
COMPUTING MATRIX PERMANENTS AND COUNTING
PERFECT MATCHINGS ON GPUS

by
BERK YAĞLIOĞLU

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
July 2021

COMPUTING MATRIX PERMANENTS AND COUNTING
PERFECT MATCHINGS ON GPUS

Approved by:

Date of Approval: July 14, 2021

Berk Yağlıoğlu 2021 ©

All Rights Reserved

ABSTRACT

COMPUTING MATRIX PERMANENTS AND COUNTING PERFECT
MATCHINGS ON GPUS

BERK YAĞLIOĞLU

Computer Science and Engineering M.S. THESIS, JULY 2021

Thesis Supervisor: Asst. Prof. Kamer Kaya

Keywords: permanent, perfect matching, bipartite graph, GPU, High Performance
Computing, #P-complete

Permanent -just like determinant-, is an important numeric value in order to un-
derstand matrix characteristics and multiple applications of permanent exist. For
example, because graphs and sparse matrices are structurally similar to each other,
they can be used to show the representation of the same data. The Permanent value
of a symmetric matrix that is consisted of 1s and 0, is equal to the perfect matching
number of the corresponding bipartite graph which is an important information of
relationship among bipartite graph’s vertices.

Calculating exact value of matrix permanent is a #P-complete problem. For that
reason, there is not an algorithm that works in polynomial time. The fastest al-
gorithm that calculates an n×n matrix’s permanent value has a time complexity
of O(2n−1n). This nature of the problem makes the calculation of even consider-
able smaller matrices like n > 40 very slow. In literature, there exist studies that
focuses on computing the exact permanent value in parallel with a computer or a
supercomputer.

In this thesis, parallel algorithms are designed and implemented that can calculate
the exact permanent value of dense and sparse matrices efficiently on multicore
CPUs and multiple GPUs. Furthermore, algorithms are developed to approximate
the permanent value of a given dense or sparse matrix in parallel.

iv

ÖZET

BIRDEN FAZLA GPU ÜZERINDE PERMANENT DEĞERININ
HESAPLANMASI VE MÜKEMMEL EŞLEMELERIN SAYILMASI

BERK YAĞLIOĞLU

PROGRAM ADI YÜKSEK LİSANS TEZİ, MAYIS 2021

Tez Danışmanı: Asst. Prof. Kamer Kaya

Anahtar Kelimeler: permanent, mükemmel eşleme, iki parçalı çizge, GPU, Yüksek
Başarımlı Hesaplama, #P-tam

Permanent aynı determinant gibi matrislerin karakterlerini anlamaya yarayan
önemli bir sayısal değerdir ve bir çok pratik uygulaması mevcuttur. Örneğin,
çizgeler ve seyrek matrisler yapısal olarak birbirine benzediğinden aynı veriyi göster-
mek üzere kullanılabilirler ve 1 ve 0’lardan oluşan bir simetrik matrisin permanent
değeri, o matrise karşılık gelen iki parçalı çizgenin mükemmel eşleme sayısına eşittir.
İki parçalı çizgenin mükemmel eşleme sayısı, o çizgenin noktaları arasındaki ilişkisi
adına önemli bir bilgidir.

Permanent değerini hesaplama #P-tam bir problemdir. Bu yüzden polinom za-
manda çalışan bir algoritma bulunmamaktadır. Literatürdeki en hızlı algoritmanın
karmaşıklığı O(2n−1n)’dır. Problem bu yapısı gereği n > 40 gibi küçük denilebilecek
matrislerin için bile permanentin hesaplanması oldukça yavaştır. Literatürde per-
manent değerini bilgisayar veya süper bilgisayar ile paralel olarak hesaplamak adına
çalışmalar mevcuttur.

Bu tezde hem dolu hem seyrek matrisler için birden çok çekirdeki CPU’lar ve bir-
den çok GPU’da çalışan paralel algoritmalar tasarlanıp geliştirilmiştir. Ayrıca dolu
ve seyrek matrisler için permanent değerini yakınsayan paralel algoritmalar geliştir-
ilmiştir.

v

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Dr. Kamer Kaya for everything he taught
and his support, and my family and friends for their support throughout my studies
in Sabancı University.

vi

To my family and friends

vii

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xii

1. INTRODUCTION . 1

2. BACKGROUND AND NOTATION . 3
2.1. Permanents and Matchings . 3
2.2. Graphics Processing Units . 5

3. COMPUTING MATRIX PERMANENTS ON GPUs 7
3.1. Computing the Permanents of Dense Matrices . 7

3.1.1. Ryser-Gx: keeping x in global device memory 9
3.1.2. Ryser-Rx: keeping x on registers . 10
3.1.3. Ryser-Sx: keeping x in the shared memory 11
3.1.4. Ryser-SxC: keeping x in the shared memory with memory

coalescing . 13
3.1.5. Ryser-SxC-Sm: keeping mat in the shared memory in Ryser-SxC 14
3.1.6. Ryser-SxC-Sm-MG: static multiple GPUs implementation. 14
3.1.7. Ryser-SxC-Sm-MG+: dynamic hybrid implementation 14

3.2. Computing the Permanents of Sparse Matrices . 15
3.2.1. SpaRyser-SxC-Sm: keeping x and CCS in the shared memory . 18
3.2.2. SpaRyser-SxC-Sm-MG+: dynamic hybrid implementation 20

4. APPROXIMATING MATRIX PERMANENTS ON GPUs 21
4.1. Approximating the Permanents of Dense Matrices . 21

4.1.1. RasmussenGpu: Implementation of Rasmussen on GPU 22
4.1.2. Rasmussen+Gpu: Implementation of Rasmussen+ on GPU 24
4.1.3. Rasmussen+MGpu: Hybrid implementation of Rasmussen+ 24
4.1.4. ScalingGpu: Implementation of Scaling on GPU 25
4.1.5. Scaling+Gpu: Implementation of Scaling+ on GPU 27

viii

4.1.6. Scaling+MGpu: Hybrid implementation of Scaling+ 27
4.2. Approximating the Permanents of Sparse Matrices . 28

4.2.1. RasmussenGpuS: Sparse implementation of Rasmussen on GPU 28
4.2.2. Rasmussen+GpuS: Sparse implementation of Rasmussen+ on

GPU. 29
4.2.3. Rasmussen+MGpuS: Hybrid sparse implementation of

Rasmussen+ . 29
4.2.4. ScalingGpuS: Sparse implementation of Scaling on GPU 30
4.2.5. Scaling+GpuS: Sparse implementation of Scaling+ on GPU . 30
4.2.6. Scaling+MGpuS: Hybrid sparse implementation of Scaling+ . . 31

5. COUNTING PERFECT MATCHINGS ON GPUs 32
5.1. SkipPer-SxC-Sm: keeping x, CRS, and CCS in the shared memory 34
5.2. SkipPer-SxC-Sm-MG+: dynamic hybrid implementation 35

6. EXPERIMENTAL RESULTS . 37
6.1. Experiment Settings . 37
6.2. Experiments on Matrices . 38

6.2.1. Exact Permanent Computation . 38
6.2.1.1. Experiments with dense matrices . 38
6.2.1.2. Experiments with sparse matrices . 40

6.2.2. Single vs. Double Precision . 47
6.2.3. Approximate Permanent Computation. 48

6.2.3.1. Experiments with dense matrices . 48
6.2.3.2. Experiments with sparse matrices . 50
6.2.3.3. Accuracy . 55

6.3. Experiment on Graphs . 57
6.4. Threats to Validity . 59

7. CONCLUSION . 60

BIBLIOGRAPHY. 62

ix

LIST OF TABLES

Table 6.1. Execution times (in secs) of the algorithms on a CPU and a
single GPU for dense matrices with various density values for a matrix
with dimension of 40. 39

Table 6.2. Execution times (in secs) of the algorithms on multiple GPUs
for dense matrices with various density values for a matrix with di-
mension of 40. 40

Table 6.3. Execution times (in secs) of the variants of SpaRyser with and
without using SortOrder for a matrix with dimension of 40. 41

Table 6.4. Execution times (in secs) of the variants of SkipPer with and
without using SkipOrder for a matrix with dimension of 40. 42

Table 6.5. Execution times (in secs) of the algorithms on a CPU for generic
and binary integer matrices with matrix dimension is 40. 42

Table 6.6. Execution times (in secs) of the algorithms on a GPU for generic
and binary integer matrices with matrix dimension is 40. 43

Table 6.7. Execution times (in secs) of the algorithms on multiple GPUs
for generic and binary integer matrices with matrix dimension is 40. . 45

Table 6.8. Execution times (in secs) of the algorithms for dense matrices
with integer, float, and double data types. 47

Table 6.9. Execution times (in secs) of variants of Rasmussen for a dense
matrix with dimension of 40 when number of experiments is one million. 48

Table 6.10. Execution times (in secs) of variants of Scaling for a dense
matrix with dimension of 40 when number of experiments is one million. 49

Table 6.11. Execution times (in secs) of the hybrid implementations for a
dense matrix with dimension of 40 when number of experiments is
around ten million. 50

Table 6.12. Execution times (in secs) of variants of Rasmussen and
Rasmussen+ for sparse matrices with dimension of 40 when number
of experiments is one million. 51

x

Table 6.13. Execution times (in secs) of variants of Scaling and Scaling+
for sparse matrices with dimension of 40 when SInterval = 5 and
number of experiments is one million. 52

Table 6.14. Execution times (in secs) of variants of Scaling and Scaling+
for sparse matrices with dimension of 40 when SInterval = 1 and
number of experiments is one million. 52

Table 6.15. Execution times (in secs) of the sparse hybrid implementations
for sparse matrices with dimension of 40 when number of experiments
is ten million. 55

Table 6.16. Accuracy of the approximation algorithms on grid graphs when
number of experiments is one million . 59

xi

LIST OF FIGURES

Figure 3.1. Gray codes . 9
Figure 3.2. Moving x to shared memory . 11
Figure 3.3. Moving x to shared memory with memory coalescing. 12
Figure 3.4. (a)A 6×6 matrix and its (b)CRS and (c)CCS representations . . 16

Figure 4.1. (a) array to keep track of extracted rows with (b) binary rep-
resentation of each index . 23

Figure 6.1. Execution times (in secs) of the algorithms on a GPU for dense
matrices with density of 0.60. 40

Figure 6.2. Execution times (in secs) of SpaRyser-SxC-Sm for sparse ma-
trices with and without SortOrder. 41

Figure 6.3. Execution times (in secs) of SkipPer-SxC-Sm for sparse ma-
trices with and without SkipOrder. 42

Figure 6.4. Execution times (in secs) of the algorithms on a GPU for
sparse matrices with density of 0.10. 44

Figure 6.5. Execution times (in secs) of the algorithms on a GPU for
sparse matrices with density of 0.20. 44

Figure 6.6. Execution times (in secs) of the algorithms on a GPU for
sparse matrices with density of 0.30. 44

Figure 6.7. Execution times (in secs) of the algorithms on multiple GPUs
for sparse matrices with density of 0.10. 46

Figure 6.8. Execution times (in secs) of the algorithms on multiple GPUs
for sparse matrices with density of 0.20. 46

Figure 6.9. Execution times (in secs) of the algorithms on multiple GPUs
for sparse matrices with density of 0.30. 46

Figure 6.10. Execution times (in secs) of the algorithms for dense matrices
with different data types with density of 0.60. 48

Figure 6.11. Execution times (in secs) of the approximation algorithms for
dense matrices with density of 0.80. 49

xii

Figure 6.12. Execution times (in secs) of variants of Rasmussen and
Rasmussen+ for sparse matrices with density of 0.10.. 51

Figure 6.13. Execution times (in secs) of variants of Rasmussen and
Rasmussen+ for sparse matrices with density of 0.20.. 52

Figure 6.14. Execution times (in secs) of variants of Scaling and Scaling+
when SInterval = 5 for sparse matrices with density of 0.10. 53

Figure 6.15. Execution times (in secs) of variants of Scaling and Scaling+
when SInterval = 5 for sparse matrices with density of 0.20. 54

Figure 6.16. Execution times (in secs) of variants of Scaling and Scaling+
when SInterval = 1 for sparse matrices with density of 0.10. 54

Figure 6.17. Execution times (in secs) of variants of Scaling and Scaling+
when SInterval = 1 for sparse matrices with density of 0.20. 54

Figure 6.18. Accuracy of the algorithms for matrices with density of 0.20. . 55
Figure 6.19. Accuracy of the algorithms for matrices with density of 0.30. . 56
Figure 6.20. Accuracy of the algorithms for matrices with density of 0.40. . 56
Figure 6.21. Execution times (in secs) of the variants of Rasmussen+ and

Scaling+ for grid graphs.. 58

xiii

1. INTRODUCTION

Permanent is the sum of products of all transversals of a matrix. This immanent of
the matrices has important applications in many scientific areas such as complexity
theory, graph theory, game theory, and quantum computing. The exact perma-
nent of an adjacency matrix is equivalent to the number of perfect matching for a
bipartite graph, and the number of cycle covers for a directed graph. The exact
permanent values are also used in computing the transition amplitude of a quan-
tum circuit (Rudolph, 2009) and boson sampling (Aaronson & Arkhipov, 2010).
Valiant has shown that, computing the exact permanent identifies the arithmetic
version of complexity class NP, called VNP. (Valiant, 1979). In the same paper,
Valiant proved that computing permanent is #P-complete problem. The most effi-
cient algorithm known for calculating the exact permanent has O(2n−1n) complexity,
therefore it takes a tremendous amount of time or even impossible to calculate the
exact permanent of big matrices. Since calculating the exact permanent is a costly
operation, there are numerous researches about approximating permanent in the lit-
erature. Among the approximation algorithms, approaches that use Markov chains
to approximately sample from a distribution of weighted permutations and provide
polynomial runtime with an acceptable error are proven to be the most successful
(Huber & Law, 2008). However, despite the heavy computational cost, there is
no work in the literature investigating high-performance computing techniques to
deliver fast and computationally efficient algorithms in order to greatly reduce the
time required for the permanent calculation and make exact calculation and approx-
imation of big matrices plausible except (Kaya, 2019). This thesis aims to close this
gap in the literature. To this end, several high-performance algorithms are imple-
mented and analyzed for permanent calculation problems. Currently, calculating
the exact permanent of 40× 40 matrix takes 32497.7 seconds with the best-known
algorithm on a single CPU thread. With techniques proposed in this thesis, 2702.9
seconds on 16 CPU threads, 259.5 seconds on a single GPU, and 96.4 seconds with
4 GPUs are obtained for the same calculation. The contributions of this thesis can
be summarized as the following:

1

• High-performance permanent calculation algorithms for dense matrices on
multicore CPUs and/or multiple, manycore GPUs.

• High-performance permanent calculation algorithms for sparse matrices on
multicore CPUs and/or multiple, manycore GPUs.

• High-performance permanent approximation algorithms for dense matrices on
multicore CPUs and/or multiple, manycore GPUs.

• High-performance permanent approximation algorithms for sparse matrices on
multicore CPUs and/or multiple, manycore GPUs.

• A detailed analysis of the performance of developed algorithms, problems en-
countered while parallelizing the computation over different architectures, and
proposed solutions.

• SUPerman, a publicly available HPC tool that includes every algorithm pro-
posed in this thesis to help other researchers.

The rest of the thesis is organized as follows: In Chapter 2, background on the
calculation of the exact permanent, approximation, notation used in this thesis, a
literature review, and architectural details of the used hardware accelerators are
given. In the chapter 3, algorithms are proposed for the exact permanent calcu-
lation for dense and sparse matrices. This chapter also provides the variations of
algorithms that leverages optimized memory access patterns. In Chapter 4, high-
performance versions of approximation algorithms that run on single and multiple
GPU devices and their variations optimized for dense and sparse matrices are pro-
posed. In Chapter 5, GPU capable algorithms for counting perfect matchings are
proposed. In Chapter 6, performance analysis is provided for every algorithm pro-
posed in this thesis. Chapter 7 concludes the thesis.

2

2. BACKGROUND AND NOTATION

2.1 Permanents and Matchings

For a given n×n matrix A, let ai,j be the entry at the ith row and jth column of
A. The permanent value of A can be calculated using the following equality.

(2.1) perm(A) =
∑
σ∈P

n∏
i=1

ai,σ(i)

where P is the permutation of all the numbers within 1,2, . . . ,n. Due to this nature
of the algorithm, it has to go over all the permutations, which leads to O(nn!)
complexity. The Ryser algorithm (Ryser, 1963) makes use of inclusion and exclusion
principle to reduce to time complexity to O(2n−1n2). The Ryser algorithm changes
the equation of calculating permanent as follows.

(2.2) perm(A) =−1n
∑

S⊆{1,2,··· ,n}
(−1)|S|

n∏
i=1

∑
j∈S

ai,j

Nijenhuis and Wilf improved this algorithm even further by processing the S sets in
the order of gray code (Nijenhuis & Wilf, 1978). They reduced the complexity to the
O(2n−1n). This algorithm is the most efficient algorithm in the literature currently
for dense and almost full matrices. In the rest of the thesis, this algorithm will be
denoted as Ryser. A parallel implementation of Ryser on CPU will be denoted
as ParRyser. Gray code will be denoted as GrayCode, and ith gray code will be
denoted as GrayCodei.

3

For dense matrices, most of the permutations or most of the sets in the S makes
a contribution to the permanent that is different than 0. However, most of the
matrices in real life applications are sparse with very few nonzero elements, and it is
a complex problem to calculate the permanent value of a sparse matrix. Because, as
opposed to a dense matrix, the number of permutations or sets in S that contributes
to the permanent value is very low in sparse matrices. One can take into account
only the sets of S that contributes to the permanent. However, determining those
sets is not an easy problem. Most recently (Kaya, 2019), two algorithms SpaRyser
and SkipPer are proposed that are efficient on sparse matrices, where both the
algorithms are based on the Ryser algorithm. The SpaRyser algorithm makes use of
compressed row and compressed column storage denoted as CRS and, CCS which are
initially proposed by Mittal and Al-Kurdi for use of permanent calculation (Mittal
& Al-Kurdi, 2001). In SpaRyser algorithm, a single iteration can detect efficiently
whether the current iteration is a zero contribution iteration for the permanent or
not. If there is no contribution in the current one, the algorithm skips to the next
iteration by avoiding unnecessary multiplications. On the other hand, in SkipPer,
it further skips many consecutive iterations with a zero contribution by a single
jump when a GrayCode is detected yielding a zero contribution. In this thesis,
their parallel implementations are designed and implemented, which will be denoted
as ParSpaRyser and ParSkipPer. In ParSkipPer, a dynamic iteration-chunk-to-
thread scheduling is applied to employ a thread with a chunk when it finishes its
previous task.

There have been studies in the literature to estimate the number of perfect matchings
in a bipartite graph, where a matching is perfect as long as every edge in the match-
ing covers each vertex exactly once. Calculating the number of perfect matchings
in a bipartite graph is equivalent to the permanent value of the binary 0-1 adja-
cency matrix that corresponds to the bipartite graph. The Rasmussen algorithm
(Rasmussen, 1994) estimates the permanent value of a given matrix using random
selection mechanism at each step. At each iteration the first row is chosen and the
number of nonzero of this row is used to multiply the permanent value which is ini-
tially 1. Then, one of the nonzero in this first row is chosen and its row and column
is extracted from the matrix. The algorithm continues until there is no row/column
left or one of the row is having no nonzero elements, which leads to 0 as a value of
the estimation. This algorithm will be denoted as Rasmussen. Different approaches
using Rasmussen algorithm are also proposed (Dufossé, Kaya, Panagiotas & Uçar,
2018). They improved Rasmussen by eliminating edges that do not contribute per-
fect matching, and used a heuristic to choose the row with the least nonzero at each
step. This improved version will be denoted as Rasmussen+. Similar to Rasmussen,

4

they proposed a variant for estimating permanent which makes use of a scaling pro-
cess to scale the matrix in a doubly stochastic form at each iteration. After first
row is chosen at each iteration and edges that cannot contribute to the permanent
are eliminated, diagonal entries of scaling matrices are updated which then to be
used in contribution to the permanent. This algorithm is denoted as Scaling. An
improved version of this algorithm that uses the same heuristic as Rasmussen+ to
choose the row with the least nonzero at each step is also denoted as Scaling+ in
this paper.

In the most of the experiments, the input matrix whose permanent value to be
calculated will be denoted as mat. For a matrix, the dimension n indicates that the
matrix is n×n matrix, and it is denoted as dim. The number of nonzero elements
inside a matrix is denoted as nnz.

2.2 Graphics Processing Units

A Graphics Processing Unit, that is called shortly GPU, is a hardware device that is
used in applications containing graphics heavily. Nowadays, GPUs are also used in
High Performance Computing for programs to run faster. In contrast to a CPU that
is a Central Processing Unit, a GPU contains many cores that focuses on completing
many tasks at once by hiding the latency using communication-computation overlap.
There are multiple Processor Clusters in a GPU architecture where each consists of
multiple Streaming Multiprocessors that is called an SM. An SM contains memory
cache layers which are smaller than a cache in a CPU. Each SM in a GPU runs on
its cores multiple blocks that consist of threads, where all the blocks together form
a grid. Therefore, in terms of hierarchy in a GPU, grid is the largest (abstract)
structure, and it has a dimension that indicates the number of blocks, which will be
denoted as GridDim in this paper. Then, each block has many threads inside of it
as the number of its dimension, which will be denoted as BlockDim. Therefore, it
can be said that there will be GridDim × BlockDim many threads running in total
in a GPU. Within a block, there is another form of group that is called warp that
consists of 32 threads. The important thing to note about a warp is that it is a
collection of 32 threads that are synchronized and running the same commands at
the same time, such that if they encounter an if-else block, some will wait to enter in
else block if there are other threads in the warp that enter in if block. Furthermore,
threads in a warp tend to run faster when they access the same memory locations or

5

the memory location that lie next to each other. This last pattern is called memory
coalescing.

In terms of memory hierarchy, there are three levels. A variable can be kept in the
global memory, where any thread in the grid can access and update this memory.
Reading an updating a global memory location is slow since it is in a place for each
thread to access from different SMs. On the other hand, there is also shared memory
which is special to each block. Therefore, a shared memory region can be allocated
for each block, where only the threads within the block can access and update this
memory. Read write operations to this memory region can be performed very fast.
However, there is a size limitation on the memory that can be allocated for a block.
There is also another form of memory that is called registers which is only accessible
by a single thread, such that it is special to a thread. This memory region also can
be accessed and updated very fast, whereas there is a limitation for this memory
region too. In the paper, the GPU devices used are TITAN X (Pascal) which will
be denoted as TITAN, and GeForce GTX 980 which will be denoted as Gtx. For
these GPU devices, shared memory limitation is 48KB per block, such that there
cannot be a memory region allocated more than 48KB for each block. In terms of
limitation on registers, 65536 registers are available per block. Maximum BlockDim
is 1024, and a single SM can take up to maximum of 2048 threads. For example,
when BlockDim is 1024, 2 blocks can fit into a single SM.

For the code that runs on a GPU, CUDA is used, which is an application program-
ming interface that enables running codes on a GPU. In order to start a GPU device
for the experiments, a global device kernel should be created where it is able to be
called from the code that runs in the host machine on a CPU. This device kernel is
started by a single thread on a CPU by inputting GridDim, BlockDim, and necessary
parameters that are allocated using CUDA. Initially allocated memory using CUDA
lies in the global memory when the kernel starts for each thread. However, a shared
memory can be created inside of the kernel and values can be copied from global
memory to shared memory in the beginning of the kernel. In the end, if there are
many output values to return, all output values can be written to a memory region
in the global memory, which then to be copied back to host memory on a CPU
using CUDA. In this thesis, global thread ID within all of the threads on a GPU
is denoted as tid. On the other hand, a thread ID of a thread within a block is
denoted as threadId.

6

3. COMPUTING MATRIX PERMANENTS ON GPUs

The most efficient algorithm for calculating matrix permanent is Ryser which has a
run time complexity of O(2n−1n). In this section, GPU implementations of Ryser
and SpaRyser algorithms will be discussed for dense and sparse matrices, respec-
tively.

3.1 Computing the Permanents of Dense Matrices

In the Ryser algorithm, the for loop which has O(2n−1) complexity can be par-
allelized in a data-parallel fashion. The implementation for ParRyser is given in
Algorithm 1. The input parameters of this algorithm are the matrix mat, dimen-
sion of the matrix dim, start and end variables for the iteration space which are 1
and 2dim−1 respectively for the total iteration space. This iteration space can be
divided into chunks. When there are multiple threads, a chunk size can be chosen
as the iteration size divided by the number of threads. Then, each thread needs to
use the previous chunk’s last GrayCode that is GrayCodemyStart−1 to calculate its
initial x, where myStart is the start index for each thread in Algorithm 1. Then,
the initial x is obtained using the columns of the matrix that corresponds to the bits
of the current GrayCode which are 1. Afterwards, the rest of the algorithm is the
same as Ryser for each thread with its own start, endpoints, and x. One important
thing to note is the use of matT , which is the transpose of the original matrix in
order to iterate over columns more efficiently at each iteration.

For the GPUs, Ryser algorithm is implemented using CUDA. In the host machine,
memory is allocated for the input variable of the device kernel and copied those input
variables’ initial values from host to global device memory. These input variables
for the device kernel are x which is x, matT that is a transpose of the original
matrix, dim that is the dimension of the matrix, p as an output list to store the

7

final permanent value each thread finds in its own chunk of work, and start and end

positions for the start and end point of the iteration space in the current kernel call.
The output list is created as the size of the number of threads, which is GridDim
× BlockDim. After each thread calculates its own result for the chunk it has given,
this result is stored in the index of the global thread ID on the GPU which is tid.
After the device kernel terminates, the result list is copied back to host memory,
and results are summed up in the host to obtain the permanent value of the matrix.

Algorithm 1 ParRyser (mat,dim,start,end)
1: p← 1
2: for i = 1 . . .N do
3: rowSum← 0
4: for j = 1 . . .N do
5: rowSum← rowSum+mat[i, j]
6: x[i]←mat[i,n]− rowSum/2
7: p← p×x[i]
8: matT ← transpose of the mat
9: for each thread do

10: myX ← x
11: myP ← 0
12: myStart← start+threadId× chunkSize
13: myEnd←min(start+(threadId+1)× chunkSize,end)
14: calculate x using the previous GrayCode
15: for g = myStart . . .myEnd−1 do
16: j← log2 (GrayCodeg⊕GrayCodeg−1)+1
17: s← 2×GrayCodeg[j]−1
18: prod← 1
19: for i = 1 . . .N do
20: myX[i]←myX[i]+ (s×matT [j, i])
21: prod← prod×myX[i]
22: myP ←myP +(−1)g×prod

23: AtomicAdd(p,myP)
24: return p× (4× (n mod 2)−2)

On a GPU, it is crucial to access and manipulate data fast. A warp on a GPU is the
collection of 32 threads, where they all work in a synchronized manner. Therefore,
threads in a warp execute the same commands at the same time. This synchro-
nization is the reason behind condition statements being problematic in terms of
performance on GPUs. It is also important to note that threads in a warp execute
faster when they are accessing memory locations that are the same or close to each
other. Based on this feature, a novel approach is followed in this thesis aimed to
obtain faster memory access by utilizing a feature of GrayCode. In every iteration
of Ryser, it makes use of GrayCode the difference to find the column ID of the

8

matrix to update the x. If every thread in a warp utilizes the same column at the
same iteration, execution can get faster, since threads in a warp are faster when
they use the same or narrow memory locations together at the same time. Luckily,
one can achieve this by properly choosing the chunk size each thread is employed
with. When calculating the (i + 1)th GrayCode, always one bit is flipped in the ith
GrayCode. The observation is that mostly the same bit is flipped if one move from
(i + 2k)th gray code to (i + 2k + 1)th where k is a positive integer. In Figure 3.1,
8-bit gray code is shown describing this condition by indicating the flipped bits.
Therefore, if the chunk size each thread is employed with is chosen as the exact
power of 2, each thread in a warp will operate on the same column in most of the
iterations at the same time.

Figure 3.1 Gray codes

3.1.1 Ryser-Gx: keeping x in global device memory

In Ryser-Gx, the initial x, which was created on the host and copied to the global
device memory, is used by each thread. For each thread to use x in the global device
memory, there should have been a separate x created for each thread, since each
thread will update it differently according to the portion of the iteration space they
process. For this reason, x is allocated on the global device memory as the size of
dim × GridDim × BlockDim and threads are able to access their own portion of the
x using their global thread ID tid. In Algorithm 2, the device kernel of Ryser-Gx

9

is given. As it can be seen, x is utilized from global memory using x that comes
as a parameter. Also, matT which is the transpose of the matrix is also accessed
directly using global memory accesses. When a thread wants to access the ith index
of the x, it accesses using x[tid×dim+ i]. Also, the ith row and jth column of the
original matrix can be accessed using matT [j×dim + i]. The rest of the algorithm
is similar to the ParRyser.

Algorithm 2 Ryser-Gx (matT,dim,x,p,start,end)
1: tid← threadIdx.x+(blockIdx.x× blockDim.x)
2: chunkSize← (end− start)/(GridDim×BlockDim)+1
3: myStart← start+tid× chunkSize
4: myEnd←min(start+(tid+1)× chunkSize,end)
5: myP ← 0
6: for k = 1 . . .dim−1 do
7: if (GrayCodemyStart−1 >> k)&1 then
8: for j . . .dim do
9: x[tid×dim+ j]← x[tid×dim+ j]+matT [k×dim+ j]

10: for g = myStart . . .myEnd−1 do
11: j← log2 (GrayCodeg⊕GrayCodeg−1)+1
12: s← 2∗GrayCodeg[j]−1
13: prod← 1
14: for i = 1 . . .dim do
15: x[tid×dim+ i]← x[tid×dim+ i]+ (s×matT [j×dim+ i])
16: prod← prod×x[tid×dim+ i]
17: myP ←myP +(−1)g ∗prod

18: p[tid]←myP

3.1.2 Ryser-Rx: keeping x on registers

In Ryser-Rx, the initial x is created in the device registers, which means locally
created and copied its initial values from the global device memory which comes
as input x in Algorithm 2. In the device kernel of Ryser-Rx, x parameter has the
size of dim since it only contains the initial values of x as opposed to Ryser-Gx.
Therefore, myX is created locally in Ryser-Rx as the size of dim and x is copied to
myX before line 6 in Algorithm 2. The rest of the device kernel of Ryser-Rx is the
same as the device kernel of Ryser-Gx, except the ith index of x will be accessed
using myX[i] by each thread in Ryser-Rx. Although GPU devices have fast memory
accesses for registers, when matrix size is increased, this version has limitations due
to the limited number of the registers per streaming multiprocessor(SM), since x
has the length as the matrix dimension.

10

Figure 3.2 Moving x to shared memory

3.1.3 Ryser-Sx: keeping x in the shared memory

The device kernel of Ryser-Sx is given in Algorithm 3. In Ryser-Sx, shared memory
is allocated for each thread’s x, and initial parameter x in Algorithm 3 is copied
into this shared memory. Allocating memory for x in the shared memory means
that memory will be allocated in the shared memory of each block as the size of
the dim × BlockDim since each thread in a block on GPU maintains a different x,
while matT and result list p is in the global device memory. After the memory is
allocated in the shared memory, initial parameter x is copied by each thread in a
block to the shared memory location of x for the specified thread, as in line 5. In
Ryser-Sx, x of each thread in the shared memory is lying next to each other, as it
is illustrated in Figure 3.2. Therefore, in order to access the ith index of the x in
the shared memory, a thread in a block should use myX[threadId×dim+i]. Since
the transpose of the matrix is in the global device memory, matT is used directly
to access the elements of the matrix. The rest of the algorithm is the same as
Ryser-Rx except the memory accesses to myX. The aim to use x in shared memory
is to utilize x faster by accessing elements faster. However, this approach also comes
with a cost due to limitations of the shared memory available per block, which is
48KB. This limits the number of threads to be able to use per block. Because x
has a length of dim for each thread. For example, when a data type of double is
used for x, then dim × BlockDim × 8 bytes of space is consumed per block, which
should be smaller than 48KB shared memory. This means, when dim equals 36-40,
only 150-170 threads can fit into one block. This means also one block can fit into
one SM since the shared memory limitation is also 48KB per SM. However, one SM
can take up to 2048 threads inside of it, and this is a must if one wants to hide the
latency of the works between threads. Therefore, this is also a huge limitation of

11

this approach. In the experiments, x is used as type of float, which uses less space
as 4 bytes, in order to fit more threads inside of a block. When x is a type of the
float, it is possible to fit 305-340 threads into one block.

Algorithm 3 Ryser-Sx (matT,dim,x,p,start,end)
1: tid← threadIdx.x+(blockIdx.x× blockDim.x)
2: threadId← threadIdx.x
3: BlockDim← blockDim.x
4: for k = 1 . . .dim do
5: myX[threadId×dim+k]← x[k]
6: syncthreads()
7: chunkSize← (end− start)/(GridDim×BlockDim)+1
8: myStart← start+tid× chunkSize
9: myEnd←min(start+(tid+1)× chunkSize,end)

10: myP ← 0
11: for k = 1 . . .dim−1 do
12: if (GrayCodemyStart−1 >> k)&1 then
13: for j . . .dim do
14: myX[threadId× dim+j] ← myX[threadId× dim+j] + matT [k ×

dim+ j]
15: for g = myStart . . .myEnd−1 do
16: j← log2 (GrayCodeg⊕GrayCodeg−1)+1
17: s← 2∗GrayCodeg[j]−1
18: prod← 1
19: for i = 1 . . .dim do
20: myX[threadId× dim+i] ← myX[threadId× dim+i] + (s×matT [j ×

dim+ i])
21: prod← prod×myX[threadId×dim+i]
22: myP ←myP +(−1)g ∗prod

23: p[tid]←myP

Figure 3.3 Moving x to shared memory with memory coalescing

3.1.4 Ryser-SxC: keeping x in the shared memory with memory coalescing
12

Ryser-SxC algorithm has a very similar approach as Ryser-Sx. Both approaches
utilize faster element accesses using shared memory for x, while they use a matrix
from the global device memory accessing matT in Algorithm 3. The only difference
is that in Ryser-Sx, each thread’s x lies next to each other in the shared memory
of a block. This leads to threads in a warp accessing a wider memory region. As it
was previously described, threads in a warp execute faster when they use narrower
memory regions and accessing locations that are closer to each other at the same
time. This is called memory coalescing and this is achieved by putting a specific
index of each x that each thread use next to each other in the shared memory, as is
illustrated in Figure 3.3. Therefore, threads in a warp are accessing a smaller area
on the shared memory in every command. Therefore, in order for a thread to access
the ith element of the x, it should access to myX[BlockDim× i+threadId].

Algorithm 4 Ryser-SxC-Sm (matT,dim,x,p,start,end)
1: tid← threadIdx.x+(blockIdx.x× blockDim.x)
2: threadId← threadIdx.x
3: BlockDim← blockDim.x
4: for k = 1 . . .dim do
5: myX[BlockDim×k +threadId]← x[k]
6: for k = 1 . . .(dim×dim)/BlockDim+1 do
7: if BlockDim×k +threadId < dim×dim then
8: sharedMatT [BlockDim × k + threadId] ← matT [BlockDim × k +

threadId]
9: syncthreads()

10: chunkSize← (end− start)/(GridDim×BlockDim)+1
11: myStart← start+tid× chunkSize
12: myEnd←min(start+(tid+1)× chunkSize,end)
13: myP ← 0
14: for k = 1 . . .dim−1 do
15: if (GrayCodemyStart−1 >> k)&1 then
16: for j . . .dim do
17: myX[BlockDim× j +threadId]←myX[BlockDim× j +threadId]+

sharedMatT [k×dim+ j]
18: for g = myStart . . .myEnd−1 do
19: j← log2 (GrayCodeg⊕GrayCodeg−1)+1
20: s← 2∗GrayCodeg[j]−1
21: prod← 1
22: for i = 1 . . .dim do
23: myX[BlockDim× i+threadId]←myX[BlockDim× i+threadId]+(s×

sharedMatT [j×dim+ i])
24: prod← prod×myX[BlockDim× i+threadId]
25: myP ←myP +(−1)g ∗prod

26: p[tid]←myP

13

3.1.5 Ryser-SxC-Sm: keeping mat in the shared memory in Ryser-SxC

In Ryser-SxC-Sm the algorithm, the only additional feature is that a memory region
is allocated also for the matrix along with x in the shared memory. Therefore, it
can be said that everything is the same as Ryser-SxC except how Ryser-SxC-Sm to
access its matrix. It is important to keep the matrix in the shared memory since there
are lots of accesses to the matrix and one can utilize fast accesses using the shared
memory. Algorithm 4 shows the pseudocode of the device kernel of Ryser-SxC-Sm
in detail. Similar to previous approaches in Ryser-Sx and Ryser-SxC, there is a
shared memory limitation which is even greater since the matrix is also included in
the shared memory of each block. If x has type off the float, when the matrix uses
values with the type of integer, 265-305 threads can fit into one block when matrix
size is 36-40. If the type of double is used for the values in the matrix, this will lead
to even fewer threads per block, such as 230-270.

3.1.6 Ryser-SxC-Sm-MG: static multiple GPUs implementation

In Ryser-SxC-Sm, the aim was to run permanent calculation on a single GPU de-
vice. However, since iteration space can be divided into chunks for each thread,
one can also divide it equally for each GPU device, and run them separately. In
Ryser-SxC-Sm-MG, total iteration space is divided equally to the number of devices
and each device calculates its own portion using the Ryser-SxC-Sm, whose device
kernel is given under Algorithm 4. Then, in the end, all outcomes of each device are
summed up to obtain a final permanent value.

3.1.7 Ryser-SxC-Sm-MG+: dynamic hybrid implementation

In Ryser-SxC-Sm-MG, it divides iteration space among multiple GPU devices. How-
ever, there is an issue in performance if one device is faster than the other one. In
such a case, the faster device could finish the work earlier and wait for the other
devices, since the slower ones are still working. This can be avoided with further
optimization by using small chunks for each device to start with instead of dividing
the iteration space as the number of devices. This approach with dividing iteration
space into many small chunks is followed in Ryser-SxC-Sm-MG+. In a loop, after

14

every device finishes with its own chunk using the kernel of Ryser-SxC-Sm, then it
will take the next chunk if there is any left. By this approach, if one device finishes
its chunk earlier than others, it will continue to work until there is no chunk left.
It is also important to choose the chunk size good. Because if one chooses a large
space for a single chunk, the last chunk could be taken by a slow device, and it may
take longer while others are free of work. On the other hand, if one chooses a very
small space for a chunk, this would give an extra overhead since each device comes
with a cost to initialize and copy all the results back to host memory after it is done.
Therefore, it is crucial to find a medium-size chunk. The number of chunks for this
algorithm is detected after manual experiments to be 2dim−29. In addition to the
implementation of this algorithm, also a CPU kernel is added which is ParRyser
that optionally takes a chunk and runs along with GPU devices to contribute and
make the permanent calculation process faster.

3.2 Computing the Permanents of Sparse Matrices

When matrices are sparse, previous approaches begin to work inefficiently. The
reason is that most of the elements inside the matrix are zero and ineffective due
to them having no contribution in updating x. However, there are still unnecessary
memory accesses are being made to these elements that are zero. Therefore, a sparse
data structure should be used to store the matrix. Then, the algorithm should be
adjusted accordingly. For sparse matrices, appropriate data structures are CRS and
CCS as they were being used in SpaRyser algorithm. In these data structures, there
are three arrays used for each CRS and CCS as it can be seen in Figure 3.4. For an
example, arrays named as rptrs, columns, rvals in CRS. rptrs is used to store the
start location of each row in the columns and rvals arrays. columns array is used
to store the column ID of each nonzero element in the specified row. Similarly, rvals

array is used to store each nonzero element’s value.

15

Figure 3.4 (a)A 6×6 matrix and its (b)CRS and (c)CCS representations

SpaRyser algorithm can be parallelized in the same manner as, Ryser since the
original Ryser algorithm is being utilized. Implementation of the ParSpaRyser is
given in Algorithm 5. As input parameters, CCS is given along with the matrix.
Dimension of the matrix, start and end points for the iteration space are also given.
The matrix itself is only used in initializing the x. For the main loop, only CCS is
needed, since each thread only operates on a column of the matrix at each iteration
to update the x and contribute to the permanent.

In SpaRyser, using CCS, instead of iterating over all of the elements in a column of
a matrix, CCS is being used only to iterate over nonzero elements. After iterating
only nonzero elements updating x, if there is any zero in x, the iteration is skipped
since there will be no contribution of the current iteration. In order to understand
whether there is a zero in x, the number of zeros are being kept from the previous
iterations and updated every iteration as x is being updated. If the number of
zeros is zero, then x is being iterated to contribute. This similar approach is also
used in the Algorithm 5 and GPU implementations, in a slightly different manner.
Instead of keeping only the number of zeros from the previous iterations, production
of nonzero elements in the x from the previous iteration along with the number of
zeros is being kept. Similarly, only nonzero elements of a selected column are iterated
using CCS, and the production of nonzero elements and the number of zeros in x
are both updated. In the end, if the number of zeros is zero, then previously kept
production is being used to have a contribution and x is not going to be iterated
again. SortOrder is also used as a preprocessing to make the more frequently
processed columns are the ones with the least nonzero elements. Because in the
gray code order, the first few bits frequently change while the last bits are not

16

Algorithm 5 ParSpaRyser (mat,cptrs,rows,cvals,dim,start,end)
1: p← 1
2: for i = 1 . . .N do
3: rowSum← 0
4: for j = 1 . . .N do
5: rowSum← rowSum+mat[i, j]
6: x[i]←mat[i,n]− rowSum/2
7: p← p×x[i]
8: for each thread do
9: myX ← x

10: myP ← 0
11: myStart← start+threadId× chunkSize
12: myEnd←min(start+(threadId+1)× chunkSize,end)
13: calculate myX using GrayCodemyStart−1
14: prod←∏dim

n=1 myX[i] for myX[i] 6= 0
15: zeroNum←∑length(myX)

n=1 myX[i] for myX[i] = 0
16: for g = myStart . . .myEnd−1 do
17: j← log2 (GrayCodeg⊕GrayCodeg−1)+1
18: s← 2∗GrayCodeg[j]−1
19: for i = cptrs[j] . . . cptrs[j] do
20: if myX[rows[i]] == 0 then
21: zeroNum← zeroNum−1
22: myX[rows[i]]←myX[rows[i]]+ s× cvals[i]
23: prod← prod×myX[rows[i]]
24: else
25: prod← prod/myX[rows[i]]
26: myX[rows[i]]←myX[rows[i]]+ s× cvals[i]
27: if myX[rows[i]] == 0 then
28: zeroNum← zeroNum+1
29: else
30: prod← prod×myX[rows[i]]
31: if zeroNum == 0 then
32: myP ←myP +(−1)g ∗prod

33: AtomicAdd(p,myP)
34: return p× (4× (n mod 2)−2)

17

changing often, that leads to first columns of the matrix being used frequently.
Therefore, after SortOrder, the first columns will have the least nonzero elements.
For parallelism, the for loop which has 2n−1 iterations is parallelized in a data-
parallel fashion. For each algorithm in section 3.1, this approach is applied just by
using CCS instead of the matrix data structure, and changing the iteration where x
is updated as described in this chapter.

The same approaches in chapter 3.1 for dense matrices are followed in this chapter.
However, instead of using a matrix and copying it from host memory to global or
shared memory of the device, CCS is used, and three arrays are copied into device
memory. Three arrays for, CCS as it was indicated in Figure 3.4, consume 2×
nnz+dim+1 many elements, which are usually less than the matrix itself when the
matrix is half full at most. It is also important to note that SortOrder is used as a
preprocessing to make the calculation process faster.

3.2.1 SpaRyser-SxC-Sm: keeping x and CCS in the shared memory

In SpaRyser-SxC-Sm, a very similar approach as in Ryser-SxC-Sm is followed. There
is a memory allocated in the shared memory for both x and the matrix. However,
CCS is used for the representation of the matrix. Therefore, instead of allocating
a memory as the number of elements in the matrix, memory is allocated only for
cptrs, rows, and cvals which has the size of 2×nnz+dim+1. The device kernel of
SpaRyser-SxC-Sm is given in Algorithm 6. Between lines 4-10, the shared memory
locations are initialized for x and CCS with the values from the global device memory.
It is also important to note that SpaRyser-SxC-Sm makes use of memory coalescing
for x where the same indices of each x of each thread are next to each other in
the shared memory. As opposed to Ryser-SxC-Sm, only the nonzero elements in
the current column to be processed are iterated, as in lines between 22-33. While
processing, the column, zeroNum which is the number of zeros, and prod which is
the production of nonzero elements in myX are updated. If there are no zeros in
myX at the end, the current iteration contributes to the permanent using prod as
in line 35. In the end, each thread writes their results back to the global memory
location in p using their global thread ID tid, which then to be summed up to
be used in calculating the final permanent result in the host. It is important to
note that since less memory is used than matrix itself as opposed to Ryser-SxC-Sm,
assuming matrix is half full at most, there will be more available space remained in
the shared memory when the same BlockDim is used.

18

Algorithm 6 SpaRyser-SxC-Sm(cptrs,rows,cvals,dim,nnz,x,p,start,end)
1: tid← threadIdx.x+(blockIdx.x× blockDim.x)
2: threadId← threadIdx.x
3: BlockDim← blockDim.x
4: for k = 1 . . .dim do
5: myX[BlockDim×k +threadId]← x[k]
6: sharedCptrs[k]← cptrs[k]
7: sharedCptrs[dim+1]← cptrs[dim+1]
8: for k = 1 . . .nnz do
9: sharedRows[k]← rows[k]

10: sharedCvals[k]← cvals[k]
11: syncthreads()
12: chunkSize← (end− start)/(GridDim×BlockDim)+1
13: myStart← start+tid× chunkSize
14: myEnd←min(start+(tid+1)× chunkSize,end)
15: myP ← 0
16: calculate myX using GrayCodemyStart−1
17: prod←∏dim

n=1 myX[i] for myX[i] 6= 0
18: zeroNum←∑length(myX)

n=1 myX[i] for myX[i] = 0
19: for g = myStart . . .myEnd−1 do
20: j← log2 (GrayCodeg⊕GrayCodeg−1)+1
21: s← 2∗GrayCodeg[j]−1
22: for i = cptrs[j] . . . cptrs[j] do
23: if myX[BlockDim× sharedRows[i]+threadId] == 0 then
24: zeroNum← zeroNum−1
25: myX[BlockDim × sharedRows[i] + threadId] ← myX[BlockDim ×

sharedRows[i]+threadId]+ s× sharedCvals[i]
26: prod← prod×myX[BlockDim× sharedRows[i]+threadId]
27: else
28: prod← prod/myX[BlockDim× sharedRows[i]+threadId]
29: myX[BlockDim × sharedRows[i] + threadId] ← myX[BlockDim ×

sharedRows[i]+threadId]+ s× sharedCvals[i]
30: if myX[BlockDim× sharedRows[i]+threadId] == 0 then
31: zeroNum← zeroNum+1
32: else
33: prod← prod×myX[BlockDim× sharedRows[i]+threadId]
34: if zeroNum == 0 then
35: myP ← p+(−1)g ∗prod

36: p[tid]←myP

19

3.2.2 SpaRyser-SxC-Sm-MG+: dynamic hybrid implementation

In SpaRyser-SxC-Sm-MG+, the approach in Ryser-SxC-Sm-MG+ is followed. Iteration
space is divided into small chunks and each device takes one chunk at a time to start
the device kernel, which is SpaRyser-SxC-Sm. When a device finished its portion of
work, a thread in the host contributes to the overall permanent using the result of
the device, and starts the device kernel again if there is any chunk left within the
total iteration space. Optionally, a CPU kernel can be started in the same manner,
starting ParSpaRyser with the current chunk. In this way, multiple GPU devices
and optionally a CPU work together collectively. However, there is still one question
about how to set the chunk size. There could be extra overhead in initializing the
devices each time when chunk size is small. Similarly, if chunk size is large, one device
can finish its work and there is no chunk left while a slower device may continue
working. The chunk size was chosen manually as 2dim−29 for Ryser-SxC-Sm-MG+.
However, since SpaRyser-SxC-Sm-MG+ is a sparse implementation, chunks can be
completed faster than the dense implementation. Therefore, chunk size is chosen
larger as 2dim−30 in SpaRyser-SxC-Sm-MG+.

20

4. APPROXIMATING MATRIX PERMANENTS ON GPUs

Calculating the number of perfect matchings in a bipartite graph is equivalent to the
permanent value of the bipartite adjacency matrix that corresponds to the bipartite
graph. However, values of the corresponding adjacency matrix indicates whether
an edge exists or not at each index, such that this adjacency matrix is composed
of binary values where 1 shows there is an edge between vertices. Therefore, one
can estimate the permanent value of a binary matrix using approximate value of the
number of perfect matchings for the corresponding bipartite graph. Rasmussen and
Scaling algorithms are examples which estimates number of perfect matching of a
graph.

It is very important to have as many experiments as possible to obtain more ac-
curate permanent value estimations in the approximation algorithms. As there are
more experiments, there will be more time to wait for the final result. Since each
experiment is independent of each other, one can parallelize the experiments that
are being run. In this paper, both Rasmussen and Scaling algorithms are used
along with their improved version Rasmussen+ and Scaling+ for the approximation
algorithms implemented on GPU.

4.1 Approximating the Permanents of Dense Matrices

Experiments for the approximation algorithms can be parallelized as the number
of available threads on CPU. Each thread can calculate the value of the current
experiment and add the final value atomically to a global variable. After obtaining
the sum of each experiment, it can be divided by the number of experiments to get
the mean of experiments, which is the estimation for the permanent value in a binary
matrix. The parallel versions of Rasmussen, Rasmussen+, Scaling, and Scaling+
will be denoted as ParRasmussen, ParRasmussen+, ParScaling, and ParScaling+

21

respectively.

4.1.1 RasmussenGpu: Implementation of Rasmussen on GPU

Similar approach on a CPU is followed on a single GPU. In Algorithm 7, the device
kernel of Rasmussen+Gpu can be seen, which is slightly different than the kernel of
RasmussenGpu. The inputs for the device kernel are the matrix mat, the dimension
of the matrix dim, a random number rand which then to be multiplied by global
thread ID tid on GPU to be used as a seed for random number generation, and the
result list p for the output of each experiment which then will be copied back to host
memory to take their average. Memory is allocated in the shared memory as the size
of the matrix to copy the matrix itself from global device memory to shared memory
of each block, as it can be seen in line 5 of the Algorithm 7. As mentioned before,
shared memory limitation is 48KB. Moving the matrix to the shared memory
means that there will be dim2×4 bytes of memory is allocated when the type of the
matrix is integer. In order to conform to shared memory restrictions, the maximum
dimension of the matrix will be approximately 110. There will be no limitation
while setting the BlockDim since shared memory being used does not depend on the
number of threads in a block. In order to keep the track of the extracted columns
in each step, an array of integers is being kept in the registers. However, due to
memory limitations on registers, the size of this array is also limited. For this reason,
bitwise operations have been used to understand whether a column is extracted or
not. In each index of the array, there is an integer element with 32 bits, which is
enough to keep track of extracted columns of a matrix with a dimension of 32. As
matrix dimension gets bigger, other indices’ bits will be checked and updated for the
next columns, as it is described in the Figure 4.1 for rows. So, it is enough to create
an array of size equals to ddim/32e in overall to keep the track of extracted columns.
For the dense algorithm RasmussenGpu, the memory limitations on registers will
not be exceeded due to shared memory limitation will be reached first. When the
matrix dimension is 110, the size of the colExtracted will be 4 which consumes four
registers. In RasmussenGpu, there is no need of creating an extra variable to keep
track of the number of rows since each row will be utilized in order. Therefore, in
RasmussenGpu, instead of finding the row with the least nonzero in line 11 as in
Algorithm 7, it takes the row which is equal to the iteration ID k. Then, using the
nonzero number in row where column of a nonzero was not extracted, perm value
is multiplied by it. After randomly choosing a nonzero in the row, this nonzero
element’s column col will be extracted by flipping the necessary bit in colExtracted

22

as in line 16. The ∨ in line 16 is bitwise or operator. After all the iterations are
completed by each thread, results are written back to output list p to the index
of global thread ID tid of each thread. At the end when kernel is completed, the
output list p is copied back to host memory to calculate the mean of the results as
the final estimation value.

Algorithm 7 Rasmussen+Gpu (mat,dim,rand,p)
1: tid← global thread id
2: threadId← thread id within block
3: for k = 1 . . .(dim×dim)/BlockDim+1 do
4: if BlockDim×k +threadId < dim×dim then
5: sharedMat[BlockDim×k +threadId]←mat[BlockDim×k +threadId]
6: synch threads inside a block
7: perm← 1
8: rowExtracted[ddim/32e]
9: colExtracted[ddim/32e]

10: for k = 1 . . .dim do
11: row← row with the least number of nonzero
12: nnz← nonzero number of row
13: perm← perm×nnz
14: col← column of the randomly chosen nonzero in row
15: rowExtracted[drow/32e]← rowExtracted[dcol/32e] ∨ (1 << (row % 32))
16: colExtracted[dcol/32e]← colExtracted[dcol/32e] ∨ (1 << (col % 32))
17: p[tid]← perm

Figure 4.1 (a) array to keep track of extracted rows with (b) binary representation
of each index

4.1.2 Rasmussen+Gpu: Implementation of Rasmussen+ on GPU

23

Similar to RasmussenGpu, this algorithm follows everything almost the same on GPU
except how to choose the row at each step. As for Rasmussen+ algorithm, rows were
chosen according to their increasing order of nonzero elements. So, this approach
is followed in Rasmussen+Gpu, whose device kernel can be seen in Algorithm 7.
The same shared memory restrictions exist in this algorithm as in RasmussenGpu
since the every element of the matrix is copied to the shared memory. Additionally,
in Rasmussen+Gpu, rowExtracted array is created along with the colExtracted.
Because, since rows are not chosen in their initial order at each step, one should be
aware of which rows are extracted while choosing the row. On line 11, it iterates
through each unextracted row to find the row with the least nonzero elements,
where each nonzero element’s column has not been extracted yet. Furthermore,
the extracted row in the current step is taken into account on line 15, whose logic
behind was illustrated in Figure 4.1. It is important to note that since there are two
lists to keep the track of extracted rows and columns separately, there will be more
registers taken by each thread. However, this still does not have any effect since
shared memory limitation comes before this, where one can only store matrix with
a dimension up to 110 since Rasmussen+Gpu is a dense algorithm, and it copies all
the elements of the matrix to shared memory.

4.1.3 Rasmussen+MGpu: Hybrid implementation of Rasmussen+

In Rasmussen+Gpu, the number of perfect matching, which means permanent value
for binary matrices, are estimated accurately and efficiently. As the number of
experiments are increased, one can obtain even more accurate, permanent results.
However, this would increase the runtime for the estimation. In order to decrease
the runtime further, hybrid solutions are possible since every experiment is indepen-
dent of each other. In Rasmussen+MGpu, multiple threads in the host start device
kernels on different GPU devices. Along with the GPU devices, parallel version of
Rasmussen+ on a CPU, ParRasmussen+, is also able to be started in parallel. The
device kernel that is called for each GPU device is shown in Algorithm 7, which is
Rasmussen+Gpu. Here, instead of dividing experiments equally and distribute work-
load to devices equally, a chunking mechanism has been used which makes each
device start with some number of experiments as one chunk’s size. After a device
is done with its work, it checks whether the total number of experiments aimed to
run are reached or not. If there needs to be more experiments to be run, the device
starts running again with the next chunk until the number of experiments in total
satisfies. In the end, all the results’ average are taken as the final permanent value

24

estimation. It is important to choose the chunk size right. Since it makes use of
an approximation algorithm, it does not take long, as it was the case in computing
exact permanent values. Furthermore, each kernel call costs some more time, which
may cause a hybrid solution takes more time than a single GPU approach. For this
reason, each kernel call is regulated to take approximately one million experiments
by setting both GridDim and BlockDim to 1024 since each thread calculates the
result of a single experiment. While GPU devices calculate around one million ex-
periments every time they start, ParRasmussen+ runs only for 50,000 experiments
since this algorithm runs slower than a single GPU device.

4.1.4 ScalingGpu: Implementation of Scaling on GPU

For ScalingGpu, the algorithm makes use of the logic behind Scaling algorithm.
The input parameters for this algorithm is the same as the Scaling+Gpu shown in
Algorithm 8, which are matrix mat, dimension of the matrix dim, random number
rand that is to be multiplied with global thread ID tid to create a seed for random
number generation, result list p, two arrays R and C to store the entries of diagonal
scaling matrices, SInterval and STime that are used to indicate scaling intervals
and number of time to scale respectively. Firstly, matrix itself copied to the shared
memory. The R and C arrays are kept in the global memory due to shared memory
limitations. Because, each thread will be maintaining different arrays since each
one may be choosing different row and column to extract at the same iteration due
to randomness that would lead their R and C differ. If one tries to put each of
them to shared memory, then 2× dim× BlockDim× 4 bytes of memory should be
allocated in a single block, assuming these arrays are composed of integer elements.
This is not a good approach since shared memory limitation is 48KB and this
limits the BlockDim to a maximum of 153 threads for a simple matrix with 40 as
a dimension. As the dimension gets bigger, this even limits further. That’s why R

and C are allocated in the global memory before the device kernel call, and each
array’s size is dim×BlockDim×GridDim, such that each thread are able to access
its own portion of arrays using its global thread ID tid. For instance, a thread
should access to index of tid×dim + i if it is going to access to ith index of R or
C. Before starting iterating rows, R and C are updated by each thread to its initial
value, which is 1. Also, colExtracted array is created on registers to keep track of
extracted columns, as it can be seen in line 12 of Algorithm 8. The only difference
in ScalingGpu than Algorithm 8, there is no need to keep the track of extracted
rows since it chooses rows according to their initial order instead of choosing the one

25

with the least number of nonzero elements. Afterwards, scaling algorithm is applied
to normalize the matrix before choosing a nonzero within a row in order to increase
the possibility of choosing the nonzero that contributes a perfect matching. Scale
algorithm is called every SInterval steps and it updates the diagonal entries of
scaling matrices and stores them in R and C every time it scales. Scaling algorithm
can be seen in Algorithm 9 in detail. At each iteration of scaling, firstly the columns
are balanced, and then the rows are balanced. While balancing the columns and
rows, if one encounters a column or row without a nonzero within the unextracted
elements, then scaling algorithm returns. Because there will be no need for scaling in
such a case, since estimation will return 0 for the current experiment. After scaling,
R[i]∗sharedMat[i×dim+ j]∗C[j] is used in order to access the scaled entry at the
ith row and jth column of the matrix. Then, one unextracted nonzero is chosen in
the current row with the specified probability pj for each nonzero in line 17, and
the permanent value perm is updated using the previously calculated pj where j is
randomly chosen column col. At final, colExtracted is also updated to keep track
of the column being extracted.

Algorithm 8 Scaling+Gpu (mat,dim,rand,p,R,C,SInterval,STime)
1: tid← global thread id
2: threadId← thread id within block
3: for k = 1 . . .(dim×dim)/BlockDim+1 do
4: if BlockDim×k +threadId < dim×dim then
5: sharedMat[BlockDim×k +threadId]← mat[BlockDim×k +threadId]
6: synch threads inside a block
7: for k = 1 . . .dim do
8: R[tid×dim+k]← 1
9: C[tid×dim+k]← 1

10: perm← 1
11: rowExtracted[ddim/32e]
12: colExtracted[ddim/32e]
13: for k = 1 . . .dim do
14: row← row with the least number of nonzero
15: if (k−1) % SInterval = 0 then
16: SCALE(sharedMat,dim, rowExtracted,colExtracted,R,C,STime)
17: col← column j of the randomly chosen element in row, where each column

j have the probability pj = R[row]×sharedMat[row×dim+j]×C[j]∑
k∈SR[row]×sharedMat[row×dim+k]×C[k] , where S is set

of unextracted columns.
18: perm = perm/pj
19: rowExtracted[drow/32e]← rowExtracted[dcol/32e] ∨ (1 << (row % 32))
20: colExtracted[dcol/32e]← colExtracted[dcol/32e] ∨ (1 << (col % 32))
21: p[tid]← perm

26

Algorithm 9 SCALE(sharedMat,rowExtracted,colExtracted,R,C,STime)
1: for k = 1 . . .STime do
2: for j = 1 . . .dim do
3: if jth column is not extracted then
4: colSum← 0
5: for i = 1 . . .dim do
6: if ith row is not extracted then
7: colSum← colSum+R[tid×dim+ i]× sharedMat[i×dim+ j]
8: if colSum = 0 then
9: return

10: C[tid×dim+ j]← 1/colSum

11: for i = 1 . . .dim do
12: if ith row is not extracted then
13: rowSum← 0
14: for j = 1 . . .dim do
15: if jth column is not extracted then
16: rowSum← rowSum+C[tid×dim+ j]×sharedMat[i×dim+

j]
17: if rowSum = 0 then
18: return
19: R[tid×dim+ i]← 1/rowSum

4.1.5 Scaling+Gpu: Implementation of Scaling+ on GPU

This algorithm is mostly the same as ScalingGpu except it chooses the rows ac-
cording to their increasing number of nonzero elements at each step, as it was the
case in Scaling+. Device kernel of Scaling+Gpu is given in Algorithm 6. As it can
be seen, rowExtracted is also created to keep the track of the extracted rows. The
remaining algorithm is the same as ScalingGpu. It is also important to note that in
this version, there will be more registers will be used. However, this does not cause
a problem since shared memory limitation avoids matrices larger than 110 as dim.

4.1.6 Scaling+MGpu: Hybrid implementation of Scaling+

Similar to Rasmussen+MGpu, this algorithm is also aimed to run on multiple GPU
devices and optionally on CPU to better estimate permanent value by running
more experiment in a less amount of time. Each thread in the host is making
use of the device kernel of Scaling+Gpu for each device, whereas ParScaling+ is
used for a CPU which is the parallel version of Scaling+ algorithm on a CPU.

27

In Scaling+MGpu, again chunking mechanism is used where each device kernel is
called with GridDim and BlockDim equal to 1024. Hence, in the experiments of this
thesis, each kernel call is executed around one million times. On the other hand,
ParScaling+ is called 50,000 times each time it is called since it is working much
slower than Scaling+Gpu. The algorithm terminates when the expected number
of experiments is reached, and a final estimation permanent value is calculated by
taking the average of all the experiments.

4.2 Approximating the Permanents of Sparse Matrices

For the sparse implementations of the approximation algorithms for sparse ma-
trices, the only difference in each algorithm is the data structure being used to
represent the matrix. As a data structure, CCS and CRS are used as it was previ-
ously described and shown in Figure 3.4. Sparse implementations of ParRasmussen,
ParRasmussen+, ParScaling, and ParScaling+ utilizing CRS and CCS will be de-
noted as ParRasmussenS, ParRasmussen+S, ParScalingS, and ParScaling+S re-
spectively.

4.2.1 RasmussenGpuS: Sparse implementation of Rasmussen on GPU

In RasmussenGpuS, the implementation is the same as, RasmussenGpu except it
makes use of CRS instead of the matrix itself. In RasmussenGpuS, CRS will be used
while finding nnz and, col as in line 12 and line 14 in Algorithm 7. Furthermore,
since this algorithm is an approximation algorithm to estimate number of perfect
matchings, which corresponds to permanent value of a binary 0-1 matrix, rvals of
CRS is not used. The only used arrays of CRS are rptrs, and cols. Because, this
data structure only stores the nonzero elements and all of the nonzero elements are
known to be 1. Therefore, only rptrs and cols are copied to the shared memory,
which leads to allocation of (nnz+dim+1)×4 bytes of memory in the shared memory
since rptrs and cols are a type of integer. That means, if the number of the nonzero
elements are few in a matrix, one can estimate the permanent value of matrices
with huge dimensions without getting restricted by the shared memory limitations.
For instance, if memory consumption of rptrs was ignored, which is (dim + 1)× 4

28

bytes, there could be 12288 nonzero elements inside of an input matrix. Since the
shared memory limitation is not an issue when there are few nonzero elements in
the matrix, the larger issue could be limitation on registers. For each block, there
are 65536 registers are available. In RasmussenGpuS, BlockDim is set to 1024, and
GridDim is set to number of experiments divided by the BlockDim. Since there are
1024 threads in a block, each thread is able to make use of 64 registers. Therefore,
since only colExtracted is used in RasmussenGpuS, the size of this array could go
up to around 40-45 to consume that many registers among 64. Because there are
also locally created variables exist in the device kernel. If one takes the size of
the colExtracted as 40, then extracted columns of a matrix with a dimension of
32× 40 = 1280 can be tracked if there are few nonzero elements in the matrix and
the shared memory limitation is not reached.

4.2.2 Rasmussen+GpuS: Sparse implementation of Rasmussen+ on GPU

In Rasmussen+GpuS, the exact implementation of Rasmussen+Gpu is followed only
changing the data structure to use in storing matrix which are CRS and CCS. Sim-
ilar to RasmussenGpuS, the only used arrays are rptrs and cols of CRS. The only
difference is additionally rowExtracted array is used to keep the track of unex-
tracted rows, as in line 11 of Algorithm 7. Therefore, sizes of colExtracted and
rowExtracted are less than the size of colExtracted in, RasmussenGpuS since they
consume more registers. So, sizes of rowExtracted and colExtracted can take val-
ues up to, 20-25 since the rest of the registers are consumed by the locally created
variable in the device kernel. That also means that a matrix with a dimension of
32×20 will be able to be processed when sizes of rowExtracted and colExtracted

are 20, and the shared memory limitations are not exceeded.

4.2.3 Rasmussen+MGpuS: Hybrid sparse implementation of Rasmussen+

In Rasmussen+MGpuS, each thread in the host are able to call the device ker-
nel of Rasmussen+GpuS simultaneously for separate GPU devices. Optionally,
an additional thread can start another permanent estimation algorithm that is
ParRasmussen+S. Here, the chunk sizes are chosen as the same as Rasmussen+MGpu
where device kernels are started by setting both BlockDim and GridDim to 1024

29

which runs as many experiments as the number of threads, which is BlockDim×
GridDim. On the other hand, if additionally ParRasmussen+S is called, the number
of experiments to start with is set to 50,000 since it runs slower than GPU. The
algorithm continue to work until expected number of experiments is reached.

4.2.4 ScalingGpuS: Sparse implementation of Scaling on GPU

In ScalingGpuS, the approach in ScalingGpu is followed, where the only difference
is that it makes use of CRS and CCS instead of the matrix. Here, both CRS and CCS
data structures are needed. Because in the scaling process given in Algorithm 9,
which is called by the device kernel of ScalingGpuS in some of the iterations, first
columns are balanced, and then the rows are balanced where CCS and CRS are used
respectively. Furthermore, CRS is used in line 17 of Algorithm 8 while choosing
the col randomly with a probability. For both of CRS and CCS, there is no need to
store rvals and cvals for a binary matrix. Since a memory region in the shared
memory is created for rptrs, cols, cptrs, and rows, 2× (nnz + dim + 1)×4 bytes of
memory is allocated in the shared memory. For instance, if memory consumption
of rptrs and cptrs were ignored, which is 2× (dim + 1)× 4 bytes, there could be
6144 nonzero elements inside of an input matrix. Therefore, in terms of the shared
limitation, ScalingGpuS is not limited if there are few nonzero elements in the
matrix regardless of its dimension. Also, since this algorithm is the sparse version of
ScalingGpu, only columns should be tracked whether they are extracted or not since
rows are processed in order. In terms of register limitations, the maximum length
of colExtracted could be 40-45 since there are also locally created variables in the
device kernel which consumes some registers and the maximum register available for
each thread is 64. Therefore, similar to RasmussenGpuS, it can be said that if the
size of colExtarcted is chosen as 40, one can process a matrix with a dimension of
32×40 = 1280 while the shared memory limitation is not reached.

4.2.5 Scaling+GpuS: Sparse implementation of Scaling+ on GPU

In Scaling+GpuS, the approach in Scaling+ is followed by making use of CRS and
CCS instead of the matrix itself. Scaling+GpuS is also very similar to, ScalingGpuS
except it chooses rows according to the one with the least nonzero elements at

30

each iteration. Therefore, CRS is utilized in line 14 of Algorithm 8 in addition to
ScalingGpuS. Furthermore, the same shared memory limitation is valid here as in
ScalingGpuS. On the other hand, in terms of register limitation, since there are two
arrays as rowExtracted and colExtracted as in Scaling+Gpu, the sizes of the arrays
could take lower values than the size of colExtracted in ScalingGpuS. Therefore,
each can take up to 20-25 as the size since there are also locally created variables
that consumes registers. That means, if sizes of rowExtracted and colExtracted

are 20, a matrix with a dimension of 32×20 = 640 will be able to be processed when
the shared memory limitations are not exceeded.

4.2.6 Scaling+MGpuS: Hybrid sparse implementation of Scaling+

In Scaling+MGpuS, each thread in the host are able to call the device kernel of
Scaling+GpuS at the same time for different GPU devices. Optionally, an ex-
tra thread starts ParScaling+S to estimate the permanent and contribute to the
permanent estimation process further. Similar to Scaling+MGpu, BlockDim and
GridDim are set to 1024 to obtain 1024× 1024 experiments in each device kernel
call, whereas ParScaling+S is called for 50,000 experiments. When one of the
kernels or ParScaling+S completes its job, then they are started again with their
chunk as the number of experiments if total expected number of experiments is not
reached yet. At the end, all the permanent estimations’ average is taken to be the
final permanent estimation.

31

5. COUNTING PERFECT MATCHINGS ON GPUs

SkipPer algorithm can be parallelized in data parallel fashion by dividing iteration
space for each thread. Implementation of ParSkipPer is given in Algorithm 10. The
input parameters for this algorithm is matrix mat that is to be used only initializing
x, arrays for CRS and CCS to exploit sparsity using sparse data structure, dimension
of the matrix dim, and start and end point of the iteration space. In the first for
loop on line 2, x is set to its initial values. Then, each thread calculates its own
portion using myStart and myEnd by utilizing dynamic scheduling, where these
portions are dynamically given to each thread as small chunks. In SkipPer, some of
the iterations are explicitly passed with a single jump if they do not contribute to
the permanent due to x having zero at some index. In order to keep track of the last
GrayCode after the jump, prevG is created on line 13 which is initially zero. At each
iteration, since there is a possibility of a jump, one should look all the columns in
the difference between the current GrayCodeg and previous GrayCodeprevG. Then,
this difference is used in updating myX which is xvector of each thread. At the end,
after contributing to the permanent, if there is no contribution, next g is calculated
with a single jump using next(g)

(5.1) next(g) =

g +1, if myX[i] 6= 0, for 1≤ i≤ dim

max(gi : myX[i] = 0), otherwise

where gi is the first iteration after g that processes a column having nonzero in the
ith row, such that myX[i] will be set something different than zero in this iteration.

For the implementations on GPU, the same approach in ParSkipPer is followed,
where the only difference is related to memory accesses to the matrix and to x at
each iteration.

32

Algorithm 10 ParSkipPer (mat,rptrs,cols,cptrs,rows,cvals,dim,start,end)
1: p← 1
2: for i = 1 . . .N do
3: rowSum← 0
4: for j = 1 . . .N do
5: rowSum← rowSum+mat[i, j]
6: x[i]←mat[i,n]− rowSum/2
7: p← p×x[i]
8: for each thread do
9: myX ← x

10: myP ← 0
11: myStart← start+threadId× chunkSize
12: myEnd←min(start+(threadId+1)× chunkSize,end)
13: prevG← 0
14: g←myStart
15: while g < myEnd do
16: grayDiff ← GrayCodeg⊕GrayCodeprevG
17: for each grayDiff [j] = 1 do
18: if GrayCodeg[j] = 1 then
19: for i = cptrs[j] . . . cptrs[j] do
20: myX[rows[i]]←myX[rows[i]]+ cvals[rows[i]]
21: else
22: for i = cptrs[j] . . . cptrs[j] do
23: myX[rows[i]]←myX[rows[i]]− cvals[rows[i]]
24: prod← 1
25: for i . . .dim do
26: prod← prod×myX[i]
27: myP ←myP +(−1)g×prod
28: prevG← g
29: g← next(g)
30: AtomicAdd(p,myP)
31: return p× (4× (n mod 2)−2)

33

5.1 SkipPer-SxC-Sm: keeping x, CRS, and CCS in the shared memory

In SkipPer-SxC-Sm, approach in SkipPer is followed on GPU. The device kernel
of SkipPer-SxC-Sm is given in Algorithm 11. The input parameters are CCS, CRS,
dimension of the matrix dim, number of nonzero elements nnz, x, result list p

to store the result of each thread, and start and end points of the iteration space.
Shared memory is allocated for the x, CCS, and CRS to utilize faster accesses to these
elements. There is also applied memory coalescing for x, where the same indices of
x of each thread are next to each other in memory and one thread can reach the ith
index of x using myX[BlockDim× i + threadId]. For CCS, 3 arrays sharedCptrs,
sharedRows, sharedCvals are created in shared memory set to their initial values,
whereas for CRS, only 2 arrays sharedRptrs, sharedCols are created since rvals of
CRS is not utilized anywhere in the device kernel. After the shared memory locations
are set, threads are synced before moving on to the iteration space. Afterwards, the
logic is the same as ParSkipPer. Each thread determines their start and end points
that are myStart, and, myEnd respectively. Since there is a jump in the iterations
to skip iterations that does not contribute to the permanent, previous GrayCode is
kept using, prevG which is initially zero as in line 19. In the current iteration, each
thread makes use of the difference in GrayCode which is GrayCodeg⊕GrayCodeprevG
to find out columns to process to update the x. Then, if there is a zero in x, the
current iteration will not contribute to the permanent and one can skip iterations
using next(g) as described previously. While applying next(g), sharedRptrs and
sharedCols are also utilized. At the end, each thread writes their results back to
p using their global thread ID tid which then copied back to host and summed up
while calculating overall permanent result.

In overall, total shared memory allocated is dim× BlockDim× 4 bytes for x, and
((2×nnz + dim + 1) + (nnz + dim + 1))× 4 bytes for CCS and CRS with data type of
integer or float. Therefore, in order to satisfy 48KB shared memory limitation, the
following should hold when the data type is integer or float.

(5.2)
(dim×BlockDim×4 bytes)+((3×nnz+2×dim+2)×4 bytes)≤ 48×1024 bytes

That means for an integer or float matrices with dimension of 40, with density values
of 0.20,0.30,0.40, the maximum BlockDim can take values 281, 269, 257 respectively.

34

It is also important to note that in SkipPer-SxC-Sm, it is not possible to apply
dynamic scheduling for thread where each thread starts with a small portion of the
iteration space and takes new ones as they are done with the old portion in a single
GPU device, as dynamic scheduling was the case in ParSkipPer.

5.2 SkipPer-SxC-Sm-MG+: dynamic hybrid implementation

In SkipPer-SxC-Sm-MG+, device kernel of SkipPer-SxC-Sm is utilized by multiple
GPU devices at the same time, similar to SpaRyser-SxC-Sm-MG+. Iteration space
is divided into small chunks, where each thread can take one chunk at a time and
starts a device kernel of SkipPer-SxC-Sm on a single GPU device. When the device
kernel is completed and results are copied back to host memory, the responsible
thread in the host can use the results to contribute to the overall permanent result,
and then starts a device kernel again if there is any chunk left. Optionally, one
extra thread can start permanent calculation on a CPU using ParSkipPer along
with the GPU devices to finish the chunks and make the overall process faster.
Therefore, in SkipPer-SxC-Sm-MG+, multiple GPU devices and optionally a CPU
are able to work together collectively, and a synonym of dynamic scheduling is
actually applied since each device takes small chunks at a time until all of them
finishes. Similar to SpaRyser-SxC-Sm-MG+, one should pick the size of the chunks
properly in SkipPer-SxC-Sm-MG+ since large chunk size can lead to longer running
time when slower device takes the last chunk, whereas small chunk size can lead
to many chunks where initializing each device kernel comes with a cost of memory
allocation and copies. Therefore, chunk size is chosen as the same chunk size as in,
SpaRyser-SxC-Sm-MG+ which is 2dim−30 since they are both algorithms for sparse
matrices.

35

Algorithm 11 SkipPer-SxC-Sm (cptrs,rows,cvals,rptrs,cols,dim,nnz,x,p,start,end)
1: tid← threadIdx.x+(blockIdx.x× blockDim.x)
2: threadId← threadIdx.x
3: BlockDim← blockDim.x
4: for k = 1 . . .dim do
5: myX[BlockDim×k +threadId]← x[k]
6: sharedRptrs[k]← rptrs[k]
7: sharedCptrs[k]← cptrs[k]
8: sharedRptrs[dim+1]← rptrs[dim+1]
9: sharedCptrs[dim+1]← cptrs[dim+1]

10: for k = 1 . . .nnz do
11: sharedCols[k]← cols[k]
12: sharedRows[k]← rows[k]
13: sharedCvals[k]← cvals[k]
14: syncthreads()
15: chunkSize← (end− start)/(GridDim×BlockDim)+1
16: myStart← start+tid× chunkSize
17: myEnd←min(start+(tid+1)× chunkSize,end)
18: myP ← 0
19: prevG← 0
20: g←myStart
21: while g < myEnd do
22: grayDiff ← GrayCodeg⊕GrayCodeprevG
23: for each grayDiff [j] = 1 do
24: if GrayCodeg[j] = 1 then
25: for i = sharedCptrs[j] . . . sharedCptrs[j] do
26: myX[BlockDim × sharedRows[i] + threadId] ←

myX[BlockDim× sharedRows[i]+threadId]+ sharedCvals[rows[i]]
27: else
28: for i = sharedCptrs[j] . . . sharedCptrs[j] do
29: myX[BlockDim × sharedRows[i] + threadId] ←

myX[BlockDim× sharedRows[i]+threadId]− sharedCvals[rows[i]]
30: prod← 1
31: for i . . .dim do
32: prod← prod×myX[BlockDim× i+threadId]
33: myP ←myP +(−1)g×prod
34: prevG← g
35: g← next(g)
36: p[tid]←myP

36

6. EXPERIMENTAL RESULTS

In order to compare and analyze the performance of the algorithms described in
the previous chapters, many experiments have been conducted for the matrices and
graphs. The experiments are performed on a server equipped with two 8-core Intel
Xeon E5-2620v4 sockets running on 2.10GHz and 192 GB memory. Hence, there
exist 16 cores in total. For the GPU devices, there have been four GPUs that
have been used in the experiments. Two of them were TITAN X (Pascal), the
other two were GeForce GTX 980 The OS running on the server is Ubuntu 20.04.2
LTS with Linux 4.4.0-66 generic kernel. The algorithms are implemented in C++
and compiled with NVCC 9.3.0 with -O3 as the optimization flag, -Xcompiler and
-fopenmp as the command line arguments. Multi-threaded CPU parallelization is
obtained with OpenMP pragmas. On the other hand, parallelization on GPUs is
obtained by calling device kernels from the host to make each thread on the GPU
device start running.

6.1 Experiment Settings

For each variation of Ryser, SpaRyser and SkipPer algorithms on GPU, the
BlockDim is set to 256, and the GridDim is set to 2048. On the other hand, 16
threads have been used in the parallel versions of Ryser, SpaRyser and SkipPer
on CPU. For the multi gpu algorithms Ryser-SxC-Sm-MG, Ryser-SxC-Sm-MG+,
SpaRyser-SxC-Sm-MG+ and SkipPer-SxC-Sm-MG+, experiments have been con-
ducted on two TITAN, and two TITAN + two Gtx separately. Additionally, some
experiments of Ryser-SxC-Sm-MG+ are conducted on a CPU with 8 threads along
with two TITAN + two Gtx.

For the approximation algorithms Rasmussen, and Scaling, there have been various
settings for each experiment along with their parallel implementations on a CPU.

37

For both variants of Rasmussen and Scaling, one setting which is the number of
experiments of the algorithm is set in the range of 10k to 1m separately. Addition-
ally, variants of Scaling had two other settings. One of them was the threshold for
scale intervals, which is denoted as SInterval, which indicates how many iterations
should be passed for each scaling process. This setting has been set to 1, and 5 for
the experiments. The other setting is the number of times to scale at each scaling
process. This setting is denoted as STime and it has been set to 5 in the experiments.

6.2 Experiments on Matrices

The synthetic matrices are produced where each entry of an dim× dim matrix is
chosen to be nonzero or not independently using a probability. For the randomness,
default rand() library of g++ is used. Each entry is chosen to be a nonzero with
the probability of (rand() % 100) < (100× density) where density is the density
value that indicates how full the matrix is. Also, the value of the entries is chosen
randomly using rand() in the range of [0,5]. For the experiments, the dimension of
the matrix is chosen within the numbers of 32,34,36,38,40 and density values are
chosen within the range of 0.10,0.20, . . . ,0.80. For each combination of dimension
and density of the matrix, 5 samples are produced. In the experiments, in order to
find the runtime of a single algorithm, 5 samples have been run, and their average
has been taken as the runtime value.

6.2.1 Exact Permanent Computation

6.2.1.1 Experiments with dense matrices

The execution time results of the parallel dense algorithm on a CPU and all the
dense algorithms that run on a single GPU is given in Table 6.1 for a 40×40 ma-
trix in different density values. As it can be seen, almost all the GPU algorithms
except Ryser-Gx yield faster execution than ParRyser with 16 threads. The rea-

38

Table 6.1 Execution times (in secs) of the algorithms on a CPU and a single GPU
for dense matrices with various density values for a matrix with dimension of 40.

ParRyser Ryser-Gx Ryser-Rx Ryser-Sx Ryser-SxC Ryser-SxC-Sm
Threads = 16 BlockDim = 256 BlockDim = 256 BlockDim = 256 BlockDim = 256 BlockDim = 256

Density GridDim = 2048 GridDim = 2048 GridDim = 2048 GridDim = 2048 GridDim = 2048
0.6 2696.20 12338 900.42 862.42 859.11 259.51
0.7 2703.32 12298 897.43 857.91 854.38 259.44
0.8 2690.99 12312 900.69 858.24 858.65 259.46

son Ryser-Gx is even slower than ParRyser is that it stores x in the global device
memory. However, there are lots of accesses to x by each thread, and creating it in
the registers or moving it to the shared memory helps execution to be much faster.
When x is created on registers by each thread in Ryser-Rx, it can be seen that there
is a huge improvement. However, there is even more improvement in Ryser-Sx when
x in the shared memory. For a comparison between Ryser-Sx and Ryser-SxC, al-
though there is a very little improvement in Ryser-SxC when there is a memory
coalescing, this improvement is almost negligible since it is not much. It can be also
said that a great amount of improvement is obtained when the matrix is also moved
to the shared memory along with the x as the results of Ryser-SxC-Sm indicates.
In order for better visualization, execution times for some of the algorithms that
run on a single GPU can be seen in Figure 6.1 for different matrix dimensions. It
is also important to note that the execution times do not change at all depending
on the density of the matrix. The reason is these algorithms in Table 6.1 are dense
algorithms that process the whole matrix and do not care about sparsity.

Execution times of the dense algorithms that can run on multiple GPUs can be seen
in Table 6.2. The first algorithm in the table is actually Ryser-SxC-Sm that runs
on a single GPU, in order to compare the improvements of multi GPU algorithms.
As it can be seen, when Ryser-SxC-Sm-MG runs with two TITAN, execution is al-
most two times faster than Ryser-SxC-Sm which runs in a single TITAN. When the
number of devices is increased by two more with two Gtx, the execution is slower
for Ryser-SxC-Sm-MG with four devices than two TITAN as it can be seen in the
table. The reason is that Ryser-SxC-Sm-MG divides iteration space statically as the
number of GPU devices. However, TITAN can run approximately three times faster
than Gtx. This means when two TITAN are finished with their chunk, they will be
remained free of work until two Gtx completes their job. That’s why four devices
work slower than two TITAN in Ryser-SxC-Sm-MG. On the other hand, the execution
became even faster than Ryser-SxC-Sm-MG with two TITAN when two TITAN and
two Gtx are used in Ryser-SxC-Sm-MG+. Because in Ryser-SxC-Sm-MG+, each de-
vice dynamically takes a small chunk from iteration space at a time, and they keep
working until there is no chunk left. In the experiments, Ryser-SxC-Sm-MG+ yields
the best result with two TITAN and two Gtx. At the end of the Table 6.2, there is

39

Table 6.2 Execution times (in secs) of the algorithms on multiple GPUs for dense
matrices with various density values for a matrix with dimension of 40.

Ryser-SxC-Sm Ryser-SxC-Sm-MG Ryser-SxC-Sm-MG Ryser-SxC-Sm-MG+ Ryser-SxC-Sm-MG+
BlockDim = 256 BlockDim = 256 BlockDim = 256 BlockDim = 256 BlockDim = 256
GridDim = 2048 GridDim = 2048 GridDim = 2048 GridDim = 2048 GridDim = 2048

2 TITAN 2 TITAN + 2 Gtx 2 TITAN + 2 Gtx 2 TITAN + 2 Gtx
Density 8 Threads
0.60 259.51 137.25 180.55 96.48 97.09
0.70 259.44 137.26 180.61 96.52 97.00
0.80 259.46 137.27 180.54 96.43 96.93

Figure 6.1 Execution times (in secs) of the algorithms on a GPU for dense matrices
with density of 0.60.

32 34 36 38 400

100

200

300

400

500

600

700

800

900

1,000

Matrix dimension

Ti
m
e(
s)

Execution times for algorithms on single GPU

Ryser-Rx
Ryser-SxC

Ryser-SxC-Sm

32 34 36 38 400

30

60

90

120

150

180

210

240

270

300

Matrix dimension

Ti
m
e(
s)

Execution times for algorithms on multiple GPUs

Ryser-SxC-Sm
Ryser-SxC-Sm-MG (2 TITAN)

Ryser-SxC-Sm-MG (2 TITAN + 2 Gtx)
Ryser-SxC-Sm-MG+ (2 TITAN + 2 Gtx)

also shown the execution times of Ryser-SxC-Sm-MG+ with four GPU devices along
with a running CPU for the permanent calculation with 8 threads. Although there
is an additional CPU work in this algorithm, it does not give any better result than
using only four GPU devices. Furthermore, it yields slightly worse performance,
which is very small difference and negligible. The reason is that when the CPU runs
in Ryser-SxC-Sm-MG+, its performance is way slower than a single GPU device and
even negligible. Therefore, when a CPU runs along with the GPU devices, it does
not contribute at all. The comparison between the dense multi GPU algorithms is
also illustrated in Figure 6.1 for different sizes of matrices. Again, the density does
not affect the execution time since these are dense algorithms and the whole matrix
is processed regardless of its sparsity.

6.2.1.2 Experiments with sparse matrices

In the experiments for sparse matrices, variants of SpaRyser and SkipPer have
been run on a CPU, a single GPU, and multiple GPUs. Before comparing every

40

Table 6.3 Execution times (in secs) of the variants of SpaRyser with and without
using SortOrder for a matrix with dimension of 40.

With SortOrder Without SortOrder
ParSpaRyser SpaRyser-SxC-Sm SpaRyser-SxC-Sm-MG+ ParSpaRyser SpaRyser-SxC-Sm SpaRyser-SxC-Sm-MG+
Threads = 16 BlockDim = 256 BlockDim = 256 Threads = 16 BlockDim = 256 BlockDim = 256

GridDim = 2048 GridDim = 2048 GridDim = 2048 GridDim = 2048
2 TITAN + 2 Gtx 2 TITAN + 2 Gtx

Density SortOrder SortOrder SortOrder
0.10 360.57 43.71 16.71 981.75 130.97 48.67
0.20 783.37 116.38 43.16 1810.66 206.25 78.15
0.30 1593.18 211.31 77.93 2424.53 355.14 131.33
0.40 2598.11 312.16 114.97 4528.42 456.84 169.49

Figure 6.2 Execution times (in secs) of SpaRyser-SxC-Sm for sparse matrices with
and without SortOrder.

32 34 36 38 400

25

50

75

100

125

150

175

200

225

250

Matrix dimension

Ti
m
e(
s)

Matrices with 0.10 density

SpaRyser-SxC-Sm
SpaRyser-SxC-Sm (SortOrder)

32 34 36 38 400

25

50

75

100

125

150

175

200

225

250

Matrix dimension

Ti
m
e(
s)

Matrices with 0.20 density

SpaRyser-SxC-Sm
SpaRyser-SxC-Sm (SortOrder)

algorithm to each other, the effect of preprocessing is tested, which are SortOrder
for variants of SpaRyser, and SkipOrder for variants of SkipPer.

In Table 6.3, execution of three algorithms is shown with and without SortOrder,
where algorithms are ParSpaRyser which runs on a CPU with 16 threads,
SpaRyser-SxC-Sm which runs on a single GPU, and SpaRyser-SxC-Sm-MG+ which
runs on multiple GPUs. As it can be seen, all the three algorithms, yield better
performance when SortOrder is applied as a preprocessing for all the density values
in 0.10,0.20,0.30,0.40. Furthermore, the ratio of the increase in performances is
very similar to each other for each algorithm. It can be said that the increase in
performance is usually less when the density of the matrix is higher, such that the
most increase in the performance obtained when the density of the matrix is 0.10.
The increase with SortOrder is illustrated in Figure 6.2 for the density values of
0.10,0.20 with different matrix dimensions.

In Table 6.4, execution of three algorithms is shown with and without SkipOrder,
where algorithms are ParSkipPer that runs on a CPU with 16 threads,
SkipPer-SxC-Sm that runs on a single GPU, and SkipPer-SxC-Sm-MG+ that runs
on multiple GPUs. All three algorithms yield better performance when SkipOrder

41

Table 6.4 Execution times (in secs) of the variants of SkipPer with and without
using SkipOrder for a matrix with dimension of 40.

With SkipOrder Without SkipOrder
ParSkipPer SkipPer-SxC-Sm SkipPer-SxC-Sm-MG+ ParSkipPer SkipPer-SxC-Sm SkipPer-SxC-Sm-MG+

Threads = 16 BlockDim = 256 BlockDim = 256 Threads = 16 BlockDim = 256 BlockDim = 256
GridDim = 2048 GridDim = 2048 GridDim = 2048 GridDim = 2048

2 TITAN + 2 Gtx 2 TITAN + 2 Gtx
Density SkipOrder SkipOrder SkipOrder
0.10 261.06 48.01 22.59 440.99 96.82 28.86
0.20 717.56 192.40 76.48 799.58 269.62 117.15
0.30 1279.66 363.98 167.53 1885.42 516.54 224.65
0.40 2110.20 489.19 213.91 3786.77 603.29 242.03

Figure 6.3 Execution times (in secs) of SkipPer-SxC-Sm for sparse matrices with
and without SkipOrder.

32 34 36 38 400

30

60

90

120

150

180

210

240

270

300

Matrix dimension

Ti
m
e(
s)

Matrices with 0.10 density

SkipPer-SxC-Sm
SkipPer-SxC-Sm (SkipOrder)

32 34 36 38 400

30

60

90

120

150

180

210

240

270

300

Matrix dimension

Ti
m
e(
s)

Matrices with 0.20 density

SkipPer-SxC-Sm
SkipPer-SxC-Sm (SkipOrder)

is applied as a preprocessing. Regarding the ratio of the increase in performance for
the algorithms on a single or multiple GPUs, it sometimes differs unlike the similar-
ity in SortOrder for SpaRyser variants. For example, for a matrix with a density
of 0.10, there is almost two times increase in the performance of SkipPer-SxC-Sm,
whereas SkipPer-SxC-Sm-MG+ has around 1.27 times increase when SkipOrder is
applied. Also, When the density is higher, it can be argued that the ratio of increase
in performance is lower. However, it is not so clear as it was the case in SortOrder
for SpaRyser variants. The increase with SkipOrder is illustrated in Figure 6.3 for
the density values of 0.10,0.20 with different matrix dimensions.

In the Table 6.5, execution times of ParRyser, ParSpaRyser, and ParSkipPer algo-

Table 6.5 Execution times (in secs) of the algorithms on a CPU for generic and
binary integer matrices with matrix dimension is 40.

Generic Matrices Binary Matrices
ParRyser ParSpaRyser ParSkipPer ParRyser ParSpaRyser ParSkipPer

Threads = 16 Threads = 16 Threads = 16 Threads = 16 Threads = 16 Threads = 16
Density SortOrder SkipOrder SortOrder SkipOrder
0.1 2685.65 360.57 261.06 2688.95 296.12 1.06
0.2 2709.29 783.37 717.56 2703.33 719.44 19.27
0.3 2703.84 1593.18 1279.66 2705.20 1682.33 155.24
0.4 2756.97 2598.11 2110.20 2741.17 2832.78 1123.64

42

Table 6.6 Execution times (in secs) of the algorithms on a GPU for generic and
binary integer matrices with matrix dimension is 40.

Generic Matrices Binary Matrices
Ryser-SxC-Sm SpaRyser-SxC-Sm SkipPer-SxC-Sm Ryser-SxC-Sm SpaRyser-SxC-Sm SkipPer-SxC-Sm

BlockDim = 256 BlockDim = 256 BlockDim = 256 BlockDim = 256 BlockDim = 256 BlockDim = 256
GridDim = 2048 GridDim = 2048 GridDim = 2048 GridDim = 2048 GridDim = 2048 GridDim = 2048

Density SortOrder SkipOrder SortOrder SkipOrder
0.10 259.34 43.71 48.01 259.29 43.05 0.94
0.20 259.35 116.38 192.40 259.33 116.79 22.68
0.30 259.35 211.31 363.98 259.37 215.14 131.23
0.40 260.83 312.16 489.19 259.35 323.94 273.65

rithms are shown for both generic and binary sparse matrices. For generic matrices,
both ParSpaRyser, and ParSkipPer yield better performance than ParRyser on a
CPU with 16 threads for the density values of 0.10,0.20,0.30,0.40. As the density
of the matrix is higher, the increase in performance is lower for ParSpaRyser and
ParSkipPer since sparse data structures are used and the possibility of a big jump
in iterations is higher for ParSkipPer when the matrix is more sparse. Further-
more, although the dense algorithm Ryser yields worse performance in all density
values than the sparse algorithms, the execution times are very close to each other
when the density is 0.40. It can be also said that ParSkipPer yields slightly better
performance results than ParSpaRyser on generic matrices. On the other hand, for
the binary matrices, the only big difference is observed for ParSkipPer. Here, the
execution time of ParRyser does not change at all. For ParSpaRyser, the execution
times differ slightly, but it is not changing always in the favor of the performance.
In ParSkipPer, the execution times are improved remarkably in binary matrices.
The reason is that the logic behind SkipPer is to skip as many iterations as possible
when there is a zero inside the elements of x. At each iteration, an element is either
added to or subtracted from the ith element of x, and when that element is always
one or zero, it is more possible x remains with a zero and there will be a jump
within iterations. Therefore, there is a huge improvement in ParSkipPer for binary
matrices than the generic ones.

In Table 6.6, the comparison for the execution times of Ryser-SxC-Sm,
SpaRyser-SxC-Sm, and SkipPer-SxC-Sm is shown for generic and binary matrices.
For generic matrices, SpaRyser yields better performance than Ryser-SxC-Sm up
to a density value of 0.30. As it can be seen, SpaRyser-SxC-Sm is slower when the
matrix has 0.40 density. For SkipPer-SxC-Sm, it is even slower than Ryser-SxC-Sm
when the density of the matrix is 0.30 and upward for generic matrices. Therefore,
it can be said that the improvement of the sparse algorithms on a single GPU is
not as much the improvements on a CPU. The reason behind this is that there is a
synchronization of threads in a warp on a GPU, such that each thread in a warp runs
the same command at the same time that comes with a cost when they are about

43

Figure 6.4 Execution times (in secs) of the algorithms on a GPU for sparse matrices
with density of 0.10.

32 34 36 38 400

40

80

120

160

200

240

280

320

360

400

Matrix dimension

Ti
m
e(
s)

Execution times for generic sparse matrices

Ryser-SxC-Sm
SpaRyser-SxC-Sm (SortOrder)
SkipPer-SxC-Sm (SkipOrder)

32 34 36 38 400

40

80

120

160

200

240

280

320

360

400

Matrix dimension

Ti
m
e(
s)

Execution times for binary sparse matrices

Ryser-SxC-Sm
SpaRyser-SxC-Sm (SortOrder)
SkipPer-SxC-Sm (SkipOrder)

Figure 6.5 Execution times (in secs) of the algorithms on a GPU for sparse matrices
with density of 0.20.

32 34 36 38 400

40

80

120

160

200

240

280

320

360

400

Matrix dimension

Ti
m
e(
s)

Execution times for generic sparse matrices

Ryser-SxC-Sm
SpaRyser-SxC-Sm (SortOrder)
SkipPer-SxC-Sm (SkipOrder)

32 34 36 38 400

40

80

120

160

200

240

280

320

360

400

Matrix dimension

Ti
m
e(
s)

Execution times for binary sparse matrices

Ryser-SxC-Sm
SpaRyser-SxC-Sm (SortOrder)
SkipPer-SxC-Sm (SkipOrder)

Figure 6.6 Execution times (in secs) of the algorithms on a GPU for sparse matrices
with density of 0.30.

32 34 36 38 400

40

80

120

160

200

240

280

320

360

400

Matrix dimension

Ti
m
e(
s)

Execution times for generic sparse matrices

Ryser-SxC-Sm
SpaRyser-SxC-Sm (SortOrder)
SkipPer-SxC-Sm (SkipOrder)

32 34 36 38 400

40

80

120

160

200

240

280

320

360

400

Matrix dimension

Ti
m
e(
s)

Execution times for binary sparse matrices

Ryser-SxC-Sm
SpaRyser-SxC-Sm (SortOrder)
SkipPer-SxC-Sm (SkipOrder)

44

Table 6.7 Execution times (in secs) of the algorithms on multiple GPUs for generic
and binary integer matrices with matrix dimension is 40.

Generic Matrices
Ryser-SxC-Sm-MG+ SpaRyser-SxC-Sm-MG+ SkipPer-SxC-Sm-MG+

BlockDim = 256 BlockDim = 256 BlockDim = 256
GridDim = 2048 GridDim = 2048 GridDim = 2048
2 TITAN + 2 Gtx 2 TITAN + 2 Gtx 2 TITAN + 2 Gtx

Density SortOrder SkipOrder
0.10 96.54 16.71 22.59
0.20 96.55 43.16 76.48
0.30 96.53 77.93 167.53
0.40 96.70 114.97 213.91

Binary Matrices
Ryser-SxC-Sm-MG+ SpaRyser-SxC-Sm-MG+ SkipPer-SxC-Sm-MG+

BlockDim = 256 BlockDim = 256 BlockDim = 256
GridDim = 2048 GridDim = 2048 GridDim = 2048
2 TITAN + 2 Gtx 2 TITAN + 2 Gtx 2 TITAN + 2 Gtx

Density SortOrder SkipOrder
0.10 96.55 16.44 1.81
0.20 96.58 43.51 9.67
0.30 96.55 78.47 64.37
0.40 96.65 119.35 106.78

to run different commands. As it can be seen in the table, SkipPer-SxC-Sm is also
slower than SpaRyser-SxC-Sm for generic matrices, which was again the opposite
on a CPU. Again the synchronization on a GPU is the reason behind this since each
thread may jump different number of iterations and some finish earlier while others
are still working. Therefore, it can be said that the synchronization creates larger
concern for variants of SkipPer on a GPU. On the other hand, SkipPer-SxC-Sm is
running faster than SpaRyser-SxC-Sm for binary matrices with all the density values.
However, both algorithms still are not able to over-perform Ryser-SxC-Sm when the
density is 0.40. So, SpaRyser-SxC-Sm and SkipPer-SxC-Sm make an improvement
for performance up to density value of 0.30 inclusive. For illustration, the execution
times of Ryser-SxC-Sm, SpaRyser-SxC-Sm, and SkipPer-SxC-Sm are given for ma-
trices of different dimensions with 0.10,0.20,0.30 density values in Figure 6.4, 6.5,
6.6 respectively.

In Table 6.7, the execution times are given for Ryser-SxC-Sm-MG+,
SpaRyser-SxC-Sm-MG+, and SkipPer-SxC-Sm-MG+ for both generic and bi-
nary matrices using four GPU devices (two TITAN + two Gtx). The results
are very similar to the results in Table 6.6 for algorithms that run on a single
GPU. That means SpaRyser-SxC-Sm-MG+ runs faster than SkipPer-SxC-Sm-MG+
for generic matrices. SpaRyser-SxC-Sm-MG+ also yields faster execution than
Ryser-SxC-Sm-MG+ up to 0.30 density inclusive, whereas SkipPer-SxC-Sm-MG+
runs faster than Ryser-SxC-Sm-MG+ up to 0.20 density inclusive. On the other hand,
for binary matrices, SkipPer-SxC-Sm-MG+ runs faster than SpaRyser-SxC-Sm-MG+
in all density values. However, they both fail to over perform Ryser-SxC-Sm-MG+
when the density is 0.40. The execution times of these algorithms are illustrated for
matrices of different dimensions with 0.10,0.20,0.30 density values in Figure 6.7,

45

Figure 6.7 Execution times (in secs) of the algorithms on multiple GPUs for sparse
matrices with density of 0.10.

32 34 36 38 400

25

50

75

100

125

150

175

Matrix dimension

Ti
m
e(
s)

Execution times for generic sparse matrices

Ryser-SxC-Sm-MG+
SpaRyser-SxC-Sm-MG+ (SortOrder)
SkipPer-SxC-Sm-MG+ (SkipOrder)

32 34 36 38 400

25

50

75

100

125

150

175

Matrix dimension

Ti
m
e(
s)

Execution times for binary sparse matrices

Ryser-SxC-Sm-MG+
SpaRyser-SxC-Sm-MG+ (SortOrder)
SkipPer-SxC-Sm-MG+ (SkipOrder)

Figure 6.8 Execution times (in secs) of the algorithms on multiple GPUs for sparse
matrices with density of 0.20.

32 34 36 38 400

25

50

75

100

125

150

175

Matrix dimension

Ti
m
e(
s)

Execution times for generic sparse matrices

Ryser-SxC-Sm-MG+
SpaRyser-SxC-Sm-MG+ (SortOrder)
SkipPer-SxC-Sm-MG+ (SkipOrder)

32 34 36 38 400

25

50

75

100

125

150

175

Matrix dimension

Ti
m
e(
s)

Execution times for binary sparse matrices

Ryser-SxC-Sm-MG+
SpaRyser-SxC-Sm-MG+ (SortOrder)
SkipPer-SxC-Sm-MG+ (SkipOrder)

Figure 6.9 Execution times (in secs) of the algorithms on multiple GPUs for sparse
matrices with density of 0.30.

32 34 36 38 400

25

50

75

100

125

150

175

Matrix dimension

Ti
m
e(
s)

Execution times for generic sparse matrices

Ryser-SxC-Sm-MG+
SpaRyser-SxC-Sm-MG+ (SortOrder)
SkipPer-SxC-Sm-MG+ (SkipOrder)

32 34 36 38 400

25

50

75

100

125

150

175

Matrix dimension

Ti
m
e(
s)

Execution times for binary sparse matrices

Ryser-SxC-Sm-MG+
SpaRyser-SxC-Sm-MG+ (SortOrder)
SkipPer-SxC-Sm-MG+ (SkipOrder)

46

Table 6.8 Execution times (in secs) of the algorithms for dense matrices with integer,
float, and double data types.

integer
ParRyser Ryser-SxC-Sm Ryser-SxC-Sm-MG+

Threads = 16 BlockDim = 256 BlockDim = 256
GridDim = 2048 GridDim = 2048

Density 2 TITAN + 2 Gtx
0.60 2696.21 259.51 96.48
0.70 2703.32 259.44 96.52
0.80 2690.99 259.46 96.43

float
ParRyser Ryser-SxC-Sm Ryser-SxC-Sm-MG+

Threads = 16 BlockDim = 256 BlockDim = 256
GridDim = 2048 GridDim = 2048

Density 2 TITAN + 2 Gtx
0.60 2132.18 260.83 96.68
0.70 2126.06 260.92 96.80
0.80 2126.69 260.08 96.52

double
ParRyser Ryser-SxC-Sm Ryser-SxC-Sm-MG+

Threads = 16 BlockDim = 128 BlockDim = 128
GridDim = 2048 GridDim = 2048

Density 2 TITAN + 2 Gtx
0.60 2843.94 586.10 217.07
0.70 2854.14 586.45 217.26
0.80 2838.29 582.70 217.07

6.8, 6.9 respectively.

6.2.2 Single vs. Double Precision

The performance of the variants of Ryser has been tested for matrices with different
data types, such as integer, float, and double. In Table 6.8, the performance results
of the algorithms are shown for different data types. First of all, there is no difference
in any of the data types when the density of the matrix changes, since they are all
dense algorithms. On a CPU, ParRyser has the fastest execution times when the
data type of the matrix is float, whereas the slowest execution is obtained when the
data type is double. On the other hand, for Ryser-SxC-Sm and Ryser-SxC-Sm-MG+
on a GPU, execution times are almost the same when the data type of the matrix is
integer or float. However, when the data type of the matrix is double, the execution
times of Ryser-SxC-Sm and Ryser-SxC-Sm-MG+ become much slower. The reason
behind this is that BlockDim being used is 128 when the data type of double is
used. Because x makes use of BlockDim× dim× 8 bytes of memory which should
be smaller than 48KB. Therefore, it is not possible to use 256 for BlockDim in
Ryser-SxC-Sm and Ryser-SxC-Sm-MG+ when the matrix dimension is 40 and the
data type is double. The illustration of the execution times for Ryser-SxC-Sm and
Ryser-SxC-Sm-MG+ is given in Figure 6.10 for different data types and different

47

Figure 6.10 Execution times (in secs) of the algorithms for dense matrices with
different data types with density of 0.60.

32 34 36 38 400

60

120

180

240

300

360

420

480

540

600

Matrix dimension

Ti
m
e(
s)

Execution times of Ryser-SxC-Sm

Ryser-SxC-Sm (double)
Ryser-SxC-Sm (float)
Ryser-SxC-Sm (int)

32 34 36 38 400

30

60

90

120

150

180

210

240

270

300

Matrix dimension

Ti
m
e(
s)

Execution times of Ryser-SxC-Sm-MG+

Ryser-SxC-Sm-MG+ (double)
Ryser-SxC-Sm-MG+ (float)
Ryser-SxC-Sm-MG+ (int)

Table 6.9 Execution times (in secs) of variants of Rasmussen for a dense matrix with
dimension of 40 when number of experiments is one million.

Density ParRasmussen ParRasmussen+ RasmussenGpu Rasmussen+Gpu
0.8 18.89 21.86 0.32 0.43

matrix dimensions.

6.2.3 Approximate Permanent Computation

6.2.3.1 Experiments with dense matrices

In the Table 6.9, the execution times are given for the implementations of Rasmussen
and Rasmussen+ when there are one million experiments. As it can be seen,
ParRasmussen+ is slightly slower than ParRasmussen since ParRasmussen+ makes
an extra iteration over the matrix to find the row with the least nonzero elements.
On the other hand, algorithms on a single GPU which are RasmussenGpu and
Rasmussen+Gpu are much faster than the algorithms running on a CPU for one
million experiments. Furthermore, RasmussenGpu and Rasmussen+Gpu yield exe-
cution times both under one second. It can be also said that Rasmussen+Gpu is
slightly slower than RasmussenGpu. However, this difference can be neglected since
the execution times on a GPU are very fast, under one second.

48

Table 6.10 Execution times (in secs) of variants of Scaling for a dense matrix with
dimension of 40 when number of experiments is one million.

ParScaling ParScaling+ ScalingGpu Scaling+Gpu
SInterval = 5 SInterval = 5 SInterval = 5 SInterval = 5

Density STime = 5 STime = 5 STime = 5 STime = 5
0.8 22.43 24.00 3.46 3.20

ParScaling ParScaling+ ScalingGpu Scaling+Gpu
SInterval = 1 SInterval = 1 SInterval = 1 SInterval = 1

Density STime = 5 STime = 5 STime = 5 STime = 5
0.8 28.79 42.27 13.89 12.96

Figure 6.11 Execution times (in secs) of the approximation algorithms for dense
matrices with density of 0.80.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Number of trial

Ti
m
e(
s)

ParRasmussen
ParScaling (SInterval =1)
ParScaling (SInterval =5)

RasmussenGpu
ScalingGpu (SInterval =1)
ScalingGpu (SInterval =5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1.5

3
4.5

6
7.5

9
10.5

12
13.5

15
16.5

18
19.5

21
22.5

24
25.5

27
28.5

30
31.5

33
34.5

36
37.5

39
40.5

42
43.5

45

Number of trial

Ti
m
e(
s)

ParRasmussen+
ParScaling+ (SInterval =1)
ParScaling+ (SInterval =5)

Rasmussen+Gpu
Scaling+Gpu (SInterval =1)
Scaling+Gpu (SInterval =5)

In Table 6.10, the execution times of ParScaling, ParScaling+, ScalingGpu, and
Scaling+Gpu are given. While comparing the execution times, two different settings
are used where the difference is the value of SInterval where it is set to 1 and
5 separately. For ParScaling and ParScaling+, the performance is faster when
SInterval is 5 since there is less scaling process. It can be also said that for both
settings of SInterval, ParScaling+ is slower than ParScaling. On the other hand,
for the GPU implementations, ScalingGpu and Scaling+Gpu are much faster than
ParScaling and ParScaling+ for both settings of SInterval. Within the GPU
algorithms, they are also executing faster when SInterval is 5 since there is less
time to run the scaling algorithm. However, for the comparison among ScalingGpu
and Scaling+Gpu, there is almost no difference for any setting of SInterval as
opposed to the comparison between ParScaling and ParScaling+.

In Figure 6.11, the illustration of execution times for different number of experiments
can be seen for variants of Rasmussen and Scaling in one side, and variants of
Rasmussen+ and Scaling+ in the other side.

In Table 6.11, the execution times for the hybrid implementations are given for ten
million experiments. As it can be seen in the table, when Rasmussen+MGpu was
run for ten million experiments with four GPU devices, almost the same execution

49

Table 6.11 Execution times (in secs) of the hybrid implementations for a dense
matrix with dimension of 40 when number of experiments is around ten million.

Rasmussen+Gpu Scaling+Gpu Scaling+Gpu
SInterval = 5 SInterval = 1

Density STime = 5 STime = 5
0.80 1.41 29.14 124.59

Rasmussen+MGpu Scaling+MGpu Scaling+MGpu
SInterval = 5 SInterval = 1

STime = 5 STime = 5
Density 2 TITAN + 2 Gtx 2 TITAN + 2 Gtx 2 TITAN + 2 Gtx
0.80 1.45 16.60 68.14

Rasmussen+MGpu Scaling+MGpu Scaling+MGpu
SInterval = 5 SInterval = 1

STime = 5 STime = 5
2 TITAN + 2 Gtx 2 TITAN +2 Gtx 2 TITAN + 2 Gtx

Density Threads = 8 Threads = 8 Threads = 8
0.80 1.65 16.43 68.11

time is obtained as the execution time of Rasmussen+Gpu with one GPU device.
The reason is that Rasmussen+Gpu algorithm is already capable of running ten mil-
lion experiments around 1 second. Adding multiple GPUs and dividing ten million
experiments among those GPUs does not contribute much since there is also an over-
head of starting a device kernel, allocation of the shared memory, etc. On the other
hand, for the hybrid implementations for Scaling+, there is an improvement since
Scaling+Gpu is already taking long for ten million experiments and overhead for
starting a kernel does not really matter. Scaling+MGpu almost doubled the perfor-
mance for both values of SInterval as 5 and 1. It is also important to note that 2x

performance is obtained using four GPU devices instead of one due to the difference
of the GPU devices. Gtx is working slower than TITAN and this causes an overhead
at the end if Gtx takes the last chunk. Finally, all the hybrid implementations are
tested when the CPU is also benefited during calculations. However, when CPU is
benefited, there is no improvement in neither Rasmussen+MGpu nor Scaling+MGpu.
Because a single GPU device works very fast compared to the CPU, such that the
work that is completed by the CPU becomes negligible.

6.2.3.2 Experiments with sparse matrices

In Table 6.12, the comparison of the execution times of dense and sparse algorithms
of the variants of Rasmussen and Rasmussen+ is given. First of all, it can be said
that the execution time of all the dense algorithms increases as the density increases.
The reason is that there are more zero permanents within the results when the
matrix is sparser that leads to termination of the experiment earlier. It can be
also said that the decrease in performance is higher in ParRasmussen compared to

50

Table 6.12 Execution times (in secs) of variants of Rasmussen and Rasmussen+ for
sparse matrices with dimension of 40 when number of experiments is one million.

Density ParRasmussen ParRasmussen+ RasmussenGpu Rasmussen+Gpu
0.10 6.31 20.20 0.34 0.46
0.20 13.06 21.73 0.33 0.44
0.30 16.68 22.88 0.32 0.46
0.40 18.90 22.47 0.34 0.43
Density ParRasmussenS ParRasmussen+S RasmussenGpuS Rasmussen+GpuS
0.10 3.80 19.92 0.31 0.35
0.20 7.90 21.44 0.34 0.36
0.30 10.88 22.56 0.32 0.40
0.40 12.99 22.63 0.32 0.40

Figure 6.12 Execution times (in secs) of variants of Rasmussen and Rasmussen+ for
sparse matrices with density of 0.10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Number of trial

Ti
m
e(
s)

ParRasmussen
RasmussenGpu
ParRasmussenS
RasmussenGpuS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Number of trial

Ti
m
e(
s)

ParRasmussen+
Rasmussen+Gpu
ParRasmussen+S
Rasmussen+GpuS

ParRasmussen+ as the density gets higher. Because ParRasmussen+ makes use of
heuristic to find the row with the least nonzero elements and this leads to less zero
permanents as the results of the experiments. It is hard to tell anything about
RasmussenGpu and Rasmussen+Gpu since they are so much faster than the parallel
implementations on the CPU and both of them are under one second. Therefore,
there does not seem any decrease in performance as density gets higher, but it can
be said that RasmussenGpu runs faster than Rasmussen+Gpu. When it comes to
sparse implementations, as it can be seen ParRasmussenS improved runtime for
all the density values in 0.10,0.20,0.30,0.40 compared to ParRasmussen where the
most improvement is obtained when the density is 0.10. It can be also said that
ParRasmussen+S slightly improves ParRasmussen+ when the density is 0.10, but it
is not so clear and there is almost no improvement for the other density values.
On the other hand, it is again hard to say anything about RasmussenGpuS and
Rasmussen+GpuS whether they improved the dense implementations or not since
they are also very fast with an execution time under one second. Figures 6.12,
6.13 give an illustration of the comparison of the execution times between dense
and sparse algorithms for the variants of Rasmussen and Rasmussen+ separately for
different density values.

51

Figure 6.13 Execution times (in secs) of variants of Rasmussen and Rasmussen+ for
sparse matrices with density of 0.20.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Number of trial

Ti
m
e(
s)

ParRasmussen
RasmussenGpu
ParRasmussenS
RasmussenGpuS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Number of trial

Ti
m
e(
s)

ParRasmussen+
Rasmussen+Gpu
ParRasmussen+S
Rasmussen+GpuS

Table 6.13 Execution times (in secs) of variants of Scaling and Scaling+ for sparse
matrices with dimension of 40 when SInterval = 5 and number of experiments is
one million.

ParScaling ParScaling+ ScalingGpu Scaling+Gpu
SInterval = 5 SInterval = 5 SInterval = 5 SInterval = 5

Density STime = 5 STime = 5 STime = 5 STime = 5
0.10 11.56 22.86 2.40 2.99
0.20 19.16 23.54 3.16 3.08
0.30 20.94 24.16 3.27 3.12
0.40 22.53 24.00 3.33 3.14

ParScalingS ParScaling+S ScalingGpuS Scaling+GpuS
SInterval = 5 SInterval = 5 SInterval = 5 SInterval = 5

Density STime = 5 STime = 5 STime = 5 STime = 5
0.10 8.76 22.67 1.36 1.83
0.20 15.34 23.90 2.08 2.15
0.30 17.62 24.25 2.30 2.38
0.40 19.26 24.28 2.52 2.59

Table 6.14 Execution times (in secs) of variants of Scaling and Scaling+ for sparse
matrices with dimension of 40 when SInterval = 1 and number of experiments is
one million.

ParScaling ParScaling+ ScalingGpu Scaling+Gpu
SInterval = 1 SInterval = 1 SInterval = 1 SInterval = 1

Density STime = 5 STime = 5 STime = 5 STime = 5
0.10 23.36 42.87 11.48 12.50
0.20 28.00 42.20 13.46 12.76
0.30 28.43 42.79 13.71 12.89
0.40 29.17 42.64 13.77 12.88

ParScalingS ParScaling+S ScalingGpuS Scaling+GpuS
SInterval = 1 SInterval = 1 SInterval = 1 SInterval = 1

Density STime = 5 STime = 5 STime = 5 STime = 5
0.10 16.53 23.85 5.89 7.60
0.20 22.21 25.26 8.76 9.21
0.30 23.45 30.52 9.44 9.93
0.40 24.22 37.60 10.21 10.63

52

Figure 6.14 Execution times (in secs) of variants of Scaling and Scaling+ when
SInterval = 5 for sparse matrices with density of 0.10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Number of trial

Ti
m
e(
s)

ParScaling
ScalingGpu
ParScalingS
ScalingGpuS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Number of trial

Ti
m
e(
s)

ParScaling+
Scaling+Gpu
ParScaling+S
Scaling+GpuS

In Table 6.13 and Table 6.14, comparison of the execution times of dense and sparse
algorithms of the variants of Scaling and ScalingGpu is given when SInterval
is 5 and 1 respectively. For both settings, the tables are very similar in terms of
comparison between the dense and sparse algorithms. First of all, it can be said
that ParScaling and ScalingGpu have better performance when the density is low
due to having more zero permanent results and terminating experiments earlier,
whereas runtime of ParScaling+ and Scaling+Gpu do not change at all as the den-
sity changes due to the heuristic they use. When SInterval is 5, ParScalingS
improves ParScaling for each density value in the table. It can be said that
ParScalingS improves the most when the density is 0.10, whereas ParScaling+S
performs almost the same as ParScaling+. For the GPU algorithms, ScalingGpuS
and Scaling+GpuS run faster than their dense versions for all the density values.
They also over perform the most when the density value is 0.10. On the other hand,
when SInterval is 1, all the sparse implementations ParScalingS, ParScaling+S,
ScalingGpuS, and Scaling+GpuS over perform their dense implementations. Fur-
thermore, the ratio of the increase in the performance is little higher than the per-
formance when the SInterval is 5. The reason of this when SInterval is 1, there
is a scaling operation at each iteration which means iterating over the matrix and
sparse algorithms can exploit the sparsity of the matrix more using CCS and CRS
when there are more iterations over the matrix. Figure 6.14, 6.15, 6.16, and 6.17
give an illustration of comparison of the execution times between the dense and
sparse algorithms for the variants of Scaling and Scaling+ separately for different
density values and different values of SInterval setting.

In Table 6.15, the sparse implementations of the hybrid approximation algo-
rithms are compared with their dense implementations for the density values
of 0.10,0.20,0.30,0.40. As it can be seen, for both Rasmussen+MGpuS and

53

Figure 6.15 Execution times (in secs) of variants of Scaling and Scaling+ when
SInterval = 5 for sparse matrices with density of 0.20.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Number of trial

Ti
m
e(
s)

ParScaling
ScalingGpu
ParScalingS
ScalingGpuS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Number of trial

Ti
m
e(
s)

ParScaling+
Scaling+Gpu
ParScaling+S
Scaling+GpuS

Figure 6.16 Execution times (in secs) of variants of Scaling and Scaling+ when
SInterval = 1 for sparse matrices with density of 0.10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1.5

3
4.5

6
7.5

9
10.5

12
13.5

15
16.5

18
19.5

21
22.5

24
25.5

27
28.5

30
31.5

33
34.5

36
37.5

39
40.5

42
43.5

45

Number of trial

Ti
m
e(
s)

ParScaling
ScalingGpu
ParScalingS
ScalingGpuS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1.5

3
4.5

6
7.5

9
10.5

12
13.5

15
16.5

18
19.5

21
22.5

24
25.5

27
28.5

30
31.5

33
34.5

36
37.5

39
40.5

42
43.5

45

Number of trial

Ti
m
e(
s)

ParScaling+
Scaling+Gpu
ParScaling+S
Scaling+GpuS

Figure 6.17 Execution times (in secs) of variants of Scaling and Scaling+ when
SInterval = 1 for sparse matrices with density of 0.20.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1.5

3
4.5

6
7.5

9
10.5

12
13.5

15
16.5

18
19.5

21
22.5

24
25.5

27
28.5

30
31.5

33
34.5

36
37.5

39
40.5

42
43.5

45

Number of trial

Ti
m
e(
s)

ParScaling
ScalingGpu
ParScalingS
ScalingGpuS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
1.5

3
4.5

6
7.5

9
10.5

12
13.5

15
16.5

18
19.5

21
22.5

24
25.5

27
28.5

30
31.5

33
34.5

36
37.5

39
40.5

42
43.5

45

Number of trial

Ti
m
e(
s)

ParScaling+
Scaling+Gpu
ParScaling+S
Scaling+GpuS

54

Table 6.15 Execution times (in secs) of the sparse hybrid implementations for sparse
matrices with dimension of 40 when number of experiments is ten million.

Rasmussen+MGpu Scaling+MGpu Scaling+MGpu Rasmussen+MGpuS Scaling+MGpuS Scaling+MGpuS
SInterval = 5 SInterval = 1 SInterval = 5 SInterval = 1

Density 2 TITAN + 2 Gtx 2 TITAN + 2 Gtx 2 TITAN + 2 Gtx 2 TITAN + 2 Gtx 2 TITAN +2 Gtx 2 TITAN + 2 Gtx
0.10 1.38 15.25 64.60 0.94 5.78 24.00
0.20 1.46 14.94 65.06 1.03 7.46 32.06
0.30 1.46 15.70 67.66 1.05 9.62 38.00
0.40 1.34 16.12 67.81 1.09 10.31 42.97

Figure 6.18 Accuracy of the algorithms for matrices with density of 0.20.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

Number of trial

Ac
cu

ra
cy

RasmussenGpu
ScalingGpu (SInterval =1)
ScalingGpu (SInterval =5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

Number of trial

Ac
cu

ra
cy

Rasmussen+Gpu
Scaling+Gpu (SInterval =1)
Scaling+Gpu (SInterval =5)

Scaling+MGpuS improved Rasmussen+MGpu and Scaling+MGpu respectively for the
given density values. For Rasmussen+MGpuS, it can be said that it improved the per-
formance the most when the density is 0.10, and the lowest improvement when
the density is 0.40 since sparse data structures exploit the sparsity and make
the algorithm run faster. Additionally, there are more experiments that return
0 and terminates when the matrix is sparser. The same situation is also valid
for Scaling+MGpuS. In terms of improvement regarding the dense implementation,
the only difference between Rasmussen+MGpuS and Scaling+MGpuS is the improve-
ment ratio of Scaling+MGpuS is higher than Rasmussen+MGpuS. The reason is that
Rasmussen+MGpu already runs around 1 second and it is hard to improve this exe-
cution time much since there are also overheads in starting device kernels for each
GPU. Also, regarding Scaling+MGpuS, both of the time when SInterval is 1 and
5, improvement ratios are mostly the same.

6.2.3.3 Accuracy

Accuracy results of the discussed algorithms in the previous chapter, which are
the variants of Rasmussen, Rasmussen+, Scaling, and Scaling+, are given in this

55

Figure 6.19 Accuracy of the algorithms for matrices with density of 0.30.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

Number of trial

Ac
cu

ra
cy

RasmussenGpu
ScalingGpu (SInterval =1)
ScalingGpu (SInterval =5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

Number of trial
Ac

cu
ra
cy

Rasmussen+Gpu
Scaling+Gpu (SInterval =1)
Scaling+Gpu (SInterval =5)

Figure 6.20 Accuracy of the algorithms for matrices with density of 0.40.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

Number of trial

Ac
cu

ra
cy

RasmussenGpu
ScalingGpu (SInterval =1)
ScalingGpu (SInterval =5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

Number of trial

Ac
cu

ra
cy

Rasmussen+Gpu
Scaling+Gpu (SInterval =1)
Scaling+Gpu (SInterval =5)

56

chapter. Accuracy ratio results are calculated by finding the ratio between the
estimated value and the actual permanent value. Figure 6.18, 6.19, and 6.20 give the
accuracy results of the algorithms when the density of the matrix is 0.20,0.30,0.40
respectively. It can be said that for all the algorithms that are variants of Rasmussen
and Scaling and for all the density values, the best estimation is obtained using
variants of Scaling with SInterval is 1 since scaling is applied in this version the
most. Then the second best is variants of Scaling with SInterval is 5 which is also
estimating better than the variants of Rasmussen, that means scaling improves the
accuracy of the estimation. Similarly, the same order in terms of accuracy is applied
to the variants of Rasmussen+ and Scaling+. When it comes to compare variants of
Rasmussen and Scaling with variants of Rasmussen+ and Scaling+, the heuristic
used in Rasmussen+ and Scaling+ increases the accuracy of the estimation. As
it can be seen in Figure 6.18, RasmussenGpu has some large oscillations in terms
of accuracy, while Rasmussen+Gpu has fewer oscillations. The same applies to the
comparison between ScalingGpu and Scaling+Gpu with SInterval is 5. However,
the difference between the accuracy of ScalingGpu and Scaling+Gpu is less than
the difference between the accuracy of RasmussenGpu and, Rasmussen+Gpu as it can
be seen. When SInterval is set to 1, the results are more accurate like a straight
line, as it can be seen in the figure. It is also important to note that as the density
gets higher, the accuracy of each algorithm progressively increases. For instance, in
Figure 6.20 when accuracy results are shown for a matrix with a density of 0.40,
almost every algorithm on the right figure yields very accurate results. On the other
hand, on the left figure for RasmussenGpu, and ScalingGpu with SInterval is 5,
there are still minor oscillations when the number of experiments are low.

6.3 Experiment on Graphs

The experiments on graphs are made on grid graphs for approximating permanent
value of the corresponding matrix using approximation algorithms. Grid graphs are
chosen since their corresponding matrices’ dimensions are very big and number of
perfect matching of them can be calculated. Because, for other matrices that do not
represent a grid graph and have very large dimension values, it is almost impossible
to calculate the permanent value or the number of perfect matching. Therefore, grid
graphs can be used to measure the performance of the approximation algorithms for
very large matrices.

57

Figure 6.21 Execution times (in secs) of the variants of Rasmussen+ and Scaling+
for grid graphs.

4 6 8 10 12 14 16 18 20 22 240

10

20

30

40

50

60

70

80

90

100

110

120

Grid graph dimensions

Ti
m
e(
s)

ParRasmussen+S
Rasmussen+GpuS)

4 6 8 10 12 14 16 18 20 22 240

20

40

60

80

100

120

140

160

180

200

220

240

Grid graph dimensions

Ti
m
e(
s)

ParScaling+S (SInterval =1)
ParScaling+S (SInterval =5)
Scaling+GpuS (SInterval =1)
Scaling+GpuS (SInterval =5)

In Figure 6.21, the execution times are given for sparse approximation algorithms
that run on grid graphs for one million experiments. In the figure, grid graph
dimension means that it represent n×n grid graph when the dimension is n. Also,
only sparse algorithms can be used since they use CCS and CRS where memory is not
allocated for all the elements of the matrix by taking into account only the nonzero
elements, such that the shared memory limitations are not exceeded. Because, for a
sample 24×24 grid graph, the dimension of the corresponding matrix is (24×24)/2 =
288. As it can be seen, Rasmussen+GpuS runs much faster than ParRasmussen+S
by around 100x when grid graph is 24× 24, and number of experiments is one
million. So it can be also said that as the grid graph gets bigger, the improvement
of Rasmussen+GpuS get larger compared to ParRasmussen+S. On the other hand,
again for 24×24 grid graph and one million experiment, a Scaling+GpuS run around
5× faster than ParScalingS when SInterval is 5. However, when SInterval is 1,
although Scaling+GpuS runs faster than ParScaling+S up to 16× 16 grid graph,
ParScaling+S starts to over perform Scaling+GpuS as the grid graph gets larger
than 16× 16. Therefore, it can be said that the level of exploitation of sparsity
increases faster on a CPU than on a GPU as the sparsity of the matrix increases.
Because, as the grid graph gets larger, the matrix gets sparser.

For the accuracy on grid graphs, the accuracy ratios can be seen in Table 6.16 for one
million experiments. As it can be seen, while all the algorithms estimate the perma-
nent value very close up to 12×12 grid graphs, Rasmussen+GpuS starts estimating
badly for larger grid graphs. On the other hand, although Scaling+GpuS also es-
timates with a high error for 24×24 grid graph when SInterval is 5, it estimates
very accurately when SInterval is 1 for all the grid graphs in the experiments.

58

Table 6.16 Accuracy of the approximation algorithms on grid graphs when number
of experiments is one million

Algorithms 6×6 8×8 10×10 12×12 14×14
Rasmussen+GpuS 1.00x 1.01x 1.00x 1.09x 1.38x
Scaling+GpuS (SInterval = 1) 1.00x 1.00x 1.00x 1.00x 1.00x
Scaling+GpuS (SInterval = 5) 1.00x 1.00x 1.01x 1.02x 1.02x
Algorithms 16×16 18×18 20×20 22×22 24×24
Rasmussen+GpuS 0.43x 0.01x 19.32x 0.11x 0.03x
Scaling+GpuS (SInterval = 1) 1.00x 1.00x 1.01x 0.99x 1.00x
Scaling+GpuS (SInterval = 5) 1.00x 0.95x 1.72x 0.65x 0.14x

6.4 Threats to Validity

Execution times were compared for the exact permanent calculation algorithms on
the GPU for matrices with data types of integer, float, and double in chapter 6.2.2.
However, when the calculated permanent values of different versions of Ryser on
the GPU are compared, there have been some permanent values observed that differ
from each other for the same matrix when the matrix has a data type of float or
double. This is due to the matrix of float and double elements, where each element
has six numbers after the floating point. In the results, mostly up to around 10−15%
of error is observed for both float and double matrices. It is also important to note
that, the results for integer matrices with different algorithms have always been
consistent.

59

7. CONCLUSION

In this work, parallel algorithms that run on a CPU, on a GPU, and on multi-
ple GPUs and a CPU in a hybrid manner are proposed for the exact permanent
calculation of both dense and sparse matrices. The algorithms make use of Ryser,
SpaRyser, and SkipPer algorithms on a GPU. In the literature, a parallel algorithm
that runs with 16 threads on a CPU for a 40× 40 matrix with a density of 0.50,
the speedup is around 12× compared to the original Ryser algorithm in a single
core. In the proposed approach that has the best performance for the same matrix,
which is Ryser-SxC-Sm that copies x and the matrix to the shared memory with
memory coalescing and runs in the single GPU, around 125× speedup is obtained
compared to original Ryser in a single core on the CPU. Furthermore, using four
GPUs that run collectively to calculate the permanent value in Ryser-SxC-Sm-MG+,
around 338× speedup is obtained. It has also been shown that contribution of the
CPU is negligible in hybrid proposed solutions. On the other hand, for sparse 40×40
binary matrices with a density of 0.10, the speedup obtained on the CPU using 16
threads using ParSpaRyser and ParSkipPer is around 9× and 2500× respectively
compared to the parallel version of Ryser that is ParRyser. For the proposed al-
gorithms SpaRyser-SxC-Sm and SkipPer-SxC-Sm, the speedup is around 6× and
275× respectively for the same matrix compared to Ryser-SxC-Sm. Furthermore,
for a generic matrix, the speedup is around 7× and 10× for ParSpaRyser and
ParSkipPer, whereas the speedup is around 6× and 5× for SpaRyser-SxC-Sm and
SkipPer-SxC-Sm. Therefore, a speedup is obtained for sparse matrices on the GPU,
but the speedup on the GPU is not as much as the speedup of the parallel algo-
rithms on the CPU. Specially, while speedup of SpaRyser on the GPU is similar
to the speedup on the CPU, there is more difference in the speedup of SkipPer
on the GPU compared to the speedup on the CPU. Because, there is a skipping
in GrayCode in SkipPer, which makes each thread’s execution differ in a way that
is disadvantage of the synchronization on a GPU. That’s also the reason behind
SkipPer on the GPU runs worse than SpaRyser on the GPU for generic matrices.

For estimating the number of perfect matchings on graphs, which is the permanent

60

value of the corresponding matrix, algorithms are proposed that run on a CPU,
on a single GPU or multiple GPUs and a CPU in a hybrid manner by making use
of Rasmussen and Scaling algorithms. Using the most accurate algorithm on the
GPU, accuracy ratio of 0.999971 is obtained in 13.79 seconds, by having one million
experiments for an 80% full 40×40 matrix. Again, for one million experiments for
Rasmussen, around 60× speedup is obtained on the GPU compared to the parallel
version with 16 threads on the CPU. For the improved version, that is Rasmussen+,
the same speedup is around 50×. On the other hand, for the same type of matrix,
around 6× and 2× speedup is obtained in Scaling on the GPU compared to parallel
version on the CPU with 16 threads when SInterval is 5 and 1 respectively. For the
improved version, that is Scaling+, the same speedup is around 7× and 3×. There
is a way more speedup for Rasmussen algorithm compared to Scaling. Because, in
Scaling algorithm, the part where the matrix is scaled is in disadvantage of the syn-
chronization since it iterates STime many times and differently for each thread on a
GPU. For Scaling algorithm, the speedup is also lower when SInterval is 1 which
proves that scaling of the matrix lowers the performance on the GPU more than on
the CPU. It has been also shown that using a hybrid algorithm that make use of
four GPUs, the speedup is around 2× in Scaling+MGpu compared to Scaling+Gpu.
For sparse matrices, with the most accurate algorithm on the GPU, accuracy ratio
of 0.998347 is obtained in 7.60 seconds by having one million experiments for an
10% full 40×40 matrix. For the same matrix, when the sparse parallel implemen-
tation is tested on CPU for one million experiments, there is around 2× speedup
is in ParRasmussenS compared to ParRasmussen. However, there is not any clear
speedup is observed in RasmussenGpuS compared to RasmussenGpu. Because, both
RasmussenGpu and RasmussenGpuS terminates very fast, such that most of the exe-
cution time comes from the overhead in kernel calls. For the sparse implementations
of Scaling and Scaling+, the speedup on the CPU compared to their dense ver-
sions on the CPU is around 1.5-2×, whereas the speedup is also 1.5-2× on the GPU
compared to their dense versions on the GPU for a 40× 40 matrix with a density
value of 0.10. Therefore, for the sparse versions of approximation algorithms on the
CPU and the GPU, while sparsity was not able to be exploited for Rasmussen and
Rasmussen+ on the GPU, sparsity was able to be exploited on the GPU for Scaling
and Scaling+ at the same level as the exploitation of sparsity on the CPU.

61

BIBLIOGRAPHY

Aaronson, S. & Arkhipov, A. (2010). The computational complexity of linear optics.
Dufossé, F., Kaya, K., Panagiotas, I., & Uçar, B. (2018). Approximation algorithms

for maximum matchings in undirected graphs. In Proceedings of the 8th SIAM
Workshop on Combinatorial Scientific Computing.

Huber, M. & Law, J. (2008). Fast approximation of the permanent for very dense
problems. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’08, (pp. 681–689)., USA. Society for Industrial
and Applied Mathematics.

Kaya, K. (2019). Parallel algorithms for computing sparse matrix permanents. Turk-
ish Journal of Electrical Engineering and Computer Sciences, 27, 4284–4297.

Mittal, R. & Al-Kurdi, A. (2001). Efficient computation of the permanent of a sparse
matrix. International Journal of Computer Mathematics, 77 (2), 189–199.

Nijenhuis, A. & Wilf, H. S. (1978). Combinatorial Algorithms. Academic Press.
Rasmussen, L. E. (1994). Approximating the permanent: A simple approach. Ran-

dom Struct. Algor., 5 (2), 349–361.
Rudolph, T. (2009). Simple encoding of a quantum circuit amplitude as a matrix

permanent. Physical Review A, 80 (5).
Ryser, H. (1963). Combinatorial Mathematics. Mathematical Association of Amer-

ica.
Valiant, L. G. (1979). Completeness classes in algebra. In Proceedings of the Eleventh

Annual ACM Symposium on Theory of Computing, STOC ’79, (pp. 249–261).,
New York, NY, USA. Association for Computing Machinery.

62

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND AND NOTATION
	Permanents and Matchings
	Graphics Processing Units

	COMPUTING MATRIX PERMANENTS ON GPUs
	Computing the Permanents of Dense Matrices
	Ryser-Gx: keeping x in global device memory
	Ryser-Rx: keeping x on registers
	Ryser-Sx: keeping x in the shared memory
	Ryser-SxC: keeping x in the shared memory with memory coalescing
	Ryser-SxC-Sm: keeping mat in the shared memory in Ryser-SxC
	Ryser-SxC-Sm-MG: static multiple GPUs implementation
	Ryser-SxC-Sm-MG+: dynamic hybrid implementation

	Computing the Permanents of Sparse Matrices
	SpaRyser-SxC-Sm: keeping x and CCS in the shared memory
	SpaRyser-SxC-Sm-MG+: dynamic hybrid implementation

	APPROXIMATING MATRIX PERMANENTS ON GPUs
	Approximating the Permanents of Dense Matrices
	RasmussenGpu: Implementation of Rasmussen on GPU
	Rasmussen+Gpu: Implementation of Rasmussen+ on GPU
	Rasmussen+MGpu: Hybrid implementation of Rasmussen+
	ScalingGpu: Implementation of Scaling on GPU
	Scaling+Gpu: Implementation of Scaling+ on GPU
	Scaling+MGpu: Hybrid implementation of Scaling+

	Approximating the Permanents of Sparse Matrices
	RasmussenGpuS: Sparse implementation of Rasmussen on GPU
	Rasmussen+GpuS: Sparse implementation of Rasmussen+ on GPU
	Rasmussen+MGpuS: Hybrid sparse implementation of Rasmussen+
	ScalingGpuS: Sparse implementation of Scaling on GPU
	Scaling+GpuS: Sparse implementation of Scaling+ on GPU
	Scaling+MGpuS: Hybrid sparse implementation of Scaling+

	COUNTING PERFECT MATCHINGS ON GPUs
	SkipPer-SxC-Sm: keeping x, CRS, and CCS in the shared memory
	SkipPer-SxC-Sm-MG+: dynamic hybrid implementation

	EXPERIMENTAL RESULTS
	Experiment Settings
	Experiments on Matrices
	Exact Permanent Computation
	Experiments with dense matrices
	Experiments with sparse matrices

	Single vs. Double Precision
	Approximate Permanent Computation
	Experiments with dense matrices
	Experiments with sparse matrices
	Accuracy

	Experiment on Graphs
	Threats to Validity

	CONCLUSION
	BIBLIOGRAPHY

