
EFFICIENT HARDWARE IMPLEMENTATIONS FOR
LATTICE-BASED CRYPTOGRAPHY PRIMITIVES

by
AHMET CAN MERT

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Doctor of Philosophy

Sabancı University
May 2021

EFFICIENT HARDWARE IMPLEMENTATIONS FOR
LATTICE-BASED CRYPTOGRAPHY PRIMITIVES

Approved by:

Date of Approval: May 21, 2021

AHMET CAN MERT 2021 ©

All Rights Reserved

ABSTRACT

EFFICIENT HARDWARE IMPLEMENTATIONS FOR LATTICE-BASED
CRYPTOGRAPHY PRIMITIVES

AHMET CAN MERT

ELECTRONICS ENGINEERING Ph.D DISSERTATION, MAY 2021

Dissertation Supervisor: Asst. Prof. Erdinç Öztürk

Keywords: Lattice-based Cryptography, Homomorphic Encryption, Post-quantum
Cryptography, Hardware Accelerator, FPGA

Lattice-based cryptography has gained a tremendous amount of attention in the last
decade due to two main reasons: (i) being projected to be resistant against the at-
tacks by quantum computers and (ii) enabling homomorphic encryption (HE) which
allows arithmetic operations on the encrypted data. Despite its theoretical advan-
tages, it lacks efficient and practical implementations due to its high computational
complexity, especially in the context of HE. In this dissertation, our main objective
is to design and implement high-performance and efficient hardware solutions for
lattice-based cryptosystems.

To that end, we propose a collection of efficient and flexible hardware accelerators
for lattice-based HE and post-quantum cryptography (PQC) schemes. Firstly, we
present two different hardware architectures for Number Theoretic Transform (NTT)
which is one of the most fundamental building blocks of lattice-based cryptography
with several optimizations. The proposed architectures are used in a CPU-FPGA
framework providing fast communication via PCI Express link to accelerate the
encryption and decryption operations of the Brakerski/Fan-Vercauteren (BFV) HE
scheme. Secondly, we present a run-time configurable NTT-based polynomial multi-
plication architecture that supports a set of algorithm parameters frequently used in
lattice-based cryptosystems. Thirdly, we design and implement a high-performance
hardware architecture that performs the homomorphic multiplication and relin-
earization operations for the full RNS variant of the BFV HE scheme on FPGA.
The proposed architecture outperforms the highly-optimized Microsoft SEAL HE

iv

library by more than an order of magnitude. Fourthly, we design and implement
one of the earliest polynomial multiplication architectures of the CRYSTALS-Kyber
PQC scheme, which is one of the finalists in NIST’s PQC standardization process,
for the FPGA platform in the literature. Finally, we investigate two different design
methodologies for generating flexible NTT hardware along with a comprehensive
analysis. The first method uses a compile-time configurable parametric NTT hard-
ware generator while the second method presents the high-level synthesis approach.

v

ÖZET

KAFES-TABANLI KRİPTOGRAFİ ÖĞELERİ İÇİN VERİMLİ DONANIM
UYGULAMALARI

AHMET CAN MERT

ELEKTRONİK MÜHENDİSLİĞİ DOKTORA TEZİ, MAYIS 2021

Tez Danışmanı: Dr. Öğr. Üyesi Erdinç Öztürk

Anahtar Kelimeler: Kafes-tabanlı Kriptogragi, Homomorfik Şifreleme,
Kuantum-sonrası Kriptografi, Hızlandırıcı Donanım, FPGA

Kafes-tabanlı kriptografi, iki ana nedenden dolayı son yıllarda büyük ilgi görmekte-
dir: (i) kuantum bilgisayarlar tarafından gerçekleştirilecek saldırılara karşı dirençli
olduğunun öngörülmesi ve (ii) şifrelenmiş veriler üzerinde aritmetik operasyonlar
yapılmasına izin veren homomorfik şifrelemeyi mümkün kılması. Sunduğu teorik
avantajlara rağmen, özellikle homomorfik şifreleme bağlamında sahip olduğu yük-
sek hesaplama karmaşıklığı nedeniyle kafes-tabanlı kriptografik şemaların verimli ve
pratik uygulamalarının eksikliği görülmektedir. Bu tezde temel amacımız, kafes-
tabanlı kriptografi sistemleri için yüksek performanslı donanım çözümleri tasarlama
ve gerçeklemektir.

Bu amaçla, kafes-tabanlı homomorfik şifreleme ve kuantum sonrası kriptografi şe-
maları için verimli ve esnek donanım hızlandırıcılarını içeren çalışmaları sunmak-
tayız. İlk olarak, kafes-tabanlı kriptografinin temel yapı taşlarından biri olan Sayılar
Teorisi Dönüşümü (NTT) için çeşitli optimizasyonlar içeren iki farklı donanım mi-
marisi sunuyoruz. Önerilen mimariler, Brakerski/Fan-Vercauteren (BFV) homo-
morfik şifreleme şemasının şifreleme ve şifre çözme operasyonlarını hızlandırmak
için PCI Express bağlantısı ile hızlı iletişim sağlayan bir CPU-FPGA çerçevesinde
kullanılmıştır. İkinci olarak, kafes-tabanlı kriptografi sistemlerinde sıklıkla kul-
lanılan bir dizi algoritma parametresini destekleyen ve çalışma-zamanı yapılandırıla-
bilir NTT tabanlı bir polinom çarpıcısı mimarisi sunulmuştur. Üçüncü çalışma
olarak, BFV şemasının tam kalıntı sayı sistemi varyantındaki homomorfik çarpma
ve yeniden doğrusallaştırma işlemlerini gerçekleştiren yüksek performanslı bir do-

vi

nanım mimarisin tasarımı ve gerçeklemesi sunulmuştur. Önerilen donanım mimarisi,
son derece optimize edilmiş Microsoft SEAL homomorfik şifreleme kütüphanesi
ile kıyaslandığında on kattan daha fazla performans iyileştirmesi göstermektedir.
Dördüncü olarak, NIST tarafından başlatılan kuantum sonrası kriptografi standart-
laştırma sürecinin finalistlerinden olan CRYSTALS-Kyber kuantum sonrası krip-
tografi şemasının polinom çarpıcısı mimarisinin FPGA platformu için ilk örnek-
lerinden biri sunulmuştur. Son olarak, kapsamlı bir analizle birlikte esnek NTT do-
nanımı oluşturmak için iki farklı tasarım yöntemini inceledik. İlk yöntem, derleme-
zamanında yapılandırılabilir parametrik NTT donanım üretecini kullanırken, ikinci
yöntem yüksek düzey sentez tabanlı tasarım yaklaşımını kullanmaktadır.

vii

ACKNOWLEDGEMENTS

I am indebted to many great people for their valuable help and support throughout
the years of study for this dissertation. First of all, I would like to thank my super-
visor Dr. Erdinç Öztürk for all his guidance, support, and patience throughout my
studies. I am grateful to him for providing me the freedom and necessary resources
to conduct research. This work would not be complete without his expertise and
suggestions. I also want to thank him for always providing guidance and inspiration
for my research and future career opportunities.

I also would like to express my sincere gratitude to Dr. Erkay Savaş. I appreci-
ate very much his knowledge and expertise which significantly contributed to my
research. I want to thank him for the many great discussions and brainstorming
sessions we had on the board, and the countless cups of coffee he bought for me. I
always feel privileged as I had change working with him.

I would like to thank Dr. Aydin Aysu for giving me an opportunity to work with
him at North Carolina State University (NCSU) during the summer of 2019. He
provided me with their unique research environment and helped me broaden my
vision. I also want to thank Emre, Furkan, and other members of the HECTOR
Lab at NCSU for their support, friendship, and collaboration.

I would like to thank the member of my dissertation committee, Dr. Yaşar Gürbüz,
Dr. Sıddıka Berna Örs Yalçın, and Dr. Erdem Alkım for their precious time, effort,
and valuable comments on my dissertation.

I want to thank all members of the Cryptography and Information Security Group
at Sabanci University for their friendship and collaboration during my studies. I
especially want to thank Utku for being a memorable friend and colleague for me
with the many conversations and coffee breaks we had.

I want to thank my long-time friends Ozan, Abdurrahman, Ali Eren, Ercan, and
many others for their valuable friendship. They made this journey easier for me
with their support.

My deepest gratitude goes to my wife Gülizar. This dissertation is dedicated with
love to her for her constant support and encouragement for going through my tough
periods with me. She was always there for me when I found myself in darkness. I
want to thank her for her endless support, encouragement, and patience.

viii

I want to express my gratitude to my parents, my mother Emine and my father
Şaban. I would not be the person I am today without their unconditional love and
support. I want to thank my parents with all my heart for their love and support.

Finally, I would like to acknowledge Sabanci University and Scientific and Techno-
logical Research Council of Turkey (TÜBİTAK) for supporting me with scholarships
throughout my studies. This dissertation was supported by TÜBİTAK BIDEB 2211-
A program.

ix

To my beloved wife Gülizar

x

TABLE OF CONTENTS

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATONS .xvii

1. INTRODUCTION . 1
1.1. Contribution of the Dissertation . 3
1.2. Organization of the Dissertation . 5

2. BACKGROUND . 6
2.1. Notation . 6
2.2. Lattice-based Cryptography . 7
2.3. Post-quantum Cryptography . 8
2.4. Homomorphic Encryption . 9

2.4.1. Brakerski/Fan-Vercauteren Homomorphic Encryption Scheme 11
2.4.2. Microsoft SEAL Homomorphic Encryption Library. 12
2.4.3. Residue Number System . 13

2.5. Polynomial Multiplication . 14
2.5.1. Number Theoretic Transform . 14
2.5.2. NTT-based Polynomial Multiplication . 16

3. FAST AND SCALABLE NTT-BASED POLYNOMIAL MULTI-
PLICATION ARCHITECTURES . 20
3.1. Introduction . 20
3.2. NTT Architectures. 21

3.2.1. Modular Adder and Modular Subtractor Units 22
3.2.2. Modular Multiplier Unit . 23

3.2.2.1. Integer Multiplier Unit . 23
3.2.2.2. Word-level Montgomery Modular Reduction Unit . . . 24

3.2.3. Iterative NTT Hardware . 27

xi

3.2.3.1. GS Butterfly Unit . 28
3.2.3.2. Overall Design . 29

3.2.4. Four-step NTT Hardware . 30
3.2.4.1. 32-pt NTT Unit . 31
3.2.4.2. Overall Design . 31

3.3. BFV Encryption/Decryption Architectures. 32
3.3.1. Encryption/Decryption Implementations in SEAL Library 33
3.3.2. Iterative BFV Hardware . 34
3.3.3. Four-step BFV Hardware . 35

3.4. CPU-FPGA Framework . 37
3.5. Results and Comparison . 39
3.6. Summary . 42

4. AN FPGA-BASED RUN-TIME CONFIGURABLE NTT-BASED
POLYNOMIAL MULTIPLICATION ARCHITECTURE 44
4.1. Introduction . 44
4.2. Polynomial Multiplicationr Architecture. 46

4.2.1. Run-time Configurable Word-Level Montgomery Modular
Multiplier Unit . 46

4.2.2. NTT Unit . 49
4.2.3. Overall Design . 50
4.2.4. CPU-FPGA Framework . 55

4.3. A Case Study: SEAL Library . 56
4.4. Results and Comparison . 58
4.5. Summary . 62

5. A HIGH PERFORMANCE HOMOMORPHIC MULTIPLICA-
TION ARCHITECTURE FOR THE BFV SCHEME 64
5.1. Introduction . 64
5.2. Full RNS Variant of the BFV Scheme . 66

5.2.1. Homomorphic Multiplication . 66
5.2.2. Relinearization . 68

5.3. Homomorphic Multiplication Architecture . 70
5.3.1. Parameter Set . 71
5.3.2. NTT Core . 71
5.3.3. Overall Design and Scheduling . 74

5.4. Results and Comparison . 78
5.5. Summary . 82

6. A HARDWARE ACCELERATOR FOR POLYNOMIAL MUL-

xii

TIPLICATION OPERATION OF CRYSTALS-KYBER PQC
SCHEME . 83
6.1. Introduction . 83
6.2. Preliminaries . 85

6.2.1. A New Variant of NTT-based Polynomial Multiplication 85
6.2.2. CRYSTALS-Kyber . 86

6.3. Polynomial Multiplication Architecture . 87
6.3.1. Modular Reduction Unit . 88
6.3.2. Unified Butterfly Unit . 89
6.3.3. Overall Design . 91

6.4. Results and Comparison . 94
6.4.1. Prior Works . 94
6.4.2. Implementation Results . 95

6.5. Summary . 98

7. AN EXTENSIVE STUDY OF FLEXIBLE DESIGN METHODS
FOR THE NUMBER THEORETIC TRANSFORM 99
7.1. Introduction . 99
7.2. Prior Implementations of NTT . 103
7.3. Design Method I: Parametric Hardware Generator Design 104

7.3.1. A Design-time Configurable Word-Level Montgomery Modu-
lar Multiplier Unit . 105

7.3.2. PEs and Butterfly Units . 107
7.3.3. Flexible Memory Access and Overall Design 108

7.4. Design Method II: HLS-Based Design . 110
7.5. Results and Comparison . 116

7.5.1. Experimental Setup . 116
7.5.2. Implementation Results of the Design Methods. 116
7.5.3. Comparison to Prior Work . 118

7.6. Summary . 122

8. CONCLUSION AND FUTURE WORK . 123
8.1. Conclusions . 123
8.2. Future Work . 125

BIBLIOGRAPHY. 126

xiii

LIST OF TABLES

Table 2.1. KEM and DS Schemes in the Final Round of NIST’s Post-
quantum Standardization . 9

Table 3.1. Timing of Encryption and Decryption Implementations in
SEAL . 34

Table 3.2. Comparative Table . 41
Table 3.3. Pipelining of I/O Operations over PCIe. 42

Table 4.1. Actual Supported k Range for Each Parameter Set 48
Table 4.2. Number of Clock Cycles Required for Each Operation and Pa-

rameter Set . 52
Table 4.3. Timing of Decryption Implementation in the SEAL 57
Table 4.4. Comparative Table (FPGA Resources) . 60
Table 4.5. Comparative Table (Performance) . 61

Table 5.1. Unified Butterfly Unit Configuration. 74
Table 5.2. Our Hardware Implementation Results . 79
Table 5.3. Comparative Table . 80
Table 5.4. Hardware Resource Estimates . 81

Table 6.1. Implementation Results and its Comparison to Prior Work 97

Table 7.1. Previous NTT Implementations . 101
Table 7.2. Vivado HLS pragmas Used in Our Work . 113
Table 7.3. Our Hardware Implementation Results . 117
Table 7.4. Our HLS-Based Implementation Results . 118
Table 7.5. A Summary of Our Hardware Implementation Results and its

Comparison to Prior Works. 120
Table 7.6. A Summary of Our HLS-based Implementation Results and its

Comparison to Prior Works. 121

xiv

LIST OF FIGURES

Figure 2.1. Visualization of a Two-Dimensional Lattice Space 8
Figure 2.2. A Simple Scenario Utilizing HE . 10
Figure 2.3. Butterfly Structures . 15

Figure 3.1. 32-bit Integer Multiplier Unit . 24
Figure 3.2. Word-Level Montgomery Modular Reduction Unit for NTT-

friendly Primes. 28
Figure 3.3. GS Butterfly Unit . 29
Figure 3.4. Iterative NTT Hardware . 29
Figure 3.5. Four-Step NTT Hardware . 32
Figure 3.6. Multiplier Unit of Four-Step BFV Hardware 36
Figure 3.7. CPU-FPGA Framework . 38

Figure 4.1. Run-time Configurable Word-level Montgomery Modular Re-
duction Unit . 47

Figure 4.2. NTT Unit . 49
Figure 4.3. Number of Clock Cycles and Area×Time Percentage Estima-

tions for Different n and PU Numbers . 51
Figure 4.4. Overall Design. 51
Figure 4.5. BRAMs Storing Twiddle Factors . 53
Figure 4.6. Memory Access Pattern for 1024-pt NTT Operation 54
Figure 4.7. CPU-FPGA Framework . 56

Figure 5.1. The Flow of Homomorphic Multiplication Operation in the
BFV Scheme . 67

Figure 5.2. The Flow of Relinearization Operation in the BFV Scheme . . . 69
Figure 5.3. Unified Butterfly Unit . 72
Figure 5.4. The Proposed Hardware Architecture . 75
Figure 5.5. Scheduling of Homomorphic Multiplication Operation 77
Figure 5.6. Scheduling of Relinearization Operation . 78

Figure 6.1. Modular Reduction Unit . 89
xv

Figure 6.2. Unified Butterfly Unit . 90
Figure 6.3. Scheduling of CWM Operation for CRYSTALS-Kyber 92
Figure 6.4. Overall Design with one Butterfly Unit . 93
Figure 6.5. Memory Access Pattern for one Butterfly Unit 93
Figure 6.6. Memory Access Pattern for four Butterfly Units 94

Figure 7.1. An overview of the design method’s results and comparison for
the NTT of NewHope-512. The hand-tuned hardware designs lead to
most efficient results. 102

Figure 7.2. Word-Level Montgomery Modular Reduction Unit 107
Figure 7.3. PE and the Butterfly Unit . 108
Figure 7.4. (a) Coefficient Access Pattern; (b) Memory Access Pattern for

n= 8 . 109
Figure 7.5. Memory Access for 8-pt NTT with (a) one PE, (b) two PEs . 110
Figure 7.6. NTT Hardware (a) with one PE; (b) two PEs 111
Figure 7.7. Xilinx Vivado HLS Flow . 115
Figure 7.8. NTT Hardware Generated by Xilinx Vivado HLS Tool 115

xvi

LIST OF ABBREVIATONS

AES Advanced Encryption Standard

ASIC Application Specific Integrated Circuit

BFV Brakerski/Fan-Vercauteren

BGV Brakerski-Gentry-Vaikuntanathan

BRAM Block RAM

CPU Central Processing Unit

CRT Chinese Remainder Theorem

CVP Closest Vector Problem

DFF D-Flip Flop

DFT Discrete Fourier Transform

DGHV Dijk-Gentry-Halevi-Vaikuntanathan

DS Digital Signature

DSP Digital Signal Processor

ECC Elliptic Curve Cryptography

FHE Fully Homomorphic Encryption

FPGA Field Programmable Gate Array

FT Fourier Transform

GSW Gentry-Sahai-Waters

HE Homomorphic Encryption

HLS High Level Synthesis

xvii

IoT Internet of Things

ITU International Communication Union

KEM Key Encapsulation Mechanism

LUT Lookup Table

LWE Learning With Errors

MAC Multiply and Accumulate

NIST National Institute of Standards and Technology

NTT Number Theoretic Transform

NWC Negative Wrapped Convolution

PCIe Peripheral Component Interconnect Express

PHE Partially Homomorphic Encryption

PQC Post-Quantum Cryptography

PWC Positive Wrapped Convolution

RIFFA Reusable Integration Framework for FPGA Accelerators

RNS Residue Number System

RSA Rivest-Shamir-Adleman

SEAL Simple Encrypted Arithmetic Library

SIS Shortest Integer Solution

SoC System on a Chip

SVP Shortest Vector Problem

SWHE Somewhat Homomorphic Encryption

YASHE Yet Another Somewhat Homomorphic Encryption

xviii

1. INTRODUCTION

The Internet has a very important place in today’s world. According to International
Communication Union (ITU), more than half of the world population has access to
the internet and actively using it (ITU, 2020). With the advances in the Internet
of Things (IoT) devices such as personal computers and smart digital devices, their
portion in our daily routine is expected to increase gradually every day. In addition
to personal usage, state agencies and private companies greatly benefit from the
internet and internet technologies for reaching out to more people. For example,
states promote the digital transformation to increase efficiency while the companies
advertise online commerce and banking applications for their customers (Kurfalı,
Arifoğlu, Tokdemir & Paçin, 2017).

All of these applications have two main requirements: (i) secure communication of
the data, (ii) secure storage and process of the data. These applications need to
communicate with each other or central authority. The data sent and received over
the communication channels are vulnerable to malicious attackers. Therefore, it has
great importance for these applications to establish ways for sending and receiving
data securely such that the privacy-sensitive information of their users will be pro-
tected. Most of the time, these applications also store and process their user data
on the cloud services, which need to operate fast and securely on the stored infor-
mation for real-time applications. Therefore, the design and implementation of fast
cryptographic building blocks should be considered as a fundamental requirement
for the applications targeting secure and practical cloud applications.

Public key cryptography schemes such as Rivest–Shamir–Adleman (RSA) (Rivest,
Shamir & Adleman, 1978) and elliptic curve cryptography (ECC) are based on the
hard mathematical problems which are not solvable by modern devices with lim-
ited computing power in polynomial time (Bernstein & Lange, 2017). Therefore,
these current cryptographic schemes ensure practical security for internet applica-
tions. However, quantum computers are conjectured to be powerful enough to break
these schemes using Shor’s algorithm (Shor, 1994). There are already a tremendous
amount of efforts for creating public-key cryptographic schemes secure against the

1

attacks by the quantum computers, which is referred to as post-quantum cryp-
tography (PQC), initiated by the National Institute of Standards and Technology
(NIST) in late 2016 (Chen, Chen, Jordan, Liu, Moody, Peralta, Perlner & Smith-
Tone, 2016). Among various mathematical constructions, hard lattice problems
have emerged as one of the most promising construction, which is also referred to
as lattice-based cryptography. Besides being resistant to attacks by quantum com-
puters, lattice-based cryptography provides a mathematical basis for homomorphic
encryption (HE) which allows secure computation by allowing arithmetic computa-
tion on the encrypted data. It enables cloud servers to process any privacy-sensitive
data without leaking any sensitive information. HE and PQC are two major appli-
cations enabled by lattice-based cryptography.

Although lattice-based cryptography provides solutions for the aforementioned prob-
lems and enables useful applications, its high computational complexity is the main
factor preventing its massive deployment in real-time internet applications. There-
fore, hardware accelerators are emerged as perfect candidates to be employed in
lattice-based HE and PQC applications. Lattice-based cryptography operates over
polynomials. Although arithmetic operations in lattice-based cryptography, espe-
cially in the context of HE, have high computational complexity, they involve in-
trinsically parallelizable parts. However, software implementations cannot take full
advantage of this parallelism due to the limitations of single-core and multi-core CPU
architectures (Brodtkorb, Dyken, Hagen, Hjelmervik & Storaasli, 2010), which will
perform better on FPGA platforms.

Our motivation in this dissertation is to propose efficient hardware solutions which
can be utilized as practical accelerators for performance-deprived real-time lattice-
based HE and PQC applications. To that end, we focus on one of the most funda-
mental and time-consuming operations in lattice-based cryptography, multiplication
of very large degree polynomials which uses Number Theoretic Transform (NTT).
We also focus on the design and implementation of larger arithmetic blocks uti-
lizing polynomial multiplication as a sub-routine such as homomorphic encryption,
decryption and multiplication. In hardware/software based heterogeneous systems,
the communication cost between the hardware and software is as important as an
efficient accelerator design for the employment of hardware accelerators in practical
applications. Thus, the communication cost between the accelerator platform and
the software should be taken into account as a crucial design consideration. To that
end, we also focus on the design and implementation of heterogeneous frameworks
which enable efficient communication between the hardware and software.

Lattice-based cryptographic schemes targeting different applications share similar

2

arithmetic blocks. Yet, they work with a wide range of parameter sets (Nejatollahi,
Dutt, Ray, Regazzoni, Banerjee & Cammarota, 2019). Therefore, flexibility is one
of the most desired aspects of lattice-based cryptography design. In addition to the
arithmetic variations, there are also performance and area requirement variations
for different platforms and applications. For example, area-constrained devices favor
implementations with low area cost while cloud applications need high-performance
implementations at the expense of extra area cost. Similarly, PQC schemes work
with small algorithmic parameters and value low-cost designs while HE applications
work with larger parameter sets and need high-performance for practical real-time
applications (Acar, Aksu, Uluagac & Conti, 2018), (Nejatollahi et al., 2019). There-
fore, we also focus on the flexible design methodologies for the main arithmetic
blocks of lattice-based cryptography, namely NTT.

1.1 Contribution of the Dissertation

The main objective of this dissertation was to design and implement high-
performance and efficient hardware accelerators for lattice-based cryptography prim-
itives. To that end, we propose efficient hardware implementations for the funda-
mental arithmetic blocks of lattice-based HE and PQC schemes such as multiplica-
tion of very large degree polynomials. There are various lattice-based cryptosystems
in development nearing massive deployment which will demand fast and flexible
methodologies for their building blocks. Thus, we also investigate flexible design
methodologies for NTT which is one of the main building blocks utilized in the
polynomial multiplication operations of lattice-based cryptosystems. Our contribu-
tions in this dissertation are as follows.

• In our first study, we present two fast and scalable NTT-based polynomial
multiplier architectures which employ a novel word-level Montgomery reduc-
tion algorithm and its hardware realization. We also present a CPU-FPGA
framework employing PCI Express (PCIe) link for communication between
the FPGA board and the host CPU. The proposed architectures are also uti-
lized to design and implement a unified encryption/decryption architecture
for the Brakerski/Fan-Vercauteren (BFV) HE scheme (Fan & Vercauteren,
2012). The proposed encryption/decryption architecture is employed with the
proposed framework to accelerate the encryption and decryption operations
of the BFV scheme implemented in Microsoft’s Simple Encrypted Arithmetic

3

Library (SEAL) library (Microsoft, 2019). Overall, the proposed work shows
up to one order of magnitude performance improvement compared to the pure
software implementation in SEAL for the encryption and decryption opera-
tions of the BFV scheme. The result of this study is published in (Mert,
Öztürk & Savaş, 2019) and (Mert, Öztürk & Savaş, 2020).

• In our second study, we focus on the flexibility requirements of lattice-based
cryptosystems and present a run-time configurable and highly parallelized
NTT-based polynomial multiplier architecture. The proposed architecture
supports six different parameter sets (n and dlog2(q)e), which are widely uti-
lized in the lattice-based cryptography. For proof of concept, the proposed
architecture is employed in a CPU-FPGA framework utilizing PCIe link to
accelerate polynomial multiplication operation performed during the decryp-
tion operation of the BFV scheme, showing that it can be used as an actual
accelerator in lattice-based cryptosystems. The result of this study is pub-
lished in (Mert, Öztürk & Savaş, 2020).

• In the third study, we focus on one of the main and most time-consuming
homomorphic operations, multiplication of two ciphertexts. We present a
high-performance FPGA-based hardware accelerator architecture that per-
forms the homomorphic multiplication and relinearization operations for full
residue number system (RNS) variant of BFV HE scheme (Bajard, Eynard,
Hasan & Zucca, 2017) for a fixed parameter set with a multiplicative depth
of one. The proposed architecture employs an efficient NTT core architecture
and an optimized operation scheduling for the homomorphic multiplication
and relinearization operations. The proposed architecture shows more than
one order of magnitude performance improvement for the homomorphic mul-
tiplication and relinearization operations compared to the SEAL library (Mi-
crosoft, 2020). Finally, we discuss the scalability of the accelerator for different
parameter settings.

• In our fourth study, we focus on accelerating the polynomial multiplication
operation of CRYSTALS-Kyber PQC scheme (Bos, Ducas, Kiltz, Lepoint,
Lyubashevsky, Schanck, Schwabe, Seiler & Stehlé, 2018) which adopted a vari-
ant of NTT-based polynomial multiplication operation by changing its initial
parameter set. To that end, we first introduce the CRYSTALS-Kyber scheme
and we propose three polynomial multiplier architectures with one, four, and
sixteen processing elements with several optimizations for the CRYSTALS-
Kyber scheme with a new parameter set. This chapter presents one of the ear-
liest hardware implementations of NTT-based polynomial multiplication for

4

the CRYSTALS-Kyber’s new parameter set. The proposed polynomial mul-
tiplier with sixteen processing elements shows up to two orders of magnitude
performance improvement compared to the high-speed software implementa-
tion on a Cortex-M4 (Alkim, Bilgin, Cenk & Gérard, 2020). The result of this
study is published in (Yaman, Mert, Öztürk & Savaş, 2021).

• In our fifth study, we focus on investigating flexible design methodologies of
NTT operation for hardware platforms, FPGA devices in particular. We first
propose a compile-time configurable NTT hardware generator which takes ring
size (n), coefficient modulus size (dlog2(q)e) and the number of processing ele-
ments as input, and generates the corresponding NTT hardware. The proposed
work generates hardware that shows similar or better performance compared
to most of the hand-written NTT hardware in the literature. In the second
method, we investigate the high-level synthesis (HLS)-based design approach
for NTT and we conclude this chapter with a comprehensive analysis. The
result of this study is published in (Mert, Karabulut, Öztürk, Savaş, Becchi &
Aysu, 2020) and (Mert, Karabulut, Öztürk, Savaş & Aysu, 2020).

1.2 Organization of the Dissertation

In Chapter 2, we present the notation which we follow throughout the dissertation
and the preliminary information necessary for a better understanding of this disserta-
tion. The contribution of the dissertation is presented in five chapters. In Chapter 3,
we present two fast and scalable NTT-based polynomial multiplier architectures uti-
lized within a CPU-FPGA framework to accelerate the Microsoft SEAL library. In
Chapter 4, we present run-time flexible and highly parallelized NTT-based polyno-
mial multiplier architecture. In Chapter 5, we present a high-performance hardware
architecture that performs the homomorphic multiplication operation of the BFV
scheme. In Chapter 6, we present one of the earliest polynomial multiplication
hardware architectures for the CRYSTALS-Kyber PQC scheme. In Chapter 7, we
investigate flexible design methods for NTT and present our analysis. Finally, in
Chapter 8, we conclude the dissertation and discuss the future work.

5

2. BACKGROUND

In this section, we first introduce the mathematical notation used throughout this
dissertation. Then, technical and arithmetic preliminaries necessary for understand-
ing this dissertation are presented. This dissertation focuses on efficient hardware
implementations of lattice-based cryptographic applications. Therefore, a brief in-
troduction to the history and theory of lattice-based cryptography is first presented.
Then, two main applications of lattice-based cryptography are explained: (i) PQC
and (ii) HE, which are excessively studied in this dissertation. Finally, one of the
most fundamental arithmetic operations in lattice-based cryptography, polynomial
multiplication, is explained in detail. Then, NTT operation, which is used for ef-
ficient implementation of polynomial multiplication operation, is presented and its
various implementations are discussed.

2.1 Notation

Let the ring Zq represent the set of integers {0,1, . . . , q− 1} where q is a positive
integer. The polynomial ring Rq = Zq[x]/φ(x) represents all polynomials reduced
with the polynomial φ(x) where the coefficients of φ(x) are in Zq. The polynomial
ring Zq[x]/(xn + 1) is represented as Rq,n when φ(x) has the form of (xn + 1). In
other words, the ring Rq,n consists of polynomials of degree at most (n− 1) with
polynomial coefficients in Zq. For the rest of the dissertation, q and n represent
the coefficient modulus and the degree of the polynomial ring, respectively (which
is also referred to as ring size throughout the dissertation). Also, n is assumed to
be a power of two if otherwise is not stated.

Throughout the dissertation, we represent an integer, a polynomial, a vector or
matrix of polynomials with regular lowercase letter (e.g. a∈Zq), boldface lowercase
letter (e.g. a ∈Rq,n) and boldface uppercase letter (e.g. A ∈Rm×k

q,n), respectively.
6

A polynomial a(x) =∑n−1
i=0 ai ·xi in Rq,n is also represented as a vector of integers in

Zq, a = [a0,a1, . . . ,an−1], where ai (equivalently ai or a[i]) represents the integer at
i-th position. We use A[i] (or Ai) and A[i][j] (or Ai,j) to represent the polynomial
in a vector of polynomials at position i and in a matrix of polynomials at i-th row
and j-th column, respectively. Similarly, we use a[i] to represent the bit of integer
a at position i.

Vectors (or polynomials) in the NTT domain are represented with a bar over their
names. For example, a and a represent the polynomial and NTT domain repre-
sentations of the same vector. Let ·, ×, and � represent integer, polynomial, and
coefficient-wise vector multiplication, respectively. Let (a · b), (a + b) and (a− b)
represent that coefficients of a are multiplied, added and subtracted with integer
b, respectively. Let b.e, d.e and b.c represent round to nearest integer, rounding up
and rounding down operations, respectively. When these operations are performed
on a polynomial, they are applied to the coefficients of the polynomial. Let |.|q (or
[.]q) represent modular reduction operation by modulo q for the polynomials and
integers.

Let a← S represent that polynomial a is uniformly sampled from the set S. Simi-
larly, if S is a distribution, a← S represents that polynomial a is sampled from the
distribution S. Let Dµ,σ represents the discrete Gaussian distribution where µ and
σ represents the center of the distribution and standard deviation, respectively.

2.2 Lattice-based Cryptography

Lattice-based cryptography is the term used to represent any cryptographic con-
struction that is based on the hardness of the lattice problems. Given a
set of n linearly-independent m-element vectors B = {B0,B1, . . . ,Bn−1} where
each element of B is an m-element vector of real numbers (i.e. Bi ∈ R1×m),
a lattice L(B0,B1, . . . ,Bn−1) is defined as shown in Eqn. 2.1, where vectors
{B0,B1, . . . ,Bn−1} are called basis of the lattice (Micciancio, 2011).

(2.1) L(B0,B1, . . . ,Bn−1) =
{ n∑
i=0

ci ·Bi|ci ∈ Z
}

In other words, every lattice point can be considered as a linear combination of basis
vectors {B0,B1, . . . ,Bn−1} with integer coefficients ci ∈ Z. As an example, Fig. 2.1

7

Figure 2.1 Visualization of a Two-Dimensional Lattice Space

depicts a two-dimensional lattice space with two lattice points a and b, where green,
blue and red lines represent bases (B0, B1), point a and point b, respectively.

Although lattices are around for a very long time, they made their appearance
in the field of cryptography with Ajtai’s work (Ajtai, 1996). The Shortest Vector
Problem (SVP) and the Closest Vector Problem (CVP) are two main standard hard
lattice problems with worst-case complexity. The former problem tries to find the
shortest non-zero vector in a lattice space while the CVP tries to find the vector
which is closest to a given vector r in a lattice space. The Shortest Integer Solution
(SIS) (Ajtai, 1996) and the Learning With Errors (LWE) (Regev, 2009) are two
most popular lattice problems in lattice-based cryptography. These problems and
their ring variants (R-SIS and R-LWE) enable many lattice-based schemes utilized
in HE or PQC applications.

2.3 Post-quantum Cryptography

The security of a digital system relies on the cryptographic protocol it uses. Public
key cryptography such as RSA (Rivest et al., 1978) is one of the most widely-used
cryptographic protocols in today’s digital systems for establishing secure commu-
nication. Its security relies on the factorization of a very large composite integer
which is a hard task for modern computing devices. Although today’s computers
and systems are no near breaking the RSA, quantum computers are conjectured to
solve these hard mathematical problems, on which RSA relies, in polynomial time,
thanks to Shor’s quantum algorithm (Shor, 1994), (Proos & Zalka, 2003).

The current state of quantum computers is not mature enough for threatening the

8

Table 2.1 KEM and DS Schemes in the Final Round of NIST’s Post-quantum Stan-
dardization

Op. Const. Schemes

KEM L-B CRYSTALS-Kyber (Bos et al., 2018), Saber (D’Anvers et al., 2018), NTRU (Chen et al., 2019)
Others Classic McEliece (Bernstein et al., 2017)

KEM∗ L-B NTRU Prime (Bernstein et al., 2017), FrodoKEM (Alkim et al., 2018)
Others BIKE (Aragon et al., 2017), SIKE (Azarderakhsh et al., 2017), HQC (Chen et al., 2016)

DS L-B CRYSTALS-Dilithium (Ducas et al., 2018), Falcon (Fouque et al., 2018)
Others Rainbow (Beullens, 2020)

DS∗ L-B –
Others SPHINCS+ (Bernstein et al., 2019), Picnic (Chase et al., 2017), GeMSS (Chen et al., 2016)

∗ Alternative schemes

solidity of the current cryptosystems; however, there are various efforts for improving
the efficiency of quantum computing. For example, a recent study showed that it
is possible to break RSA-2048 in 177 days with 13436 physical qubits (Gouzien
& Sangouard, 2021). Besides, future quantum computers can be used to break
previously encrypted data which are collected by third parties over communication
channels. This urges the immediate use and deployment of PQC in current digital
systems.

To be prepared for the time when quantum computers will become powerful and
widespread, NIST has started a PQC standardization process in 2016 (Chen et al.,
2016). The process aims to publish the post-quantum key encapsulation mechanism
(KEM) and digital signature (DS) standards by 2024. The process has started with
a total of 69 submissions and there have been three rounds of evaluation. After three
rounds, there are seven finalists (four KEMs and three DSs) and eight alternatives
(three KEMs and five DSs) candidates, which are listed in Table 2.1. As shown in
Table 2.1, lattice-based cryptography is used as the main mathematical construction
for the majority of PQC schemes. To be specific, five out of seven finalist candidates
and two out of eight alternative candidates are lattice-based cryptosystems.

2.4 Homomorphic Encryption

Encryption is used to preserve sensitive data. Although encryption enables privacy,
it comes with certain limitations such that encrypted information needs to be de-
crypted with a secret key for being used for any operation. This limitation gains
more importance for scenarios where the sensitive data needs to be outsourced for
storage or computation to third parties. HE allows operation on the data encrypted

9

Figure 2.2 A Simple Scenario Utilizing HE

using a HE scheme without needing the decryption operation. Therefore, it en-
ables retrieving useful information from homomorphically encrypted data without
revealing any privacy-sensitive information. The idea of HE was first introduced
by Rivest et al. in the late 1970s (Rivest, Adleman, Dertouzos & others, 1978).
An example scenario utilizing HE is illustrated in Fig. 2.2. A client has sensitive
data x and wants his data to be processed on a cloud. The client first encrypts
his data with homomorphic encryption function Epk(·) which needs a public key
and then sends the encrypted data to the cloud. The cloud evaluates the encrypted
data homomorphically with f(·) and sends the evaluated data back to the client.
Finally, the client uses the homomorphic decryption function Dsk(·) which needs
the secret key for decryption and obtains the evaluated data f(x) without revealing
any information about the data to the cloud.

There are two types of homomorphism, additive and multiplicative, which are de-
scribed in Eqn. 2.2 and Eqn. 2.3, respectively. The former and latter supports
homomorphic addition and multiplication, respectively.

(2.2) Dsk(Epk(a) +Epk(b)) = a+ b

(2.3) Dsk(Epk(a) ·Epk(b)) = a · b

There are mainly three types of HE definitions: (i) partially HE (PHE), (ii) some-
what HE (SWHE) and (iii) fully HE (FHE). PHE schemes can perform only one
type of homomorphic operation (either addition or multiplication) on the encrypted
data. Some of the well-known PHE schemes are El-Gamal, Paillier, and RSA (Acar
et al., 2018). For example, the RSA cryptosystem allows an unlimited number of
homomorphic multiplication operations, thus it has the property of multiplicative

10

homomorphism. SWHE schemes can perform both homomorphic addition and mul-
tiplication for a limited number of times (also referred to as depth) or a set of circuits.
Boneh et al. proposed one of the earliest SWHE scheme (Boneh, Goh & Nissim,
2005). FHE schemes allow both homomorphic addition and multiplication for an
unlimited number of times and any type of circuit. FHE was an open problem
until Craig Gentry proposed the first FHE scheme in 2009 in his Ph.D. disserta-
tion (Gentry, 2009). Gentry’s work enables FHE by introducing a computationally
complex technique called bootstrapping which is a procedure reducing the noise in
the ciphertext so more homomorphic operations can be performed without needing
a decryption operation.

Gentry’s work also motivates researchers and many HE schemes are proposed in
a very short time (DGHV (Van Dijk, Gentry, Halevi & Vaikuntanathan, 2010),
GSW (Gentry, Sahai & Waters, 2013), YASHE (Bos, Lauter, Loftus & Naehrig,
2013), BGV (Brakerski, Gentry & Vaikuntanathan, 2014)). Some of the works pro-
pose SWHE versions of FHE schemes (BFV (Fan & Vercauteren, 2012)) for avoiding
complex bootstrapping operation by utilizing a pre-defined circuit depth. Currently,
BFV (Fan & Vercauteren, 2012), BGV (Brakerski et al., 2014) and CKKS (Cheon,
Kim, Kim & Song, 2017) are leading and most promising HE schemes in the lit-
erature. There are also various efforts for providing efficient and practical imple-
mentations of various HE schemes (SEAL (Microsoft, 2020), PALISADE (Polyakov,
Rohloff & Ryan, 2017), HElib (Halevi & Shoup, 2014), NFLlib (Aguilar-Melchor,
Barrier, Guelton, Guinet, Killijian & Lepoint, 2016)).

2.4.1 Brakerski/Fan-Vercauteren Homomorphic Encryption Scheme

BFV (or FV as referred to in a part of the literature) scheme extends and adopts
Brakerski’s LWE-based fully homomorphic scheme (Brakerski, 2012) to R-LWE set-
ting (Fan & Vercauteren, 2012). It requires multi-precision polynomial arithmetic
and sampling of random polynomials. Let the plaintext and ciphertext spaces be
Rt,n and Rq,n, respectively, for some integer t > 1, where neither q nor t has to
be prime. The operations of the BFV scheme are shown below where ∆ = bq/tc,
χ represents a discrete Gaussian distribution with proper parameters based on the
security level of the scheme, T represents decomposition base used in relinarization,
and ` represents the number of relinearization keys.

• BFV.KeyGen(): s ←R2,n, a ←Rq,n and e← χ,

11

sk = s, pk = (p0,p1) = ([−(a×s + e)]q,a).

• BFV.RelinKeyGen(sk,T,`): sk = s ∈R2,n, ai ←Rq,n, ei← χ for i= 1, . . . , `,

rlk = ([−(ai×s + ei)]q,ai) for i= 1, . . . , `.

• BFV.Enc(pk,m): m ∈Rt,n, pk = (p0,p1) ∈R1×2
q,n , u ←R2,n and e1,e2← χ,

ct = (c0,c1) = ([m ·∆ + p0×u + e1]q, [p1×u + e2]q).

• BFV.Dec(sk,ct): ct = (c0,c1) ∈R1×2
q,n and sk = s ∈R2,n,

m = [b tq [c0 + c1×s]qe]t.

• BFV.Add(ct0,ct1): ct0 = (c00,c01) ∈R1×2
q,n and ct1 = (c10,c11) ∈R1×2

q,n ,

ct = ([c00 + c10]q, [c01 + c11]q).

• BFV.Mul(ct0,ct1): ct0 = (c00,c01) ∈R1×2
q,n and ct1 = (c10,c11) ∈R1×2

q,n ,

ct = ([b t·(c00×c10)
q e]q, [b t·(c00×c11+c01×c10)

q e]q, [b t·(c01×c11)
q e]q).

• BFV.Relin(ct,rlk): ct = (c0,c1,c2) ∈R1×3
q,n and rlk ∈R2×`

q,n ,

rewrite c2 as ∑`−1
i=0 c̃2 ·T i where c̃2 ∈RT,n,

ct = ([c0 +∑`−1
i=0 rlk[i][0]× c̃2]q, [c1 +∑`−1

i=0 rlk[i][1]× c̃2]q).

Textbook BFV scheme requires high precision integer arithmetic and computation-
ally expensive divide-and-round operation which creates a bottleneck for efficient
implementations when the coefficient modulus q is very large. Therefore, there
have been various efforts in the literature (Bajard et al., 2017), (Halevi, Polyakov &
Shoup, 2019), (Bajard, Eynard, Martins, Sousa & Zucca, 2019), (Takeshita, Schoen-
bauer, Karl & Jung, 2020) for improving the practicality of the BFV scheme by
adopting RNS into the BFV scheme.

2.4.2 Microsoft SEAL Homomorphic Encryption Library

Microsoft SEAL (Microsoft, 2020) is a highly optimized HE library developed by
the Cryptography Research Group at Microsoft Research. It enables fast and effi-
cient homomorphic applications ranging from private information retrieval (Angel,
Chen, Laine & Setty, 2018) to secure neural network inference (Brutzkus, Gilad-
Bachrach & Elisha, 2019). Recently, the SEAL library is utilized for implementing

12

a secure password monitoring system in Microsoft’s web browser Edge (Kannepalli,
Laine & Moreno, 2021). The SEAL library provides support for two widely-known
HE schemes, the BFV and the CKKS, for implementing homomorphic operations.
BFV works with integers while CKKS enables homomorphic arithmetic using real
numbers.

SEAL library uses the full RNS variant of the BFV scheme proposed by Bajard et
al. (Bajard et al., 2017) and implements homomorphic operations slightly differ-
ent than the textbook BFV. In RNS implementation, high precision polynomial
arithmetic can be divided into smaller low precision integer arithmetic and can be
performed in parallel. Also, division and rounding operations are eliminated. As
Microsoft SEAL library is in an ongoing development phase, we used different ver-
sions of the library throughout the dissertation (namely v3.2.0 (Microsoft, 2019)
and v3.5.1 (Microsoft, 2020)).

2.4.3 Residue Number System

The multiplicative depth of a HE system is determined by its parameters, n and
q. For example, in (Sinha Roy, Turan, Jarvinen, Vercauteren & Verbauwhede,
2019), the authors implement a private information retrieval application with a
multiplicative depth of four using parameters n= 4096 and dlog2(q)e= 180. A larger
multiplicative depth will result in larger parameters (n and q) and more complex
arithmetic. To avoid costly multi-precision integer arithmetic when the coefficient
modulus q is very large, RNS is frequently employed in the efficient implementations
of HE schemes. It enables algorithmic parallelisms and improves the performance of
the implementation (Ozerk, Elgezen, Mert, Öztürk & Savas, 2021). RNS approach
employs a set of coprime moduli qi such that

q =
r−1∏
i=0

qi,

where r is the number of small moduli used. The RNS maps a large arithmetic
operation in Zq to many smaller operations in Zqi , which can be performed in par-
allel. For example, an arithmetic operation with 93-bit modulus q can be performed
using three 31-bit smaller moduli q0, q1 and q2, In RNS arithmetic, a large integer
(i.e. a) in modulus q needs to be converted into smaller integers in moduli qi (i.e.
ai = a mod qi). Similarly, the integers in moduli qi are used to construct the integer
in modulus q using the Chinese Remainder Theorem (CRT) (Boneh & others, 1999)

13

shown in Eqn. 2.4, where Mi = (q/qi) and mi =M−1
i (mod qi) for i= 0, . . . , r−1.

(2.4) a=
r−1∑
i=0

ai ·Mi ·mi (mod q)

2.5 Polynomial Multiplication

Lattice-based cryptography operates with polynomial rings and polynomial multi-
plication is one of the core operations. Polynomial multiplication is a well-known
bottleneck for creating efficient lattice-based cryptosystems. Efficient implementa-
tion of polynomial multiplication has been widely studied and there are different
arithmetic tools utilized for a long time such as schoolbook, Toom-Cook (Toom,
1963) or Karatsuba (Karatsuba & Ofman, 1962). NTT-based polynomial multi-
plication has emerged as one of the most powerful tools for implementing efficient
polynomial multiplication operations in lattice-based cryptosystems (Göttert, Feller,
Schneider, Buchmann & Huss, 2012). In the following subsections, we will explain
NTT and NTT-based polynomial multiplication.

2.5.1 Number Theoretic Transform

The NTT reduces the O(n2) complexity of the schoolbook polynomial multiplication
to the quasi-linear complexity of O(n · logn). NTT is thus a major building block
of most lattice-based cryptography implementations. NTT is defined as Discrete
Fourier Transform (DFT) over the ring Zq. An n-point (pt) NTT operation takes
an n-element vector a as input and generates another n-element vector a using the
operation shown in Eqn. 2.5.

(2.5) āi =
n−1∑
j=0

aj ·ωij (mod q) for i= 0,1, . . . ,n−1.

The NTT calculations use the constant, ω ∈ Zq, called n-th root of unity, which is
also defined as primitive root or twiddle factor. The twiddle factor should satisfy
the conditions ωn ≡ 1 (mod q) and ωi 6= 1 (mod q) ∀i < n, where q ≡ 1 (mod n),
for ensuring the existence of NTT operation. The INTT operation uses a similar

14

+

-x

w

a

b

a+ b ·w (mod q)

a− b ·w (mod q)

(a) CT Butterfly

+

- x

w

a

b

a+ b mod q

(a− b) ·w mod q

(b) GS Butterfly

Figure 2.3 Butterfly Structures

formulation as the NTT operation as shown in Eqn. 2.6 except that ω−1 (mod q),
which is the modular inverse of ω in Zq, is used instead of ω and the resulting
coefficients of the INTT operation are multiplied with n−1 (mod q) in Zq.

(2.6) ai = 1
n

n−1∑
j=0

āj ·ω−ij (mod q) for i= 0,1, . . . ,n−1.

Applying NTT and INTT operations as defined in Eqn. 2.5 and Eqn. 2.6 leads to
inefficient implementations. The impact of NTT for lattice-based cryptosystems can
be similar to that of the Fourier Transform (FT) for signal processing. There is a
family of algorithms, called Fast Fourier Transform, for efficiently implementing FT
and DFT operations. Therefore, any efficient algorithm for implementing FT and
DFT operations can be adapted to perform an NTT operation (Ozerk et al., 2021).
The most of the efficient FFT algorithms are constructed around two very well-
known approaches: radix-2 iterative decimation-in-time (DIT) and decimation-in-
frequency (DIF) FFTs, which use Cooley-Tukey (CT) and Gentleman-Sande (GS)
butterfly structures, respectively (Chu & George, 1999). CT butterfly structure
takes three inputs a, b and w, then it produces two outputs a− b ·w (mod q) and
a+ b ·w (mod q) which require one modular addition, one modular subtraction and
one modular multiplication. Similarly, GS butterfly takes three inputs and produces
a+b (mod q) and (a−b) ·w (mod q). CT and GS butterfly operations are visualized
in Fig. 2.3 (a) and Fig. 2.3 (b), respectively.

In-place FFT operations may changes the order of input vector coefficients. For
example, DIF FFT operation can transform an input vector with naturally or-
dered coefficients [a0,a1, . . . ,an−1] into an output vector with bit-reversed coefficients
[abr(0,log2n),abr(1,log2n), . . . ,abr(n−1,log2n)] where br(a,`) represents bit-reversal oper-
ation of an `-bit integer a. It is possible to derive different versions of DIT and
DIF FFT algorithms as explained in (Chu & George, 1999): (i) naturally ordered
input and bit-reversed output (NR), (ii) naturally ordered input and naturally or-
dered output (NN) and (iii) bit-reversed input and naturally ordered output (RN)
(namely, DITRN , DITNN , DITNR, DIFRN , DIFNN and DIFNR). Aforementioned

15

Algorithm 1 Iterative Version of In-Place DIF NTT Algorithm (Chu & George,
1999)
Input: a(x) ∈Rq,n in natural order
Input: primitive n-th root of unity ω ∈ Zq, n= 2l
Output: a(x) ∈Rq,n in bit-reversed order
1: for i from 1 by 1 to l do
2: m= 2l−i
3: for j from 0 by 1 to 2i−1−1 do
4: for k from 0 by 1 to m−1 do
5: U = a[2 · j ·m+k]
6: V = a[2 · j ·m+k+m]
7: N0 = (U +V) (mod q)
8: N1 = (U −V) ·ω2i−1k · (mod q)
9: a[2 · j ·m+k] =N0
10: a[2 · j ·m+k+m] =N1
11: end for
12: end for
13: end for
14: return a

FFT algorithms can also be utilized to perform inverse FFT (IFFT) algorithms.
DIFNR FFT and DIFRN IFFT algorithms are shown in Algorithm 1 and 2, respec-
tively. For the rest of the dissertation, we will use NTT instead of FFT.

Besides, there are also various efficient NTT algorithms in the literature using the
same core operations (CT or GS butterfly); but adapted for different platforms and
applications. For example, GPU implementations use Four-step NTT algorithm (Dai
& Sunar, 2015) for memory advantages while ASIC implementations favour Pease
FFT (Pease, 1968) approach which enables an NTT algorithm with constant data-
flow. This approach leads to the utilization of single-port SRAM memories due to
its regular memory access pattern (Banerjee, Ukyab & Chandrakasan, 2019). Moti-
vated readers can further look into the works (Feng, Li & Xu, 2019), (Lyubashevsky
& Seiler, 2019), (Chung, Hwang, Kannwischer, Seiler, Shih & Yang, 2021).

2.5.2 NTT-based Polynomial Multiplication

The schoolbook polynomial multiplication operation computes the multiplication of
polynomials a(x) and b(x) as shown in Eqn. 2.7. When the polynomial multiplica-
tion operation is performed in Rq, the resulting polynomial d(x) should be reduced

16

Algorithm 2 Iterative Version of In-Place DIF INTT Algorithm (Chu & George,
1999)
Input: a(x) ∈Rq,n in bit-reversed order
Input: modular inverse of primitive n-th root of unity ω−1 ∈ Zq, n= 2l
Output: a(x) ∈Rq,n in natural order
1: m,v = 1,n
2: while v > 1 do
3: for i from 0 by 1 to (m−1) do
4: k = 0
5: for j from i by 2 ·m to (n−2) do
6: U = a[j]
7: V = a[j+m]
8: N0 = (U +V) (mod q)
9: N1 = (U −V) ·ω−br(k,l−1) (mod q)
10: a[j] =N0
11: a[j+m] =N1
12: k = k+ 1
13: end for
14: end for
15: m,v = 2 ·m,v/2
16: end while
17: for i from 0 by 1 to (n−1) do
18: a[i]← a[i] ·n−1 (mod q)
19: end for
20: return a

by φ(x) after the multiplication operation as shown in Eqn. 2.8.

(2.7) d(x) = a(x)×b(x) =
n−1∑
i=0

n−1∑
j=i

ai · bj ·xi+j

(2.8) c(x) = d(x) mod φ(x)

According to convolution theory (Winkler, 2012), NTT and INTT operations can be
used to convert schoolbook polynomial multiplication operation into much simpler
coefficient-wise multiplication operation of two vectors as shown in Eqn. 2.9. The
NTT2n, INTT2n and zp2n represent 2n-pt NTT, 2n-pt INTT and zero-padding of an n-
element vector into 2n-element, respectively. This tweak reduces the number of mod-
ular multiplication from n2 to 2n · log2(2n) + 2n. However, this approach requires
n element input polynomials to be zero-padded to 2n elements, 2n-pt NTT/INTT
operations and a separate polynomial reduction by φ(x) after the INTT operation.

(2.9) c(x) = INTT2n(NTT2n(zp2n(a(x)))�NTT2n(zp2n(b(x)))) mod φ(x)

17

When the irreducible polynomial φ(x) has the form of xn− 1, a technique called
positive wrapped convolution (PWC) can be utilized to further reduce the compu-
tational complexity of polynomial multiplication over polynomial rings as shown in
Eqn. 2.10.

(2.10) â(x) = [a0,a1, . . . ,an−1]� [ψ0,ψ1, . . . ,ψ(n−1)]

When the irreducible polynomial φ(x) has the form of xn + 1 (corresponding to
the polynomial ring Rq,n) and q ≡ 1 (mod 2n), a technique called negative wrapped
convolution (NWC) can be utilized as shown in Eqns. 2.11-2.14.

(2.11) â(x) = [a0,a1, . . . ,an−1]� [ψ0,ψ1, . . . ,ψ(n−1)]

(2.12) b̂(x) = [b0, b1, . . . , bn−1]� [ψ0,ψ1, . . . ,ψ(n−1)]

(2.13) ĉ(x) = INTTn(NTTn(â(x))�NTTn(b̂(x)))

(2.14) c(x) = [ĉ0, ĉ1, . . . , ĉn−1]� [ψ0,ψ−1, . . . ,ψ−(n−1)]

This technique eliminates the necessity of doubling input polynomials and the
polynomial reduction after INTT operation. However, it requires additional pre-
processing and post-processing operations which are referred to as the multiplica-
tion of the coefficients of input and output polynomials with [ψ0,ψ1, . . . ,ψ(n−1)] and
[ψ0,ψ−1, . . . ,ψ−(n−1)], respectively. The constant ψ is called 2n-th root of unity
and it should satisfy the conditions ψ2n ≡ 1 (mod q) and ψi 6= 1 (mod q) ∀i < 2n,
where q ≡ 1 (mod 2n). The polynomial multiplication over Rq,n with NWC re-
quires n · log2(n) + 3n modular multiplication operations. It should be noted that
the multiplication with n−1 (mod q) after INTT can be merged with post-processing
operation (Pöppelmann, Oder & Güneysu, 2015).

Roy et al. (Sinha Roy, Vercauteren, Mentens, Chen & Verbauwhede, 2014) further
improved the polynomial multiplication with NWC by merging pre-processing and
NTT operations, which is achieved by employing DIT NTT operation utilizing CT
butterfly structure. However, this technique does not work for INTT operation.
This approach requires n · log2(n) + 2n modular multiplication operations and we

18

refer to this NTT technique as merged NTT (MNTT) for the rest of the disserta-
tion. Similarly, Pöppelmann et al. (Pöppelmann et al., 2015) merged INTT and
post-processing operations for the polynomial multiplication with NWC by employ-
ing DIF NTT operation utilizing the GS butterfly. However, this technique does not
work for NTT operation. Although this approach eliminates post-processing oper-
ation, it still requires n · log2(n) + 3n modular multiplication operations due to the
final multiplication with n−1 (mod q) after INTT. We refer to this INTT technique
as merged INTT (MINTT) for the rest of the dissertation.

Employing both techniques and using two different butterfly structures, pre-
processing and post-processing operations during the polynomial multiplication op-
eration can be eliminated as shown in Eqn. 2.15, where MNTTn and MINTTn rep-
resent n-pt MNTT and MINTT operations, respectively. This approach requires
n · log2(n) + 2n modular multiplication operations.

(2.15) c = MINTTn(MNTTn(a(x))�MNTTn(b(x)))

MNTT and MINTT techniques eliminate the post-processing and pre-processing
operations. However, the multiplication with n−1 (mod q) after INTT operation,
which requires n modular multiplication, cannot be eliminated. Zhang et al. (Zhang,
Yang, Chen, Yin, Wei & Liu, 2020) proposed a technique to eliminate the multi-
plication with n−1 (mod q) while employing MNTT and MINTT operations. This
approach multiplies the resulting coefficients with 2−1 (mod q) after each INTT
stage, which can be performed using only addition and shift operations, instead of
performing the multiplication with n−1 (mod q) after INTT.

19

3. FAST AND SCALABLE NTT-BASED POLYNOMIAL

MULTIPLICATION ARCHITECTURES

In this chapter, we first present two different highly-parallelized and scalable
NTT-based multiplier architectures realizing two different NTT algorithms, namely
DIFNR/DIFRN NTT/INTT and Four-step NTT/INTT Algorithms, respectively,
for the parameter set n= 1024 and dlog2(q)e= 32. Then, we present two hardware
architectures optimized for accelerating the encryption and decryption operations
of the BFV HE scheme, which are used in the client-side of the HE applications.
The hardware architectures employ the aforementioned high-performance polyno-
mial multipliers. For proof of concept, we utilize our architectures in a CPU-FPGA
accelerator framework, in which encryption and decryption operations are offloaded
to an FPGA device while the rest of operations in the BFV scheme are executed in
software running on an off-the-shelf desktop computer. Specifically, our accelerator
framework is optimized to accelerate the SEAL library. The hardware part of the
proposed framework targets the Xilinx Virtex-7 FPGA device, which communicates
with its software part via a PCIe connection. For proof of concept, we implemented
our designs targeting parameters n = 1024, dlog2(q)e = 32 and t = 256 with 128-
bit security level. The proposed framework achieves almost 12× and 7× latency
speedups including input/output (I/O) operations for the offloaded encryption and
decryption operations, respectively, compared to their pure software implementa-
tions in the SEAL library. 1

3.1 Introduction

Although theoretically sound, FHE schemes are not quite ready to be deployed
for practical applications due to the performance limitations of computer architec-

1This chapter presents the works in (Mert et al., 2019) and (Mert et al., 2020).

20

tures. Applications based on current FHE schemes, which require efficient imple-
mentations of computationally expensive mathematical operations, can be orders of
magnitude slower than conventional software applications that operate on plaintext
data. Most FHE schemes involve a combination of intrinsically serial and highly
parallelizable algorithms that will ultimately perform best on heterogeneous archi-
tectures (Brodtkorb et al., 2010), which refers to the use of different processing cores
to maximize performance. In this work, we propose such a heterogeneous accelera-
tor framework featuring an FPGA core and a CPU to improve the performance of
FHE schemes on a system level.

There is still ongoing research and race to improve the performance of arithmetic
building blocks of the working FHE schemes. With similar motivation, in this chap-
ter, we aim to obtain a framework to accelerate the BFV scheme. We focus on
improving the FPGA performance of the most time-consuming arithmetic building
block of many FHE schemes in the literature: large degree polynomial multiplica-
tion. The framework running on our heterogeneous architecture offloads not only
polynomial multiplications but also entire encryption and decryption operations onto
the FPGA core in order to minimize the communication cost between the FPGA
core and the CPU. Our accelerator framework, while offloading highly parallelizable
encryption and decryption operations entirely on the FPGA core, leaves the rest of
the operations of SEAL intact in software. By deploying our framework, any cloud
architecture utilizing SEAL for FHE applications can improve its performance by
utilizing an FPGA device next to the CPU, without having to implement the entire
FHE library in the FPGA.

The rest of the chapter is organized as follows. Section 3.2 presents two different
NTT and NTT-based polynomial multiplier architectures. Section 3.3 presents two
different hardware architectures that perform encryption and decryption operations
of the BFV scheme. Section 3.4 presents the proposed framework. Finally, Sec-
tion 3.5 presents the implementation results and the comparison with the literature,
and Section 3.6 concludes the chapter.

3.2 NTT Architectures

Here, we present our NTT architectures implementing the radix-2
DIFNR/DIFRN (Chu & George, 1999) and the four-step Cooley-Tukey NTT/INTT

21

algorithms (Cooley & Tukey, 1965), (Dai & Sunar, 2015). They are shortly referred
to as the iterative NTT hardware and the four-step NTT hardware, respectively. We
first introduce common modular arithmetic units used by both architectures. Then,
we present the remaining arithmetic units and overall design for the architectures.

For NTT-based polynomial multiplication operation, we do not employ the merged
NTT/INTT approach since we utilize only a single type of butterfly structure, GS.
Instead, we use NWC technique with pre- and post-processing operations as shown in
Eqn. 2.11- 2.14. In our implementation, it should be noted that the multiplication
operation with n−1 at the end of the INTT operation is merged with the post-
processing operation.

3.2.1 Modular Adder and Modular Subtractor Units

NTT arithmetic involves a large amount of modular addition and subtraction oper-
ations. There are various approaches for efficient implementation of modular arith-
metic operations such as employing lazy reduction technique discussed in (Yanik,
Savas & Koc, 2002). This approach, for a k-bit modulus q, operates on the numbers
in the range [0,2k). However, in this work, our modular arithmetic units compute
numbers in the range [0, q). Constant-time modular addition and modular subtrac-
tion operations are shown in Algorithm 3 and Algorithm 4, respectively.

Algorithm 3 Modular Addition Algo-
rithm
Input: A,B ∈ Zq
Input: q (k-bit modulus)
Output: C ≡ A+B (mod q) ∈ Zq
1: T1 = A+B

2: T2 = T1− q
3: case(T2[k])
4: 0: C = T2
5: 1: C = T1
6: endcase

Algorithm 4 Modular Subtraction
Algorithm
Input: A,B ∈ Zq
Input: q (k-bit modulus)
Output: C ≡ A−B (mod q) ∈ Zq
1: T1 = A−B
2: T2 = T1 + q

3: case(T1[k])
4: 0: C = T1
5: 1: C = T2
6: endcase

22

3.2.2 Modular Multiplier Unit

For an optimized polynomial multiplier architecture, a fast and efficient modular
multiplier needs to be designed and utilized. A modular multiplication operation
consists of two parts: (i) integer multiplication and (ii) modular reduction. The
former is straightforward and easy to implement; on the other hand, the latter has
high computational complexity. There are mainly two approaches in the litera-
ture for efficient modular reduction implementation: (i) Barrett reduction (Barrett,
1986) and (ii) Montgomery reduction (Montgomery, 1985). Besides, there are also
modular reduction approaches for pre-determined special moduli leveraging special
forms of modulus (Dai & Sunar, 2015). In this work, we propose and design a novel
modular multiplier utilizing word-level Montgomery reduction technique with a lazy
reduction approach as explained in (Yanik et al., 2002). Our modular multiplier ar-
chitecture works for any modulus with a bit length between 22 and 32.

3.2.2.1 Integer Multiplier Unit

We design a 32-bit multiplier with four DSP blocks and an adder tree. Since we are
targeting FPGA architecture, we used 16-bit core multipliers, because of the DSP
size limitations of Xilinx Series-6 and Series-7 FPGAs. On Spartan-6 Architectures,
DSP slices include 18-bit signed multipliers and on Virtex-7 Architectures, DSP
slices include 18-bit × 25-bit signed multipliers. To follow literature, we chose to
implement our multiplier for both architectures, therefore we picked a core multiplier
length of 16 bits. Each input of the multiplier is divided into 16-bit pieces and one
DSP block is used for each 16-bit×16-bit multiplication operation. The resulting
intermediate values are then added up using an adder tree. Our integer multiplier
is fully pipelined, therefore the 32-bit multiplier has pipeline registers between DSP
blocks and adder tree. These pipeline registers do not affect the throughput of the
overall architecture in terms of clock cycles, improving the overall performance in
terms of execution time significantly. The proposed integer multiplier architecture
is depicted in Fig. 3.1, where each dot represents one bit.

Adder tree sums up two 32-bit and one 48-bit integers as shown in step#3 and
step#4 of Fig. 3.1. In our design, we used a carry-save adder (shown with a red
box in Fig. 3.1) for reducing three 32-bit integers to two 32-bit integers. Finally,
we used one 48-bit adder (shown with a green box in Fig. 3.1) to calculate the final
result. The proposed integer multiplier has 2 clock cycles latency, it can produce

23

Figure 3.1 32-bit Integer Multiplier Unit

one multiplication result per clock cycle after filling the pipeline and it works for
input operands with bit length between 1 and 16.

3.2.2.2 Word-level Montgomery Modular Reduction Unit

Regular Montgomery reduction algorithm is shown in Algorithm 5. It requires two
multiplications, one addition and a final correction operation. Montgomery reduc-
tion algorithm takes A ·B as input and calculates the output A ·B ·R−1 (mod q),
where R = 2k is defined as Montgomery reduction residual. The residual has to
be corrected using an extra multiplication with R to obtain A ·B (mod q). It also
utilizes µ, the Montgomery reduction variable.

Montgomery reduction algorithm can also be performed by dividing the reduction
operation into smaller parts, namely pre-defined word-sized pieces, instead of per-
forming it all at once. We modified the regular Montgomery reduction algorithm in
that way to propose a fast and efficient modular reduction algorithm. Besides, we
utilized the property of q ≡ 1 (mod 2n), which should be satisfied by any NTT-
friendly prime using negative wrapped convolution technique. Any NTT-friendly
prime q can be written as shown in Eqn. 3.1. If we select the word size, w, for the
reduction operation as log2(2n), then the modulus q can be written as shown in
Eqn. 3.2.

(3.1) q = qH ·2log2(2n) + 1

24

Algorithm 5 Montgomery Reduction Algorithm
Input: D = A ·B (a 2k-bit positive integer)
Input: q (modulus, a k-bit positive integer)
Input: µ=−q−1 (mod R) where R = 2k (mod q)
Output: C =D ·R−1 (mod q)
1: T1 =D ·µ (mod R)
2: T2 =D+T1 · q
3: T3 = T2/R . T3 = T2� k
4: T4 = T3− q
5: if (T4< 0) then
6: C = T3
7: else
8: C = T4
9: end if

(3.2) q = qH ·2w + 1

Since we use word-level operations for Montgomery reduction, R= 2w and µ=−q−1

(mod R) should be redefined as R′ = 2w and µ′ = −q−1 (mod R′), respectively,
for word-level operations. If we substitute q = qH · 2w + 1 into µ′, the value of µ′

will become -1 and the multiplication operation with µ′ will be simplified to 2’s
complement operation as shown in Eqn. 3.3.

(3.3) µ′ =−q−1 (mod 2w) =−(qH ·2w + 1)−1 (mod 2w) =−1 (mod 2w)

If we rewrite T3 in Algorithm 5 using R′ and µ′ for word-level operations, it can be
simplified as shown in Eqn. 3.4-3.6. As shown in Eqn. 3.6, there is an extra one-bit
carry produced by the term D

2w + −D(mod 2w)
2w . The final form of T3′ with term carry

is shown in Eqn. 3.7.

(3.4) T3′ = T2
R′

= D+ (D ·µ′(mod 2w))) · q
2w

(3.5) T3′ = D+ (−D(mod 2w)) · (qH ·2w + 1)
2w

(3.6) T3′ = D

2w + −D(mod 2w)
2w + (−D(mod 2w)) · qH

25

Algorithm 6 Word-Level Montgomery Reduction Algorithm for NTT-friendly
Primes
Input: D = A ·B (a k-bit positive integer, w · (L−1)≤ k < w ·L)
Input: w = log2(2n) (word size)
Input: L= dk/we (repeat count)
Input: q (a k-bit positive integer, q = qH ·2w + 1)
Input: µ=−q−1 (mod R) where R = 2w·L (mod q)
Output: C =D ·R−1 (mod q)
1: T3 =D
2: for (i= 0; i < L; i+ +) do
3: T1H = T3� w
4: T1L = T3 (mod 2w)
5: T2 =−T1L (mod 2w)
6: carry = T2[w−1]∨T1L[w−1]
7: T3 = T1H + (qH ·T2) + carry
8: end for
9: T4 = T3− q
10: if (T4< 0) then
11: C = T3
12: else
13: C = T4
14: end if

(3.7) T3′ = (D� w) + (−D(mod 2w)) · qH + carry

After the first word-level operation defined in Eqn. 3.7, D is updated as T3′ and the
word-level operation is repeated as necessary. The word-level operation defined in
Eqn. 3.7 should be repeated for sufficient number of times to (at least d kwe times)
reduce 2k-bit input D to k-bit. The proposed word-level Montgomery reduction
algorithm for NTT-friendly primes is shown in Algorithm 6.

For our design working with n= 1024, we select a word size w = log2(2 ·1024) = 11.
Since we work with a 32-bit q, the word-level reduction operation should be repeated
d32

11e= 3 times. The proposed word-level Montgomery reduction algorithm for NTT-
friendly primes for n = 1024 and log2(2n) is shown in Algorithm 7. Our algorithm
can easily be modified to scale for other n and q values. For example, for n= 2048,
w = 12 and for a modulus of length (4×12)≤ k < (5×12), 5 iterations are required.
For n= 4096, w= 13 and for a modulus of length (4×13)≤ k < (5×13), 5 iterations
are required.

The proposed word-level Montgomery modular reduction algorithm divides reduc-
tion operation into a set of multiply and accumulate (MAC) operations. Namely,

26

Algorithm 7 Word-Level Montgomery Reduction Algorithm for NTT-friendly
primes with n= 1024 and w = 11
Input: D = A ·B (a k-bit positive integer, 22≤K ≤ 32)
Input: q (a k-bit positive integer, q = qH ·211 + 1)
Input: µ=−q−1 (mod R) where R = 233 (mod q)
Output: C =D ·R−1 (mod q)
1: T1 =D
2: for (i= 0; i<3; i+ +) do
3: T1H = T1� 11
4: T1L = T1 (mod 211)
5: T2 =−T1L (mod 211)
6: carry = T2[10]∨T1L[10]
7: T1 = T1H + (qH ·T2) + carry
8: end for
9: T4 = T1− q
10: if (T4< 0) then
11: C = T1
12: else
13: C = T4
14: end if

it performs X ·Y +Z+ cin operation, which can be implemented using DSP blocks
in Xilinx FPGAs. Each DSP slice has an optional output register, which can be
utilized as the pipeline register, eliminating the need to utilize FPGA fabric regis-
ters for pipelining. Hardware design for Algorithm 7 is shown in Figure 3.2. The
proposed modular reduction hardware is fully pipelined and has four clock cycle
latency. It uses three DSP blocks and can produce one result per clock cycle after
filling the pipeline.

Montgomery reduction algorithm takes A ·B as input and calculates the output
A ·B ·R−1 (mod q), where R= 2w·d k

w e is defined as Montgomery reduction residual.
The residual has to be corrected using an extra multiplication with R to obtain A ·B
(mod q). This extra multiplication can be moved to the input by multiplying one
of the inputs by R.

3.2.3 Iterative NTT Hardware

The iterative NTT hardware implements DIFNR NTT and DIFRN INTT algorithms
shown in Algorithm 1 and Algorithm 2, respectively, which utilizes GS butterfly
structure. The proposed hardware architecture utilizes 64 GS butterfly units as we
aim for a high-performance design. The NTT and INTT are realized in the same

27

Complement
2’s

Complement
2’s

Complement
2’s

C’[10:0]

R1[53:0]

C[63:11]

C[63:0]

OR

C’[10]

C[10]

X

Y

Z

XY+Z

carryin1

q[31:11]

C[10:0]

OR

q[31:11]

R1[53:11]

R1’[10:0]

Y

Z

carryin2
R1’[10]

R1[10]

X
R1[10:0]

OR

q[31:11]

R2[42:11]

R2’[10:0]

Y

Z

carryin3
R2’[10]

R2[10]

X

XY+Z

R2[10:0]

R2[42:0]

XY+Z

Montgomery Reduction

T1[32:0]

X

Y

X−Y

T1[31:0]

T4[31:0]

Res[31:0]

q[31:0]

Figure 3.2 Word-Level Montgomery Modular Reduction Unit for NTT-friendly
Primes

hardware, by just changing the precomputed twiddle (ω) factors.

3.2.3.1 GS Butterfly Unit

To realize the GS butterfly operation as shown in the steps 7-8 of Algorithm 1 and
the steps of 8-9 of Algorithm 2, we designed a GS butterfly unit, which is shown in
Fig. 3.3. The GS butterfly unit is fully pipelined and its latency is six clock cycles.
The GS butterfly unit uses one modular addition, subtraction and multiplication
units.

28

Left[31:0]

W[31:0]

32x32

MultiplierSubtractor

Modular Modular

Reduction

Even[31:0]

Odd[31:0]

q[31:0]

Adder

Modular
Right[31:0]

q[31:0]

NTT Unit

Figure 3.3 GS Butterfly Unit

Figure 3.4 Iterative NTT Hardware

3.2.3.2 Overall Design

The overall design of our hardware is shown in Figure 3.4. This hardware employs 64
GS butterfly units and 128 separate block RAMs (BRAMs) to hold the coefficients
of the input polynomial. Since each polynomial has 1024 coefficients, each BRAM
holds 8 of the coefficients. Since we are utilizing an in-place NTT algorithm, after
reading a coefficient from a BRAM, we only have 1024/128 = 8 clock cycles to write
back the computed result to its corresponding place. This requirement forced us to
design a datapath with at most 6 clock cycle latency.

This hardware also employs 64 separate BRAMs for storing precomputed parameters
(ω, ω−1, modulus q). The precomputed powers of ω and ω−1 are multiplied with
the Montgomery residual R prior to being sent to the FPGA, which eliminates extra
multiplication with R after modular reduction operation. The control logic adjusts
the most significant bit of BRAM address for alternating between NTT or INTT
operations. NTT and INTT are realized in the same hardware, by just changing
the precomputed twiddle (ω) factors. The iterative NTT hardware performs one
NTT/INTT operation in 80 clock cycles in a pipelined manner.

It should be noted that DIFNR NTT operation takes polynomial with coefficients in

29

Algorithm 8 Four-Step Cooley-Tukey NTT Algorithm (Cooley & Tukey, 1965)
Input: a(x) ∈Rq,n in natural order
Input: primitive n-th root of unity ω ∈ Zq, n= n1 ·n2
Output: a(x) ∈Rq,n in natural order
1:

b←

a0 a1 . . . an2−1
an2 an2+1 . . . a2n2−1
.

a(n1−1)n2 a(n1−1)n2+1 . . . an1n2−1

2: for (i= 0; 0< n2; i+ +) do . applying n1-pt NTT to the columns of b
3: bT [i]← NTTn1(bT [i])
4: end for
5: for (i= 0; 0< n1; i+ +) do . the multiplication of b with the powers of ω
6: for (j = 0; 0< n2; j+ +) do
7: b[i][j] = b[i][j] ·ωij (mod q)
8: end for
9: end for
10: b = bT

11: for (i= 0; 0< n1; i+ +) do . applying n2-pt NTT to the columns of b
12: bT [i]← NTTn2(bT [i])
13: end for
14: a← b . converting matrix to vector
15: return a

standard order as input and generates a polynomial with coefficients in bit-reversed
order. However, since every polynomial in the NTT domain will have the same
scrambled order, we can leave the result of the NTT operation as it is without doing
any permutation. For polynomial multiplication, two polynomials will be converted
to the NTT domain and their inner multiplication will be computed. This operation
will yield a result that is still in the same scrambled order.

3.2.4 Four-step NTT Hardware

The four-step NTT hardware architecture implements Four-step NTT algorithm
shown in Algorithm 8, which divides NTT/INTT operation into smaller-size
NTT/INTT operations. As shown in Algorithm 8, Four-step NTT algorithm treats
its input as an n1×n2 matrix and it requires n1-pt NTT, n2-pt NTT and coefficient-
wise multiplication of a matrix with the powers of ω. Therefore, we designed two
arithmetic units: an NTT unit for performing n1-pt and n2-pt NTT operations and
a coefficient-wise modular multiplication unit.

30

Modular multiplication and NTT operations require similar hardware logic, and a
reconfigurable hardware could be designed for performing both operations. However,
this would require extra control logic routing throughout the device and reduce
the performance. Besides, consecutive modular multiplication and NTT operations
would not be pipelined efficiently. Therefore, for performance reasons, we use two
separate units for modular multiplication and NTT operations. In order to make the
NTT hardware efficient and reusable, n1 and n2 shown in Algorithm 8 are chosen as
32 for n= n1 ·n2 = 1024. Therefore, we can use the same 32-pt NTT unit for both
n1-pt and n2-pt NTT operations.

3.2.4.1 32-pt NTT Unit

The 32-pt NTT unit uses Cooley-Tukey NTT algorithm (Cooley & Tukey, 1965)
for implementing NTT as proposed in (Öztürk, Doroz, Savaş & Sunar, 2017). The
algorithm takes the input, splits it into two halves and performs the half-sized NTT
operation on the halves, and finally performs a reconstruction operation to combine
the result of the two half-sized NTT operations into the result of the full-sized
NTT operation. The reconstruction operation consists of a set of additions and
subtractions in series with a set of multiplications. This is known as the divide-and-
conquer approach that can be applied recursively to smaller parts.

The 32-pt NTT unit has 16 2-pt NTT units and four reconstruction stages. A 2-
pt NTT unit takes A and B as inputs and calculates A+B (mod q) and A−B
(mod q). The NTT unit is pipelined and its latency is 28 clock cycles. The four
reconstruction stages have 8, 12, 14 and 15 modular multipliers, respectively.

3.2.4.2 Overall Design

The overall design of the four-step hardware architecture is shown in Fig. 3.5, which
consists of a 32-point NTT unit and a 32-pt coefficient-wise modular multiplier unit
with 32 modular multipliers. In addition to the arithmetic units, 32 separate BRAMs
are used for storing precomputed powers of the twiddle factor. As in the iterative
NTT hardware, the precomputed powers of ω are multiplied with the Montgomery
residual R prior to being sent to the FPGA. The hardware also uses two memory
blocks, each consisting of 32 BRAMs, for storing intermediate values during compu-

31

Figure 3.5 Four-Step NTT Hardware

tations. Each memory block can perform transpose operation as proposed in (Kalali,
Mert & Hamzaoglu, 2016) besides read/write operations. Since the Four-Step NTT
algorithm treats its input as a matrix and applies NTT to the columns of the ma-
trix, the four-step hardware uses 32 input FIFOs for retrieving the inputs in the
correct order. Thus, the four-step hardware can take 32 input coefficients per clock
as in Algorithm 8. A similar structure utilizing 32 output FIFOs is also used at
the output of the hardware. However, it is not shown for simplicity. The proposed
four-step NTT hardware finishes one NTT/INTT operation in 140 clock cycles.

3.3 BFV Encryption/Decryption Architectures

In this section, we first present the encryption and decryption operation implemen-
tations in the SEAL library and their performance on the CPU. Then, we explain
the two proposed architectures implementing encryption/decryption operations of
the BFV scheme and briefly explain our optimizations. The first architecture uti-
lizes iterative NTT hardware and it is referred to as iterative BFV hardware while
the second architecture utilizes four-step NTT hardware and it is referred to as
four-step BFV hardware. The proposed architectures target 128-bit security level,
using degree-1024 polynomials (n = 1024) with 8-bit plaintext (t = 256) and 32-bit
coefficients for ciphertext (dlog2(q)e= 32).

32

Algorithm 9 Encryption Implementation in SEAL (Microsoft, 2019)
Input: m ∈Rt,n, p0,p1 ∈Rq,n

Output: c0,c1 ∈Rq,n

1: u←R2
2: p0u,p1u = ntt_double_multiply (u,p0,p1)
3: e1,e2← χ
4: c0 = [p0u + e1 + ∆ ·m]q
5: c1 = [p1u + e2]q
6: return c0,c1
7: function ntt_double_multiply(u, p0, p1)
8: u = MNTTn(u)
9: p0u = MINTTn(p0�u)
10: p1u = MINTTn(p1�u)
11: return p0u,p1u
12: end function

3.3.1 Encryption/Decryption Implementations in SEAL Library

Encryption operation of the BFV in the SEAL (v3.2) is implemented the same way
as the encryption operation in textbook-BFV as shown in Algorithm 9. In SEAL,
public keys, p0 and p1, are stored in NTT domain and other ring elements used
in the encryption, u, e1, e2, m, are stored in polynomial domain. The ciphertext
pair, c0 and c1, are also stored in polynomial domain after encryption operation.
In SEAL, ring elements u, e1 and e2 are randomly generated for each encryption
operation and the SEAL uses hardware-based AES in counter mode for pseudo-
randomness by default. SEAL employs encoding schemes to convert plaintexts from
its integer representation to polynomial representation which is needed for the en-
cryption operation. Therefore, the plaintext input m in Algorithm 9 is encoded as
an element of Rn,t and stored in polynomial domain.

To improve its performance, the decryption operation of the BFV scheme in SEAL,
shown in Algorithm 10, is implemented slightly different from the textbook-BFV,
which requires division and rounding operations. In order to avoid these costly
operations, SEAL uses the full RNS variant of textbook-BFV for decryption oper-
ation (Bajard et al., 2017) which requires base conversion as shown in Step 4 of
Algorithm 10. This optimization is also used in our hardware realization. Decryp-
tion operation in SEAL uses ciphertexts, secret key and a redundant modulus γ ∈Z.
In SEAL, secret key, s, is stored in NTT domain. Timing breakdowns of the en-
cryption and decryption implementations in SEAL for n= 1024, dlog2(q)e= 27 and
t= 256 are shown in Table 3.1. The average time for one encryption and decryption
in SEAL running on an Intel i9-7900X CPU is 151µs and 65.7µs, respectively.

33

Algorithm 10 Decryption Implementation in SEAL (Microsoft, 2019)
Input: c0,c1,s ∈Rq,n,γ ∈ Z,γ > q s.t. gcd(γ,q) = 1
Output: m ∈Rt,n

1: c1s = ntt_multiply (c1,s)
2: ct = [(c1s + c0) · (γ · t (mod q))]q
3: for m ∈ {t,γ} do
4: s(m) = [fastbconv(ct, q,{t,γ}) · (−q−1 (mod m))]m
5: end for
6: for (i= 0; m< n; m+ +) do
7: if (s(γ)[i]> (γ/2)) then
8: m[i] = (s(γ)[i]−s(γ)[i] +γ) (mod t)
9: else
10: m[i] = (s(γ)[i]−s(γ)[i]) (mod t)
11: end if
12: end for
13: m = [m · (γ−1 (mod t))]t
14: return m
15: function ntt_multiply(c1, s)
16: c1 = MNTTn(c1)
17: c1s = MINTTn(c1�s)
18: return c1s
19: end function
20: function fastbconv(c, q,β)
21: return (∑k

i=1[[c[i].qi
q]qi ·

q
qi

]m)m∈β
22: end function

Table 3.1 Timing of Encryption and Decryption Implementations in SEAL

Operation Time (µs) Percentage (%)
Encryption

u←R2 11.2 7.4 %
ntt_double_multiply 45.6 30.1 %
e1,e2← χ 91.1 60.2 %
Others 3.1 2.3 %

Decryption
ntt_multiply 28.8 43.2 %
fastbconv 19.5 29.2 %
Others 17.4 27.6 %

3.3.2 Iterative BFV Hardware

In this work, iterative BFV hardware is constructed with slight modifications to the
iterative NTT hardware in a similar way as explained in Section 3.2.3. Since the
hardware architectures required to realize NTT and coefficient-wise modular mul-
tiplication operations are similar, we decide to utilize the same NTT hardware to

34

perform both operations. The overall design of the iterative BFV hardware architec-
ture is shown in Fig. 3.4. There is also an adder unit performing modular additions
and memory for storing intermediate operands. The iterative BFV hardware uses
additional 64 modular multipliers and comparators for implementing modular mul-
tiplication and comparison operations in Zγ shown in the step 4 and step 7 of the
Algorithm 10, respectively. It also utilizes additional hardware blocks for modular
addition and modular multiplication in Zt used for decryption as shown in Algo-
rithm 10. These additional hardware blocks are not shown in Fig. 3.4. In addition
to 64 BRAMs for storing twiddle factors, the iterative BFV hardware employs extra
BRAMs for storing public key (p0, p1), secret key (s) and the powers of precomputed
ψ and ψ−1 as shown in Fig. 3.4.

The iterative hardware performs one NTT and 64 coefficient-wise modular multi-
plication operations in 80 clock cycles and 8 clock cycles, respectively. Therefore,
one polynomial multiplication operation is performed in 192 clock cycles. Also, en-
cryption and decryption operations are completed in 280 clock cycles and 248 clock
cycles, respectively.

3.3.3 Four-step BFV Hardware

Encryption and decryption implementations in SEAL use three different arithmetic
operations; namely NTT-based polynomial multiplication, coefficient-wise modular
multiplication and addition. Therefore, we need three arithmetic units: an NTT unit
for predefined ring degree (n1 = n2 = 32), a coefficient-wise modular multiplication
unit and an adder unit in our architecture.

The proposed four-step NTT hardware is adapted with slight modifications for per-
forming the encryption and decryption operations. The overall design of the four-
step BFV hardware architecture is shown in Fig. 3.5, which consists of a 32-point
NTT unit, a 32-point coefficient-wise modular multiplier and modular addition units.
In addition to the arithmetic units, 32 separate BRAMs are used for storing pre-
computed, e1 and e2 (see Algorithm 9).

The four-step BFV hardware employs 32 separate BRAMs within the multiplier
unit for storing precomputed parameters, p0, p1, s and the powers of ω, ψ, ψ−1 as
shown in Fig. 3.6. Each precomputed parameter has n = 1024 elements. The first
32 elements of each parameter are stored in the first BRAM. Similarly, the second
32 elements of each parameter are stored in the second BRAM and so on as shown

35

Figure 3.6 Multiplier Unit of Four-Step BFV Hardware

in Fig. 3.6. These parameters are stored in the same order as the order the four-step
BFV hardware takes its inputs, which makes address generation easier. The outputs
of 32 BRAMs are connected to the inputs of 32 modular multipliers in the multiplier
unit. When a polynomial needs to be multiplied with one of the precomputed values,
necessary addresses are generated to read the precomputed data from 32 BRAMs
to the inputs of modular multipliers. Since INTT is also performed in the same
unit with a different input order as explained in (Dai & Sunar, 2015), there is a
reordering unit in the multiplier unit.

The polynomial multiplications with public and secret keys are performed in a
slightly different way from its description in Section 2.5.2. Since the public key
in the encryption operation and the secret key in the decryption operation are al-
ready in the NTT domain, none of them requires NTT. Therefore, the proposed
hardware assumes one of the operands in polynomial multiplication is already in
the NTT domain, which is a valid assumption for encryption/decryption operations
for homomorphic applications, and it performs only one NTT and one INTT for
polynomial multiplications.

The hardware starts the encryption operation by multiplying input u with the pow-
ers of ψ in the multiplier unit, which takes 32 + 6 = 38 clock cycles. The multiplier
unit takes 32 coefficients as inputs per clock cycle, and produces 32 outputs per cycle
with six clock cycles latency. The resulting polynomial is sent to the NTT unit. In
parallel to the NTT1024(u) operation, m ·∆+e1 is computed using the multiplier and
the adder units. Then, the result of m ·∆ + e1 is stored in the first memory block.
It should be noted that since the proposed hardware is pipelined, the results of the
multiplier unit are directly sent to the NTT unit as soon as the first 32 outputs
are calculated. The pipeline overlaps consecutive coefficient-wise multiplication and
NTT operations, and reduces the overall latency.

The NTT unit performs 32 32-point NTT operations in 28+32 = 60 clock cycles and

36

the resulting coefficients are stored in the second memory block for the subsequent
transpose operation. After the results of the last 32-point NTT are written into the
memory block, 32 coefficients are read per cycle from the memory block, and sent to
the multiplier unit for multiplication with the twiddle factors. The multiplier unit
performs multiplication operations and the resulting coefficients are directly sent to
the NTT unit, which completes in 60 clock cycles. In total, the proposed hardware
finishes NTT1024(u) in 140 clock cycles.

Then, u is sent to the multiplier unit that performs the multiplications of u with
p0 and p1 in 64 + 6 = 70 clock cycles. The resulting polynomials, p0u and p1u,
are sent to the NTT unit for INTT operation. Since INTT requires different input
ordering, polynomials, p0u and p1u, are stored in the second memory block after
the multiplication for the input reordering. INTT of p0u and p1u are performed in
140+32 = 172 clock cycles, and the resulting polynomials, p0u and p1u, are directly
sent to the multiplier unit for multiplication with the powers of ψ−1. Finally, p0u

and p1u are directly sent to the adder unit for addition with m ·∆ + e1 and e2,
respectively. In total, the proposed hardware performs the encryption in 360 clock
cycles.

For the decryption operation, the hardware computes NTT1024(c1) in the same man-
ner as in the encryption. Then, it computes the multiplication c1s, performs
INTT(c1s) and multiplies the result with the powers of ψ−1. This polynomial mul-
tiplication operation is performed in 280 clock cycles. Since decryption operation
requires comparison in Zγ , modular addition and modular multiplication in Zt as
shown in Algorithm 10, the proposed hardware uses additional hardware blocks for
these operations. These blocks are not shown in Fig. 3.5 for simplicity. It should be
noted that coefficient-wise modular multiplication operations in Zγ (shown in Step
4 of Algorithm 10) are performed in the multiplier unit by changing modulus from q

to γ and require no extra hardware. Finally, the necessary operations are performed
as shown in Algorithm 10. The hardware completes one decryption operation in 360
clock cycles.

3.4 CPU-FPGA Framework

In order to demonstrate that homomorphic encryption/decryption operations of the
SEAL library can be accelerated considerably, we designed a proof of concept ac-

37

Figure 3.7 CPU-FPGA Framework

celerator framework that includes SEAL software and an FPGA accelerator that
implements our architectures. For communication between the software stack and
FPGA, we utilized Reusable Integration Framework for FPGA Accelerators (RIFFA)
driver (Jacobsen, Freund & Kastner, 2012), which employs a PCIe connection be-
tween CPU and FPGA. The resulting framework is shown in Fig. 3.7.

In SEAL (v3.2), there are encrypt and decrypt functions, which work as described
in Algorithm 9 and Algorithm 10. In our modified version of SEAL, encrypt and
decrypt functions send their inputs m, u and c0, c1, respectively, to FPGA and
once FPGA returns the results to CPU, these functions return them to their caller
functions. Precomputed constants such as keys are sent to FPGA only once prior
to any invocation of encrypt and decrypt functions. In summary, all arithmetic
operations in encryption and decryption are performed in FPGA except for sampling
of random polynomials and encoding of the plaintext, which are performed in the
host CPU and sent to FPGA prior to any operation.

One important aspect of the communication between CPU and FPGA is the uti-
lization of Direct Memory Access (DMA). Instead of bringing data into the CPU
first, prior to sending it to FPGA, the data is directly sent to FPGA from memory.
This way, cache memory is never trashed, and running encrypt or decrypt function
does not affect the performance of other operations running on CPU.

To realize our framework, we use Xilinx VC707 Evaluation Board, which includes
a PCIe x8 Gen 2 Connector. Xilinx IP Core 7-Series Integrated Block for PCIe
provides a 128-bit interface with a 250 MHz clock, which has a 32 Gbps theoretical
maximum bandwidth. As shown in Fig. 3.7, separate FIFO structures are utilized
for data input from the RIFFA driver and data output to the RIFFA driver. This
approach is utilized to enable a pipelined architecture and maximize performance.
In (Jacobsen et al., 2012), it is shown that RIFFA is able to achieve only 76% of the
maximum theoretical bandwidth. Therefore, the bandwidth of the PCIe module is
assumed to be ∼24 Gbps.

38

SEAL library uses 64-bit integer type for storing the coefficients regardless of the
size of q. Since we work with 32-bit coefficients, we can pack and send 128/32 = 4
coefficients per cycle. However, packing four 32-bit coefficients complicates the
memory access in SEAL. Therefore, we pack and send 128/64 = 2 coefficients per
cycle. Both encryption and decryption operations take 2 · 1024 = 2048 coefficients
as inputs and CPU can send (8 ·3 ·109)/(8 ·2048) = 183105 encryption or decryption
inputs per second with 24 Gbps bandwidth. In order not to be I/O bounded, the
implementation on FPGA must finish its operations in less than 1 sec/183105 =
5.46 µs. Since the proposed hardware implementations finish the encryption or
decryption less than 5.46 µs as demonstrated in the next section, they are not I/O
bounded.

3.5 Results and Comparison

We developed two architectures into Verilog modules and realized them using Xilinx
Vivado 2018.1 tool for the Xilinx VC707 Evaluation Board utilizing a Virtex-7 FPGA
(XC7VX485T-2FFG1761C), which has 303600 LUTs, 607200 DFFs, 2800 DSP48E1s
and 1030 BRAM36E1s. The iterative and four-step BFV hardware use 25.63% and
22.36% of LUTs, 31.6% and 12.52% of RAMB36E1s, 34% and 21.39% of DSP48E1s
in FPGA, respectively.

Many works were reported in the literature proposing hardware accelerators for
HE schemes (Migliore, Real, Lapotre, Tisserand, Fontaine & Gogniat, 2018),
(Cathébras, Carbon, Milder, Sirdey & Ventroux, 2018), (Öztürk et al., 2017), (Chen,
Mentens, Vercauteren, Sinha Roy, Cheung, Pao & Verbauwhede, 2015), (Aysu, Pat-
terson & Schaumont, 2013), (Pöppelmann & Güneysu, 2012), (Sinha Roy et al.,
2019), (Sinha Roy, Järvinen, Vliegen, Vercauteren & Verbauwhede, 2018), (Pöppel-
mann, Naehrig, Putnam & Macias, 2015), (Feng et al., 2019), (Liu, Fan, Khalid,
Rafferty & O’Neill, 2019), (Banerjee et al., 2019), (Song, Tang, Chen & Zhang,
2018), (Fritzmann & Sepúlveda, 2019). Some of these works focus on accelerat-
ing the multiplication of two large degree polynomials using NTT-based multi-
plication schemes (Aysu et al., 2013), (Chen et al., 2015), (Öztürk et al., 2017),
(Pöppelmann & Güneysu, 2012), (Cathébras et al., 2018), (Feng et al., 2019), (Liu
et al., 2019). Other works target accelerating different operations such as full en-
cryption/decryption and homomorphic multiplication operations (Sinha Roy et al.,
2019), (Migliore et al., 2018), (Sinha Roy et al., 2018), (Pöppelmann et al., 2015),

39

(Banerjee et al., 2019). Also, the works in (Fritzmann & Sepúlveda, 2019) and
(Song et al., 2018) target fast NTT hardware for lattice-based cryptography, which
can also be used for HE schemes. Although our hardware architectures accelerate
encryption and decryption operations of the BFV scheme in SEAL, the core part
of our architectures is the hardware implementation of a fast polynomial multiplier.
For a fair comparison, therefore, we report and compare the hardware and perfor-
mance results for the polynomial multiplier part of our works and the works in the
literature in Table 3.2. We also include the performance results of the NTT opera-
tion of the works in the literature, if available, in Table 3.2. The proposed iterative
and four-step hardware implementations have the lowest latency for both NTT and
polynomial multiplication operations compared to works in the literature.

Also in Table 3.2, we include the implementation results of the iterative hardware
on a low-cost Spartan-6 FPGA board (Mert et al., 2019). The results show that
the timing result is comparable to the one in (Chen et al., 2015). Note that we
achieve a comparable timing result using a general ciphertext modulus q while (Chen
et al., 2015) uses a special modulus. In terms of the area, our design uses much
less distributed logic at the expense of ten additional DSPs. Although there are
other accelerators (Seiler, 2018) in the literature performing R-LWE encryption and
decryption, these works use small parameters and are not designed for homomorphic
operations. Thus, they are not included in the comparison.

Although the proposed work has relatively small parameters for homomorphic op-
erations and has a low multiplicative depth, it can be extended to a new design
with a larger ring degree and ciphertext modulus using exactly the same arithmetic
units in this work. For example, for a design with ring degree of 4096 and 180-bit
ciphertext modulus, we just need to update the control unit of NTT hardware so
that it can work for ring degree of 4096 instead of 1024 using exactly the same NTT
units. Also, the ciphertext modulus can be increased to 180-bit by using exactly
the same polynomial multipliers in this work with additional CRT (Bonehet al. ,
1999) operations employing CRT. In such a setting, the proposed hardware needs a
CRT unit that transforms each 180-bit coefficient into six coefficients in six 32-bit
primes, performs operations separately for each 32-bit prime using the desired num-
ber of hardware units in parallel and converts coefficients in six 32-bit primes into
180-bit coefficients. Therefore, the arithmetic blocks proposed in this work with a
small parameter set can be used to design a high-performance hardware for larger
parameter sets with minor modifications. We present two different scaled version
of the proposed architectures for n = 4096 with 32-bit q and n = 4096 with 180-bit
q, and reported estimated timing and area results, showing timing and area results
are linearly proportional to n and q, in Table 3.2.

40

Table 3.2 Comparative Table

Work Platform (log2(n),log2(q)) LUT/DSP/BRAM Clock Latency (µs)
(MHz) NTT PM

(Sinha Roy et al., 2018) Virtex-6 (16,30) 72K / 250 / 106 100 – 3376
(Pöppelmann et al., 2015) Virtex-7 (12,125) 69K / 144 / – 100 – 1960
(Migliore et al., 2018) Stratix-V (11,125) 30K / 100 / – 331 – 583
(Sinha Roy et al., 2019) Zynq US (12,30) 64K / 200 / 400 225 73 171
(Öztürk et al., 2017) Virtex-7 (15,32) 219K / 768 / 193 250 51 152

(Pöppelmann & Güneysu, 2012)a Spartan-6 (10,30) 1644 / 1 / 6.5 200 – 110
(Aysu et al., 2013)a Spartan-6 (10,17) – / 3 / 2 – – 100

(Chen et al., 2015)a Spartan-6 (8,21) 2829 / 4 / 4 247 – 6
Spartan-6 (10,31) 6689 / 4 / 8 241 – 33

(Cathébras et al., 2018) Virtex-7 (12,30) 54K / 517 / 208 200 – 10

(Feng et al., 2019)a Spartan-6 (8,21) 14K / 128 / 1 233 – 0.94
(9,23) 18K / 128 / 2.5 200 – 1.77

(Liu et al., 2019)a Kintex-7 (8,17) 317 / 1 / – 333 102 –
(Banerjee et al., 2019)b 40nm CMOS (8,24) 106K / – / – 72 17 –
(Song et al., 2018)b 40nm CMOS (9,18) – / – / – 300 1.6 –

(Fritzmann & Sepúlveda, 2019)b UMC 65nm (10,17) 14K / – / – 25 41 –
I (Mert et al., 2019) Spartan-6 (10,32) 1208 / 14 / 14 212 – 37

I Virtex-7 (10,32) 77K / 952 / 325.5 200 0.4 0.96
FS 67K / 599 / 129 0.7 1.40
Ic Virtex-7 (12,32) ∼80K / 952 / 325.5 ∼200 ∼ 1.75 ∼ 4.20
FSc ∼70K / 599 / 129 ∼ 2.3 ∼ 4.75
Id Virtex-7 (12,180) ∼160K / 1904 / 651 ∼200 ∼ 5.25 ∼ 12.60
FSd ∼140K / 1198 / 258 ∼ 6.9 ∼ 14.25

a:Fixed q.
b:Multiple n and q.
c:Scaled for n=4096.
d:Scaled for n=4096 and q=180-bit (assuming two 32-bit hardware are instantiated, excluding CRT).

Software implementation using only SEAL completes encryption, decryption and
one polynomial multiplication in 151µs, 65.7µs and 28.8µs, respectively. Our FPGA
implementation of the iterative BFV hardware, excluding I/O operations, performs
encryption, decryption and polynomial multiplication in 1.4µs, 1.24µs and 0.96µs,
respectively; resulting in 108×, 53× and 30× speedup values for those operations
when compared with the pure software implementation. Similarly, the FPGA im-
plementation of the four-step BFV hardware performs both encryption and decryp-
tion operations in 1.8µs and polynomial multiplication in 1.4µs; resulting in 84×,
37× and 21× speedup values for encryption, decryption and one polynomial multi-
plication, respectively. The iterative BFV hardware performs both encryption and
decryption faster than the four-step BFV hardware at the expense of more resources.

Transmission of a polynomial of degree 1024 with 32-bit coefficients between CPU
and FPGA via DMA takes 2.73µs by packing two coefficients per cycle. For iterative
BFV hardware, for encryption operation, without pipelining of the transmission
and the FPGA computation and with half-duplex PCIe communication, we achieve
5.46+1.4+5.46 = 12.32µs latency, where 5.46µs is spent for sending the input, 1.4µs
for the encryption operation and another 5.46µs is spent for receiving the output.
In comparison with pure software implementation, this indicates a 12× speedup for
encryption. Similarly, for decryption operation, we obtain 5.46+1.24+2.73 = 9.42µs

41

Table 3.3 Pipelining of I/O Operations over PCIe

Time (µs) Input Operation Output
0 Enc1 – –

5.46 Dec1 Enc1 –
10.92 Enc2 Dec1 Enc1
16.38 ... Enc2 Dec1
21.84 Enc2
...

latency, which is a 7× speedup over the software implementation. Also, we achieve
a throughput of almost 81K and 106K for encryption and decryption operations,
respectively, per second without pipelining. Performance results for the four-step
hardware can be calculated similarly.

In the current implementation, PCIe works in half-duplex mode, where the host
CPU can either send or receive one encryption/decryption operation at a time over
PCIe. If we use PCIe in a full-duplex mode where PCIe can send and receive
data at the same time and overlap I/O operations over PCIe with actual encryp-
tion and decryption operations as shown in Table 3.3, the proposed hardware can
send the result of one encryption or decryption operation back to the host CPU
in max(5.46,1.4,1.24,2.73) = 5.46µs after filling the pipeline. In this setting, the
proposed framework can perform 1/5.46µs= 183150 encryption or decryption oper-
ations per second. Compared to 1/151µs = 6622 encryption and 1/65.7µs = 15220
decryption operations per second, we can achieve 27× and 12× speedup over pure
software encryption and decryption implementations, respectively.

3.6 Summary

We presented FPGA implementations of two fast and highly parallelized hardware
architectures for the encryption and decryption operations of the BFV HE scheme.
We utilized our architectures in an accelerator framework for the encryption and
decryption operations of the BFV HE scheme implemented in the SEAL. We adopt
a hardware/software co-design approach, in which encryption and decryption oper-
ations are offloaded to an FPGA while the rest of operations in the BFV scheme
of SEAL are executed in software running on a desktop computer. We realized
the framework on an FPGA connected to the PCIe bus of an off-the-shelf desktop

42

computer. We used the Xilinx VC707 Evaluation Board for our implementation.
We improved the latency of the encryption and decryption by almost 12× and 7×,
respectively, compared to their pure software implementations in SEAL.

43

4. AN FPGA-BASED RUN-TIME CONFIGURABLE NTT-BASED

POLYNOMIAL MULTIPLICATION ARCHITECTURE

In this chapter, we propose a run-time configurable and highly parallelized NTT-
based polynomial multiplier architecture supporting six different parameter sets,
which are mostly utilized in the lattice-based HE and PQC applications. For proof
of concept, we also utilize our NTT-based polynomial multiplier architecture in
a CPU-FPGA framework, which provides high-speed communication between the
SEAL library running on CPU and the proposed hardware on FPGA by utilizing
the RIFFA driver (Jacobsen et al., 2012) employing a PCIe standard interface.
Compared to the SEAL library, the proposed hardware improves the latency of
polynomial multiplication operation by up to 7× and 4.2×, excluding and including
I/O overhead, respectively. 1

4.1 Introduction

The design of the NTT-based polynomial multiplication operation is mainly based
on two parameters: the ring size, n, and the bit length of the coefficient modulus,
k= dlog2(q)e, where q is the coefficient modulus. For cryptographic applications uti-
lizing such different parameters, separate polynomial multipliers need to be designed
and implemented. For example, post-quantum KEM protocol CRYSTALS-Kyber
(v1) (Bos et al., 2018) uses parameters n = 256 and k = 13, where q = 7681 is a
13-bit prime, while SEAL HE library (Microsoft, 2019) uses parameters n ranging
from 1024 to 32768 and k ranging from 14-bit to 60-bit. Therefore, this is the moti-
vation for a configurable NTT-based polynomial multiplier architecture, which can
support multiple parameter sets and applications instead of separate architectures
for each application with fixed parameters.

1This chapter presents the work in (Mert et al., 2020).

44

To this end, in this chapter, we propose a run-time configurable and highly par-
allelized NTT-based polynomial multiplier architecture for hardware realizations.
Our motivation in our study is two fold: i) our architecture effectively supports
different parameter sets with high efficiency and ii) thus aims to improve the per-
formance of a wide range of lattice-based cryptosystems. The proposed architec-
ture supports six parameter sets (n,k) = {(256,16), (512,16), (1024,16), (1024,32),
(2048,32), (4096,32)}, which are utilized in the lattice-based cryptosystems, with a
flexible memory addressing scheme. Here, for proof of concept, we also utilize our
NTT-based polynomial multiplier architecture in a CPU-FPGA framework, which
provides high-speed communication between the CPU and the FPGA by utilizing
the RIFFA driver (Jacobsen et al., 2012) employing a PCIe standard interface.

The proposed architecture accelerates the decryption operation of the BFV scheme
implemented in the SEAL (Microsoft, 2019). In the proposed framework, the poly-
nomial multiplication operation in the decryption of the BFV scheme is offloaded
to the accelerator in the FPGA via PCIe bus while the rest of the operations in the
decryption of the BFV scheme are executed in software running on an off-the-shelf
desktop computer. Offloading the computation to the accelerator results in over-
head due to the time spent in the network stack at both ends of the communication
and actual transfer of data, which we refer to as the I/O overhead. This overhead
can be prohibitively high if the nature and cost of the offloading are not factored in
the accelerator design.

To address the speed and configurability requirements, three crucial design goals are
considered in this work: i) hardware accelerator architecture should be designed to
provide significant levels of speedup over software implementations, ii) the overhead
due to communication between hardware and software components should be taken
into account as a design parameter or constraint and iii) a balanced implementation
in terms of area and throughput should be designed as the proposed architecture
supports different parameter sets and aims to provide acceleration for a variety of
applications. Most works in the literature focus solely on the first goal and report
no accurate speedup values subsuming the I/O overhead. In this chapter, we aim
to address this problem by providing a fully working prototype of a framework
consisting of an FPGA-based an accelerator and SEAL library running on a CPU.

The rest of the chapter is organized as follows. Section 4.2 introduces the proposed
polynomial multiplication hardware. Section 4.3 presents the utilization of the pro-
posed hardware for the SEAL library as a proof-of-concept. Finally, Section 4.4
presents the implementation results and the comparison with the literature, and
Section 4.5 concludes the chapter.

45

4.2 Polynomial Multiplicationr Architecture

In this section, the proposed run-time configurable polynomial multiplier architec-
ture, its main building blocks, the design techniques we used for our entire framework
and our optimizations are explained. The proposed architecture employs DIFNR
NTT and DIFRN INTT algorithms for NTT and INTT operations respectively.
This design choice enables employing only GS-based butterfly structure, which re-
duces hardware complexity at the expense of extra computations (pre-processing
and post-processing operations) during polynomial multiplication.

4.2.1 Run-time Configurable Word-Level Montgomery Modular Multi-

plier Unit

The proposed configurable modular multiplier hardware consists of two blocks, an
integer multiplier hardware and a configurable word-level Montgomery modular re-
duction hardware. It supports modular multiplication operation only with NTT-
friendly modulus, which satisfies q ≡ 1 (mod 2n), for k = dlog2(q)e ranging from 10
to 32.

First, we design a 32-bit integer multiplier. The proposed integer multiplier hard-
ware utilizes four DSP blocks in FPGAs and an adder tree structure in a similar
way as shown in Fig. 3.1. The proposed 32-bit integer multiplier hardware performs
a multiplication operation in two clock cycles. It is pipelined and uses optional
output registers of DSP blocks as pipeline registers, which eliminates the need to
utilize FPGA fabric registers for pipelining. Therefore, the proposed integer multi-
plier can produce one multiplication result per clock cycle after filling the pipeline.
The proposed integer multiplier works for any integer inputs with 32 or fewer bits.

After the multiplication operation, the result needs to be reduced back to the bit-
length of the modulus. For a configurable architecture, we modified the word-level
Montgomery modular reduction algorithm presented in Chapter 3. In Chapter 3, the
word-level Montgomery reduction algorithm is implemented for a fixed parameter
set, namely n = 1024 and k = 32, while we, in this work, implement a configurable
architecture, which supports multiple parameter sets.

Recalling from Chapter 3, the proposed word-level Montgomery modular reduction

46

Figure 4.1 Run-time Configurable Word-level Montgomery Modular Reduction Unit

algorithm uses the property of NTT-friendly modulus with negative wrapped convo-
lution technique, q ≡ 1 (mod 2n), and it divides Montgomery reduction operation
into smaller steps. The modular multiplier architecture in this work can be config-
ured to perform modular multiplication operation for six different parameter sets.
The proposed run-time configurable word-level Montgomery modular multiplier ar-
chitecture is shown in Fig. 4.1. Since maximum iteration count, L, is d32

13e=3 (for
the parameter set n= 4096 and k = 32), the proposed modular multiplier uses three
units performing X ·Y +Z + carry operation. For parameters (256,16), (512,16)
and (1024,16), which require L=2 iterations, the last X ·Y +Z+carry operation is
eliminated by selecting X, Y , Z and carry inputs of the third unit as 1, T3, 0 and
0, respectively. Each X ·Y +Z + carry operation is realized using one DSP block
inside the FPGAs.

47

Table 4.1 Actual Supported k Range for Each Parameter Set

(n,k) Range
(256,16) 9< k ≤ 18
(512,16) 10< k ≤ 20
(1024,16) 11< k ≤ 22
(1024,32) 22< k ≤ 33
(2048,32) 24< k ≤ 36
(4096,32) 26< k ≤ 39

For a given parameter set, the proposed modular multiplier selects proper inputs for
DSP blocks and performs the modular multiplication operation in constant-time.
For example, for parameters n = 256 and k = 16, the proposed architecture selects
T1, T2 and q shifted by 9 for the first two DSP blocks and eliminates the last X ·Y +
Z+ carry operation as explained before. For given w and L, the proposed modular
reduction architecture supports modulus with w · (L−1)< k ≤ w ·L. Therefore, for
a parameter set, the proposed architecture supports a range of k instead of a single k
value. For example, for (1024,32) with w = 11 and L= 3, the proposed architecture
supports modulus with 22 < k ≤ 33. Supported k range for each parameter set is
listed in Table 4.1. As shown in the table, the proposed architecture can support
modulus up to 39-bit long for the parameter set (4096,32). Therefore, although the
proposed polynomial multiplier architecture supports modulus up to 32-bit, it can
be easily extended to 39-bit with a slight modification of integer multiplier.

The word-level Montgomery modular reduction algorithm takes A ·B as input and
produces A ·B ·R−1 (mod q), where R = 2w·L. Therefore, the output of the word-
level Montgomery modular reduction algorithm should be multiplied with R for
eliminating the extra R−1 in the result. In this work, this extra multiplication
operation is avoided by multiplying one of the multiplication inputs with R or the
power of R. The proposed modular multiplier architecture performs a modular
multiplication operation in six clock cycles for all parameter sets. It is pipelined and
uses internal registers of DSP blocks as pipeline registers. Therefore, the proposed
configurable modular multiplier can produce one multiplication result per clock cycle
after filling the pipeline.

Compared to the regular Montgomery and Barrett algorithms, the proposed word-
level Montgomery algorithm reduces the size of multiplication operations and pro-
vides better utilization for FPGA implementations. For example, for the parameter
set (1024,32), the regular Montgomery algorithm uses two 32×32 multipliers, which
require seven DSP blocks for its FPGA implementation. The regular Barrett algo-
rithm uses 32× 64 and 32× 32 multipliers, which require nine DSP blocks for its

48

Figure 4.2 NTT Unit

implementation for the same parameter set. The proposed word-level Montgomery
algorithm, on the other hand, uses three 11× 21 multipliers, which require three
DSP blocks for its implementation for the same parameter set. Therefore, the pro-
posed word-level Montgomery algorithm uses 57% and 66% less DSP blocks than
the regular Montgomery and Barrett algorithms, respectively, for the parameter set
(1024,32). This shows the superiority of our approach.

4.2.2 NTT Unit

The proposed design uses NTT units, which implement the GS butterfly configura-
tion shown in steps 7-8 of the Algorithm 1 and steps 8-9 of the Algorithm 2. The
proposed NTT unit is shown in Fig. 4.2 and it consists of one modular adder, one
modular subtractor, and one modular multiplier hardware. The first output, Out0,
comes from the modular adder while the second output, Out1, comes from modular
subtractor and multiplier. Due to the six clock cycles latency of the modular mul-
tiplier, there are six clock cycles differences between the two output coefficients. In
order to synchronize both output coefficients, extra six flip-flops are placed at the
output of modular adder hardware. The proposed NTT unit has seven clock cycles
latency and it is pipelined. It takes three coefficients as inputs and produces two
coefficients as outputs per clock cycle after filling the pipeline.

The proposed NTT unit can also be configured to perform a single modular multi-
plication operation by providing 0, first multiplicand and second multiplicand to the
inputs In0, In1 and MultIn, respectively. This configuration is used for performing
coefficient-wise multiplication of polynomials in the NTT domain and multiplying
the coefficients of the polynomial with the powers of Ψ, Ψ−1 and n−1 in Zq. This
configurability and re-use of the NTT unit eliminate the need for extra modular
multiplier unit. The proposed NTT unit can also be configured to perform modular
addition and subtraction operations by reading AddOut and SubOut outputs.

49

4.2.3 Overall Design

Determining the degree of parallelization in architecture is not an easy task and it
depends on the area and throughput requirements of the application. The NTT
and INTT schemes shown in Algorithm 1 and Algorithm 2, respectively, allow the
parallelization of the NTT and INTT operations by performing multiple GS butterfly
operations in parallel in one stage. An n-pt NTT consists of log2(n) stages, where
each stage has (n/2) butterfly operations. Therefore, an NTT operation can be
parallelized by performing multiple butterfly operations in one stage in parallel.
In this work, hardware block performing one butterfly operation is referred to as
processing unit (PU).

The proposed architecture aims at high performance with reasonable resource usage.
Since the main building block of a polynomial multiplication operation is NTT, we
analyze the performance of NTT operation with different number of PUs in order
to decide the optimal number of PUs for a balanced design in terms of both area
and throughput. We model the number of latency in terms of clock cycle as shown
in Eqn. 4.1.

(4.1) log2(n)× (n

2×PU number + 6)

Then, we plot the latency vs. log2(n) graph for PU numbers ranging from 4 to
128 for the n values in our parameter set as shown in Fig. 4.3a. We also plot
the area×time vs. log2(n) graph for PU numbers ranging from 4 to 128 for the n
values used in our parameter set as shown in Fig. 4.3b, where PU number and the
latency in terms of clock cycles are used for area and time parameters, respectively.
When large n is used as required in homomorphic applications, the latency of NTT
operation increases significantly for designs with 4, 8 and 16 PUs. Also, when n is
large, the designs with 4, 8 and 16 PUs show similar area×time performance with
other designs as shown in Fig. 4.3b. When small n is used as required in most
lattice-based post-quantum cryptosystems, the designs with 64 and 128 PUs show
worse area×time performance than other designs with similar latency performance
as shown in Fig. 4.3b. As we aim for a balanced architecture in terms of area and
performance, we select the PU number as 32 in our design.

The overall architecture of the proposed run-time configurable NTT-based polyno-
mial multiplier is shown in Fig. 4.4. The proposed architecture uses 32 PUs, where a
PU performs steps 5-10 and steps 7-12 in Algorithm 1 and Algorithm 2, respectively.
A PU consists of one NTT unit, four BRAMs for storing the coefficients of polynomi-
als (POL0 and POL1 in Fig. 4.4), one BRAM for storing the powers of ω and ω−1 to

50

(a) Number of Clock Cycles vs.
log2(n) for Different PU Numbers

(b) Area×Time Percentage vs.
log2(n) for Different PU Numbers

Figure 4.3 Number of Clock Cycles and Area×Time Percentage Estimations for
Different n and PU Numbers

Figure 4.4 Overall Design

be used for NTT/INTT operations (TW in Fig. 4.4) and one BRAM for storing the
powers of Ψ and Ψ−1 to be used for pre-processing and post-processing operations
(PSI in Fig. 4.4). The proposed architecture also has an address/selection signal
generator unit, which produces all necessary control signals for the NTT, INTT and
polynomial multiplication operations.

The proposed hardware architecture can be configured to perform three different
operations: NTT, INTT and NTT-based polynomial multiplication. The NTT and
INTT operations are performed as described in Algorithm 1 and Algorithm 2, re-
spectively. The polynomial multiplication, on the other hand, can be performed in
two different ways: i) both input polynomials are in the polynomial domain and
ii) one of the input polynomials is in the polynomial domain while the other input
polynomial is already in the NTT domain. The first and second polynomial multi-
plication methods will be referred to as full polynomial multiplication (FPM) and
half polynomial multiplication (HPM) for the rest of the chapter. The proposed
architecture can perform both FPM and HPM operations.

Managing complex memory access schedule is one of the most challenging parts of

51

Table 4.2 Number of Clock Cycles Required for Each Operation and Parameter Set

Operations (n,k)
(256,16) (512,16) (1024,16) (1024,32) (2048,32) (4096,32)

NTT 104 153 250 250 451 876
INTT 121 178 291 291 524 1013
HPM 259 381 623 623 1121 2163
FPM 299 469 815 815 1537 3059

NTT-based polynomial multiplier architecture design. When a configurable archi-
tecture is aimed, this problem becomes more challenging since a flexible memory
access schedule is required. Polynomials with different degrees (n) require different
data alignment in memory and data access patterns. Therefore, the proposed mem-
ory access scheme in this work generates necessary control signals for storing and
accessing polynomial coefficients as required for each parameter set.

An n-pt NTT operation can be implemented using two (n/2)-pt NTT operations
after the first stage of the n-pt NTT operation (Chu & George, 1999). In this work,
we exploit this property to design a configurable polynomial multiplier architecture
in terms of n. Therefore, in this work which supports 256-pt to 4096-pt NTT/INTT,
large NTT operations are performed using smaller NTT operations. For example,
the proposed architecture with 32 PUs can perform one stage of 64-pt NTT with
7 clock cycles latency, where each PU performs one butterfly operation. Therefore,
one 64-pt NTT with 6 stages will have a latency of 6 ·7=42 clock cycles. One 128-pt
NTT operation then will perform its first stage in (64/32)+7=9 clock cycles and two
64-pt NTT operations will be performed in 6 · (2 + 7)=54 clock cycles as pipelined.
In total, 128-pt NTT will be performed in 9+54=63 clock cycles. Similarly, 256-pt
NTT operation will be performed in 8 · (4 + 7)=88 clock cycles. It should be noted
that these calculations ignore delays and stalls due to control of the NTT operation
in the implementation. INTT operation is also performed similarly.

Full polynomial multiplication operation uses two NTT, one INTT and four
coefficient-wise multiplication of polynomials as shown in Eqn. 2.11- 2.14. Simi-
larly, half polynomial multiplication operation uses one NTT, one INTT and three
coefficient-wise multiplication of polynomials. The number of clock cycles required
to perform each operation by the proposed architecture for supported parameter
sets is shown in Table 4.2.

The powers of ω and ω−1 are stored in 32 BRAMs as shown in Fig. 4.5. Since the
proposed architecture divides an NTT operation into smaller NTT operations, only
the twiddle factors necessary for performing the first stage of NTT operation for

52

Figure 4.5 BRAMs Storing Twiddle Factors

sizes from 2 to 4096 are stored. In total, 32 · (64+32+16+8+4+2+1+1+1+1+
1+1)=4224 twiddle factors are stored in 32 BRAMs. Besides, for INTT operation,
4224 inverse twiddle factors are stored in the other half of the same 32 BRAMs.
Similarly, the powers of Ψ/Ψ−1 values are stored in 32 BRAMs. Since the proposed
work uses Montgomery modular reduction algorithm, the powers of ω, ω−1, Ψ, Ψ−1

and n−1 (mod q) are multiplied with the necessary powers of Montgomery constant,
R, prior to the FPGA in order to eliminate extra modular multiplications in run-
time. The powers of ω, ω−1, Ψ, Ψ−1 and n−1 (mod q) are loaded into the FPGA
prior to any operation for a parameter set. If the parameter set is changed, new ω,
ω−1, Ψ, Ψ−1 and n−1 (mod q) values should be loaded.

For NTT/INTT operations, POL1 and PSI BRAMs are not used while the full and
half polynomial multiplication operations use all BRAMs. Polynomial multiplication
operation requires the coefficients of resulting polynomial from INTT operation to
be multiplied with the powers of Ψ−1 for post-processing operation as shown in
Eqn. 2.11-2.12. INTT operation requires the coefficients of output polynomial to be
multiplied with n−1 (mod q) as shown in steps 17-19 in Algorithm 2. Therefore, we
merged these two operations by multiplying the powers of Ψ−1 with n−1 (mod q)
prior to loading precomputed coefficients into FPGA.

Since the proposed architecture uses 32 PUs and one PU takes two polynomial
coefficients as inputs, 64 BRAMs are used to store one polynomial in the proposed
architecture. The memory access patterns of the first two stages of 1024-pt NTT
operation are shown in Fig. 4.6 as an example. In Fig. 4.6, the numbers in the
BRAMs represent the indices of the polynomial coefficients. The NTT operation in
Algorithm 1 starts butterfly operation with 0th and (n/2)th coefficients and continues
with 1st and ((n/2) + 1)th coefficients. Since the coefficient pairs (0, 512) to (31,

53

Figure 4.6 Memory Access Pattern for 1024-pt NTT Operation

543) need to be read in the same clock cycles, they are stored in different BRAMs
in the proposed architecture. Due to the read/write pattern of the NTT algorithm,
the coefficients read in the same stage should be stored in the same BRAMs for the
next stage. For example, the coefficient pair (0, 512) read from BR0 and BR1 in
the first stage should be stored in the BR0 for the next stage as shown in Fig. 4.6.
Since only one coefficient can be stored into one BRAM in a clock cycle, an extra
register is placed at the output of modular multiplier hardware in the NTT unit as
shown in Fig. 4.2. Therefore, both 0th and 512th coefficients can be stored into the
same BRAM in two clock cycles. Since the proposed NTT unit is pipelined, this
extra register does not affect the throughput of the proposed architecture.

Similarly, the coefficient pairs (32, 544) to (63, 575) need to be read and stored
similar to the coefficient pairs (0, 512) to (31, 543) as shown in Fig. 4.6. This access
pattern requires the swap of some coefficients in different memory blocks as shown
with green boxes in Fig. 4.6. Therefore, we used an alternating memory access
scheme to avoid collisions during the memory store operations.

In this scheme, for an n-pt NTT operation, coefficients stored in the first and second
halves of the memory blocks should be read in an alternating way. For example, in
the first read operation of the first stage of NTT, the coefficients at address 0 should
be read. Then, in the second read operation, coefficients at address (n/128) should

54

be read instead of address 1. Then, coefficients at addresses 1 and (n/128)+1 should
be read consecutively and so on. Finally, coefficients at addresses (n/128)− 1 and
(n/64)−1 should be read consecutively to finish the first stage of the NTT operation.
For the next stage, the same memory pattern should be used for two (n/2)-pt
NTT operations separately. All NTT operations with different sizes use the same
alternating memory access scheme. The proposed flexible memory access scheme
handles memory access operations for different n values by generating necessary
memory read/write signals. NTT operation takes input polynomial in standard
order and produces output polynomial in bit-reversed order while INTT takes input
polynomial in bit-reversed order and produces output polynomial in standard order.
Therefore, INTT operation uses the same memory access pattern in reverse order.

4.2.4 CPU-FPGA Framework

In order to show the use of the proposed polynomial multiplication architecture as
an accelerator in lattice-based homomorphic applications utilizing polynomial mul-
tiplication operation, we design a CPU-FPGA framework similar to the framework
presented in Chapter 3. For communication between the CPU and the FPGA,
we utilize RIFFA driver (Jacobsen et al., 2012), which employs a PCIe connection
between CPU and FPGA.

As a case study, the proposed design is used to accelerate the decryption operation
of the BFV scheme implemented in the SEAL HE library in a proof of concept
accelerator framework. Although we utilize our proposed polynomial multiplier in
the decryption operation of the BFV scheme, it can be utilized for accelerating other
homomorphic operations of the BFV scheme, which use polynomial multiplication.
The accelerator framework includes the SEAL software and an FPGA accelerator
that implements our proposed polynomial multiplier architecture. The resulting
framework is shown in Fig. 4.7.

55

Figure 4.7 CPU-FPGA Framework

4.3 A Case Study: SEAL Library

The proposed hardware architecture, for proof of concept, is utilized to accelerate
the polynomial multiplication operation in the decryption operation of the SEAL
library. The decryption operation of the BFV scheme in the SEAL is shown in
Algorithm 10, which utilizes an NTT-based polynomial multiplication operation.
Timing breakdowns of the decryption implementation in the SEAL for the parameter
sets (1024,14), (1024,27) and (2048,29) are shown in Table 4.3. The average times
for one NTT-based polynomial multiplication operation in the decryption operation
of the SEAL are 26.2µs, 28.8µs and 54.6µs for parameter sets (1024,14), (1024,27)
and (2048,29), respectively. The timing results are an average of 1000 executions.
The timing results are obtained on an Intel i9-7900X CPU @ 3.30 GHz × 20 with 32
GB RAM using GCC version 7.5.0 in Ubuntu 16.04.6 LTS. As shown in Table 4.3,
NTT-based polynomial multiplication operation forms 41.4% to 45.1% of execution
time of one decryption operation.

In order to demonstrate the acceleration performance of the proposed polynomial
multiplier architecture, we aim to accelerate the decryption function of the SEAL for
parameter sets (1024,14), (1024,27) and (2048,29) by offloading polynomial multi-
plication operation, sc1, into the FPGA that implements the proposed configurable
NTT-based polynomial multiplier architecture. Since secret key, s, is already in the
NTT domain, only the polynomial c1 is transformed into the NTT domain using
NTT operation. Then, c1 is coefficient-wise multiplied with the secret key and INTT
operation is applied to transform the resulting polynomial, sc1, from NTT domain
to polynomial domain. Therefore, this operation is an HPM.

We modified decrypt function of the SEAL to integrate our polynomial multiplier
hardware as an accelerator into the SEAL. In the modified version, the decrypt

56

Table 4.3 Timing of Decryption Implementation in the SEAL

Operation Time (µs) Percentage (%)
n=1024, k=14, t=256, 256-bit security

ntt_multiply 26.2 41.4 %
fastbconv 17.7 27.9 %

Others 19.43 30.7 %
n=1024, k=27, t=256, 128-bit security

ntt_multiply 28.8 43.2 %
fastbconv 19.5 29.2 %

Others 17.4 27.6 %
n=2048, k=29, t=256, 256-bit security

ntt_multiply 54.6 45.1 %
fastbconv 34.5 28.5 %

Others 31.8 26.4 %

function sends input polynomial c1 to the FPGA, FPGA performs the polynomial
multiplication sc1 and returns the resulting polynomial to the CPU. The rest of
the operations in the decrypt function are performed in the CPU. Precomputed
constants such as secret key, s, and the powers of ω, ω−1, Ψ, Ψ−1 are sent to FPGA
only once prior to any invocation of decrypt function.

To realize our framework, we use Xilinx VC707 Evaluation Board, which includes
a PCIe x8 Gen 2 Connector, with XC7VX485T-2FFG1761 FPGA. Xilinx IP Core
7-Series Integrated Block for PCIe provides a 128-bit interface with a 250 MHz
clock, which has a 32 Gbps theoretical maximum bandwidth. As shown in Fig. 4.7,
we utilize separate FIFO structures for data from the RIFFA driver and data to
the RIFFA driver. This approach enables a pipelined architecture for maximizing
performance.

SEAL library uses 64-bit integer type for storing the coefficients regardless of the
actual bit-size of modulus, q. Since we can work with 16-bit or 32-bit coefficients,
we can theoretically pack and send 128/16 = 8 or 128/32 = 4 coefficients per cycle,
respectively. In order not to complicate memory access in the CPU part, we pack and
send 128/32 = 4 coefficients per cycle instead. In (Jacobsen et al., 2012), it is shown
that RIFFA is able to achieve only 76% of the maximum theoretical bandwidth.
Therefore, the bandwidth of the PCIe module is assumed to be ∼24 Gbps. For the
selected parameter sets in the SEAL, the polynomial multiplication in the decryption
operation takes 1024 or 2048 coefficients as inputs and CPU can send (3 · 109)/(4 ·
1024) = 732420 or (3 ·109)/(4 ·2048) = 366210 polynomial multiplication inputs per
second, respectively, with 24 Gbps bandwidth.

57

Although the proposed work uses the RIFFA driver utilizing PCIe connection for
establishing communication between the host CPU and FPGA, system on a chip
(SoC) platforms with less communication cost can also be used based on the re-
quirements of the target application.

4.4 Results and Comparison

We developed the architecture described in this work into Verilog modules and re-
alized it using Xilinx Vivado 2018.1 tool for the Xilinx VC707 Evaluation Board,
which has a Virtex-7 FPGA (XC7VX485T-2FFG1761). The core part of our pro-
posed work uses 39.6K LUTs (9.2%), 21.1K DFFs (2.5%), 96 BRAMs (6.5%) and
224 DSPs (6.2%).

There are many works reported in the literature about the efficient implementation
of NTT-based polynomial multiplication operation (Sinha Roy et al., 2018), (Pöp-
pelmann et al., 2015), (Migliore et al., 2018), (Sinha Roy et al., 2019), (Cathébras
et al., 2018), (Öztürk et al., 2017), (Chen et al., 2015), (Aysu et al., 2013), (Pöppel-
mann & Güneysu, 2012), (Feng et al., 2019), (Mert et al., 2020), (Mert et al., 2019).
In (Sinha Roy et al., 2018) and (Sinha Roy et al., 2019), the authors propose an ac-
celerator framework for homomorphic operations. They optimize their architecture
for single q and n. They also utilize a memory-based algorithm for integer mod-
ular reduction operation. Our proposed polynomial multiplier, on the other hand,
supports multiple parameter sets and can be utilized as an accelerator in different
applications. The works in (Mert et al., 2019) and (Mert et al., 2020) present sim-
ilar architectures with our proposed polynomial multiplier architecture. However,
they support a single parameter set, which has a very low multiplicative depth for
HE applications. The architecture in (Pöppelmann et al., 2015) works with very
large k, namely k = 512. However, compared to our work, it lacks parallelism due to
large integer arithmetic. In (Pöppelmann & Güneysu, 2012), the authors propose an
architecture for fixed q and n, which enable a highly-optimized integer modular re-
duction architecture. However, their parameter set has low multiplicative depth and
their architecture is not reconfigurable. The work in (Migliore et al., 2018) utilizes
the Karatsuba algorithm instead of NTT for polynomial multiplication. It works for
a single parameter set, which has a multiplicative depth of four. Öztürk et al. pro-
poses a highly parallelized NTT-based polynomial multiplier architecture with single
parameter set (Öztürk et al., 2017). They utilize the conventional Barrett algorithm

58

for integer modular reduction and perform separate reduction operation for poly-
nomial reduction. In (Aysu et al., 2013), the authors implement a memory-efficient
NTT algorithm, which computes twiddle factors on-the-fly. However, it uses a single
processing unit and supports one parameter set. In (Chen et al., 2015), the authors
implement the same polynomial multiplier architecture for four different parameter
sets, where n is ranging from 256 to 2048. However, they use a single processing unit
and our proposed polynomial multiplier architecture shows better performance than
their work. In (Cathébras et al., 2018), the authors adopt a hardware generator tool
for generating NTT hardware for a given parameter set. However, their generated
NTT hardware does not support run-time configurability. Although some of these
works perform slightly different operations than polynomial multiplication, we only
report the implementation results for the NTT and polynomial multiplication parts
of these works. The implementation results of the works in the literature and the
work proposed in this chapter are reported in Table 4.4 and Table 4.5, respectively.

The proposed configurable architecture in this chapter is the only work in the lit-
erature supporting multiple k and n for FPGA platforms at the time this work
is presented. Other works in the literature either are designed for fixed q or do
not support multiple n values. The proposed work shows better area and tim-
ing performance than most of the works in the literature. Although the works in
(Cathébras et al., 2018), (Mert et al., 2020), (Mert et al., 2019) show better timing
performance than the proposed work in this chapter, they do not support multiple
q and n values and the proposed work in this chapter uses less FPGA resources.
The polynomial multiplier in (Feng et al., 2019) shows both better area and tim-
ing performance; however, it is designed and optimized for fixed q. Although there
are other implementations (Banerjee et al., 2019), (Song et al., 2018), (Fritzmann
& Sepúlveda, 2019) supporting multiple n and q values, these works target ASIC
platforms. Therefore, they are not included in the comparison.

Our proposed architecture is deployed into a framework that aims to accelerate the
decryption operation of the BFV scheme in the SEAL. For proof of concept, we
select three parameter sets (1024,14), (1024,27), (2048,29) of the SEAL and offload
polynomial multiplication operation in the decrypt function of the SEAL into the
FPGA that implements our configurable NTT-based polynomial multiplier architec-
ture. Then, we obtained performance numbers on a real CPU-FPGA heterogeneous
application setting. The polynomial multiplication operation in the decrypt func-
tion of the SEAL with parameter sets (1024,14), (1024,27), (2048,29) yields 26.2µs,
28.8µs, 54.6µs, respectively, in pure software implementation with host computer
as specified in Section 4.3. Compared to the software, the proposed configurable
polynomial multiplier architecture performs the same polynomial multiplication op-

59

Table 4.4 Comparative Table (FPGA Resources)

Work Platform n dlog2(q)e LUTs/DSPs/BRAMs Clock
(MHz)

(Sinha Roy et al., 2018) Virtex-6 65536 30 72K / 250 / 106 100
(Pöppelmann et al., 2015) Virtex-7 4096 125 69K / 144 / – 100
(Migliore et al., 2018) Stratix-V 2560 125 30K / 100 / – 331
(Sinha Roy et al., 2019) Zynq 4096 30 64K / 200 / 400 225
(Öztürk et al., 2017) Virtex-7 32768 32 219K / 768 / 193 250

(Pöppelmann & Güneysu, 2012)a Spartan-6 1024 30 1644 / 1 / 6.5 200

(Aysu et al., 2013)a Spartan-6 1024 17
250 / 3 / 2

–240 / 3 / 2
250 / 3 / 2

(Chen et al., 2015)a Spartan-6 256 21 2829 / 4 / 4 247
1024 31 6689 / 4 / 8 241

(Cathébras et al., 2018) Virtex-7 4096 30 54K / 517 / 208 200

(Feng et al., 2019)a Spartan-6 256 21 14K / 128 / 1 233
512 23 18K / 128 / 2.5 200

(Mert et al., 2020) Virtex-7 1024 32 77K / 952 / 325.5 20067K / 599 / 129

(Mert et al., 2019) Spartan-6 1024 32 1.2K / 14 / 14 212
Virtex-7 33.8K / 476 / 227.5 200

Ours∗ Virtex-7

256
16

39.6K / 224 / 96 150

512
1024
1024

322048
4096

a: Uses fixed q.
∗: Excluding RIFFA Hardware Driver and input/output FIFOs shown in Fig. 4.7).

erations in 4.15µs, 4.15µs, 7.5µs, respectively, excluding I/O operations. Compared
to the software, we achieved up to 7× speedup, excluding I/O operations for the
polynomial multiplication operation. With our setting, sending or receiving one
polynomial of degree 1024 and 2048 from the CPU to FPGA via DMA takes 1.3µs
and 2.67µs, respectively, on average. Therefore, our accelerator-based implemen-
tation, including I/O overhead, yields 6.75µs, 6.75µs, 12.96µs, respectively, for se-
lected parameter sets. Compared to the software, we achieved up to 4.2× speedup,
including I/O overhead. The decrypt function of the SEAL with parameter sets
(1024,14), (1024,27), (2048,29) yields executions times of 63.33µs, 65.7µs, 120.9µs,
respectively, in pure software implementation as shown in Table 4.3. Compared
to the software, the proposed framework with configurable polynomial multiplier
architecture performs the same decryption operations in 43.93µs, 43.7µs, 79.26µs,
respectively, including I/O overhead. Compared to the software, we still achieve up
to 1.52× speedup, including I/O overhead for decryption operation.

The proposed polynomial multiplier architecture is shown to be effective as an ac-
celerator for homomorphic applications. Since our proposed work aims to support
a range of applications with a focus on accelerating homomorphic operations, it is

60

Table 4.5 Comparative Table (Performance)

Work Platform n K
Latency (µs)

NTT Pol.Mul.
(Sinha Roy et al., 2018) Virtex-6 65536 30 – 3376
(Pöppelmann et al., 2015) Virtex-7 4096 125 – 1960
(Migliore et al., 2018) Stratix-V 2560 125 – 583
(Sinha Roy et al., 2019) UltraScale 4096 30 73 171
(Öztürk et al., 2017) Virtex-7 32768 32 51 152

(Pöppelmann & Güneysu, 2012)a Spartan-6 1024 30 – 110

(Aysu et al., 2013)a Spartan-6 1024 17 –
25
50
100

(Chen et al., 2015)a Spartan-6 256 21 – 6
1024 31 – 33

(Cathébras et al., 2018) Virtex-7 4096 30 – 10

(Feng et al., 2019)a Spartan-6 256 21 – 0.94
512 23 – 1.77

(Mert et al., 2020) Virtex-7 1024 32 0.4 0.96
0.7 1.40

(Mert et al., 2019) Spartan-6 1024 32 – 37.67
Virtex-7 – 1.25

Ours Virtex-7

256
16

0.69 1.99
512 1.02 3.12
1024 1.66 5.43
1024

32
1.66 5.43

2048 3.01 10.25
4096 5.84 20.39

a: Uses fixed q.

not meaningful to compare our architecture with highly-optimized hardware and/or
software implementations of specific NTT-friendly lattice-based post-quantum cryp-
tosystems such as CRYSTALS-Kyber (v1) ((Botros, Kannwischer & Schwabe, 2019),
(Seiler, 2018)), NewHope ((Seiler, 2018), (Alkim, Jakubeit & Schwabe, 2016)) and
qTESLA ((Alkim, Barreto, Bindel, Kramer, Longa & Ricardini, 2019)).

The proposed NTT-based polynomial multiplier architecture supports lattice-based
post-quantum cryptosystems with NTT-friendly parameter set (Bos et al., 2018),
(Alkim et al., 2019), (Alkim et al., 2016). However, not all lattice-based post-
quantum cryptosystems such as SABER (D’Anvers et al., 2018) supports NTT op-
eration due to their parameter sets. The proposed architecture in this chapter can
be extended to perform polynomial multiplication for cryptosystems without NTT-
friendly coefficient modulus with slight modifications as shown in (Dai & Sunar,
2015).

61

Although the proposed work supports relatively small parameter sets for homo-
morphic operations, homomorphic multiplication in particular, and has a low mul-
tiplicative depth, our polynomial multiplier can be easily utilized in designs with
larger degrees and depths. Many works (Microsoft, 2019), (Sinha Roy et al., 2019),
(Sinha Roy et al., 2018) use one large modulus (Q), which is mapped into smaller
coprime moduli (q0, q1, q2 . . .). In order to increase the parallelism, they employ
CRT (Bonehet al. , 1999), which transforms each coefficient in Q into multiple
smaller coefficients in {q0, q1, q2 . . .}, and perform operations in small moduli sepa-
rately in parallel instead of in Q. For example, the work in (Sinha Roy et al., 2019)
with a multiplicative depth of four uses six small 30-bit coprime moduli instead of
one large 180-bit modulus with n= 4096. Similarly, SEAL uses the same approach
for implementing homomorphic operations. Therefore, the polynomial multiplier
proposed in this work with a small modulus size can be utilized for accelerating
operations with larger parameter sets.

Our run-time configurable architecture is optimized for the entire proof of concept
framework. Therefore, the frequency that we are using does not need to be the
maximum possible frequency. Our datapath speed is optimized according to the
I/O bandwidth of the PCIe connection. Increasing the frequency any further will
also make our datapath faster than I/O, which will still add stall cycles to our
pipeline.

4.5 Summary

In this chapter, we present the design and FPGA implementation of a run-time
configurable and highly parallelized NTT-based polynomial multiplier architecture,
which is shown to be effective as an accelerator for lattice-based homomorphic
schemes. The proposed architecture supports six different parameter sets.

For proof of concept, we utilize our architecture in a CPU-FPGA framework for
the BFV HE scheme, adopting a hardware/software co-design approach for accel-
erating the polynomial multiplication operation in the decryption operation of the
BFV scheme implemented in the SEAL library. We used the Xilinx VC707 Evalu-
ation Board utilizing a Virtex-7 FPGA for our implementation. We improved the
latency of NTT-based polynomial multiplications in decryption operation by up to
7× and 4.2× compared to the implementation in SEAL, excluding and including I/O

62

overhead, respectively. In addition to that, we improved the latency of decryption
operation by up to 1.52× compared to its pure software implementation in SEAL
including I/O overhead.

63

5. A HIGH PERFORMANCE HOMOMORPHIC

MULTIPLICATION ARCHITECTURE FOR THE BFV
SCHEME

In this chapter, we present a high performance and scalable hardware architecture
that performs homomorphic multiplication and relinearization operations of the full
RNS variant of the BFV scheme (Bajard et al., 2017) for parameters n = 4096,
dlog2(q)e= 93 and dlog2(t)e= 17 with a multiplicative depth of one. The proposed
architecture employs three NTT cores where each core consists of 16 unified butterfly
units. The proposed architecture performs one homomorphic multiplication and
one relinearization operation in 0.338 ms and 0.079 ms, respectively, excluding
I/O overhead. Compared to the SEAL library (v3.5) (Microsoft, 2020) running
on a laptop with Intel Core i7-9750H @ 2.60GHz x 12 using a single thread, the
proposed architecture shows up to 18.4× and 16.1× performance improvements for
the homomorphic multiplication and relinearization operations, respectively.

5.1 Introduction

The BFV scheme has emerged as one of the most promising and popular HE schemes
for the applications working with integers (Viand, Jattke & Hithnawi, 2021). The
original BFV scheme, which is also referred to as textbook-BFV scheme (Fan &
Vercauteren, 2012), has high computational complexity. It requires high precision
integer arithmetic for very large coefficient modulus q which needs to be employed
on practical HE applications. It also uses costly division and rounding operations.
To reduce its complexity and make it fast, there have been various efforts in the lit-
erature (Bajard et al., 2017), (Halevi et al., 2019), (Bajard et al., 2019), (Takeshita
et al., 2020) proposing algorithmic improvements for the BFV scheme. These works
adopt RNS or similar arithmetic tools into the textbook-BFV scheme for improv-

64

ing the practicality and the performance of the BFV scheme. In addition to the
works focusing on the algorithmic-level improvements, there are several efforts in
the literature for presenting efficient hardware/software implementations targeting
acceleration of various SWHE and FHE schemes. Among these works, the imple-
mentations aiming at the BFV scheme are limited.

To the best of our knowledge, there are three, two, and two works targeting FPGA,
GPU, and CPU platforms for efficient implementation of the BFV scheme in the
literature. Roy et al. (Sinha Roy et al., 2018) proposes an FPGA implementa-
tion of homomorphic multiplication and addition operations of the textbook-BFV
scheme. Their implementation targets a very large multiplicative depth with a se-
curity level of 85-bit. Their parameter set is n= 32768, dlog2(q)e= 1228 and t= 2.
They employ CRT for eliminating multi-precision integer arithmetic in polynomial
arithmetic. Roy et al. (Sinha Roy et al., 2019) proposes another implementation
of homomorphic multiplication and addition operations for the RNS variant of the
BFV scheme proposed by Halevi et. al (Halevi et al., 2019) on FPGA. They target
parameter set n = 4096, dlog2(q)e = 180 and t = 2 with 80-bit security and multi-
plicative depth of 4. Turan et al. (Turan, Roy & Verbauwhede, 2020) implements
the work presented in (Sinha Roy et al., 2019) on the AWS F1 server using the same
parameter and security settings. Badawi et al. (Badawi, Veeravalli, Mun & Aung,
2018) proposes a GPU implementation of various homomorphic operations of the
full RNS variant of the BFV scheme proposed by Bajard et al. (Bajard et al., 2017).
Their implementation supports the parameter set n= 4096 and dlog2(q)e= 180. In
(Badawi, Polyakov, Aung, Veeravalli & Rohloff, 2018), Badawi et al. provides a
comparison of the RNS methods for the BFV scheme proposed by Bajard (Bajard
et al., 2017) and Halevi (Halevi et al., 2019) on CPU and GPU platforms for various
parameter sets. Takeshita et al. (Takeshita, Reis, Gong, Niemier, Hu & Jung, 2020)
takes advantage of compute-enabled RAM and proposes various optimizations for
the Bajard’s full RNS BFV scheme (Bajard et al., 2017). In (Reis, Takeshita, Jung,
Niemier & Hu, 2020), Reis et al. uses computing-in-memory approach for imple-
menting the BFV scheme. This method uses no RNS approach since it employs a
modulus in the form of power of two.

With similar motivations to existing works in the literature, in this chapter, we
present the first FPGA implementation of homomorphic multiplication operation of
the full RNS variant of the BFV scheme proposed by Bajard et al. (Bajard et al.,
2017). Our proposed architecture targets a multiplicative depth of one with param-
eters n = 4096, dlog2(q)e = 93, dlog2(t)e = 17 and it provides a security level more
than 128-bit. The proposed architecture in this chapter follows the implementation
in the SEAL library (v 3.5.1) (Microsoft, 2020), which uses Bajard’s technique (Ba-

65

jard et al., 2017). The proposed FPGA implementation shows more than one order
of magnitude performance improvement compared to the SEAL library while using
34% of the resources in the Xilinx VC709 Evaluation Board.

The rest of the chapter is organized as follows. Section 5.2 introduces the full RNS
variant of the BFV scheme as implemented in the SEAL library. Section 5.3 presents
the proposed hardware architecture. Finally, Section 5.4 presents the implementa-
tion results and the comparison with the literature, and Section 5.5 concludes the
chapter.

5.2 Full RNS Variant of the BFV Scheme

In this section, we explain the homomorphic multiplication and relinearization oper-
ations of the full RNS variant of the BFV scheme implemented in SEAL library (Mi-
crosoft, 2020).

5.2.1 Homomorphic Multiplication

Bajard et al. (Bajard et al., 2017) proposes a variant of the BFV scheme which
uses RNS for avoiding multi-precision integer arithmetic and complex divide-and-
round operation. In the proposed work, instead of using one large coefficient moduli
q, a set of smaller modulus qi, which are also referred to as RNS bases, are used.
This eliminates multi-precision arithmetic and enables performing operations in RNS
bases in parallel. In addition to that, their work eliminates the rounding operation by
introducing an approximate rounding method that employs a flooring function with
some approximation error. Since the BFV scheme is using randomly generated errors
for its operations, the error introduced by the approximate rounding operation does
not affect the validity of the scheme. The high-level diagram of the homomorphic
multiplication operation implemented in the SEAL library is shown in Fig. 5.1. It
should be noted that the implementation of the BFV scheme in the SEAL library
drops the last RNS base during the encryption operation. For example, a ciphertext
encrypted using the BFV scheme using three RNS bases q0, q1, q2 will not have
any component in base q2. The homomorphic multiplication operation takes two

66

Figure 5.1 The Flow of Homomorphic Multiplication Operation in the BFV Scheme

ciphertexts as inputs where each ciphertext consisting of two components in RNS
bases and produces one ciphertext as output with three components in RNS bases.

Although input and output ciphertexts of the homomorphic multiplication opera-
tion have components in RNS bases, Bajard’s technique introduces additional aux-
iliary bases B and msk for using during the homomorphic multiplication opera-
tion. The RNS bases (coefficient modulus q), auxiliary bases B and msk consist
of r ({q0, q1, . . . , qr−1}), l ({B0,B1, . . . ,Bl−1}) and one prime modulus, respectively.
Auxiliary bases B and msk together are also referred as Bsk base. The RNS and
auxiliary bases should be pairwise co-prime and NTT-friendly primes. Bajard’s
technique requires converting an integer from a base to another base (i.e. from q to
Bsk), which is performed using an operation called fast base conversion shown in
Eqn. 5.1. This conversion introduces some approximation errors in the form of extra
multiples of input base (i.e. q) being in the resulting integers with output base (i.e.

67

Bsk). Therefore, a correction operation is required after the fast base conversion.

(5.1) fastbconv({a0,a1, . . . ,ar−1}, q,B) = {
r∑
i=0
|ai ·

qi
q
|qi ·

q

qi
(mod Bi)}

The full RNS variant of the BFV scheme starts homomorphic multiplication oper-
ation by converting the components of the input ciphertexts (c0,0, c0,1, c1,0, c1,1 in
Fig. 5.1) in RNS base (q) to Bsk∪m̃ base, where m̃ is an additional base used to re-
move conversion error introduced by the fast base conversion operation. This conver-
sion is performed for enabling the multiplication of ciphertext components with each
other using the RNS approach without causing any overflow (Bajard et al., 2017).
The first base conversion operation is followed by a small Montgomery reduction
operation which cancels out the approximation error from the resulting ciphertext
components. This operation eliminates the error and converts the components in
base Bsk ∪ m̃ to base Bsk. Before the multiplication of ciphertext components with
each other, the NTT operation is performed for all ciphertext components. Then,
the ciphertext multiplication is performed as shown in Fig. 5.1 and the resulting
ciphertext components are transformed into the polynomial domain using INTT op-
eration. The NTT, ciphertext multiplication, and INTT operations are performed
for each RNS base and auxiliary base, which can be performed in parallel.

The resulting ciphertext components are then multiplied with the plaintext mod-
ulus t. For division operation, a fast flooring function is used which converts ci-
phertext components from bases q∪Bsk to Bsk base. Finally, Shenoy-Kumaresan
conversion (Shenoy & Kumaresan, 1989) is used to remove the approximate round-
ing error and convert the ciphertext components from bases q ∪Bsk to the RNS
base. The homomorphic multiplication implementation in SEAL with the BFV
scheme using r RNS bases and l+ 1 auxiliary bases performs 4 · (r+ l− 1) NTT
and 3 · (r+ l− 1) INTT operations, where each NTT and INTT operations can
be performed in parallel. In addition to these, it also performs modular addition,
subtraction and multiplication operations over Rn,qi , Rn,Bsk

, Rn,m̃ rings.

5.2.2 Relinearization

Although SEAL library follows Bajard’s relinearization scheme for the relineariza-
tion operation implemented in its earlier versions (v3.1 and earlier), it uses a combi-
nation of Bajard’s technique (Bajard et al., 2017), Halevi’s technique (Halevi et al.,

68

Figure 5.2 The Flow of Relinearization Operation in the BFV Scheme

2019) and special moduli technique proposed in (Chen, Dai, Kim & Song, 2019) in
its latest version. Bajard’s technique performs decomposition operation differently
than the procedure presented in Section 2.4.1. Instead of decomposing the last ci-
phertext element into a base w, it uses RNS bases, qi (Bajard et al., 2017). Halevi’s
technique further improves Bajard’s work and eliminates some redundant operations
during the relinearization operation (Halevi et al., 2019). The special moduli tech-
nique improves the noise performance of the relinearization operation; however, it
requires the last RNS moduli to be the largest RNS moduli (Chen et al., 2019). The
high-level diagram of the relinearization operation implemented in SEAL library for
coefficient modulus q with three RNS bases (q0, q1, q2) is shown in Fig. 5.2, where
| |qi represents the modular reduction operation by moduli qi. The relinearization
operation takes one ciphertext with three components in RNS bases as inputs and
it produces one ciphertext with two components in RNS bases as output.

69

For a coefficient modulus q consisting of three RNS bases (q0, q1, q2), the relineariza-
tion operation works with all three RNS bases while the homomorphic encryption
operation works with only the first two RNS bases (q0, q1). The relinearization
key is generated slightly different than the relinearization key generation procedure
presented in Section 2.4.1. For a q with r RNS bases, it consists of 2 · (r−1) com-
ponents where each component has r RNS bases. For r = 3 as shown in Fig. 5.2, it
consists of 2 · 2 = 4 components where each component consists three polynomials
in Rn,q0 , Rn,q1 , Rn,q2 rings. The relinearization operation has two parts: (i) RNS
decomposition and (ii) modulus switching. In the RNS decomposition part, the last
component of the ciphertext produced by the homomorphic multiplication operation
(ct2 in Fig. 5.2) in (r−1) RNS bases (q0, q1) is decomposed into r RNS bases (q0,
q1, q2) and multiplied with the components of relinearization key. Since the relin-
earization key is generated and stored in the NTT domain, only the decomposed
ciphertext components are transformed into the NTT domain before the multipli-
cation operation. After the multiplication operation, the resulting polynomials are
transformed into the polynomial domain using the INTT operation.

In the second part, the decomposed elements are combined together as shown in
Fig. 5.2.2, where D represents the conversion of a polynomial from the last RNS
base (q2) to other RNS bases (q0, q1). Finally, the resulting polynomials are added
with the first two components of the ciphertext produced by the homomorphic mul-
tiplication operation (ct0 and ct1 in Fig. 5.2). The relinearization implementation
in SEAL with a coefficient modulus q using r RNS bases uses r · (r− 1) NTT and
r · (r− 1) INTT operations, where each NTT and INTT operations can be per-
formed in parallel. In addition to these, it performs modular reduction, addition,
subtraction and multiplication operations over Rn,qi rings, where i= 0,1, . . . , l−1.

5.3 Homomorphic Multiplication Architecture

In this section, the proposed hardware architecture and its main arithmetic blocks
are explained starting from the NTT core, which employs 16 unified butterfly units.
Then, we present the overall design and the efficient scheduling scheme used for the
homomorphic multiplication and relinearization operations.

70

5.3.1 Parameter Set

In our design, we target a proof-of-concept hardware architecture with a multi-
plicative depth of one. Therefore, we select a proper parameter set with n = 4096,
dlog2(q)e = 93 and dlog2(t)e = 17, where coefficient modulus q consisting of three
31-bit NTT-friendly primes qi, i ∈ {0,1,2}. The selected parameter set is verified to
have a multiplicative depth of one using SEAL library and it provides a security level
of at least 128-bit (Albrecht, Player & Scott, 2015). The SEAL library generates
and uses 60-bit primes for the auxiliary bases, which are used during the homomor-
phic multiplication as explained in Section 5.2.1. Since our RNS bases (q0, q1, q2)
are 31-bit primes, we modify the SEAL library accordingly such that it generates
and uses 32-bit primes for the auxiliary bases (B and msk) as well. This eliminates
the need for an arithmetic unit supporting both 31-bit and 60-bit integer arithmetic.
Therefore, in our hardware architecture, all arithmetic units are working with 32-bit
integers. For auxiliary bases, we use four 32-bit NTT-friendly primes B0, B1, B2,
msk and m̃, which is constant and equal to 232.

5.3.2 NTT Core

The NTT core is designed to perform all necessary modular arithmetic operations
used during the homomorphic multiplication and relinearization operations detailed
in Section 5.2, which require NTT, INTT, modular addition, modular subtraction,
and modular multiplication operations. Since we target a high-performance hard-
ware architecture, we decided to use MNTT and MINTT algorithms which require
no pre-processing and post-processing operations at the expense of utilizing a unified
butterfly unit as explained in Section 2.5.2. The MNTT and MINTT algorithms are
shown in Algorithm 11 and Algorithm 12, respectively. The MNTT and MINTT al-
gorithms perform CT and GS butterfly operations, which are shown in the steps 8-13
of Algorithm 11 and Algorithm 12, respectively.

For the reasons already explained in Section 4.2.3, NTT and INTT operations can
be implemented using multiple butterfly units working in parallel. In our design
with a ring size of 4096, we can employ multiple butterfly units in parallel up to
2048. Although we target a high-performance hardware architecture, we also want
to keep the area cost reasonable. Therefore, the number of unified butterfly units
in one NTT core is selected as 16.

71

Algorithm 11 Merged Forward NTT Algorithm Longa & Naehrig (2016)
Input: a(x) ∈Rq,n in natural order
Input: primitive 2n-th root of unity ψ ∈ Zq, n= 2l
Output: a(x) ∈Rq,n in bit-reversed order
1: t= n
2: for (m= 1; m< n; m= 2 ·m) do
3: t= t/2
4: for (i= 0; i < m; i= i+ 1) do
5: j1, j2 = 2 · i · t, j1 + t−1
6: W = ψbr(m+i,l) (mod q)
7: for (j = j1; i≤ j2; j = j+ 1) do
8: U = a[j]
9: V = a[j+ t] ·W (mod q)
10: N0 = (U +V) (mod q)
11: N1 = (U −V) (mod q)
12: a[j] =N0
13: a[j+ t] =N1
14: end for
15: end for
16: end for
17: return a

Figure 5.3 Unified Butterfly Unit

The proposed unified butterfly unit performs both CT and GS butterfly operations
and it is shown in Fig. 5.3. It uses one modular multiplier, one modular adder,
one modular subtractor, and extra logic units for providing reconfigurability. The
modular multiplier unit, which is shown with a dashed box in Fig. 5.3, uses a 32-bit
integer multiplier and the word-level Montgomery modular multiplication algorithm
presented in Section 3.2.2.1 and Section 3.2.2.2, respectively. Since we work with
a ring size of 4096, we select word size, w, as 13 with a repeat count, L, as 3.
Thus, our word-level Montgomery modular multiplier unit supports NTT-friendly
primes with bit sizes ranging from 27 to 39. The proposed modular multiplier uses

72

Algorithm 12 Merged Inverse NTT Algorithm Longa & Naehrig (2016)
Input: a(x) ∈Rq,n in bit-reversed order
Input: modular inverse of primitive 2n-th root of unity ψ−1 ∈ Zq, n= 2l
Output: a(x) ∈Rq,n in natural order
1: t= 1
2: for (m= n; m> 1; m=m/2) do
3: j1,h= 0,m/2
4: for (i= 0; i < h; i= i+ 1) do
5: j2 = j1 + t−1
6: W = ψbr(h+i,l) (mod q)
7: for (j = j1; i≤ j2; j = j+ 1) do
8: U = a[j]
9: V = a[j+ t]
10: N0 = (U +V) (mod q)
11: N1 = (U −V) ·W (mod q)
12: a[j] =N0
13: a[j+ t] =N1
14: end for
15: j1 = j1 + 2 · t
16: end for
17: t= 2 · t
18: end for
19: for (i= 0; i < n; i= i+ 1) do
20: a[i]← a[i] ·n−1 (mod q)
21: end for
22: return a

four and three DSP units for integer multiplier unit and word-level Montgomery
modular reduction unit, respectively. Overall, it uses seven DSP units and it has six
clock cycles latency. Since it is pipelined, it can perform one modular multiplication
operation per clock cycle after filling the pipeline.

In addition to the CT and GS butterfly operations, the proposed unified butterfly
unit can be configured to perform modular addition, modular subtraction, and mod-
ular multiplication operations in RNS bases (mod qi), auxiliary bases ((mod Bi)
and (mod msk)) and (mod 232), which are used during the homomorphic multipli-
cation operation. The butterfly unit takes three 32-bit coefficients (a, b, w) and two
control signals (ct, mt) as inputs, and it produces five 32-bit coefficients (e, o, s, m0,
m1) as outputs. According to the desired functionality, the control signals ct and mt
should be set as shown in Table 5.1, where unused configurations are shown with a
dash (–). The outputs e, o, s with configuration (ct,mt) = (0,0) and (ct,mt) = (1,0)
are used for NTT and INTT operations respectively. The other configurations are
used for the rest of the arithmetic operations performed in RNS bases, auxiliary
bases, and (mod 232). For example, modular multiplication operation in (mod qi)

73

Table 5.1 Unified Butterfly Unit Configuration

Out. mt= 0 mt= 1
ct= 0 ct= 1 ct= 0 ct= 1

e a+ b (mod qi) a+ b ·w (mod qi) a+ b (mod qi) a+ b ·w (mod 232)
o (a− b) ·w (mod qi) a− b ·w (mod qi) (a+ b) ·w (mod qi) a− b ·w (mod 232)
s – a− b ·w (mod qi)∗ – a− b ·w (mod 232)∗
m0 (a− b) ·w (mod qi)∗ – (a+ b) ·w (mod qi)∗ –
m1 – – (a+ b) ·w (mod 232) –
∗: Outputs one clock cycle before s

or (mod Bi) can be performed using (ct,mt) = (0,0) configuration, giving the first
operand, 0 and the second operand to a, b and w inputs respectively, and reading o
output.

The MNTT and MINTT operations are performed using the same alternating mem-
ory access pattern explained in Section 4.2.3 and Section 7.3.3. Every butterfly unit
takes two coefficients and one constant for MNTT and MINTT operations. There-
fore, one NTT core with 16 butterfly units needs 32 BRAMs for storing input and
output coefficients, and 16 BRAMs for storing the constants which are the precom-
puted powers of 2n-th root of unity. Due to the alternating memory access pattern,
the BRAMs storing input and output coefficients should have at least a depth of
256 while the BRAMs storing the 2n-th root of unity powers should have a depth
of 1535. All BRAMs have a 32-bit data length. One NTT core can perform both
MNTT and MINTT operations in 1536 clock cycles in a pipelined manner.

5.3.3 Overall Design and Scheduling

The proposed hardware architecture works with two RNS bases (q0, q1), three aux-
iliary bases (B0, B1, msk) and additional m̃ base which is only used for small
Montgomery reduction operation. As explained in Section 5.2.1, NTT, INTT, and
ciphertext multiplication operations need to be performed for both RNS and auxil-
iary bases, and they can be performed in parallel. Since there are five bases in total,
employing five NTT cores would be the best option for the performance. However,
this will lead to high area cost and low utilization of NTT cores for the remaining
arithmetic operations. For example, base conversion operations are not paralleliz-
able and some NTT cores need to be idle during conversion operations. Therefore,
the proposed hardware architecture uses three NTT cores. The high-level diagram
of the overall design is shown in Fig. 5.4.

74

Figure 5.4 The Proposed Hardware Architecture

Since there are five bases, we employ 5 ·32 = 160 BRAMs for storing the input, inter-
mediate, and output ciphertext components. Each 32 BRAMs store four ciphertext
components for one base as shown in Fig. 5.4. For example, the first 32 BRAMs
store all four ciphertext components (ct0,0, ct0,1, ct1,0, ct1,1) in base q0. As ex-
plained in Section 5.2.1, BRAMs storing one ciphertext component in one base use
memory depth of 256 for MNTT and MINTT operations. Therefore, in the overall
design, the depth of each BRAM is set as 1024 since each 32 BRAMs store four
ciphertext components in one base. The first 256 addresses of each BRAM store
the first component of the first ciphertext. Similarly, the next three 256 addresses
of each BRAM store other components of the ciphertexts.

For the homomorphic multiplication operation, MNTT, MINTT, and ciphertext
multiplication operations need to be performed for two RNS bases (q0, q1) and
three auxiliary bases (B0, B1, msk). On the other hand, for relinearization oper-
ation, MNTT, MINTT, and relinearization key multiplication operations need to
be performed for three RNS bases (q0, q1, q2). Therefore, the precomputed pow-
ers of 2n-th root of unity for six different bases need to be stored in BRAMs. As
explained in Section 5.2.1, the precomputed powers of 2n-th root of unity for one
base need 16 BRAMs where each BRAM has a depth of 1535. Therefore, we employ
6 ·16 = 96 BRAMs for storing the necessary powers of 2n-th root of unity for MNTT
and MINTT operations. Similarly, the precomputed relinearization keys need to be
stored in the hardware. Since our parameter set uses three RNS bases, the pro-
posed hardware should store a relinearization key with 4 components where each
component is in three RNS bases (q0, q1, q2) as detailed in Section 5.2.2. In overall,
4 ·3 ·4096 = 49152 coefficients need to be stored for relinearization operation. In the

75

proposed architecture, instead of employing separate BRAMs for storing the relin-
earization keys, we use the last 512 addresses of 96 BRAMs storing the powers of
2n-th root of unity to store the relinearization keys. Since NTT or INTT operations
and the multiplication operations with relinearization keys are not performed at the
same time, storing both precomputed constants in the same BRAMs will not cause
any memory read conflict. It should be noted that since the proposed work uses the
word-level Montgomery reduction algorithm, precomputed powers of 2n-th root of
unity and the relinearization keys are multiplied with the Montgomery residue R
before being sent to the FPGA. In addition to the NTT cores and BRAMs, the pro-
posed hardware architecture also utilizes large multiplexers for data routing between
NTT cores and BRAMs.

Before any operation, the proposed hardware first reads RNS bases, auxiliary bases,
precomputed powers of 2n-th root of unity, the relinearization keys and other neces-
sary precomputed data into the BRAMs and register files. The proposed hardware
then reads input ciphertexts (in RNS bases q0 and q1) into the first 64 BRAMs and
waits for the start signal. The homomorphic multiplication operation has three main
parts: (i) base conversion, small Montgomery reduction, and NTT operations, (ii)
ciphertext multiplication, and (iii) INTT, flooring, and Shenoy-Kumaresan conver-
sion operations. The scheduling of the homomorphic multiplication operation in the
proposed hardware architecture is shown in Fig. 5.5.

In the first part, each ciphertext component, which is stored in 256 addresses of
BRAMS, is processed as shown in Fig. 5.5 (a). For one ciphertext component in
RNS and auxiliary bases, the fast base conversion and small Montgomery reduction
operations take 1024 and 768 clock cycles, respectively. Since one NTT operation
is performed in 1536 clock cycles by one NTT core and five NTT operations need
to be performed for five bases, NTT operations take d5

3e ·1536 = 3072 clock cycles.
These operations are repeated for each ciphertext component by just changing the
read/write addresses during the operations. For example, the second component of
the first ciphertext performs the same operations as the first component of the first
ciphertext by only adding 256 to the addresses used by the first ciphertext compo-
nent. At the end of the first part, four ciphertext components in five bases are stored
in 160 BRAMs. For the ciphertext multiplication part, ciphertext components in the
same base need to be multiplied or accumulated. This requires reading two cipher-
text components in the same base at the same time. Therefore, the proposed work
performs a shuffling operation by rotating the components of the second ciphertext
to the next memory block (32 BRAMs), which takes 256 clock cycles, before the
second part of the homomorphic multiplication operation. In total, the first part of
the homomorphic multiplication operation takes 20480 clock cycles.

76

(a) Fast Base Conversion, Small Montgomery Reduction and NTT

(b) Ciphertext Multiplication

(c) INTT, Flooring and Shenoy-Kumaresan Conversion

Figure 5.5 Scheduling of Homomorphic Multiplication Operation

During the second part of the homomorphic multiplication operation, ciphertext
multiplication is performed for five bases. It takes 2048 clock cycles in total and
its scheduling is depicted in Fig. 5.5. (b). After the second step, the number of
ciphertext components is reduced from four to three. In the last step, INTT op-
eration is first performed for each ciphertext component in five bases. Then, the
multiplication with plaintext modulus t is performed. In the proposed hardware,
the multiplication of the resulting polynomials with n−1 after INTT operation is
merged with the multiplication operation with plaintext modulus t. Finally, floor-
ing and Shenoy-Kumaresan conversion operations are performed. For one ciphertext
component, INTT, multiplication with t ·n−1, flooring and Shenoy-Kumaresan con-
version operations are performed in 3072, 512, 1280, 1792, respectively. In total,
the last part of the homomorphic multiplication operation takes 6656 clock cycles
for each ciphertext component. Overall, the homomorphic multiplication operation
is performed in 42313 clock cycles including pipelining latency.

The relinearization operation has two parts: (i) decomposition, NTT and relin-
77

Figure 5.6 Scheduling of Relinearization Operation

earization key multiplication, and (ii) INTT and modulus switching. The scheduling
of the relinearization operation in the proposed hardware architecture is shown in
Fig. 5.6. The relinearization operation starts with the NTT operation of the third
component of the ciphertext (ct0 in Fig. 5.2) generated by the homomorphic multi-
plication operation for three RNS bases. Since it requires NTT operation for three
RNS bases, the proposed hardware re-organizes the memory structure for enabling
parallel computation. The third component of the ciphertext is read from the first 64
BRAMs and read to the next 96 BRAMs before NTT operations in 256 clock cycles.
Then, six NTT and the relinearization key multiplication operations are performed
in 3072 and 1024 clock cycles, respectively. In the second step, ciphertext compo-
nents generated after the relinearization key multiplication are transformed to the
polynomial domain using INTT operation. The INTT and the following modulus
switching operations take 1536 and 1152 clock cycles, respectively for one ciphertext
component. In total, the proposed hardware performs relinearization operation in
9881 clock cycles including pipelining latency.

In addition to the core hardware performing homomorphic multiplication and relin-
earization, we design and implement a proof-of-concept wrapper for the proposed
hardware architecture. The wrapper is designed to control the communication be-
tween the CPU and the FPGA. It employs 16 input FIFOs and 16 output FIFOs
for receiving input data from the CPU and sending output data to the CPU, re-
spectively.

5.4 Results and Comparison

To verify the correctness of the proposed hardware architecture, the SEAL library
is modified accordingly as explained in Section 5.3.1. Then, we verify the pro-
posed hardware architecture by comparing our hardware results with the results

78

Table 5.2 Our Hardware Implementation Results

Module LUTs (%) DFFs (%) DSPs (%) BRAMs (%) Memory Freq.
(KB) (MHz)

top a 136416 54120 336 368 1263
125b wrapper 249 1746 – 32 128

b core 136167 (32%) 52374 (6%) 336 (9%) 336 (25%) 1135
top b 147005 55232 336 400 1664

125b wrapper 252 1746 – 32 128
b core 146753 (34%) 53486 (6%) 336 (9%) 368 (27%) 1536
a:Performs only multiplication.
b:Performs both multiplication and relinearization.

we obtained from the SEAL library for the same parameter set and test inputs.
The proposed hardware architecture is developed into Verilog modules. Then, it is
synthesized and placed & routed for Xilinx Virtex VC709 Evaluation Board with
Virtex-7 FPGA (xc7vx690t-2ffg1761c) using performance-optimized and default set-
tings for synthesis and place & route, respectively. The implementation results of
our architecture are shown in Table 5.2, where we present the results for two differ-
ent architectures. The first architecture performs only homomorphic multiplication
while the second architecture can perform both homomorphic multiplication and re-
linearization operations. In Table 5.2, the wrapper and core represent the wrapper
module designed for the communication and the proposed hardware architecture,
respectively. The hardware architecture performing both operations uses 34% of
LUTs in Xilinx VC709 Evaluation Board with 1.5 MB memory requirement. It can
perform one homomorphic multiplication and relinearization operations in 42313
and 9881 clock cycles, respectively. With 125 MHz operating frequency, the same
operations are performed in 0.338 µs and 0.079 µs, respectively, excluding I/O over-
head.

Although there are different implementations of the BFV scheme targeting various
platforms, it should be noted that it is not easy to present a fair comparison due to
the use of different parameters and target platforms. The performance of our archi-
tecture is compared with SEAL library (Microsoft, 2020) and other related works in
the literature (Sinha Roy et al., 2018), (Sinha Roy et al., 2019), (Turan et al., 2020),
(Badawi et al., 2018), (Badawi et al., 2018), (Takeshita et al., 2020), (Reis et al.,
2020) in Table 5.3. The timing results presented in Table 5.3 include the performance
of the core operation excluding the I/O overhead for all works. The timing results
of homomorphic multiplication and relinearization operations in SEAL library are
obtained on a laptop with Intel Core i7-9750H @ 2.60GHz × 12 with 16 GB RAM
using GCC version 7.5.0 in Ubuntu 18.04 with single thread. The proposed archi-
tecture in this work improves the performance of homomorphic multiplication and
relinearization operations by 18.4× and 16.1× respectively, compared to the SEAL

79

Table 5.3 Comparative Table

Work n dlog2(q)e Platform Latency
M∗ R∗

(Sinha Roy et al., 2018) 32768 1228 Virtex-6 3360
(Sinha Roy et al., 2019) 4096 180 Zynq US+ 4.458
(Turan et al., 2020) 4096 180 AWS F1 4.340
(Badawi et al., 2018) 4096 180 Tesla P100 1.833
(Badawi et al., 2018) 4096 60 Tesla V100 0.997
(Takeshita et al., 2020) 16384 438 Intel Core i7 0.115

(Reis et al., 2020) 8192 152 Intel Core i5-5300U 6.600
SEAL (Microsoft, 2020) 4096 93 Intel Core i7-9750H 6.233 1.269

Ours 4096 93 Virtex-7 0.338 0.079
∗:Unit is msec.

library with the same parameter set. Since the proposed hardware architecture uses
only 34% of the FPGA resources, two of the proposed hardware can be instantiated
to further improve the performance. In that case, the performance of homomorphic
multiplication and relinearization operations will be improved by 36.8× and 32.2×
respectively, compared to the SEAL library.

There is no work in the literature using our parameter set. The GPU implementation
in (Badawi et al., 2018) uses a parameter set that is very similar to our parameters.
It performs one homomorphic multiplication operation (including relinearization) in
1 ms. Our hardware architecture shows more than 2× better performance than the
work in (Badawi et al., 2018). The works in (Badawi et al., 2018; Sinha Roy et al.,
2019; Turan et al., 2020) use the ring size of 4096 with 180-bit coefficient modulus
which is twice our coefficient modulus in size. Our work shows 10.6×, 10.4× and
4.4× better performance than the works in (Sinha Roy et al., 2019), (Turan et al.,
2020) and (Badawi et al., 2018), respectively. The work in (Sinha Roy et al., 2018)
uses a very large ring size and coefficient modulus. Thus, it is not feasible to make
a fair comparison using the performance figures. The only implementation showing
better performance than our architecture is the work in (Takeshita et al., 2020),
which shows almost 4× better performance than our work even though it uses a
larger parameter set. However, this implementation works with and is optimized for
constant coefficient modulus.

Although the proposed hardware architecture does not present a fully working hard-
ware/software co-design framework, we present a brief analysis for the I/O overhead
estimate of the proposed hardware architecture. As explained in Section 3.4 and
Section 4.2.4, the hardware/software co-design framework utilizing PCIe connection
using RIFFA (Jacobsen et al., 2012) shows that RIFFA can achieve 76% of the 32

80

Table 5.4 Hardware Resource Estimates

Design LUTs (%) DFFs (%) DSPs (%) BRAMs (%) Mult.
Depth

RNS-3a 146753 (34%) 53486 (6%) 336 (9%) 368 (27%) 1
RNS-4b 195670 (45%) 71314 (8%) 448 (12%) 496 (36%) 2
RNS-5c 244587 (57%) 89143 (10%) 560 (15%) 624 (46%) 3
RNS-6d 293504 (68%) 106972 (12%) 672 (18%) 752 (55%) 4
a:Our architecture.
b:Architecture with four NTT cores.
c:Architecture with five NTT cores.
d:Architecture with six NTT cores.

Gbps maximum theoretical bandwidth which is around 24 Gbps. The proposed ar-
chitecture takes two ciphertexts as inputs and generates one ciphertext as output,
where each ciphertext has two components that consist of 2 ·4096 32-bits coefficients.
In overall, 2 · 2 · 2 · 4096 · 32 = 1048576 bits and 2 · 2 · 4096 · 32 = 524288 bits should
be sent to the FPGA as input and received from the FPGA as output, respectively.
Thus, the I/O overhead for the communication between CPU and FPGA is calcu-
lated as (1048576+524288)/(24 ·106) = 65.55µs for one homomorphic multiplication
(including relinearization) operation. Considering the I/O overhead estimate, the
proposed architecture with a hardware/software framework can perform one homo-
morphic multiplication (including relinearization) operation in 0.482ms, which is
15.5× faster compared to the SEAL library. In addition to the input ciphertexts,
the proposed architecture in the FPGA should receive and store the precomputed
powers of 2n-th root of unity for q0, q1, B0, B1, msk bases and the precomputed
relinearization keys from the CPU. Since the precomputed data is sent to the FPGA
only once before any operation for a parameter set, the time required to complete
this data transfer is not included in the I/O overhead estimate.

Although the proposed work supports the multiplicative depth of one, it can be
scaled easily for larger parameter sets by employing extra NTT cores and memory
blocks. For example, a hardware architecture with the parameter set employing four
RNS bases will show a similar timing performance with our architecture (employing
four RNS bases) for performing the homomorphic multiplication operation. Also,
it will have a larger multiplicative depth at the expense of using more hardware
resources. To that end, we present the estimated hardware resources used for the
scaled versions of our hardware architecture in Table 5.4.

81

5.5 Summary

In this chapter, we present a high-performance hardware architecture for one of the
most complex and time-consuming homomorphic operations: homomorphic multi-
plication of two ciphertexts. The proposed hardware architecture performs homo-
morphic multiplication and relinearization operations of the RNS variant of the BFV
scheme (Fan & Vercauteren, 2012), (Bajard et al., 2017), and supports parameters
n= 4096, dlog2(q)e= 93 and dlog2(t)e= 17 with a multiplicative depth of one. The
proposed architecture employs three NTT cores where each core uses 16 unified
butterfly units. It uses 34% of LUTs on the Xilinx VC709 Evaluation Board. The
proposed architecture finishes homomorphic multiplication and relinearization op-
erations in 0.338 ms and 0.079 ms, respectively. Compared to highly-optimized
SEAL library (v3.5) (Microsoft, 2020), it shows 18.4× and 16.1× performance
improvements for the homomorphic multiplication and relinearization operations,
respectively, excluding I/O operations.

82

6. A HARDWARE ACCELERATOR FOR POLYNOMIAL

MULTIPLICATION OPERATION OF CRYSTALS-KYBER PQC
SCHEME

In this chapter, we present three different hardware architectures (lightweight, bal-
anced, high-performance) that implement the NTT, INTT and polynomial multi-
plication operations for the CRYSTALS-Kyber scheme. The proposed architectures
include a unified butterfly structure for optimizing polynomial multiplication and
can be utilized for accelerating the key generation, encryption and decryption oper-
ations of the CRYSTALS-Kyber scheme (Bos et al., 2018). 1

6.1 Introduction

NIST has started a PQC standardization process in 2016 and many lattice-based
post-quantum schemes are proposed since then (Chen et al., 2016). NIST recently
announced the post-quantum KEM finalists at round three of the standardization
process and the lattice-based KEM CRYSTALS-Kyber (Bos et al., 2018) has been
selected as one of the four finalists.

Lattice-based cryptosystems work with polynomial rings and perform polynomial
arithmetic; multiplication of two large-degree polynomials, in particular, which is
one of the most time-consuming operations utilized in lattice-based PQC schemes.
Schoolbook polynomial multiplication method is inefficient for implementing poly-
nomial multiplication operations and it has O(n2) complexity. NTT reduces O(n2)
complexity to quasi-linear complexity and, therefore, it is utilized in many lattice-
based cryptosystems suffering from high complexity of polynomial arithmetic (Ducas
et al., 2018), (Bos et al., 2018), (Alkim, Ducas, Pöppelmann & Schwabe, 2016),

1This chapter presents the work in (Yaman et al., 2021).

83

(Alkim et al., 2019), (Fouque et al., 2018). There are many works in the literature
targeting efficient implementations of main arithmetic blocks of the post-quantum
cryptosystems for software (Seiler, 2018), (Botros et al., 2019), (Lyubashevsky &
Seiler, 2019), (Kannwischer, Rijneveld, Schwabe & Stoffelen, 2019), (Alkim et al.,
2020) and hardware (Mert et al., 2020), (Fritzmann, Sigl & Sepúlveda, 2020), (Pöp-
pelmann & Güneysu, 2013), (Sinha Roy et al., 2014), (Huang, Huang, Lei & Wu,
2020), (Xin, Han, Yin, Zhou, Yang, Cheng & Zeng, 2020), (Banerjee et al., 2019),
(Xing & Li, 2021), (Alkim, Evkan, Lahr, Niederhagen & Petri, 2020) platforms.

Key generation, encryption and decryption operations of the CRYSTALS-Kyber
scheme also use polynomial multiplication operations and NTT-based polynomial
multiplication are utilized for efficient implementation of these operations. The
team of CRYSTALS-Kyber adopted the technique proposed by Seiler et al. (Lyuba-
shevsky & Seiler, 2019) and reduced the parameter q of CRYSTALS-Kyber from
7681 to 3329. This changed the definitions of NTT, INTT and coefficient-wise
multiplication (CWM) operations. To the best of our knowledge, there are five
hardware (Huang et al., 2020), (Xin et al., 2020), (Fritzmann et al., 2020), (Xing &
Li, 2021), (Alkim et al., 2020) and two software (Botros et al., 2019), (Alkim et al.,
2020) implementations proposed for the NTT/INTT and polynomial multiplication
operations of the CRYSTALS-Kyber with the new parameters and operation defi-
nitions. Our proposed hardware architecture outperforms most of the works in the
literature.

In this chapter, we propose three different hardware architectures (lightweight, bal-
anced, high-performance) performing NTT/INTT and polynomial multiplication
operations for the new parameter set of CRYSTALS-Kyber 2. The proposed archi-
tectures utilize a unified butterfly structure, which can be used for both NTT and
INTT operations. The lightweight, balanced and high-performance hardware archi-
tectures use one, four and sixteen butterfly units, respectively. They can be used
to accelerate key generation, encryption and decryption operations of CRYSTALS-
Kyber. Our high-performance hardware with 16 butterfly units shows up to 99×,
98× and 89× improved performance for NTT, INTT and polynomial multiplica-
tion, respectively, compared to the high-speed software implementations on Cortex-
M4 (Alkim et al., 2020).

The rest of the chapter is organized as follows. Section 6.2 introduces preliminar-
ies. Section 6.3 presents the hardware architectures with proposed optimizations.
Section 6.4 presents the implementation results and compares the results with prior
work, and Section 6.5 summarizes the chapter.

2Code is available at https://github.com/acmert/kyber-polmul-hw

84

https://github.com/acmert/kyber-polmul-hw

6.2 Preliminaries

In this section, we present a brief definition of the CRYSTALS-Kyber scheme and
its arithmetic operations.

6.2.1 A New Variant of NTT-based Polynomial Multiplication

In (Lyubashevsky & Seiler, 2019), Seiler et al. proposes a variant of NTT operation
which enables efficient polynomial multiplication in Rq,n with satisfying only q ≡ 1
(mod n) and without requiring pre-processing and post-processing operations. This
technique is adopted by CRYSTALS-Kyber and their parameter q is reduced from
7681 to 3329, which is satisfying 3329≡ 1 (mod 256). The NTT, INTT and CWM
operations of CRYSTALS-Kyber are also changed accordingly (Bos et al., 2018).
This new variant of NTT operation generates 128 degree-1 polynomials, different
from the original NTT operation, which generates 256 degree-0 polynomials. Simi-
larly, the new INTT operation takes 128 degree-1 polynomials as input. Since the
outputs of NTT operation are 128 degree-1 polynomials, CWM operation is per-
formed as the multiplications of two degree-1 polynomials in Zq[x]/(x2−ωi) where
i changes according to index of coefficients. Algorithms for NTT, INTT and CWM
operations of CRYSTALS-Kyber are shown in Algorithm 13, 14 and 15, respectively.
Similar to the MNTT and MINTT operations detailed in Section 2.5.2, new NTT
and INTT operations utilize CT and GS butterfly structures, respectively.

This new variant of NTT and INTT operations are represented asNT T and INT T
respectively. Similarly, the new CWM operation is represented with ◦. The poly-
nomial multiplication operation for CRYSTALS-Kyber with new NTT definition is
shown in Eqn. 6.1.

(6.1) c = INT Tn((NT Tn(a)◦NT Tn(b)))

85

Algorithm 13 In-place Forward NTT Algorithm for Kyber Scheme
Input: a(x) ∈Rq,n in standard-order
Input: ω ∈ Zq (primitive n-th root of unity)
Input: n= 2l, q (s.t. q ≡ 1 (mod n))
Output: a(x) ∈Rq,n in bit-reversed order
1: k = 1
2: for (i= 1; i < l; i= i+ 1) do
3: m= 2l−i
4: for (s= 0; i≤ n; s= s+m) do
5: for (j = s; i≤ s+m; j = j+ 1) do
6: A,B,W = a[j],a[m+ j],ωbr(k,l−1) (mod q)
7: T = (W ·B) (mod q)
8: E,O = (A+T) (mod q),(A−T) (mod q)
9: a[j],a[j+m] = E,O
10: end for
11: k = k+ 1
12: end for
13: end for
14: return a

6.2.2 CRYSTALS-Kyber

Kyber is a KEM transformed from a public-key encryption scheme and it is proposed
for NIST’s post-quantum standardization process (Bos et al., 2018). CRYSTALS-
Kyber algorithm works with polynomial ring Rq,n where q and n are 3329 and 256,
respectively. The simplified version of key generation, encryption and decryption
operations are described as follow:

• Key Generation: For A←Rk×k
q,n and s,e←R1×k

q,n ,

(pk,sk) = (A◦NT T (s) +NT T (e),NT T (s)).

• Encryption: For A←Rk×k
q,n , r,e1←R1×k

q,n , e2←Rq,n, pk and m ∈Rq,n,

ct= (u,v) = (INT T (AT ◦NT T (r))+e1,INT T (pkT ◦NT T (r))+e2 +m).

• Decryption: For sk = s and ct= (u,v),

m = v−INT T (skT ◦NT T (u)).

CRYSTALS-Kyber adjusts its security level by changing the parameter k which can
take any of {2,3,4}. Key generation operation requires 2k NTT operations and k2

CWM operations. Encryption operation requires k NTT, k2 + k CWM and k+ 1
INTT operations. Decryption operation requires k NTT, k CWM and 1 INTT
operations.

86

Algorithm 14 In-place Inverse NTT Algorithm for Kyber Scheme
Input: a(x) ∈Rq,n in bit-reversed order
Input: ω−1 ∈ Zq (modular inverse of primitive n-th root of unity)
Input: n= 2l, q (s.t. q ≡ 1 (mod n))
Output: a(x) ∈Rq,n in standard-order
1: k = 0
2: for (i= l−1; i≤ 1; i= i−1) do
3: m= 2l−i
4: for (s= 0; i≤ 2l; s= s+m) do
5: for (j = s; i≤ s+m; j = j+ 1) do
6: A,B,W = a[j],a[j+m],ωbr(k,l−1)+1 (mod q)
7: E,O = (A+B) (mod q),(A−B) ·W (mod q)
8: a[j],a[j+m] = DIVby2(E),DIVby2(O)
9: end for
10: k = k+ 1
11: end for
12: end for
13: return a

Algorithm 15 Coefficient-wise Multiplication Algorithm for Kyber Scheme
Input: a(x),b(x) ∈Rq,n in bit-reversed order
Input: ω ∈ Zq (primitive n-th root of unity)
Output: c(x) ∈Rq,n in bit-reversed order
1: for (i= 0; i≤ 2l−1; i= i+ 1) do
2: W = ωbr(i,l−1)+1 (mod q)
3: a0,a1 = a[2i],a[2i+ 1]
4: b0, b1 = b[2i],b[2i+ 1]
5: c[2i] = (a0 · b1 +a1 · b0) (mod q)
6: c[2i+ 1] = (a1 · b1 ·W +a0 · b0) (mod q)
7: end for
8: return c

6.3 Polynomial Multiplication Architecture

In this section, the proposed polynomial multiplier architectures and their main
arithmetic blocks are explained in a bottom-up fashion, starting from the imple-
mentation of the modular reduction unit. Then, we present our unified butterfly
unit and finally overall design is presented.

87

6.3.1 Modular Reduction Unit

In this section, we present a constant time modular reduction hardware for q =
3329 = 212− 29− 28 + 1. Modular reduction unit takes a 24-bit integer c as input
from a DSP block performing 12-bit×12-bit unsigned integer multiplication with
one clock cycle latency. The proposed modular reduction hardware utilizes the
property 212 ≡ 29 +28−1 (mod 3329) recursively in a similar approach with Zhang
et al. (Zhang et al., 2020) as shown in Eqn. 6.2-6.6 where c[x : y] represents the bits
of integer c from yth bit to xth bit with right-most bit is being 0thbit.

(6.2) d= 212c[23 : 12] + c[11 : 0]

(6.3) d= 29c[23 : 12] + 28c[23 : 12]− c[23 : 12] + c[11 : 0]

d= 212c[23 : 15] + 212c[23 : 16] + 29c[14 : 12]+(6.4)

28c[15 : 12]− c[23 : 12] + c[11 : 0]

d= (29 + 28−1)(c[23 : 15] + c[23 : 16])+(6.5)

29c[14 : 12] + 28c[15 : 12]− c[23 : 12] + c[11 : 0]

d= 29c[23 : 15] + 28c[23 : 15]− c[23 : 15]+(6.6)

29c[23 : 16] + 28c[23 : 16]− c[23 : 16]+

29c[14 : 12] + 28c[15 : 12]− c[23 : 12] + c[11 : 0]

We apply this approach recursively until no bits left at a position greater than 12.
Throughout this process, we eliminate redundant operations by combining identical
bits at the same position. For example, there are two 28c[15] in Eqn. 6.6 where
they can be combined as single 29c[15]. We also convert subtraction operation
into addition by negating the subtracted integer, adding 1 to the final result, and
extending the sign bit to 15th bit. As shown in Fig. 6.1, this recursive process
generates a tree of bits where white and red boxes represent bit and negated bit of
the input c, respectively.

88

Figure 6.1 Modular Reduction Unit

To reduce the tree, we utilize Dadda’s method (Dadda, 1965) which produces an
incomplete result with two integers, C and S, using 50 full adders (FAs) and 13 half
adders (HAs). To generate the final result, the resulting integers need to be added.
We observe that the final result at the end of the addition operation is between
9271 and -3264 which is not in the desired range [0, q). Therefore, (C + S + q),
(C +S), (C +S − q) and (C +S − 2q) are calculated separately after the Dadda
tree and the result in the range [0, q) is selected as the final result. The proposed
modular reduction unit for q = 3329 has 1 clock cycle latency. There are other
modular reduction methods such as Barrett and Montgomery (Mert et al., 2020).
Both Barrett and Montgomery reductions require 2 multiplication operations with
additional addition and subtraction operations. Montgomery modular reduction
also requires its operands to be converted back and forth in Montgomery space. On
the other hand, our proposed implementation utilizes only addition and subtraction
operations.

6.3.2 Unified Butterfly Unit

NTT operation requires CT butterfly which performs A+B ·W (mod q) and A−
B ·W (mod q) while INTT operation utilizes GS butterfly structure which performs
A+B (mod q) and (A−B) ·W (mod q). Since the proposed design aims to use
different butterfly structures for NTT and INTT operations, we propose a unified
butterfly unit shown in Fig. 6.2.

The proposed butterfly unit uses no extra modular multiplier, adder or subtractor

89

Figure 6.2 Unified Butterfly Unit

than a dedicated CT or GS butterfly unit. The proposed butterfly unit has one mod-
ular multiplier, one modular adder and one modular subtractor. It also has pipeline
registers for synchronizing output coefficients and multiplexers for reconfigurability.
The proposed butterfly unit takes A, B and W as inputs, performs butterfly opera-
tion, and generates two coefficients E and O as outputs corresponding to the steps
6–9 of the Algorithm 13 and the steps 6–8 of the Algorithm 14, respectively. It also
takes control signal CT as input which is used as a selection signal for multiplexers
in the butterfly unit. When the CT signal is set as 0 and 1, the butterfly unit is
configured to work as GS and CT butterfly, respectively. The butterfly unit has
three clock cycles latency for both CT and GS configurations.

The butterfly unit employs the technique proposed in (Zhang et al., 2020) to elim-
inate the multiplication of resulting coefficients with n−1 (mod q) after the INTT
operation. This technique multiplies the resulting coefficients of GS butterfly with
2−1 (mod q), which can be performed using addition and shift operations. For an
odd prime q, x ·2−1 = x

2 (mod q) can be performed as shown in Eqn. 6.7 where �
represents right shift operation.

(6.7) x

2 (mod q) = (x� 1) +x[0] · (q+ 1
2)

Utilizing this property, one can divide the output of GS butterfly by two and cal-
culate A+B

2 (mod q) and (A−B)·W
2 (mod q) coefficients instead of A+B (mod q)

and (A−B) ·W (mod q) as shown in the Step 8 of Algorithm 14. In this work, we
adopt this technique and insert two DIVby2 units into our butterfly units (shown as
red boxes in Fig. 6.2) which perform the operation shown in Eqn. 6.7. Therefore,
we eliminate extra 256 multiplication operations in Zq after INTT operation at the

90

expense of extra hardware in the butterfly unit. This technique reduces the number
of modular multiplication operations in INTT by 22%.

The proposed butterfly unit can also be configured to perform CWM operations
defined in Algorithm 15. A polynomial multiplication in Zq[x]/(x2−ωi) requires
five multiplication and two addition operations as shown in the steps of 5–6 of
Algorithm 15. This operation can be realized using a series of multiply-accumulate
operation which can be performed using CT butterfly configuration and reading E
output from the butterfly unit. Fig. 6.3 illustrates the multiplication of (a0 + a1x)
and (b0 + b1x) in Zq[x]/(x2−ω) where inputs coefficients are mapped to A, W
and B inputs of butterfly unit for calculating A+B ·W (mod q). For example, 0,
a1 and b0 coefficients are sent to A, W and B inputs, respectively, for calculating
0 + a1 · b0. To improve the latency, multiplication results a1 · b0, a1 · b1 and a0 · b0,
which are shown with red, blue and green in Fig 6.3, are forwarded to the input of
the butterfly unit before being stored back to the memory. It takes five clock cycles
for a CWM operation after filling the pipeline.

There are other unified butterfly structures proposed in previous works (Fritzmann
et al., 2020), (Xin et al., 2020), (Xing & Li, 2021). The butterfly units proposed
in (Fritzmann et al., 2020), (Xin et al., 2020) use two multipliers, whereas our
design uses only a single modular multiplier unit. Also, our butterfly unit realizes
the multiplication with 2−1 (mod q) operation after GS butterfly using adder and
therefore, eliminates the multiplications with n−1 at the end of INTT operation. The
butterfly unit in (Xing & Li, 2021) utilizes one modular multiplier unit with two
modular adder and subtractor units while our butterfly unit employs one modular
adder and one modular subtractor.

6.3.3 Overall Design

Fig. 6.4 shows the high-level block diagram of the proposed hardware architecture
with one butterfly unit. There are four dual-port BRAMs for each butterfly unit
where two BRAMs are used to store the first input polynomial and output polyno-
mial, and two BRAMs are used to store the second input polynomial. There is also
one BROM for each butterfly unit to store the pre-computed powers of the twiddle
factor. Prior to any operation, the pre-computed powers of twiddle factor are loaded
and stored in BROM blocks as explained in Chapter 4 (Mert et al., 2020). The in-
put polynomials are loaded into the BRAMs with input multiplexers. Then, the
proposed hardware starts its operation according to start signals and the resulting

91

Figure 6.3 Scheduling of CWM Operation for CRYSTALS-Kyber

polynomial is read using the output multiplexers after the operation.

The proposed architecture implements NTT and INTT schemes shown in Algo-
rithm 13 and 14, respectively. Both operations consist of 7 stages and 128 butterfly
operations should be performed in each stage. An n-pt NTT operation can be
performed as separate two (n/2)-pt NTT operations after the first stage and this
approach recursively can be applied to the smaller NTT operations. In this work, we
utilize this property as detailed in Chapter 4 (Mert et al., 2020) and Chapter 7 (Mert
et al., 2020), and propose an efficient memory access pattern, which is illustrated
in Fig. 6.5 where numbers inside the boxes represent indices of stored coefficients.
In an NTT stage, coefficients stored in the first half of the memory blocks should
be read and written into the first memory block due to changing access pattern of
NTT operation in each stage. Similarly, coefficients in the second half of the mem-
ory blocks should be read and written into the second memory block as shown in
Fig. 6.5.

We adopt a changing memory read pattern for efficient memory management. Since
the coefficients in consecutive memory addresses should be written into the same
memory block after the butterfly operation for the next stage, they should not be
read consecutively. Instead, coefficients from the first and second half of the memory
blocks should be read in an alternating way. For example, in the first stage of the
NTT operation, after reading the coefficients in address 0, coefficients in address
(n/4) should be read instead of address 1 for the next butterfly operation. Since the
coefficients read in a clock cycle should be written into the same memory block after
butterfly operation, we place an extra register at the output of O output of butterfly

92

Figure 6.4 Overall Design with one
Butterfly Unit

Figure 6.5 Memory Access Pattern for
one Butterfly Unit

unit as shown with green in Fig. 6.2. Therefore, two coefficients produced by one
butterfly unit can be written into the same memory block in two consecutive clock
cycles. Since the proposed architecture is pipelined, this extra register does not
cause any stall. Similarly, INTT operation uses the same memory access pattern.

Our proposed balanced and high-performance designs use 4 and 16 butterfly units
respectively. The number of memory blocks increases with the number of butterfly
units to not stall the pipeline and the coefficients are distributed across memory
blocks accordingly. While the number of memory blocks is increasing, the used
address space decreases accordingly. For example, the design with one butterfly
unit (and with two BRAMs for each polynomial) uses BRAMs with a depth of
128 while the design with four butterfly units (and with eight BRAMs for each
polynomial) uses BRAMs with a depth of 32. The memory access pattern for the
design with four butterfly units is shown in Fig. 6.6.

The proposed designs can take two polynomials as inputs and they can perform
NTT and INTT operations for both input polynomials. Also, the designs can per-
form CWM operation between input polynomials. The proposed architectures with
one, four and sixteen butterfly units finish NTT operation in 904, 232, 69, INTT op-
eration in 904, 233, 71, and CWM operation in 647, 167, 47 clock cycles, respectively,
excluding the time for loading input polynomials into BRAMs.

93

Figure 6.6 Memory Access Pattern for four Butterfly Units

6.4 Results and Comparison

In this section, we present our implementation results and their comparison with
the works in the literature.

6.4.1 Prior Works

There are full software implementations of CRYSTALS-Kyber with old parame-
ter sets in the literature. Previously, Seiler et al. (Seiler, 2018) optimized NTT,
INTT and polynomial multiplication operations utilizing AVX2 instructions on Sky-
lake and Haswell architecture processors. Later, they proposed a faster design
in (Lyubashevsky & Seiler, 2019) using a new modular reduction technique. An-
other implementation of the CRYSTALS-Kyber scheme is published by Botros et
al. (Botros et al., 2019). They proposed a new NTT module for new CRYSTALS-
Kyber parameters with optimizations, such as merging NTT layers and instruc-
tion alignment of polynomials on ARM Cortex-M4 processors. Similarly, Alkim
et al. (Alkim et al., 2020) proposed CRYSTALS-Kyber implementation on ARM
Cortex-M4 which outperforms the work in (Botros et al., 2019). There are also
hardware accelerators for CRYSTALS-Kyber proposed in the literature with new

94

CRYSTALS-Kyber parameters. In (Huang et al., 2020), the authors proposed full
hardware implementation of CRYSTALS-Kyber with new parameters utilizing re-
source reusing. Recent work (Xin et al., 2020) implements PQC specific schemes
on a vector co-processor with RISC-V SCR1 processor targeting ASIC platform.
This work supports CRYSTALS-Kyber with new parameters. The study in (Fritz-
mann et al., 2020) implements an NTT accelerator with RISC-V architecture which
can be applied to different PQC schemes. Alkim et al. (Alkim et al., 2020) pro-
posed an instruction set extension to RISC-V for improving PQC schemes including
CRYSTALS-Kyber. In (Xing & Li, 2021), the authors proposed a compact co-
processor highly optimized for CRYSTALS-Kyber. Some of these works do not pro-
vide results for operations separately, so they are not included or are shown partially
on Table 6.1. There are also hardware accelerators proposed for old CRYSTALS-
Kyber parameters (Mert et al., 2020), (Pöppelmann & Güneysu, 2013), (Sinha Roy
et al., 2014), (Banerjee et al., 2019), (Chen, Ma, Chen, Lin & Jing, 2020), (Chen,
Ma, Chen, Lin & Jing, 2021), which are not included in the comparison.

6.4.2 Implementation Results

We developed three hardware architectures with one, four and sixteen butterfly units
(lightweight, balanced and high-performance, respectively) proposed in this work
into Verilog modules. Then, they are synthesized, placed & routed for different
FPGA families. The proposed hardware architectures are first implemented for
Spartan-6 FPGA (xc6slx75fgg676-3) using Xilinx ISE 14.7 with default synthesis
options. Then, they are implemented for Artix-7 FPGA (xc7a200tffg1156-3) using
Xilinx Vivado 2018.1 with default synthesis options. Implementation results of our
architectures and the works in the literature are shown in Table 6.1. The proposed
modular reduction and butterfly units are also synthesized, placed & routed as
separate units for Spartan-6 and Artix-7 FPGAs. The modular reduction unit uses
236 LUTs with 154 MHz and 195 LUTs with 212 MHz for Spartan-6 and Artix-7,
respectively. Butterfly unit uses 377 LUTs, 242 DFFs, 1 DSPs with 129 MHz and
312 LUTs, 207 DFFs, 1 DSPs with 192 MHz for Spartan-6 and Artix-7, respectively.

There are not many prior works in the literature using the new CRYSTALS-Kyber
parameter set. However, not all works give performance figures for separate opera-
tions. Therefore, it is hard to compare our designs for each operation and parame-
ter set with other works. Our high-performance hardware architecture outperforms
the prior works for polynomial multiplication operation in terms of latency. The

95

proposed high-performance hardware shows up to 99×, 98× and 89× better per-
formance for NTT, INTT and polynomial multiplication, respectively, compared to
the high-speed software implementation on ARM Cortex-M4 (Alkim et al., 2020).
Our high-performance design is also 6× faster for NTT operation compared to the
software implementation of the CRYSTALS-Kyber PQC scheme with old parame-
ter sets on Intel processors with Skylake and Haswell architectures (Seiler, 2018).
For hardware implementations, our high-performance design shows better latency
performance for NTT operation than the prior works in the literature except for the
work in (Xin et al., 2020) proposing an ASIC design with a large 521K gate area.
Our high-performance design accelerates NTT operation on the FPGA platform up
to 28× compared to the work in (Fritzmann et al., 2020) which uses a 16-bits q. Our
balanced design also shows better performance in terms of latency than the prior
works in the literature. We also provide utilization results of our works for low-cost
Spartan-6 FPGAs. The works (Seiler, 2018) and (Lyubashevsky & Seiler, 2019) are
using Skylake CPUs which are not suitable for embedded systems. That makes our
design affordable and practical in the use of the CRYSTALS-Kyber PQC scheme in
embedded systems.

96

Table 6.1 Implementation Results and its Comparison to Prior Work

Work Platform n q / dlog2(q)e LUT/REG/DSP/BRAM Clock Latency (Cycle Count)
(MHz) NTT INTT PMd

(Seiler, 2018)
a Intel Corei7-6600U 256 7681 / 13 – / – / – / – – 419 394 1278

Intel Core i7-4770K 256 7681 / 13 – / – / – / – – 460 440 1432

(Botros et al., 2019)
a,b,c

ARM Cortex-M4 256 7681 / 13 – / – / – / – – 9452 10373 32576
256 3329 / 12 – / – / – / – – 7725 9347 27873

(Alkim et al., 2020)a,b,c ARM Cortex-M4 256 3329 / 12 – / – / – / – – 6855 6983 23018

(Alkim et al., 2020)a,b Artix-7 256 3329 / 12 1738 / 1599 / 4 / 34 60 8595 9427 30667
1842 / 1634 / 5 / 34 60 6868 6367 22498

(Fritzmann et al., 2020)a,b Zynq-7000 256 – / 16 2908 / 170 / 9 / – – 1935 1930 –
(Huang et al., 2020)b,c Artix-7, Virtex-7 256 3329 / 12 – / – / – / – 225 1834 – –
(Xing & Li, 2021)b,c Artix-7 256 3329 / 12 1737 / 1167 / 2 / 3 161 512 512 1792

(Xin et al., 2020)a,b 28nm CMOS 256 3329 / 12 512K / – / – / – – 41 – –
256 7681 / 13 45

Ours-1 BTF
b,c Spartan-6

256 3329 / 12

985 / 444 / 1 / 5 138 904 904 3359
Artix-7 948 / 352 / 1 / 2.5 190

Ours-4 BTFs
b,c Spartan-6 2498 / 1046 / 4 / 18 127 232 233 864

Artix-7 2543 / 792 / 4 / 9 182

Ours-16 BTFs
b,c Spartan-6 9898 / 3688 / 16 / 70 115 69 71 256

Artix-7 9508 / 2684 / 16 / 35 172
a:Works with multiple n and q. b:Supports new CRYSTALS-Kyber parameters. c:Optimized for constant q. d:PM: INTT(CWM(NTT(A), NTT(B))).

97

6.5 Summary

In this work, we present three hardware architectures (lightweight, balanced, high-
performance) performing NTT, INTT and polynomial multiplication operations for
the CRYSTALS-Kyber scheme. These operations are extensively utilized in key
generation, encryption and decryption operations of CRYSTALS-Kyber and our
proposed polynomial multiplier hardware can be utilized as a hardware accelerator
for these operations, hence for CRYSTALS-Kyber. Compared to the high-speed
software implementations on Cortex-M4 (Alkim et al., 2020), the proposed high-
performance hardware shows up to 99×, 98× and 89× better performance for NTT,
INTT and polynomial multiplication, respectively.

98

7. AN EXTENSIVE STUDY OF FLEXIBLE DESIGN METHODS

FOR THE NUMBER THEORETIC TRANSFORM

In this chapter, we evaluate two different design methods for design-time flexible
NTT implementations. In our first approach, we present a parametric NTT hard-
ware generator that provides design-time configurability for both algorithm param-
eters and throughput. The proposed hardware generator takes the degree of poly-
nomial (n), coefficient size (dlog2(q)e), the number of processing elements as inputs
and generates the corresponding hardware. In the second approach, we present an
HLS-based NTT implementation and we investigate the impact of different pragmas
and HLS parameters on the performance and flexibility of the generated hardware.
Finally, we present a comprehensive analysis of all the resulting designs and compare
different design methods for implementing NTT architectures. 1

7.1 Introduction

Flexibility is a key requirement for digital systems to reduce design costs (Keutzer,
Newton, Rabaey & Sangiovanni-Vincentelli, 2000), (Verbauwhede & Schaumont,
2005) and consolidate changing standards, performance requirements, target plat-
forms, and algorithmic alternatives (Milder, Franchetti, Hoe & Püschel, 2012). It
is especially important for next-generation cryptographic systems such as lattice-
based cryptography. There are three primary design methods to build design-time
flexibility: (i) a parametric hardware generator with customized parameters, (ii)
a software compiled on a processor, and (iii) a software directly transformed into
hardware through an HLS tool. Among these options, software tends to be the
most flexible solution with the worst performance and the parametric hardware is
often the most efficient one with the worst flexibility. HLS, by comparison, forms

1This chapter presents the works in (Mert et al., 2020) and (Mert et al., 2020).

99

the middle ground, resulting in medium performance and flexible solutions. In this
work, we will investigate the first and the last methods.

Efficient lattice-based cryptography operates with polynomial rings and poly-
nomial multiplication is a well-known computational bottleneck of lattice-based
cryptosystems—indeed, schoolbook multiplication corresponds to 95.7% and 98.8%
percent of the overall computation time for the encryption and decryption processes
in a lattice-based public-key encryption and decryption scheme, respectively (Pöp-
pelmann & Güneysu, 2014). The NTT reduces the O(n2) complexity of the school-
book polynomial multiplication to the quasi-linear complexity of O(n · log2(n)).
NTT is thus a major building block of lattice-based cryptography implementations.

There are two design-time flexibility requirements for specialized NTT designs. The
first one is due to varying algorithmic parameters which are the degree of the polyno-
mial, n, and coefficient size, k = dlog2(q)e. For example, while NewHope algorithm
(Alkim et al., 2016) uses polynomials of degree 1024 with 14-bit coefficients, most
HE schemes operate with larger parameters. For example, CryptoNets (Brutzkus
et al., 2019) operates with polynomials of degree 4096 with up to 60-bit coefficients.
The second flexibility need is due to a consequence of performance requirements of
the applications, even for a fixed algorithm. For instance, while a cloud computing
infrastructure demands high-throughput hardware, an IoT/embedded device would
favor a low area/energy design. Therefore, throughput is the second flexibility pa-
rameter, mainly determined by the number of processing elements (PEs), which
carry out the fundamental arithmetic operations in the design.

In Table 7.1, we report a summary of the previous works in the literature, which
lists the specific setting for parameters, the design method, and the target platform
thereof. The prior NTT designs have so far been fixed in both aspects of algorithm
parameters and throughput. Notwithstanding, extending the hardware from a spe-
cific setting to a more generic and flexible design is non-trivial due to memory access
and control flow challenges. Although there are NTT hardware designs in the lit-
erature offering run-time configurability for algorithm parameters, they have fixed
throughput (Banerjee et al., 2019), (Song et al., 2018). Thus, as various settings in
Table 7.1 indicate, the quest for a flexible and efficient design that supports a wide
range of parameters is still outstanding.

This work provides one of the first evaluation of design-time flexible NTT designs and
uses the Xilinx FPGA devices as the common demonstrator platform. To that end,
we investigate two different design approaches. In our first approach, we propose
an optimized, parametric hardware generator for the NTT operation. This design
offers flexibility for both algorithm parameters and throughput, and supports a

100

Table 7.1 Previous NTT Implementations

Method Work n dlog2(q)e PE Target Platform

H
LS

(Ozcan & Aysu, 2020)c 1024 14 10 Virtex-7
(Kawamura et al., 2018)c 1024 10 – Virtex-7

(Millar, 2019)c 512 17 – Zynq US+
So

ftw
ar
e

(Botros et al., 2019)a,b 256 12 2 ARM Cortex-M4

(Seiler, 2018) 256 13 4 Intel Core i7-4770K1024 14

(Alkim et al., 2016)a,b 1024 14 1 ARM Cortex-M0
ARM Cortex-M4

(Mert et al., 2020),(Microsoft, 2019) 1024 27 – Intel Core i9-7900X

H
ar
dw

ar
e

(Aysu et al., 2013)a 256 17 1 Spartan-6
(Pöppelmann & Güneysu, 2013)a,b 256 13 1 Virtex-6

(Sinha Roy et al., 2019)b 4096 30 2 Zynq US
(Öztürk et al., 2017)b 32768 32 256 Virtex-7

(Mert et al., 2019)
b

1024 32 1 Spartan-6
64 Virtex-7

(Mert et al., 2020)
b

1024 32 32 Virtex764
(Sinha Roy et al., 2014)c 256 13 1 Virtex-6

(Banerjee et al., 2019)c
256 13

1 40nm CMOS512 14
1024 14

(Song et al., 2018)c 256 13 16 40nm CMOS
(Fritzmann & Sepúlveda, 2019)c 256 13 1 UMC 65nm

(Xing & Li, 2020)a,b 1024 14 4 Artix-7
(Zhang et al., 2020)b 16384 32 1 Virtex-7

(Sinha Roy et al., 2018)b 65536 30 16 Virtex-6
a:Uses fixed q. b:Uses fixed n. c:Supports multiple n and q.

wide range of cryptographic algorithms. First, it can cater different arithmetic
structures for varying polynomial degrees and coefficient sizes. Second, it can provide
a trade-off in area vs. performance by incorporating a different number of PEs.
The user of our generator simply enters polynomial degree and coefficient size and
a desired number of PEs, and our tool automatically produces a corresponding
efficient hardware 2. Prior works, by contrast, are either ad-hoc efforts fixed for
a specific setting (Aysu et al., 2013), (Pöppelmann & Güneysu, 2013), (Sinha Roy
et al., 2019), (Öztürk et al., 2017), (Mert et al., 2019), (Mert et al., 2020), (Xing &
Li, 2020), (Zhang et al., 2020), (Sinha Roy et al., 2018) or employ a fixed number of
PEs (Banerjee et al., 2019), (Sinha Roy et al., 2014), (Song et al., 2018), (Fritzmann
& Sepúlveda, 2019). We furthermore investigate the HLS approach for generating
flexible NTT designs and provide implementation results. We finally analyze the
resulting implementations and compare them with each other and to prior fixed
NTT designs in the literature.

2Code is available at https://github.com/acmert/parametric-ntt

101

https://github.com/acmert/parametric-ntt

Figure 7.1 An overview of the design method’s results and comparison for the NTT
of NewHope-512. The hand-tuned hardware designs lead to most efficient results.

For both approaches, we implement the NTT designs with parameters suitable for
post-quantum KEMs (CRYSTALS-Kyber (Bos et al., 2018), NewHope (Alkim et al.,
2016)), DS schemes (CRYSTALS-Dilithium (Ducas et al., 2018), Falcon (Fouque
et al., 2018), qTESLA (Alkim et al., 2019)) as well as HE applications (SEAL (Mi-
crosoft, 2019), CryptoNets (Brutzkus et al., 2019)) using the parametric hardware
generator and HLS, and quantify the area-cost and the latency of the resulting
designs.

Fig. 7.1 shows the summary of our results for a particular NTT with n = 512 and
dlog2(q)e = 14 used in NewHope-512. The results, in log2 scale, quantify the supe-
riority of hand-tuned hardware over HLS-based implementation. For a similar area
(LUT) cost, the hardware achieves an 11.6× faster design than HLS-based design.
Furthermore, the results show that our hardware generator automates the design
space exploration of hardware—the results show a coverage of 61.9× in area and
32.5× in latency. Such a coverage is not yet possible with HLS tools because they
fail to generate a hardware with more than 8 PEs.

The rest of the chapter is organized as follows. Section 7.2 summarizes the related
prior work. Section 7.3 introduces the parametric hardware design with novel opti-
mizations. Section 7.4 discusses the HLS-based design method and tuning the HLS
framework for efficient exploration of the design space. Section 7.5 presents imple-
mentation results, compares the resulting implementations among themselves and
with prior work, and Section 7.6 concludes the chapter.

102

7.2 Prior Implementations of NTT

Different algorithms and architectures targeting various platforms for NTT are pro-
posed in the literature in order to facilitate practical implementations of lattice-based
cryptography. There are many NTT architectures proposed in the literature using
different methods and targeting different platforms: low-level hardware implementa-
tions ((Aysu et al., 2013), (Pöppelmann & Güneysu, 2013), (Sinha Roy et al., 2019),
(Öztürk et al., 2017), (Mert et al., 2019), (Mert et al., 2020), (Sinha Roy et al.,
2014), (Banerjee et al., 2019), (Song et al., 2018), (Fritzmann & Sepúlveda, 2019),
(Xing & Li, 2020), (Zhang et al., 2020), (Sinha Roy et al., 2018)), HLS implementa-
tions ((Ozcan & Aysu, 2020), (Kawamura et al., 2018), (Millar, 2019)) and software
implementations ((Brutzkus et al., 2019), (Microsoft, 2019), (Halevi & Shoup, 2014),
(Aguilar-Melchor et al., 2016), (Dai & Sunar, 2015), (Botros et al., 2019), (Seiler,
2018)).

The works (Öztürk et al., 2017), (Mert et al., 2019) use the iterative radix-2 DIF
NTT algorithm (Chu & George, 1999) and propose balanced NTT implementa-
tions considering I/O requirements of the CPU-FPGA system. In (Mert et al.,
2020), two different NTT architectures utilizing radix-2 DIF NTT algorithm (Chu
& George, 1999), (Longa & Naehrig, 2016) and Four-Step (Dai & Sunar, 2015) NTT
algorithms are presented. The NTT architectures are utilized to accelerate the en-
cryption and decryption operations implemented in SEAL library (Microsoft, 2019)
on the FPGA. In (Sinha Roy et al., 2019) and (Sinha Roy et al., 2018), the authors
implement an iterative version of the NTT algorithm on FPGA; while the work
in (Sinha Roy et al., 2019) implements modular reduction operation using a sliding
window method, (Sinha Roy et al., 2018) uses Barrett modular reduction. The work
in (Zhang et al., 2020), which targets both FPGA and ASIC platforms, proposes a
method to eliminate the first stage of the NTT operation.

In (Fritzmann & Sepúlveda, 2019), (Banerjee et al., 2019) and (Song et al., 2018),
the works target ASIC platform. In (Banerjee et al., 2019), the authors propose a re-
configurable crypto-processor supporting multiple lattice-based cryptosystems. The
work in (Banerjee et al., 2019) utilizes the constant-geometry NTT algorithm (Pol-
lard, 1971), which features a constant read/write pattern in each stage of NTT
operation and uses single-port RAM in order to reduce hardware cost. Also, it pro-
poses a configurable Barrett modular reduction implementation. In (Fritzmann &
Sepúlveda, 2019), the authors focus on low-power NTT design for battery-powered
IoT devices with a discussion on countermeasures for side-channel attacks. The

103

method in (Song et al., 2018) proposes an accelerator for R-LWE based cryptosys-
tems for multiple parameter sets, which uses 16 butterfly units in its NTT core and
divides large NTT operations into smaller 64-pt NTTs.

The works in (Ozcan & Aysu, 2020), (Kawamura et al., 2018), (Millar, 2019) use
HLS to generate NTT hardware targeting FPGA. These works use HLS-friendly
NTT algorithms and HLS directives to generate efficient NTT hardware. In (Ozcan
& Aysu, 2020), the authors propose an NTT-based polynomial multiplier imple-
menting the memory-efficient NTT algorithm introduced in (Aysu et al., 2013).
In (Kawamura et al., 2018), the for loop structure of the NTT algorithm is mod-
ified for efficiently applying Vivado HLS directives. In (Millar, 2019), the authors
propose an FFT-based polynomial multiplier that uses an FFT algorithm with ping-
pong memory buffer utilizing 2D arrays in HLS.

Different software implementations for NTT are also proposed in the literature.
The software libraries CryptoNets (Brutzkus et al., 2019), SEAL (Microsoft, 2019),
HElib (Halevi & Shoup, 2014) and NFLlib (Aguilar-Melchor et al., 2016) provide
efficient software implementations of arithmetic blocks for the lattice-based HE
schemes, which include efficient NTT implementations. The work in (Botros et al.,
2019) proposes a high-speed implementation of CRYSTALS-Kyber (Bos et al., 2018)
on ARM Cortex-M4 micro-controller, where an NTT implementation for n = 256
and q = 3329 was also introduced. The work in (Seiler, 2018) proposes an AVX2
optimized NTT implementation that utilizes a modified Montgomery modular re-
duction algorithm. In (Alkim et al., 2016), NewHope-1024 (Alkim et al., 2016) is im-
plemented on ARM Cortex-M0 and Cortex-M4 micro-controllers with NTT/INTT
implementation optimized for the parameter set of NewHope-1024. Also, there are
GPU accelerators for NTT and HE applications such as cuHe (Dai & Sunar, 2015).

7.3 Design Method I: Parametric Hardware Generator Design

NTT computations have three parts: loading related data (steps 5 and 6 in Algo-
rithm 1), performing arithmetic computations (steps 7 and 8 in Algorithm 1) and
storing the result (steps 9 and 10 in Algorithm 1). Within each PE, the so-called
butterfly units execute arithmetic computations, which are composed of modular ad-
dition, subtraction, and multiplication. The Algorithm 1 loops over log2(n) stages
and performs n/2 butterfly operations at each stage. To achieve higher throughput,

104

it is possible to unroll NTT loops and parallelize the butterfly operations by using
multiple PEs.

The parametric NTT hardware generator takes the polynomial degree, the coefficient
size, and the number of PEs as input parameters, and generates an optimized NTT
hardware that performs NTT operation for the given parameters. It is notable that
the design provides flexibility not only for polynomial degree and coefficient size,
but also the number of PEs, which determines the throughput of the hardware. The
same unit can also execute the INTT. We will discuss the design in a bottom-up
fashion, starting with the design of efficient modular multiplication. We will then
describe the construction of the PE and finally explain its parallelization along with
the optimized memory access structure and the organization.

7.3.1 A Design-time Configurable Word-Level Montgomery Modular

Multiplier Unit

The modular multiplier is the key component of NTT arithmetic. This unit consists
of two parts: an integer multiplier followed by a modular reduction. In this work,
we developed the parameterized version of both parts. The design-time configurable
parametric integer multiplier hardware uses the coefficient size (dlog2(q)e) as a pa-
rameter. Each input of the multiplier is divided into 16-bit pieces and one DSP
block is used for each 16-bit×16-bit multiplication operation. The resulting inter-
mediate values are then added up to calculate multiplication result using carry-save
adders. The proposed integer multiplier is also fully pipelined and it can produce
one multiplication result per clock cycle. The proposed parametric hardware gen-
erator, for dlog2(q)e = 32, generates a 32-bit multiplier similar to the one shown in
Fig. 3.1. The number and configuration of the DSP blocks along with the adder tree
are automatically synthesized based on the input parameters. Although it may be
possible to partition input integers more efficiently, we divide all inputs into 16-bit
(power-of-2) pieces to preserve regularity and reduce the complexity of the control
unit.

There are mainly two alternative methods for efficient modular reduction: Mont-
gomery (Mert et al., 2020) and Barrett algorithms (Banerjee et al., 2019). Their
selection for parametric hardware is a non-trivial design decision. Banerjee et al.,
for instance, uses a Barrett modular reduction hardware (Banerjee et al., 2019),
which includes two different reduction units. The first one is a configurable Barrett
reduction hardware which enables run-time flexibility. The second one employs a

105

separate, specialized reduction hardware that is only compatible with a small set of
pre-determined special moduli.

We argue that for the design-time flexibility, Montgomery reduction can offer a more
efficient solution than the Barrett algorithm. Nevertheless, the regular Montgomery
has to be optimized for NTT primes and extended to support various polynomial de-
grees and coefficient sizes. To that end, we propose a design-time configurable para-
metric word-level Montgomery reduction unit that generalizes the word-level Mont-
gomery modular reduction algorithm (Algorithm 6) for NTT-friendly primes pre-
sented in Section 3.2.2.2. Compared to the configurable Barrett reduction (Baner-
jee et al., 2019), our solution either reduces the number of multipliers or results in
smaller multiplier units.

Algorithm 6 provides the details of our generalized algorithm. The algorithm re-
quires a different number of integer multipliers of varying bit lengths depending on q
and n as detailed in Section 3.2.2.2. The proposed word-level Montgomery modular
reduction algorithm divides reduction operation into a set of MAC operations, which
can be implemented using DSP blocks in Xilinx FPGAs. Therefore, the algorithm
itself is amenable to generating flexible designs. Our hardware generator makes use
of this to automatically generate the reduction hardware for the given polynomial
degree and coefficient size. After the Montgomery reduction operation, the extra
R−1 in the result needs to be corrected using an extra multiplication with R. Sim-
ilar to the approaches presented in Section 3.2.2.2 and Section 4.2.1, since one of
the inputs in NTT is the constant twiddle factor (ω), we can fuse the multiplica-
tion by pre-computing it (ω ·R (mod q)) and loading it into the related memory at
design-time to save one multiplication at run-time.

Fig. 7.2 illustrates two examples of modular reduction hardware units for (a) poly-
nomial degree of 1024 with 32-bit modulus and (b) polynomial degree of 256 with
16-bit modulus, where the rectangular boxes represent DSP blocks performing
X · Y +Z + cin. Both designs offer advantage over the Barrett method (Baner-
jee et al., 2019)—while the first design uses smaller multiplier units, the second one
saves one multiplication. The first implementation requires 3 MAC operations while
the second implementation uses only two MAC operations. The proposed reduction
hardware is fully pipelined, and it produces one output each clock cycle after filling
the pipeline. The generated modular reduction hardware runs in constant time for
a given arithmetic configuration.

106

(a) For n= 1024 and dlog2(q)e= 32

(b) For n= 256 and dlog2(q)e= 16

Figure 7.2 Word-Level Montgomery Modular Reduction Unit

7.3.2 PEs and Butterfly Units

As we already obtain the efficient hardware for the core modular arithmetic, it is
now time to discuss the design of the butterfly units that use modular operations
and the PEs that contain butterfly units. Each PE implements the Gentleman-
Sande butterfly configuration (Chu & George, 1999) corresponding to steps 5–10
of Algorithm 1. Fig. 7.3 illustrates one PE, which takes two coefficients and one
twiddle factor as inputs, perform the butterfly operation, and output two resulting
coefficients, namely even (E) and odd (O) coefficients. A PE consists of one modular
adder, one modular subtractor, and one modular multiplier for implementing the
GS butterfly operation. Each PE also uses three dual-port BRAMs, where two data
BRAMs store input and intermediate coefficients while the other, twiddle factor
TW BRAM, stores the twiddle factors (with Montgomery correction), which are
the design-time constants pre-computed based on input parameters.

Fig. 7.3 depicts that the even coefficient is the output of the modular addition
operation (Step 7 in Algorithm 1) and the odd output coefficient is the output of
the modular subtraction and multiplication (Step 8 in Algorithm 1). To synchronize
the output generation of even and odd coefficients, the proposed design inserts a
parametric number of registers, shown in green, on the even path based on the
input parameters (namely, the polynomial degree and the coefficient size). The
number of PEs can only be a power-of-2 and their maximum is (n/2) for an n-pt
NTT.

107

Figure 7.3 PE and the Butterfly Unit

7.3.3 Flexible Memory Access and Overall Design

A significant challenge for the NTT hardware design is managing the complex mem-
ory access schedule. This problem becomes more challenging for us because our
hardware aims to provide flexibility in the number of core PEs. We need our para-
metric hardware generator to synthesize the address generation logic that will control
the two BRAMs in each PE without adding any stalls to the NTT pipeline.

The proposed design uses the NTT scheme of Algorithm 1, which consists of log2(n)
stages and performs (n/2) butterfly operations at each stage. Fig. 7.4 (a) demon-
strates an example of the memory read access pattern of coefficients for n= 8. Each
yellow dot represents a butterfly operation, which consumes and produces two coef-
ficients mapping to the same degree. For example, 0th and 4th coefficients in the first
stage will correspond to the 0th and 4th coefficients of the second stage in Fig. 7.4 (a).

The irregular access pattern of the NTT enforces storing each coefficient to a unique
address. Fig. 7.4 (b) demonstrates the one PE case, where coefficients in the same
butterfly operation are stored in two distinct memory blocks. For example, at the
first stage of the 8-pt NTT, four coefficient pairs (0, 4), (1, 5), (2, 6), (3, 7) go into
butterfly operation. These pairs need to be read at the same clock cycle. Therefore,
coefficients 0, 1, 2, 3 and 4, 5, 6, 7 should be stored in separate memory blocks
and accessed in parallel. Unfortunately, the pairings of the coefficients change at
each stage. The output of a stage, therefore, has to be stored back into the memory
blocks based on the pairing of the next stage. Fig. 7.4 (b) shows the example for
n = 8 where the coefficient pairings for the first and second stages are respectively
{(0, 4), (1, 5), (2, 6), (3, 7)} and {(0, 2), (1, 3), (4, 6), (5, 7)}. Hence, both outputs
of the pairs (0, 4) and (1, 5) should be written into the first memory block. Likewise,
(2, 6) and (3, 7) output will be placed in the second memory. This guarantees that
all coefficient pairs at the second stage can be read in a cycle.

108

Figure 7.4 (a) Coefficient Access Pattern; (b) Memory Access Pattern for n= 8

Our parametric hardware design automatically generates the required access pattern
to handle memory access operations for different numbers of PEs. This pattern,
however, requires coefficient pairs to be written into the same memory block. For
example, for n= 8, the coefficient pair (0, 4) should be written into the first memory
block after the first stage to improve coalescing. This is enabled by adding one extra
register to the output of the modular multiplier unit in the PE, shown as orange
register in Fig. 7.3. This extra latency allows storing coefficients into the same
memory in 2 cycles. Since the PEs are pipelined, this extra register does not affect
the throughput.

The proposed design uses an alternating memory read pattern because the first and
second half of coefficient pairs should be written into the first and second memories,
respectively. For example, as shown in Fig. 7.4, only the coefficients (0, 1), (4, 5)
are written into the first memory while (2, 3), (6, 7) are written into the second
memory. Therefore, the memory read pattern for 8-pt NTT should be in the order
{(0, 4), (2, 6), (1, 5), (3, 7)} instead of {(0, 4), (1, 5), (2, 6), (3, 7)}. Fig. 7.5 (a)
and Fig. 7.5 (b) give the memory access examples for 8-pt NTT with one and two
PEs, respectively. Green and blue boxes represent the read and write operations,
respectively, and the letters in red represent coefficients written into the memory.
For the 8-pt NTT with one PE, coefficients (0, 4) and (1, 5) need to be stored in the
same memory block. The proposed addressing scheme thus first reads coefficients (0,
4) and (2, 6) in two consecutive clock cycles, which should be written into the first
and second memories, respectively. Therefore, the operation can continue without
any stall. For the 8-pt NTT with two PEs (see Fig. 7.5 (b)), the PEs perform the
butterfly operation for the first half of the coefficient pairs first. In this case, the
first and second PEs can read coefficients (0,4) and (1,5) at the same time because
coefficients 0, 1 and 4, 5 will be written into different memory blocks. Since we have
two PEs instead of one, the latency of each NTT stage is reduced.

109

Figure 7.5 Memory Access for 8-pt NTT with (a) one PE, (b) two PEs

Fig. 7.6 outlines the high-level block diagram of the generated NTT hardware with
(a) one and (b) two PEs. The outputs of one PE are connected to all PEs in the
design to broadcast the coefficients needed due to the memory dependency of the
NTT. Before the NTT starts, the hardware first takes twiddle factors followed by
the input coefficient as inputs and writes them to their related BRAMs within each
PE. The data BRAMs also keep the resulting output coefficients, which are read via
output multiplexers.

7.4 Design Method II: HLS-Based Design

We aim to synthesize our design-time flexible NTT hardware using the popular
Xilinx Vivado HLS tool, which takes C or C++ codes as input and generates syn-
thesizable Verilog or VHDL codes. It also provides specific directives (pragmas) for

110

Figure 7.6 NTT Hardware (a) with one PE; (b) two PEs

users to intervene in the C/C++-to-RTL synthesis process and optimize the gener-
ated RTL design. The Vivado HLS tool offers several optimization parameters such
as loop unrolling, loop merging, pipeline and array partitioning, among
others (Xilinx, 2014).

To generate an efficient hardware from C/C++ code, the code should include ap-
propriate HLS directives. This may require re-writing or changing the structure of
the code (Kawamura et al., 2018), in addition to the exploration of optimization pa-
rameters. Indeed, we first observe that the straightforward transition of the software
leads to inefficient results or may not even produce a synthesizable code. Specifi-
cally, in the original algorithm we used for implementing the parametric hardware
generator (Algorithm 1), the NTT operation has three loops where indices of middle
and inner loops depend on the index of the outer loop. This loop structure makes
applying HLS directives complicated and causes the HLS tool to improperly handle
the synthesis process.

Algorithm 16 shows our proposed HLS-friendly NTT algorithm, which is a modified
version of Algorithm 1. To overcome HLS problems and make the C++ code more
HLS-friendly, we modified the loop structure of the Algorithm 1 such that depen-
dencies between indices of the loops are removed and the trip count of each loop
structure is fixed. In Algorithm 16, the trip count of the outer loop is the number of
stages in the n-pt NTT operation, log2(n), as in Algorithm 1. In the middle loop,
we modified the trip count to (n/2), which is the number of butterfly operations
in one stage of an n-pt NTT. Finally, we set the trip count of the innermost loop
as the number of butterfly operations to be performed in parallel, which can be at

111

Algorithm 16 HLS-Friendly NTT Algorithm
Input: a(x) ∈Rq,n

Input: ω where ω[i] = ωi (mod q) (an array of size n/2)
Input: B (number of butterfly operations in parallel)
Output: a(x) ∈Rq,n

1: l,v = log2n,n/2
2: STAGE_LOOP:
3: for (i= 0; i < l; i+ +) do . outer loop
4: BUTTERFLY_LOOP:
5: for (s= 0; s < v; s= s+B) do . middle loop
6: IDX_CALC_LOOP: . index calculation
7: for (b= 0; b < B; b+ +) do . inner loop#1
8: j[b] = (s+ b)� (l−1− i)
9: k[b] = (s+ b) & ((v� 1)−1)
10: ie[b] = j[b] · (1� (l− i)) +k[b]
11: io[b] = ie[b] · (1� (l− i−1))
12: iw[b] = (1� i) ·k[b]
13: end for
14: MEM_READ_LOOP: . read data
15: for (b= 0; b < B; b+ +) do . inner loop#2
16: U [b] = a[ie[b]]
17: V [b] = a[io[b]]
18: W [b] = ω[iw[b]]
19: end for
20: OP_LOOP: . butterfly operation
21: for (b= 0; b < B; b+ +) do . inner loop#3
22: E[b] = (U [b] +V [b]) (mod q)
23: O[b] = (U [b]−V [b]) ·W [b] (mod q)
24: end for
25: MEM_WRITE_LOOP: . write data
26: for (b= 0; b < B; b+ +) do . inner loop#4
27: a[ie[b]] = E[b]
28: a[io[b]] =O[b]
29: end for
30: end for
31: end for
32: return a

most (n/2) for an n-pt NTT operation. Then, we divided butterfly operation into
four separate loops with the same trip count, whereby four loops perform four steps
of a butterfly operation: (i) calculating memory addresses for reading coefficients
and twiddle factor, (ii) reading coefficients and twiddle factors from the memory,
(iii) performing arithmetic operations and (iv) writing output coefficients into the
memory.

Based on the implemented algorithm and the code section where the directives

112

Table 7.2 Vivado HLS pragmas Used in Our Work

Code pragma
array a #pragma HLS ARRAY_PARTITION
array ω #pragma HLS ARRAY_PARTITION
STAGE_LOOP –
BUTTERFLY_LOOP #pragma HLS PIPELINE
IDX_CALC_LOOP

#pragma HLS UNROLLMEM_READ_LOOP
OP_LOOP
MEM_WRITE_LOOP

are used, different combinations of directives can have different impacts on the ar-
chitecture. Therefore, we applied a set of different directives to the C++ imple-
mentation of NTT operation and selected loop unrolling, pipeline and array
partitioning directives at different code parts as shown in Table 7.2.

The loop unrolling directive (UNROLL) converts a single operation performed
by a loop into multiple independent copies of the operation performed in the loop
body and runs these operations concurrently. It can unroll a loop fully or partially,
and it increases the parallelism and the performance of the operation. This directive
is applied to the innermost four loops in our design where it generates B butterfly
units running concurrently. The pipeline directive (PIPELINE) allows concur-
rent execution of operations and reduces the interval required to start processing a
new input, e.g., it allows an operation to take a new input every clock cycle. We
use PIPELINE directive at the middle loop to pipeline the four steps of butterfly
operations.

Memory control is one of the most challenging parts of the NTT design as it requires
many read/write operations with an irregular pattern. The addressing becomes even
more complex with the increasing number of parallel butterfly operations. For in-
stance, an NTT operation with n= 256 andB= 8 requires reading 16 coefficients and
8 coefficients from the arrays a and ω, respectively, at the same time. This enforces
a structure with data stored on multiple small memory blocks or a large memory
with multiple read/write ports (i.e., a register file). The straightforward software
implementation cannot realize this structure—it generates a single BRAM with
insufficient bandwidth. But the array partitioning (ARRAY_PARTITION) di-
rective can automate the partition of an array into smaller memories or individual
registers instead of instantiating a single large memory block. Therefore, it can ef-
fectively increase the read/write ports of a memory, and hence, the throughput, at
the expense of more hardware resources.

113

In the proposed design, we applied the ARRAY_PARTITION directive to the array,
a, storing the input polynomial, and the array, ω, storing twiddle factors. Here, we
used two different approaches: (i) we partitioned each array into a register file using
the complete option of the ARRAY_PARTITION directive, where any data can be
read/written at any time, (ii) we partitioned each array into a number of BRAMs
using the block option of the ARRAY_PARTITION directive so that the algorithm
can access multiple data at the same time. Although the former approach generates
faster design, it uses high hardware resources due to large multiplexers generated
for reading/writing multiple data. We also used the ap_int.h library provided by
Vivado HLS tool that contains bit accurate models for the C++ code. This helps
us to set dlog2(q)e and bit-lengths of intermediate calculation steps.

Fig. 7.7 shows the design flow of the proposed NTT architecture in Vivado HLS. The
flow starts with the C++ implementation of the NTT operation and its verification.
Then, Vivado HLS directives are applied to the code, the synthesis is performed and
the Verilog code is generated. Finally, the generated Verilog code is verified with a
Verilog testbench. The proposed HLS-based design uses regular Montgomery algo-
rithm for the modular reduction operation as specified in Algorithm 5. Although
our parametric hardware generator uses the word-level Montgomery algorithm, our
HLS-based design with word-level Montgomery algorithm leads to inefficient archi-
tectures due to the loop-based structure of the word-level Montgomery algorithm.
Also, as the number of PEs is increased, the HLS tool shows a significant increase
in hardware resources and synthesis time because the HLS tool cannot resolve un-
rolling efficiently although it shows similar performance results with the regular
Montgomery algorithm. Therefore, we utilize the regular Montgomery algorithm
for modular reduction operation in our HLS-based design. The proposed work im-
plements constant-time modular addition and subtraction operations (Mert et al.,
2019). Fig. 7.8 illustrates the architecture of the NTT hardware generated by the
Vivado HLS tool.

The NTT operation in (Ozcan & Aysu, 2020) is implemented using a loop structure
with three nested loops, where trip counts of the inner loops are not fixed. This
complicates applying HLS directives efficiently and setting the amount of parallelism
in the generated hardware architecture. Our work is superior to the work in (Ozcan
& Aysu, 2020) because our modified loop structure uses fixed trip counts which
ease applying HLS directives and we can change the parallelism easily by tuning a
single parameter. In (Millar, 2019) and (Kawamura et al., 2018), the authors modify
the NTT loop structure such that it uses two nested loops with fixed trip counts.
However, both works lack flexibility for setting the level of parallelism. The method
in (Millar, 2019) manually unrolls its inner loop with a factor of two which limits the

114

Figure 7.7 Xilinx Vivado HLS Flow

Figure 7.8 NTT Hardware Generated by Xilinx Vivado HLS Tool

parallelism and throughput flexibility. Although it shows better performance for a
single parameter set, hardware resource usage details are not provided (as shown in
Section 7.5). Similarly, the method in (Kawamura et al., 2018) uses manual unrolling
and provides only partial flexibility by changing the structure of the code. In our
work, the code structure is fixed and only parameter sets are changed for yielding
different architectures.

A key takeaway of our HLS experience on NTT was that, in order to generate an
efficient hardware, the designer needs an in-depth understanding of the resulting
hardware designs and the effect of tool’s parameters on the synthesized hardware,
which arguably contradicts the goal of enabling easy solutions for software develop-
ers. Section 7.5 discusses the design complexity of the HLS method with respect to
the others and compares the efficiency of resulting hardware.

115

7.5 Results and Comparison

To provide a fair comparison of the design methods, we use a common set of EDA
tools and we target the same FPGA. We also compare our work with previous results
in the literature and comment on the design complexity.

7.5.1 Experimental Setup

The parametric hardware generator code is written in Verilog RTL and the generated
NTT hardware is synthesized, placed & routed using Xilinx Vivado tools on the
Xilinx Virtex-7 FPGA (xc7vx690tffg1761-2). The proposed HLS-friendly software
code is written in C++ and is enhanced with Xilinx HLS pragmas.

7.5.2 Implementation Results of the Design Methods

For our parametric hardware generator, the area-cost, number of clock cycles needed
to finish one NTT, and LUT/latency improvements for 7 different (n,dlog2(q)e) sets
with 1, 8 and 32 PEs are shown in Table 7.3. As the number of PEs increases
from 1 to 32, the latency improves up to 25.4× at the expense of more hardware
resources. The increase in the number of PEs (which can be as much as (n/2))
further improves the performance for larger n values. As expected, the parametric
hardware generator yields (at least an order-of-magnitude) better results than the
HLS-based implementation method in latency and/or area.

For HLS implementations, the area-cost, number of clock cycles to finish one NTT
and latency improvements for 7 different (n,dlog2(q)e) sets with 1 and 8 PEs are
shown in Table 7.4. We obtained two different synthesis results, register memory
and BRAM memory, for each parameter set as explained in Section 7.4. In Ta-
ble 7.4, the first and the second rows reflect the results for the implementation with
register and BRAM memories, respectively, for a given parameter set. The imple-
mentations with register memory show slightly better performance at the expense of
more hardware resources. The first 4 rows of Table 7.4 highlight the impact of the
Montgomery modular reduction algorithm and the proposed HLS-friendly NTT al-

116

Table 7.3 Our Hardware Implementation Results

PE (n,dlog2(q)e) LUTs/DSPs/BRAMs # of LUT-Lat.
CC Impr.

1
(256, 13)

489 / 3 / 2.5 1056 −
8 2371 / 24 / 12 160 ×0.20,×6.60
32 15888 / 96 / 48 64 ×0.03,×16.5
1

(256, 23)
888 / 7 / 5 1096 −

8 5071 / 56 / 12 200 ×0.15,×5.48
32 30847 / 224 / 48 104 ×0.02,×10.5
1

(512, 14)
537 / 3 / 5.5 2340 −

8 2514 / 24 / 12 324 ×0.21,×7.20
32 16983 / 96 / 48 108 ×0.03,×21.6
1

(1024, 14)
575 / 3 / 11 5160 −

8 2584 / 24 / 16 680 ×0.22,×7.58
32 17188 / 96 / 48 200 ×0.03,×25.8
1

(1024, 29)
966 / 7 / 21.5 5210 −

8 6788 / 56 / 24 730 ×0.14,×7.13
32 38093 / 224 / 48 250 ×0.02,×20.8
1

(2048, 30)
991 / 7 / 45 11363 −

8 6821 / 56 / 44 1507 ×0.15,×7.54
32 38598 / 224 / 64 451 ×0.02,×25.2
1

(4096, 60)
2720 / 31 / 180 24708 −

8 23215 / 248 / 176 3276 ×0.11,×7.54
32 99384 / 992 / 176 972 ×0.02,×25.4

gorithm. The Montgomery modular reduction algorithm improves the performance
up to 5× and the HLS-friendly NTT algorithm further improves the performance
up to 767× compared to the baseline design (Algorithm 1 without Montgomery
modular reduction algorithm) with similar hardware resources. Compared to the
parametric hardware generator, the increase in the number of PEs has a weaker
effect—the performance increases only by 2× as the number of PEs is increased by
8×, which reveals the inefficiencies in the HLS tools. Vivado HLS cannot synthesize
the hardware with register memory for (2048,30) and (4096,60) because the array
partitioning pragma is limited to arrays with length up to 1024. The number
of PEs is limited to 8 because no significant performance improvement is observed
with 16 or more PEs.

117

Table 7.4 Our HLS-Based Implementation Results

PE (n,dlog2(q)e) LUTs/FFs/DSPs/BRAMs # of Lat.
CC Impr.

1(1)

(256, 13)

12336 / 6639 / 1 / – 3934226 −
1045 / – / 1 / 2 4065298 −

1(2) 12185 / 6390 / 3 / – 788498 ×5.0
893 / – / 3 / 2 919570 ×4.4

1(3) 12255 / 10197 / 3 / – 5124 ×767.8
979 / – / 3 / 2 6147 ×661.3

8(4) 61297 / 11187 / 24 / – 2436 ×1615
10487 / – / 24 / 16 3075 ×1322

1
(256, 23)

12553 / 18763 / 6 / – 4100 −
1213 / – / 6 / 6 5123 −

8 63241 / 19387 / 48 / – 2308 ×1.8
12565 / – / 48 / 32 3075 ×1.7

1
(512, 14)

23757 / 21727 / 3 / – 11524 −
1010 / – / 3 / 4 13827 −

8 118804 / 22841 / 24 / – 6050 ×1.9
11020 / – / 24 / 16 6915 ×2.0

1
(1024, 14)

36061 / 43239 / 3 / – 25604 −
1045 / – / 3 / 4 30723 −

8 167018 / 44373 / 24 / – 13442 ×1.9
11305 / – / 24 / 16 15363 ×2.0

1
(1024, 29)

36405 / 89454 / 12 / – 25604 −
1445 / – / 12 / 6 30723 −

8 169560 / 91578 / 96 / – 13442 ×1.9
13975 / – / 96 / 32 15363 ×2.0

1
(2048, 30)

– – −
1479 / – / 12 / 6 67587 −

8 – – −
13886 / – / 96 / 64 33795 ×2.0

1
(4096, 60)

– – −
2145 / – / 45 / 22 147459 −

8 – – −
17768 / – /360 / 128 73731 ×2.0

(1): DIF NTT algorithm (no Mont. Mod. Red.).
(2): DIF NTT algorithm (with Mont. Mod. Red.).
(3): HLS-friendly NTT algorithm (with Mont. Mod. Red.).
(4): HLS-friendly NTT algorithm (with Mont. Mod. Red. and 8 PE).

7.5.3 Comparison to Prior Work

The target devices are implemented under different FPGA technology or even ASIC,
hence, the comparison should serve as a first-order estimate rather than an idealized

118

method. Also, note that only the NTT implementations of the same polynomial de-
gree (n) and coefficient size (dlog2(q)e) make a meaningful comparison. In Table 7.5
and Table 7.6, a subset of our parametric hardware and HLS-based implementations
for selected parameter sets are compared with the prior works, respectively.

Albeit target device and technology differences, the results in Table 7.5 and Ta-
ble 7.6 show that our parametric NTT hardware generator can outperform most of
the existing hardware and high-level synthesis designs respectively by up to 51.2×
and 82.8× in terms of the number of cycle count. Our parametric generator can
produce a hardware that is comparable to fixed setting hardware units and can even
be better in some cases. Our designs can achieve either a lower area or a faster
design (in clock cycle) compared to prior FPGA solutions. For example, our one
PE design outperforms the work in (Banerjee et al., 2019) in terms of latency (cycle
count). Some implementations, by contrast, show better performance results than
our parametric generator since these implementations are optimized for fixed param-
eters. For example, the works in (Mert et al., 2019) and (Mert et al., 2020) (works
presented in Section 3) show better performance than our work since they utilize 64
PEs. However, our parametric hardware generator can outperform these implemen-
tations by simply increasing the number of PEs. Our HLS implementations with
1 and 8 PEs show similar area×latency performance with the works in (Ozcan &
Aysu, 2020) and (Kawamura et al., 2018), respectively.

Using our parametric hardware generator, we instantiate the hardware imple-
mentations of NTT for the parameters of CryptoNets (n = 4096 and dlog2(q)e =
60) (Brutzkus et al., 2019) and qTESLA (n= 1024 and dlog2(q)e= 14) (Alkim et al.,
2019), which outperform the reference software by up to 25.3× and 5.5× on Intel
Xeon processor, and 95.7× and 76.5× compared to HLS-based design, respectively.

We finally highlight the fast design-space exploration that can be achieved by our
parametric hardware generator. To test this aspect, we sweep the parameter that
controls the number of PEs used in NewHope-512 hardware and report the imple-
mentation results in Fig. 7.1. Our generator is able to cover a space of 61.9× in area
cost for a tradeoff of 32.5× in performance by simply tuning a parameter knob. By
contrast, 5× in area and 1.9× in performance is achievable in HLS since it cannot
parallelize the hardware beyond 8 PEs. By contrast, our parametric generator can
parallelize up to (n/2) as long as the resulting hardware fits in the FPGA.

119

Table 7.5 A Summary of Our Hardware Implementation Results and its Comparison to Prior Works

Work Platform n dlog2(q)e LUT / REG / DSP / BRAM Clock Latency
(MHz) CC µs

(Aysu et al., 2013)a Spartan-6
256

17
250 / – / 3 / 2

–
– 25

512 240 / – / 3 / 2 – 50
1024 250 / – / 3 / 2 – 100

(Sinha Roy et al., 2019)b Zynq US 4096 30 64K / – / 200 / 400 225 – 73
(Mert et al., 2019)

b Spartan-6 1024 32 1208 / – / 14 / 14 212 – 12
Virtex-7 34K / 16K / 476 / 228 200 80 0.4

(Mert et al., 2020)b Virtex-7 1024 32 67K / – / 599 / 129 200 140 0.7
77K / – / 952 / 325.5 80 0.4

(Sinha Roy et al., 2014)c Virtex-6 256 13 1349 / 860 / 1 / 2 313 1691 5.4
512 14 1536 / 953 / 1 / 3 278 3443 12.3

(Banerjee et al., 2019)c 40nm CMOS
256 13

106K / – / – / – 72
1289 17

512 14 2826 32
1024 14 6155 81

(Fritzmann & Sepúlveda, 2019)c UMC 65nm
256 13

14K / – / – / – 25
2056 82

512 14 4616 184
1024 14 10248 409

(Xing & Li, 2020)a,b Artix-7 1024 14 4823 / 2901 / 8 / – 153 1280 –
qTESLA (Alkim et al., 2019)a,b Intel Xeon CE5-1650 1024 28 – / – / – / – – – 11

CryptoNets (Brutzkus et al., 2019)a Intel Xeon CE5-1650 4096 60 – / – / – / – – – 195

Ours-1 PE Virtex-7 1024 14 575 / – / 3 / 11 125 5160 41.2
4096 60 2720 / – / 31 / 180 24708 197.6

Ours-8 PE Virtex-7 1024 14 2584 / – / 24 / 16 125 680 5.4
4096 60 23215 / – / 248 / 176 3276 26.2

Ours-32 PE Virtex-7 1024 14 17188 / – / 96 / 48 125 200 1.6
4096 60 99384 / – / 992 / 176 972 7.7

a:Uses fixed q. b:Uses fixed n. c:Works with multiple n and q.

120

Table 7.6 A Summary of Our HLS-based Implementation Results and its Comparison to Prior Works

Work Platform n dlog2(q)e LUT / REG / DSP / BRAM Clock Latency
(MHz) CC µs

(Ozcan & Aysu, 2020) Virtex-7 1024 14 4737 / 3243 / 8 / 2 – 16569 76

(Kawamura et al., 2018) Virtex-7
1024

10
38984 / 30498 / 19 / 21.5

100
5291 53

2048 46738 / 38224 / 21 / 24.5 10731 107
4096 58082 / 44767 / 22 / 41.5 22072 221

(Millar, 2019) Zynq US+ 512 17 – / – / – / – 250 1202 –
Ours-1 PE Virtex-7 1024 14 1045 / – / 3 / 4 100 30723 307
Ours-8 PE Virtex-7 1024 14 11305/ – / 24 / 16 100 15363 153

121

7.6 Summary

This study conducts an extensive study of flexible design methods for NTT, proposes
a flexible yet efficient hardware generator, and compares its efficiency against the
HLS-based design approach and other works in the literature. The results show the
superiority of hand-tuned, parameterized hardware designs over other techniques
(which is expected) and the inefficiencies of HLS tools. Therefore, this work calls
for better HLS tools that can close the order(s)-of-magnitude gap compared to RTL-
based designs.

122

8. CONCLUSION AND FUTURE WORK

In this chapter, we present a summary of each work in this dissertation with a
conclusion and potential future research areas.

8.1 Conclusions

This dissertation focuses on high-performance and efficient hardware implementa-
tions for lattice-based cryptography primitives. Specifically, we present hardware
implementations for two main applications of lattice-based cryptography: HE and
PQC. The first three chapters focus on HE applications. We first present high-
performance and flexible hardware architectures that perform NTT, INTT and
NTT-based polynomial multiplication operations, which are excessively utilized in
lattice-based cryptographic applications. We use these high-performance blocks to
design and implement efficient hardware architectures for encryption, decryption and
homomorphic multiplication operations of the full RNS variant of the BFV scheme
proposed in (Bajard et al., 2017) for the FPGA. We show that core hardware imple-
mentations on the FPGA take leverage of the intrinsically parallelizable structure
of these operations and improve their performance compared to their pure software
implementations. We also design and implement a proof-of-concept framework that
establishes high-speed communication between the CPU and FPGA via PCIe link.
We show that the proposed encryption and decryption hardware architectures can
be utilized as actual accelerators, and provide up to one order of magnitude speedup
for the encryption and decryption operations of the BFV scheme compared to the
highly-optimized HE library SEAL (Microsoft, 2019) using the proposed framework.
Therefore, we show that utilizing efficient FPGA accelerators for HE libraries such
as SEAL is very promising and can be an enabler for the deployment of practical
real-time HE applications. Although it is shown that the proposed architectures

123

are enablers for high-performance applications, we also observe that their impact is
bounded by the I/O limitations of the FPGA devices.

In the second part of the thesis, we present one of the earliest hardware accelerators
for the polynomial multiplication operation of CRYSTALS-Kyber PQC scheme (Bos
et al., 2018) adopting a new set of parameters, which require a different method
for NTT and NTT-based polynomial multiplication operations. We show that the
proposed hardware on a low-cost Spartan-6 FPGA can show up to almost two orders
of magnitude performance improvement compared to the high-speed implementation
on Cortex-M4 (Alkim et al., 2020). This makes the design suitable and practical in
the use of the Kyber PQC scheme in embedded or SoC systems. Also, it can serve
as a dedicated accelerator unit coupled with a RISC-V processor (Fritzmann et al.,
2020).

As the lattice-based cryptosystems mature and gear towards massive deployment,
there will be a heavier emphasis on flexible design methods for faster adoption and
design space exploration, which enforce scalable and configurable solutions. To that
end, finally, we conduct an extensive study of flexible design methods for NTT, which
is frequently used in lattice-based cryptographic schemes with different parameters
and performance requirements. We propose a flexible yet efficient hardware gener-
ator, which shows comparable performance and area results with existing designs
in the literature. We also show that the HLS-based design methodology is not ma-
ture enough to replace hand-written RTL designs. Since HLS-based design results
reported in this study are an experience of a hardware design expert, this process
will be significantly harder for software developers, which is against the target of
HLS-based methodology.

Overall, we present a collection of hardware accelerators for lattice-based cryptog-
raphy. The proposed architectures can be employed in various applications and
platforms ranging from high-performance data centers to SoC platforms. HE ap-
plications require high processing power due to their algorithmic complexity and
cloud computing services are suitable candidates for the applications utilizing HE.
To that end, the high-performance architectures presented in this dissertation can
be utilized in cloud services as hardware-as-a-service for performance-demanding
operations. Similarly, they can be used in SoC platforms with a hardware/software
co-design approach where only parallelizable and complex operations are offloaded
to the FPGA.

124

8.2 Future Work

The proposed hardware architectures in this study are fast and they improve the
performance of costly homomorphic operations compared to the software imple-
mentations of HE operations. The acceleration of HE applications would still be a
very important research area due to the performance requirements of HE-based neu-
ral networks and the I/O overheads (Pulido-Gaytan, Tchernykh, Cortés-Mendoza,
Babenko, Radchenko, Avetisyan & Drozdov, 2021). The communication cost be-
tween the CPU and FPGA creates a bottleneck for practical applications. There-
fore, investigating approaches to reduce communication costs between CPU and the
FPGA for enabling practical applications would be an important research direction.

There are several HE schemes in the literature where each scheme can show bet-
ter performance when it is employed in a certain application. For example, the
BFV (Fan & Vercauteren, 2012) and the BGV (Brakerski et al., 2014) schemes are
suitable for homomorphic operations with integers while the CKKS (Cheon et al.,
2017) scheme works with real numbers, which can be employed in privacy-preserving
machine learning applications. Fully homomorphic encryption scheme over the torus
is favored for Boolean operations (Chillotti, Gama, Georgieva & Izabachène, 2020).
Besides, a recent study in the literature proposes efficient conversion between ci-
phertexts of different HE schemes (Chen, Dai, Kim & Song, 2021). Therefore, the
design and implementation of flexible and unified hardware accelerators supporting
multiple HE schemes would be an important research topic.

In addition to the performance and flexibility requirements of lattice-based cryptog-
raphy, implementation attacks/defenses such as the fault and side-channel analysis
on lattice-based cryptography (Reparaz, Sinha Roy, de Clercq, Vercauteren & Ver-
bauwhede, 2016), (Aysu, Tobah, Tiwari, Gerstlauer & Orshansky, 2018), (Aysu,
Orshansky & Tiwari, 2018), (Sarker, Mozaffari-Kermani & Azarderakhsh, 2019) are
important emerging research direction.

125

BIBLIOGRAPHY

Acar, A., Aksu, H., Uluagac, A. S., & Conti, M. (2018). A survey on homomorphic
encryption schemes: Theory and implementation. ACM Computing Surveys
(CSUR), 51 (4), 1–35.

Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., & Lepoint,
T. (2016). Nfllib: Ntt-based fast lattice library. In Cryptographers’ Track at
the RSA Conference, (pp. 341–356). Springer.

Ajtai, M. (1996). Generating hard instances of lattice problems. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, (pp.
99–108).

Albrecht, M. R., Player, R., & Scott, S. (2015). On the concrete hardness of learning
with errors. Cryptology ePrint Archive, Report 2015/046. https://eprint
.iacr.org/2015/046.

Alkim, E., Barreto, P. S. L. M., Bindel, N., Kramer, J., Longa, P., & Ricardini, J. E.
(2019). The Lattice-Based Digital Signature Scheme qTESLA. Cryptology
ePrint Archive, Report 2019/085. https://eprint.iacr.org/2019/085.

Alkim, E., Bilgin, Y. A., Cenk, M., & Gérard, F. (2020). Cortex-m4 optimizations for
{R,M}lwe schemes. Cryptology ePrint Archive, Report 2020/012. https://
eprint.iacr.org/2020/012.

Alkim, E., Bos, J. W., Ducas, L., Longa, P., Mironov, I., Naehrig, M., Nikolaenko,
V., Peikert, C., Raghunathan, A., & Stebila, D. (2018). Frodokem: practical
quantum-secure key encapsulation from generic lattices.

Alkim, E., Ducas, L., Pöppelmann, T., & Schwabe, P. (2016). Post-quantum key
exchange—a new hope. In 25th USENIX, (pp. 327–343).

Alkim, E., Evkan, H., Lahr, N., Niederhagen, R., & Petri, R. (2020). Isa extensions
for finite field arithmetic: Accelerating kyber and newhope on risc-v. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020 (3),
219–242.

Alkim, E., Jakubeit, P., & Schwabe, P. (2016). Newhope on arm cortex-m. In
International Conference on Security, Privacy, and Applied Cryptography En-
gineering, (pp. 332–349).

Angel, S., Chen, H., Laine, K., & Setty, S. (2018). Pir with compressed queries
and amortized query processing. In 2018 IEEE Symposium on Security and
Privacy (SP), (pp. 962–979).

Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.-C., Ga-
borit, P., Gueron, S., Guneysu, T., Melchor, C. A., et al. (2017). Bike: bit
flipping key encapsulation. Submission to the NIST Post-Quantum Standard-
ization project.

Aysu, A., Orshansky, M., & Tiwari, M. (2018). Binary ring-lwe hardware with
power side-channel countermeasures. In 2018 Design, Automation Test in
Europe Conference Exhibition, (pp. 1253–1258).

Aysu, A., Patterson, C., & Schaumont, P. (2013). Low-cost and area-efficient fpga
implementations of lattice-based cryptography. In 2013 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), (pp. 81–86).

Aysu, A., Tobah, Y., Tiwari, M., Gerstlauer, A., & Orshansky, M. (2018). Hor-
126

https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2019/085
https://eprint.iacr.org/2020/012
https://eprint.iacr.org/2020/012

izontal side-channel vulnerabilities of post-quantum key exchange protocols.
In 2018 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), (pp. 81–88).

Azarderakhsh, R., Campagna, M., Costello, C., Feo, L., Hess, B., Jalali, A., Jao,
D., Koziel, B., LaMacchia, B., Longa, P., et al. (2017). Supersingular isogeny
key encapsulation. Submission to the NIST Post-Quantum Standardization
project.

Badawi, A. A., Polyakov, Y., Aung, K. M. M., Veeravalli, B., & Rohloff, K. (2018).
Implementation and performance evaluation of rns variants of the bfv homo-
morphic encryption scheme. Cryptology ePrint Archive, Report 2018/589.
https://eprint.iacr.org/2018/589.

Badawi, A. A., Veeravalli, B., Mun, C. F., & Aung, K. M. M. (2018). High-
performance fv somewhat homomorphic encryption on gpus: An implementa-
tion using cuda. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, 2018 (2), 70–95.

Bajard, J.-C., Eynard, J., Hasan, M. A., & Zucca, V. (2017). A full rns variant of
fv like somewhat homomorphic encryption schemes. In Avanzi, R. & Heys, H.
(Eds.), Selected Areas in Cryptography – SAC 2016, (pp. 423–442).

Bajard, J.-C., Eynard, J., Martins, P., Sousa, L., & Zucca, V. (2019). An hpr
variant of the fv scheme: Computationally cheaper, asymptotically faster.
IACR Cryptology ePrint Archive, 2019, 500.

Banerjee, U., Ukyab, T. S., & Chandrakasan, A. P. (2019). Sapphire: A configurable
crypto-processor for post-quantum lattice-based protocols. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2019 (4), 17–61.

Barrett, P. (1986). Implementing the rivest shamir and adleman public key encryp-
tion algorithm on a standard digital signal processor. In Conference on the
Theory and Application of Cryptographic Techniques, (pp. 311–323). Springer.

Bernstein, D. J., Chou, T., Lange, T., von Maurich, I., Misoczki, R., Niederhagen,
R., Persichetti, E., Peters, C., Schwabe, P., Sendrier, N., et al. (2017). Clas-
sic mceliece: conservative code-based cryptography. Submission to the NIST
Post-Quantum Standardization project.

Bernstein, D. J., Chuengsatiansup, C., Lange, T., & van Vredendaal, C. (2017).
Ntru prime: reducing attack surface at low cost. In International Conference
on Selected Areas in Cryptography, (pp. 235–260). Springer.

Bernstein, D. J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., & Schwabe,
P. (2019). The sphincs+ signature framework. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, (pp.
2129–2146).

Bernstein, D. J. & Lange, T. (2017). Post-quantum cryptography. Nature,
549 (7671), 188–194.

Beullens, W. (2020). Improved cryptanalysis of uov and rainbow. Cryptology ePrint
Archive, Report 2020/1343. https://eprint.iacr.org/2020/1343.

Boneh, D. et al. (1999). Twenty years of attacks on the rsa cryptosystem. Notices
of the AMS, 46 (2), 203–213.

Boneh, D., Goh, E.-J., & Nissim, K. (2005). Evaluating 2-dnf formulas on cipher-
texts. In Kilian, J. (Ed.), Theory of Cryptography, (pp. 325–341)., Berlin,
Heidelberg. Springer Berlin Heidelberg.

Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J. M.,

127

https://eprint.iacr.org/2018/589
https://eprint.iacr.org/2020/1343

Schwabe, P., Seiler, G., & Stehlé, D. (2018). Crystals-kyber: a cca-secure
module-lattice-based kem. In 2018 IEEE EuroS&P, (pp. 353–367). IEEE.

Bos, J. W., Lauter, K., Loftus, J., & Naehrig, M. (2013). Improved security for
a ring-based fully homomorphic encryption scheme. In IMA International
Conference on Cryptography and Coding, (pp. 45–64). Springer.

Botros, L., Kannwischer, M. J., & Schwabe, P. (2019). Memory-efficient high-speed
implementation of kyber on cortex-m4. In Int. Conference on Cryptology in
Africa, (pp. 209–228). Springer.

Brakerski, Z. (2012). Fully homomorphic encryption without modulus switch-
ing from classical gapsvp. In Annual Cryptology Conference, (pp. 868–886).
Springer.

Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2014). (leveled) fully homomor-
phic encryption without bootstrapping. ACM Transactions on Computation
Theory (TOCT), 6 (3), 1–36.

Brodtkorb, A. R., Dyken, C., Hagen, T. R., Hjelmervik, J. M., & Storaasli, O. O.
(2010). State-of-the-art in heterogeneous computing. Sci. Program., 18 (1),
1–33.

Brutzkus, A., Gilad-Bachrach, R., & Elisha, O. (2019). Low latency privacy preserv-
ing inference. In Chaudhuri, K. & Salakhutdinov, R. (Eds.), Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, (pp. 812–821). PMLR.

Cathébras, J., Carbon, A., Milder, P., Sirdey, R., & Ventroux, N. (2018). Data
flow oriented hardware design of rns-based polynomial multiplication for she
acceleration. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2018 (3), 69–88.

Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., & Zaverucha, G. (2017). Post-quantum zero-knowledge and
signatures from symmetric-key primitives. In Proceedings of the 2017 acm
sigsac conference on computer and communications security, (pp. 1825–1842).

Chen, C., Danba, O., Hoffstein, J., Hülsing, A., Rijneveld, J., Schanck, J. M.,
Schwabe, P., Whyte, W., & Zhang, Z. (2019). Ntru: Algorithm specifications
and supporting documentation. https://ntru.org/f/ntru-20190330.pdf.

Chen, D. D., Mentens, N., Vercauteren, F., Sinha Roy, S., Cheung, R. C. C., Pao,
D., & Verbauwhede, I. (2015). High-speed polynomial multiplication architec-
ture for ring-lwe and she cryptosystems. IEEE Transactions on Circuits and
Systems I: Regular Papers, 62 (1), 157–166.

Chen, H., Dai, W., Kim, M., & Song, Y. (2019). Efficient multi-key homomor-
phic encryption with packed ciphertexts with application to oblivious neural
network inference. Cryptology ePrint Archive, Report 2019/524. https://
eprint.iacr.org/2019/524.

Chen, H., Dai, W., Kim, M., & Song, Y. (2021). Efficient homomorphic conversion
between (ring) lwe ciphertexts. In Sako, K. & Tippenhauer, N. O. (Eds.),
Applied Cryptography and Network Security, (pp. 460–479)., Cham. Springer
International Publishing.

Chen, L., Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner,
R., & Smith-Tone, D. (2016). Report on post-quantum cryptography. US
Department of Commerce, National Institute of Standards and Technology.
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf.

128

https://eprint.iacr.org/2019/524
https://eprint.iacr.org/2019/524

Chen, Z., Ma, Y., Chen, T., Lin, J., & Jing, J. (2020). Towards efficient kyber on
fpgas: A processor for vector of polynomials. In 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC), (pp. 247–252).

Chen, Z., Ma, Y., Chen, T., Lin, J., & Jing, J. (2021). High-performance area-
efficient polynomial ring processor for crystals-kyber on fpgas. Integration, 78,
25–35.

Cheon, J. H., Kim, A., Kim, M., & Song, Y. (2017). Homomorphic encryption
for arithmetic of approximate numbers. In International Conference on the
Theory and Application of Cryptology and Information Security, (pp. 409–
437). Springer.

Chillotti, I., Gama, N., Georgieva, M., & Izabachène, M. (2020). Tfhe: fast fully
homomorphic encryption over the torus. Journal of Cryptology, 33 (1), 34–91.

Chu, E. & George, A. (1999). Inside the FFT black box: serial and parallel fast
Fourier transform algorithms. CRC press.

Chung, C.-M. M., Hwang, V., Kannwischer, M. J., Seiler, G., Shih, C.-J., & Yang,
B.-Y. (2021). Ntt multiplication for ntt-unfriendly rings: New speed records for
saber and ntru on cortex-m4 and avx2. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021 (2), 159–188.

Cooley, J. W. & Tukey, J. W. (1965). An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19 (90), 297–301.

Dadda, L. (1965). Some Schemes for Parallel Multipliers. In Alta Frequenza, vol-
ume 34, (pp. 349–356).

Dai, W. & Sunar, B. (2015). cuhe: A homomorphic encryption accelerator library.
In International Conference on Cryptography and Information Security in the
Balkans, (pp. 169–186). Springer.

Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G.,
& Stehlé, D. (2018). Crystals-dilithium: A lattice-based digital signature
scheme. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2018 (1), 238–268.

D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., & Vercauteren, F. (2018). Saber:
Module-LWR based key exchange, CPA-secure encryption and CCA-secure
KEM. In International Conference on Cryptology in Africa, (pp. 282–305).
Springer.

Fan, J. & Vercauteren, F. (2012). Somewhat practical fully homomorphic encryp-
tion. IACR Cryptology ePrint Archive, 2012, 144.

Feng, X., Li, S., & Xu, S. (2019). Rlwe-oriented high-speed polynomial multiplier
utilizing multi-lane stockham ntt algorithm. IEEE Transactions on Circuits
and Systems II: Express Briefs, 67 (3), 556–559.

Fouque, P.-A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., & Zhang, Z. (2018). Falcon: Fast-fourier
lattice-based compact signatures over ntru.

Fritzmann, T. & Sepúlveda, J. (2019). Efficient and flexible low-power ntt for lattice-
based cryptography. In 2019 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), (pp. 141–150).

Fritzmann, T., Sigl, G., & Sepúlveda, J. (2020). RISQ-V: Tightly Coupled RISC-V
Accelerators for Post-Quantum Cryptography. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2020 (4), 239–280.

Gentry, C. (2009). A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford

129

University, Stanford, CA, USA. AAI3382729.
Gentry, C., Sahai, A., & Waters, B. (2013). Homomorphic encryption from learning

with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In
Annual Cryptology Conference, (pp. 75–92). Springer.

Göttert, N., Feller, T., Schneider, M., Buchmann, J., & Huss, S. (2012). On the de-
sign of hardware building blocks for modern lattice-based encryption schemes.
In Prouff, E. & Schaumont, P. (Eds.), Cryptographic Hardware and Embed-
ded Systems – CHES 2012, (pp. 512–529)., Berlin, Heidelberg. Springer Berlin
Heidelberg.

Gouzien, E. & Sangouard, N. (2021). Factoring 2048 rsa integers in 177 days with
13436 qubits and a multimode memory.

Halevi, S., Polyakov, Y., & Shoup, V. (2019). An improved rns variant of the bfv
homomorphic encryption scheme. In Matsui, M. (Ed.), Topics in Cryptology
– CT-RSA 2019, (pp. 83–105)., Cham. Springer International Publishing.

Halevi, S. & Shoup, V. (2014). Algorithms in helib. In Annual Cryptology Confer-
ence, (pp. 554–571). Springer.

Huang, Y., Huang, M., Lei, Z., & Wu, J. (2020). A Pure Hardware Implementa-
tion of CRYSTALS-KYBER PQC Algorithm through Resource Reuse. IEICE
Electronics Express, advpub.

ITU (2020). Measuring digital development: Facts and figures 2020.
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx.

Jacobsen, M., Freund, Y., & Kastner, R. (2012). RIFFA: A Reusable Integration
Framework for FPGA Accelerators. In 2012 IEEE 20th International Sympo-
sium on Field-Programmable Custom Computing Machines, (pp. 216–219).

Kalali, E., Mert, A. C., & Hamzaoglu, I. (2016). A computation and energy re-
duction technique for hevc discrete cosine transform. IEEE Transactions on
Consumer Electronics, 62 (2), 166–174.

Kannepalli, S., Laine, K., & Moreno, R. C. (2021). Password monitor: Safeguarding
passwords in microsoft edge.

Kannwischer, M. J., Rijneveld, J., Schwabe, P., & Stoffelen, K. (2019). pqm4:
Testing and benchmarking nist pqc on arm cortex-m4. Cryptology ePrint
Archive, Report 2019/844. https://eprint.iacr.org/2019/844.

Karatsuba, A. A. & Ofman, Y. P. (1962). Multiplication of many-digital numbers
by automatic computers. Doklady Akademii Nauk, 145 (2), 293–294.

Kawamura, K., Yanagisawa, M., & Togawa, N. (2018). A loop structure optimization
targeting high-level synthesis of fast number theoretic transform. In 2018 19th
ISQED, (pp. 106–111).

Keutzer, K., Newton, A. R., Rabaey, J. M., & Sangiovanni-Vincentelli, A. (2000).
System-level design: orthogonalization of concerns and platform-based design.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 19 (12), 1523–1543.

Kurfalı, M., Arifoğlu, A., Tokdemir, G., & Paçin, Y. (2017). Adoption of e-
government services in turkey. Computers in Human Behavior, 66, 168–178.

Liu, W., Fan, S., Khalid, A., Rafferty, C., & O’Neill, M. (2019). Optimized school-
book polynomial multiplication for compact lattice-based cryptography on
fpga. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
27 (10), 2459–2463.

Longa, P. & Naehrig, M. (Nov. 2016). Speeding up the number theoretic trans-

130

https://eprint.iacr.org/2019/844

form for faster ideal lattice-based cryptography. In Cryptology and Network
Security, (pp. 124–139)., Milan, Italy.

Lyubashevsky, V. & Seiler, G. (2019). Nttru: Truly fast ntru using ntt. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2019 (3),
180–201.

Mert, A. C., Karabulut, E., Öztürk, E., Savaş, E., & Aysu, A. (2020). An extensive
study of flexible design methods for the number theoretic transform. IEEE
Transactions on Computers.

Mert, A. C., Karabulut, E., Öztürk, E., Savaş, E., Becchi, M., & Aysu, A. (2020).
A flexible and scalable ntt hardware : Applications from homomorphically
encrypted deep learning to post-quantum cryptography. In 2020 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), (pp. 346–351).

Mert, A. C., Öztürk, E., & Savaş, E. (2019). Design and implementation of a
fast and scalable ntt-based polynomial multiplier architecture. In 2019 22nd
Euromicro Conference on Digital System Design (DSD), (pp. 253–260).

Mert, A. C., Öztürk, E., & Savaş, E. (2020). Design and implementation of encryp-
tion/decryption architectures for bfv homomorphic encryption scheme. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 28 (2), 353–362.

Mert, A. C., Öztürk, E., & Savaş, E. (2020). Fpga implementation of a run-time
configurable ntt-based polynomial multiplication hardware. Microprocessors
and Microsystems, 78, 103219.

Micciancio, D. (2011). The geometry of lattice cryptography. In International School
on Foundations of Security Analysis and Design, (pp. 185–210). Springer.

Microsoft (2019). Microsoft SEAL (release 3.2). https://github.com/Microsoft/
SEAL. Microsoft Research, Redmond, WA.

Microsoft (2020). Microsoft SEAL (release 3.5). https://github.com/Microsoft/
SEAL. Microsoft Research, Redmond, WA.

Migliore, V., Real, M. M., Lapotre, V., Tisserand, A., Fontaine, C., & Gogniat,
G. (2018). Hardware/software co-design of an accelerator for fv homomor-
phic encryption scheme using karatsuba algorithm. IEEE Transactions on
Computers, 67 (3), 335–347.

Milder, P., Franchetti, F., Hoe, J. C., & Püschel, M. (2012). Computer generation
of hardware for linear digital signal processing transforms. ACM Trans. Des.
Autom. Electron. Syst., 17 (2).

Millar, K. (2019). Design of a flexible schoenhage-strassen fft polynomial multiplier
with high-level synthesis. Master’s thesis, Rochester Institute of Technology.

Montgomery, P. L. (1985). Modular multiplication without trial division. Mathe-
matics of computation, 44 (170), 519–521.

Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I., & Cammarota, R.
(2019). Post-quantum lattice-based cryptography implementations: A survey.
ACM Comput. Surv., 51 (6).

Ozcan, E. & Aysu, A. (2020). High-level synthesis of number-theoretic transform: A
case study for future cryptosystems. IEEE Embedded Systems Letters, 12 (4),
133–136.

Ozerk, O., Elgezen, C., Mert, A. C., Öztürk, E., & Savas, E. (2021). Efficient num-
ber theoretic transform implementation on gpu for homomorphic encryption.
IACR Cryptol. ePrint Arch., 2021, 124.

Pease, M. C. (1968). An adaptation of the fast fourier transform for parallel pro-

131

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

cessing. J. ACM, 15 (2), 252–264.
Pollard, J. M. (1971). The fast fourier transform in a finite field. Mathematics of

computation, 25 (114), 365–374.
Polyakov, Y., Rohloff, K., & Ryan, G. W. (2017). Palisade lattice cryptography

library user manual. Cybersecurity Research Center, New Jersey Institute
ofTechnology (NJIT), Tech. Rep, 15.

Pöppelmann, T. & Güneysu, T. (2012). Towards efficient arithmetic for lattice-
based cryptography on reconfigurable hardware. In Hevia, A. & Neven, G.
(Eds.), Progress in Cryptology – LATINCRYPT 2012, (pp. 139–158)., Berlin,
Heidelberg. Springer Berlin Heidelberg.

Pöppelmann, T. & Güneysu, T. (2013). Towards practical lattice-based public-key
encryption on reconfigurable hardware. In Int. Conf. on Selected Areas in
Cryptography, (pp. 68–85). Springer.

Pöppelmann, T. & Güneysu, T. (2014). Area optimization of lightweight lattice-
based encryption on reconfigurable hardware. In 2014 IEEE Int. Symp. on
Circuits and Systems, (pp. 2796–2799).

Pöppelmann, T., Naehrig, M., Putnam, A., & Macias, A. (Sep. 2015). Accelerating
homomorphic evaluation on reconfigurable hardware. In CHES, (pp. 143–
163)., Saint-Malo, France.

Pöppelmann, T., Oder, T., & Güneysu, T. (2015). High-performance ideal lattice-
based cryptography on 8-bit atxmega microcontrollers. In International Con-
ference on Cryptology and Information Security in Latin America, (pp. 346–
365). Springer.

Proos, J. & Zalka, C. (2003). Shor’s discrete logarithm quantum algorithm for
elliptic curves. Quantum Info. Comput., 3 (4), 317–344.

Pulido-Gaytan, B., Tchernykh, A., Cortés-Mendoza, J. M., Babenko, M., Rad-
chenko, G., Avetisyan, A., & Drozdov, A. Y. (2021). Privacy-preserving neural
networks with homomorphic encryption: Challenges and opportunities. Peer-
to-Peer Networking and Applications, 14 (3), 1666–1691.

Regev, O. (2009). On lattices, learning with errors, random linear codes, and cryp-
tography. Journal of the ACM (JACM), 56 (6), 1–40.

Reis, D., Takeshita, J., Jung, T., Niemier, M., & Hu, X. S. (2020). Computing-
in-memory for performance and energy-efficient homomorphic encryption.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28 (11),
2300–2313.

Reparaz, O., Sinha Roy, S., de Clercq, R., Vercauteren, F., & Verbauwhede, I.
(2016). Masking ring-lwe. Journal of Cryptographic Engineering, 6 (2), 139–
153.

Rivest, R. L., Adleman, L., Dertouzos, M. L., et al. (1978). On data banks and
privacy homomorphisms. Foundations of secure computation, 4 (11), 169–180.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21 (2),
120–126.

Sarker, A., Mozaffari-Kermani, M., & Azarderakhsh, R. (2019). Hardware con-
structions for error detection of number-theoretic transform utilized in secure
cryptographic architectures. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, 27 (3), 738–741.

Seiler, G. (2018). Faster avx2 optimized ntt multiplication for ring-lwe lattice cryp-

132

tography. IACR Cryptology ePrint Archive, 2018, 39.
Shenoy, A. & Kumaresan, R. (1989). Fast base extension using a redundant modulus

in rns. IEEE Transactions on Computers, 38 (2), 292–297.
Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and

factoring. In Proceedings 35th annual symposium on foundations of computer
science, (pp. 124–134). Ieee.

Sinha Roy, S., Järvinen, K., Vliegen, J., Vercauteren, F., & Verbauwhede, I. (2018).
Hepcloud: An fpga-based multicore processor for fv somewhat homomorphic
function evaluation. IEEE Transactions on Computers, 67 (11), 1637–1650.

Sinha Roy, S., Turan, F., Jarvinen, K., Vercauteren, F., & Verbauwhede, I. (2019).
Fpga-based high-performance parallel architecture for homomorphic comput-
ing on encrypted data. In 2019 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), (pp. 387–398).

Sinha Roy, S., Vercauteren, F., Mentens, N., Chen, D. D., & Verbauwhede, I.
(2014). Compact ring-lwe cryptoprocessor. In Batina, L. & Robshaw, M.
(Eds.), Cryptographic Hardware and Embedded Systems – CHES 2014, (pp.
371–391)., Berlin, Heidelberg. Springer Berlin Heidelberg.

Song, S., Tang, W., Chen, T., & Zhang, Z. (2018). Leia: A 2.05mm2140mw lat-
tice encryption instruction accelerator in 40nm cmos. In 2018 IEEE Custom
Integrated Circuits Conference (CICC), (pp. 1–4).

Takeshita, J., Reis, D., Gong, T., Niemier, M., Hu, X. S., & Jung, T. (2020).
Algorithmic acceleration of b/fv-like somewhat homomorphic encryption
for compute-enabled ram. Cryptology ePrint Archive, Report 2020/1223.
https://eprint.iacr.org/2020/1223.

Takeshita, J., Schoenbauer, M., Karl, R., & Jung, T. (2020). Enabling faster opera-
tions for deeper circuits in full rns variants of fv-like somewhat homomorphic
encryption. IACR Cryptology ePrint Archive, 2020, 91.

Toom, A. L. (1963). The complexity of a scheme of functional elements realizing
the multiplication of integers. Soviet Mathematics Doklady, 3 (4), 714–716.

Turan, F., Roy, S. S., & Verbauwhede, I. (2020). Heaws: An accelerator for homo-
morphic encryption on the amazon aws fpga. IEEE Transactions on Comput-
ers, 69 (8), 1185–1196.

Van Dijk, M., Gentry, C., Halevi, S., & Vaikuntanathan, V. (2010). Fully homomor-
phic encryption over the integers. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, (pp. 24–43). Springer.

Verbauwhede, I. & Schaumont, P. (2005). Skiing the embedded systems mountain.
ACM Trans. Embed. Comput. Syst., 4 (3), 529–548.

Viand, A., Jattke, P., & Hithnawi, A. (2021). Sok: Fully homomorphic encryption
compilers. In 2021 2021 IEEE Symposium on Security and Privacy (SP), (pp.
1166–1182)., Los Alamitos, CA, USA. IEEE Computer Society.

Winkler, F. (2012). Polynomial algorithms in computer algebra. Springer Science &
Business Media.

Xilinx (2014). Vivado design suite user guide-high-level synthesis.
Xin, G., Han, J., Yin, T., Zhou, Y., Yang, J., Cheng, X., & Zeng, X. (2020). VPQC:

A Domain-Specific Vector Processor for Post-Quantum Cryptography Based
on RISC-V Architecture. IEEE Trans. on Circuits and Systems I: Regular
Papers, 67 (8), 2672–2684.

Xing, Y. & Li, S. (2020). An efficient implementation of the newhope key exchange

133

https://eprint.iacr.org/2020/1223

on fpgas. IEEE Transactions on Circuits and Systems I: Regular Papers,
67 (3), 866–878.

Xing, Y. & Li, S. (2021). A compact hardware implementation of cca-secure key
exchange mechanism crystals-kyber on fpga. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2021 (2), 328–356.

Yaman, F., Mert, A. C., Öztürk, E., & Savaş, E. (2021). A hardware accelerator for
polynomial multiplication operation of crystals-kyber pqc scheme. Cryptology
ePrint Archive, Report 2021/485. https://eprint.iacr.org/2021/485.

Yanik, T., Savas, E., & Koc, C. K. (2002). Incomplete reduction in modular arith-
metic. IEE Proceedings - Computers and Digital Techniques, 149 (2), 46–52.

Zhang, N., Qin, Q., Yuan, H., Zhou, C., Yin, S., Wei, S., & Liu, L. (2020). Nttu:
An area-efficient low-power ntt-uncoupled architecture for ntt-based multipli-
cation. IEEE Transactions on Computers, 69 (4), 520–533.

Zhang, N., Yang, B., Chen, C., Yin, S., Wei, S., & Liu, L. (2020). Highly efficient
architecture of newhope-nist on fpga using low-complexity ntt/intt. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020 (2),
49–72.

Öztürk, E., Doroz, Y., Savaş, E., & Sunar, B. (2017). A custom accelerator for ho-
momorphic encryption applications. IEEE Transactions on Computers, 66 (1),
3–16.

134

https://eprint.iacr.org/2021/485

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATONS
	INTRODUCTION
	Contribution of the Dissertation
	Organization of the Dissertation

	BACKGROUND
	Notation
	Lattice-based Cryptography
	Post-quantum Cryptography
	Homomorphic Encryption
	Brakerski/Fan-Vercauteren Homomorphic Encryption Scheme
	Microsoft SEAL Homomorphic Encryption Library
	Residue Number System

	Polynomial Multiplication
	Number Theoretic Transform
	NTT-based Polynomial Multiplication

	FAST AND SCALABLE NTT-BASED POLYNOMIAL MULTIPLICATION ARCHITECTURES
	Introduction
	NTT Architectures
	Modular Adder and Modular Subtractor Units
	Modular Multiplier Unit
	Integer Multiplier Unit
	Word-level Montgomery Modular Reduction Unit

	Iterative NTT Hardware
	GS Butterfly Unit
	Overall Design

	Four-step NTT Hardware
	32-pt NTT Unit
	Overall Design

	BFV Encryption/Decryption Architectures
	Encryption/Decryption Implementations in SEAL Library
	Iterative BFV Hardware
	Four-step BFV Hardware

	CPU-FPGA Framework
	Results and Comparison
	Summary

	AN FPGA-BASED RUN-TIME CONFIGURABLE NTT-BASED POLYNOMIAL MULTIPLICATION ARCHITECTURE
	Introduction
	Polynomial Multiplicationr Architecture
	Run-time Configurable Word-Level Montgomery Modular Multiplier Unit
	NTT Unit
	Overall Design
	CPU-FPGA Framework

	A Case Study: SEAL Library
	Results and Comparison
	Summary

	A HIGH PERFORMANCE HOMOMORPHIC MULTIPLICATION ARCHITECTURE FOR THE BFV SCHEME
	Introduction
	Full RNS Variant of the BFV Scheme
	Homomorphic Multiplication
	Relinearization

	Homomorphic Multiplication Architecture
	Parameter Set
	NTT Core
	Overall Design and Scheduling

	Results and Comparison
	Summary

	A HARDWARE ACCELERATOR FOR POLYNOMIAL MULTIPLICATION OPERATION OF CRYSTALS-KYBER PQC SCHEME
	Introduction
	Preliminaries
	A New Variant of NTT-based Polynomial Multiplication
	CRYSTALS-Kyber

	Polynomial Multiplication Architecture
	Modular Reduction Unit
	Unified Butterfly Unit
	Overall Design

	Results and Comparison
	Prior Works
	Implementation Results

	Summary

	AN EXTENSIVE STUDY OF FLEXIBLE DESIGN METHODS FOR THE NUMBER THEORETIC TRANSFORM
	Introduction
	Prior Implementations of NTT
	Design Method I: Parametric Hardware Generator Design
	A Design-time Configurable Word-Level Montgomery Modular Multiplier Unit
	PEs and Butterfly Units
	Flexible Memory Access and Overall Design

	Design Method II: HLS-Based Design
	Results and Comparison
	Experimental Setup
	Implementation Results of the Design Methods
	Comparison to Prior Work

	Summary

	CONCLUSION AND FUTURE WORK
	Conclusions
	Future Work

	BIBLIOGRAPHY

