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ABSTRACT

IDEMIX BASED ANONYMIZATION FOR HOME AUTOMATION SYSTEMS

SIMGE DEMIR

Computer Science and Engineering, Master’s Thesis, July 2021

Thesis Supervisor: Prof. Albert Levi

Keywords: Internet of Things, Home Automation Systems, Mutual

Authentication, Privacy-awareness, Anonymous Identification

Lately, the Internet of Things has been a popular research area within academia as
well as in the industry. IoT technology has been widely adopted to industry with a
variety of applications. Home automation systems (HAS) which helps homeowners
to manage their devices remotely is one of these applications. However, smart
homes are vulnerable to various network based attacks. Another important threat
in HAS is that it is possible to leak private information of homeowners. In this the-
sis, we propose a privacy-aware anonymous identification and authentication model
for HAS. In the proposed scheme, an innovative gateway is presented to build a
secure intercommunication platform between IoT devices and the outside users. Be-
sides, the proposed system is privacy-aware with the introduction of fake proofs
which aims to protect users’ private information. Anonymity is provided by the
Idemix based anonymous credential system where the real identities of the users
are hidden. We give implementation details and the results of conducted experi-
ments with downstream and upstream traffic scenarios. Our results suggest that
the proposed model is efficient and scalable for home automation systems.
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OZET

EV OTOMASYON SISTEMLERI ICIN IDEMIX TABANLI
ANONIMLESTIRME

SIMGE DEMIR
Bilgisayar Bilimi ve Miihendisligi YUKSEK LISANS TEZI, Temmuz 2021

Tez Danigmani: Prof. Albert Levi

Anahtar Kelimeler: Nesnelerin Interneti, Ev Otomasyon Sistemleri, Cift Yonli

Dogrulama, Gizlilige Duyarhlik, Anonim Tanimlama

Son zamanlarda, Nesnelerin Interneti (IoT) endiistride oldugu kadar akademide
de popiiler bir aragtirma alani olmustur. IoT teknolojisi, gesitli uygulamalarla
endiistride yaygin olarak kullanilmaktadir. Ev sahiplerinin cihazlarim uzaktan
yonetmelerine yardimer olan ev otomasyon sistemleri (HAS) bu uygulamalardan
biridir. Ancak akilli evler, ag tabanli saldirilara karsi giivenlik agisindan zayiftir.
Ev otomasyon sistemlerindeki bir diger 6nemli tehdit ise ev sahiplerinin kigisel
bilgilerinin sizdirilmasinin miimkiin olmasidir. Bu tezde, ev otomasyon sistemleri
i¢in gizlilige duyarh bir anonim tanimlama ve kimlik dogrulama modeli 6nerilmek-
tedir. Onerilen modelde, 10T cihazlar ve dig kullanicilar arasinda giivenli bir iletisim
platformu olugturmak amaciyla yenilik¢i bir ev ag gegidi (IHG - Innovative Home
Gateway) sunulmaktadir. Ayrica, 6nerilen sistem, kullanmcilarin kigisel bilgilerini ko-
rumay1 amaglayan sahte kanitlar ile gizlilige duyarlh hale getirilmigtir. Kullanicilarin
gercek kimliginin gizlendigi Idemix tabanli anonim ehliyet sistemi onerilen mod-
ele anonimlik saglamaktadir. Modelin uygulamasinin ayrintilar1 ve yukari yonli
ve agagl yonlii iletisim senaryolari i¢in yiiriitiilen testlerin sonuglari sunulmaktadir.
Sonuclar, 6nerilen modelin ev otomasyon sistemleri i¢in verimli ve 6lgeklenebilir
oldugunu gostermektedir.
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1. INTRODUCTION

The Internet of Things (IoT) is considered as a global network of machines where
devices can interact with each other. Recently, IoT research has grown rapidly due
to the developing communication technology and easily accessible devices [1]. The
adoption of the IoT technology gains high momentum since there is a pressure on the
firms to keep up with the technological improvements [2]. There are various kinds
of IoT applications in industry such as self-driving vehicles, RFID, indurstrial IoT
(IIoT) and home automation systems. Out of these applications, Home Automation
Systems (HAS) is one of the most popular areas due to its numerous benefits. In
the literature, there are studies [3, 4] that aim to create a secure and efficient home

environment using IoT technology.

The aim of HAS is to comfort the homeowners and make their lives easier. HAS
includes a set of interconnected devices that can be accessed remotely. For example,
in a home automation system, homeowners may control their air conditioner from
remote locations or any device at home may send an alert to the homeowner if
something goes wrong. However, the communication over the Internet in HAS leads
to potential weaknesses. HAS appears as an attractive target for attackers for several
reasons [5]. The transferred data in HAS is personal information about homeowners,
which should be protected from third parties. Also, the devices are connected to the
Internet that makes it easy to attack. Moreover, the devices in home automation
systems belong to different vendors and each of them has its own vulnerabilities.
As a result, security threats for home automation systems are recently studied and

secure and privacy-preserving solutions are being presented [6, 7].

In this thesis, we propose a privacy-aware anonymous identification and authenti-
cation protocol for home automation systems as part of the Turkish-Polish bilateral
FUSE (Full-Managed Secure Gateway for Home Automation Systems) project. The
proposed system is adapted from the HAS architecture of Batalla and Gonciarz [8]
which is an outcome of the same FUSE project including Innovative Home Gateway
(IHG) and Home Management System (HMS).



In the scheme, IHG is a gateway similar to a set-top box and it handles the commu-
nication between outside users and IoT devices. On the other hand, HMS manages

the communication by acting as an MQTT [9] broker.

In the proposed model, we ensure anonymity of the users by implementing the
Idemix [10] credential system and authenticity by presenting a mutual authentication
protocol. We further provide privacy-awareness for the devices by introducing a fake

proof system. The contributions can be summarized as follows:

o Anonymous Identification: Idemix based anonymous credential system is
used where the users are known by their pseudonyms and the real identity of

the user can be kept anonymous.

o Authentication: Mutual authentication protocol is introduced where both
parties in the communication authenticate themselves by generating proofs

based on their credentials.

e Privacy-awareness: In order to preserve privacy, we present fake proofs
which make the entities proceed with the communication in any case and

prevent attackers from realizing the failed communication.

Outline of this thesis is organized as follows: In Chapter 2, we give a literature
review of IoT research together with background information about Idemix [10],
Camenisch-Lysyanskaya (CL) signature scheme [11] and MQTT [9] messaging pro-
tocol. In Chapter 3, we explain the proposed anonymous identification model for
home automation systems. We give details of the system architecture, parts that are
mostly adapted from Idemix and the proposed credential issuance protocol and mu-
tual authentication protocol. Chapter 4 presents the experimental results together
with the implementation details. In Chapter 5, we give a security analysis on the
mutual authentication protocol. Lastly, in Chapter 6, we conclude the results and

propose future work on the subject.



2. BACKGROUND INFORMATION

In this section, first we discuss related work in literature. Then, we present back-
ground information about underlying technologies used in the proposed model. To
begin with, we provide background information about Idemix [10] which is an anony-
mous credential system adapted to the proposed scheme for the identification of
entities. Together with Idemix, we explain CL-signature scheme [11] that is used
in Idemix credential system. After that, we present MQTT [9] which is another
technology utilized in our model. Implementation details of Idemix [10] and MQTT
[9] protocols will be discussed in Chapter 3.

2.1 Literature review

There exist many studies on secure and anonymous authentication for the Internet
of Things. Liu et al. [12] proposed a secure authentication and access control for
[oT environment. They present a security analysis on the proposed approach and it
is shown that the architecture provides devices from attacks such as eavesdropping,
man-in-the-middle attacks and replay attacks. This was an early study which was
mainly an analysis of security on the proposed model. Alcaide et al. [13] work on
anonymous authentication in a privacy-preserving manner where the only devices
that are communicated are the anonymous approved devices. However, there is a
weakness in the system at the individual level such that without knowing the private
key, an attacker can have access to the system. Also, Lin et al. [14] has proven that
this system is insecure since the method of authentication lets an adversary imper-
sonate a legitimate user and deceive the users. In a study by Alizai, Tareen and
Jadoon [15], a multi factor authentication scheme is presented. To authenticate a
device, they used digital signatures and device capability in the proposed model. If

the multi factor authentication does not fail, the device is allowed into the network.
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The work by Alizai et al. [15] provides an efficient and less overhead authentication
scheme for IoT. A research by Zhang et al. [16] focuses on a secure smart health
system which provides aggregate authentication and access control in IoT. In this
work, an anonymous certificateless signature scheme is introduced for authentica-
tion. In addition to the approach, security analysis and experimental results are
presented and the results indicate that the proposed system is efficient in terms of
computation and communication cost. In another study by Zhang, Ye and Mu [17],
the authors propose a privacy-aware anonymous authentication between user and
cloud in smart health systems. To achieve lightweight computation, online-offline
techniques are used. As a future work, they suggest that the protocol can be ex-
tended to meet higher security and efficiency requirements. On the other hand,
Zhou et al. [18] propose an efficient authentication protocol for cloud computing
architecture including IoT. To provide efficiency, they use lightweight cryptographic
modules such as one way functions. This way, the scheme becomes applicable for the
objects that have limited computing power such as [oT devices. By evaluating the
performance results, the proposed system is shown as practical and highly suitable

for low power devices.

While many privacy-preserving, secure and anonymous identification systems exist
for Internet of Things, none of them match with all the security and privacy re-
quirements along with the anonymity of the devices in home automation systems.
The contribution of this thesis to the literature is to provide anonymity and privacy-
awareness together with secure authentication for IoT devices in a home automation

system architecture.

2.2 CL Signature Scheme

The CL signature scheme [11] is developed by Jan Camenish and Anna Lysyanskaya
as a signature scheme that is ideal for anonymous credential systems. Idemix [10]
credential system developed by IBM Zurich implements the CL signature scheme to

accomplish anonymity.

CL signature scheme depends on zero-knowledge proofs [19]. The core idea in CL
signatures is proving the knowledge of the master secret without revealing the secret
itself.



The issued credential is tied to the master secret but it can be used with unique
pseudonyms several times. This property makes the different uses of the credential

issued by using CL signature to be untraceable.

Basically, a commitment on the master secret is passed to the Issuer and the issuer
signs the committed value by performing zero-knowledge proof protocol. Master
secret is blinded in the scheme so that it is kept private. So, CL signature scheme is
the building block of the Idemix library which allows the user to prove its attributes
without giving no more information than needed. This way, anonymity and security
is provided in the Idemix credential system. Definitions of the symbols used in CL

signature scheme protocols are given in Table 2.1.

Table 2.1 The symbol definitions used in CL-signature scheme

Symbol  Definition
n RSA modulus
ln size of RSA modulus

P, q,p/, q/ prime numbers

R;,S,Z  quadratic residues modulo n

{m;} message set

I size of the message
e,v random primes

le,ly size of random primes
Ly security parameter

Related protocols of the CL signature scheme are as follows [20]:

o Key Generation: Generate primes p/, ql and compute p < 2p/ +1, g+ 2q/ +1
and n < pq where n is the [,, bit RSA modulus. Then, uniformly randomly
choose Ry,...,Rr_1,5,7Z € QR,,. Output the public key (n, Ry, ...,Rr_1,S5,2)

and p as secret key.

o Message space: Let [, be a parameter. Then the message space is the set
(mo,...,mz—1) where m; € +{0, 1}lm.



e Signing algorithm: Let input be my,...,my_1. Choose a random prime e of
length I, > l,,, + 2, and another random integer v of length I, < I,,, +1,, + I,

where [, is a security parameter. Compute value A as:

A 1/e
A<—<Rm0 RmL_15”> modn (2.1)
0

The final signature consists of (A, e, v).

o Verification algorithm: In order to verify signature (A, e,v), the followings
should hold:

Z = A°Ry°...R7* SV (modn) (2.2)
m; € £{0,1}m (2.3)
9le > ¢ > gle~l (2.4)

2.3 Idemix

In security applications, credential systems are extensively used for identification
purposes. A user gets the credential in order to prove that it has the requested
attributes. However, in such cases where the same credential is used for different
scenarios, the usages can be linked to each other [10]. This link may leak information
about the user. So, to provide unlinkability, anonymous credentials systems are
presented [21, 22]. Basically, in anonymous credential systems, users are known by
pseudonyms and for different usages a user may have different pseudonyms which
can not be linked. This way, organizations or verifiers know only the fact that the

user owns the requested credential.

Idemix [10] is one of the anonymous credential systems developed by IBM. In Idemix
architecture there are three parties: Issuer, User and Verifier. Figure 2.1 shows the

overview of Idemix credential system.



Issue Credentia|

Request Credentis|

Figure 2.1 Overview of Idemix

Issuer has the authority to issue credentials to the User based on its attributes.
Credential issuance is one of the main protocols implemented in the Idemix sys-
tem. While issuing the credential, CL signature scheme [11] is used which can be

considered as the building block of the Idemix system.

In order to run the issuance protocol between the user and the issuer, they need
to share the same system parameters. At the end of the issuance protocol, the
user receives the credential signed by the issuer which proves that the user has the
specified set of attributes. Issuer signs the credential with private key so that any
verifier can use issuer public key to verify the credential. Also, the pseudonym of

the user is attached to the credential again for the verification process.

At any point, the user may need to prove that she has the specified attributes.
Verifier is the entity to check whether the user is correct with her claims. Verification
process proceeds with zero-knowledge proof protocol [19]. Using zero-knowledge
proof, the user can show that she has the credential containing the set of attributes
and that she knows the master secret bound to the pseudonym without revealing
the credential which should be kept private. This way, different uses of the same

credential can not be linked.

In our proposed scheme, the initialization protocol of idemix is adapted and all the
parties in the system get their credentials. Also several functionalities of the system
such as proofs, proof specification documents, challenges are adapted from Idemix.

Details will be explained in Chapter 3.



2.4 MQTT

MQTT [9] is a widely used messaging protocol for the Internet of Things. It is
designed especially for devices which have low processing power such as IoT devices.
It is implemented as a lightweight publish/subscribe mechanism minimizing the
network bandwidth. The protocol includes a broker where all parties can connect
and subscribe to desired topics. When a message is published over a topic, only the

subscribed users can receive the message.

In our proposed model, MQTT [9] is preferred for the communication protocol
between ITHG and Vendor. Also, we choose the broker as Eclipse Mosquitto [23]

which is an open-source message broker that implements MQTT protocol.

The working principle of MQTT is to publish and subscribe to the topics. More
precisely, any client connected to a MQTT broker can subscribe to a topic and
start to listen to messages which are published on that topic. In order to make
the communication channel private, topic hierarchy can be established between the
parties using a slash (/) separator. For example, update/deviceType is a topic where
only the specific type of devices may subscribe and receive the messages published
on the topic. This way, other types of devices do not subscribe and as a result
can not read the messages. Subscription to a topic may be explicit or may include

wildcards (+ or #) [24]. The usages of wildcard characters are as follows:

o "4+" is used for a single level of hierarchy. For instance, if the topic is up-
date/+/deviceType then subscribed user receives messages from the following

topics:
— update/version/deviceType
— update/nonce/deviceType

o "#" is used for all remaining levels of hierarchy. If the subscribed topic is
update/deviceType/#, then the user receives all the messages published to
the following topics:

— update/deviceType/version /nonce

— update/deviceType/nonce



In the proposed scheme, we need a unique topic in order to secure the commu-
nication channel so that an adversary can not listen to the exchanged messages.
We introduce a topic hierarchy where both parties add randomly generated uni-
versally unique identifiers (UUID) [25] to the topic. At first, the parties are sub-
scribed to the topic such as processName/+/+/+. Then, generated UUID pairs
are added to the topic on both sides and the final topic hierarchy becomes process-
Name/UUID1/deviceType/UUID2.



3. PROPOSED MODEL

In this section, we give details of the privacy-aware Idemix based anonymization
model for home automation systems. First, we present the system architecture to
illustrate the communication model. Then, we introduce the system parts that are
mostly adapted from Idemix protocols. Lastly, we explain the steps of initialization
protocol and the mutual authentication protocol. Symbol definitions that are used

in protocol explanations are given in Table 3.1.

3.1 System Overview

In the proposed model, the illustrated architecture for home automation systems
originated from Batalla and Gonciarz [8] which was also developed for the FUSE
project. It is adapted for the implementation of the proposed anonymous identifica-
tion and authentication scheme. The adapted scheme is also presented in our paper
[28] as part of the FUSE project. Figure 3.1 shows the architecture where there
are five entities as Vendor, Homeowners (HO), Home Management System (HMS),

Innovative Home Gateway (IHG) and IoT devices.

In this architecture, loT devices are connected to Innovative Home Gateway (IHG)
which is a device similar to a set-top box and provided by network operators to the
users. The aim of this gateway is to handle the communication between IoT devices
and outside users. IoT devices are first registered to IHG and cannot communicate
with any other device. By disabling the direct communication with IoT devices,

IHG prevents the devices from network level attacks such as DDos.

10



Table 3.1 Symbols used in protocol descriptions

Symbol Description

loT'D [oT device

UUID; it" generated universally unique identifier [25]
n; ith generated nonce

U Cryptographic attribute structure

S, Ry, Z A part of issuer’s public key

NiorD Pseudonym of the user

A Ordered set of attributes

(M) iea Attributes in A

g,h Public common group parameters

m Master secret

T, v Random integers

n RSA modulus for CL-signature [11]
ocrL CL-signature [11]

10T D 4 List of appropriate devices

10T D¢ List of devices connected to IHG
(M) ieA, Attributes in the list A7

(M4)ieA, Attributes in the list A,

A= List of non-revealed attributes of the user
A, List of revealed attributes of the user
le Size of e values of certificates

CH; ith generated challenge

MSG Message sent at the end of the mutual authentication protocol
Crorp IoT device’s certificate

Cy Vendor’s certificate

Proofrorp  generated proof by 10T D

Proof; ith generated proof

fakeProof; it" generated fake proof

PS Shared proof specification document
IDPS Id of the PS

typerorp Device type of IoT D

typeps Device type specified in P.S

Hash(.) Secure Hash function [26]

HMAC(.)  Keyed-Hashing for authentication [27]
HMACcH, Generated HMAC using CH;
HMACysa Generated HM AC using MSG
brand,rp Brand of the IoTD

comm commitment to the master secret

11
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Figure 3.1 Architectural overview of the proposed system [28]

Another entity in the proposed home automation system architecture is Home Man-
agement System (HMS) which has two different roles. It is the issuer where the
credentials are issued for the entities in the system as well as the MQTT [9] broker
that manages the communication between Vendor and THG. HMS belongs to the

network operator which distributes IHG set-top boxes.

In the model, communication can start any time. For a particular reason, Vendors
or the Homeowner may want to communicate with IoT devices. Vendors may send
periodic updates or homeowners may want to give commands to an IoT device
remotely. On the other hand, when an IoT device encounters a problem, it sends an
error report to inform the Vendor about the situation. With an intermediary device
(IHG), outside users can only send their messages to IHG and THG will relay the

messages to [oT devices to build a secure intercommunication.

12



3.2 Attacker Model

In this section, we introduce attacker model that clarifies the capabilities of an
attacker in the system. To begin with, an attacker can listen to the channel and
capture the messages by performing eavesdropping attack. Attacker can also modify
bits in the message or replace the message and impersonate any party in the system
as in man-in-the-middle attack scenario. However, if the messages are encrypted,
the attacker cannot decrypt it and cannot obtain the original message unless it does

not have the secret key.

On the other hand, attacker can perform denial of service (DoS) attacks by flooding
the target with high amount of requests to make the network become unavailable.
However, if the devices are closed to network communication then it cannot perform
DoS attack to these devices in the system. Moreover, an attacker can measure the
latency values and compare the results in order to have an insight based on different
communication scenarios. However, attacker cannot authenticate itself in the system

if it is not a legitimate user.

3.3 System Parts

In this section, we present the system parts that are mostly stemmed from Idemix
[10]. We have adapted them to use in the proposed model. They are used in XML

structure and can be parsed by a parser implemented in Idemix library [20].

3.3.1 Credentials

Credential is the document that states the user has any or all of the subset of the
claimed attributes. Any verifier may ask a user to prove its identity in the system.
Credentials are used to generate proofs indicating that the user has the desired

attributes in the credential signed by an issuer.

13



In the proposed protocol, anonymity comes from the credential system. We imple-
mented the Idemix anonymous credential system where the users are only known
by their pseudonyms and different usages of the credential cannot be linked to each

other. This way, we provide anonymous identification of the users in the system.

The XML structure of an example credential is shown in Figure 3.2. As seen in the
figure, a credential includes attributes of the IoT device such as brand, type and
model. The other important part in the credential is the signature which is issued
by a legitimate issuer. Issuer public key location is also attached to the credential
so that any verifier can validate the credential signed by the issuer using its private

key.

In the proposed home automation system architecture, HMS has the responsibility
of an Issuer and IoT devices, Vendors and Homeowners are the Users which first
register to the system and request their credentials from HMS. Further details of

credential issuance protocol is explained later.

3.3.2 Proof Specification Document

Proof specification document (proofSpec) is the document containing the attribute
list that is to be proven. The user needs to prove that all the attributes in the
proofSpec also exist in the user’s credential. On the other hand, the Verifier needs

proofSpec to know which attributes are proven.

In the proposed model, proofSpec document is chosen by the verifier beforehand and
the name of the proofSpec is shared with the User so that they agree on a document
including desired attributes. All the proofSpec documents are reachable on a public

server.

An example proof specification document can be seen in Figure 3.3. As shown in the
figure, the credential structure that is used in the verification process is indicated in
the proofSpec. Also, it includes the specific attributes that the device should prove
to have. In the example of Figure 3.3, in order to be verified, the IoT device’s brand

needs to be "Arcelik" and it should be a lamp.
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<?xml version="1.8" encoding="UTF-8" standalone="no"?2?>
<Credential xmlns="http://www.zurich.ibm.com/security/idemix"™
xmlns:xs="http://www.w3.org/20081/XMLS5chema”™ xmlns:xsi="
http://wai.w3.org/2001/XMLS5chema-instance™ xsi:schemalocation="
http: //wwi.zurich.ibm.com/security/idemix ../xsd/Credential.xsd">»
<References>
¢IssuerPublicKey>http://18.36.3.164:8088/filesfissuerData/
ipk.xml</IssuerPublicKey>
<CredentialStructure>http: //10.36.3.164:8088/files/issuerData
JCredStruct_ToTDevice.xml</CredentialStructure>
<fReferences>
<Attributes>
<Attribute name="pelctorType”>
<Value>73<¢/Value>
<EnumValue>actorType; IoTDevice</EnumValue>
< fAttribute>
<Attribute name="peBrand™:>»
<Value>7</Value>
<EnumValue>brand;Arcelik</EnumValue>
< fAttribute:
<Attribute name="pelype™>
<Value»29</Value>
<EnumValue>type;Television</EnumValue>
< fAttributes
<Attribute name="model™>
<Value»-246728037529372992801469033815015107540827695554735
A856364299898948015188338+< /Value>
< fAttribute:
<Attribute name="homeID™>
<Value»5</Value>
< fAttribute:
<fAttributes>»
<Signature>»
<A>292658817898637340484663478280962248410134779662608308821382
3188619179488982394440257279812493183491593851838075495855263
6253711048382334795183539995623552285918516211796279121572897
1697419457637544858806870936039343437670390748214456745251893
15125459134589
B6448952217888490895454219235226990241233169938465334</A>
<e>2593447230558620599870254914806975719382778895151523862497
2858310566580071330675914998169055919398714309786357669850282
7633907040838399281991781187807389516945904311177778799361377
<fes
<v>3415304899235347289613519387505144559368801090147593585541
8547988558958927495980441709691485241192528398963904916673016
30220851485513988046701850091154129869786736997847863958222649
7385011693283430276760328465198276459205377714682549752611498
8099616096333325017436871905506303253882156675595629148155343
5661334245296779183575545598878203653171515399683066371544687
A4224475281433296919329678956331434858063277440595313717728530
965728</v>
</Signature>
<Features/>»
</Credential>

Figure 3.2 An example of a credential

15



<?xml version="1.8" encoding="UTF-8"2>

¢ProofSpecification xmlns="

http://www.zurich.ibm.com/security/idemix™

xmlns:xsi="http://www.w3.0org/2001/XML5chema-instance

xs5i:schemalocation="http://www.zurich.ibm.com/
security/idemix ../xsd/ProofSpecification.xsd™>

<Declaration>

<AttributeId name="id1l" proofMode="unrevealed™ type="string" />

<Attributeld name="

"id2" proofMode="unrevealed™ type="int"™ />

<Attributeld name="id3" proofMode="unrevealed™ type="enum™ />

<Attributeld name="
<Attributeld name="

</Declaration>

<Specification>
<Credentials>

"id4" proofMode="unrevealed™ type="enum™ />
"id5" proofMode="unrevealed™ type="enum™ />

<Credential issuerPublicKey="http://18.36.3.164:8088/files/

issuerData/ipk.xml"
credStruct="http://16.36.3.164:30808/files/
issuerData/CredStruct_IoTDevice.xml™ name="
ToTDevCred™>»

<Attribute name="model”»idl</Attribute>
<Attribute name="homeID">»id2</Attribute>
<Attribute name="peBrand”>id3</Attribute>
<Attribute name="peType”>idd</Attribute>
<Attribute name="pelictorType”»id5</Attribute>
<fCredential>»
</Credentials>
<EnumAttributes>
<EnumAttribute attributeIld="id3" operator="and">»
<EnumValue attributeName="brand">Arcelik</EnumValue>
< /EnumAttribute>
<EnumAttribute attributeIld="id4" operator="and">
<EnumValue attributeName="type">Lamp</EnumValue>
</EnumAttribute>»
<EnumAttribute attributeId="id5" operator="and">»
<EnumValue attributeName="actorType”>IoTDevice</
EnumValue>
< /EnumAttribute>
< fEnumAttributes>

<Inequalities />

<Commitments [>»

<Representations />

<Pseudonyms />

<VerifiableEncryptions />

<Messages />
</Specification>

</ProofSpecification>

Figure 3.3 An example of a proof specification document
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3.3.3 Proof

Proof is a non-interactive statement [10] which the user generates in a verification
process. In the proposed protocol, a legitimate User creates a proof and sends it to

Verifier in order to be authenticated. The structure of an example Proof is given in
Figure 3.4.

As seen in Figure 3.4, generated proof includes challenge received from the veri-
fier and also common values, s-values and t-values that are generated during proof

generation algorithm.

In our model, proof generation (buildProof) and verification (verifyProof) protocols
are adapted from Idemix library [20]. Algorithm 1 shows the steps of proof gener-

ation of an IoT device while Algorithm 2 explains the proof verification steps for a

Proofrorp.

<?xml version="1.8" encoding="UTF-8" standalone="no"2>
<IdmxProof xmlns="http://www.zurich.ibm.com/security/idemix"™ xmlns:xs="
http://wwe.w3.org/2001/XMLSchema™ xmlns:xsi="
http://www.w3 . org/2001/¥MLSchema-instance™ xsi:schemalocation="
http://www.zurich.ibm.com/security/idemix ../xsd/IdmxProof.xsd">
<Challenge>3449020538244585499384698089855410230874806043926620235295224
55441056514024091</Challenge>
<CommonValues>
<CommonValue key="gp">784852804856257332114827935343234493211178987180
88543846747559831834759431080< /CommonValue>
<CommonValue key="http://10.36.3.164:8080/files/issuerData/
CredStruct_IoTDevice.xml;TIoTDevCred"”>226173481948497234637497151129666
5897643637111799369111032729156743130304219582855786889163172802089542
8911549986700754174172023047977897889847847372065824201562628661325306
59283586425571956767826803135269610610905087391083536358506214983512176
45595795172464436150769861228786983365166354037908176717127232722</
CommonValue>
<CommonValue key="http://108.36.3.164:8080/files/issuerData/
CredStruct_IoTDevice.xml;IoTDevCred; issuerPk™>5196357089523893815866917
90901920940736685290495707490247209581882556379636281< /CommonValue>
<CommonValue key="id3;AND">6293387541868028@79228187702999009868891170
7311340394857772281604977474908947417316265134869389764739466677157668
5247317803070234551547399828045686852051569851859460278111246584827769
9521698955128612255217751625971187335871713911952981385547783934938490
39592364997224457993933432560596295909676901325747014808< / CommonValue>
<CommonValue key="id4;AND">1237567978621128948830291489839080568613287
5580292411990689582158223375707397871239518759966179700759841627174869
8155193388592268083734018592449281863418015937857681866913787274165894
67710791612464083727026975104636417178591385999316206886807280381387393
33915584309488967567892057291548012589687864744262463523< /CommonValue>
<CommonValue key="id5;AND">1468372782498207250803082993703421119570690
71121589809946497929328780855882710483456934267227682308840870746127629
128390936524008655572720660288169252086353979483503577580405207224346341
3529572866798774337948224655043303347463833811889654368775158832825601
15113629750743083968613320458521620608314349285781885015< /CommonValue>
<CommonValue key="proofSpecHash™>8303005722223167196466291892534824047
3414511251707883084009328164096686621836</CommonValue>
<CommonValue key="sp”>1931345493401549450285337266084853642770888519549
79011267331898025266929871326</CommonValue>
< /CommonValues>»

Figure 3.4 An example of a proof
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Algorithm 1: Proof Generation Algorithm
Input: comm, Crorp, S, n1, NiorD
Output: CHy, s and common
if Cr,rp not exists then

‘ Request Crorp from Issuer;
else
Load C,rp inputs ;

Randomize A" := AS” modn and save as common;

Compute t-value ¢ := (A/)T(H R;™)(S™)modn and store to the list;
Compute challenge CHy := Hash(common, t, ny, comm, Ni,rp);
Compute s-values s:=r+CHim;;

Output Proofr,rp as (CHi,s,common);

end

In Algorithm 1, first it checks if the credential of IoT device, Cr,rp, already
exists. If that is not the case, then IoT device, I0T D, requests Cr,rp from the
Issuer. Otherwise, it proceeds with proof generation. Inputs to the algorithm are
comm, Crorp, S, n1, Nrorp where comm is the commitment to master secret, m,
n1 is a nonce sent by the verifier, Nj,rp is the pseudonym of the device and S is a
part of Issuer’s public key. Protocol starts with a randomization of A= AS"modn
where A is a part of CL-signature, o¢p, attached to Cr,rp. The resulting value
A is saved to a list common, to which the prover and verifier have access. After
that, t-values, ¢, are calculated, using (m;);c4,’s from the list of non-revealed at-
tributes Ay, to be used in the challenge. Also, they are stored to a list accessible by
prover and verifier. Calculated challenge, CHy, is the Hash(.) of generated values
as CHy := Hash(common, t, n1, conm, Ni,rp). Responses to attributes, (m;)ica,
are calculated based on created C'H; with the formula s :=r+ CHim; where r is a
random integer. Finally, the output is proof of IoT'D, Proofr,rp, including C'Hy,

s and common.

In Algorithm 2, when the verifier receives Proofr,rp = (CHy,s,common), first it
retrieves common value A/, s and t. Then, t-value is computed using received
CHq, retrieved t-value and A" and the attributes (m;)ica, in the revealed attributes
list A,. After that, a challenge, C'Ha, is computed by getting the Hash(.) of the
values as C'Hy := Hash(common, t, n1, comm, Niorp) where nj is an input to the
algorithm. Last step of the algorithm is to check if the received C'H; is equivalent
to the computed challenge C'Hs. If not, the Proofr,rp is not verified and rejected.
Otherwise, Proofr,rp is verified and accepted.
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Algorithm 2: Proof Verification Algorithm
Input: Proofr,rp = (CHy, s, common), ny
Output: Accept or reject Proofrorp
if received Proofr,rp is null then

‘ Prompt an error message and stop;
else

Retrieve common value AI, t-values t and s-values s;
Compute t-values as

Pim d
- \IIR™(A

—CH; ) i
’)le1> (A)"(JTR:™)(S") modn

Compute challenge as C'Hy := Hash(common, t, ny, comm, Nriorp);
if CH; = CH5 then
| Accept Proofrorp

else
| Reject Proofrorp
end

end

3.3.4 Fake Proofs

In the proposed anonymous identification model, we introduce fake proofs in order
to provide privacy-awareness. Fake proofs are dummy documents that look like
legitimate proofs in appearance. In the case of sending updates to IoT devices, an
[0oT device needs to authenticate itself. If the desired attributes list in the specified
proofSpec is not a subset of the attributes in the credential of the IoT device, then
that device is not a target to receive updates from the Vendor. To exemplify, if
the Vendor is sending updates to televisions and if the IoT device is a television
but does not belong to the corresponding Vendor, still the request is sent to that
device and the communication is started. When the IoT device receives proofSpec, it
realizes that it should not receive that update since it does not satisfy the conditions.
However, the protocol execution is not stopped there. Even though the device is not
the target for update, it creates a fake proof in order to proceed with the protocol.
When the Vendor receives fake proof, it responds with another fake proof. Thus, the
communication seems as usual and third parties cannot gain any information about
[oT devices’s attributes such as brand name. The protocol becomes privacy-aware

with the introduction of fake proofs.

An example of fake proof structure is given in Figure 3.5. As shown in the figure,
the fake proof structure looks like a legitimate proof. However, the challenge is

generated at random and the common values, s-values and t-values are taken from
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a preshared dummy document. So, the verification fails and the verifier knows that

it is a fake proof.

<?xml version="1.8" encoding="UTF-8" standalone="no" 2>

<IdmxProof xmlns="http://www.zurich.ibm.com/security/idemix"™ xmlns:xs="
http: //www.w3.0rg/2001/XMLSchema™ xmlns:xsi="

http: //www.w3.0rg/2001/XMLSchema-instance™ xsi:schemalocation="
http://www.zurich_ibm.com/security/idemix ../xsd/IdmxProof.xsd">

<Challenge>61558703971706617159882583615881759796758189246343918179143
750344434085684878</Challenge>

<CommonValues>

<CommonValue key="http://18.36.3.164:80808/files/issuerData/
CredStruct_ToTDevice.xml;IoTDevCred;issuerPk™>519685789523089381506
£917926961920948736685298495707490247209581802556379636281</
CommonValue>

<CommonValue key="gp~>78485280485625733211482793534323449321117898
710888543846747559831834759431808< /CommonValue>

<CommonValue key="proofSpecHash">8383005722223167196466291892534382
484734145112517607883084009328164096686621836</CommonValue>

<CommonValue key="sp">193134549348154945628533726608485364277888851
954979811267331898025266929871326< /CommonValue>

<CommonValue key="http://10.36.3.164:8080/files/issuerData/
CredStruct_ToTDevice.xml;IoTDevCred™”>»72653282414589579192788892943
569922865194739266589908068071209022207167237018458939326556684177
816767091668264800711599702247750373927671455934339483795049167808
627916157545055272847685920028710198895732988624755818056796083512
3857154820451887925867486163
83295376289932073053822773826389828656429003383442630< /CommonValue
>
<CommonValue key="id3;AND">328149772262293811897586195837199388405
695718332556056576319062019525399879911391512593276694068259797282
23706389531665224174645806004660892415506177029294038966438029424855
933776060573508907435053799748852475604266592969950930368084338207
653033773570473385
82964216791168942329578352357741315385326532992470698< fCommonValue
>
<CommonValue key="id4;AND">148484218953358567912538527816885490362
864488487822037563083161705648456478070005290572857841186768749341
984969959685962581365011888236018518980559714074669158127583736414
4991004338243293238537492466062357431521997310839531900286083416647
8950868591887202541
7411083486573295228955249178929827319908192931886708991 </
CommonValue>
<CommonValue key="id5;AND">859115844748114352546146228698854859322
8920400124348423217249852313703779139716398341808145922625858659384
467418336937344023640807484304264464645094929147419305078818439891
658190684469304124915874273717300818690817156149425837379985547183
343868017500376571
98250856422844720932601501989814778357104718708635437</CommonValue
>

</CommonValues>

Figure 3.5 An example of a fake proof
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3.4 Privacy-aware Anonymous Identification Model

In this section, we give details of privacy-aware anonymous identification model. In
the proposed scheme, IHG communicates with IoT devices and it is the only entity
that can connect to the devices. Data flow between Vendor and THG goes over HMS
which is the MQTT broker in the architecture. Vendor and THG are subscribed
to related topics so that they start listening to the other parties while they are
connected to the network. On the other hand, THG relays the published messages
to IoT devices over TCP connection which creates an intercommunication at home

environment.

When IoT devices first connect to IHG, they run credential issuance protocol and
get the credentials for future usages. This credential issuance protocol is adapted

from Idemix which is the anonymous credential system as explained in Chapter 2.

After getting the issued credentials, both parties (Vendor and IoT devices) become
ready for the communication. From this point on, they can run a mutual authen-
tication protocol anytime needed. More specifically, if an IoT device wants to send
an error report to the Vendor or if Vendor needs to send periodic updates to the
devices, mutual authentication protocol is performed. In the following sections, flow

of both credential issuance and mutual authentication protocols are given.

3.4.1 Credential Issuance Protocol

Initially, entities in the proposed model need to obtain their credentials to be able
to identify themselves. Credential issuance protocol is adapted from the Idemix [10]
credential system which provides anonymity in the proposed model. By adapting
Idemix, anonymous credentials are issued where the users are only known by their
pseudonyms and different usages of credentials cannot be linked to each other. This

way, we provide anonymous identification of the users in the system.

In the proposed scheme, HMS (as Issuer) generates credentials for IoT devices and
Vendors. After performing credential issuance protocol, credentials are signed as
CL-signatures and saved at the user’s (IoT device or Vendor) side. The protocol

flow for credential issuance is shown in Figure 3.6.
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Figure 3.6 Credential issuance protocol

The steps of the credential issuance protocol between Issuer and IoT device are as

follows:

o The user ({07 D) is known by its pseudonym, Nj,rp, in the system. So, the

protocol is initialized by sending Nj,rp to the issuer.

o When issuer receives a request from [oT'D by getting Nr,rp, it generates a
random nonce, n, to proceed with zero-knowledge proof protocol [19]. Issuer
sends ni to IoT'D.

o After receiving ny, IoT' D computes a cryptographic attribute structure, U,
depending on certain set of attributes, A. Additionally, random t-value, t = ¢",
are computed and a challenge, C'H; is generated as CHy = Hash(ni,N,g")
where Hash(.) is the cryptographic hash function and N is the commitment
of m calculated as N = g{"h". Lastly, response as s-value is calculated as
s=r+CHymy. I0TD generates a Proof; to prove the knowledge of master
secret m associated with Ny,rp by using calculated CH; and s. U, Proofy

and nonce ngy are sent to issuer.
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o Issuer first verifies Proof; to make sure that the user is legitimate and knows
the secret m. Then, it also generates Proofs to identify authenticate to [oT'D.
Additionally, issuer signs the attributes, (m;);ca,with a CL-signature o¢p, and
sends it to [oT'D.

e [0T'D receives the Proofs and verifies it. If verification is successful, then o,
is stored at 0T D.

e By running the credential issuance protocol, 10T'D proves the knowledge of
master secret m without revealing it and Nj,7p is linked to the credential of
IoT'D y C ToTD-

3.4.2 Mutual Authentication Protocol

In the proposed privacy-aware anonymous identification model, the communication
between [oT devices and outside users start with verification processes. Both parties
need to authenticate themselves by using their legitimate credentials. This way,
mutual authentication is ensured. Privacy-awareness in the mutual authentication
protocol is provided by fake proof creation. With the introduction of fake proofs,
the communication proceeds in an expected way and as a result, it does not reveal

identities of the users.

Mutual authentication protocol can be run between any party whenever it is needed.
The protocol is presented for two-way communication model: upstream and down-
stream traffic. An outside user such as Vendor may send periodic updates to the IoT
devices which correspond to downstream traffic scenario or an IoT device may face
a problem and want to send an error report to inform the Vendor which is an exam-
ple of upstream traffic scenario. Figure 3.7 shows the protocol flow for downstream

traffic and Figure 3.8 shows the protocol flow for upstream traffic.
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Figure 3.7 Mutual Authentication Protocol for Downstream Traffic Scenario

3.4.2.1 Protocol Flow of Downstream Traffic Scenario

The steps of the mutual authentication protocol in the direction of downstream

traffic are as follows:
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At first, IHG is subscribed to the topic update/+ /4 on which an outside user

can publish the first message.

Developed protocol is initialized by Vendor by choosing the relevant proofSpec,
PS, which denotes the attributes of the target device. Vendor also generates
a random universally unique identifier, UUI D1, to construct the specific topic
and sends IDPS to IHG through HMS, the MQTT server.

After receiving the message of [IDPS on the specific topic
update/UUID; [typeps, THG checks the list of all connected devices,
10T D¢, and generates the list of appropriate devices, [oT'D 4, to send the
message. 10T D 4 consist of the devices where the device type specified in PSS,
typeps, matches with the type of IoT' D, typerorp.

When I0T'D receives the message IDPS, it sends IHG the VERIFY com-

mand indicating that in order to proceed, verification is necessary.

IHG generates UU I D5 for each of the IoT' D in 10T D 4 to create a unique topic
for the communication. This way, only IHG and Vendor knows the specific
topic to publish the messages. The rest of the messages in the communication
are sent over that topic. After this point, only responsibility of IHG is to relay
the messages between Vendor and IoT'D as it is the gateway in the proposed

system. Rest of the messages are published on the newly constructed topic,
update/UUID [typeps/UUIDs.

When  Vendor receives a VFERIFY command on the topic
update/UUIDy [typeps/UUIDs, it generates a random challenge CH;
and publishes to the topic.

[HG receives and relays the CH; to the IoT'D. 0T D generates Proof] as in
Algorithm 1 to authenticate itself to Vendor. If the attributes in PS does not
match with the attributes in credential of ToT D, Ci,rp, then IoT D creates a
dummy document as fakeProof; which is seemingly legitimate. Additionally,
C' H; is generated by IoT D to send Vendor in order to provide mutual authen-
tication. To preserve integrity, HMAC of CHs, HM ACcH,, is sent together
with C'Hy and Proofi. In the calculation of HMACcq,, Proofi is used as
the key string.

Vendor first verifies HMACcp, to check the integrity of the message and
if verification does not fail, it also verifies Proof; to authenticate IoT D. If
Proofi can not be verified, Vendor maintains the communication by creating

fakeProofs. Otherwise, Vendor generates Proofs in order to authenticate
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itself. Now, the update message, M.SG can be sent to [oT'D. So, Vendor
publishes HM ACysq, MSG and Proofs to IHG.

o [HG sends the published messages to IoT D and first HM AC)sgq is verified
in order to check the validity of the update message M SG. Then, Proofs is
verified to authenticate and trust the Vendor before downloading the M SG.
When both of the verification processes are successful, mutual authentication
is ensured and the update is installed on IoT D. Otherwise, it is not installed

and the protocol execution is stopped.

[
nmn =
. OMS .
Vendor HG IoT Device
Generate nonce UUID,
topic = update/UUID, [brand urp /ty¥Peiorn
IDPS, topic IDPS, topic IDPS, topic
Generate nonce UUID,
topic = update [UTID, (brandrp [tV P8/ UTID,
VERIFY, topic N VERIFY, topic N VERIFY
Generate challenge CH,
B CH, _ CH, . CH,
Generate Proof;
Generate nonce CHy
Generate HMAC,,,, using key as Hash(Proof;)
Proof, | |CH, || HMACg,, Proofy | |CH, || HMACg,, | Proofil ICH |l EMACc,

IF HMACey, venfied:
IF Proof, venfied:
Generate Proof;
Generate HMAC,,q; using key as Hash(Proof,)
ELSE:
Give ermor message

Proofy||MSG || HMACysc Proofy| |MSG || HMACysz | Proof,| | MSG || HMACyse

+ + +

IF HMACy5; venfied:
IF Proof, venfied:
Get error report message

Figure 3.8 Mutual Authentication Protocol for Upstream Traffic Scenario
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3.4.2.2 Protocol Flow of Upstream Traffic Scenario

Besides, the protocol flow for sending error reports to Vendor which corresponds to
the upstream traffic scenario is almost the opposite of the explained downstream
traffic scenario. However, there is a slight difference which is the creation of fake
proofs. Fake proofs are only implemented for downstream traffic scenario in order to
hide the real identities of IoT devices by proceeding communication with all of the
connected devices even if they are not the target. On the other hand, in the upstream
traffic error reports are sent to a specific Vendor. So, fake proof implementation is

not performed.

For the sake of completeness, the protocol flow of upstream traffic scenario is given

as follows:

» At first, Vendor is subscribed to the topic report/+ /brandr,rp/+ on which
an [oT'D can publish the first message. brandr,rp is the brand of IoT'D as
well as the name of the Vendor, so Vendor only gets the messages that are
addressed to itself.

o The mutual authentication protocol is started by IoT'D by choosing the PS
which includes the attributes of Vendor. Then IDPS is sent to IHG over
a TCP connection. IoT'D also generates a random UUID; to construct the
specific topic and send it to THG.

o After receiving the message, IHG publishes IDPS to the topic
report/UUIDy /brandr,rp/typerorp/. As explained before, the role of IHG
during the protocol is to relay the incoming messages to the other party in the

communication.

e Vendor gets the message and generates another random UUID>
to create a unique topic for the communication. Then, on topic
report/UUID /brandr,rp/typerorp/UUIDy,  VERIFY  command s
published by Vendor. From this point on, all the messages are published on

that mutually constructed topic.

e THG sends the VERIFY command to IoTD and [oT D creates a random

challenge C'H; to start the authentication process.

e When Vendor receives C'Hq, it generates Proof; to identify itself. Also, C'H>
is generated and HMAC of the challenge HM ACcp, is calculated by using
the key as Proofi. Then, CHa, Proofi and HM ACcp, are published on the

specific topic.
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e Messages are delivered to IoT'D by IHG. First, IoT'D checks the validity of
HMACcq, and if it is valid, it verifies Proo f1 in order to authenticate Vendor.
If any of the verification processes fails, the execution stops. Otherwise, IoT D
generates Proofs using C'Ho and also it calculates H M ACy;sq where M SG
is the error report to be sent. After that, Proofs, MSG and HMAC )5 are
sent to Vendor over THG.

o Lastly, Vendor checks the received HM AC)y;sc to validate the integrity of
the error message. If it is valid, then the second verification is performed for
Proof,. After both verification processes are successfully passed, then Vendor

installs the error report message (MSG).
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4. EXPERIMENTAL RESULTS

In this section, we give experimental results on our prototype implementations.
Performance results are discussed in several use case scenarios. Prototype imple-
mentations are performed based on the proposed architecture. Performance results
are measured as the latency values of different scenarios. Experiments are conducted
both for upstream and downstream traffic. For downstream traffic, we evaluate the
performance results of sending updates from Vendor to [oT devices. On the other
side, sending error reports from IoT devices to Vendor is the evaluated scenario for

upstream traffic.

4.1 Setup and Implementation Details

Most of the development and testing process for IoT applications are supported with
Raspberry Pi [29] which is a single board computer. So, for the implementation and
performance evaluation phase, we used Raspberry Pi 3 and Raspberry Pi 4 as IoT
devices in the system and a Raspberry Pi 4 with 4GB RAM works as ITHG which
is also customized as an access point for Wi-Fi connectivity. There exist 11 IoT
devices in the testbed while 5 of them are Raspberry Pi 3 with 1GB RAM and
6 of them are Raspberry Pi 4 with 2GB RAM. The device which works as IHG is
connected to the IoT network which is provided by the university via ethernet cable.
All the IoT devices are connected to the access point via WLAN and to IHG via
socket programming, other than that they are closed to any communication. The
applications developed for the simulation are IoT devices, Vendor and THG. They
are implemented in IntelliJ IDEA with Java version 11. MQTT and Idemix libraries
are attached to the applications as jar files so that the functionalities of the libraries
can be used. Public parameters that are needed during the protocol simulation are

served on a publicly accessible server.
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Moreover, developed applications are built as jar executables so that it is more
feasible to execute via Command Line on any platform. Jar executable of the IoT
device application runs on all of the Raspberry Pi devices while the jar executable
of THG runs on Raspberry Pi 4 which is customized as an access point. Mosquitto
(MQTT server) [23] serves on a laptop with operating system as Windows 10 and
jar executable of the application for Vendor runs on a laptop the operating system
of which is MacOS Big Sur.

4.2 Performance Evaluation

To evaluate the performance of the proposed system, we measure end-to-end latency
values of several scenarios. Experiments are performed fifty times for update and
error report scenarios and average latency results are presented with respect to the
number of [oT devices. This way, we eliminate the edge cases and get a more smooth
outcome. In each case, average latency is calculated from the beginning of challenge
creation to the end of the mutual authentication protocol. The payload data size

that is sent at the end of the protocol is set to 10KB for outcomes to be uniform.

4.2.1 Update Scenario

In this section, we give experimental results of downstream traffic which is sending
updates from Vendor to IoT devices. Update scenario is evaluated in three
different cases: successful delivery of updates, failed delivery of updates and mixed
(successful and failed) delivery of updates. First, we discuss the results for the
successful update scenario where all the connected devices get updates addressed
to them successfully. Then, we present the failed update scenario results where
all the devices get failed updates and complete the protocol by generating fake
proofs. Lastly, we demonstrate mixed update scenario results where some of the
IoT devices are delivered successful updates while the rest of the devices in the

testbed receive the failed updates.
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4.2.1.1 Successful update

In this section, experimental results for successful delivery of updates are presented.
The payload data size of an update file is fixed to 10KB. Table 4.1 demonstrates the
breakdown of average computational delay (in milliseconds) at Vendor’s and IoT de-
vices’ side, respectively. It is seen that total computational delay is approximately
1233 milliseconds. Overall end to end latency for one device receiving update is
calculated as 1614 milliseconds where time spent for network activities is 381 mil-

liseconds.

Table 4.1 Average computational delay results for successful update scenario

Calculation Computational Delay (ms) Device
creating challenge 0.48 Vendor
verifying HMAC 3.26 Vendor
verifying Proof 21.94 Vendor
creating Proof 16.52 Vendor
calculating HMAC 0.62 Vendor
creating Proof 770.02 [oT device
calculating HMAC 3.14 [oT device
verifying HMAC 4.1 [oT device
verifying Proof 412.7 [oT device

total computational delay 1232.78

Also, the experiments are conducted in a way that multiple IoT devices are in com-
munication with the Vendor and end up receiving updates successfully. In Table 4.2,
overall end to end latency results can be found for 1-to-11 IoT devices. Additionally,
Figure 4.1 shows average latency results of the experiments together with a linear

trendline.

As expected, there is a linear increase in end to end latency while the number of
IoT devices increases. Average time to receive updates successfully is in between
approx. 1.6 seconds to 2.3 seconds. As seen in figure, the slope of increase is 0.06

second per device indicating the scalability of the proposed model.
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Table 4.2 Average end to end latency results for successful update scenario

Number of IoT device End to end latency (ms)
1614
1744
1796
1922
1958
2007
2073
2110
2144
2185
2321
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Figure 4.1 Average end to end latency for successfully receiving updates

Another experiment conducted for successful update scenario is measuring the la-
tency values for different file sizes (payload data) to discuss applicability of the
proposed scheme. For the uniformity of the outcomes, we fix the number of IoT
devices to five. The experiments are conducted with 1KB, 10KB, 50KB and 100KB
payload data sizes for update files and end to end latency values are presented in
Table 4.3.
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Table 4.3 Average end to end latency based on different file sizes for successful

update
File size End to end latency (ms)
1KB 1875
10KB 1958
50KB 2235
100KB 2728

One conclusion can be drawn from Table 4.3 is even when the file size increases
from 10KB to 100KB, the increase in end to end latency is from approximately 1.9
seconds to 2.7 seconds which is linear and shows the scalability of the protocol. The
difference between latency values is based on the computational delay of file read

and write processes.

4.2.1.2 Failed update

As explained in Chapter 3, privacy-awareness of the proposed protocol comes from
the failed update scenario where the real identities of the IoT devices are hidden
so that outsiders cannot realize the actual device to which the update is addressed.
As in the successful update case, the payload data size of an update file is fixed to
10KB. However, in failed update scenario, at the end of the protocol the update file

is received but not installed on IoT device’s side since the authentication fails.

Average computational delay breakdown for one device receiving a failed update can
be seen in Table 4.4. Total computational delay is calculated as approximately 395
milliseconds where average end to end latency is 851 milliseconds for one device. As
a result, communication delay is 456 milliseconds. It is expected that computational
delay for failed update scenario is much smaller than the successful update scenario

since generating and verifying fakeProofs are faster than legitimate Proofs.
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Table 4.4 Average computational delay results for failed update scenario

Calculation Computational Delay (ms) Device
creating challenge 0.44 Vendor
verifying HMAC 3.22 Vendor
verifying fakeProof 10 Vendor
creating fakeProof 0.7 Vendor
calculating HMAC 0.62 Vendor
creating fakeProof 360.28 [oT device
calculating HMAC 3.1 IoT device
verifying HMAC 4.88 [oT device
verifying fakeProof 6.98 [oT device

total computational delay 394.86

For the sake of comparisons, we conducted experiments where multiple [oT devices
have received failed updates simultaneously. Average end to end latency values for
multiple IoT devices are shown in Table 4.5. The experimental results for failed
update scenarios are in the range of approximately 0.85 seconds to 1.5 seconds and

the increase is linear with respect to the number of devices.

Table 4.5 Average end to end latency results for failed update scenario

Number of IoT device End to end latency (ms)
851
895
937
1045
1075
1118
1173
1252
1298
1386
1461
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Also, Figure 4.2 shows the linear trendline of the average end to end latency values
for 1-to-11 IoT devices. As the figure indicates, the increase is 0.06 second per device
slope. We can conclude that the proposed scheme shows good scalability for failed
update scenarios.
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To compare with, in Figure 4.1 and Figure 4.2 it is seen that successful update
scenarios and failed update scenarios have the similar trendline which indicates that

similar applications provide consistency.
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Figure 4.2 Average end to end latency for receiving failed updates

Moreover, we conduct experiments with different payload data sizes for update files.
In the experiments, the testbed includes five IoT devices for the sake of uniformity.
In Table 4.6, end to end latency values with respect to different file sizes can be
found. While file size increases from 10KB to 100KB, overall latency increases from
1075 milliseconds to 1540 milliseconds. The increase in latency is expectedly linear

and depends on the file read/write processes at the end of the protocol.

Table 4.6 Average end to end latency based on different file sizes for failed update

File size End to end latency (ms)

1KB 859

10KB 1075
50KB 1244
100KB 1540
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When the results for 10KB and 100KB file sizes are compared, the failed update
scenario has less increase in latency in comparison to the successful update scenario.
This is because, in the failed update case, the update file is only sent from the Vendor
but not downloaded on the IoT device’s side since the device is not the target for
the update.

4.2.1.3 Mixed update

In this section, we present experimental results of mixed and simultaneous updates
where some of the devices in the testbed receive successful updates and others fail
to get updates. In Table 4.7, average end to end latency results of 11 IoT devices in

such mixed scenarios are presented with respect to the number of successful updates.

Table 4.7 Average end to end latency results for mixed update scenario

Number of successful/failed updates End to end latency (ms)

1 successful / 10 failed 1707
2 successful / 9 failed 1897
3 successful / 8 failed 1950
4 successful / 7 failed 2001
5 successful / 6 failed 2099
6 successful / 5 failed 2120
7 successful / 4 failed 2123
8 successful / 3 failed 2135
9 successful / 2 failed 2186
10 successful / 1 failed 2224

It is seen that for one device receiving the update successfully and ten devices
failing to get update, the overall latency is 1707 milliseconds which is higher than
the result of the failed update scenario with eleven IoT devices. This is because even
just for one successful delivery of the update, the legitimate Proofs are generated
and the mutual authentication protocol is ensured. Still, it can be concluded that
the increase with respect to the number of successful updates is linear. Figure 4.3

demonstrates the linear trendline for mixed update scenarios.
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Mixed Update Performance Results
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Figure 4.3 Average end to end latency for mixed updates simultaneously

As shown in Figure 4.3, the overall latency values are close to each other. The failed
communications do not make a big difference in terms of end to end latency since
at least one successful update is received by an IoT device in the testbed. The slope
of increase in Figure 4.3 is approximately 0.05 seconds per device that receives a

successful update.

4.2.2 Error Report Scenario

In this section, we present the experimental results for successful delivery of the error
reports which corresponds to the upstream traffic scenario. The communication
starts with the request of an IoT device indicating that the error report will be sent.
After completion of the mutual authentication protocol, an error report which is

assumed to have 10KB payload data size is sent to Vendor.

In Table 4.8, breakdown of average computational costs for one device are given.
Total computational time is calculated as 1211 milliseconds and overall end to end
latency for one device is 1337 milliseconds. Communication cost is calculated as 126

milliseconds.
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Table 4.8 Average computational delay results for error report scenario

Calculation Computational Delay (ms) Device
creating Proof 0 Vendor
calculating HMAC 0.4 Vendor
verifying HMAC 0.64 Vendor
verifying Proof 23.16 Vendor
creating challenge 1.28 [oT device
verifying HMAC 24.72 [oT device
verifying Proof 433.36 [oT device
creating Proof 723.32 [0oT device
calculating HMAC 4.88 [oT device

total computational delay 1211.76

Table 4.9 provides the overall end to end latency results for multiple IoT devices
from 1-to-11. Similar to the update scenarios, the devices operate simultaneously.
Also, Figure 4.4 demonstrates the linear increase in overall latency with a slope of

0.08 seconds per device.

Table 4.9 Average end to end latency results for error report scenario

Number of IoT device End to end latency (ms)
1337
1590
1668
1749
1865
1897
1917
1967
2074
2145
2291
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Error Report Performance Results
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Figure 4.4 Average end to end latency for sending error report

4.3 Discussion

In this section, the experimental results are discussed and compared. To begin with,
end to end latency in failed update scenarios is lower than the successful updates
scenarios since the generation and verification of fakeProofs are much quicker than
legitimate Proofs. In Table 4.1, it is seen that creating proof takes 770.02 millisec-
onds and verifying proof takes 412.7 milliseconds at the [oT device’s side while Table
4.4 indicates that creating fakeProof takes 360.28 milliseconds and verifying fake-
Proof takes 6.98 milliseconds. To conclude, generating legitimate Proof takes almost
twice as long as generating fakeProofs and verification process of fakeProof is too
fast, even negligible. However, both scenarios have 0.06 seconds slope of increases
confirming that the experiments give similar scalability performance under the same

conditions.

On the other hand, slope of increase in error report scenarios is a bit higher than
update scenarios since IoT devices perform most of the computations in error re-
port scenarios. That’s why it is expected to have a higher increase in latency per
device. The communication time in error report and update scenarios are similar

and considerably low indicating the feasibility of the proposed solution.
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When the mixed update scenario results are examined, it is seen that the overall la-
tency when an IoT device gets a failed update and ten IoT devices receive successful
updates is 2224 milliseconds. On the other hand, the average end to end latency in
the update scenario with 11 IoT devices is calculated as 2321 which is an expected
outcome since in the mixed update scenario one device getting a failed update re-
duces the computational and communication delay on the Vendor’s side. Moreover,
a mixed scenario with one failed ten successful updates has higher latency than a
successful update scenario with 10 devices. The reason is that one more device in
the communication even with a failed update increases the time spent for network

activities.

The increase in end to end latency values are linear in all scenarios, as shown in
Figure 4.1, Figure 4.1 and Figure 4.4. It means that when the number of IoT
devices are increased, the overall latency values also increase. However, the increase
per device slope in each scenario is quite low which indicates that the proposed

anonymous identification scheme is scalable for home automation systems.
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5. SECURITY ANALYSIS

In this section, we provide security analysis on the proposed model using a security
protocol animator by simulating different attack scenarios. Also, we discuss the
boundaries of the model based on the knowledge that an attacker can obtain from

the system.

5.1 Security Analysis

To analyze the proposed system, we use a security protocol animator, SPAN, for
Avispa [30]. SPAN simulates the provided simulation and outputs a chart of execu-
tion. In the intruder mode, the tool acts as an attacker and comes up with different
attacks on the simulated protocol. For the proposed mutual authentication protocol,
we use SPAN to simulate and validate the authenticity of the protocol. The simu-
lation of mutual authentication protocol is given in Figure 5.1. CAS+ language is
used to write the simulation with an appropriate syntax. One can check the CAS+
manual [31] to see the details for CAS+ language. Additionally, written CAS+

specification for mutual authentication protocol is posted on Github repository [32].

The intruder simulation is tested for authentication of both of the parties in the
protocol by the generated Proofs based on credentials (Credl and Cred2). Figure 5.2
shows one of the simulations where the intruder performs man-in-the-middle attack
by impersonating Vendor and THG at the same time. In the intruder simulation,
Proof(Cred1, CH1) is represented with the notation as hash(const1, nonce3) where
hash(.) represents any function (proof generation in this case), constl is the Credl
since it is constant and private to the users and nonce3 is the challenge. It is seen
that when hash(constl, nonce3) is received by the intruder, it cannot be changed
and is directly sent to the Vendor. Also, Vendor generates another Proof(Cred2,

CH2) which is simulated as hash(constl, nonce4). Even if the intruder intervenes
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in the protocol, since it does not have a legitimate credential and cannot generate
a proof, the proof is not altered and sent to IHG as it is. In addition, HMAC (as
hash(nonce4) in the simulation) is calculated for challenge and the update message,
so it protects the integrity of the interchanged messages and if intruder changes any
bit of the messages, the parties understand that they are not communicating with
a legitimate entity and they stop the execution. As a result, the intruder cannot be
authenticated by any of the parties in the simulation and the mutual authentication
protocol is proven to be safe by OFMC [33] and ATSE [34] specifications.

The results of safety analysis are given in Figure 5.3 with ATSE mode and in Figure
5.4 with OFMC mode. One can readily replicate our results in the SPAN tool with
the codes provided in the GitHub repository [32].
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Figure 5.1 Mutual authentication protocol simulation using SPAN tool
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Figure 5.2 Mutual authentication protocol intruder simulation using SPAN tool
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Figure 5.3 Mutual authentication protocol safety analysis with ATSE mode
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Figure 5.4 Mutual authentication protocol safety analysis with OFCM mode
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5.2 Discussion

In this section, we discuss the boundaries of the proposed model and suggest solu-

tions for the potential weaknesses.

In the proposed model, fakeProofs are generated faster than real proofs. This may
be a potential weakness in the system if all devices receive failed updates and the
number of devices in the communication is known. If this information is leaked,
then side-channel attack is possible by evaluating the overall latency to see whether
the communication is completed too fast. We assume that the attacker cannot know
the number of IoT devices at home so it can not realize the scenario where all of
the devices receive failed updates. Still, it leaks information about attributes of
the device so to avoid this information leakage, randomization can be implemented.
This way, randomized data will be added to the communication and overall latency
will be similar in different scenarios. In our model, to evaluate real-life latency values

randomization is not implemented.

Also, encryption of the transferred data is not implemented. If the MQTT topic
used in the communication is leaked then eavesdropping attack is possible since an
attacker can subscribe to the topic and receive all the messages in the communica-
tion. Also, an attacker can learn device type and vendor name information by simply
checking the topic name. This is another potential weakness in the system since the
messages are transferred in plain text. However, we assume that the attacker cannot
know the unique MQTT topic so the messages are sent over a safe channel. Still,
to avoid this possible leakage encryption of the messages can be implemented as a

future work.
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6. CONCLUSION AND FUTURE WORK

In this thesis, we propose a privacy-aware Idemix based anonymization for home
automation systems. The proposed system architecture includes IoT devices, Home
Management System (HMS), Innovative Home Gateway (IHG) and Vendor. More
precisely, [oT devices are connected to IHG which is a gateway responsible for relay-
ing messages coming in to and going out from IoT devices. None of the entities in the
system but IHG can directly communicate with IoT devices. To achieve anonymity,
we adapted the Idemix anonymous credential system to our proposed model. By us-
ing anonymous credentials, we do not reveal the identity of the devices while we can
make sure that the device is legitimate. To meet security requirements, we propose
a privacy-aware mutual authentication protocol. In order for the communication to
be completed, both entities need to authenticate themselves to the other party using
their credentials. Moreover, the proposed mutual authentication protocol in which
fakeProofs are presented is privacy-aware. With the introduction of fake proofs,
we make sure that the communication is completed in an expected manner where
no adversary can distinguish the failed communication. This way, the real identity
of the IoT devices in the network is not revealed. Extensive experiments on the
implementation of the scheme are presented and performance results are evaluated.
Moreover, using SPAN protocol animator for the security analysis the proposed
scheme is proven to be safe against man-in-the-middle attacks since the credentials
are private to the users and adversaries can not authenticate themselves to the other
parties without having a legitimate credential. Experimental results indicate that

the proposed model is efficient and scalable for home automation systems.

As a future work, the proposed model can be extended in terms of preserving privacy
of the users by obfuscating the communication between two parties. Also, for the
secrecy of the interchanged messages, a secure key establishment protocol can be

developed and symmetric encryption may be implemented.

46



1]

[11]

[12]

BIBLIOGRAPHY

W. H. Hassan et al., “Current research on internet of things (iot) security: A
survey,” Computer networks, vol. 148, pp. 283-294, 2019.

I. Lee and K. Lee, “The internet of things (iot): Applications, investments, and
challenges for enterprises,” Business Horizons, vol. 58, no. 4, pp. 431-440, 2015.

Y. Upadhyay, A. Borole, and D. Dileepan, “Mqtt based secured home automa-
tion system,” in 2016 Symposium on Colossal Data Analysis and Networking
(CDAN), pp. 1-4, IEEE, 2016.

P. Kumar and U. C. Pati, “Iot based monitoring and control of appliances
for smart home,” in 2016 IEEFE International Conference on Recent Trends in
FElectronics, Information & Communication Technology (RTEICT), pp. 1145-
1150, IEEE, 2016.

A. C. Jose and R. Malekian, “Smart home automation security: a literature
review,” SmartCR, vol. 5, no. 4, pp. 269-285, 2015.

A. Gai, S. Azam, B. Shanmugam, M. Jonkman, and F. De Boer, “Categori-
sation of security threats for smart home appliances,” in 2018 International
Conference on Computer Communication and Informatics (ICCCI), pp. 1-5,
IEEE, 2018.

M. Weber and M. Boban, “Security challenges of the internet of things,” in 2016
39th International Convention on Information and Communication Technology,
FElectronics and Microelectronics (MIPRO), pp. 638-643, IEEE, 2016.

J. M. Batalla and F. Gonciarz, “Deployment of smart home management system
at the edge: mechanisms and protocols,” Neural Computing and Applications,
vol. 31, no. 5, pp. 1301-1315, 2019.

“Mqtt: The standard for iot messaging.” Retrieved April 21, 2021, from https:
//mqtt.org/.

J. Camenisch and E. Van Herreweghen, “Design and implementation of the
idemix anonymous credential system,” in Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security, pp. 21-30, 2002.

J. Camenisch and A. Lysyanskaya, “A signature scheme with efficient proto-
cols,” in International Conference on Security in Communication Networks,
pp. 268-289, Springer, 2002.

J. Liu, Y. Xiao, and C. P. Chen, “Internet of things’ authentication and access

control,” International Journal of Security and Networks, vol. 7, no. 4, pp. 228—
241, 2012.

47


https://mqtt.org/
https://mqtt.org/

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Alcaide, E. Palomar, J. Montero-Castillo, and A. Ribagorda, “Anonymous
authentication for privacy-preserving iot target-driven applications,” Comput-
ers & Security, vol. 37, pp. 111-123, 2013.

X.-J. Lin, L. Sun, and H. Qu, “Insecurity of an anonymous authentication
for privacy-preserving iot target-driven applications,” Computers € Security,
vol. 48, pp. 142-149, 2015.

Z. A. Alizai, N. F. Tareen, and 1. Jadoon, “Improved iot device authentication
scheme using device capability and digital signatures,” in 2018 International
Conference on Applied and Engineering Mathematics (ICAEM), pp. 1-5, IEEE,
2018.

Y. Zhang, R. H. Deng, G. Han, and D. Zheng, “Secure smart health with
privacy-aware aggregate authentication and access control in internet of things,”
Journal of Network and Computer Applications, vol. 123, pp. 89-100, 2018.

L. Zhang, Y. Ye, and Y. Mu, “Multiauthority access control with anonymous
authentication for personal health record,” IEEFE Internet of Things Journal,
vol. 8, no. 1, pp. 156-167, 2020.

L. Zhou, X. Li, K.-H. Yeh, C. Su, and W. Chiu, “Lightweight iot-based authenti-
cation scheme in cloud computing circumstance,” Future Generation Computer
Systems, vol. 91, pp. 244-251, 2019.

F. Li and B. McMillin, “A survey on zero-knowledge proofs,” in Advances in
Computers, vol. 94, pp. 25-69, Elsevier, 2014.

J. Camenisch et al., “Specification of the identity mixer cryptographic library,”
IBM Research— Zurich, 2013.

D. Chaum, “Security without identification: Transaction systems to make big
brother obsolete,” Communications of the ACM, vol. 28, no. 10, pp. 1030-1044,
1985.

D. Chaum and J.-H. Evertse, “A secure and privacy-protecting protocol for
transmitting personal information between organizations,” in Conference on
the Theory and Application of Cryptographic Techniques, pp. 118-167, Springer,
1986.

“Eclipse mosquitto.” Retrieved June 11, 2021, from https://mosquitto.org/.

“Mosquitto manual” Retrieved June 11, 2021, from https://mosquitto.org/
man/mqtt-7.html.

P. J. Leach, R. Salz, and M. H. Mealling, “A universally unique identifier (uuid)
urn namespace,” RFC 4122, July 2005.

NIST, “Secure hash standard,” Federal Information Processing Standard
(FIPS) 180-4, 2012.

H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-hashing for message
authentication,” RFC 2104, February 1997.

48


https://mosquitto.org/
https://mosquitto.org/man/mqtt-7.html
https://mosquitto.org/man/mqtt-7.html

28]

[29]

[30]

[31]

[32]

[33]

[34]

S. Gur, S. Demir, S. Simsek, and A. Levi, “Secure and privacy-aware gateway
for home automation systems,” in 13th International Conference on Security of
Information and Networks, pp. 1-10, 2020.

“Raspberry pi foundation.” Retrieved May 30, 2019, from https://www.
raspberrypi.org.

A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H.
Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, et al., “The avispa tool
for the automated validation of internet security protocols and applications,” in

International conference on computer aided verification, pp. 281-285, Springer,
2005.

T. G. Ronan Saillard, “Cas+ manual,” 2011. Retrieved May 23, 2021, from
http://people.irisa.fr/Thomas.Genet /span/CAS__manual.pdf.

S. Demir, “Span, github repository,” 2021. https://github.com/simgedemir/
SPAN.git.

S. Modersheim and L. Vigano, “The open-source fixed-point model checker for
symbolic analysis of security protocols,” in Foundations of Security Analysis
and Design V, pp. 166-194, Springer, 2009.

M. Turuani, “The cl-atse protocol analyser,” in International Conference on
Rewriting Techniques and Applications, pp. 277-286, Springer, 2006.

49


https://www.raspberrypi.org
https://www.raspberrypi.org
http://people.irisa.fr/Thomas.Genet/span/CAS_manual.pdf
https://github.com/simgedemir/SPAN.git
https://github.com/simgedemir/SPAN.git

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND INFORMATION
	Literature review
	CL Signature Scheme
	Idemix
	MQTT

	PROPOSED MODEL
	System Overview
	Attacker Model
	System Parts
	Credentials
	Proof Specification Document
	Proof
	Fake Proofs

	Privacy-aware Anonymous Identification Model
	Credential Issuance Protocol
	Mutual Authentication Protocol
	Protocol Flow of Downstream Traffic Scenario
	Protocol Flow of Upstream Traffic Scenario



	EXPERIMENTAL RESULTS
	Setup and Implementation Details
	Performance Evaluation
	Update Scenario
	Successful update
	Failed update
	Mixed update

	Error Report Scenario

	Discussion

	SECURITY ANALYSIS
	Security Analysis
	Discussion

	CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY



