gs

 Ea
ch

 d
at

as
et

 o
w

n
er

 a
n

d
 s

e
rv

er
 d

o
:

𝑛
∙𝑐
∙𝑠
∙
(1
+
 𝛴
|𝐹
𝑖|
)

+1
 s

u
m

m
at

io
n

 +

𝑛
∙𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
)

D
iv

is
io

n
s

+

𝑛
∙𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
)

lo
gs

 𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
)(
1
6
 ·
 ⌈
𝑙𝑜
𝑔
(𝑁
𝑇
)⌉
 +
 2
𝑢

ex
p

o
n

en
ti

at
io

n
s

(𝑁
𝑇

 is
 t

h
e

to
ta

l n
u

m
b

er
 o

f
re

co
rd

s
am

o
n

g
al

l d
at

as
et

o
w

n
er

s
an

d
 𝑢

 is
 t

h
e

d
eg

re
e

o
f

th
e

ap
p

ro
xi

m
at

ed
 T

ay
lo

r
se

ri
es

 (
p

o
ly

n
o

m
ia

l)
)

El
-G

am
al

[4
8

]:
 T

o
ta

l o
f
𝛺
(𝑛
∙𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
))

en

cr
yp

ti
o

n
s

at
 t

h
e

d
at

as
e

t
o

w
n

er
s

El
-G

am
al

[4
8

]:
 𝛺
(𝑛
∙𝑐
∙(
1
+
 𝛴
|𝐹
𝑖|
))

 m
u

lt
ip

lic
at

io
n

 a
t

th
e

se
rv

e
r

+
el

-G
am

al
 d

ec
ry

p
ti

o
n

 t
ri

al
s

fo
r

re
la

ti
ve

ly

sm
al

l i
n

te
ge

r
ex

p
o

n
en

ts

P
ai

lle
r

[4
9]

: A
 t

o
ta

l o
f
2
𝑐
∙(
1
+
𝑓
)

en
cr

yp
ti

o
n

s

P
ai

lle
r

[4
9]

: A
 t

o
ta

l o
f
2
𝑐
∙(
1
+
𝑓
)

m
u

lt
ip

lic
at

io
n

s
at

b

o
th

 m
ix

er
s

(s
er

ve
rs

)

Se
cu

re
 lo

g
[6

3]
: 2
∙(
𝑐
+
𝑓
)

in
vo

ca
ti

o
n

s

B
ili

n
e

ar
 m

ap
p

in
gs

: [
6

6
]:

 𝑁
𝑇
∙(
𝑓
+
𝑐)

 e
n

cr
yp

ti
o

n
s

(o
ri

gi
n

al
 e

n
cr

yp
ti

o
n

 s
ch

em
e

p
ro

p
o

se
d

 in
 [

3
3

])

B
ili

n
e

ar
 m

ap
p

in
gs

 [
3

3]
: 𝑁
𝑇
(𝑓
+
𝑐)

 p
ro

xy
-r

e-

en
cr

yp
ti

o
n

s
+
2
∙𝑁
𝑇
∙(
𝑓
+
𝑐)

 h
o

m
o

m
o

rp
h

ic

m
u

lt
ip

lic
at

io
n

s
+

𝑓
+
𝑐

d
ec

ry
p

ti
o

n
s

B
G

V
 [

55
]:

 𝑁
𝑇
∙𝑏
∙
((
𝑓
+
𝑐)
/𝑁
)

SI
M

D
 e

n
cr

yp
ti

o
n

s,
 𝑁

 Is

th
e

d
eg

re
e

o
f

th
e

p
o

ly
n

o
m

ia
l,
𝑏

 is
 t

h
e

 n
r.

 o
f

b
it

s
p

er

fe
at

u
re

B
G

V
 [

55
]:

 𝑂
(𝑛
𝑐𝑏
2
+
 𝑚
𝑎
𝑥
|𝐹
𝑖|
𝑛
𝑐)
(𝑡
_𝑎
𝑑
𝑑
+
𝑡_
𝑟𝑡
)
 +

 𝑂
(𝑛
𝑐𝑏
+
 𝑚
𝑎
𝑥
|𝐹
𝑖|
𝑛
𝑐)
𝑡_
𝑚
𝑙
+
 𝑂
(𝑛
∙𝑚
𝑎
𝑥
|𝐹
𝑖|
)
𝑡_
𝑚
𝑙,

w

h
er

e
𝑡_
𝑎
𝑑
𝑑

, 𝑡
_𝑟
𝑡,

 a
n

d
 𝑡
_𝑚
𝑙

ar
e

th
e

ti
m

es
 f

o
r

a
si

n
gl

e

B
G

V
 a

d
d

it
io

n
, r

o
ta

ti
o

n
 a

n
d

 m
u

lt
ip

lic
at

io
n

, r
es

p
ec

ti
ve

ly

FV
 [

5
6

]:
 𝑛

 c
ip

h
e

rt
ex

ts
 e

n
cr

yp
ti

o
n

s
(o

n
e

 a
t

ea
ch

 D
O

)

FV
 [

5
6

]:
 𝑛

 h
o

m
o

m
o

rp
h

ic
 a

d
d

it
io

n
s

+
2

 p
la

in

m
u

lt
ip

lic
at

io
n

s
+

1
 e

n
cr

yp
ti

o
n

 +
 1

 d
ec

ry
p

ti
o

n

71

idea of using bigrams consisted exclusively of consonants. In this manner we extracted 441

features (21x21 consonant pairs for a total of 441 consonant bigrams) instead of the few

thousands features (5000 to 20000 thousands of bag of words) that are usually used for SMS

spam classification purposes [85]. Depending on whether a bigram is found or not in an SMS,

its’ value is 0 or 1. E.g., the sms: “hay men, whats ap; ham” has 1 for the columns (features)

of those bigrams: “hy”, “mn”, “wh”, “ht” and “ts”, while for all the others it has 0s.

For comparison and benchmark purposes with the other non-textual schemes that deal with

secure NB training and/or classification, we will also use the Breast Cancer Wisconsin [86]

and the Acute Inflammation Disease [87] datasets.

Considering the standardizations of [80], for the polynomial degrees of 𝑁 =

4096, 8192,16384 we use a plain modulus of 𝑡 = 27, 37, 62 bits, respectively, and a

coefficient modulus of 𝑞 = 109, 218, 438 bits, respectively.

For the SMS-spam dataset 𝐶 = {𝑠𝑝𝑎𝑚, ℎ𝑎𝑚}, so the number of classes is 𝑐 = 2. For the

number of features we have 𝑓 = 441, and for every feature 𝐹𝑖 = {0,1} so |𝐹𝑖| = 2 for all i,

s.t . 1 ≤ 𝑖 ≤ 𝑓. We horizontally partition the SMS dataset to simulate for 𝑛 =

10, 20, 30, 40, 50 DOs. In order to construct the training vector which contains the

frequencies (Fig.5.2 and Fig.5.3), for the SMS-spam dataset we need ∑ |𝐹𝑖| + 1 = 883
441
𝑖=1

slots per class (Fig.5.2). However, due to the usage of an old version the secSum algorithm

which works when the number of slots in a ciphertext for which we find the sum is a power

of two, and if it’s not the case dummy slots with values of zeros are padded to achieve this

effect (improved in Chapter 6.2, algorithm 6.1 so the number of slots shouldn’t necessarily

be a power of two), per class we need 𝑛𝑠 = 2
⌈log (∑ |𝐹𝑖|+1)

441
𝑖=1 ⌉ = 1024 slots, and will fill up

the remaining slots with dummy values, preferably zeros (Fig.5.2). For both classes in total

we need 𝑛𝐿 = c · 𝑛𝑠 = 2048 slots (Fig.5.3). This means that we need at least a polynomial

of degree 𝑁 = 2048 to construct the training vector at DOs. However, due to noise budget

being consumed because of homomorphic encryptions and the chosen value 𝑡 for the plain

modulus dictated from the needs of the protocol (we multiply by a constant 𝐾 and sum up

883 integers whose sum shouldn’t surpass 𝑡), the lowest degree we can use in our scenario is

𝑁 = 4096 (even when we deal with one query during the classification stage). For the same

reasons, when 𝑁 = 4096, the random values of 𝑅_𝑝 and ℎ_𝑝 (needed for the secure

comparison algorithm) were small, however, for higher polynomial degrees 𝑅_𝑝 and ℎ_𝑝 can

72

be integers of 64 or more bits, which is more than enough for real case deployments. In order

to increase the throughput, for the classification stage we considered packing (batching) of

𝑝 =
𝑁

𝑛𝐿
 = 2, 4, 8 encrypted queries into one ciphertext using the CPack algorithm (Chapter

6.2), and for this purpose for the final ciphertext result we used polynomials of degree 𝑁 =

4096, 8192 and 16384, respectively.

Applying the same logic, for the Breast Cancer dataset we have 𝑓 = 9 since it has 9 features

(attributes), and each of the features has 10 values, thus 𝐹𝑖 = {1, 2…10} so |𝐹𝑖| = 10 for all

𝑖, s.t . 1 ≤ 𝑖 ≤ 𝑓. It has two classes, 𝐶 = {𝑚𝑎𝑙𝑖𝑔𝑛, 𝑏𝑒𝑛𝑖𝑔𝑛}, so 𝑐 = 2. This means that for

the per class portion of the training vector (Fig.5.2), hence per class query vector as well

(Fig.5.3), we need 𝑛𝑠 = 2⌈log (∑ |𝐹𝑖|+1)
9
𝑖=1 ⌉ = 128 slots per class, or in total its 𝑛𝐿 = 𝑐 · 𝑛𝑠 =

256 slots for the whole training vector [𝑇𝑉(𝑘)] (Fig.5.3). We also split the Breast Cancer

dataset to simulate for 𝑛 = 10, 20, 30, 40, 50 DOs. Due to relatively low number of slots

used for the trained model or the encrypted query, for batching purposes we can pack 𝑝 =

𝑁

𝑛𝐿
 = 16, 32, 64 queries into one ciphertext, which for the reasons explained above, will

have polynomials of degree 𝑁 = 4096 for 𝑝 = 16, then 𝑁 = 8192 for 𝑝 = 32, and 𝑁 =

 16384 for 𝑝 = 64.

On the other hand, for the acute inflammation dataset (AID) we have 𝑓 = 6 attributes

where 5 of the 6 attributes are binary (have two values {𝑦𝑒𝑠, 𝑛𝑜}), while the temperature

attribute is an integer varying between 35.5 and 41.5oC. If we assign 53 slots for the

temperature by discretizing the integer value it takes, then knowing that we need 10 slots for

the other 5 attributes, for the number of slots per class we have 𝑛𝑠 = 2⌈log (∑ |𝐹𝑖|+1)
6
𝑖=1 ⌉ = 64

slots. Since AID is a multivariate dataset (it has two class labels), one label is for the

Inflammation of urinary bladder (IUB), thus 𝐶1 = {𝑦𝑒𝑠, 𝑛𝑜} so 𝑐1 = 2, and the other one is

for the Nephritis of renal pelvis origin (NRPO), thus 𝐶2 = {𝑦𝑒𝑠, 𝑛𝑜} so 𝑐2 = 2 again. In this

manner for both the labels, which have two classes, we have 𝑐1 · 𝑛𝑐 = 128 slots and 𝑐2 ·

𝑛𝑐 = 128 slots, for a total of 𝑛𝐿 = (𝑐1 + 𝑐2) · 𝑛𝑠 = 256 slots per query of two labels.

However, here with a single query we do two classifications (labeling). For the training stage

again we simulate for 𝑛 = 10,20,30,40,50 DOs. For the classification stage we use packing

73

of 𝑝 =
𝑁

𝑛𝐿
 = 16, 32, 64 queries into one ciphertext for polynomial degrees of 𝑁 =

4096, 8192, 16384, respectively.

For benchmark and comparison purposes with the state-of-the-art schemes dealing with

secure training over textual datasets, we used the email textual dataset Enron [37]. Its

implementations can be found in [81]. for a total of around 9 000 lines of original C++ code.

Enron e-mail dataset is a collection of e-mails from 150 user profiles, with a total of 16 555

ham and 17 148 spam e-mails. For the dataset pre-processing in line 2 of the 𝑠𝑒𝑐𝐹𝑆 − 𝑆1

(Algorithm 4.2) we applied stop-words removal, partial punctuation removal, stemming by

using the library in [45] and converting all of the letters to lowercase. For our protocols, the

input parameter values for the Enron dataset are 𝑣𝑎𝑙 = 5 𝑎𝑛𝑑 𝐾1 = 100 000.

For the SWHE parameters (Chapter 2.4.1) for 𝑁 = 8192,16384 we use the corresponding

values of 𝑡 = 37,60 bits and 𝑞 = 218,438 bits, respectively and security of 𝜆 = 128 bits.

For our implementation purposes of homomorphic operations, we chose Microsoft’s SEAL

3.4 library [29] based on the modified FV scheme. Since it works only with integers, for all

the datasets we had to convert the logarithms of all of the probabilities into integers by

multiplying them with a constant 𝐾. When 𝐾 = 255 we didn’t have any accuracy loss due

to the integerization and rounding process for the server-centric classification. For the user-

centric classification that value rose to 𝐾 = 430 due to incorporating the STC guard into our

protocol against the STC attack given in [10]. Those values for the constant 𝐾 are consistent

with those found in literature for the Naïve Bayes model which reported that multiplying the

logarithms of the probabilities with an 8-10 bits constant is enough to avoid any loss of

classification accuracy [69].

Fig.5.9 gives the computation cost for PPTMDO (Algorithm 5.1). Since the computation

in Phase I is done simultaneously at all EDO, for EDOs we take the average cost with respect

to the number of EDOs involved. As it was expected, the average cost at EDOs and at EDS

remains pretty much the same (constant) among different number of EDOs, while the cost at

TACS linearly increases with the number of EDOs since TEAS has to aggregate (sum up) all

of the ciphertexts send from the EDOs. For the communication cost, we have 𝑛 ciphertext of

the same size transmitted from each DO to TEAS, one from TECS to E2DS and one from

E2DS back to TEAS, for a total of (𝑛 + 2) ∙ 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑠𝑖𝑧𝑒 transmitions. The

74

𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑠𝑖𝑧𝑒 size is calculated as 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑠𝑖𝑧𝑒 = 2 ∙ 𝑁 ∙ 𝑞 𝑏𝑖𝑡𝑠 [56], where 𝑁 is the

polynomial modulus and 𝑞 is the coefficient modulus.

Regardless of the dataset type or size, the number and type of the expensive homomorphic

operations is the same in PPTMDO. So, as expected, when experimenting with datasets in

[84-85], [86] and [87], we got the same communication costs and roughly the same

computation cost as they are shown in Fig.5.9.

Figure 5.9. Computation cost of the participants in PPTMDO (Algorithm 5.1) for different

polynomial sizes and number of EDOs for datasets in [84-85], [86] and [87]

Table 5.2 gives the cumulative (total) computation and communication costs for each

participant while running Algorithm 5.2. for the Enron email [37] and SMS dataset [84-85].

It report results for different polynomial sizes 𝑁 and numbers of EDOs 𝑛. The size of a single

ciphertext is 2 ∙ 𝑁 ∙ 𝑞 bits. In Algorithm 5.2, each participant transfers one ciphertext each,

for a total (cumulative) communication cost of (𝑛 + 2) ciphertext transmissions (𝑛 EDOs,

TEAS and E2DS), which are reported in the corresponding columns in Table 5.2 in MB.

0

20

40

60

80

100

120

DO TACS EDS DO TACS EDS DO TACS EDS

4096 8192 16384

10 20 30 40 50Number of Dataset Owmers (DOs) n

N = N = N =

C
o
m

p
u

ta
ti

o
n
 c

o
st

(m
il

li
se

co
n

d
s)

❶ ❶ ❶❷❹ ❷❹ ❷❹❸ ❸ ❸

75

Table 5.2. Algorithm 5.2 costs for different polynomial sizes N and EDO numbers n

N

n

Comput. (ms)

N=8192
Commun.

(MB)

Computation

(ms)N=16384
Commun.

(MB)
EDO TEAS E2DS EDO TEAS E2DS

Enron email dataset [37]

10 1690 149 65 5.1 803 557 53 20.5

20 1382 212 62 9.3 582 646 73 37.6

30 1044 198 70 13.6 530 1581 52 54.7

40 941.0 203 71 17.8 413 1966 55 71.8

50 283.3 235 63 22.4 392 1752 48 88.9

SMS spam corpus dataset [84-85]

10 16.8 7.8 4 5.1 36.5 34.9 11.9 21.9

20 16.7 9.5 4.2 9.4 35.8 42.1 1.7 40.2

30 16.4 13.9 3.7 13.7 36.1 53.4 10.3 58.5

40 16.3 17.4 4.1 18.0 36.5 65.3 10.8 76.8

50 16.1 19.8 3.9 22.3 37.8 71.0 11.0 95.0

Table 5.3 gives experimental comparisons for the PP training costs among different schemes

and datasets among non-textual datasets, where our schemes are represented by secT,

(Algorithm 5.2)

Table 5.3. Cumulative experimental results among all participants for PP training of non-

textual datasets for 𝑛 = 5 EDOs. Our scheme is represented by Algorithm 5.1.

Scheme

Cost

Yang et.al

[32]

Liu et. al.

[23]
Our Liu et. al.

[33]
Our

Dataset Breast Cancer Wisconsin Data Set

[86]

Acute Inflammations

[87]

Computation. ≈1.8 s 2951.8 min 22.15 ms 8.848 sec. 22.47 ms

Communication ≈ 7.76 MB 267.4 MB 763 KB 968 KB 763 KB

Table 5.4 gives experimental comparisons for the PP training costs among different schemes

applicable to textual datasets and our schemes are represented by secT, (Algorithm 5.2)

76

Table 5.4. Secure training comparisons among different schemes

Scheme Comp. cost Comm. cost ML algorithm Class. Acc.

Enron email dataset [37]

[14]* 11.1 days 120 GB Deep Learning 86.3%

[14]** 5.04 days 120 GB Deep Learning 86.3%

Ours 10.16 min 316 MB MNB 99.1%

SMS spam corpus dataset [84-85]

[15] 21.57 ms 763 KB NB 93.1%

Ours 18.20 ms 709 KB NB 93.1%

MNIST [88]

[88] 55.5 days Not report. Deep Learning 96.3%

*utilizing 104 cores of Intel Xeon processors with 2.2 GHz and 482 GB of RAM

 **Improved version of the same scheme over the same hardware resources

5.6. Security analysis and proofs

While proving the security of our protocols given in this Chapter, we have in mind the

definitions, concepts and Theorems given in Chapter 2.4.2

Theorem 5.1: PPTMDO (Algorithm 5.1) is a secure multi-party protocol (SMC) under the

semi-honest model

Proof: Here we compute the probabilistic function 𝑓(𝑃𝑘, {𝐷𝐵𝑖}𝑖=1
𝑛 , 𝜙, 𝑠𝑘) =

𝑓 ({𝑓𝐷𝑂𝑖}𝑖=1
𝑛
, 𝑓𝑇𝐴𝐶𝑆, 𝑓𝐸𝐷𝑆) = ({𝜙}𝑖=1

𝑛 , 𝑇𝑀_𝑐, 𝜙) using the protocol 𝑃𝑃𝑇𝑀𝐷𝑂, where 𝜙

means no input or output for the corresponding participant, respectively. For the outputs of

the corresponding protocol we have 𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝑃𝑇𝑀𝐷𝑂 =

({𝑜𝑢𝑡𝑝𝑢𝑡𝐷𝑂𝑖
𝑃𝑃𝑇𝑀𝐷𝑂}

𝑖=1

𝑛
, 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝐴𝐶𝑆

𝑃𝑃𝑇𝑀𝐷𝑂 , 𝑜𝑢𝑡𝑝𝑢𝑡𝐸𝐷𝑆
𝑃𝑃𝑇𝑀𝐷𝑂) = ({𝜙}𝑖=1

𝑛 , 𝑇𝑀_𝑐, 𝜙). For the views

of all of the DOs we have: {𝑉𝐷𝑂𝑖
𝑃𝑃𝑇𝑀𝐷𝑂}

𝑖=1

𝑛
= {(𝑃𝑘, 𝐷𝐵𝑖, 𝑟𝐷𝑂𝑖)}𝑖=1

𝑛
. For the views of TACS

and EDS we have 𝑉𝑇𝐴𝐶𝑆
𝑃𝑃𝑇𝑀𝐷𝑂 = (𝑃𝐾, 𝑟𝑇𝐴𝐶𝑆, [𝑇𝑉(𝑘)]𝑘=1

𝑛 , 𝑟𝑛𝑑𝑇𝑀_𝑐),

𝑉𝐸𝐷𝑆
𝑃𝑃𝑇𝑀𝐷𝑂 = (𝑃𝑘, 𝑠𝑘, 𝑟𝐸𝐷𝑆, 𝑟𝑛𝑑𝐺𝑇𝑉_𝑐), respectively. Since the DOs don’t receive any

message or don’t have any output, for them we give the trivial simulator {𝑆𝐷𝑂𝑖
𝑃𝑃𝑇𝑀𝐷𝑂}

𝑖=1

𝑛
=

{(𝑃𝑘, 𝐷𝐵𝑖, 𝑟𝐷𝑂𝑖̃)}
𝑖=1

𝑛
, where 𝑟𝐷𝑂𝑖 and 𝑟𝐷𝑂𝑖̃ are from the same distribution. For the simulator

of TACS we have 𝑆𝑇𝐴𝐶𝑆(𝑃𝑘, 𝑓𝑇𝐴𝐶𝑆) = (𝑃𝑘, 𝑟𝑇𝐴𝐶�̃�, [𝑇𝑉(𝑘)]𝑘=1
𝑛̃ ,𝑟𝑛𝑑𝑇𝑀_𝑐̃), where 𝑟𝑇𝐴𝐶�̃� has

77

the same distribution as 𝑟𝑇𝐴𝐶𝑆, while [𝑇𝑉_𝑐𝑘]𝑘=1
𝑛̃ are randomly generated ciphertexts which

are indistinguishable from their [𝑇𝑉_𝑐𝑘]𝑘=1
𝑛 counterparts due to the semantic security of the

RLWE schemes. Since TACS as an output has the 𝑇𝑀_𝑐 then we have 𝑟𝑛𝑑𝑇𝑀_𝑐̃ = 𝑇𝑀_𝑐 −

𝑟𝑛𝑑𝐿𝑜𝑔𝑠𝑂𝐹𝐼𝑛𝑣𝑃𝑟𝑜𝑏𝑠_𝑝, thus {𝑆𝑇𝐴𝐶𝑆(𝑃𝑘, 𝑓𝑇𝐴𝐶𝑆), 𝑓({𝐷𝐵𝑖}𝑖=1
𝑛 , 𝜙, 𝑠𝑘)} ≅𝐶 {𝑉𝑇𝐴𝐶𝑆

𝑃𝑃𝑇𝑀𝐷𝑂,

𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝑃𝑇𝑀𝐷𝑂). For the simulator of EDS we have 𝑆𝐸𝐷𝑆(𝑃𝑘, 𝑠𝑘, 𝑓𝐸𝐷𝑆) =

(𝑃𝑘, 𝑠𝑘, 𝑟𝐸𝐷𝑆̃ , 𝑟𝑛𝑑_𝐺𝑇𝑉_𝑐̃), where random 𝑟𝐸𝐷𝑆 and 𝑟𝐸𝐷𝑆̃ are from the same distribution,

while 𝑟𝑛𝑑_𝐺𝑇𝑉_𝑐̃ is a random ciphertext, thus

{𝑆𝐸𝐷𝑆(𝑠𝑘, 𝑓𝐸𝐷𝑆), 𝑓({𝐷𝐵𝑖}𝑖=1
𝑛 , 𝜙, 𝑠𝑘)} ≅𝐶 {𝑉𝑇𝐴𝐶𝑆

𝑃𝑃𝑇𝑀𝐷𝑂, 𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝑃𝑇𝑀𝐷𝑂) ∎

Corollary 5.1: If up to 𝑛 − 1 DOs collude, the PPTMDO is still secure under the semi-honest

model.

Proof: Without loss of generality let’s assume that the colluding DOs are 𝑖 = 2,… , 𝑛 and let

the common view of them be 𝑉
𝐷𝑂
𝑃𝑃𝑇𝑀𝐷𝑂 = (𝑃𝑘, 𝐷𝐵, 𝑟𝐷𝑂), where 𝐷𝐵 = ⋃ 𝐷𝐵𝑖

𝑛
𝑖=2 . Let the

view of the non-colluding DO be 𝑉𝐷𝑂1
𝑃𝑃𝑇𝑀𝐷𝑂 = (𝑃𝑘, 𝐷𝐵1, 𝑟𝐷𝑂1). Since the DOs don’t get any

output from the function that needs to be calculated, their simulator is the trivial one

(outputting only the private inputs and the random number generator from the same

distribution as the views). Views and simulators for TACS and EDS are the same as in

Theorem 5.1. ∎

Theorem 5.2: secT (Algorithm 5.2) is secure under the semi-honest model.

Proof: For 1 ≤ 𝑘 ≤ 𝑛, 𝑉𝐸𝐷𝑂𝑘
secT (𝜆, �̅�) = ∅ is the view, 𝑥𝐸𝐷𝑂𝑘

𝑠𝑒𝑐𝑇 = {𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐷𝑆𝑘), 𝑆𝐹} is the

private input and 𝑂𝐸𝐷𝑂𝑘
secT (𝜆, �̅�) = ∅ is the output of EDO𝑘. The trivial simulator is 𝑆𝐸𝐷𝑂𝑘

secT = ∅.

For TEAS 𝑉𝑇𝐸𝐴𝑆
secT(𝜆, �̅�) = {(𝑇𝑉_𝑐𝑘)𝑘=1

𝑛 , 𝑟𝑛𝑑𝑇𝑀_𝑐} is the view, 𝑥𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝑇 = ∅ is the input and

𝑂𝑇𝐸𝐴𝑆
secT (𝜆, �̅�) = 𝑇𝑀_𝑐 is the output. For the simulator we construct random RLWE

ciphertexts, thus 𝑆𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝑇 (𝜆, 𝑥𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝑇 , 𝑂𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝑇 (𝜆, �̅�)) = {(𝑇𝑉_𝑐�̃�)𝑘=1

𝑛
, 𝑟𝑛𝑑𝑇𝑀_𝑐̃ } ≅𝑐 𝑉𝑇𝐸𝐴𝑆

𝑠𝑒𝑐𝑇(𝜆, �̅�).

For E2DS 𝑉𝐸2𝐷𝑆
secT(𝜆, �̅�) = {𝑟𝑛𝑑𝑇𝑉_𝑐}, 𝑆𝐸2𝐷𝑆

secT = {𝑟𝑛𝑑𝑇𝑉_𝑐̃ } ≅𝑐 𝑉𝑇𝐸𝐴𝑆
secT(𝜆, �̅�) ∎

Corollary 5.2: secT is secure under the semi-honest model when out of 𝑛, 𝑛 − 3 EDOs fail

or 𝑛 − 2 EDOs collude ∎

78

Theorem 5.3: Our end-to-end protocol (unprocessed datasets till the final trained model), is

secure under the semi-honest model.

Proof. The end-to-end protocol, denoted as 𝐸2𝐸, sequentially calls GRPV (Algorithm 4.1),

secFS-S1 (Algorithm 4.2), secFS-S2 (Algorithm 4.3) and secT (Algorithm 4.3), while their

security was proven in Theorems 4.1-4.3 and Theorem 5.2, respectively. We invoke Theorem

2.1 to prove the security of E2E. ∎

Corollary 5.3: 𝐸2𝐸 protocol is secure under the semi-honest model when out of 𝑛, 𝑛 − 3

EDOs fail or 𝑛 − 2 EDOs collude.

Proof: We use Corollaries 4.1, 4.2 and 5.2, then invoke Theorem 2.1. ∎

79

Chapter 6

SECURE AND PRIVATE MACHINE

LEARNING CLASSIFICATIONS

Definition 6.1: Classification is the process of assigning a label to an unlabeled query 𝑞

according to a trained model TM using an algorithm 𝒞, thus 𝐶𝑇𝑀(𝑞) = 𝒞(𝑇𝑀, 𝑞).

In this chapter, we introduce the strict security, privacy and efficiency requirements we set

up for the classification stage. In order to do so we propose several novel building blocks

based on arithmetic circuits used frequently by ML classification algorithms, which we put

in two groups: the ones belonging to general purpose one and the ones belonging to secure

linear algebra. They all work in SIMD fashion (enabled by the SIMD properties of SWHE

schemes proposed in Chapter 2.4.1), thus allow for a single instruction (algorithm, block) to

be executed oved multiple data (objects, instances). In the general purpose building blocks,

we introduce blocks, such as secure sum, secure comparison, secure comparison of all data

slots, secure sorting, secure top-K, secure argmax, secure ciphertext permutation and secure

ciphertext replication. Among others, in group of building blocks belonging to the secure

linear algebra we introduce secure inner (dot) product, secure matrix-vector product, secure

matrix-matrix product, secure matrix transpose, secure cascading matrix-matrix product, etc.

We then utilize those building block to for our secure classification protocols which deal with

non-textual, textual, multi-label multi-output datasets as well as secure classifications that

can be expressed in terms of linear algebra. In the process our algorithms show flexibility in

80

terms of being server centric or client centric, depending on where the bulk of the operations

are done. To the best of our knowledge, for the first time in literature for the NB classifier

and for the multiple user (query) scenario where multiple users (queries) simultaneously

process their queries in secure fashion, we deal with malicious users that arbitrarily deviate

from the protocol (algorithm) with the aim of fully or partially retrieving data which they are

not supposed to or with the aim of totally sabotaging the algorithm for other participants. Our

theoretical comparison and extensive experimental evaluations give an edge to our

algorithms from several times to orders of magnitude with respect to the state of the art in

term of computation and communication costs.

6.1. Introduction

Main requirements for our secure classification algorithms are:

 Privacy of the trained model

 Privacy of the user query for both query features and their corresponding values

(frequencies, counts, etc.)

 Security and privacy of intermediate results

 Privacy of the output, i.e. the final classification result

 No loss of accuracy with respect to the plain classifier

 Have other properties related to secure classification mentioned in Table 3.3

6.2. System architecture, adversary models and protocol-flows-

at-a-glance

Participants: 1) TEAS (The Edge Aggregating Server): a server used to do the bulk of the

proposed protocols’ homomorphic computation. 2) E2DS (The Edge Encryption

Decryption Server): It’s the only participant in the system that has a pair of public keys with

SWHE properties (Chapter 2.4.1). All the data that that are homomorphically evaluated in

our protocols are encrypted using E2DS’ public key, thus it’s the only one that can decrypt

them. 3) EC (Edge Client): has an unclassified query that he wishes to classify in secure and

private manner. Since the trained model TM_c doesn’t change frequently, EC keeps the

81

trained model in encrypted form using E2DS public key with SWHE properties. .All of them

are illustrated in Fig.6.1.

Adversary models: All the participants are assumed to be in the passive semi-honest (honest

but curious) model, which means that they follow the protocol but on the background they

try to infer some private data which they are not supposed to. A formal definition of the semi-

honest model is given in Chapter 2.4.2. We assume that TEAS and E2DS don’t collude. Also,

during the secure classification stage we assume a more active EC that performs the STC-

attack proposed in [10]. Furthermore, for the server based classification and for the multi-

user (query) classification we deal with malicious users. The motivations for participant to

behave in the described manners are given in [8-18]. All the participants have a pair of

public/secret keys used for secure communications. Additionally, E2DS has a pair of

public/secret key with SWHE properties (Chapter 2.4.1). All of these key pairs form the

KeySet set (Chapter 5 and 6). While we designed our protocols having in mind primarily

binary textual datasets, they are also applicable to non-textual ones and can be easily

generalized to multi-class scenarios. This choice was done for benchmark purposes with the

related research.

Protocol flows at-a-glance. secC (secure classification): Shown in Fig.6.1. EC multiplies

its query 𝑞_𝑝 with the trained model 𝑇𝑀_𝑐 ⓬ and sends the result to TEAS ⑫ for

homomorphic processing and randomization ⓭.The randomized query result is send to

E2DS while the randomizing data to EC ⑬. E2DS decrypts the randomized query result ⓮

and sends it back to the EC ⑭, which in turn de-randomizes the query result to get the final

classification ⓯. Depending on where the bulk of the execution is done, which ML classifier

we are dealing with, the number of ECs in our algorithms as well as other factors and

scenarios, we offer several flavors of secure classification algorithms which slightly change

their order of execution, but the main idea remains the same. They are elaborated in details

in their corresponding sub-chapters of this chapter.

82

Fig. 6.1. Protocol flows for our secure classification algorithms

6.3. General purpose secure building blocks

6.3.1. Secure sums of blocks of d slots

Given in Algorithm 6.1. All of the known schemes in literature the deal with finding the sum

of d numbers encoded and encrypted in SIMD fashion according to a SWHE scheme

(Chapter 2.4.1), assume that 𝑑 is a power of. If it is not the case, then slots of dummy zeros

are padded up until it is the case two [18], [89-90]. This results in waste of slots and in

throughput due to the padded dummy zeros since they take the place of beneficial (real) data

that can be encoded into those slots. In Algorithm 6.1 we overcome this drawback since we

don’t make the assumption of d being a power of two, hence we don’t lose any slots. In this

way we can pack and simultaneously process (find the sums of) N/d sets of integers with d

elements (integers) in SIMD fashion where d is not necessarily a power of two.

In order to find the sum of d encoded slots, we use the binary representation of d. For this

purpose in line 1 we find the number of bits of d, denoted as 𝑛𝑟𝐵𝑖𝑡𝑠, and s which has one in

its most significant bit and zeros at the other bits, thus it’s a power of two. In logs iterations

(rotations and additions) we find the sum of s slots and if in a certain iteration the

corresponding bit of d is one, than we store the corresponding intermediate result of sums in

a temporary ciphertext, denoted as 𝑡𝑚𝑝_𝑐[𝑖] (lines 2-5), To the resulting sum of s slots we

83

add each stored temporary ciphertext after rotating them with the corresponding offset (lines

7-9).

ALOGRITHM 6.1: secSum (Secure Sums of blocks)

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒅
𝒅: the number of slots per block for which we find the sum, not necessarily a power of 2

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: has the sum of each of the N/d blocks of 𝑑 slots at the first slot of the corresponding block

1 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑖𝑛𝑝𝑢𝑡_𝑐; 𝑠 = ⌊𝑙𝑜𝑔2
𝑑⌋; 𝑛𝑟𝐵𝑖𝑡𝑠 = 𝑏𝑖𝑡𝑆𝑖𝑧𝑒𝑂𝑓(𝑑)

2 for 𝑖 = 0 to s − 1 //inclusive

3 𝑖𝑓(𝑏𝑖𝑡(𝑖, 𝑑) == 1)
4 𝑡𝑚𝑝_𝑐[𝑖] = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐

5 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 + 𝑅𝑜𝑡(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, −2𝑖)
6 for 𝑖 = 𝑛𝑟𝐵𝑖𝑡𝑠 − 2 to 0

7 𝑖𝑓(𝑏𝑖𝑡(𝑖, 𝑑) == 1) //the LMB is the zeroth one

8 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑡𝑚𝑝_𝑐[𝑖] + 𝑅𝑜𝑡𝑎𝑡𝑒(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, −2𝑖)
9 𝑚𝑎𝑠𝑘_𝑝 = 𝑠𝑒𝑐𝑆𝑢𝑚𝑀𝑎𝑠𝑘(𝑑)
10 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 × 𝑚𝑎𝑠𝑘_𝑝

In this manner we have the sum of d slots at the beginning (first slot) of the corresponding

block. Finally, if we want to remove the intermediate results, we multiply the resulting

ciphertext with a plaintext mask which, starting from the first slot, has ones (1s) after each d

slots and all other slots have value of zero (lines 9-10). In Fig.6.2a) we illustrate secSum for

d=6, or in binary d=6=(110)2.

Fig. 6.2. Illustration of a) secSums for d=6=(110)2 b) CRep for d=2 and r=5=(101)2

Improvement 6.1. The Algorithm 6.1 does not waste slots, but it can have a relatively high

cost in terms of numbers of rotations/additions per d slots when the number of ones in the bit

84

representation of d is relatively high, a property which is not often desired. As a consequence,

we can have a trade-off between the wasted slots and the average number of

rotations/additions per d slots. In general, experimental results show that the approach of

Algorithm 6.1 is the best when d is between 0.5 and 0.75 the value of its closest power of

two that is greater than d. This makes Algorithm 6.1 to be done in logarithmic time with

respect to d.

Improvement 6.2. The multiplication with the mask (lines 9-10) can be skipped and merged

with the subsequent algorithm, which comes after secSum.

6.3.2. Ciphertext Replication

Given in Algorithm 6.2, it replicates for r times an input ciphertext which is assumed to have

d data slots at its begging and the upcoming 𝑑 ∙ 𝑟 slots are all zeros. The approach in [18]

assumes that r is a power of two, and if it is not the case then dummy zeros are appended

until it’s the case. Using a similar approach as we did in Algorithm 6.1, in Algorithm 6.2. we

provide the secure replication algorithm for which the replication rate r is not necessarily a

power of two. Initially we find the number of bits in bit representation of r, then s in similar

fashion as it was done in algorithm 6.1 (line 1). We proceed with replicating the input

ciphertext for s times in logs iterations and in each iteration we keep (save) the temporary

result if the bit of r corresponding to that iteration is one (lines 2-5).

ALOGRITHM 6.2: CRep (Ciphertext Replication)

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒅, 𝒓
𝒊𝒏𝒑𝒖𝒕_𝒄: a ciphertext that will be homomorphic. replicated

𝒅: number of data slots in 𝑖𝑛𝑝𝑢𝑡_𝑐 (starting from the first slot (the one with index zero))

𝒓: the replication rate

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: 𝑖𝑛𝑝𝑢𝑡_𝑐’s 𝑑 data slots replicated for 𝑟 times

1 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑖𝑛𝑝𝑢𝑡_𝑐; 𝑠 = ⌊𝑙𝑜𝑔2
𝑟⌋; 𝑛𝑟𝐵𝑖𝑡𝑠 = 𝑏𝑖𝑡𝑆𝑖𝑧𝑒𝑂𝑓(𝑟)

2 for 𝑖 = 0 to s − 1 //inclusive

3 𝑖𝑓(𝑏𝑖𝑡(𝑖, 𝑑) == 1)
4 𝑡𝑚𝑝_𝑐[𝑖] = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐

5 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 + 𝑅𝑜𝑡𝑎𝑡𝑒(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 2𝑖 × 𝑑)
6 𝑑𝑖𝑠𝑡 = 2𝑠 × 𝑑

7 for 𝑖 = 𝑛𝑟𝐵𝑖𝑡𝑠 − 2 to 0

8 𝑖𝑓(𝑏𝑖𝑡(𝑖, 𝑑) == 1) //the LMB is the zeroth bit

9 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 + 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[𝑖], 𝑑𝑖𝑠𝑡)
10 𝑑𝑖𝑠𝑡 = 𝑑𝑖𝑠𝑡 + 2𝑖 × 𝑑

85

Finally, to the replicated ciphertext of s times we add each stored temporary ciphertext after

rotating them with the corresponding offset (lines 7-10). We illustrate CRep for r=5=(101)2

and d=2 in Fig.6.2b)

Improvement 6.3. We use the same logic (approach) as it was done in Improvement 6.1 for

the trade-off between the average rotations/additions per r and the case when r is padded with

dummy zeros to be a power of two.

6.3.3. Secure Random Ciphertext Permutation and its inverse

Given in Algorithm 6.3. The input ciphertext is organized in such a way that, starting from

the first slot (slot with index 0), we have a total of 𝑐 data slots separated by d slots from each

other (Fig.6.3). This algorithm firstly rotates the input ciphertext for 𝑅1 slots. Afterwards it

divides the input ciphertext into blocks of 𝑚 data slots and then permutes each data slot inside

the block according to a random vector 𝑘 = {𝑘1, … , 𝑘𝑚} (Fig.6.4). Finally, does another

rotation for 𝑅2 slots. 𝑅1 and 𝑅2 are random multiples of 𝑑 (Fig. 6.3). Vector 𝑘 tells by how

much each of the 𝑚 slots of every block should be rotated inside its block. The pseudocode

is given in Algorithm 6.3 and a detailed illustration of only the random block permutation

(lines 3-6) for 𝑚 = 3 and 𝑘 = {2, −1,−1} is given in Fig.6.4. Algorithm 6.3 is an

improvement of the SRCPer algorithm given in [18] which instead of using 𝑚 masks as it

done in Algorithm 6.3, it uses one mask and 𝑚 − 1 computationally costly rotations of the

input ciphertext to get the same effect as we get in lines 3-5.

Fig. 6.3. Illustration of SRCPer for 𝑚 = 3 , 𝑘 = {2,−1,−1}. 𝑘,𝑚, 𝑅1 and 𝑅2 are random.

𝑑 is the number of slots between two neighboring data slots.

86

ALGORITHM 6.3: SRCPer (Secure Random Ciphertext Permutation) and invSRCPer (inverse

SRCPer)

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒌, 𝑹𝟏, 𝑹𝟐, 𝒄, 𝒅

𝒌 = {𝒌𝟏, . . . , 𝒌𝒎}: a random vector of 𝑚 elements, gives the rotation index for each of the 𝑚 data slots inside

the block

𝑹𝟏, 𝑹𝟐: random numbers by which the slot rotations are done in the beginning and the end. They are multiples

of 𝑛s
𝒄: the number of data slots (slots that carry data for us)

𝒅: the number of slots between two neighboring data slots

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: is the finally permuted vector

1 𝑚𝑎𝑠𝑘𝑠𝑆𝑅𝐶𝑃𝑒𝑟𝑉𝑒𝑐_𝑝[] = 𝑆𝑅𝐶𝑃𝑒𝑟𝑀𝑎𝑠𝑘𝑠(𝑘, 𝑐, 𝑑) //generates m masks

2 𝑖𝑛𝑝𝑢𝑡_𝑐 = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑅1)
3 for 𝑖 = 1 to m
4 𝑡𝑚𝑝_𝑐[𝑖] = 𝑖𝑛𝑝𝑢𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝑠𝑆𝑅𝐶𝑃𝑒𝑟𝑉𝑒𝑐_𝑝[𝑖]
5 𝑡𝑚𝑝_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[𝑖], 𝑘𝑖)
6 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑡𝑚𝑝_𝑐[]) //logm additions

7 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 𝑅2)

Fig.6.4. Detailed illustration (masks, multiplications, addition portion) of the block

permutations of SRCPer for block size 𝑚 = 3 and rotation index vector 𝑘 = {2,−1,−1}

done in SIMD fashion.

The inverse of the SRCPer algorithm, called invSRCPer, is the same as SRCPer, but with 𝑅1

substituted with −𝑅2 in line 2, and −𝑅2with −𝑅1 in line 7. Also, throughout the inverse

protocol vector 𝑘 = {𝑘1, … , 𝑘𝑚} is substituted with 𝑖𝑛𝑣𝐾 = {𝑘1
′, … , 𝑘𝑚

′}, s.t. 𝑘𝑖+𝑘𝑖
′ = −𝑘𝑖,

for 1 ≤ 𝑖 ≤ 𝑚.

87

In order to reduce the communication cost, SRCPer and invSRCPer can be modified in a way

that instead of a ciphertext, as an input it can take an integer which would represent the input

index of a data slot we are interested in. In this manner we can find out the new index of this

data slot at the end of the execution of SRCPer or invSRCPer

6.3.4. Secure SIMD Comparison

The comparison technique that [77-79] use to compare two SIMD encrypted ciphertexts

𝐴_𝑐 and 𝐵_𝑐 is 𝐴_𝑐 · 𝑅_𝑝 − 𝐵_𝑐 · 𝑅_𝑝, where 𝑅_𝑝 is a random plaintext. In order to reduce

the number of multiplications we propose to do it as (𝐴_𝑐 − 𝐵_𝑐) · 𝑅_𝑝 (Fig.6.5a). If the

result is positive, then 𝐴 > 𝐵 and vice-versa. However, if we compare 𝐴_𝑐 and 𝐵_𝑐 several

times with this technique, then there is a possibility of an adversary to factor the terms

(𝐴 − 𝐵) and/or 𝑅_𝑝, which is a leakage, so we advise using it only for one-time comparisons.

To overcome this weakness, we propose comparing by (𝐴_𝑐 − 𝐵_𝑐) · 𝑅_𝑝 + ℎ_𝑝 in SIMD

fashion as shown in Algorithm 6.4 and illustrated in Fig.6.5b), where 𝑅_𝑝 and ℎ_𝑝 are

random s.t. 𝑅_𝑝 > 0 and |ℎ_𝑝| < 𝑅 . If the final term (result) is positive then 𝐴 > 𝐵, and

vice-versa. If the polynomial size is 𝑁, then we do 𝑁 comparisons in SIMD fashion.

Fig. 6.5 Simultaneous a) secure one-time comparison b) secure comparison (secComp, sC)

of 𝑁 integer pairs in SIMD fashion

ALGORITHM 6.4: secComp (Secure Comparison)

INPUT: 𝒊𝒏𝒑𝒖𝒕𝟏_𝒄, 𝒊𝒏𝒑𝒖𝒕𝟐_𝒄

𝒊𝒏𝒑𝒖𝒕𝟏_𝒄, 𝒊𝒏𝒑𝒖𝒕𝟐_𝒄: the input ciphertext containing data to be compared in each slot. One can be plaintext

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: contains index (component) wise secure comparison results of the input ciphertext

1 (𝑅_𝑣, ℎ_𝑣) = 𝑟𝑛𝑑𝑆𝑒𝑐𝐶𝑜𝑚𝑝𝑉𝑒𝑐𝑡𝑜𝑟𝑠(); // 𝑅_𝑣 = {(𝑅𝑖)𝑖=1
𝑁 }, 𝑅_𝑣 = {(ℎ𝑖)𝑖=1

𝑁 } s.t. 𝑅𝑖 > 0 and |ℎ𝑖| < 𝑅𝑖
2 (𝑅_𝑝, ℎ_𝑝) = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑅_𝑣, ℎ_𝑣)
3 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = ((𝑖𝑛𝑝𝑢𝑡1_𝑐 − 𝑖𝑛𝑝𝑢𝑡2_𝑐) × 𝑅_𝑝) − ℎ_𝑝

88

6.3.5. Secure comparison of all data slots (SCADS)

SCADS securely compares all of the data slots using the secure comparison (secComp)

Algorithm of Chapter 6.3.4. Similarly to the SRCPer algorithm, the data that we want to

compare are at each 𝒅-th slot, starting from slot 0. In total we have 𝒄 such data slots. The

pseudocode is given in Algorithm 6.5 and the corresponding illustration in Fig.6.6. We give

here an improved version of SCADS from [18] where instead of rotating the resulting

ciphertext by one slot to the right as it is done in line 5, in [18] they rotate it to the right by a

rotation for a number of slots which is greater than one, which in turn is computationally

costlier for several times.

ALGORITHM 6.5: SCADS (Secure Comparison of All Data Slots)

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒄, 𝒅

𝒄: is the total number of data slot values that needs to be compared. In total we should do 𝑐/2 SIMD

comparisons

𝒅: the distance in number of slots between two neighboring slots

OUTPUT: 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐

𝑟𝑒𝑠𝑢𝑙𝑡_𝑐: contains the comparisons between all of the data slot (slots that are multiple of 𝑑, starting from slot

0)

1 𝑡𝑚𝑝_𝑐 = 𝑖𝑛𝑝𝑢𝑡_𝑐

2 for 𝑖 = 1 to 𝑐/2 do

3 𝑡𝑚𝑝_𝑐 = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐, − 𝑑) //rot. left for 𝑑 slots

4 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = (𝑖𝑛𝑝𝑢𝑡_𝑐 – 𝑡𝑚𝑝_𝑐) + 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐

5 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 1)
6 (𝑅_𝑣, ℎ_𝑣) = 𝑟𝑛𝑑𝑆𝑒𝑐𝐶𝑜𝑚𝑝𝑉𝑒𝑐𝑡𝑜𝑟𝑠(); // 𝑅_𝑣 = {(𝑅𝑖)𝑖=1

𝑁 }, 𝑅_𝑣 = {(ℎ𝑖)𝑖=1
𝑁 } s.t. 𝑅𝑖 > 0 and |ℎ𝑖| < 𝑅𝑖

7 (𝑅_𝑝, ℎ_𝑝) = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑅_𝑣, ℎ_𝑣)
8 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = (𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 × 𝑅_𝑝) + ℎ_𝑝

89

Fig.6.6. Illustration of SCADS in SIMD fashion.

6.3.6. Secure sorting
It is given in Algorithm 6.6. Similarly, to the input in Algorithm 6.5, here also Party A has a

ciphertext with c data slots, which, starting from the first slot (slot with index 0) are apart of

each other for d slots. Party A performs SCADS on the input and send it to party B which

has the decryption key. Upon decrypting, Party B learns the sorted order of the input A, but

not their values.

ALGORITHM 6.6: secSorting (Secure Sorting)

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒄, 𝒅

𝒄: the number of data slots (slots that carry integer data)

𝒅: the number of slots between two neighboring data slots

OUTPUT: 𝒔𝒐𝒓𝒕𝒆𝒅𝑰𝒏𝒅𝒆𝒙𝒆𝒔 (𝒎𝒂𝒙𝑰𝒏𝒅𝒆𝒙, 𝒕𝒐𝒑𝑲𝑰𝒏𝒅𝒆𝒙𝒆𝒔)
𝒔𝒐𝒓𝒕𝒆𝒅𝑰𝒏𝒅𝒆𝒙𝒆𝒔_𝒗: the indexes of the input ciphertext if it was sorted according to the data values

Party A:

1 𝑆𝐶𝐴𝐷𝑆_𝑐 = 𝑆𝐶𝐴𝐷𝑆(𝑖𝑛𝑝𝑢𝑡𝑐, 𝑐, 𝑑)
2 send 𝑆𝐶𝐴𝐷𝑆_𝑐 to Party B

Party B:

3 𝑆𝐶𝐴𝐷𝑆_𝑣 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐷𝑒𝑐𝑜𝑑𝑒(𝑆𝐶𝐴𝐷𝑆_𝑐)
4 𝑠𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣 = 𝑠𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑑𝑒𝑥𝑒𝑠𝐴𝑐𝑐𝑜𝑑𝑖𝑛𝑔𝑇𝑜𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠𝑂𝑓𝐴𝑙𝑙𝐷𝑎𝑡𝑎(𝑆𝐶𝐴𝐷𝑆_𝑣)

90

6.3.7. Secure argmax and secure top-K

In Algorithm 6.3.7 we present a secure two party protocol (2PC) that finds the top k indexes

of 𝑐 encrypted integers. Party A has the encrypted integer array encoded and constructed in

a similar fashion as it was the case with the input ciphertexts at the SCADS, SRCPer and

secSorting algorithms. Party B has the secret key. At the end of the protocol Party B finds

the indexes of the data slot that have the top k integers of the input ciphertext and nothing

else (neither its value, nor the sorted order of the integer array or anything else). Party A

learns nothing. When k is 1 it is secure argmax.

ALGORITHM 6.7: secArgmax and secTopK

INPUT: 𝒊𝒏𝒑𝒖𝒕𝒄, 𝒄, 𝒅, 𝒌

𝒄: the number of data slots (slots that carry integer data)

𝒅: the number of slots between two neighboring data slots

k: top k integers we are interested in (the ones with the top k highest values)

OUTPUT: 𝒎𝒂𝒙𝑰𝒏𝒅𝒆𝒙 𝒂𝒏𝒅 𝒕𝒐𝒑𝑲𝑰𝒏𝒅𝒆𝒙𝒆𝒔

𝒎𝒂𝒙𝑰𝒏𝒅𝒆𝒙_𝒗: the index of the original input ciphertext with the greatest value

𝒕𝒐𝒑𝑲𝑰𝒏𝒅𝒆𝒙𝒆𝒔_𝒗: Indexes of the input ciphertext with the top-K values

Party A:

1 𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑𝐼𝑛𝑝𝑢𝑡_𝑐 = 𝑆𝑅𝐶𝑃𝑒𝑟(𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑑)
2 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐 = 𝑆𝐶𝐴𝐷𝑆(𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑𝐼𝑛𝑝𝑢𝑡_𝑐, 𝑐, 𝑑)
3 send 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐 to Party B

Party B:

4 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑣 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐷𝑒𝑐𝑜𝑑𝑒(𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐)
5 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥 = 𝑓𝑖𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥(𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑣) //finds the index for which the comparis. are all positive

 //𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣 = 𝑓𝑖𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠(𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑣)
 //top k indexes for which the comparis. are all positive

6 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑟𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥)
 //all elements of the vector are 0s, 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥 is 1

 //𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑟𝑉𝑒𝑐𝑡𝑜𝑟(𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣)
 //all elements of the vector are 0s, 𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣 are 1

7 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣)
 //𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣)
 send 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐 to Party A // send 𝑟𝑛𝑑𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑐 to Party A

Party A

8 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟(𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐 , 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑛𝑠)
9 send [𝑟𝑒𝑠𝑢𝑙𝑡] to Party B

Party B:

10 𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐷𝑒𝑐𝑜𝑑𝑒(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐) // 𝑡𝑜𝑝𝐾𝐼𝑛𝑑𝑒𝑥𝑒𝑠_𝑣 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐷𝑒𝑐𝑜𝑑𝑒(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐)

The secTopK (secArgmax) Algorithm (Algorithm 6.7) goes as follows: Party A randomly

permutes, afterwards compares all the data slots of the input ciphertexts and sends the result

to A (lines 1-3). Party B decrypts it, finds the permuted index of the top k integers, constructs

a ciphertext where everything is zero, except the permuted index of the top k integers, which

are 1 (ones) and sends this to A (lines 4-7). Party A does the inverse permutation of this

91

ciphertext and sends it back to B (lines 8-9). Finally, party B decrypts it and finds the real

index of the top k (maximum) integer. At the end of secTopK Party B learns only the indexes

with the top k values, but not their order or actual values, which makes it have strong security

and privacy properties. secTopK (secArgmax) is a one-round algorithm, which makes it non-

interactive and efficient in terms of communication cost. We should note that we gave the

secTopK (secArgmax) algorithm only for comparison purposes done in Chapter 6.9, while

in our privacy preserving classification algorithms we use a similar sequence (logical order)

of commands, but scattered among three entities (TEAS, E2DS and the EC). We should also

note that we can easily come up with different flavors of our secTopK (secArgmax) protocol

in terms of which party gets to know the final outcome (index) of the protocol, just as it is

the case with the secure comparison and secure argmax protocols in [53].

 6.4. Secure building blocks for linear algebra

In [89-90] they pad their input with dummy slots with values zero so their inputs are a power

of two. Due to utilizing the corresponding secSum (Algorithm 6.1) and CRep (Algorithm 6.2)

which don’t assume that their inputs are always powers of two, in our secure linear algebra

algorithms we don’t have this assumption. Two ways of encoding an integer matrix into an

integer vector are given in Fig.6.7. Row-wise encoded matrices are denoted by having an 𝑅

as a superscript in their name, i.e. 𝑚𝑎𝑡𝑅, while column-wise encoding ones by having a 𝐶,

i.e. 𝑚𝑎𝑡𝐶 (Fig.6.7). In this manner in a single plaintext or ciphertext of polynomial degree N

we can pack 𝑞 =
𝑁

𝑑1∙ 𝑑2
 matrices, where 𝑑1 and 𝑑2 are the dimension (number of rows and

columns, respectively) of the matrix. Similarly, we can pack 𝑞 =
𝑁

𝑑
 integer vectors of

dimension d.

Fig.6.7. Row and column-wise encoding of integer matrices into vectors

92

6.4.1. Secure Dimension replication

As an input takes an encoded&encrypted matrix with dimensions 𝑑1 and 𝑑2 and replicates

each of the input’s first dimension’s elements (rows) for 𝑟 times in sequential order (Fig.6.8).

It is given in Algorithm 6.8. Initially in line 1 a mask for all of the 𝑑1 dimension is

constructed, such that the mask of the 𝑖-th dimension has all of the slots set to zero except

slots from 𝑖 ∙ 𝑑1-th till (𝑖 + 1) ∙ 𝑑1 − 1 – th slots which are set to one. The bulk of the

algorithm is done in 𝑑1 iterations such that for the 𝑖-th iteration the input matrix ciphertext

is multiplied by the corresponding mask and the resulting ciphertext is rotated for

𝑖 ∙ 𝑑2 ∙ (𝑟 − 1) slots to the right (lines 2-5). The resulting ciphertexts of all of the iterations

are added into one ciphertext (line 6) which is then replicated by 𝑟 times calling Algorithm

2 (line 7) to get the desired output. Fig. 6.8 illustrates secDRep for 𝑑1 = 2, 𝑑2 = 2, 𝑟 = 4.

ALOGRITHM 6.8: secDRep - secure Dimension Replication

INPUT: 𝒎𝒂𝒕_𝒄, 𝒅𝟏, 𝒅𝟐, 𝒓
𝒎𝒂𝒕_𝒄: an encoded&encrypted matrix

𝒅𝟏, 𝒅𝟐: first and second dimension of 𝑚𝑎𝑡_𝑐

𝒓: replication rate

OUTPUT: 𝒎𝒂𝒕𝑫𝑹𝒆𝒑_𝒄

𝒎𝒂𝒕𝑫𝑹𝒆𝒑_𝒄: 𝑖𝑛𝑝𝑢𝑡_𝑐’s 𝑑1 dimension replicated for 𝑟 times

1 𝑚𝑎𝑠𝑘𝑠𝑉𝑒𝑐_𝑝[] = 𝑠𝑒𝑐𝐷𝑅𝑒𝑝𝑀𝑎𝑠𝑘𝑠(𝑑1, 𝑑2)
2 𝑡𝑚𝑝_𝑐[0] = 𝑚𝑎𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝑠𝑉𝑒𝑐_𝑝[0]
3 for 𝑖 = 1 to 𝑑1

4 𝑡𝑚𝑝_𝑐[𝑖] = 𝑚𝑎𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝑠𝑉𝑒𝑐_𝑝[𝑖]
5 𝑡𝑚𝑝_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒 (𝑡𝑚𝑝_𝑐[𝑖], 𝑖 × 𝑑2 × (𝑟 − 1))
6 𝑚𝑎𝑡𝐷𝑅𝑒𝑝__𝑐 = 𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑡𝑚𝑝_𝑐[])
7 𝑚𝑎𝑡𝐷𝑅𝑒𝑝__𝑐 = 𝐶𝑅𝑒𝑝(𝑚𝑎𝑡𝐷𝑅𝑒𝑝__𝑐 , 𝑑2, 𝑟)

Fig. 6.8. Illustration of 𝑠𝑒𝑐𝐷𝑅𝑒𝑝(∙) for 𝑑1 = 2, 𝑑2 = 2 and 𝑟 = 4

93

6.4.2. Secure dot (inner) product

Given in Algorithm 4. It takes two vectors of dimension 𝑑, multiplies them (line 1) and calls

𝑠𝑒𝑐𝑆𝑢𝑚(∙) to get their final dot product (line 2).

ALOGRITHM 6.9: secDotP - secure Dot (Inner) Product

INPUT: 𝒗𝒆𝒄𝟏_𝒄, 𝒗𝒆𝒄𝟐_𝒄, 𝒅
𝒗𝒆𝒄𝟏_𝒄, 𝒗𝒆𝒄𝟐_𝒄: two (packed) encrypted integer vectors

𝒅: the dimension of the vectors

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the result of the dot product contained at the first slot (of each block)

1 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑣𝑒𝑐1_𝑐 × 𝑣𝑒𝑐2_𝑐

2 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝑆𝑢𝑚(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 𝑑)

6.4.3. Secure matrix-vector product

Given in Algorithm 6.10. As input it takes a row-encoded matrix ciphertext and a vector

ciphertext and translates their corresponding matrix-vector multiplication into a dot product

(line 2) by firstly replicating the vector for 𝑑1 times (line 1).

ALOGRITHM 6.10: secMatVec - secure Matrix Vector Product

INPUT: 𝒎𝒂𝒕𝑹_𝒄, 𝒗𝒆𝒄_𝒄, 𝒅𝟏, 𝒅𝟐
𝒎𝒂𝒕𝑹_𝒄: row-encoded (packed) matrix(es) with dim. 𝑑1 × 𝑑2

𝒗𝒆𝒄_𝒄: a (packed) column vector(s) with dimension 𝑑2

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the result of the mat-vec product after each 𝑑2 slots

1 𝑣𝑒𝑐_𝑐 = 𝐶𝑅𝑒𝑝(𝑣𝑒𝑐_𝑐, 𝑑1, 𝑑2)
2 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝐷𝑜𝑡𝑃(𝑚𝑎𝑡_𝑐, 𝑣𝑒𝑐_𝑐, 𝑑2)

6.4.4. Secure matrix-matrix product

Given in Algorithm 6.

ALOGRITHM 6.11: secMatMat - secure Matrix Matrix Product

INPUT: 𝒎𝒂𝒕𝑹_𝒄,𝒎𝒂𝒕𝑪_𝒄, 𝒅𝟏, 𝒅𝟐, 𝒅𝟑
𝒎𝒂𝒕𝑹_𝒄: row-encoded (packed) matrix(es) with dim. 𝑑1 × 𝑑2

𝒎𝒂𝒕𝑪_𝒄: column-encoded (packed) matrix(es) with dim 𝑑2 × 𝑑3

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the result of the mat-mat product after each 𝑑2 slots

1 𝑚𝑎𝑡𝑅_𝑐 = 𝐶𝑅𝑒𝑝(𝑚𝑎𝑡𝑅_𝑐, 𝑑1 × 𝑑2, 𝑑3)
2 𝑚𝑎𝑡𝐶_𝑐 = 𝑠𝑒𝑐𝐷𝑅𝑒𝑝(𝑚𝑎𝑡𝑐

𝐶 , 𝑑3, 𝑑2, 𝑑1)
3 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝐷𝑜𝑡𝑃(𝑚𝑎𝑡𝑅_𝑐,𝑚𝑎𝑡𝐶_𝑐 , 𝑑2)

94

As an input it takes one row-encoded and one column-encoded matrix. After replicating the

row-encoded matrix (line 1) and replicating the dimensions of the column-encoded matrix

(line 2), it simply converts the matrix-matrix multiplication into a single dot product (line 3).

All of the 𝑑1 × 𝑑2 × 𝑑3 plain matrix multiplications are done by a single SIMD

homomorphic multiplication in line 3.

6.4.5. Secure ciphertext compression

Given in Algorithm 6.12. After secure matrix-vector and matrix-matrix product, the resulting

ciphertext has its data slots scattered (separated) from each other according to the

corresponding dimension(s) of their input. As an input it takes a ciphertext that has

𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 number of blocks to be compressed, each with size 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 separated from

each other by 𝑑 slots. In the end it compresses (brings them closer) by reducing the distance

between blocks, or by merging neighboring blocks in each iteration and when necessary in

certain iteration by multiplying with a corresponding plaintext mask to free up space for

further mergers in the upcoming iteration (lines 3-11). Depending on the input parameters,

the resulting ciphertext can have all of the data slots of all of the blocks compressed together

without any gaps (slot distances) between them, as it is illustrated in Fig.6.9a) for input

parameters 𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 = 4, 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 1, 𝑑 = 1 and in Fig.6.9b). for input parameters

𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 = 4, 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 1, 𝑑 = 3.

ALOGRITHM 6.12: CCompress – Ciphertext Compress

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒃𝒍𝒐𝒄𝒌𝑺𝒊𝒛𝒆, 𝒅, 𝒏𝒓𝑶𝒇𝑩𝒍𝒐𝒄𝒌𝒔
𝒊𝒏𝒑𝒖𝒕_𝒄: a sparsely encoded (packed) ciphertext

𝒃𝒍𝒐𝒄𝒌𝑺𝒊𝒛𝒆: number of slots per block

𝒅: distance between two neighboring blocks in terms of slots

𝒏𝒓𝑶𝒇𝑩𝒍𝒐𝒄𝒌𝒔: number of blocks to be compressed

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the compressed ciphertext

1 𝑒𝑚𝑝𝑡𝑦𝑆𝑙𝑜𝑡𝑠 = 𝑑

2 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑖𝑛𝑝𝑢𝑡_𝑐

3 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 log2(𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠)
4 𝑡𝑚𝑝_𝑐 = 𝑅𝑜𝑡𝑎𝑡𝑒 (𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 , − 𝑑)
5 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 + 𝑡𝑚𝑝_𝑐

6 𝑒𝑚𝑝𝑡𝑦𝑆𝑙𝑜𝑡𝑠 = 𝑒𝑚𝑝𝑡𝑦𝑆𝑙𝑜𝑡𝑠 − 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒
7 𝑑 = 2 × 𝑑

8 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 2 × 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒

9 𝑖𝑓(𝑒𝑚𝑝𝑡𝑦𝑆𝑙𝑜𝑡𝑠 == 0)

10 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑝[𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, 𝑑]
11 𝑒𝑚𝑝𝑡𝑦𝑆𝑙𝑜𝑡𝑠 = 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒

95

Fig.6.9 Illustration of 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(∙) for input parameters a) 𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 = 4,

𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 1, 𝑑 = 1 and b) 𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 = 4, 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 1, 𝑑 = 4

6.4.6. Secure matrix transpose

Given in Algorithm 6.13, it securely transposes an input matrix with dimensions 𝑑1 × 𝑑2 .

Using the corresponding 𝑑2 masks, the input ciphertext is multiplied by them and each of

them has the columns of the input matrix (which are going to be the rows of the resulting

output) whose elements are scattered (in distance) by 𝑑2 slots from each other. In this way

we firstly convert the input matrix into sparsely encoded ciphertext (lines 1-4), to which we

apply 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(∙) to get the transposed matrix result. The illustration of 𝑠𝑒𝑐𝑀𝑎𝑡𝑇(∙) is

given in Fig.6.10 for 𝑑1 = 2 and 𝑑2 = 2.

ALOGRITHM 6.13: secMatT – Secure Matrix Transponse

INPUT: 𝒎𝒂𝒕_𝒄, 𝒅𝟏, 𝒅𝟐

𝒎𝒂𝒕_𝒄: a matrix with dimensions 𝑑1 × 𝑑2

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒎𝒂𝒕𝑻_𝒄: 𝑚𝑎𝑡_𝑐 transposed

1 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑑2

2 𝑡𝑚𝑝_𝑐[𝑖] = 𝑚𝑎𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝑀𝑎𝑡𝑇_𝑝(𝑖, 𝑑1, 𝑑2) //starting from slot I you put d1 1s in distance of d2 from eo

3 𝑡𝑚𝑝_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[𝑖], 𝑖 × (𝑑1 × 𝑑2 − 1))
4 𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 = 𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑡𝑚𝑝_𝑐[])
5 𝑚𝑎𝑡𝑇_𝑐 = 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 1, 𝑑2 − 1, 𝑑1 × 𝑑2) //initially block size is 1, and have 𝑑1 × 𝑑2 in dis d2

from eo

96

Fig.6.10 Illustration of 𝑠𝑒𝑐𝑀𝑎𝑡𝑇(∙) for 𝑑1 = 2 and 𝑑2 = 2.

6.4.7. Secure matrix transpose and dimension replication

Given in Algorithm 6.14. For efficiency purposes, instead of transposing the matrix using

𝑠𝑒𝑐𝑀𝑎𝑡𝑇(∙) and then replicating its dimensions using 𝑠𝑒𝑐𝐷𝑅𝑒𝑝(∙), 𝑠𝑒𝑐𝑀𝑎𝑡𝑇𝐷𝑟𝑒𝑝(∙) on the

fly does them both, thus replicates the dimensions of the transposed input matrix. It is

illustrated in Fig. 6.11.

ALOGRITHM 6.14: secMatTDRep –secMatT and Dimension Replication

INPUT: 𝒎𝒂𝒕_𝒄, 𝒅𝟏, 𝒅𝟐, 𝒓

𝒎𝒂𝒕_𝒄: a matrix with dimensions 𝑑1 × 𝑑2

𝒓: replication rate

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒎𝒂𝒕𝑻𝑫𝑹𝒆𝒑_𝒄: 𝑚𝑎𝑡_𝑐 transposed and its dimensions replicated by 𝑟

1 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑑2

2 𝑡𝑚𝑝_𝑐[𝑖] = 𝑚𝑎𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝑀𝑎𝑡𝑇_𝑝(𝑖, 𝑑1, 𝑑2) //starting from slot I you put d1 1s in distance of d2 from eo

3 𝑖𝑓(𝑟 > 𝑑2)
4 𝑡𝑚𝑝_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[𝑖], 𝑖 × (𝑑1 × 𝑟 − 1))
5 𝑒𝑙𝑠𝑒

6 𝑡𝑚𝑝_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[𝑖], 𝑖 × (𝑑1 × 𝑑2 − 1))
6 𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 = 𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑡𝑚𝑝_𝑐[])
7 𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 = 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 1, 𝑑2 − 1, 𝑑1) //initlly block size is 1, and have 𝑑1 in dis d2 from eo

8 𝑖𝑓(𝑟 > 𝑑2)
9 𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 = 𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 × 𝑚𝑎𝑠𝑘𝑀𝑎𝑡𝑇𝐷𝑅𝑒𝑝(𝑑1, 𝑑1 × (𝑟 − 1))
10 𝑚𝑎𝑡𝑇𝐷𝑅𝑒𝑝_𝑐 = 𝐶𝑅𝑒𝑝(𝑡𝑚𝑝𝑅𝑒𝑠_𝑐, 𝑑1, 𝑟)
11 𝑒𝑙𝑠𝑒

12 𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 = 𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 × 𝑚𝑎𝑠𝑘𝑀𝑎𝑡𝑇𝐷𝑅𝑒𝑝(𝑑1, 𝑑1 × (𝑑2 − 1))
13 𝑡𝑚𝑝𝑅𝑒𝑠_𝑐 = 𝐶𝑅𝑒𝑝(𝑡𝑚𝑝𝑅𝑒𝑠_𝑐, 𝑑1, 𝑟)
14 𝑚𝑎𝑡𝑇𝐷𝑅𝑒𝑝_𝑐 = 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 𝑟 × 𝑑1, 𝑑1 × (𝑑2 − 𝑟), 𝑑2)

97

Fig. 6.11. Illustration of 𝑠𝑒𝑐𝑀𝑎𝑡𝑇𝐷𝑅𝑒𝑝(∙) for 𝑑1 = 2, 𝑑2 = 2 𝑎𝑛𝑑 𝑟 = 2

6.4.8. Secure cascading matrix vector product

Given in Algorithm 6.15. After secMatVec, the resulting ciphertext has its data slots sparsely

separated from each other and this makes it unsuitable for cascading (another round) of linear

algebra multiplication. In order to make the resulting ciphertext suitable for another

multiplication we compress the data slots using the CCompress algorithm (line 2).

ALOGRITHM 6.15: secMatVecCas - secure Matrix Vector Cascading Product

INPUT: 𝒎𝒂𝒕𝑹_𝒄, 𝒗𝒆𝒄_𝒄, 𝒅𝟏, 𝒅𝟐
𝒎𝒂𝒕𝑹_𝒄: row-encoded (packed) matrix(es) with dim. 𝑑1 × 𝑑2

𝒗𝒆𝒄_𝒄: a (packed) column vector(s) with dimension 𝑑2

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the compressed result of the mat-vec product

1 𝑡𝑚𝑝_𝑐 = 𝑠𝑒𝑐𝑀𝑎𝑡𝑉𝑒𝑐(𝑚𝑎𝑡𝑅_𝑐, 𝑣𝑒𝑐_𝑐, 𝑑1, 𝑑2)
2 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑡𝑚𝑝_𝑐, 1, 𝑑2 − 1, 𝑑1)

6.4.9. Secure cascading matrix-matrix product

Given in Algorithm 6.16. After secMatMat, the resulting ciphertext has its data slots sparsely

separated from each other and this makes it unsuitable for cascading (another round) of linear

algebra multiplication. In order to make the resulting ciphertext suitable for another

multiplication we compress the data slots using the CCompress algorithm (line 2).

98

ALOGRITHM 6.16: secMatMatCas - secure Matrix Matrix Cascading Product

INPUT: 𝒎𝒂𝒕𝑹_𝒄,𝒎𝒂𝒕𝑪_𝒄, 𝒅𝟏, 𝒅𝟐, 𝒅𝟑
𝒎𝒂𝒕𝑹_𝒄: row-encoded (packed) matrix(es) with dim. 𝑑1 × 𝑑2

𝒎𝒂𝒕𝑪_𝒄: column-encoded (packed) matrix(es) with dim 𝑑2 × 𝑑3

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the compressed result of the mat-mat product

1 𝑡𝑚𝑝_𝑐 = 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡(𝑚𝑎𝑡𝑅_𝑐,𝑚𝑎𝑡𝐶_𝑐, 𝑑1, 𝑑2, 𝑑3)
2 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑡𝑚𝑝_𝑐, 1, 𝑑2 − 1, 𝑑1 × 𝑑3)

6.4.10. Secure matrix-matrix product – version 2

Given in Algorithm 6.17. While Algorithm 6.4 takes one row-encoded and one column-

encoded matrix ciphertext, this one takes both of them as row encoded matrix ciphertexts. It

firstly replicates the dimensions of the first matrix using CRep (line 1), on the fly transposes

and replicated the second matrix and finally uses secDotP to find their product with a single

SIMD multiplication.

ALOGRITHM 6.17: secMatMat_v2 - secure Matrix Matrix – version 2 Product

INPUT: 𝒎𝒂𝒕𝑹_𝒄,𝒎𝒂𝒕𝑹_𝒄, 𝒅𝟏, 𝒅𝟐, 𝒅𝟑
𝒎𝒂𝒕𝟏𝑹_𝒄: row-encoded (packed) matrix(es) with dim. 𝑑1 × 𝑑2

𝒎𝒂𝒕𝟐𝑹_𝒄: row-encoded (packed) matrix(es) with dim 𝑑2 × 𝑑3

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the result of the mat-mat product after each 𝑑2 slots

1 𝑚𝑎𝑡1𝑅_𝑐 = 𝐶𝑅𝑒𝑝(𝑚𝑎𝑡1𝑅_𝑐, 𝑑1 × 𝑑2, 𝑑3)
2 𝑚𝑎𝑡2𝑅_𝑐 = 𝑠𝑒𝑐𝑀𝑎𝑡𝑇𝐷𝑅𝑒𝑝(𝑚𝑎𝑡2𝑅_𝑐, 𝑑2, 𝑑3, 𝑑1)
3 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝐷𝑜𝑡𝑃(𝑚𝑎𝑡1𝑅_𝑐,𝑚𝑎𝑡2𝑅_𝑐, 𝑑2)

6.4.11. Secure cascading matrix-matrix product – version 2

Given in Algorithm 6.18.

ALOGRITHM 6.18: secMatMatCas_v2 - secure Matrix Matrix Cascading– version 2 Product

INPUT: 𝒎𝒂𝒕𝑹_𝒄,𝒎𝒂𝒕𝑹_𝒄, 𝒅𝟏, 𝒅𝟐, 𝒅𝟑
𝒎𝒂𝒕𝟏𝑹_𝒄: row-encoded (packed) matrix(es) with dim. 𝑑1 × 𝑑2

𝒎𝒂𝒕𝟐𝑹_𝒄: row-encoded (packed) matrix(es) with dim 𝑑2 × 𝑑3

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the result of the mat-mat product after each 𝑑2 slots

1 𝑡𝑚𝑝_𝑐 = 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡_𝑣2(𝑚𝑎𝑡1𝑅_𝑐,𝑚𝑎𝑡2𝑅_𝑐, 𝑑1, 𝑑2, 𝑑3)
2 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝐶𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑡𝑚𝑝_𝑐, 1, 𝑑1 × 𝑑2 − 1, 𝑑1 × 𝑑3) //from column-wise to row wise direct conversion

99

Just as it was the case with secMatMat, after secMatMat_v2 the resulting ciphertext has its

data sparsely encoded. We use CCompress again to compress these data so the resulting

ciphertexts is without any gaps (empty slots) between the data, thus making it ready for

another round of matrix operations.

6.4.12. Secure ciphertext compression – version 2

Given in Algorithm 6.19. This is a variant of CCompress where at the input parameters the

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 (number of slots per block) is greater than 𝑑 (the distance between the neighboring

blocks), which makes the algorithm slightly different than CCompress.

ALOGRITHM 6.19: CCompress2 – Ciphertext Compress – ver. 2

INPUT: 𝒊𝒏𝒑𝒖𝒕_𝒄, 𝒃𝒍𝒐𝒄𝒌𝑺𝒊𝒛𝒆, 𝒅, 𝒏𝒓𝑶𝒇𝑩𝒍𝒐𝒄𝒌𝒔
𝒊𝒏𝒑𝒖𝒕_𝒄: a sparsely encoded (packed) ciphertext

𝒃𝒍𝒐𝒄𝒌𝑺𝒊𝒛𝒆: number of slots per block s.t. 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 > 𝑑

𝒅: distance between two neighboring blocks in terms of slots

𝒏𝒓𝑶𝒇𝑩𝒍𝒐𝒄𝒌𝒔: number of blocks to be compressed

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the compressed ciphertext

1 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑖𝑛𝑝𝑢𝑡_𝑐

2 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 log2(𝑛𝑟𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠)
3 𝑡𝑚𝑝_𝑐[1] = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 × 𝑚𝑎𝑠𝑘𝐶𝐶2_𝑝(0, 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, 𝑑)
4 𝑡𝑚𝑝_𝑐[2] = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 × 𝑀𝑎𝑠𝑘𝐶𝐶2_𝑝(1, 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, 𝑑)
5 𝑡𝑚𝑝_𝑐[2] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[2], −𝑑)
6 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑡𝑚𝑝_𝑐[1] + 𝑡𝑚𝑝_𝑐[2]
7 𝑑 = 2 × 𝑑

8 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 2 × 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒

6.4.13. Secure Frobenius Product

Given in algorithm 6.20. Finds the Frobenius (dot, inner) product of two matrices with the

same dimensions. Frobenius product is used in Convolutional Neural Networks (CNN) [91].

ALOGRITHM 6.20: secFrobP - secure Frobenius Product

INPUT: 𝒎𝒂𝒕𝟏_𝒄,𝒎𝒂𝒕𝟐_𝒄, 𝒅𝟏, 𝒅𝟐,
𝒎𝒂𝒕𝟏_𝒄: encoded (packed) matrix(es) with dim. 𝑑1 × 𝑑2

𝒎𝒂𝒕𝟐𝒄: encoded (packed) matrix(es) with dim. 𝑑1 × 𝑑2

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the Frobenius inner product between 𝑚𝑎𝑡1_𝑐 and 𝑚𝑎𝑡2_𝑐

1 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝐷𝑜𝑡𝑃(𝑚𝑎𝑡1_𝑐,𝑚𝑎𝑡2_𝑐, 𝑑1 × 𝑑2)

100

6.4.14. Secure ciphertext packing

Packs several ciphertexts into one. The pseudocode is given in Algorithm 6.20A, the

illustration in Fig.8. As an input it takes a vector of 𝑝 ciphertexts (𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟[]) and the

number of (useful) data slots (𝑛𝐿) which, starting from the first slot, each ciphertext of the

input vector has,. Instead of a vector of ciphertexts, as an input it can also take one ciphertext

(the [𝑖𝑛𝑝𝑢𝑡]), which is replicated for 𝑝 times. Lines 1, 2 and 6 can be skipped if all of the

elements (ciphertexts) of the input vector at their first 𝑛𝐿 slots have their data, and the reaming

slots are filled up with zeros. It is assumed that all the input ciphertexts (elements) of the

𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[] have 𝑝 ∙ 𝑛𝐿 slots.

ALGORITHM 6.20A: CPack

INPUT: 𝒊𝒏𝒑𝒖𝒕𝑽𝒆𝒄𝒕𝒐𝒓_𝒄[], 𝒏𝑳, 𝒑

𝒊𝒏𝒑𝒖𝒕𝑽𝒆𝒄𝒕𝒐𝒓_𝒄[]: a vector of 𝑝 ciphertexts, each ciphertext has 𝑝 ∙ 𝑛𝐿 slots, at each of them only the first 𝑛𝐿

slots have data that we are interested in

𝒏𝑳: starting from the first slot (slot 0), is the number of consecutive data slots that each input ciphertext has

𝒑: the number of elements (ciphertexts) of 𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟[]

OUTPUT: 𝒓𝒆𝒔𝒖𝒍𝒕_𝒄

𝒓𝒆𝒔𝒖𝒍𝒕_𝒄: the packed ciphertext that contains all of the 𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟[] ([𝑖𝑛𝑝𝑢𝑡]). It has at least 𝑝 ∙ 𝑛𝐿 slots

1 𝑚𝑎𝑠𝑘_𝑣 = {1,1, … , 1, 0, … , 0} //first 𝑛𝐿 slots are ones (1s), the rest are zeros. In total it has 𝑝 ∙ 𝑛𝐿 slots

2 𝑚𝑎𝑠𝑘_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑚𝑎𝑠𝑘_𝑣)
 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[1] //only for the single [𝑖𝑛𝑝𝑢𝑡] case

3 for 𝑖 = 2 to 𝑝 do

4 𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[𝑖] = 𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[𝑖] × 𝑚𝑎𝑠𝑘_𝑝

5 𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[𝑖], 𝑖 × 𝑛𝐿)
6 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑎𝑑𝑑𝑀𝑎𝑛𝑦(𝑖𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟_𝑐[]) //add the input ciphertexts (a total of log𝑝 additions)

7 return 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 /

Figure 6.12. Illustration of the ciphertext packing (CPack) algorithm

101

6.5. Secure classifications based on NB, kNN, DT and RF

In this Chapter we provide the NB based classification for non-textual datasets, and also for

kNN, decision trees as well as random forests. While doing so we have in mind the security

goals for secure classification set in chapter 1. Depending on where the bulk of the operations

are done, all of them can be written as server or client (user) centric. We provide both of them

only for NB case.

6.5.1. Secure classifications for non-textual queries based on NB

Uses the background information given in Chapter 2.1.1. Depending on where the bulk

(most) of the processing is done, in this Chapter we give (provide) two types of privacy

preserving classification schemes: the server-centric and the client (user)-centric. In this

sense, for each query we offer to the system the flexibility of choosing one of the schemes

depending on the current workload at the server or the client (user) side. In both of them

TACS holds the encrypted trained model (denoted as 𝑻𝑴_𝒄) and the user has an unclassified

query 𝑿. Both of the schemes satisfy the security requirements mentioned in Chapter 1 and

they both deal with passive participants in the semi-honest model. Furthermore, the client-

centric scheme also deals with a user that can apply the active “substitution-then-

comparison” (STC) attack proposed in [10]. In Chapter 6.8 we deal with an active malicious

user during the server-centric classification that can arbitrarily deviate from the protocol.

Although the classification schemes have three participants, both of them are easily

convertible to secure two party protocols (2PC) where the server has the trained model and

the user an unclassified query.

Fig.6.13. (14). SIMD per class view of the query vector with zeros and ones in

corresponding places according to the query feature vector 𝑋

102

ALGORITHM 6.21: PPClassServCen (Privacy Preserving Classification - server centric)

INPUT: 𝑿 = {𝑿𝟏, 𝑿𝟐…𝑿𝒇}, 𝑭, 𝑪, 𝑻𝑴_𝒄

𝑿 = {𝑿𝟏, 𝑿𝟐…𝑿𝒇}: unclassified query feature vector owned by the User, s.t. 𝑋𝑖 ∈ 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓

𝑭: 𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑓}, where 𝐹𝑖 = {𝑉1,𝐹𝑖 , 𝑉2,𝐹𝑖 , … , 𝑉|𝐹𝑖|,𝐹𝑖}. 𝐹𝑖, st. 1 ≤ 𝑖 ≤ 𝑓 (as explained in Chapter 2.1.1)

𝑪: The set of classes 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑐} (as explained in Se Chapter 2.1.1)

𝑻𝑴_𝒄 an already SIMD encrypted trained Naïve Bayes model stored at TEAS

OUTPUT: 𝑪𝑻𝑴(𝑿)
𝑪𝑻𝑴(𝑿):the classification of the query vector 𝑋 according to the NB trained model 𝑇𝑀_𝑐

Phase I – EC:

1 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣. 𝑖𝑛𝑠𝑒𝑟𝑡(1, 0) //insert 1 at the first slot for the class probability in the empty 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟

2 for 𝑖 = 1 to 𝑓 //for each feature

3 for 𝑚 = 1 to |𝐹𝑖| //for each value of the current feature (feature 𝐹𝑖)
4 if 𝑋𝑖 == 𝑉𝑚,𝐹𝑖 then //if 𝑋𝑖 is equal to the current 𝑉𝑚,𝐹𝑖 feature value of feature 𝐹𝑖
5 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣. 𝑖𝑛𝑠𝑒𝑟𝑡(1) //then insert (put, push) one (1) to the 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟

6 else //otherwise

7 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣. 𝑖𝑛𝑠𝑒𝑟𝑡(0) //insert zero. At the end, the 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟 should look like Fig.14

8 for 𝑗 = 2 to 𝑐 //afterwards replicate the 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟 for 𝑐 − 1 times, where 𝑐 is the number of classes

9 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣. 𝑖𝑛𝑠𝑒𝑟𝑡(𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣) //query vector should look like the upper vector of Fig.15

10 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣) //𝑛𝐿 = 𝑐 ∙ 𝑛𝑠 slots, where 𝑛𝑠 = 2
⌈log (∑|𝐹𝑖|+1)⌉

11 send 𝑘, 𝑅1, 𝑅2, 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 to TEAS //𝑘, 𝑅1, 𝑅2 are random, needed for SRCPer (line 17)

Phase II - TEAS:

12 receive 𝑘, 𝑅1, 𝑅2, 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 //receives the encrypted query sent by the user

13 //𝑟𝑒𝑠𝑢𝑙𝑡𝑠_𝑐[] = 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑖𝑒𝑠(𝑝)
 //receives 𝑝 encrypted query vectors from different users

14 //𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 = 𝐶𝑃𝑎𝑐𝑘(𝑟𝑒𝑠𝑢𝑙𝑡𝑠_𝑐[], 𝑛𝐿 , 𝑝) //packs them into a ciphertext using CPack, 𝑛𝐿 = 𝑐 ∙ 𝑛𝑠
15 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 × [𝑇𝑀_𝑐] //as shown in Fig.14-15

16 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝑆𝑢𝑚(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 𝑛𝑠) //finds the class prob. for each class 𝐶𝑗 , 1 ≤ 𝑗 ≤ 𝑐, 𝑛𝑠 = 2
⌈log (∑|𝐹𝑖|+1)⌉

17 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑆𝑅𝐶𝑃𝑒𝑟(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑛𝑠) //permut. of the data slots for the class probabilities

18 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑆𝐶𝐴𝐷𝑆(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐, 𝑐, 𝑛𝑠) //compare all of the posterior class probab., 𝑐 is the nr. of classes

19 send [𝑟𝑒𝑠𝑢𝑙𝑡] to EDS

Phase III – E2DS:

20 receive 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐

21 𝑟𝑒𝑠𝑢𝑙𝑡_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐)
22 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑 = 𝑓𝑖𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥(𝑟𝑒𝑠𝑢𝑙𝑡_𝑣) //the index for which all comparisons are positive (Fig.7)

23 send 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑 to User //sends this 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥 in clear (as a pure rand. integer) to the EC

Phase IV – EC:

24 receive 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑 //the invSRCPer in line 25 is done by taking an integer index as an input (Section V)

25 𝐶𝑇𝑀(𝑋) = 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟(𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑, 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑛𝑠)//de-rand. to find the orig. index of 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥

Fig.6.14. Multiplying 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 with 𝑇𝑀_𝑐

103

The pseudocode for the server-centric NB classification of non-textual datasets case is given

in Algorithm 6.21. As an input it takes the trained model 𝑇𝑀_𝑐 kept at TEAS and the EC’s

feature vector 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑓}, where 𝑋𝑖 ∈ 𝐹𝑖, for 1 ≤ i ≤ f. In Phase I EC(s)

construct(s) the query vector to look like the upper vector in Fig.6.13 (lines 1-7), i.e. for each

of the ordered feature set 𝐹𝑖 s.t. 1 ≤ 𝑖 ≤ 𝑓 and 1 ≤ 𝑚 ≤ |𝐹𝑖|, if 𝑋𝑖 == 𝑉𝑚,𝐹𝑖 we put 1 (one)

to that corresponding slot, otherwise everything else is zero. In the beginning of the query

we have the slot associated with class probabilities 𝑃(𝐶𝑗) for 1 ≤ 𝑗 ≤ 𝑐 , and its value is

always 1 (one) (Fig.6.13). The user then replicates the same vector for 𝑐 − 1 times (lines 8-

9), where 𝑐 is the number of classes, and afterwards encodes and encrypts this vector to get

the final [𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟] (Fig.6.14) which is send to TEAS (lines 10-11) together

with the random 𝑘 = {𝑘1, … 𝑘𝑚}, 𝑅1 and 𝑅2 needed for the SRCPer algorithm. In Phase II

TEAS receives the 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 (line 12). In order to increase the throughput, TEAS

might receive multiple (say 𝑝) encrypted query vectors, and if so he first runs the CPack

(Algorithm 6.2, lines 13-14) to pack them into a single ciphertext. Here the size of a single

encrypted query vector is 𝑛𝐿 = 𝑐 · 𝑛𝑠 (a single class has 𝑛𝑠 = 2⌈log (∑|𝐹𝑖|+1)⌉ slots, thus a

single query has 𝑛𝐿 = 𝑐 · 𝑛𝑠 slots). We should note that if there are 𝑝 multiple queries

involved, the trained model should be replicated p times (shown during the training phase –

line 10). Then TEAS multiplies the (packed) 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 with the (packed) trained

model 𝑇𝑀_𝑐 (line 15, Fig.6.13-6.14), and afterwards runs the secSum (Algorithm 6.1) (line

16) to find the posterior class probabilities at the beginning of each of the 𝑛𝑠 − 𝑡ℎ slots,

starting from slot zero. After randomly permuting the data slots containing the posterior

probabilities (line 17) and securely comparing all of them with each other (line 18), TEAS

sends the final result to E2DS (line 19).

It Phase III E2DS receives, decrypts and decodes the final results to get the randomized

index of the class with highest posterior probability before sending it to the User(s) in plain

(lines 20-22). Finally, EC(s) in Phase IV remove the randomization by running the

invSRCPer (Chapter 6.3.3) to get the final classification(s) (lines 24-26).

6.5.2. Secure classifications based on kNN

The 2PC is given in Algorithm 6.22. No prior training is done since kNN doesn’t need it. In

our scenario, an EDO owns a dataset that he wishes to be used for secure classifications and

104

(an) EC(s) user has(have) queries that he (they) wish to classify having in mind the security

requirements during the classification stage set in Chapter 1. The EDO’s dataset has

𝑁𝑇 transactions (records), each with 𝑓 attributes and the corresponding class for that record.

Thus a record 𝑟𝑖 looks like 𝑌𝑟𝑖 = {𝑌1
𝑟𝑖 , … , 𝑌𝑓

𝑟𝑖 , 𝐶𝑟𝑖}, where 1 ≤ 𝑖 ≤ 𝑁𝑇 and 𝐶𝑟𝑖 is the 𝑟𝑖’s

class. The EDO randomly permutes his 𝑁𝑇 transaction (records) according to a random

permutation 𝜋, and encodes the feature values of each record in a sequential order in a

plaintext(s) denoted as 𝑝𝑒𝑟𝐷𝑆_𝑝[], with a corresponding plaintext where he encode his

classes, denoted as 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝. In a single plaintext of polynomial N we can encode 𝑞 = 𝑁/𝑓

features, thus we need 𝑛𝑟𝑃𝑙𝑎𝑖𝑛𝑇𝑒𝑥𝑡𝑠 = ⌈𝑁𝑇/𝑞⌉ plaintexts at the EDO to encode only the

feature values of each record in the dataset. To this ends, if a single plaintext is not enough

for 𝑝𝑒𝑟𝐷𝑆_𝑝[], then at the first plaintext of 𝑝𝑒𝑟𝐷𝑆_𝑝[] EDO encodes the first 𝑞 permuted

records, at the second plaintext of 𝑝𝑒𝑟𝐷𝑆_𝑝[] encodes the second 𝑞 queries etc., as it is

illustrated in Fig. 6.15. For the 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 plaintext at the first f slots we put the classes for

the permuted records which are in distance of 𝑞 to each other, thus the first 𝑓 spot are for

classes 𝐶𝜋(𝑟1), 𝐶𝜋(𝑟𝑞+1), … , 𝐶𝜋(𝑟𝑓−1), the second f spots are for 𝐶𝜋(𝑟2), 𝐶𝜋(𝑟𝑞+1), … , 𝐶𝜋(𝑟𝑓+1),

etc. (Fig.6.15). The EC replicates his query for 𝑞 times, encodes and encrypts to get 𝑋_𝑐 and

sends it to the EDO (lines 1-2). If all of the dataset can be put in a single 𝑝𝑒𝑟𝐷𝑆_𝑝[] plaintext,

EDO then subtracts the 𝑝𝑒𝑟𝐷𝑆_𝑝 with the 𝑋_𝑐, squares the result and finds the sum of the

corresponding f slots in SIMD fashion according to one of the distances proposed in Chapter

2, which in this case is the Euclidian distance (lines 4-6). If the dataset doesn’t fit in a single

𝑝𝑒𝑟𝐷𝑆_𝑝[] plaintext, then the same process is repeated for all of the plaintexts, in the process

utilizing multiple cores of the processor (lines 8-13). Making the necessary rotations and

additions 𝑝𝑒𝑟𝐷𝑆_𝑝[] plaintexts, EDO makes the calculated packed distances of each dataset

record with the query into 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 to correspond to the record’s classes in 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 (lines

4-12). In order to guard against any eventual data leakage, in SIMD fashion EDO multiples

each distance with the same random 𝑅 proceed by adding another random ℎ (line 13) and

sends it to EC (line 14). EC decrypts the randomized result, constructs a vector by putting

ones at the slots of the k distances with the minim value, encodes and encrypts it to get

𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐 and sends it to EDO (lines 15-18). EDO multiplies

105

𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐 with the 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 and send the result back to EC (lines 19-20). Finally,

EC decrypt this result which contains 𝑘 classes corresponding to the top-K classifier.

ALGORITHM 6.22: secKNN (secure K Nearest Neighbors)

INPUT: 𝒑𝒆𝒓𝑫𝑺_𝒑[], 𝒄𝒍𝒂𝒔𝒔𝒆𝒔_𝒑, 𝒇, 𝒅, 𝒌, 𝑿_𝒗

𝒑𝒆𝒓𝑫𝑺_𝒑[]: permuted according to 𝜋 and encoded records of the dataset DS residing at the server, who is

also the owner of it

𝒄𝒍𝒂𝒔𝒔𝒆𝒔_𝒑: the vector of classes of the corresponding permuted records 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑣 = {(𝐶𝜋(𝑟𝑖))
𝑖=1

𝑁𝑇
},

𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑣)
𝒇: the dimension of the dataset (number of features, i.e. number of slots needed for each record)

𝒌: the number of the closest neighbors by which the classification is done

𝑿_𝒗: the client’s query vector of dimension f replicated by 𝑞 = 𝑁/𝑓 times, where 𝑞 is also the number of

records in a single plaintext

OUTPUT: 𝒎𝒂𝒙𝑰𝒏𝒅𝒆𝒙 𝒂𝒏𝒅 𝒕𝒐𝒑𝑲𝑰𝒏𝒅𝒆𝒙𝒆𝒔

𝑪𝒌𝑵𝑵(𝑿): the final classification of 𝑞_𝑣 according to 𝑘𝑁𝑁 and dataset DS:

EC:

1 𝑋_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑋_𝑣)
2 send 𝑋_𝑐 to EDO

EDO:

3 𝑛𝑟𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑠𝐹𝑜𝑟𝐷𝑆 = ⌈(𝑁𝑇 × 𝑓)/𝑁⌉; 𝑅_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒{𝑅,… , 𝑅}; ℎ_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒{ℎ, … , ℎ}
4 𝑖𝑓(𝑛𝑟𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑠𝐹𝑜𝑟𝐷𝑆 == 1)

5 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑞𝑢𝑎𝑟𝑒(𝑝𝑒𝑟𝐷𝑆_𝑝 − 𝑋_𝑐)
6 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝑆𝑢𝑚(𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐, 𝑑)
7 else

8 for 𝑖 = 0 to 𝑛𝑟𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑠𝐹𝑜𝑟𝐷𝑆 − 1 //done in parallel among several processor cores

9 𝑡𝑚𝑝_𝑐[𝑖] = 𝑠𝑞𝑢𝑎𝑟𝑒(𝑝𝑒𝑟𝐷𝑆_𝑝[𝑖] − 𝑋_𝑐)
10 𝑡𝑚𝑝_𝑐[𝑖] = 𝑠𝑒𝑐𝑆𝑢𝑚(𝑡𝑚𝑝_𝑐[𝑖], 𝑓)
11 𝑡𝑚𝑝_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑡𝑚𝑝_𝑐[𝑖], 𝑖)
12 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑡𝑚𝑝_𝑐[])
13 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 × 𝑅_𝑝 + ℎ_𝑝

14 send 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 to EC

EC:

15 𝑟𝑒𝑠𝑢𝑙𝑡_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐)
16 𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑣 = 𝑔𝑒𝑡𝑇𝑜𝑝𝐾𝑉𝑎𝑙𝑢𝑒𝑠(𝑟𝑒𝑠𝑢𝑙𝑡_𝑣)
 //ones in the indexes containing the smallest k values, 0’s elsewhere

17 𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑣)
18 send 𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐 to EDO

EDO:

19 𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐 = 𝑞𝑢𝑒𝑟𝑦𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐 × 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝

20 send 𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐 to EC

EC:

21 𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑐
22 𝐶𝑘𝑁𝑁(𝑋) = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦𝐴𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑇𝑜𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐾𝐶𝑙𝑎𝑠𝑠𝑒𝑠(𝐶𝑘𝑁𝑁(𝑋_𝑣)_𝑣)

106

Fig. 6.15. Illustration of construction of 𝑝𝑒𝑟𝐷𝑆_𝑝[] and 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 for the secKNN.

6.5.3. Secure classifications based on DT and RF

Given in algorithm 6.23. If the trained model consisted of a decision tree is not binary, it can

be easily converted to one [9,73, 92]. Unlike [92] which reveals the depth of the tree, in our

algorithm in order to hide the depth of the binary tree 1) we can add a dummy root which on

both sides has the exact replica of the original binary tree, and/or 2) we can add one or more

levels at the leaves by putting a couple of dummy nodes (one on each side of every leaf),

which will point to the same class that the corresponding leaf (now parent node) used to

point. The obtained binary tree then can be encoded into a vector in a way that, start from the

root, each node’s value of each level is put (encoded) into the vector in sequential order, as

it is shown in Fig. 6.16. This represents the trained model 𝑇𝑀_𝑝 plaintext. In the 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝

plaintext in sequential order, from left to right, we put the classes to which the leaves point.

Using SRCPer (Chapter 6.3.3) in plain, the server publishes the permuted order of the 𝑇𝑀_𝑝

by which the clients should encode their feature values. According to this published order,

EC encodes and encrypts the values of its features to get 𝑋_𝑐 and sends it to the Server (lines

1-2). The Server then homomorphically performs the invSRCPer over 𝑋_𝑐 using the same

parameters it used while performing the SRCPer in plain, and in SIMD fashion securely

compares 𝑋_𝑐 with 𝑇𝑀_𝑐 using secComp (Chapter 6.3.4) and sends the result to EC (lines 3-

5). EC decrypts and decodes the result and based on the comparison results it construct a

107

vector will all zeros, except for the slot which belongs to the final classification which is one.

Encodes and encrypts this vector to get 𝑜𝑛𝑒𝑠_𝑐 and send it to the Server (lines 6-9). The

server multiplies 𝑜𝑛𝑒𝑠_𝑐 with 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝 and sends the result to EC (lines 10-11). EC

decrypts and decodes it to get the final classification result. For increased throughput we can

classify up to 𝑞 = 𝑁/𝑓 queries, where 𝑁 is the polynomial modulus.

For the RF cases we have several DT encoded one after the other at 𝑇𝑀_𝑝, 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝,

while the general idea and protocol flow remains pretty much the same.

ALGORITHM 6.23: secDT_RF (secure Decision Tree and Random Forest)

INPUT: 𝑻𝑴_𝒑, 𝒄𝒍𝒂𝒔𝒔𝒆𝒔_𝒑,𝑿_𝒗, 𝒇

𝑻𝑴_𝒑: the decision trees or random forests’ ciphertext kept privately at the server (owner)

𝒄𝒍𝒂𝒔𝒔𝒆𝒔_𝒑: the vector of classes of the corresponding tree(s)

𝑿_𝒗 = {𝑿𝟏, … , 𝑿𝒇}: the EC’s query vector of dimension f. We can have 𝑞 = 𝑁/𝑓 such queries

OUTPUT: 𝒎𝒂𝒙𝑰𝒏𝒅𝒆𝒙 𝒂𝒏𝒅 𝒕𝒐𝒑𝑲𝑰𝒏𝒅𝒆𝒙𝒆𝒔

𝑪𝑫𝑻(𝑿): the final classification of 𝑞_𝑣 according to 𝐷𝑇 𝑜𝑟 𝑅𝐹 a

Server:

using SRCPer in plain, publishes the permuted order by which the clients should encode their feature values

EC:

1 𝑋_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑋_𝑣)
2 send 𝑋_𝑐 to Server
Server:

3 𝑋_𝑐 = 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟(𝑘, 𝑅1, 𝑅2, 𝑁, 1)
4 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝐶𝑜𝑚𝑝(𝑋_𝑐, 𝑇𝑀_𝑝)
5 send 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 to EC

EC:

6 𝑟𝑒𝑠𝑢𝑙𝑡_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑒𝑠𝑢𝑙𝑡_𝑐)
7 𝑜𝑛𝑒𝑠_𝑣 = 𝑝𝑢𝑡𝑂𝑛𝑒𝑠𝑇𝑜 𝑇ℎ𝑒𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝑆𝑝𝑜𝑡𝑠(𝑟𝑒𝑠𝑢𝑙𝑡_𝑣)
8 𝑜𝑛𝑒𝑠_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑜𝑛𝑒𝑠_𝑣)
9 send 𝑜𝑛𝑒𝑠_𝑐 to Server
Server:

10 𝐶𝐷𝑇(𝑋_𝑣)_𝑐 = 𝑜𝑛𝑒𝑠_𝑐 × 𝑐𝑙𝑎𝑠𝑠𝑒𝑠_𝑝

11 send 𝐶𝐷𝑇(𝑋_𝑣)_𝑐 to EC

EC:

12 𝐶𝐷𝑇(𝑋_𝑣) = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝐶𝐷𝑇(𝑞_𝑣)_𝑐)

108

Fig. 6.16. Encoding the values of each level’s node into the trained model plaintext 𝑇𝑀_𝑝

for DT and RF classifier when 𝑓 = 7

6.6. Secure MNB and NB classifications for binary and multi-

label multi-output textual datasets

In Algorithm 6.24 we provide the MNB secure classification scheme for binary textual

queries (datasets). It can be seen as a natural continuation of Algorithm 5.2. The necessary

information background and notations are given in Chapter 2.1.2. In Phase XII EC encodes

its query 𝑞_𝑣, which has 1 in the first slot (index), proceeded by the query frequencies of

each word in the query ordered according to the words arrangement in the selected features

sets 𝑆𝐹 (line 1, Fig.6.17). After multiplying the encoded query with the trained model 𝑇𝑀_𝑐

it sends the result to TEAS (lines 2-3, Fig. 6.17). In Phase XIII, in accordance to (2.7), TEAS

homomorphically finds the sums of each of the (𝑚 + 1) slots in 𝑙𝑜𝑔2(𝑚 + 1) rotations and

additions with the result residing in the first slot (lines 5-6). To do this (𝑚 + 1) should be a

power of two. If it is not the case, then we can pad extra slots with dummy values (usually

zeros). Then, for secure comparison purposes (Chapter 6.3.4), multiplies this result with a

random 𝑅_𝑝 followed by adding ℎ_𝑝 s.t. 𝑅_𝑝 and ℎ_𝑝 are constructed having in mind the

secure comparisons requirements for them in Section IVC. To protect the result from the

STC (substitute-then-compare) attack from [10], TEAS adds an extra random

109

ℎ2_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(ℎ_𝑣) to the result, sends the randomized result to E2DS and the ℎ2_𝑣 to EC

(lines 7-10). In Phase XIV E2DS decrypts the randomized classification result and sends it

to EC (lines 11-12). Finally, in Phase XV EC subtracts ℎ2_𝑣 from the randomized

classification result and, according to (2.7), gets the final classification based on the sign of

the result (lines 14-15). If the query 𝑞_𝑣 instead of the frequencies contains the counts

(𝑁𝑞(𝑤𝑖)) of words appearing in the query, then instead of MNB, we’re dealing with the NB

for textual classifications.

Fig.6.17. SWHE SIMD multiplication of the trained model 𝑇𝑀_𝑐 obtained in Algorithm

5.2 with query 𝑞_𝑝.

ALGORITHM 6.24: secC (secure Classification)

INPUT: 𝑺𝑭, 𝑻𝑴_𝒄, 𝑿_𝒗 , (𝒑𝒌, 𝒔𝒌)
(𝒑𝒌, 𝒔𝒌): key pairs of E2DS with SWHE properties

𝑺𝑭 = {𝐻(𝑤1), … , 𝐻(𝑤𝑚)}: the set of hashes of 𝑚 selected features with the highest IG

𝑻𝑴_𝒄: the binary trained model ciphertext residing at EC

𝑿_𝒗 = {𝟏, 𝒇𝒒(𝒘𝟏), … , 𝒇𝒒(𝒘𝒎)}: the EC’s query vector

OUTPUT: 𝑪𝑻𝑴(𝒒)
𝑪𝑻𝑴(𝑿): the 𝑞_𝑣’s final classification

PHASE XII - EC:

1 𝑋_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑋_𝑣)
2 𝐶𝑇𝑀(𝑋)_𝑐 = 𝑇𝑀_𝑐 × 𝑋_𝑝 //so the TM_c already resides at EC (tell the reason behind it)

3 send 𝐶𝑇𝑀(𝑋)_𝑐 to TEAS

PHASE XIII-TEAS

4 𝑡𝑚𝑝_𝑐 = 𝐶𝑇𝑀(𝑋)_𝑐

5 for 𝑖 = 0 to ⌈𝑙𝑜𝑔(𝑚 + 1)⌉
6 𝐶𝑇𝑀(𝑋)_𝑐 = 𝐶𝑇𝑀(𝑋)_𝑐 + 𝑅𝑜𝑡𝑎𝑡𝑒(𝐶𝑇𝑀(𝑋)_𝑐, −2

𝑖)
7 (𝑅_𝑣, ℎ_𝑣, ℎ2_𝑣) = 𝑟𝑛𝑑𝑉𝑒𝑐𝑡𝑜𝑟𝑠𝑓𝑜𝑟𝐶𝑜𝑚𝑝(); (𝑅_𝑝, ℎ_𝑝, ℎ2_𝑝) = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑅_𝑣, ℎ_𝑣, ℎ2_𝑣)
8 𝑟𝑛𝑑𝐶𝑇𝑀(𝑋)_𝑐 = ((𝐶𝑇𝑀(𝑋)_𝑐 × 𝑅_𝑝) + ℎ_𝑝) + ℎ2_𝑝 //to protect from the STC attack

9 𝑠𝑒𝑛𝑑 𝑟𝑛𝑑𝐶𝑇𝑀(𝑋)_𝑐 to E2DS

10 send 𝐸𝑛𝑐𝑝𝑘𝐸𝐶(ℎ2_𝑣) to EC

PHASE XIV-E2DS

11 𝑟𝑛𝑑𝐶𝑇𝑀(𝑋)_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐹𝑖𝑛𝐶𝑙𝑎𝑠_𝑐)
12 send 𝐸𝑛𝑐𝑝𝑘𝐸𝐶(𝑟𝑛𝑑𝐶𝑇𝑀(𝑋)_𝑣) to EC

PHASE XV-EC

13 𝑟𝑒𝑠_𝑣 = 𝐷𝑒𝑐𝑠𝑘𝐸𝐶(𝑟𝑛𝑑𝐶𝑇𝑀(𝑋)_𝑣) − 𝐷𝑒𝑐𝑠𝑘𝐸𝐶(ℎ2_𝑣)

14 if (𝑟𝑒𝑠_𝑣 ≥ 0) return 𝐶𝑇𝑀(𝑞) = ”ham”
15 else return 𝐶𝑇𝑀(𝑋) = ”spam”

110

Having in mind the notations and the corresponding background information in chapter 2.1.2,

in Algorithm 6.25 we provide a multi-label multi-output secure classification algorithm for

textual queries (datasets). Algorithm 6.25 can be seen as naturally following Algorithm 5.3.

and, in general lines, it has the same logic as Algorithm 6.24, but expanded to deal with multi-

label multi-output queries.

ALGORITHM 6.25: secC-MLMO (secure Classification for Multi-Label Multi-Output queries)

INPUT: 𝑺𝑭𝑴𝑳𝑴𝑶 = {{𝑺𝑭𝒍}
𝒍=𝟏

|𝑳|
} = {{{𝑯(𝒘𝒊)}𝒊=𝟏

𝒎𝒍
}
𝒍=𝟏

|𝑳|

} ,𝒎𝒍, 𝑻𝑴𝑴𝑳𝑴𝑶_𝒄, 𝒒_𝒗𝑴𝑳𝑴𝑶 , (𝒑𝒌, 𝒔𝒌)

(𝒑𝒌, 𝒔𝒌): key pairs of E2DS with SWHE properties

𝑺𝑭𝑴𝑳𝑴𝑶 the set of |𝐿| set hashes, each of 𝑚𝑙 selected features with the highest IG

𝑻𝑴𝑴𝑳𝑴𝑶_𝒄: the MLMO trained model ciphertext residing at EC

𝒒_𝒗𝑴𝑳𝑴𝑶 = {{1, {𝑓𝑞
𝑙
(𝑤𝑖

𝑙)}
𝑖=1

𝑚𝑙

}
𝑐=1

|𝐶𝑙|

}

𝑙=1

|𝐿|

: the EC’s MLMO query vector, for the classes of the same label,

it’s replicated for |𝐶𝑙|times

OUTPUT: 𝑪𝑻𝑴
𝑴𝑳𝑴𝑶(𝑿)

𝑪𝑻𝑴
𝑴𝑳𝑴𝑶(𝑿): the 𝑞_𝑣𝑀𝐿𝑀𝑂’s final classification

PHASE XII - EC:

1 𝑋_𝑝𝑀𝐿𝑀𝑂 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑞_𝑣𝑀𝐿𝑀𝑂)
2 𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐 = 𝑇𝑀𝑀𝐿𝑀𝑂_𝑐 × 𝑋_𝑝𝑀𝐿𝑀𝑂 //so the TM_c already resides at EC (tell the reason behind it)

3 send𝐶𝑇𝑀
𝑀𝐿𝑀𝑂(𝑋)_𝑐 to TEAS

PHASE XIII-TEAS

4 𝑚 =
𝑎𝑟𝑔𝑚𝑎𝑥
1 ≤ 𝑙 ≤ |𝐿|

(𝑚𝑙)

5 for 𝑖 = 0 to ⌈𝑙𝑜𝑔(𝑚 + 1)⌉
6 𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐 = 𝐶𝑇𝑀
𝑀𝐿𝑀𝑂(𝑋)_𝑐 + 𝑅𝑜𝑡(𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐, −2𝑖)
7 𝑟𝑛𝑑𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐 = 𝑆𝑅𝐶𝑃𝑒𝑟(𝐶𝑇𝑀
𝑀𝐿𝑀𝑂(𝑋)_𝑐)// creates 𝑝𝑒𝑟𝑚𝑢𝑡𝐷𝑎𝑡𝑎_𝑣 needed for the permutations

8 𝑟𝑛𝑑𝐶𝑇𝑀
𝑀𝐿𝑀𝑂(𝑋)_𝑐 = 𝑆𝐶𝐴𝐷𝑆(𝑟𝑛𝑑𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐)
9 𝑠𝑒𝑛𝑑 𝑟𝑛𝑑𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐 to E2DS

10 send 𝐸𝑛𝑐𝑝𝑘𝐸𝐶(𝑝𝑒𝑟𝑚𝑢𝑡𝐷𝑎𝑡𝑎_𝑣) to EC

PHASE XIV-E2DS

11 𝑟𝑛𝑑𝐶𝑇𝑀
𝑀𝐿𝑀𝑂(𝑋)_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐)
12 send 𝐸𝑛𝑐𝑝𝑘𝐸𝐶(𝑟𝑛𝑑𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑣) to EC

PHASE XV-EC

13 𝐶𝑇𝑀
𝑀𝐿𝑀𝑂(𝑋) = 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟(𝐷𝑒𝑐𝑠𝑘𝐸𝐶(𝑟𝑛𝑑𝐶𝑇𝑀

𝑀𝐿𝑀𝑂(𝑋)_𝑐), 𝐷𝑒𝑐𝑠𝑘𝐸𝐶(𝑝𝑒𝑟𝑚𝑢𝑡𝐷𝑎𝑡𝑎_𝑣))

6.7. Secure classifications based on linear algebra operations

In Chapter 2.3.3 we give the necessary notations and background information related to ML

classification based on linear algebra. Utilizing the secure algebra building blocks introduced

in Chapter 6.4, in Algorithm 6.26 and 6.27 we give a general secure classification scheme

which is applicable to any ML classification algorithm that can be expressed in terms of

111

linear algebra operations, particularly in vector and matrix operations. Depending on where

the bulk of the operations are being done, they are either client (like algorithm 6.26) or Server

centric (Algorithm 6.27)

Secure linear algebra based ML classification algorithm flows at-a-glance. We give both

the client and the server centric flavors. The server owns a trained model which he wants to

keep private, while the client wants to use it for secure ML classifications based on linear

algebra operations having in mind the security, privacy and efficiency requirements given in

Chapter 1.

Client Centric (Fig. 6.18): the trained model 𝑀 resides at the client encrypted by the server’s

public key. All encryptions are done using the server’s public key with SWHE properties

(Chapter 2.4.1). The client(s) construct(s) his/their queries 𝑋(𝑖)(❶), encode and (depending

on the circumstances, might also) encrypt them to get the packed queries in a single plaintext

(𝑆_𝑝) or ciphertext (𝑆_𝑐) (❷). Using the encrypted trained model M they do computations

over encrypted data to get the classification result 𝐶𝑀(𝑆) in encrypted form (❸). After

randomizing the result they get the encrypted 𝑟𝑛𝑑𝐶𝑀(𝑆) and send it to the server (❹). After

decrypting and decoding it, the server obtains the randomized result in plain, 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣,

and sends it back to the client(❺). Finally, the client de-randomizes 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 to get the

final classification for the query(ies), 𝐶𝑀(𝑆) (❻). More details are given in Algorithm 6.26.

Fig.6.18. Secure linear algebra ML classification algorithm flow-client centric

112

Server centric (Fig.6.19): the trained model 𝑀 resides at the server un-encrypted. All

encryptions are done using the client’s public key with SWHE properties (Chapter 2.4.1).

The client(s) construct(s) his/their queries 𝑋(𝑖)(❶), encode and encrypt them and send them

to the Server (❷). The server adds the encrypted queries up and does the computations over

encrypted queries to get the classification result 𝐶𝑀(𝑆) in encrypted form (❸). Afterwards

randomizes the result to get the encrypted 𝑟𝑛𝑑𝐶𝑀(𝑆) and send it to the client(s) (❹). After

decrypting and decoding it, the server obtains the randomized result in plain, 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣

(❺), and based on it constructs, encode and encrypts a new 𝑟𝑛𝑑𝐶𝑀(𝑆) which is send back

to the server (❻). The server removes the randomization to get the final encrypted

classification 𝐶𝑀(𝑆), which is send to the clinet(s) that decrypt it to get the final classification

for the(ir) query(ies), 𝐶𝑀(𝑆). More details are given in Algorithm 6.27.

Fig.6.19. Secure linear algebra ML classification algorithm flow-server centric

The client centric version (Algorithm 6.26) as an input takes the row-encoded trained model

ciphertext and the queries of 𝑞 =
𝑁

𝑐∙(𝑓+1)
 users in a scenario where we have 𝑓 features and 𝑐

classes (Chapter 2.3.3). IoT devices/clients encrypt their queries and rotate them, in a way

that when homomorphically added up, they form a column-wise encrypted matrix (lines 1-

4). Then homormorphcally classify their queries with the trained model according to (2.21)

113

(lines 5-6). In line 6 SCADS(∙) -Chapter 6.3.5-, is used for the argmax purposes of (3). The

input ciphertext of SCADS(∙) looks exactly what 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡(∙) returns in line 5. After

randomization with SRCPer(∙) (Chapter 6.3.3), the results are send to the server (line 7-8).

The server decrypts and sends back the randomized results in plain (lines 9-10). The clients

de-randomize them to get the final classifications (line 11). SRCPer(∙) and it’s inverse,

invSRCPer(∙), proposed in Chapter 6.3.3, are used for randomization and de-randomization

purposes (lines 7, 11). The values we give to the random parameters that SRCPer(∙) and

invSRCPer(∙) take are 𝑅1 = 0, 𝑅2 = 0, while the random input vector 𝑘 has 𝑚 = 𝑐 elements

and it is used to randomly permute inside the block the positions of the comparisons results

for each of the 𝑐 data slots (corresponding to 𝑐 classes) for each of the 𝑞 blocks (queries),

simultaneously.

ALOGRITHM 6.26: secMLClass – (secure ML Classifications – Client Centric)

INPUT: 𝑴𝑹_𝒄, 𝑺 = {𝑿(𝒊)}
𝒊=𝟏

𝒒
, 𝒄, 𝒇

𝑴𝑹_𝒄: row-wise encrypted Trained Model

 𝑺 = {𝑿(𝒊)}
𝒊=𝟏

𝒒
,: the set of 𝑞 user queries, 𝑞 =

𝑁

𝑐∙(𝑓+1)

 𝒄, 𝒇: the number of classes and features, respectively

OUTPUT: 𝑪𝑴(𝑺)_𝒗

𝑪𝑴(𝑺)_𝒗: vector of the final classification of 𝑞 queries

Client:
1 for 𝑖 = 1 to 𝑞

2 𝑋_𝑐[𝑖] = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑋(𝑖))

3 𝑋_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑞𝑉𝑒𝑐_𝑐[𝑖], 𝑖 × (𝑓 + 1))

4 𝑆𝐶_𝑐 = 𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑋_𝑐[])
5 𝑡𝑚𝑝_𝑐 = 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡(𝑀𝑅_𝑐, 𝑆𝐶_𝑐, 𝑐, 𝑓 + 1, 𝑞)
6 𝐶𝑀(𝑆)_𝑐 = 𝑆𝐶𝐴𝐷𝑆(𝑡𝑚𝑝_𝑐, 𝑐, 𝑓 + 1)
7 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 = 𝑆𝑅𝐶𝑃𝑒𝑟(𝐶𝑀(𝑆)_𝑐, 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑓 + 1)
8 send 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 to Server
Server:
9 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐶𝑀(𝑋)_𝑐)
10 send 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 to Client
Client:
11𝐶𝑀(𝑆)_𝑣 = 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟(𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣, 𝑘, 𝑅1𝑅2, 𝑐, 𝑓 + 1)

Algorithm 6.27 (server centric) in general is similar with Algorithm 6.26 (client centric), with

the difference that in Algorithm 6.27 all encryptions are done using client’s public key with

SWHE properties, whereas in Algorithm 6.26 using servers public key with SWHE

properties. What is more important, the bulk of the heavy homomorphic computations at the

114

server centric algorithm are done at the server, whereas at the client centric algorithm they

are done at the client. While the client centric algorithm is done in one round, the server

centric one is done in two rounds, having in the process slightly heavier computation cost.

ALOGRITHM 6.27: secMLClass (secure ML Classifications – Server Centric)

INPUT: 𝑴𝑹_𝒄, 𝑺 = {𝑿(𝒊)}
𝒊=𝟏

𝒒
, 𝒄, 𝒇

𝑴𝑹_𝒄: row-wise encrypted Trained Model

 𝑺 = {𝑿(𝒊)}
𝒊=𝟏

𝒒
,: the set of 𝑞 user queries, 𝑞 =

𝑁

𝑐∙(𝑓+1)

 𝒄, 𝒇: the number of classes and features, respectively

OUTPUT: 𝑪𝑴(𝑺)_𝒗

𝑪𝑴(𝑺)_𝒗: vector of the final classification of 𝑞 queries

Client(s)
1 for 𝑖 = 1 to 𝑞

2 𝑋_𝑐[𝑖] = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑋(𝑖))

3 𝑋_𝑐[𝑖] = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑞𝑉𝑒𝑐_𝑐[𝑖], 𝑖 × (𝑓 + 1))

4 send 𝑋_𝑐[𝑖] 𝑡𝑜 Server
Server:
5 𝑆𝐶_𝑐 = 𝐴𝑑𝑑𝑀𝑎𝑛𝑦(𝑋_𝑐[])
6 𝑡𝑚𝑝_𝑐 = 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡(𝑀𝑅_𝑐, 𝑆𝐶_𝑐, 𝑐, 𝑓 + 1, 𝑞)
7 𝐶𝑀(𝑆)_𝑐 = 𝑆𝐶𝐴𝐷𝑆(𝑡𝑚𝑝_𝑐, 𝑐, 𝑓 + 1)
8 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 = 𝑆𝑅𝐶𝑃𝑒𝑟(𝐶𝑀(𝑋)_𝑐, 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑓 + 1)
9 send 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 to Client(s)
Client(s)
10 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐)
11 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 = 𝑝𝑢𝑡𝑂𝑛𝑒𝑠𝑇𝑜𝑇ℎ𝑒𝑀𝑎𝑥𝐶𝑙𝑎𝑠𝑠𝑂𝑓𝐴𝑙𝑙𝑄𝑢𝑒𝑟𝑖𝑒𝑠()
12 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣)
13 send 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 to Server
 Server:
14 𝐶𝑀(𝑆)_𝑐 = 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟(𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣, 𝑘, 𝑅1𝑅2, 𝑐, 𝑓 + 1)
15 send 𝐶𝑀(𝑆)_𝑐 to Client(s)
Client(s):
16 𝐶𝑀(𝑆)_𝑣 = 𝐷𝑒𝑐𝑟𝐷𝑒𝑐(𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐)

Note: for the DNN with 𝑙 layers, the trained model 𝑀𝑅_𝑐 in Algorithms 6.26 and 6.27 is

made of 𝑙 matrices denoted as 𝑀𝑅𝑖_𝑐, where 1 ≤ 𝑖 ≤ 𝑙, the activation functions 𝑓𝑖, where

1 ≤ 𝑖 ≤ 𝑙, are polynomial ones (usually square or linear functions) and 𝑆𝐶𝑖 is the output of

the previous layer, where for the input in the first layer we have 𝑆𝐶0 = 𝑆𝐶. In this sense, to

abide to (2.22), for a DNN with 𝑙 layers line 5 in Algorithm 6.26 (i.e. line 6 in Algorithm

6.27) should be changed to 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡𝐶𝑎𝑠(𝑓𝑖(𝑀𝑅𝑖_𝑐, 𝑆𝐶𝑖_𝑐, 𝑐, 𝑓 + 1, 𝑞)) which is executed

for 𝑙 times. Algorithm 𝑠𝑒𝑐𝑀𝑎𝑡𝑀𝑎𝑡𝐶𝑎𝑠(∙) is explained in Chapter 6.4.

115

Improvement 6.1: For algorithms 6.26 and 6.27, if the users know their order, instead of

encoding their data at the beginning of the ciphertext’s slots, they can directly put them to

their corresponding place, i.e. EC 𝑖 put his 𝑓 + 1 data from slot (𝑖 − 1)(𝑓 + 1) till 𝑖(𝑓 + 1)

slots. In this way they both avoid the costly operation of rotations in line 3.

Improvement 6.2. Unlike it was the case up until now in literature, for efficiency purposes,

no need for slots in Algorithms 6.20-6.27 to be powers of two anymore due to introducing

Algorithms 6.1 and 6.2.

Improvement 6.3. Whenever possible in Algorithms 6.20-6.27 we introduce the poly-

switching technique proposed in [55]. We also use multiple-cores for increasing furthermore

the throughput of processed queries by simultaneously classifying them among multiple

processor cores. For this each core should have a copy of the trained model in the core’s local

cache memory. Those couple of techniques alone give an improved computational and

communicational cost for several times.

Improvement 6.4. The 3PC algorithms that exist in some of the Algorithms in 6.20-6.25 can

be converted to 2PC. Furthermore, having in mind Improvement 5.1 and knowing that 𝑇𝑀_𝑐

rarely changes, it can be send to the user only once for the client-centric classification, thus

amortizing this cost for all of the subsequent classifications to follow.

Improvement 6.5: Besides Algorithms 6.26-6.27, for high throughput, in Algorithms 6.20-

6.25 we can also simultaneously process several queries by replicating the trained model and

packing several queries in the query vector. E.g. for secC (Algorithm 6.24) we can process

up to 𝑞 = ⌊
𝑁

(𝑚+1)
⌋ queries by obtaining a replicated 𝑇𝑀_𝑐 during 𝑠𝑒𝑐𝑇 (Algorithm 5.2),

which can be done without extra costs, and encoding (packing) 𝑞 queries to 𝑞_𝑝 during 𝑠𝑒𝑐𝐶.

116

6.8. Dealing with malicious users during classifications

Unlike the semi-honest model (Chapter 2.4.2), malicious users are active adversaries that

arbitrarily deviate from the protocol with the aim of retrieving partially or totally the data

that they are not supposed to or with the aim of sabotaging the protocol.

In algorithm 6.28 we deal with a malicious EC user for the Algorithm in 6.21. thus it is

valid for non-textual data dealing with NB classifiers. One of the attacks that such a malicious

user might come up with during the server-centric classification stage in Algorithm 6.21 is

to put 1s (ones) in only two slots corresponding to the same feature-value but different

classes, i.e. put ones to 𝐾𝑙𝑜𝑔𝑃(𝑉𝑚,𝐹𝑖; 𝐶𝑗), s.t. 𝑚 and 𝐹𝑖 are the same but 𝐶𝑗 is different) or

put ones to two different class probabilities (𝐾𝑙𝑜𝑔𝑃(𝐶𝑗) and all the other slots are set to zeros

(Fig.6.13 and 6.14). In this way, while running PPClassServCen (Algorithm in 6.21), the

user can find which of the two probabilities is greater than the other. Furthermore, if instead

of ones, in the same fashion the user puts some random values 𝑅1 and 𝑅2 into two slots

corresponding to the same feature-value but different classes, then after executing

PPClassServCen for several times with different random values for 𝑅1 and 𝑅2, ultimately the

user can find the ratio of those two probabilities. In both cases we have a leakage that goes

against the strict classification goals mentioned in Chapter 1. Algorithm 6.28 deals with such

active malicious users.

Fig.6.20. SIMD construction of the 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 with padded zeros added for the

need of the secSum Algorithm

We assume that TEAS and E2DS are still in the semi-honest model and they don’t collude.

To avoid any attack, we should make sure that the malicious user behaves properly while

executing the protocol, especially while constructing the 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟, hence the

q𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 (Fig.6.13 and 6.14), which for the case of the malicious user will be slightly

altered and named as 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 and 𝑀𝑈𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐,

respectively. By proper behavior from the malicious user we mean that for each feature 𝐹𝑖

117

s.t. 1 ≤ 𝑖 ≤ 𝑓, exactly one slot per feature should have 1 (one) inserted at the corresponding

feature–value slot and all others slots should bet set to zeros, just as it is explained in Phase

I of Algorithm 6.21 (Fig.6.13 and 6.14). To make sure that this is the case we run secSum

(Algorithm 6.1) to simultaneously and privately find the sum of block of slots corresponding

to each feature and check whether each of those sums are 1 or not. Based on this outcome,

the other participants (TEAS and E2DS) decide whether to continue or abort the protocol. In

order to do this, due to the needs of the old version of secSum, we will have to allocate

𝑠𝑙𝑜𝑡𝐹 = 2⌈log (𝑚𝑎𝑥𝐹)⌉ slots per feature, where 𝑚𝑎𝑥𝐹 is the feature with the biggest cardinality

(number of elements), i.e 𝑚𝑎𝑥𝐹 = max (|𝐹𝑖|) for 1 ≤ 𝑖 ≤ 𝑓. Since we have 𝑓 features, and

in order to find the posterior probabilities for each class we should again use the secSum

algorithm for the second time, then for each class we need 𝑠𝑙𝑜𝑡𝐶 = 2⌈𝑓∙log(𝑠𝑙𝑜𝑡𝐹)+1⌉ slots,

where the term+1 (extra one slot) is the slot for the class probability. All the extra added slots

are padded with (have values) of 0 (zero). Malicious user’s 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 is

illustrated in Fig.6.20. The corresponding pseudocode that builds this 𝑀𝑈 −

𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟 − 𝑐 is given in lines 1-9 for Phase I of Algorithm 6.29. In Phase II when TEAS

gets this query, firstly it runs the secSum algorithms to find the sum of each feature block and

sends the result to E2DS for checking (lines 10-12). Then constructs a plaintext named

𝑜𝑛𝑒𝑠_𝑝 which, starting from the first slot, has ones in every 𝑠𝑙𝑜𝑡𝐶 slot and everything else is

zero (lines 13-14). Afterwards TACS firstly rotates 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 to the right by

one slot (upper vector of Fig.6.21), replicates it for 𝑐 times by calling the CPack algorithm

from Chapter 6.4.14 and adds the 𝑜𝑛𝑒𝑠_𝑝 plaintexts to it to get the final 𝑀𝑈 −

𝐸𝑛𝑐𝑦𝑟𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_c as shown in Fig.6.22 (lines 15-17), which has 𝑠𝑙𝑜𝑡𝑄 = 𝑐 ∙

𝑠𝑙𝑜𝑡𝐶 slots (𝑠𝑙𝑜𝑡𝐶 slots for each of the 𝑐 classes).

Fig.6.21. 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 and portion of the 𝑀𝑈 − 𝑇𝑀_𝑐 depicting slots related to

class 𝐶𝑗

118

ALGORITHM 6.28: MU-PPClassServCen (PP Classification With Malicious User - server centric)

INPUT: 𝑿 = {𝑿𝟏, 𝑿𝟐…𝑿𝒇}, 𝑭, 𝑪, 𝑻𝑴_𝒄

𝑿 = {𝑿𝟏, 𝑿𝟐…𝑿𝒇}: unclassified query feature vector owned by the User, s.t. 𝑋𝑖 ∈ 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓

𝑭: 𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑓}, where 𝐹𝑖 = {𝑉1,𝐹𝑖 , 𝑉2,𝐹𝑖 , … , 𝑉|𝐹𝑖|,𝐹𝑖}. 𝐹𝑖, st. 1 ≤ 𝑖 ≤ 𝑓 (as explained in Section III-A)

𝑪: The set of classes 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑐} (as explained in Section III-A)

𝑻𝑴_𝒄: an already SIMD encrypted trained Naïve Bayes model stored at TEAS

OUTPUT: 𝑪𝑻𝑴(𝑿)
𝑪𝑻𝑴(𝑿):the classification of the query feature vector X according to 𝑇𝑀_𝑐

Phase I – EC User:

1 𝑚𝑎𝑥𝐹 = 𝑓𝑖𝑛𝑑𝑀𝑎𝑥𝐹𝑒𝑎𝑡𝑆𝑖𝑧𝑒(𝐹) //find the feature with the biggest cardinality (number of elements)

2 𝑠𝑙𝑜𝑡𝐹 = 2⌈𝑙𝑜𝑔(𝑚𝑎𝑥𝐹)⌉; 𝑠𝑙𝑜𝑡𝐶 = 2⌈𝑓·𝑙𝑜𝑔(𝑠𝑙𝑜𝑡𝐹)+1⌉; 𝑠𝑙𝑜𝑡𝑄 = 𝑐 · 𝑠𝑙𝑜𝑡𝐶 = 𝑐 · 2⌈𝑓·𝑙𝑜𝑔(𝑠𝑙𝑜𝑡𝐹)+1⌉
3 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣. 𝑖𝑛𝑠𝑒𝑟𝑡(𝑠𝑙𝑜𝑡𝑄, 0) //insert 𝑠𝑙𝑜𝑡𝑄 = 𝑐 · 𝑠𝑙𝑜𝑡𝐶 0s (zeros) to the 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣

4 for 𝑖 = 1 to 𝑓 //for each feature

5 for 𝑚 = 1 to |𝐹𝑖| //for each value of the current feature (feature 𝐹𝑖)
6 if 𝑋𝑖 == 𝑉𝑚,𝐹𝑖 then //if 𝑋𝑖 is equal to the current 𝑉𝑚,𝐹𝑖 feature value of feature 𝐹𝑖
7 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣[𝑖 ∙ 𝑚𝑎𝑥𝐹 + 𝑚] = 1 //then insert one to index 𝑖 ∙ 𝑚𝑎𝑥𝐹 +𝑚

8 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 = 𝐸𝑛𝑐𝑜𝑑𝑒_𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑣) //SIMD encod. then encrypt., Fig.A.1

9 send 𝑘, 𝑅1, 𝑅2, 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 to TACS //send the malicious users’ random k, R1, R2 to TEAS

Phase II – TEAS:

10 receive 𝑘, 𝑅1, 𝑅2, 𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐
11 𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐 = 𝑠𝑒𝑐𝑆𝑢𝑚(𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐, 𝑠𝑙𝑜𝑡𝐹) //finds the sum of the (1s) for each feature

12 send 𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐 to EDS //lines 13-17 can be done in parallel with Phase III

13 𝑜𝑛𝑒𝑠_𝑣 = {1,0, … ,0,1,0, … , } //a vector that has 𝑐 ones after each 𝑠𝑙𝑜𝑡𝐶 slots, starting from the first slot

14 𝑜𝑛𝑒𝑠_𝑝 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑜𝑛𝑒𝑠_𝑣) //constructing a plaintext, rather than a ciphertext for performance reasons

15 𝑀𝑈𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 = 𝑅𝑜𝑡𝑎𝑡𝑒(𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐, 1)//rotation for 1 place to the right to make place

//for 1 in the begin. is needed to be multiplied with the class-conditional prob. (upper vector Fig.A.2)

16 𝑀𝑈𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 = 𝐶𝑃𝑎𝑐𝑘(𝑀𝑈𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐, 𝑠𝑙𝑜𝑡𝐶, 𝑐) //replicates the

//𝑀𝑈𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 for 𝑐 times to get the upper vector of Fig.A.3, without the 1s (ones) in the beginning of

//each class slot

17 𝑀𝑈𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 = 𝑀𝑈𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 + 𝑜𝑛𝑒𝑠_𝑝

 //here we add the 1s (ones) at the beginning of each class slot to finally get the upper vector shown in Fig.A.3

Phase III – E2DS:

18 receive 𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐 //𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐 was obtained from line 11

19 𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑣 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐷𝑒𝑐𝑜𝑑𝑒(𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐)
 //HasOnes(·) checks whether there are ones at the beginning of each features’ slot at 𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐

20 if(𝐻𝑎𝑠𝑂𝑛𝑒𝑠(𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑣)) //if it is the case

21 send (𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑡𝑟𝑢𝑒) to TEAS //send true to TEAS so we can continue with the protocol

22 else //otherwise

23 send (𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑓𝑎𝑙𝑠𝑒) to TEAS //send false to abort the protocol

Phase IV – TACS:

24 recieve 𝑜𝑢𝑡𝑐𝑜𝑚𝑒

25 if(outcome == false) abort the protocol
26 else

27 return 𝑃𝑃𝐶𝑙𝑎𝑠𝑠𝑆𝑒𝑟𝑣𝐶𝑒𝑛(𝑀𝑈 − 𝑇𝑀_𝐶,𝑀𝑈𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐, 𝑘, 𝑅1, 𝑅2) from line 13

//PPClassServCen (Algorithm 6.21) is executed from line 13, during the execution 𝑛𝐿 = 𝑠𝑙𝑜𝑡𝑄, 𝑛𝑐 = 𝑠𝑙𝑜𝑡𝐶,

//as shown in Fig. A.3

//𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 is replaced by 𝑀𝑈𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 and 𝑇𝑀_𝑐 replaced by 𝑀𝑈 − 𝑇𝑀_𝐶

In Algorithm 6.21 the replication is done at the user side (EC), but here we do it at TEAS

since the malicious user might put a different query vector (Fig.6.13 and 6.14) for each class.

Lines 13-17 can be done in parallel with Phase III.

119

In Phase III E2DS receives, decrypts and checks whether the result of the secSum done at

TEAS is proper (it should have one at the begging of each feature slot, i.e. ones after each

𝑠𝑙𝑜𝑡𝐹 slots) (lines 18-23). If that’s the case then TEAS is informed to proceed, otherwise it

should abort.

In Phase IV, if TEAS is signaled to abort, it does so (line 25). If not, TACS proceeds by

executing 𝑃𝑃𝐶𝑙𝑎𝑠𝑠𝑆𝑒𝑟𝑣𝐶𝑒𝑛 (Algorithm 6.21) from line 13, and while doing so the

𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 is replaced by 𝑀𝑈𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_c, and the 𝑇𝑀_𝑐 is replaced

by 𝑀𝑈 − 𝑇𝑀_𝑐 so that their corresponding slot constructions are illustrated in Fig.6.21 for

one class and in Fig.6.22 for the whole construction (all classes).

Fig.6.22. 𝑀𝑈𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐 multiplies 𝑀𝑈 − 𝑇𝑀_𝑐

Improvement 6.6: Unlike it was the case till now in the literature, no need for slots to be

powers of two anymore due to Algorithms 6.1 and 6.2.

In Algorithm 6.29 we deal with malicious user(s) (client(s)) for the cases of secure ML

classifications based on linear algebra operations, which were presented in Algorithms 6.26

and 6.27. In those scenarios a malicious EC user instead of putting zeros into slots that are

not meant (not designated) for him, in order to disrupt the secure classifications for the other

EC’s, the malicious EC can put dummy values other than zeros, which will sabotage the

protocol for the other EC’s by having them get inaccurate classifications. In order to protect

from such malicious EC users, before adding (summing, packing) up the EC’s queries into

one query, each EC’s query is firstly multiplied by a plaintext mask which has 𝑓 1s (ones) at

120

the slots which are designated for that particular EC and zeros elsewhere (lines 1-4).

Afterwards it can be continued with both Algorithms 6.26 and 6.27 from line 4.

ALOGRITHM 6.29: secMLClass-MU (secure ML Classifications – Malicious Users)

INPUT: 𝑴𝑹_𝒄, 𝑺 = {𝑿(𝒊)}
𝒊=𝟏

𝒒
, 𝒄, 𝒇

OUTPUT: 𝑪𝑴(𝑺)_𝒗

𝑪𝑴(𝑺)_𝒗: vector of the final classification of 𝑞 queries

Client(s)
1 𝑚𝑎𝑠𝑘𝑆𝑒𝑐𝑀𝐿𝐶𝑙𝑎𝑠𝑠_𝑝[] = 𝑚𝑎𝑠𝑘𝑠𝐹𝑜𝑟𝑆𝑒𝑐𝑀𝑙𝐶𝑙𝑎𝑠𝑠()
2 for 𝑖 = 0 to 𝑞

3 𝑋_𝑐[𝑖] = 𝐸𝑛𝑐𝐸𝑛𝑐𝑟(𝑋𝑖)
4 𝑋_𝑐[𝑖] = 𝑋_𝑐[𝑖] × 𝑚𝑎𝑠𝑘𝑆𝑒𝑐𝑀𝑙𝐶𝑙𝑎𝑠𝑠_𝑝[𝑖]

//continue with line 4 for both Algorithm 6.26 and 6.27

6.9. Theoretical and Experimental evaluations and comparisons

In this Chapter we provide the theoretical and experimental evaluations and comparisons

among building blocks and secure classifications algorithms (protocols) from different

schemes (research papers). We should note that the experimental evaluations of our proposed

secure comparison protocol - secComp, hence of our secure comparison of all data slots –

SCADS as well (since it is built on top of secComp), show that it doesn’t offer a perfect

hiding of the difference of the two numbers that are being compared (Section 5.9.1). Yet, our

theoretical analysis show that when SCADS is used in combination with the our secure and

private ML classification protocols it offers a total privacy of the trained model and the user

query. We do this by giving a polynomial time reduction of the hardness of getting the trained

model and the user query to the hardness of LWE (Section II). This is due to the fact that the

matrix-vector product of the trained model matrix TM and the user query vector X of our

Machine Learning classification protocols help us “convert” (polynomially reduce) SCADS

into an LWE problem, as it is proven in Section 6.9.2.

6.9.1. Theoretical analysis and comparisons

Since secure comparison and secure argmax (secure top-K) are among the most important

and most used building blocks in secure ML classification algorithms, in Table 6.1 and 6.2

we provide and compare their security, privacy and efficiency properties among different

121

schemes. In this Section we use the notations we mentioned in Chapter 2. Briefly, 𝑁 is the

number of slots, 𝑐 is the number of classes, 𝑓 number of features and |𝐹𝑖| is the number of

elements (cardinality) of feature’s value set 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓, 𝑏 is the number of bits a single

ciphertext encoded in one slot has and 𝑛 is the number of Edge Dataset Owners (EDOs).

During the theoretical comparisons, for both the computation and communication purposes,

except for schemes [61-62], we mostly take into consideration only the costliest terms which

usually are due to the cryptographic techniques such as homomorphic encryption (HE),

oblivious transfer (OT), private information retrieval (PIR), etc. In the process in bold we

give a reference to the papers of corresponding cryptographic technique together with the

number of invocations of the scheme or any of its’ subroutine(s) (e.g. multiplication, addition,

rotation for FHE or SWHE). Furthermore, for the scheme at [67], letters 𝑂 and 𝛺 represent

the big-O and the 𝛺 notation, respectively.

In Tables 6.1 and 6.2 we provide theoretical comparisons for the computation and

computational costs for secure comparison (secComp) and secure argmax (secArgmax)

protocols among different state-of-the-art schemes, respectively. At those secure schemes

one of the parties has the encrypted data (two integers or an array of integers for the argmax

case) and the other one has the secret key. At the end one finds the index or the maximum of

two integers (or of an array of integers for the argmax case) while the other party usually

learns nothing. During the secure argmax protocol, almost all of the schemes, several times

invoke the corresponding secure comparison scheme of the same paper. In this manner all

the computation and communication costs should be correspondingly added to both parties

for each secure comparison invocation.

In our proposed scheme, during the secArgmax protocol, Party A executes once all of the

SRCPer, invSRCPer and SCADS protocols described in Chapter 6.3. SRCPer has 𝑚 plain

multiplications, (𝑚 + 2) rotations and log𝑚 additions, where 𝑚 is the number of data slots

in a block and it’s a small integer (usually not greater than 6 or 7). The same applies for

invSRCPer. SCADS has 𝑐 rotations, (𝑐/2 + log𝑐 + 1) additions and 1 plain multiplication.

Thus we have (2𝑚 + 1) plain multiplications, (2𝑚 + 4 + 𝑐) rotations and (2log𝑚 +

 𝑐/2 + log𝑐 + 1) additions for the overall computation cost at Party A, which is shown in

Table 6.2.

122

Table 6.3 gives the theoretical comparisons for the computation and communication costs

among different schemes during the PP NB classification stage. For our scheme we put

Algorithm 6.21. In the process we tend to use the described schemes in the most efficient and

optimized way they can be utilized (especially the scheme described in [69]). However, we

do this without losing the generality by making any assumption on the number of features 𝑓,

classes 𝑐 or cardinalities of 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑓. Also, during the PP classification, almost all

of the schemes invoke the corresponding secure argmax or, when they deal with binary

classification only (such as Gao et. al. [71]), the corresponding comparison protocol, which

should be kept in mind while estimating the overall computation and communication cost for

both (or all) of the participants. Furthermore, some of them several times call other

cryptographic protocols or their subroutines such as OT, PIR, Pailler [49] etc., which should

also be considered when estimating the overall communication and computation cost for both

(or all) parties.

For the server-centric classification scheme of Park et.al. [69], for the Assign module we

need 1 multiplication + 1 addition while for SlotCopy we need |𝐹𝑗| − 1 rotations and |𝐹𝑗| − 1

additions. Since for each feature we repeat both of the process once, and also having in mind

the |𝐹𝑗| rotation for the MaskGen module, in total we have 𝑇𝑋𝑞𝑢𝑒𝑟𝑦 = f ·

(1 multipliplication + (2|𝐹𝑗| − 1) rotations + |𝐹𝑗| additions).

123

Table 6.1. Theoretical comparison of the secure comparison (secComp) algorithm among different schemes
P

ro
p

e
rt

y

 S
ch

e
m

e

B
o

st
 e

t.
al

 [
5

3
]

Li
 e

t.
al

. [
7

0
]

G
ao

 e
t.

 a
l.

[7
1

]

P
ar

k
et

.a
l [

6
9

]

Su
n

 e
t.

al
 [

7
3

]

K
h

ed
r

et
.a

l [
7

4
]

P
er

ei
ra

 [
7

6
]

Li

u
 e

t.
al

 [
6

6
]

Li
u

 e
t.

al
 [

6
7

]

K
ja

m
ilj

i e
t.

 a
l [

7
2

]

Ya

sa
m

u
ra

 e
t.

al
 [

7
7]

W

o
o

d
 e

t.
al

. [
7

8
]

W
o

o
d

 e
t.

 a
l.

[7
9

]

O

u
r

sc
h

e
m

e

Place
Party A Party B A B Party A Party B

N
o

 s
ec

u
re

 c
o

m
p

ar
is

o
n

 a
t

al
l.

Th
e

cl
as

s
p

ro
b

ab
ili

ti
es

 a
re

 t
o

ta
lly

 le
ak

ed
 s

in
ce

 t
h

ei
r

ex

ac
t

va
lu

es
 c

an
 b

e
 d

ec
ry

p
te

d
 b

y
th

e
 u

se
r

A B A B A B Party A Party B

C
o

m
m

u
n

ic
at

io
n

G
M

 [
5

0]
: 2

 c
ip

h
er

s

D
G

K
 [

9
5

]:
 1

 in
vo

ca
ti

o
n

P
ai

lle
r[

4
9]

: 1
 c

ip
h

er

G
M

 [
5

0]
: 1

 c
ip

h
er

D

G
K

 [
9

5
]:

 1
n

vo
ca

ti
o

n

K
LY

 [
96

]:
 1

 in
vo

ca
ti

o
n

N
o

n
e

N
o

n
e

B
G

V
-i

m
p

ro
ve

d
 [

7
3]

:

1
 c

ip
h

er
te

xt

P
ai

lle
r[

4
9]

:

3
 c

ip
h

er
te

xt
s

 P
ai

lle
r[

4
9]

:

3
 c

ip
h

er
te

xt
s

B
G

V
 [

55
]:

1
 c

ip
h

er
te

xt

N
o

n
e

FV
 [

5
6

]:

1
 c

ip
h

er
te

xt

 N
o

n
e

B
G

V
-l

ik
e:

1

 c
ip

h
er

te
xt

 N
o

n
e

FV
 [

5
6

]:
 1

 c
ip

h
er

te
x.

fo

r
p

o
te

n
ti

al
ly

 𝑁
 S

IM
D

co
m

p
ar

is
o

n
s

C
o

m
p

u
ta

ti
o

n

P
ai

lle
r[

4
9]

: 1
 d

ec
ry

p
ti

o
n

G

M
 [

5
0]

: 1
 e

n
cr

yp
..

+2
 m

u
lt

.
D

G
K

 [
9

5
]:

 1
 in

vo
ca

ti
o

n

P
ai

lle
r[

4
9]

: 1
 e

n
cr

. +
 3

 m
u

lt
.

G
M

 [
5

0]
: 1

 e
n

cr
. +

 1
 m

u
lt

.
D

G
K

 [
9

5
]:

 1
 n

vo
ca

ti
o

n

K
LY

 [
96

]:
 1

 in
vo

ca
ti

o
n

K
LY

 [
96

]:

1
 in

vo
ca

ti
o

n
 (

i.e
. 1

d
ec

ry
p

ti
o

n
 o

n
ly

 f
o

r
P

ar
ty

 B
)

B
G

V
-i

m
p

ro
ve

d
 [

7
3]

:

1
 d

ec
ry

p
ti

o
n

B
G

V
-i

m
p

ro
ve

d
 [

7
3]

:

2
 m

u
lt

ip
lic

at
. +

 3
 a

d
d

it
io

n
s

P
ai

lle
r[

4
9]

: 1
d

ec
r.

 +
 1

 e
n

c.

+
2

 e
n

cr
. o

r
2

 m
u

lt
ip

.

P
ai

lle
r[

4
9]

:

6
 c

o
n

st
. e

xp
o

n
. +

 1
1

 m
u

lt
ip

.

B
G

V
 [

55
]:

(𝑙
𝑜
𝑔
𝑏
+
𝑏

)·
(r

o
ta

t.
+a

d
d

it
io

n
)

+
b

·(
m

u
lt

ip
. +

 c
o

n
st

. m
u

lt
ip

.)

 FV
 [

5
6

]:
 1

 d
ec

ry
p

ti
o

n

 FV
 [

5
6

]:
 1

 m
u

lt
ip

lic
at

io
n

+

1
 a

d
d

it
io

n
s

fo
r

p
o

te
n

ti
al

ly

𝑁
 S

IM
D

 c
o

m
p

ar
is

o
n

s

B
G

V
-l

ik
e:

 1
 d

ec
ry

p
ti

o
n

 B
G

V
-l

ik
e:

 1
m

u
lt

ip
lic

at
io

n
 +

1

 a
d

d
it

io
n

FV
:

[2
7]

: 1
 d

ec
ry

p
ti

o
n

 FV
:

[5
6]

: 1
 m

u
lt

ip
lic

at
io

n

+
2

 a
d

d
it

io
n

s
fo

r
p

o
te

n
ti

al
ly

𝑁
 S

IM
D

 c
o

m
p

ar
is

o
n

s

In
te

ra
c.

(r
o

u
n

d
s)

3
 r

o
u

n
d

s

1
 r

o
u

n
d

1
ro

u
n

d

1
 r

o
u

n
d

1
 r

o
u

n
d

1
 r

o
u

n
d

1
 r

o
u

n
d

1
 r

o
u

n
d

A
vo

id
s

Le
ak

in
g

an
y

in
fo

rm
at

io
n

YE
S

YE
S

If
 r

u
n

 s
ev

er
al

ti
m

es
, t

h
e

d
if

fe
re

n
ce

 o
f

th
e

tw
o

 n
u

m
b

er
s

m
ig

h
t

b
e

ex
p

o
se

d

YE
S

YE
S

If
 r

u
n

 s
ev

er
al

ti
m

es
, t

h
e

d
if

fe
re

n
ce

 o
f

th
e

tw
o

 n
u

m
b

er
s

m
ig

h
t

b
e

ex
p

o
se

d

Th
e

d
if

fe
re

n
ce

 o
f

th
e

tw
o

 n
u

m
b

er
s

is
 t

o
ta

lly
 e

xp
o

se
d

P
ar

ti
al

ly

124

Table 6.2. Theoretical comparison and properties of the secure argmax (secArgmax) algorithm among different schemes
P

ro
p

e
rt

y

Sc

h
e

m
e

Bost et.al [53]
Li et.al. [70]

Park et.al

[69]

Sun et.al [71]

[74]

Liu et.al [66]

Liu
et.al
[67]

Gao
et.
al.

[71]

Kjamilji

et. al [72]

Yasamura
et. al. [77]

Wood et.al.
[78], [79]

Our scheme

Place A B A B A B

Th
e

sc
h

em
e

d
ea

ls
 w

it
h

 m
u

lt
in

o
m

ia
l N

aï
ve

 B
ay

es
, w

h
ic

h
 h

as
 t

w
o

 c
la

ss
es

. S
o

 n
o

 n
ee

d
 f

o
r

se
cu

re
 a

rg
m

ax

A B

Th
is

 s
ch

em
e

d
o

es
 n

o
t

su
p

p
o

rt
 m

u
lt

ic
la

ss
 c

la
ss

if
ic

at
io

n
 s

in
ce

. I
t

d
o

es
 n

o
t

h
av

e
th

e
ar

gm
ax

 p
ro

to
co

l

Th
e

sc
h

em
e

d
o

es
n

t
d

ea
l w

it
h

 m
u

lt
ic

la
ss

 c
la

ss
if

ic
at

io
n

, b
u

t
it

 c
an

 e
as

ily
 b

e
ex

te
n

d
ed

 t
o

 s
u

p
p

o
rt

 t
h

e
o

n
e

in

[1
5]

A B A B A B

C
o

m
m

u
n

ic
at

io
n

𝑐
−
1

 t
im

es
 o

f
ea

ch
 o

f
th

e
b

el
o

w
:

C
o

rr
e

sp
o

n
d

in
g

Se
cC

o
m

p
: 1

P
ai

lle
r

[4
9

]:
 2

 c
ip

h
er

te
xt

s
ra

n
sm

is
si

o
n

 c-
1

 t
im

es
 o

f
ea

ch
 o

f
th

e
b

el
o

w
:

C
o

rr
e

sp
o

n
d

in
g

Se
cC

o
m

p
: 1

P

ai
lle

r[
4

9]
: 3

 c
ip

h
er

te
xt

s
 N

o
n

e

B
G

V
-l

ik
e

 [
5

5
]:

 1
 c

ip
h

er
te

xt

tr
an

sm
is

si
o

n
 .

C
o

rr
e

sp
o

n
d

in
g

Se
cC

o
m

p
:

(𝑐
−
1
)

in
vo

ca
t.

 w
it

h
 p

ar
ty

 B

C
o

rr
e

sp
o

n
d

in
g

Se
cC

o
m

p
:

(𝑐
−
1
)

in
vo

ca
te

.w
it

h
 p

ar
ty

 B

C
o

rr
e

sp
o

n
d

in
g

Se
cC

o
m

p
:

(𝑐
−
1
)

in
vo

ca
t.

 w
it

h
 p

ar
ty

 B

C
o

rr
e

sp
o

n
d

in
g

Se
cC

o
m

p
:

(𝑐
−
1
)

in
vo

ca
. w

it
h

 p
ar

ty
 B

FV
 [

5
6

]:
 𝑐
(𝑐
−
1
)/
2

 +
1

ci
p

h
er

te
xt

s

FV
 [

5
6

]:
 𝑐

 c
ip

h
e

rt
ex

ts

B
G

V
-l

ik
e:

 𝑐
−
1

 c
ip

h
e

rt
ex

ts

B
G

V
-l

ik
e

: 𝑐
−
1

 b
it

s

FV
 [

5
6

]:
 2

 c
ip

h
er

te
xt

s

FV
 [

5
6

]:
 1

 c
ip

h
er

te
xt

C
o

m
p

u
ta

ti
o

n

𝑐
−
1

 t
im

es
 o

f
ea

ch
 o

f
th

e
b

el
o

w
:

C
o

rr
e

sp
o

n
d

in
g

Se
cC

o
m

p
: 1

P

ai
lle

r[
4

9]
: 2

 e
n

cr
yp

ti
o

n
s

+

5
 m

u
lt

ip
lic

at
io

n
s

+
3

 e
xp

o
n

en
ti

at
io

n
s

c-
1

 t
im

es
 o

f
ea

ch
 o

f
th

e
b

el
o

w
:

C
o

rr
e

sp
o

n
d

in
g

Se
cC

o
m

p
::

 1

P
ai

lle
r[

4
9]

: 5
 m

u
lt

ip
lic

at
io

n
s

 B
G

V
-l

ik
e

 [
5

5
]:

 1
 d

ec
ry

p
ti

o
n

 C

o
rr

e
sp

o
n

. S
e

cC
o

m
p

:
(𝑐
−
1
)/
2

B
G

V
-l

ik
e

 [
5

5
]:

 (
𝑐
−
1
)2

 m
u

lt
ip

l.
 C

o
rr

e
sp

o
n

d
in

g
Se

cC
o

m
p

:
(𝑐
−
1
)

in
vo

ca
ti

o
n

s
w

it
h

 p
ar

ty
 B

C
o

rr
e

sp
o

n
d

in
g

Se
cC

o
m

p
:

(𝑐
−
1
)

in
vo

ca
ti

o
n

s
w

it
h

 p
ar

ty
 B

C
o

rr
e

sp
o

n
d

in
g

Se
cC

o
m

p
:

(𝑐
−
1
)i

n
vo

ca
ti

o
n

s
w

it
h

 p
ar

ty
 B

C
o

rr
e

sp
o

n
d

in
g

Se
cC

o
m

p
:

(𝑐
−
1
)i

n
vo

ca
ti

o
n

s
w

it
h

 p
ar

ty
 B

FV
 [

5
6

]:
 𝑐
(𝑐
−
1
)

2
+
(𝑐
−
1
)

ad
d

it
io

n
s

an
d

𝑐
(𝑐
−
1
)

2
+
𝑐

m
u

lt
ip

lic
at

io
n

s

FV
 [

5
6

]:
]

: 𝑐
(𝑐
−
1
)

2
+
1

 d
ec

ry
p

ti
o

n
s

 B
G

V
-l

ik
e

: 𝑐
(𝑐
 –
 1
)

m
u

lt
ip

lic
at

io
n

s
+

 𝑐
(𝑐
 –
 1
)

ad
d

it
io

n
s

B
G

V
-l

ik
e:

 𝑐
−
1

 d
ec

ry
p

ti
o

n
s

FV
 [

5
6

]:
 (
2
𝑚
 +

 1
)

p
la

in
 m

u
lt

ip
lic

at
. +

(2
𝑚
 +

 4
 +

 𝑐
)

ro
ta

ti
o

n
s

+
(2
𝑙𝑜
𝑔
𝑚
 +

 𝑐
/2
 +

 𝑙
𝑜
𝑔
𝑐
+
1
)

ad
d

it
i.

FV
 [

5
6

]:
 2

 d
ec

ry
p

ti
o

n
s

+
1

 e
n

cr
yp

ti
o

n

Interactions
(nr. of rounds)

3 · (𝑐 − 1) rounds 1 round
(SIMD)

𝑐 – 1 rounds 𝑐 − 1 rounds 2 rounds 𝑐 − 1
rounds

1 round
(SIMD fashion)

 A
vo

id
s

Le
ak

in
g

an
y

in
fo

rm
at

io
n

YE

S
YE

S

P
ar

ti
al

ly
 le

ak
s

th
e

o

rd
er

 (
se

q
u

en
ce

)
o

f
th

e
n

u
m

b
er

s,

n
o

t
th

ei
r

va
lu

es

YE

S
YE

S

P
ar

ti
al

ly
 le

ak
s

th
e

o

rd
er

 (
se

q
u

en
ce

)
o

f
th

e
n

u
m

b
er

s,

an
d

 a
ll

o
f

th
ei

r
d

if
fe

re
n

ce
s

P

ar
ti

al
ly

125

Table 6.3 Theoretical comparison for the costs of the PP Naïve Bayes classification algorithm among different schemes

S c.

[53], [77], [78] [69] (serv.) Sun et.al [71] Khedr et.al [74] Liu et.al [66] Liu et.al [67] Li et.al. [70] Gao et. al. [71] Kjamilji etal[72] Our scheme

P
la

ce

U
se

r

Se
rv

e
r

U
se

r

Se
rv

e
r

U
se

r

Se
rv

e
r

U
se

r

Se
rv

e
r

U
se

r

Se
rv

e
r

U
se

r

Se
rv

e
r

U
se

r

Se
rv

e
r

U
se

r

Se
rv

e
r

U
se

r

Se
rv

e
r

U
se

r

Se
rv

e
r

C
o

m
m

u
n

ic
at

io
n

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:

1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e

se
rv

er

P
ai

lle
r

[4
9]

 (
B

G
V

-l
ik

e
 [

5
5

])
: 𝑐
(1
+
 𝛴
|𝐹
𝑖|
)

ci
p

h
er

te
xt

 t
ra

n
sm

is
si

o
n

s
C

o
rr

e
sp

o
n

d
in

g
ar

gm
ax

:
1

 in
vo

c.
 w

it
h

 c
lie

n
t

B
G

V
-l

ik
e

 [
5

5
]:

 1
 c

ip
h

er
te

xt
 f

o
r

th
e

 u
se

r
q

u
er

y

B
G

V
-l

ik
e

 [
5

5
]:

 1
 c

ip
h

er
te

xt
 w

it
h

 t
h

e
fi

n
al

re
su

lt

𝑓
 in

te
ge

rs
 (

th
e

q
u

er
y

in
 p

la
in

te
xt

)

C
o

rr
e

sp
. a

rg
m

ax
:1

 in
vo

ca
ti

o
n

 w
it

h
 t

h
e

se
rv

er

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:

1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e

cl
ie

n
t

K
G

V
 [

74
]:

 𝑚
∙ℎ

 c
ip

h
er

te
xt

s
(e

n
cr

yp
te

d
 b

it

h
as

h
es

 f
o

r
al

l t
h

e
u

n
cl

as
si

fi
ed

 e
m

ai
l w

o
rd

s)

K
G

V
 [

74
]:

 2
 c

ip
h

er
te

xt
s

(t
h

e
2

 p
ro

b
ab

ili
ti

es
)

P
ai

lle
r

[4
9]

:]
: 𝛴
|𝐹
𝑖|
/2

 t
ra

n
sm

is
si

o
n

s

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:1

 in
vo

ca
ti

o
n

 w
it

h
 t

h
e

se
rv

er

C
o

rr
e

sp
o

n
d

. S
e

cu
re

 S
u

m
 [

66
]:

 𝑓
 in

vo
ca

ti
o

n
s

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:

1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e
cl

ie
n

t

B
G

V
 [

55
]:

 1
 c

ip
h

er
te

xt
 t

ra
n

sm
is

si
o

n

B
G

V
 [

55
]:

 1
 c

ip
h

er
te

xt
 t

ra
n

sm
is

si
o

n

P
IR

 [
7

5]
: 𝑓

 in
vo

ca
ti

o
n

s

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:1

 in
vo

ca
ti

o
n

 w
it

h
 t

h
e

se
rv

er

P
ai

lle
r

[4
9]

: 2
𝑐

ci
p

h
er

 t
ra

n
sm

is
si

o
n

s
(1

0
2

4
 b

it

ea
ch

)
P

IR
 [

7
5]

: 𝑓
 in

vo
ca

ti
o

n
s

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:1

 in
vo

ca
ti

o
n

 w
it

h
 t

h
e

cl
ie

n
t

C
o

rr
e

sp
. s

ec
u

re
 c

o
m

p
.:

 1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e

se
rv

er

P
ar

al
le

l O
b

liv
io

u
s

Tr
an

sf
e

r
[7

1
]:

 2
 in

vo
ca

ti
o

n
s

C
o

rr
e

sp
. s

ec
u

re
 c

o
m

p
.:

 1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e

se
rv

er

P
ar

al
le

l O
b

liv
io

u
s

Tr
an

sf
e

r
[7

1
]:

 2
 in

vo
ca

ti
o

n
s

FV
 [

5
6

]:
 2

 c
ip

h
er

te
xt

s

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
 w

it
h

 t
h

e
se

rv
er

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
 w

it
h

 t
h

e
se

rv
er

FV
 [

5
6

]:
 1

 c
ip

h
er

te
xt

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
 w

it
h

 t
h

e
se

rv
er

FV
 [

5
6

]:
 1

 c
ip

h
er

te
xt

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:

1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e
cl

ie
n

t

C
o

m
p

u
ta

ti
o

n

P
ai

lle
r

[4
9]

 (
B

G
V

-l
ik

e
 [

5
5

])
: 𝑐
𝑓

 m
u

lt
ip

ic
at

io
n

s

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:

1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e
se

rv
er

P
ai

lle
r

[4
9]

 (
B

G
V

-l
ik

e
 [

5
5

])
: 𝑐
(1
+
 𝛴
|𝐹
𝑖|
)

en
cr

yp
ti

o
n

s

(d
o

n
e

o
n

ce
, s

o
 a

m
o

rt
iz

ed
 a

m
o

n
g

m
an

y
u

se
rs

)
C

o
rr

e
sp

o
n

d
in

g
ar

gm
ax

:
1

 in
vo

ca
ti

o
n

 w
it

h
 t

h
e

cl
ie

n
t

B
G

V
-l

ik
e

 [
5

5
]:

 1
 e

n
cr

yp
ti

o
n

 f
o

r
th

e
q

u
er

y
C

o
rr

e
sp

o
n

d
in

g

ar
gm

ax
:

1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e
se

rv
er

B
G

V
-l

ik
e

 [
5

5
]:

 𝑇
𝑡𝑜
𝑡
=
𝑇
𝑋
𝑞
𝑢
𝑒
𝑟
𝑦
+
𝑇 𝑝
𝑎
𝑐𝑘
+
𝑇 𝑟
𝑒
𝑚

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:

1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e
u

se
r

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:

1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e
se

rv
er

B
G

V
-i

m
p

ro
ve

d
 [

7
3]

: 𝑐
∙𝑓
 m

u
lt

. o
r
𝑓

 m
u

tl
. (

SI
M

D
 v

er
s.

)

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:

1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e
cl

ie
n

t

K
G

V
 [

74
]:

 𝑚
∙ℎ

 e
n

cr
yp

t.
, 2

 d
ec

ry
p

t.
 (

p
ro

b
s)

, w
h

er
e
𝑚

 is

th
e

n
r.

 o
f

w
o

rd
s

in
 t

h
e

em
ai

l,
ℎ
 is

 t
h

e
h

as
h

 s
iz

e
in

 b
it

s

K
G

V
 [

74
]:

 𝑑
∙ℎ

 e
n

cr
yp

t.
 (

am
o

rt
iz

ed
 f

o
r

al
l u

se
rs

),

𝑚
∙𝑑
∙ℎ

 a
d

d
it

io
n

s.
, 𝑚

∙𝑑
∙ℎ

 m
u

lt
ip

lic
.,

 w
h

er
e
𝑑

 is
 t

h
e

n
r.

 o
f

w
o

rd
s

in
 t

h
e

d
at

ab
as

e
 (

w
o

rd
-b

ag
),

 ℎ
 is

 b
it

-h
as

h

si
ze

P

ai
lle

r
[4

9]
: 𝛴
|𝐹
𝑖|
/2

 e
n

cr
yp

ti
o

n
s

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:

1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e
se

rv
er

P
ai

lle
r

[4
9]

: 𝛴
|𝐹
𝑖|

 e
xp

o
n

en
t.

 +
 𝛴
|𝐹
𝑖|

 m
u

lt
ip

lic
.

C
o

rr
e

sp
o

n
d

in
g

Se
cu

re
 S

u
m

 [
33

]:
 𝑓
 in

vo
ca

ti
o

n
s

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:

1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e
cl

ie
n

t

B
G

V
 [

55
]:

 1
 e

n
cr

yp
ti

o
n

B
G

V
 [

55
]:

 𝑂
(𝑓
𝑏
3
+
𝑚
𝑎
𝑥
|𝐹
𝑖|
𝑏
2
)(
𝑡_
𝑎
𝑑
𝑑
+
𝑡_
𝑟𝑜
𝑡)
 +

 𝑂
(𝑓
𝑏
2
+
𝑚
𝑎
𝑥
|𝐹
𝑖|
𝑐
+
 𝑚
𝑎
𝑥
|𝐹
𝑖|
𝑏
)𝑡
_𝑚
𝑙
+

𝑂
(𝑓
𝑏
3
+
 𝑚
𝑎
𝑥
|𝐹
𝑖|
𝑐
+
𝑐𝑏
2
)𝑡
_𝑐
𝑚
𝑙

P
ai

lle
r

[4
9]

: 𝑐
 e

n
cr

yp
ti

o
n

s.
, 𝑐
(1
+
𝑓
)

d
ec

ry
p

ti
.
𝑐

m
u

lt
ip

.

P
IR

 [
7

5]
: 𝑓

 in
vo

ca
ti

o
n

s
C

o
rr

e
sp

o
n

d
in

g
ar

gm
ax

:
1

 in
vo

ca
ti

o
n

 w
it

h
 t

h
e

se
rv

er

P
ai

lle
r

[4
9]

: 𝑐
 e

n
cr

yp
ti

o
n

s,
 𝑐
(1
+
 𝛴
|𝐹
𝑖|
)

m
u

lt
ip

.

P
IR

 [
7

5]
 :

 𝑓
 in

vo
ca

ti
o

n
s

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:

1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e
cl

ie
n

t

P
ai

lle
r

[1
1]

: 2
𝑓

 m
u

lt
ip

lic
at

io
n

s

C
o

rr
e

sp
. s

ec
u

re
 c

o
m

p
.:

 1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e
se

rv
er

P

ar
al

le
l O

b
liv

io
u

s
Tr

an
sf

e
r

[7
1

]:
 2

 in
vo

ca
ti

o
n

s

P
ai

lle
r

[1
1]

: 𝑐
(1
+
 𝛴
|𝐹
𝑖|
)

en
cr

yp
ti

o
n

s

C
o

rr
e

sp
o

n
d

in
g

se
cu

re
 c

o
m

p
ar

is
o

n
 w

it
h

 t
h

e
cl

ie
n

t
P

ar
al

le
l O

b
liv

io
u

s
Tr

an
sf

e
r

[7
1

]:
 2

 in
vo

ca
ti

o
n

s

FV
 [

5
6

]:
 2

 e
n

cr
yp

ti
o

n
s

+
1

 a
d

d
it

io
n

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
 w

it
h

 t
h

e
se

rv
er

FV
 [

5
6

]:
 𝑐

 (
1

 p
la

in
 m

u
lt

ip
lic

at
io

n
 +

 1
 a

d
d

it
io

n
 +

𝑙𝑜
𝑔
(𝛴
|𝐹
𝑖|
)

m
u

lt
ip

lic
at

io
n

s)

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
 w

it
h

 t
h

e
se

rv
er

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
 w

it
h

 t
h

e
se

rv
er

FV
 [

5
6

]:
 3

 m
u

lip
.,

 𝑙
𝑜
𝑔
(𝛴
|𝐹
𝑖|
)
+
2

 a
d

d
it

io
n

s,
 1

 d
ec

ry
p

t.

C
o

rr
e

sp
o

n
d

in
g

ar
gm

ax
:

1
 in

vo
ca

ti
o

n
 w

it
h

 t
h

e
cl

ie
n

t

126

For maximum performances we will have to pack those outputs into one ciphertext, thus

we need extra 𝑇𝑝𝑎𝑐𝑘 = (𝑓 − 1)(rotation + addition). Assuming that the 𝑇 and 𝑆 tables are

also packed correspondingly into ⌈
𝑁

𝑏∙𝑢∙𝑐∙∑ 𝐹𝑖𝑖
⌉ ciphertexts, we have 𝑇𝑟𝑒𝑚 =

⌈
𝑁

𝑏∙𝑢∙𝑐∙∑ 𝐹𝑖𝑖
⌉ (|𝐹𝑗| multiplications + |𝐹𝑗| additions) + (𝑙𝑜𝑔1.5(𝑓 + 1) + ⌈𝑙𝑜𝑔𝑞 + 2⌉)

multiplications for the remaining part, where the term (𝑙𝑜𝑔1.5(𝑓 + 1) + ⌈𝑙𝑜𝑔𝑏 + 2⌉) comes

from the WallaceTree and K-S adder, 𝑏 is the number of bits per encrypted integer and u is

the number of slots between two neighboring bits. Thus for the server-centric classification

in [69], in total we need 𝑇𝑡𝑜𝑡 = 𝑇𝑋𝑞𝑢𝑒𝑟𝑦 + 𝑇𝑝𝑎𝑐𝑘 + 𝑇𝑟𝑒𝑚 of BGV-like operations and the

corresponding secure argmax scheme, which is the value of [69] provided in Table 6.3.

Table 6.4 shows the homomorphic complexity and circuit depth (the number of consecutive

multiplications) of some of our secure linear operations compared with the best reported

results of the related research schemes in [89-90], since they are known to be among the best.

All of our algorithms have a 𝑂(𝑙𝑜𝑔𝑑) (logarithmic) complexity wrt. to the matrix (vector)

dimensions, except for secMatMat which is linear since it uses secDRep(∙), which is linear

itself.

Table 6.4. Complexity and comparisons of secure linear algebra operations

Algorithm ADD CMUL ROT MUL DEPTH

secSum logd 1 logd 0 1 CMUL

CRep logd 0 logd 0 0

secDRep 2logd d d+logd 0 2 CMUL

secDotP logd 1 logd 1 1 MUL+1 CMUL

secMatVec 2logd 1 2logd 1 0

secMatVec (C)* logd 2 logd 0 2 CMUL

secMatVec [89] d d d-1 0 2 CMUL

secMatMat 4logd d + 1 d+3logd 1 1 MUL+2 CMUL

secMatMat [90] 6d 4d 3d+5√𝑑 d 1 MUL+2 CMUL

*For benchmark purposes with [89] the vector is packed and in plain

**it is assumed that the matrixes are squared. All logs are in base 2

***ADD = Ciphertext Addition, CMUL = Constant (plain) Multiplication,

 ROT = Rotation, MUL = Ciphertext Multiplication

127

6.9.2. Experimental evaluations and comparisons

Table 6.5 gives the computation cost to securely sum up 𝑑 integers. Due to the SIMD packing

of integers into polynomials with size 𝑁, in our scheme we can simultaneously sum up
𝑁

𝑑
 sets

of 𝑑 integers, so all of the results for our scheme are aggregated (divided by𝑁/𝑑) to include

this speed-up. Table 6.6 shows the results for secure comparison of two integers, and for the

same reasons the results of our scheme are aggregated (divided by 𝑁) to include 𝑁

simultaneous comparisons. For our scheme in Table 6.6 for the costs of our secComp

algorithm we consider party A to actually execute our secComp algorithm and party B to

decrypt it. Table 6.7 results of our block are aggregated to include simultaneous secure

argmax of 𝑁/𝑐 pairs of c integers. Table 6.8 and 6.9 give the results for different polynomial

sizes of 𝑆𝑅𝐶𝑃𝑒𝑟, 𝑖𝑛𝑣𝑆𝑅𝐶𝑃𝑒𝑟 and 𝐶𝑃𝑎𝑐𝑘, among different block sizes – 𝑘, and number of

ciphertexts to pack – 𝑝, respectively.

Table 6.5. Computation cost for secure sum (secSum) of 𝑑 integers among different

schemes (in milliseconds)

 scheme

𝒅

Our scheme - secSum

(Algorithm 6.1)
Liu et.

al. [67]

Park et. al.

[69]

Khedr et.

al. [74]

Bost

et.al.[53]
N = 4096 N = 8192 N= 16384

32 0.093826 0.138688 0.443816 256 ≈106000 192 168

64 0.192583 0.336359 1.05018 512 ≈202000 384 336

128 0.399319 0.768558 2.48382 1024 ≈778000 768 672

256 0.910869 1.763741 5.648328 2048 NA 1536 1344

512 1.992125 3.984806 12.65613 4096 NA 3072 2688

1024 4.2552 8.57455 28.14 8192 NA 6144 5376

Table 6.6. Computation cost for the SIMD secure comparison (secComp) protocol of two

encrypted integers among different schemes

S
c
h

e
m

e Our scheme (secComp)

(in milliseconds)
[53], [70]

[71]

(in ms.)

[67]

(in sec.)

[69]

(in sec.)

[73]

(in ms.)
N = 4096 N = 8192 N = 16384

Place A B A B A B A B A B A B A B

Cost 0.33 0.24 0.72 0.42 2.03 0.69 45.3 43.7 2.5 NR 8 NR 110 NR

*NR = Not reported

128

Table 6.7. Computation cost of secure argmax (secArgmax) of 𝑐 integers among different

schemes (in milliseconds, unless otherwise stated)

S
ch . Our scheme – secArgmax (Algorithm 6.7) [53]

[75]
[69] [73]

N = 4096 N = 8192 N = 16384
Place

c
A B A B A B A B All All

4 0.01 0.01 0.0267 0.0132 0.09 0.02 ≈250 ≈150 ≈20 s
440

sec.

8 0.11 0.02 0.2321 0.0250 0.76 0.03 ≈550 ≈400
≈120

s

880

sec.

16 0.32 0.04 0.6609 0.0544 2.25 0.07 ≈1100 ≈800
≈900

s

1760

sec.

32 0.98 0.08 2.0322 0.1115 6.99 0.16 ≈250 ≈150 ≈20 s
3520

sec.

64 3.51 0.21 7.2732 0.2059 26.6 0.31 ≈550 ≈400
≈120

s

7040

s

Table 6.8. Comparison of computational costs for SRCPer and invSRCPER for different

block) sizes k and polynomial modulus N (results are in milliseconds)

 k

N
2 3 4 5 6 7

4096 8.66 15.07 21.18 25.05 31.71 36.86

8192 45.82 55.28 83.06 101.97 130.49 156.87

16384 239.09 377.19 566.71 680.13 904.02 997.20

Table 6.9. Comparison of computational costs of CPack for different ciphertext numbers p

and polynomial modulus N (results are in milliseconds)

 p

 N
2 4 8 16 32 64

4096 2.04 5.63 17.82 37.45 209.53 209.53

8192 8.01 23.08 60.87 150.9 887.60 887.60

16384 50.81 138.8 426.6 1024.56 6752.1 6852.1

Tables 6.10 and 6.11 give the computation cost of some of our secure linear algebra

operations compared with the best known results from the state-of-the-art schemes.

129

Table 6.10. Comparisons of amortized secure linear algebra operation costs (in ms)

Dimension 4 8 16 32 64

secSum 10−4 0.005 0.011 0.045 0.081

CRep 0.006 0.035 0.21 1.625 6.01

secDRep 0.15 3.906 80.4 352.5 450

secDotP 9 ∙ 10−4 0.024 0.04 0.107 0.194

secMatVec; 0.05 0.24 1.19 5.2 22.6

secMatMat 0.54 9.6 145 575 895

secMatMat (HE-

MatMult) of [90]
3 NR 162 NR 104

Table 6.11. Comparisons of amortized cost of secMatVec costs (in ms)

Matrix dim. Naive [89] Diagonal [89] Hybrid [89] Our*

1024 × 128 880.0 192.4 16.2 30.8

1024 × 16 110.3 192.4 7.8 3.79

128 × 16 77.4 25.4 5.3 0.48

* multiplication of a plaintext matrix with a packed ciphertext vector

Table 6.12 compares the best PP classification results per query as reported at the

corresponding schemes. In Table 6.10 scheme we report our results for Algorithm 6.21 for

datasets in [84-87], also introduced in Chapter 5.5.

Table 6.12. Per query comparison of the cumulative (among all participants) costs for the PP

classification case among different schemes and datasets

S
ch

em
e

[73] [69] [53] [67] [71] [75] [72] [76] [77] [78] [79] Our [66] Our Our

D
a

ta
se

t

Breast Cancer Wisconsin (Original) Data Set [86]

Acute

Inflammat

ions Data

Set [87]

SMS

Spam

[84]

C
o

m
p

.

co
st

48

ms

70

sec.

479

ms.

349.

min.

555

ms.

few

min.

14

ms

35.7

ms

1.5

sec

0.62

sec.

0.40

sec.
0.84

ms

196

sec.
0.9

ms

6.75

ms

C
o
m

m
.

co
st

NR

2

cip

her.

72.9

 KB

1.24

MB

19.3

KB
NR

109

KB
43.1

KB
4

MB
256

KB

306

KB
13

KB

40

KB
13

KB

109

KB

*NR = Not reported

130

Table 6.13. Amortized query costs for the NB classifier based on linear algebra operations

 Cost

Scheme
Computation cost Communication cost

Original Wisconsin Breast Cancer Dataset [86]

[53] 479 milliseconds 72.5 KB

[10] 555 milliseconds 19.3 KB

[6] 2900 milliseconds 800 KB

[44] 349 minutes 1.24 MB

[73] 48.79 milliseconds Not reported

[69] 70 seconds 2 ciphertexts

[72] 14 milliseconds 109 KB

[76] 35.74 milliseconds 43.13 KB

Our 2.37 milliseconds 13.7 KB

Table 6.14. Amortized query costs for the SVM classifier based on linear algebra operations

 Cost

Scheme
Computation cost Communication cost

Original Wisconsin Breast Cancer Dataset [86]

[53] 204 milliseconds 35.84 KB

[44] 3100 milliseconds 7.5 MB

[73] 2.41 milliseconds Not reported

[97] 3.47 milliseconds 0.92 KB

Our 0.19 milliseconds 0.43 KB

UNSW-NB 15 cybersecurity dataset [94]

Our 0.20 milliseconds 0.43 KB

Table 6.15. Amortized query costs for the LR classifier based on linear algebra operations

 Cost

Scheme
Computation cost Communication cost

Original Wisconsin Breast Cancer Dataset [86]

[53] 204 milliseconds 35.84 KB

[97] 3.55 milliseconds 0.92 KB

Our 0.21 milliseconds 0.43 KB

UNSW-NB 15 cybersecurity dataset [94]

Our 0.19 milliseconds 0.43 KB

Tables 6.13-6.15 compare the amortized (per query) computation and communication costs

of our schemes based on secure linear algebra operations (Algorithm 6.26) and the related

PP classifications for NB, SVM and LR among different datasets, respectively. One of the

datasets is the Wisconsin Breast Cancer dataset [86], while the other is the UNSW-NB 15

131

cybersecurity dataset [94], which is also a binary-class dataset, thus 𝑐 = 2, has 𝑓 = 42

original features, but after extensive feature selection in plain we used only 𝑓 = 15 of them.

For both datasets our PP classification scheme (Algorithm 6.26) showed no loss of accuracy

due to PP classification. If a certain scheme provides several results for the same purpose due

to different security parameters or improved scenarios, in Tables 6.13-6.15 we give the best

results of the corresponding schemes. In all of them for our scheme we provide the

implementation results of the improved version of the server centric secMLClass (Algorithm

6.26). For all of the datasets the trained model for NB in plain was obtained using C++ code,

while for SVM and LR the trained models were obtained by WEKA [93].

Table 6.16. Amortized per query costs for (secC, Algorithm 6.24)

Comput. cost

(ms)

Commun. cost

(KB)

Comput. cost

(ms)

Commun. cost

(KB)

EC E2DS EC E2DS EC E2DS EC E2DS

Enron Email dataset [37], N=8192 Enron Email dataset [37], N=16384

15.03 0.28 27.5 0 17.3 0.27 27.5 0

SMS spam dataset [84], N=8192 SMS spam dataset [84], N=16384

6.5 0.2 13.75 0 6.95 0.72 13.75 0

Table 6.16 gives the amortized (per query) costs of the improved 2PC version of Algorithm

6.24 for different 𝑁. In this sense, for the Enron dataset [37], already presented in Chapters

4.5 and 5.5, the number of packed queries in a single ciphertext is 𝑞 = ⌊
𝑁

(𝑚+1)
⌋ = ⌊

𝑁

(2047+1)
⌋ =

4 and 8 queries for 𝑁 = 8192 and 𝑁 = 16384, respectively, while for the SMS spam corpus

dataset [84] it is 8 and 16 queries, respectively.

In Table 6.17 we report and compare the costs and characteristics of several related

schemes (mainly related to binary textual datasets) dealing with PP classification. Since they

report several costs and properties, we present the best of each one of each scheme.

132

Table 6.17. Amortized per query costs for PP classifications among different binary textual

datasets (queries)

Scheme Comp. cost Comm. cost ML algorithm Class. Acc.

Enron email dataset [37]

[11] ≈8 s Not reported NB Not report.

 [12] 350 ms ≈110 KB MNB,NB 98.8%

 [17]* 3.79s (SEAL) 40.63 MB Deep Learning 86.3%

 [17]** 0.17s (GPU) 40.63 MB Deep Learning 86.3%

 [21] 78 min Not reported NB 99.1%

Ours 15.31 ms 27.5 KB MNB 99.1%

SMS spam corpus dataset [84]

[20] 21 ms Not reported NB 95.6%

[18] 6.75 ms 109 KB NB 93.1%

Ours 3.38 ms 11.37 KB NB 93.1%

Hate speech against immigrants and women in Twitter dataset [19]

[19] 25.579 s Not reported Ensemble trees 74.4%

[19] 0.953 s Not reported Logis. Regress. 72.4%

*26 cores of 2.1 GHz Intel Xeon Platinum processor with 188 GB of RAM

** 1 TESLA (5120 cores of 1.38 GHz) and 3 P100 (3584 cores of 1.19 GHz)

We evaluate the performances of the proposed secure comparison-secComp protocol over

arithmetic circuits when it is used isolated (not in combination with other building blocks or

protocols), which is given as 𝑦 = (𝑎 − 𝑏)𝑟 + ℎ = 𝑥𝑟 +h, s.t. 𝑟 > 0 and |ℎ| < 𝑟 (Section

6.3.4). We assume that variables 𝑎 and 𝑏 are samples from a uniform distribution in the range

of (−2𝑛−1, 2𝑛−1 − 1), thus 𝑎 ← 𝐴 = 𝑈(−2𝑛−1, 2𝑛−1 − 1),, 𝑏 ← 𝐵 = 𝑈(−2𝑛−1, 2𝑛−1 − 1),

𝑟 is a positive sample from a discrete Gaussian distribution with mean 2𝑛−1 and standard

deviation of 3.2, thus 𝑟 ← 𝑅 = 𝑁(2𝑛−1, 3.2), while ℎ is a sample from uniform distribution

in the range (−𝑟 + 1, 𝑟 − 1), ℎ ← 𝐻 = 𝑈(−𝑟 + 1, 𝑟 − 1), where 𝑛 is the number of bits that

the variables have. The distribution type of r, its mean and dispersion where chosen due to

showing better experimental performances and were inspired by LWE. For the distribution

of the variable x we have 𝑥 ← 𝑋 = 𝐴 − 𝐵.

In Fig.6.23-6.25 we show joint probability of 𝑋 and 𝑌 -𝑃(𝑋, 𝑌) − by plotting 10.000

points when the numbers of bits are 𝑛=2,3 and 4, respectively.

What we want to idelly see in Fig.4-6 is a projection of Y which is uniform and a projection

of X which is the same for each value of Y. In this case, observing any value of Y will give

the conditional entorpy for X, thus there would be no information gain for any observerd

133

value of Y. However, this is not the case with Fig.4-6, thus there is some information leakage

about the difference of numbers a and b.

Fig.6.23 The joint probability of 𝑋 and 𝑌, 𝑃(𝑋, 𝑌), for n=2 bits

Fig.6.24. The joint probability of 𝑋 and 𝑌, 𝑃(𝑋, 𝑌), for n=3 bits

134

Fig.6.25. The joint probability of 𝑋 and 𝑌, 𝑃(𝑋, 𝑌), for n=4 bits

In Fig.6.26-6.28 we show the probability of 𝑌- 𝑃(𝑌), by plotting 10.000 points when the

numbers of bits are 𝑛=8,12 and 16 bits, respectively.

Fig.6.26.Plotting 10.000 points to draw P(Y) when n=8 bits

135

Fig.6.27.Plotting 10.000 points to draw P(Y) when n=12 bits

Fig.6.28.Plotting 10.000 points to draw P(Y) when n=16 bits

Fig.6.26-6.28 show that the security characteristics of Y improve as the number of bits gets

larger by making the dispersion of Y greater. This is especialy good knowing that Algorithm

1 can be expressed with the Paillier that can have thousands of bits and the SWHE scheme

which can offer close to one thousand bits when 𝑁 = 32𝐾.

136

6.10. Security analysis and proofs

Theorem 6.1: Let 𝑎 ← 𝑈𝑞
𝑛×𝑚 and let 𝑎′ be obtained by 𝑎 s.t. each of the rows of 𝑎 is

subtracted in index (component-wise) manner with all the other rows (in total we have
𝑛(𝑛−1)

2

such subtractions, thus 𝑎′ has
𝑛(𝑛−1)

2
 rows). Let 𝑠′ ← 𝑈𝑞

𝑚×1, 𝑅 ← 𝑈𝑞

𝑛(𝑛−1)

2
×1

 and ℎ ←

𝑋𝑞

𝑛(𝑛−1)

2
×1

, s.t. each element (entry, index) of R is greater than zero, thus R>0 and |ℎ| < 𝑅,

thus the absolute value of each element of h is smaller than the corresponding index value of

R. Let 𝑐′ ← 𝑈𝑞
𝑛×1. If Decision-LWE is hard (Section 2.4.2), then distinguishing between

(𝑎′, 𝑎′𝑠′ × 𝑅 + ℎ) and (𝑎′, 𝑐′) is also hard. Here × stand for index (component-wise)

multiplication.

Proof: We get 𝑎′ in polynomial time of operations (subtractions). Apparently 𝑎′ 𝜖 𝑈𝑞

𝑛(𝑛−1)

2
×𝑛

,

since subtracting a uniform variable from another uniform variable in modular arithmetic still

gives a random uniform variable. The same reasoning can be given for the multiplication of

two uniform random variables in modular arithmetic. Simply put, before adding ℎ to 𝑎′𝑠′,

we furthermore randomized all of 𝑎′𝑠′ components (indexes) by multiplying them with a

random uniform R, thus 𝑎′𝑠′ × 𝑅 + ℎ ≅ 𝑈𝑞

𝑛(𝑛−1)

2
×𝑛

. This means that we can’t distinguish

between (𝑎′, 𝑎′𝑠′ × 𝑅 + ℎ) and (𝑎′, 𝑐′). ∎

Theorem 6.2 (Symmetry of Decision-LWE): Let 𝑠 ← 𝑈𝑞
𝑚×1, 𝑎 ← 𝑈𝑞

𝑛×𝑚, 𝑒 ← 𝜒𝑞
𝑛×1, 𝑐 ←

𝑈𝑞
𝑛×1. If Decision-LWE is hard, then distinguishing between (𝑠, 𝑎 · 𝑠 + 𝑒) and (s, c) is also

hard. Thus, here, instead of a, we share s.

Proof: if there is a way to find 𝑎 𝜖 𝑈𝑞
𝑛×𝑚 from 𝑠 𝜖 𝑈𝑞

𝑚×1, then it is even easier to find 𝑠

when 𝑎 is given, which contradicts Assumption 1 (Decision-LWE). ∎

Theorem 6.3: Using SCADS (Algorithm 2) after secure ML classifications (equation (1)),

reveals nothing about the trained model M or the user query X.

Proof: Let 𝑋 ← 𝑈𝑞
𝑚×1, 𝑀 ← 𝑈𝑞

𝑛×𝑚, 𝑅 ← 𝑈𝑞

𝑛(𝑛−1)

2
×1

 and ℎ ← 𝑋𝑞

𝑛(𝑛−1)

2
×1

, where R and h are

the random integer vectors needed for SCADS (hence for secure comparison) in SIMD

fashion. At the end of SCADS the output will be 𝑀′𝑋 × 𝑅 + ℎ, where 𝑀′𝜖 𝑈𝑞

𝑛(𝑛−1)

2
×𝑛

. We

137

invoke Theorem 1 to show that the user query X is kept private. We invoke Theorem 2 to

show that the trained model M is also kept private. ∎

Theorem 6.4: Let 𝑠 ← 𝑈𝑞
𝑚×1, 𝑎 ← 𝑈𝑞

𝑛×𝑚, ℎ ← 𝜒𝑞
𝑛×1 𝑅′ ← 𝜒𝑞

𝑛×1, s.t. each element (entry,

index) of R is greater than zero, thus R>0 and |ℎ| < 𝑅, thus the absolute value of each

element of h is smaller than the corresponding index value of R. Let 𝑐 ← 𝑈𝑞
𝑛×1. If

Decision–LWE holds, then we also can’t distinguish between (𝑎, (𝑎 · 𝑠)2𝑅′ + ℎ) and (a, c).

Proof: We invoke Theorem 1, where R is (𝑎 · 𝑠)𝑅′. ∎

Theorem 6.5: Let 𝑠0 ← 𝑈𝑞
𝑚×1, 𝑎𝑖 ← 𝑈𝑞

𝑛×𝑚, where 0 ≤ 𝑖 ≤ 𝑙, ℎ ← 𝜒𝑞
𝑛×1 𝑅′ ← 𝜒𝑞

𝑛×1, s.t.

each element (entry, index) of R is greater than zero, thus R>0 and |ℎ| < 𝑅, thus the

absolute value of each element of h is smaller than the corresponding index value of R. If

Decision–LWE holds, then we can’t distinguish between (𝑎𝑙, (𝑎𝑙 ∙ 𝑠𝑙)
2𝑅′ + ℎ) and (𝑎𝑙, c).

Here 𝑠𝑖 = (𝑎𝑙−1 ∙ 𝑠𝑙−1)
2.

Proof: We will use Mathematical induction. For 𝑖 = 0 we invoke Theorem 3. Let’s assume

that the theorem holds for 𝑖 = 𝑘. Then for 𝑖 = 𝑘 + 1 we have 𝑠𝑘+1 = (𝑎𝑘 ∙ 𝑠𝑘)
2, which is

is also uniformly random, thus (𝑎, (𝑎𝑘+1 ∙ 𝑠𝑘+1)
2𝑅′ + ℎ) and (a, c) can’t be distinguished

according to Theorem 4.

Theorem 6.6: Using SCADS (Algorithm 2) after secure ML classifications over DNN

(equation (2)), doesn’t reveal anything about the trained model M of the DNN or the user

query X

Proof: If the DNN has one layer, then 𝑋 ← 𝑈𝑞
𝑚×1, 𝑀0 ← 𝑈𝑞

𝑛×𝑚, ℎ ← 𝜒𝑞
𝑛×1 𝑅 ← 𝜒𝑞

𝑛×1 and

the output of the DNN will be (𝑀 ∙ 𝑋)2𝑅′ + ℎ. We invoke Theorem 4 and Theorem 2 to

proof that there is no leakage of 𝑀 or 𝑋.

If the DNN has more 𝑙 layers, then 𝑋0 ← 𝑈𝑞
𝑚×1 𝑀𝑖 ← 𝑈𝑞

𝑛×𝑚, for 0 ≤ 𝑖 ≤ 𝑙, ℎ ← 𝜒𝑞
𝑛×1 𝑅 ←

𝜒𝑞
𝑛×1. and 𝑋𝑖 = (𝑋𝑖 ∙ 𝑀𝑖)2. The output of the DNN at the l-th layes is (𝑀𝑙 ∙ 𝑋𝑙)2𝑅 + ℎ. We

invoke Theorem 5 and Theorem 2 to proof that there is no leakage of the trained model 𝑀

and the user query 𝑋

138

Theorem 6.7: secArgmax (Algorithm 6.7) is a secure two-party protocol under the semi-

honest model.

Proof: Here 𝑓 is the deterministic function 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘), where the public key

𝑃𝑘 and the input ciphertext 𝑖𝑛𝑝𝑢𝑡_𝑐are the private inputs of party A and the secret key 𝑠𝑘 is

the private input of party B. For the output of the function we have

𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐴(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘),𝑎𝑟𝑔𝑚𝑎𝑥𝐵(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘)) =

(𝜙,𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣), where 𝜙 means no output. The protocol 𝛱 that securely computes

𝑎𝑟𝑔𝑚𝑎𝑥 is 𝑠𝑒𝑐𝐴𝑟𝑔𝑚𝑎𝑥(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘). For the output of the protocol 𝛱 we have

𝑜𝑢𝑡𝑝𝑢𝑡𝛱(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘) = (𝑜𝑢𝑡𝑝𝑢𝑡𝐴
𝛱, 𝑜𝑢𝑡𝑝𝑢𝑡𝐵

𝛱) = (𝜙,𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣).

The view of party A is 𝑉𝐴 = (𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑟𝐴, 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐), where 𝑃𝑘 is the public key

and r𝐴 are random coin tosses at A. We build the simulator for party A as

𝑆𝐴((𝑥𝐴), 𝑓𝐴(�̅�)) = 𝑆𝐴((𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐), 𝑠𝑒𝑐𝐴𝑟𝑔𝑚𝑎𝑥𝐴(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘)) =

𝑆𝐴((𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐), 𝜙) = (𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑟�̃�, 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐̃), where 𝑟�̃� is chosen from the

same distribution as 𝑟𝐴 and 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐̃ is a random ciphertext. Due to the semantic

security of the RLWE scheme an adversary cannot distinguish between 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐

and 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑐̃ , hence 𝑆𝐴 ≅𝐶 𝑉𝐴.

Similarly, for the view of party B we have 𝑉𝐵 = (𝑠𝑘, 𝑟𝐵, 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐, 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐), where 𝑠𝑘

is the secret key and 𝑟𝐵 are random coin tosses at B. We construct the simulator for the party

B as 𝑆𝐵(𝑥𝐵, 𝑓𝐵(�̅�)) = 𝑆𝐵((𝑠𝑘), 𝑠𝑒𝑐𝐴𝑟𝑔𝑚𝑎𝑥𝐵(𝑃𝑘, 𝑖𝑛𝑝𝑢𝑡_𝑐, 𝑠𝑘)) = 𝑆𝐵(𝑠𝑘,𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥) =

(𝑠𝑘, 𝑟�̃�, 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐̃ ,𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃), where 𝑟�̃� has same random distribution as 𝑟𝐵, 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐̃

is a random ciphertext and 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃ is done by first constructing a vector 𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣 from

the output 𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥 and then having 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃ = 𝐸𝑛𝑐𝑜𝑑𝑒_𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥_𝑣). Due

to the semantic security of the ciphertexts, an adversary cannot distinguish between

𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐 and 𝑝𝑒𝑟𝑆𝐶𝐴𝐷𝑆_𝑐̃ , as well as between 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐 and 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃ , so 𝑆𝐵 ≅𝐶 𝑉𝐵. ∎

Theorem 6.8: PPClassServCen (Algorithm 6.21) is a secure multi-party protocol under the

semi-honest model

Proof: The function 𝑓((𝑋, 𝑘, 𝑅), 𝑇𝑀_𝑐, 𝜙) = (𝑓𝑈𝑠𝑒𝑟1, 𝑓𝑇𝐴𝐶𝑆, 𝑓𝐸𝐷𝑆) = (𝐶𝑇𝑀(𝑋), 𝜙, 𝜙), is

computed by the protocol PPClassServCen = Π, which we split into two protocols called

consecutively. Namely 𝜌1 computes lines 1-12 and 𝜌2 computes lines 13-26, so

139

PPClassServCen = 𝛱 = 𝜌1𝜌2. For the corresponding protocol outputs we have

𝑜𝑢𝑡𝑝𝑢𝑡𝛱(𝑋, 𝑘, 𝑅, 𝑇𝑀_𝑐, 𝜙) = (𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑠𝑒𝑟1
𝛱 , 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝐴𝐶𝑆

𝛱 , 𝑜𝑢𝑡𝑝𝑢𝑡𝐸𝐷𝑆
𝛱) = (𝐶𝑇𝑀(𝑋), 𝜙, 𝜙).

𝑜𝑢𝑡𝑝𝑢𝑡𝜌1((𝑋, 𝑘, 𝑅), 𝜙, 𝜙) = (𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑠𝑒𝑟1
𝜌1 , 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝐴𝐶𝑆

𝜌1 , 𝑜𝑢𝑡𝑝𝑢𝑡𝐸𝐷𝑆
𝜌1) =

(𝜙, (𝑘, 𝑅, 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑡𝑜𝑟_𝑐), 𝜙),

𝑜𝑢𝑡𝑝𝑢𝑡𝜌2((𝑘, 𝑅), (𝑘, 𝑅, 𝑞𝑢𝑒𝑟𝑦𝑉𝑒𝑡𝑜𝑟_𝑐, 𝑇𝑀_𝑐), 𝜙) =

(𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑠𝑒𝑟1
𝜌2 , 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝐴𝐶𝑆

𝜌2 , 𝑜𝑢𝑡𝑝𝑢𝑡𝐸𝐷𝑆
𝜌2) = (𝐶𝑇𝑀(𝑋), 𝜙, 𝜙).

For the views and simulators for 𝜌1 we have the trivial ones, thus 𝑉𝑈𝑠𝑒𝑟1
𝜌1 =

(𝑋, 𝑟𝑈) ≅𝐶 (𝑋, 𝑟�̃�) = 𝑆𝑈𝑠𝑒𝑟1
𝜌1 (𝑋, 𝜙), 𝑉𝑇𝐴𝐶𝑆

𝜌1 = (𝑇𝑀_𝑐, 𝑟𝑇𝐴𝐶𝑆) ≅𝐶 (𝑇𝑀_𝑐, 𝑟𝑇𝐴𝐶�̃�) =

𝑆𝑇𝐴𝐶𝑆
𝜌1 (𝑇𝑀_𝑐, 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝐴𝐶𝑆

𝜌1).

For 𝜌2 for TACS we have the trivial view and simulator. For EDS we have 𝑉𝐸𝐷𝑆
𝜌2 =

(𝑘, 𝑅, 𝑟𝐸𝐷𝑆, 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐) ≅𝐶 (𝑘, 𝑅, 𝑟𝐸𝐷𝑆̃ , 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃) = 𝑆𝐸𝐷𝑆
𝜌2 , where for 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃ we first

construct a random vector 𝑟𝑛𝑑_𝑣, then encode and encrypt it 𝑟𝑛𝑑_𝑐 =

𝐸𝑛𝑐𝑜𝑑𝑒𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑟𝑛𝑑_𝑣) and set 𝑟𝑒𝑠𝑢𝑙𝑡_𝑐̃ = 𝑆𝐶𝐴𝐷𝑆(𝑟𝑛𝑑_𝑐, ([𝑐], 𝑛𝑐 , 𝑐)).For the user’s

view and corresponding simulator we have 𝑉𝑈𝑠𝑒𝑟1
𝜌2 = (𝜙, 𝑟𝑈𝑠𝑒𝑟 , 𝑟𝑛𝑑𝑀𝑎𝑥𝐼𝑛𝑑𝑒𝑥) ≅𝐶 𝑆𝑈𝑠𝑒𝑟

𝜌2 =

(𝜙, 𝑟𝑈𝑠𝑒�̃� , 𝑖𝑛𝑑), and 𝑖𝑛𝑑 = 𝑆𝑅𝐶𝑃𝑒𝑟(𝐶𝑇𝑀(𝑋), 𝑘, 𝑅, 𝑐, 𝑛𝑐). We invoke Theorem 3.1 to prove

that PPClassServCen = 𝜌1𝜌2 is secure ∎

Corollary 6.1: protocol 𝜌1 is a secure protocol under the semi-honest model ∎

Corollary 6.2: protocol 𝜌2 is a secure protocol under the semi-honest model ∎

Theorem 6.9: secMLClass (Algorithm 6.26) is a secure 2PC protocol under the semi-honest

model.

Proof: The client’s view is 𝑉𝐶{𝜆, 𝑆} = 𝑉𝐶 = {𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣}, where 𝜆 = {𝑁, 𝑞, 𝑡} (as in

Section III-B). Let 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣̃ = 𝑆𝑅𝐶𝑃𝑒𝑟(𝐶𝑀(𝑆)_𝑣 , 𝑘, 𝑅1, 𝑅2, 𝑐, 𝑓 + 1), where the random

parameters 𝑘, 𝑅1, 𝑅2 have the same values that the client used while executing Algorithm

6.26. Apparently 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣̃ and 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 are the same. Let the simulator view for the

client be 𝑆𝐶(𝜆, 𝑂) = {𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣̃ }, thus 𝑆𝐶(𝜆, 𝑂) ≅𝑐 𝑉𝐶.

140

Server’s view is 𝑉𝑆{𝜆, 𝑆} = 𝑉𝑆 = {𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐}. For the server’s simulator 𝑆𝑠(𝜆, 𝑂) we

construct a matrix of random queries �̃� = {𝑋(𝑖)̃ }
𝑖=1

𝑞
 and use it as our input to proceed with

lines 1-7 of Algorithm 6.26 to get 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐̃ . Since the server cannot distinguish

between𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐 and 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐̃ due to the semantic security of the underlying RLWE

scheme (he can’t even distinguish the genuity between the decrypted and decoded

𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣 and 𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑣̃), by having 𝑆𝑠(𝜆, 𝑂) = {𝑟𝑛𝑑𝐶𝑀(𝑆)_𝑐̃ } we proof

𝑆𝑆(𝜆, 𝑂) ≅𝑐 𝑉𝑆 ∎

Theorem 6.10: secC (Algorithm 6.24) is secure under the semi-honest model.

Proof: EC’s view is 𝑉𝐸𝐶
𝑠𝑒𝑐𝐶(𝜆, �̅�) = {𝑟𝑛𝑑𝐶𝑇𝑀(𝑞)_𝑣, ℎ2_𝑣} its private input 𝑥𝐸𝐶

𝑠𝑒𝑐𝐶 = 𝑞_𝑣 and

output 𝑂𝐸𝐶
𝑠𝑒𝑐𝐶(𝜆, �̅�) = 𝐶𝑇𝑀(𝑞). For the EC’s simulator we construct random

𝑟𝑛𝑑𝐶𝑇𝑀(𝑞)_𝑣̃ ,ℎ2_�̃� s.t. their subtraction will give the same output when EC executes lines

14-18, thus 𝑆𝐸𝐶
𝑠𝑒𝑐𝐶 (𝜆, 𝑥𝐸𝐶

𝑠𝑒𝑐𝐶 , 𝑂𝐸𝐶
𝑠𝑒𝑐𝐶(𝜆, �̅�)) = {𝑟𝑛𝑑𝐶𝑇𝑀(𝑞)_𝑣̃ ,ℎ2_�̃�} ≅𝑐 𝑉𝐸𝐶

𝑠𝑒𝑐𝐶(𝜆, �̅�). The

views of TEAS and E2DS are 𝑉𝑇𝐸𝐴𝑆
𝑠𝑒𝑐𝐶(𝜆, �̅�) = {𝐶𝑇𝑀(𝑞)_𝑐} and is 𝑉𝐸2𝐷𝑆

𝑠𝑒𝑐𝐶(𝜆, �̅�) =

{𝑟𝑛𝑑𝐶𝑇𝑀(𝑞)_𝑐}, respectively. We construct random ciphertexts 𝐶𝑇𝑀(𝑞)_𝑐̃ and 𝑟𝑛𝑑𝐶𝑇𝑀(𝑞)_𝑐̃

for their corresponding simulators. ∎

Theorem 6.11: MU-PPClassServCen (Algorithm 6.28) is a secure multi-party protocol

under the semi-honest model

Proof: MU-PPClassServCen will not change if we execute lines 13-17 after line 27 at TACS.

Let 𝜌1′ be a protocol that computes lines 1-10 of MU-PPClassServCen. By applying the same

reasoning as in protocol 𝜌1(Corollary 6.1) we deduce that it is a secure protocol under the

semi-honest model. Lines 11-12 and line 18 are the secSum protocol which we proved to be

secure (theorem 3). Let 𝜌2
′ be the protocol that computes lines 19-27 and lines 13-17 (when

putting them after line 27) which can be seen as a deterministic function. For the views and

simulators of EDS in 𝜌2
′ we have 𝑉𝐸𝐷𝑆

 𝜌2
′

= (𝑠𝑢𝑚𝑅𝑒𝑠𝑢𝑙𝑡_𝑐, 𝑟𝐸𝐷𝑆) = 𝑆𝐸𝐷𝑆
 𝜌2
′

. For the view of

TACS we have 𝑉𝑇𝐴𝐶𝑆
 𝜌2
′

= (𝑀𝑈 − 𝑇𝑀_𝑐,𝑀𝑈 − 𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐, 𝑘, 𝑅, 𝑟𝑇𝐴𝐶𝑆, 𝑜𝑢𝑡𝑐𝑜𝑚𝑒). For

the simulator we have 𝑆𝑇𝐴𝐶𝑆
 𝜌2
′

= (𝑀𝑈 − 𝑇𝑀_𝑐,𝑀𝑈 −

𝑄𝑢𝑒𝑟𝑦𝑉𝑒𝑐𝑡𝑜𝑟_𝑐, 𝑘, 𝑅, 𝑟𝑇𝐴𝐶𝑆, 𝑜𝑢𝑡𝑐𝑜𝑚𝑒̃), where we set 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑓𝑎𝑙𝑠𝑒 if we abort in line

141

26, otherwise it’s true. Line 28 executes protocol 𝜌2 which was proven to be secure in

Corollary 6.2.

If MU-PPClassServCen is substituted by sequential calls to protocols 𝜌1′, secSum, 𝜌2
′ and

𝜌2, then by invoking the Modular Sequential Composition Theorem (Theorem 3.1) we proof

that MU-PPClassServCen is secure under the semi-honest model. In the process we used the

techniques (ideas) mentioned in Chapter 7 of [60] of forcing the correct behavior of malicious

models (users) by using protocols under the semi-honest model. In other words, we apply

protocols of the semi-honest model to detect cheatings (misbehaviors) of the malicious

models, and if so we abort the protocol, otherwise we execute the protocol till the end ∎

Theorem 6.12: secMLClass-MU (Algorithm 6.29) is a secure multi-party protocol under the

semi-honest model

Proof: Let 𝜌 denote the protocol that executes the first 4 lines of secMLClass-MU. Proving

𝜌 is trivial, while in Theorem 6.3 we proved the security of secMLClass. Since secMLClass-

MU is executed by sequentially calling 𝜌 and secMLClass, we invoke Theorem 3.1 to proof

secMLClass-MU’s security under the semi-honest model ∎

142

Chapter 7

CONCLUSIONS

In this dissertation, initially, we provide a novel secure feature selection scheme of

homomorphically evaluating features’ information gains (a variant of information theoretic

entropy) over distributed multi-label multi-output datasets in edge IoT environments. We

proceed with secure training and classification of multi-label multi-output datasets over the

selected features on the same environment settings (context). Since multi-label multi-output

datasets in itself incorporate the special cases of single label multi-class and binary classes

datasets, our schemes are valid for them as well. While doing so we take into consideration

the heterogeneity (in terms of hardware and software platforms) and the restricted resources

that are characteristic for edge IoT devices. We formally prove the security of all of our

schemes (protocols, algorithms) under the semi-honest model. In the process, our participants

interact with each other under strict security. privacy and efficiency requirements. To these

ends, we provide confidentiality, integrity and authenticity to each interaction by signing

their hashed contents with the corresponding participant’s private key. We assure the

consistency among interactions by introducing timestamps and linking them with the hashed

content(s) of the preceding interaction(s). This makes our protocols a natural fit for

blockchain technology. Our underlying cryptographic tools are proven to be resistant to

quantum computer attacks, making our protocols applicable to the post quantum World. All

of our protocols (secure feature selection, training and classification) are independent from

each other, in terms that, according to the scenario and needs, each of them can be used solely

143

or in combination with secure and private protocols from other research schemes. Our

protocols show no loss of classification (prediction) accuracy due to applying ML algorithms

in private and secure fashion. Also, they show high rate of fault tolerance (byzantine failures)

and resistance to collusion attacks among dataset owners during the secure feature selection

and secure training stages.

Our secure feature selection protocols satisfy several strict security and privacy goals by

not only keeping private feature values and intermediate results while executing the

protocols, rather they keep private the features (or words) themselves as well as the final

output (which is the top m selected features). Extensive experimental evaluations show that

our protocols outperform the state of the art in terms of computation and communication

costs for dozen times. In the process the state-of-the art schemes operate under weaker

privacy and security constraints. Compared to our protocols, they also suffer from a high

level of interactions between the participants. In this sense, for textual datasets they need

hundreds of thousands of interaction between the participants, compared to only a few ones

needed in our protocols.

We transfer the security, privacy and efficiency properties of secure feature selection

protocols to our secure training protocols as well. Namely, during our secure training

protocols, besides the feature values, we also keep private the features themselves, the

intermediate results while running the protocols as well as the final trained model. This makes

our secure training protocols among the rare schemes to do so in literature. Our theoretical

analysis and extensive experimental evaluations over benchmark datasets show that our

schemes outperform the state-of-the-art in terms of computation and communication costs

from several times to orders of magnitudes, not only when state-of-the-art schemes proceed

to securely train their ML models without prior feature selection, rather it is the case when

they also do it. In this sense, while it takes few minutes to our secure schemes to obtain the

final ML trained model over raw datasets (secure feature selection proceeded by secure

training), the state-of-the-art schemes do the same for several days or weeks. Besides, state-

of-the-art schemes operate under weaker security and privacy requirements, while many of

them suffer from high levels of interaction between participants

For the purposes of our secure classification protocol, we propose several novel secure

building blocks for general purpose (which are commonly needed for secure ML

144

classifications), as well as building blocks related to secure linear algebra. Our theoretical

analysis and experimental evaluations show that our proposed blocks outperform the state-

of-the-art in terms of computation and communication costs. Since our secure classification

protocols are based on the proposed building blocks, our further theoretical analysis and

extensive experimental evaluations over benchmark datasets show that our secure

classification protocols outperform the state-of-the-art ones in terms of computation and

communication costs, sometimes from several times to orders of magnitude. These results

were observed for secure ML classifiers such as Deep Neural Networks, Naïve Bayes,

Multinomial Naïve Bayes, Support Vector Machines, Logistic Regression, Decision Trees,

Random Forests and K Nearest Neighbors. Similar to the security and privacy properties of

the above mentioned secure protocols, during our secure classifications protocols the owner

of the trained ML model learns nothing about the users queries, their final classifications or

the intermediate results, while the users learn only their respective final classifications and

nothing else. All of these goals are achieved by our protocols while operating in a non-

interactive fashion (in a single round only). This makes our protocols among the rare ones to

achieve those security, privacy and efficiency requirements under those circumstances, since

the ones that do so usually suffer from high computation or communication cost.

Furthermore, we extend the efficiency of our schemes to also deal with malicious users

(which arbitrarily deviate from the protocol with the aim of illegally retrieving any

information for the trained ML model or at least with the aim of sabotaging the protocol)

during secure NB classifications as well as during multi-users (multi-query) scenarios. To

the best of our knowledge, this makes our schemes among the rare (if not the only ones) to

address malicious users during secure classifications.

We should note that the experimental evaluations of our secure comparison protocol based

on arithmetic circuits showed that when it is used solely (isolated, as a single entity) it doesn’t

provide a perfect privacy for the difference of the two numbers that it compares. Since

SCADS (secure comparison of all data slots) is based on it, SCADS by default inherits the

privacy properties of the secure comparison protocol. However, when those two are used in

combination with our secure classification protocols, we proof that in polynomial time they

can be theoretically reduced to well established cryptographic problems assumed to be hard

even for quantum computers, such as LWE. This is due to the fact that our secure

145

classification protocols in their initial phase have the form of matrix-vector multiplication

(the trained model multiplied by the user query), proceeded by the proposed secure

comparison protocol which adds some noise (random value), which is also the case with the

construction of LWE schemes.

We plan to extend these security, privacy and efficiency characteristics of our schemes to

deal with other secure multi-label multi-output ML algorithms in distributed environments.

E.g., knowing that decision trees use the features’ information gains to choose the nodes for

each tree levels, one such ML algorithm can be federated (distributed) tree learning, for

which we can adjust our proposed protocol of securely evaluating the information gains in

distributed environments (secFS-S2). Other such secure ML algorithms can be secure

distributed training of SVM models or secure kNN over multiple edge IoT dataset owners.

Also, they should deal with both horizontally and vertically partitioned datasets.

One of the less explored areas is PP graph theory, especially over multiple graphs, which

we also plan to address in near future. It can be used for secure routing, for different

companies that use graph theory to represent data in their businesses (such as internet service

providers, cargo companies, etc.) to securely aggregate their data with other companies, for

Google Maps-like applications to hide the user query to the server while showing the user

only the best path (route) and hiding the other paths, etc.

146

BIBLIOGRAPHY

[1] Nordrum, Amy. "Popular internet of things forecast of 50 billion devices by 2020 is

outdated." IEEE spectrum 18 (2016).

[2] Reinsel, David, John Gantz, and John Rydning. "Data age 2025: The evolution of data to

life-critical." Don’t Focus on Big Data (2017).

[3] Shokri, Reza, and Vitaly Shmatikov. "Privacy-preserving deep learning." Proceedings of

the 22nd ACM SIGSAC conference on computer and communications security. ACM, 2015.

[4] Lindell, Yehuda, and Benny Pinkas. "Privacy preserving data mining." Annual

International Cryptology Conference. Springer, Berlin, Heidelberg, 2000.

[5] Agrawal, Rakesh, and Ramakrishnan Srikant. "Privacy-preserving data mining."

Proceedings of the 2000 ACM SIGMOD international conference on Management of data.

2000.

[6] Verykios, V. S., Bertino, E., Fovino, I. N., Provenza, L. P., Saygin, Y., & Theodoridis,

Y. (2004). State-of-the-art in privacy preserving data mining. ACM Sigmod Record, 33(1),

50-57.

[7] Aggarwal, Charu C., and S. Yu Philip. "A general survey of privacy-preserving data

mining models and algorithms." Privacy-preserving data mining. Springer, Boston, MA,

2008. 11-52.

[8] Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., & Wernsing, J.

"Cryptonets: Applying neural networks to encrypted data with high throughput and

accuracy." International Conference on Machine Learning. PMLR, 2016.

[9] Bost, Raphael, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser "Machine learning

classification over encrypted data." Network & Distributed System Security Symposium.

Vol. 4324. 2015.

[10] Gao, Chong-zhi, Qiong Cheng, Pei He, Willy Susilo, and Jin Li "Privacy-preserving

Naive Bayes classifiers secure against the substitution-then-comparison attack." Information

Sciences 444 (2018): 72-88.

147

[11] Khedr, Alhassan, Glenn Gulak, and Vinod Vaikuntanathan. "SHIELD: scalable

homomorphic implementation of encrypted data-classifiers." IEEE Transactions on

Computers 65.9 (2015): 2848-2858.

[12] Gupta, Trinabh, Henrique Fingler, Lorenzo Alvisi, and Michael Walfish. "Pretzel: Email

encryption and provider-supplied functions are compatible." Proceedings of the Conference

of the ACM Special Interest Group on Data Communication. 2017.

[13] Kjamilji, Artrim, Arben Idrizi, Shkurte Luma-Osmani, and Ferihane Zenuni-Kjamilji

"Secure Naïve Bayes classification without loss of accuracy with application to breast cancer

prediction." Proceeding International Conference on Science and Engineering. Vol. 3. 2020.

[14] Wu, David J., Tony Feng, Michael Naehrig, and Kristin Lauter "Privately evaluating

decision trees and random forests." Proceedings on Privacy Enhancing Technologies 2016.4

(2016): 335-355.

[15] Liu, Ximeng, Rongxing Lu, Jianfeng Ma, Le Chen, and Baodong Qin "Privacy-

preserving patient-centric clinical decision support system on naive Bayesian classification."

IEEE journal of biomedical and health informatics 2012 (2015): 655-668.

[16] Liu, Ximeng, Robert Deng, Kim-Kwang Raymond Choo, and Yang Yang "Privacy-

preserving outsourced clinical decision support system in the cloud." IEEE Transactions on

Services Computing (2017).

[17] Al Badawi, Ahmad, Louie Hoang, Chan Fook Mun, Kim Laine, and Khin Mi Mi Aung

"Privft: Private and fast text classification with homomorphic encryption." IEEE Access 8

(2020): 226544-226556.

[18] Kjamilji, Artrim, Erkay Savaş, and Albert Levi. "Efficient Secure Building Blocks With

Application to Privacy Preserving Machine Learning Algorithms." IEEE Access 9: 8324-

8353.

[19] Reich, Devin, Ariel Todoki, Rafael Dowsley, Martine De Cock, and Anderson CA

Nascimento "Privacy-preserving classification of personal text messages with secure multi-

party computation: An application to hate-speech detection." arXiv preprint

arXiv:1906.02325 (2019).

[20] Resende, Amanda, Davis Railsback, Rafael Dowsley, Anderson CA Nascimento, and

Diego F. Aranha "Fast privacy-preserving text classification based on secure multiparty

computation." arXiv preprint arXiv:2101.07365 (2021).

148

[21] Costantino, Gianpiero, Antonio La Marra, Fabio Martinelli, Andrea Saracino, and Mina

Sheikhalishahi. "Privacy-preserving text mining as a service." 2017 IEEE Symposium on

Computers and Communications (ISCC). IEEE, 2017.

[22] Das, Kamalika, Kanishka Bhaduri, and Hillol Kargupta. "A local asynchronous

distributed privacy preserving feature selection algorithm for large peer-to-peer networks."

Knowledge and information systems 24.3 (2010): 341-367.

[23] Banerjee, Madhushri, and Sumit Chakravarty. "Privacy preserving feature selection for

distributed data using virtual dimension." Proceedings of the 20th ACM international

conference on Information and knowledge management. 2011.

[24] Jafer, Yasser, Stan Matwin, and Marina Sokolova. "Privacy-aware filter-based feature

selection." 2014 IEEE International Conference on Big Data (Big Data). IEEE, 2014.

[25] Sheikhalishahi, Mina, and Fabio Martinelli. "Privacy-utility feature selection as a

privacy mechanism in collaborative data classification." 2017 IEEE 26th International

Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises

(WETICE). IEEE, 2017.

[26] Rahimipour Anaraki, Javad, and Saeed Samet. "Privacy-preserving feature selection: A

survey and proposing a new set of protocols." arXiv e-prints (2020): arXiv-2008.

[27] Rao, Vanishree, Yunhui Long, Hoda Eldardiry, Shantanu Rane, Ryan Rossi, and Frank

Torres "Secure Two-Party Feature Selection." arXiv preprint arXiv:1901.00832 (2019).

[28] Li, Xiling, Rafael Dowsley, and Martine De Cock. "Privacy-preserving feature selection

with secure multiparty computation." arXiv preprint arXiv:2102.03517 (2021).

[29] Merkle, Ralph C. "A digital signature based on a conventional encryption function."

Conference on the theory and application of cryptographic techniques. Springer, Berlin,

Heidelberg, 1987.

[30] Bolt, Wilko. "Bitcoin and cryptocurrency technologies: A comprehensive introduction."

(2017): 647-649.

[31] Li, Shancang, Li Da Xu, and Shanshan Zhao. "The internet of things: a survey."

Information Systems Frontiers 17.2 (2015): 243-259.

[32] Shi, Weisong, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. "Edge computing:

Vision and challenges." IEEE internet of things journal 3, no. 5 (2016): 637-646.

149

[33] Androutsopoulos, Ion, Georgios Paliouras, and Eirinaios Michelakis. Learning to filter

unsolicited commercial e-mail. NCSR “Demokritos” Technical Report, No. 2004/2, March

2004

[34] Tang, Bo, Steven Kay, and Haibo He. "Toward optimal feature selection in naive Bayes

for text categorization." IEEE Transactions on Knowledge and Data Engineering 28.9

(2016): 2508-2521.

[35] Ranaweera, Pasika, Anca Delia Jurcut, and Madhusanka Liyanage. "Survey on Multi-

Access Edge Computing Security and Privacy." IEEE Communications Surveys & Tutorials

(2021).

[36] Zhao, Wenbing, Congfeng Jiang, Honghao Gao, Shunkun Yang, and Xiong Luo.

"Blockchain-Enabled Cyber-Physical Systems: A Review." IEEE Internet of Things Journal

(2020).

[37] Metsis, Vangelis, Ion Androutsopoulos, and Georgios Paliouras. "Spam filtering with

naive bayes-which naive bayes?." CEAS. Vol. 17. 2006.

[38] Buczak, Anna L., and Erhan Guven. "A survey of data mining and machine learning

methods for cyber security intrusion detection." IEEE Communications Surveys & Tutorials

18.2 (2016): 1153-1176.

[39] Dua, Sumeet, and Xian Du. Data mining and machine learning in cybersecurity. CRC

press, 2016.

[40] Quinlan, J. Ross. "Induction of decision trees." Machine learning 1.1 (1986): 81-106.

[41] Quinlan, J. Ross. "Bagging, boosting, and C4. 5." AAAI'96: Proceedings of the

thirteenth national conference on Artificial intelligence - Volume 1 August 1996 Pages 725–

730.

[42] Russell, Stuart, Peter Norvig, and Artificial Intelligence. "A modern approach."

Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs 25 (1995): 27.

[43] Mitchell, Tom M. "Machine learning." (1997).

[44] Li, Tong, Zhengan Huang, Ping Li, Zheli Liu, and Chunfu Jia "Outsourced privacy-

preserving classification service over encrypted data." Journal of Network and Computer

Applications 106 (2018): 100-110.

[45] Mourao-Miranda, J., Reinders, A.A.T.S., Rocha-Rego, V., Lappin, J., Rondina, J.,

Morgan, C., Morgan, K.D., Fearon, P., Jones, P.B., Doody, G.A. and Murray, R.M

150

"Individualized prediction of illness course at the first psychotic episode: a support vector

machine MRI study." Psychological medicine 42.5 (2012): 1037-1047.

[46] Schmidhuber, Jürgen. "Deep learning in neural networks: An overview." Neural

networks 61 (2015): 85-117.

[47] Yao, Andrew C. "Protocols for secure computations." Foundations of Computer

Science, 1982. SFCS'08. 23rd Annual Symposium on. IEEE, 1982.

[48] ElGamal, Taher. "A public key cryptosystem and a signature scheme based on discrete

logarithms." IEEE transactions on information theory 31.4 (1985): 469-472.

[49] Paillier, Pascal. "Public-key cryptosystems based on composite degree residuosity

classes." International Conference on the Theory and Applications of Cryptographic

Techniques. Springer, Berlin, Heidelberg, 1999.

[50] Shafi, Goldwasser, Silvio Micali."Probabilistic encryption."Journal of computer and

system sciences 28.2 (1984):270-299.

[51] Henecka, Wilko, et al. "TASTY: tool for automating secure two-party computations."

Proceedings of the 17th ACM conference on Computer and communications security. ACM,

2010.

[52] Ben-David, Assaf, Noam Nisan, and Benny Pinkas. "FairplayMP: a system for secure

multi-party computation." In Proceedings of the 15th ACM conference on Computer and

communications security, pp. 257-266. ACM, 2008.

[53] Bost, Raphael, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. "Machine learning

classification over encrypted data." In Network & Distributed System Security Symposium,

2015.

[54] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in ACM Symposium

on Theory of Computing, 2009, pp. 169–178.

[55] Brakerski, Zvika, Craig Gentry, and Vinod Vaikuntanathan. "(Leveled) fully

homomorphic encryption without bootstrapping." ACM Transactions on Computation

Theory (TOCT) 6, no. 3 (2014): 13.

[56] Fan, Junfeng, and Frederik Vercauteren. "Somewhat Practical Fully Homomorphic

Encryption." IACR Cryptology ePrint Archive 2012 (2012): 144.

[57] Smart, Nigel P., and Frederik Vercauteren. "Fully homomorphic SIMD operations."

Designs, codes and cryptography 71, no. 1 (2014): 57-81.

151

[58] Halevi, Shai, and Victor Shoup. "Algorithms in helib." In International Cryptology

Conference, CRYPTO, pp. 554-571. Springer, Berlin, Heidelberg, 2014.

[59] Martins, Paulo, Leonel Sousa, and Artur Mariano. "A survey on fully homomorphic

encryption: An engineering perspective." ACM Computing Surveys (CSUR) 50.6 (2017): 1-

33.

[60] Goldreich, Oded. Foundations of cryptography: volume 2, basic applications.

Cambridge university press, 2009.

[61] Kantarcıoglu, Murat, Jaideep Vaidya, and C. Clifton. "Privacy preserving naive bayes

classifier for horizontally partitioned data." In IEEE ICDM workshop on privacy preserving

data mining, pp. 3-9. 2003.

[62] Vaidya, Jaideep, Murat Kantarcıoğlu, and Chris Clifton. "Privacy-preserving naive

bayes classification." The VLDB Journal 17, no. 4 (2008): 879-898.

[63] Lindell, Yehuda, and Benny Pinkas. "Privacy preserving data mining." Annual

International Cryptology Conference, CRYPTO. Springer, Berlin, Heidelberg, 2000.

[64] Yang, Zhiqiang, Sheng Zhong, and Rebecca N. Wright. "Privacy-preserving

classification of customer data without loss of accuracy." In Proceedings of the 2005 SIAM

International Conference on Data Mining, pp. 92-102. Society for Industrial and Applied

Mathematics, 2005

[65] Yi, Xun, and Yanchun Zhang. "Privacy-preserving naive Bayes classification on

distributed data via semi-trusted mixers." Information systems 34, no. 3 (2009): 371-380.

[66] Liu, Ximeng, Rongxing Lu, Jianfeng Ma, Le Chen, and Baodong Qin. "Privacy-

preserving patient-centric clinical decision support system on naive Bayesian classification."

IEEE journal of biomedical and health informatics 20, no. 2 (2016): 655-668.

[67] Liu, Ximeng, Robert Deng, Kim-Kwang Raymond Choo, and Yang Yang. "Privacy-

Preserving Outsourced Clinical Decision Support System in the Cloud." IEEE Transactions

on Services Computing, Volume: 14, Issue: 1 (2021): 222 – 234

[68] Li, Ping, et al. "Privacy-preserving outsourced classification in cloud computing."

Cluster Computing 21.1 (2018): 277-286.

152

[69] Park, Heejin, Pyung Kim, Heeyoul Kim, Ki-Woong Park, and Younho Lee. "Efficient

machine learning over encrypted data with non-interactive communication." Computer

Standards & Interfaces 58 (2018): 87-108.

[70] Li, Tong, Zhengan Huang, Ping Li, Zheli Liu, and Chunfu Jia "Outsourced privacy-

preserving classification service over encrypted data." Journal of Network and Computer

Applications 106 (2018): 100-110.

[71] Gao, Chong-zhi, Qiong Cheng, Pei He, Willy Susilo, and Jin Li "Privacy-preserving

Naive Bayes classifiers secure against the substitution-then-comparison attack." Information

Sciences 444 (2018): 72-88.

[72] Kjamilji, Artrim, Arben Idrizi, Shkurte Luma-Osmani, and Ferihane Zenuni-Kjamilji

"Secure Naïve Bayes classification without loss of accuracy with application to breast cancer

prediction." Proceeding International Conference on Science and Engineering. Vol. 3. 2020.

[73] Sun, Xiaoqiang, Peng Zhang, Joseph K. Liu, Jianping Yu, and Weixin Xie "Private

machine learning classification based on fully homomorphic encryption." IEEE Transactions

on Emerging Topics in Computing 8.2 (2018): 352-364.

[74] Khedr, Alhassan, Glenn Gulak, and Vinod Vaikuntanathan. "SHIELD: scalable

homomorphic implementation of encrypted data-classifiers." IEEE Transactions on

Computers 65.9 (2015): 2848-2858.

[75] Li, Tong, Zhengan Huang, Ping Li, Zheli Liu, and Chunfu Jia. "Outsourced privacy-

preserving classification service over encrypted data." Journal of Network and Computer

Applications 106 (2018): 100-110.

[76] Pereira, Hilder VL. "Efficient AGCD-based homomorphic encryption for matrix and

vector arithmetic." IACR Cryptol. ePrint Arch. 2020 (2020): 491.

[77] Yasumura, Yoshiko, Yu Ishimaki, and Hayato Yamana. "Secure Naïve Bayes

Classification Protocol over Encrypted Data Using Fully Homomorphic Encryption."

Proceedings of the 21st International Conference on Information Integration and Web-based

Applications & Services. 2019.

[78] Wood, Alexander, Vladimir Shpilrain, Kayvan Najarian, Ali Mostashari, and Delaram

Kahrobaei "Private-Key Fully Homomorphic Encryption for Private Classification."

International Congress on Mathematical Software. Springer, Cham, 2018.

153

[79] Wood, Alexander, Vladimir Shpilrain, Kayvan Najarian, and Delaram Kahrobaei",

Private naive bayes classification of personal biomedical data: Application in cancer data

analysis." Computers in biology and medicine 105 (2019): 144-150.

[80] Kim Laine, “Microsoft/SEAL”, last accessed on 01.07.2021 from

https://github.com/Microsoft/SEAL

[81] Artrim Kjamilji, “artrimk/secMNB_Email”, last accessed on 01.07.2021 from

https://github.com/artrimk/secMNB_Email

[82] Oleander Software, “OleanderSoftware”, last accessed on 01.07.2021 from

https://github.com/OleanderSoftware/OleanderStemmingLibrary

[83] Joaquin Vanschoren, “OpenmML Speed Dating”, last accessed on 01.07.2021 from

https://www.openml.org/d/40536

[84] Tiago A. Almeida and José María Gómez Hidalgo, “SMS spam collection”, last

accessed on 01.07.2021 from http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/

[85] Almeida, Tiago A., José María G. Hidalgo, and Akebo Yamakami. "Contributions to

the study of SMS spam filtering: new collection and results." Proceedings of the 11th ACM

symposium on Document engineering. ACM, 2011.

[86] Dr. WIlliam H. Wolberg, “Breast Cancer Wisconsin (Original) Data Set”, last accessed

on 01.07.2021 from

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)

[87] Jacek Czerniak, “Acute Inflammations Data Set”, last accessed on 01.07.2021 from

http://archive.ics.uci.edu/ml/datasets/acute+inflammations

[88] Nandakumar, Karthik, Nalini Ratha, Sharath Pankanti, and Shai Halevi "Towards deep

neural network training on encrypted data." Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops. 2019.

[89] Juvekar, Chiraag, Vinod Vaikuntanathan, and Anantha Chandrakasan. "GAZELLE: A

low latency framework for secure neural network inference." 27th USENIX Security

Symposium (USENIX Security 18). 2018.

[90] Jiang, Xiaoqian, Miran Kim, Kristin Lauter, and Yongsoo Song "Secure outsourced

matrix computation and application to neural networks." Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security. 2018.

154

[91] Kalchbrenner, Nal, Edward Grefenstette, and Phil Blunsom. "A convolutional neural

network for modelling sentences." arXiv preprint arXiv:1404.2188 (2014).

[92] Wu, David J., et al. " Wu, David J., Tony Feng, Michael Naehrig, and Kristin Lauter."

Proceedings on Privacy Enhancing Technologies 2016.4 (2016): 335-355.

[93] University of Waikato, Craig Nevill-Manning, Mark Hall, “Weka”, last accessed

01.07.2021 from http://old-www.cms.waikato.ac.nz/~ml/weka/

[94] Cyber Range Lab of UNSW Canberra, “The UNSW-NB15 Dataset”, last accessed on

01.07.2021 from https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-

NB15-Datasets/

[95] Damgård, Ivan, Martin Geisler, and Mikkel Krøigaard. "Efficient and secure comparison

for on-line auctions." Australasian Conference on Information Security and Privacy.

Springer, Berlin, Heidelberg, 2007.

[96] Kim, Pyung, Younho Lee, and Hyunsoo Yoon. "Sorting method for fully homomorphic

encrypted data using the cryptographic single-instruction multiple-data operation." IEICE

Transactions on Communications 99.5 (2016): 1070-1086.

[97] De Cock, Martine, et al. "Efficient and private scoring of decision trees, support vector

machines and logistic regression models based on pre-computation." IEEE Transactions on

Dependable and Secure Computing 16.2 (2017): 217-230.

[98] Artrimk Kjamilji, “PhD Dissertation codes”, last accessed on 01.07.2021 from

https://github.com/artrimk.

