CHANGING SHOPPING HABITS IN SUPERMARKET DURING COVID-19

by EDA HELİN GÜNDEŞ

Submitted to the Sabancı Graduate Business School in partial fulfilment of the requirements for the degree of Master of Science in Business Analytics

> Sabancı University June 2021

CHANGING SHOPPING HABITS IN SUPERMARKET DURING COVID-19

Approved by:

Prof.	FUSUN ULENGIN	 	 	 	 	 •••	•••	
(The	sis Supervisor)							

Assoc. Prof. AYSE KOCABIYIKOGLU

Prof. YUSUF ILKER TOPCU

Date of Approval: June 30, 2021

EDA HELİN GÜNDEŞ 2021 \bigodot

All Rights Reserved

ABSTRACT

CHANGING SHOPPING HABITS IN SUPERMARKET DURING COVID-19

EDA HELIN GUNDES

BUSINESS ANALYTICS M.Sc. THESIS, MAY 2021

Thesis Supervisor: Prof. FUSUN ULENGIN

Keywords: COVID-19, consumer behavior , consumption , supply-chain, online-transaction

On December 31, 2019, the world was shaken by the news of a new virus observed in Wuhan city, Hubei, China. Covid-19 affected all the industries but mostly the retail industry. Stock-pilling and panic buying behaviors were seen in supermarkets. Most of the retailers could not satisfied the basic demands with their supply plans. Therefore, the main aim of this research is to find out the changing habits and consumer behaviors due to the effect of COVID-19. The analysis was conducted using the CRISP-DM model steps. The data set was revealed from one of the large retailers in Turkey. Initially, cluster analysis was conducted to group the products according to their similarity in terms of shopping behaviors. Subsequently, stepwise regression, best subset selection and Lasso models were applied to each cluster in order to analyze the relation between consumer shopping behavior and Covid cases. The best regression model for each cluster is selected using 10-fold cross-validation as well as Cp and adjusted R2. These analyses were applied both to the physical and online market data to highlight the shift from physical to online market. Eventually, this research found out that there is a significant shift from physical to online market during Covid-19. Many of the product groups have seen a significant increase in sales compared to 2019 with the effect of panic-buying. The shifts in sales levels are statistically related with the Covid-19 case numbers and curfews.

ÖZET

COVID-19 SÜRECİNDE SÜPERMARKET ALIŞVERİŞİ ALIŞKANLIKLARININ DEĞİŞİMİ

EDA HELİN GÜNDEŞ

İŞ ANALİTİĞİ YÜKSEK LİSANS TEZİ, MAYIS 2021

Tez Danışmanı: Prof. Dr. FÜSUN ÜLENGİN

Anahtar Kelimeler: COVID-19, tüketici davranışları , tüketim, tedarik zinciri, çevrimiçi satınalma

31 Aralık 2019'da Dünya, Çin'in Hubei eyaletine bağlı Wuhan kentinde gözlemlenen yeni bir virüs haberiyle sarsıldı. Covid-19, perakende sektörü başta olmak üzere tüm sektörleri etkiledi. Süpermarketlerde stok biriktirme ve panik satın alma davranışları görüldü. Perakendecilerin çoğu, tedarik planlarıyla temel talepleri karşılayamadı. Bu araştırmanın temel amacı, COVID-19'un etkisiyle değişen alışkanlıkları ve tüketici davranışlarını ortaya çıkarmaktır. Analizler, CRISP-DM model adımları kullanılarak yapılmıştır. Veri seti, Türkiye'deki büyük perakendecilerden birinden sağlanmıştır. Öncelikle, ürünleri alışveriş davranışları açısından benzerliklerine göre gruplandırmak için küme analizi yapılmıştır. Daha sonra tüketici alışveriş davranışı ile Covid vakaları arasındaki ilişkiyi analiz etmek için her bir kümeye Stepwise regression, En ivi alt küme secimi ve Lasso modelleri uygulanmıştır. Her küme için en iyi regresyon modeli, Cp ve Adjusted R2'nin yanı sıra 10 kat çapraz doğrulama kullanılarak seçilmiştir. Bu analizler, fiziksel pazardan çevrimiçi pazara geçişi vurgulamak için hem fiziksel hem de çevrimiçi pazar verilerine uygulanmıştır. Sonuç olarak, bu araştırma, Covid-19 sırasında fiziksel pazardan çevrimiçi pazara önemli bir geçiş olduğunu, panik satın almanın etkisiyle birçok ürün grubunda 2019'a kıyasla satışlarında önemli bir artış görüldüğünü, ve satış rakamlarındaki değişimlerin istatistiksel olarak Covid-19 vaka sayıları ve sokağa çıkma yasakları ile ilişkili olduğunu ortaya çıkarmıştır.

ACKNOWLEDGEMENTS

First of all, I would like to express my thanks to my beloved thesis advisor and mentor Prof. Füsun Ülengin for her help and support not just for this thesis and also throughout my master education. Without her guidance and help I would not be able to find my way and understand what I want for the rest of my life.

I would like to express my special thanks of gratitude to Prof. Burç Ülengin for his guidance and support in completing this research.

I also want to thank all of my professors that I had a chance to take class from throughout my master education. Prof. Abdullah Daşçı, Assoc. Prof. Burak Gökgür and Assoc. Prof. Ayşe Kocabıyıkoğlu thanks for all of your guidance and precious classes that you've given to me.

I would like to thank Prof. Emel Aktaş and Prof. İlker Topçu for letting me a part of their team. It was a pleasure to work with you and learn from you.

Lastly, I would like to thank to my mother Zeynep Begüm Gündeş, my father Mustafa Gündeş, my little brother Altuğ Baran Gündeş and all of my friends. They always supported me throughout this journey. I am really grateful to them.

This thesis is dedicated to my beloved family, professors and friends who supported me in all parts of this journey no matter what.

TABLE OF CONTENTS

\mathbf{LI}	ST (OF TA	BLES	x
LI	ST (OF FIC	GURES	xi
LI	ST ()F AB	BREVIATONS	xiv
1.	INT	RODU	JCTION	1
2.	Lite	rature	Review	6
3.	Dat	a set, i	Methodology and Applications	9
	3.1.	The D	ataset	11
	3.2.	Data I	Preparation	12
	3.3.	Metho	ds	13
		3.3.1.	Cluster Analysis	14
		3.3.2.	Stepwise Regression Analysis	16
		3.3.3.	Lasso	17
		3.3.4.	Best Subset Model Selection	17
		3.3.5.	Comparison of the regression models	18
4.	\mathbf{Res}	ults &	Evaluation	19
	4.1.	Cluste	r Analysis	19
		4.1.1.	Alcoholic Beverages	21
		4.1.2.	Daily Needs	21
		4.1.3.	Protein-Based Products	23
		4.1.4.	Basic Consumption Goods	24
		4.1.5.	Cold-Chain Products	26
		4.1.6.	Electronics	27
	4.2.	Physic	al Market Results	29
		4.2.1.	Alcoholic Beverages	30
		4.2.2.	Daily Needs	30
		4.2.3.	Protein-Based Products	31

		4.2.4.	Basic Consumption Goods	31
		4.2.5.	Cold-Chain Products	32
		4.2.6.	Electronics	32
	4.3.	Online	e Shopping Results	33
		4.3.1.	Daily Needs	33
		4.3.2.	Protein-Based Products	33
		4.3.3.	Basic Consumption Goods	34
		4.3.4.	Cold-Chain Products	34
		4.3.5.	Electronics	35
	4.4.	Compa	arison between Physical and Online Market	35
		4.4.1.	Alcoholic Beverages	36
		4.4.2.	Daily Needs	37
		4.4.3.	Protein-Based Products	38
		4.4.4.	Basic Consumption Goods	39
		4.4.5.	Cold-Chain Products	41
		4.4.6.	Electronics	42
5.	Con	clusio	n and Further Suggestions	44
Bl	BLI	OGRA	PHY	46
A	PPE	NDIX	A	48

LIST OF TABLES

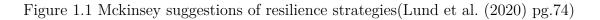
Variables of the retailer data	12
30 Main Groups after cleaning process	13
Variables that have been used in regression analysis	16
Cluster Results	20
Alcoholic Beverages Model Results	30
Daily Needs Model Results	30
Protein-Based Products Model Results	31
Basic Consumption Goods Model Results	31
Cold Chain Products Model Results	32
Electronics Model Results	32
Daily Needs Model Results	33
Protein-Based Products Model Results	34
Basic Consumption Goods Model Results	34
Cold-Chain Products Model Results	35
Electronics Model Results	35
Alcoholic Beverages-Physical Market Final Model Result	36
Daily Needs-Physical Market Final Model Result	37
Daily Needs-Online Market Final Model Result	38
Protein-Based Products-Physical Market Final Model Result	39
Protein-Based Products-Online Market Final Model Result	39
Basic Consumption Goods-Physical Market Final Model Result	40
Basic Consumption Goods-Online Market Final Model Result .	41
Cold-Chain Products-Physical Market Final Model Result	42
Cold-Chain Products-Online Market Final Model Result	42
Electronics-Physical Market Final Model Result	43
Electronics-Online Market Final Model Result	43
Example from the dataset	48
Example from the pivot table	48
Example from Regression Dataset	49
	30 Main Groups after cleaning process. Variables that have been used in regression analysis Cluster Results Alcoholic Beverages Model Results Daily Needs Model Results Protein-Based Products Model Results Basic Consumption Goods Model Results Cold Chain Products Model Results Cold Chain Products Model Results Daily Needs Model Results Cold Chain Products Model Results Daily Needs Model Results Daily Needs Model Results Daily Needs Model Results Daily Needs Model Results Daily Needs Model Results Protein-Based Products Model Results Basic Consumption Goods Model Results Cold-Chain Products Model Results Cold-Chain Products Model Results Alcoholic Beverages-Physical Market Final Model Result Daily Needs-Physical Market Final Model Result Daily Needs-Online Market Final Model Result Daily Needs-Online Market Final Model Result Daily Needs-Online Market Final Model Result Daily Needs-Online Goods-Online Market Final Model Result Corsumption Goods-Online Market Final Model Result Cold-Chain Products-Physical Market Final Model Result Cold-Chain Product

LIST OF FIGURES

Figure 1.1. Mckinsey suggestions of resilience strategies(Lund, Manyika,	
Woetzel, Barribal, Krishnan, Alicke, Birshnan, George, Smit, Swan	
& Hutzler (2020) pg.74)	2
Figure 1.2. March 16 - September 30 2020 Number of New Cases in	
Turkey(Owid, 2020)	3
Figure 1.3. September 30 - December 31 2020 Number of New Cases in	
Turkey(Owid, 2020)	4
Figure 3.1. CRISP-DM Model (Shearer, 2000)	9
Figure 4.1. Hierarchical Clustering Result based on Physical Market	20
Figure 4.2. Alcoholic Beverages January-December trends on physical	
market	21
Figure 4.3. Daily Needs January-December trends on physical market	22
Figure 4.4. Daily Needs January-December trends on online market	23
Figure 4.5. Protein-Based Products January-December trends on physical	
market	24
Figure 4.6. Protein-Based Products January-December trends on online	
market	24
Figure 4.7. Basic Consumption Goods January-December trends on phys-	
ical market	25
Figure 4.8. Basic Consumption Goods January-December trends on online	
market	26
Figure 4.9. Cold-Chain Products January-December trends on physical	
market	27
Figure 4.10. Cold-Chain Products January-December trends on online market	27
Figure 4.11. Electronics January-December trends on physical market	28
Figure 4.12. Electronics January-December trends on online market	29
Figure A.1. Alcoholic Beverages Physical Market Regression Result	50
Figure A.2. Daily Needs Physical Market Regression Result	50

Figure A.3. Protein-Based Products Physical Market Regression Result	51
Figure A.4. Basic Consumption Goods Physical Market Regression Result	51
Figure A.5. Cold-Chain Products Physical Market Regression Result	52
Figure A.6. Electronics Physical Market Regression Result	52
Figure A.7. Daily Needs Online Market Regression Result	53
Figure A.8. Protein-Based Products Online Market Regression Result	53
Figure A.9. Basic Consumption Goods Online Market Regression Result	54
Figure A.10.Cold-Chain Products Online Market Regression Result	54
Figure A.11.Electronics Online Market Regression Result	55
Figure A.12. Alcoholic Beverages Physical Market Lasso Result	55
Figure A.13. Alcoholic Beverages Physical Market Lasso Result	56
Figure A.14.Daily Needs Physical Market Mean Squared Error Result	56
Figure A.15.Daily Needs Physical Market Lasso Result	57
Figure A.16.Protein-based products Physical Market Mean Squared Error .	57
Figure A.17.Protein-based products Physical Market Lasso Result	58
Figure A.18.Basic Consumption Goods Physical Market Mean Squared Error	58
Figure A.19.Basic Consumption Goods Physical Market Lasso Result	59
Figure A.20.Cold Chain products Physical Market Mean Squared Error	59
Figure A.21.Cold Chain products Physical Market Lasso Result	60
Figure A.22. Electronics Physical Market Mean Squared Error	60
Figure A.23. Electronics Physical Market Lasso Result	61
Figure A.24.Daily Needs Online Market Mean Squared Error Result	61
Figure A.25.Daily Needs Online Market Lasso Result	62
Figure A.26.Protein-based products Online Market Mean Squared Error	62
Figure A.27.Protein-based products Online Market Lasso Result	63
Figure A.28.Basic Consumption Goods Online Market Mean Squared Error	63
Figure A.29.Basic Consumption Goods Online Market Lasso Result	64
Figure A.30.Basic Consumption Goods Online Market Lasso Result	64
Figure A.31.Cold Chain products Online Market Mean Squared Error	64
Figure A.32.Cold Chain products Online Market Lasso Result	65
Figure A.33.Electronics Online Market Mean Squared Error	65
Figure A.34.Electronics Online Market Lasso Result	66
Figure A.35.Electronics Online Market Lasso Result	66
Figure A.36.Alcoholic Beverages Physical Market Best Subset Model Result	66
Figure A.37.Daily Needs Physical Market Best Subset Model Result	67
Figure A.38.Protein-Based Products Physical Market Best Subset Model	
Result	67
Figure A.39.Basic Consumption Goods Physical Market Best Subset Model	
Result	68

LIST OF ABBREVIATONS


CRISP-DM The Cross Industry Standart Process for Data Mining	9
ICTV International Committee on Taxonomy of Viruses	1
SARS-COV-2 Severe Acute Respiratory Syndrome Coronavirus-2	1
WHO World Health Organization	1

1. INTRODUCTION

On December 31, 2019, the world was shaken by the news of a new virus observed in Wuhan city, Hubei, China. The Chinese government warned the World Health Organization (WHO) that the reason for the spreading cases was unknown. The International Committee on Taxonomy of Viruses(ICTV) named this disease Severe Acute Respiratory Syndrome Coronavirus-2(SARS-COV-2). After a while, the name was changed to "COVID-19" by WHO, making the official name COVID-19. As of 12 of June 2021, the total number of confirmed cases is 174,918,667 million and confirmed deaths are 3,782,490 million. (Who, 2021) COVID-19 has changed all parts of life. People have learned to be more careful about self-hygiene, and masks have become an important part of our lives, even starting to be used as accessories with different colors and designs. Countries however used different rules and regulations such as curfews and mask requirement to deal with pandemic in a most efficient way for its citizens. National economies have also been affected since the first news from China. As China is one of the most important countries in production, all other countries including Turkey were affected by the fact that it became unreliable in terms of shipping products. During this period, the market fluctuated in every field. This fluctuation and changes in the marketplace showed that supply chains that were once expected to be profitable and reliable, now need to be resilient and sustainable. The ones who offer these standards had a competitive advantage, among others. The companies have seen possible risks that they will face if they could not operate its supply chain during crisis. (Saenz, Stephan, Terino, Bysong & Gnamm, 2021) Therefore, companies started to focus on making their supply chain distribution more resilient than before. Labor intensive industries were the most affected from pandemics as they were most exposed to these types of shocks in general. A research conducted by McKinsey shows that, companies can adopt different resilience strategies under 3 main headlines; namely minimizing exposure to shocks, strengthening the risk management and transparency, and improving financial and operational capacity. (Lund et al., 2020) Figure 1.1 shows the tactics that they provided to other companies to successfully overcome their current problems.

Companies can adopt a broad range of resilience strategies.

In addition to the supply side, the demand side is also affected in all industries. Retail industry is one of the most affected ones during the pandemic. Changing rules and regulations, especially curfews affected the demands. The limitations that governments applied led people to panic-buying all around the world. After most of the companies preferred to work home-office, people started to spend more time in their home which led them to cook at home to spend time instead of eating outside or ordering food. The markets were mostly unready for this panic-buying; most of the shelves were empty for a couple of days due to supply problems with the producers. At the beginning of March 2020, when compared to March 2019, grocery spending extremely increased after public awareness and media effect showed itself. People started to be stockpiling and panic-buying before the first lockdown and started to be normalize at the end of march.(Hall, Prayag, Fieger & Dyason, 2020). People mostly preferred to buy legumes and pasta to stock at home in case of curfews. Lots of people started to bake their own bread at home as the lock downs started to happen all weekends. Most of the people have chosen online shopping during this period instead of going outside. Most of the markets had an infrastructure for online shopping but with the increasing demand a supply and logistic problem occurred both in online and physical stores. Many of the markets could not met the demands and had to give customers 3-4 days deliver time for their orders. These 3-4 days was even higher for non-consumable products. Logistic firms had a very high level of demand from the firms all over the country and with the limited number of employees the logistic process started to be delayed for all citizens all over the country.

Turkey started to become ready for the upcoming threat after the news from China spread all around the world. The first case was seen in March 11, 2020, in Turkey. Subsequently, lots of measures had been started to apply in several parts of the

country. On January 10, 2020, the Ministry of Health decided to establish a committee that is called 'Coronavirus Scientific Board' to limit the spread of the virus. Five days later, the government closed all primary and high schools by 1 week, the universities by 3 weeks until a further notice. Most of the public places were shut down. Such as parks, pubs, restaurants, sport centers, shopping centers etc. At the end of March 2020, the total number of cases was 13.531. As of April, the limitations for going outside had started on weekdays and it was restricted for all age groups on weekends. Additionally, government closed 31 big city's borders to limit the spreading. At the end of April 2020, the total number of cases was 120.204. Compared to the March it was 8 times greater even with all these measures. At the beginning of the May 2020, the age group of 65+ started to go outside just 1 day and for 4 hours. Shopping centers were opened again but many of the stores did not opened it or opened for limited hours. Normalization period has been planned for the beginning of June 2020. With the normalization, all the social and physical limitations planned as to be stopped and the life will be continuing as it was before just to be careful about self-hygiene, social distance, and compulsory use of mask both inside and outside. At the end of May 2020, the total number of cases was 163.942. The enormous increase from March to April was decreased. After the normalization period begin at 1st of June 2020, Turkish government almost did not apply any limitations until the 20th of November 2020. At the end of the June, the total number of cases reached to 199.906. After the normalization period started, even with the masks and social distance the total number of cases increased to 35.964. At the end of July, the total number of cases increased to 230.837. The cases in August and September were 270.133 and 318.663 respectively. Even with social distancing and masks the number of cases increased almost 30.000 each month for the first wave. (Wikipedia, 2021)

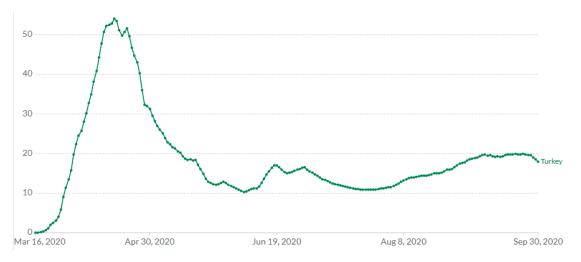


Figure 1.2 March 16 - September 30 2020 Number of New Cases in Turkey(Owid, 2020)

On October 2nd 2020, large public gatherings prohibited in all cities until December 1st. At the end of October, the total number of cases were 375.367. On November 20th, government started to apply curfew for age older than 65 and under 20 again. Grocery stores and pharmacies continued to work within limited capacity but besides them all businesses and worship places stopped their indoor activities. At the end of November 2020, the number of total cases were 500.865. On December 10, seven-day averages of deaths, cases and hospitalization reached its peak from the beginning. As can be seen from the graph, there is an enormous increase at the case numbers at 25th of November. The reason for this peak is that Turkish government started to publish the real numbers of cases. The government stated that before that date they were only stating the numbers of people who are showing symptoms. At the last day of year, the total number of cases were 2.208.652 till the Covid-19 first seen in Turkey. (Wikipedia, 2021)

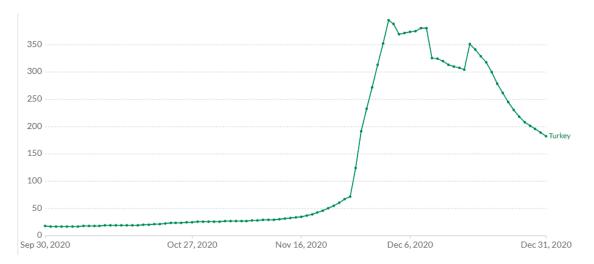


Figure 1.3 September 30 - December 31 2020 Number of New Cases in Turkey(Owid, 2020)

The aim of this research is to understand the effect of Covid-19 on consumer behavior for retail industry. To understand the supply chain disruptions and differences compared to 2019, the answer of following questions are investigated.

1-Which product groups experienced a significant shopping behavior change compared to 2019?

2-Is there any difference between online shopping and physical market sales compared to 2019?

3- How has the Covid-19 affected customer buying habits?

For this manner, the analysis is conducted using one of the Turkey's largest retailer's 2019-2020 sales data. The retailer provides service with a total of 2,370 stores and approximately 45,000 employees in 81 provinces in Turkey. There are over 2000 variety of product groups and brands in its stores. Besides having food and food

related groups, it also provides glassware, textile, toys and electronics. Retailer's turnover was 22.9 billion TL in 2019. In 2020, this figure increased to 28.8 billion TL. There are two different datasets. One of them includes information about physical market sales. The other dataset contains information about online market sales. Besides having a platform difference all columns, product groups and dates are the same. The rest of the study organized as follows. At the first part of this research, the dataset was cleaned from insignificant and irrelevant data points. Thirty main product groups were selected for further analyses. The changes of sales levels between 2019 to 2020 were calculated for each month. Cluster analysis were applied to understand whether these thirty product groups were showing similar shopping patterns. In the second part of the research, the main aim was to understand if there is a Covid effect on the shopping behaviors or not. For this purpose, the research used Stepwise Regression Analysis, the Best Subset Model and Lasso. The efficiency of these regression models was evaluated and compared using 10-fold cross-validation as well as considering their Cp and Adjusted R2 values. A new dataset was created with clusters that been made in first part. Covid case numbers, cluster sales levels and 3 most significant dates were considered to explain and create these models.

The first section gives an explanation for Cluster Analysis that have been conducted and the products groups showing similar shopping patterns are revealed. How both physical market and online market clusters acted throughout the year were provided under this section.

Second part mainly focuses on physical market results. All the models that have been applied, which are Stepwise Regression, Lasso and Best Subset Model, for each cluster and the analysis were provided under this section.

Third section includes the same structure and methods as second section has but for online market. For the last section, the comparison between physical and online market results were provided. The research concludes with a Conclusion and Further Suggestions part.

2. Literature Review

Although the pandemic started in 2019 and is still continuing in 2021, there are limited sources and research that points out the effect of Covid-19 on consumer behavior and shopping habits. To understand the changing shopping habits and consumer behavior, initially the disruption that occurred in the supply chain due to pandemic should be investigated. Since the supply chain starts with producers and ends with customers, any kind of disruption in the process affects the final step which is customer. Covid-19 showed all industries their weaknesses of inability to react on time to large-scale disruptions. Resilience gained importance and lots of industries are still trying to be more resilient to unexpected situations as they are facing right now. Resilience as a meaning, is the ability of resisting to disruptions and recovering the performance. Supply chains that are mostly affected from lack of resilience, had seen in life sciences, health care and food industries (Simchi-Levi & Simchi-Levi, 2020). Most of the companies needed to implement new sustainability strategies faster than they had expected. Whether there is still uncertainty and concerns, there is transitions into more sustainable supply chains. Sustainability strategies like buying local or building community trust contributes to company's own supply chain resilience. It became important to overcome this crisis and its risk with sustainability opportunity and be more resilient. Risk responses and crisis management techniques of companies to reduce the risks and be more resilient led them to transform themselves by using sustainability (Sarkis, 2021). Supply-chains were divided into two groups in this crisis. Some of them faced with an extreme demand which they are not able to supply and the others faced with an extreme decrease both in demand and supply which led them their productions to stop. Many of the companies dealt with the danger of bankruptcy and did not get any governmental support in this period (Ivanov, 2020). Food industry is one of the most affected industries from this sudden increase in demand. Most of the consumer goods were not easily reachable as before during this crisis. Demand for food still continues to increase even people have sufficient supplies because of the extreme financial conditions. If supply chains became inefficient and continues to be disrupted shortages will be expected for food industry (Sarkis, Cohen, Dewick & Schröder, 2020).

Shopping habits and consumers started to change in March 2020. Retailing industry were affected from increasing online orders because of restrictions even stores remained open in this period. As the cases increased, most of the people were scared to shop in physical market conditions and this resulted an extreme increase in online orders and retailers started to focus on their online services more (Park, Brumberg & Yonezawa, 2020). In many of the natural disasters and crisis, panic-buying, stockpilling and hoarding behaviors has been seen all over the world. After the pandemic started, world started to see examples of this behavior from people in UK, Italy and Australia. Most of the people stock-pilled food, medicine and toilet papers and emptied the shelves of local stores (Chen, Rajabifard, Sabri, Potts & Laylavi, 2020). Same behavior also seen in US. Stock-pilling and panic-buying made stores to out-of-stock for toilet papers and sanitizers continued with grains, pasta, canned products and lots of other different food groups (Park et al., 2020). Stock-pilling occurs as an individual response to scarcity derived from stress, fear and panic environment. People started to buy or order more than they need and stock them in case of any circumstances (Micalizzi, Zambrotta & Bernstein, 2021). Commodity theory claims that scarcity may explain the behavior of stock-pilling (Brock, 1968). Prospect theory also suggest that this behavior is connected with risk aversion. According to prospect theory, risk aversion motivates this behavior if food sources seen risky by consumer, although the possibility of scarcity is very low (Tversky & Kahneman, 1992). As a result, this behavior should not be considered as completely irrational since it is human nature. On the contrary, stock-pilling as a social behavior caused negative effects on supply chains by disrupting them and creating shortages for others (Micalizzi et al., 2021). It has serious negative effects on the economy and society. Supply-chains are open to any disruptions during disasters. Depending to preparedness, these disruptions may last for several cycles. Along with the disruptions that disasters caused, stock-pilling creates more complex environment for inventory management. As mentioned before, panic-buying led people to empty shelves. When people could not meet their demand before restocking, they are eager to look for substitute products. This behavior affects the whole structure and creates double-sided problems for both the retailers and consumers. At the beginning of the pandemic several examples of this behavior seen in UK and Australia. When people did not find toilet papers, they bought baby nappies, kitchen towels even though these products are not substitute products (Chen et al., 2020). The ones who needed baby nappies did not found them in many stores because of irrational panic buying. Despite having disruptions on supply chains, panic buying also affects the social life by creating a chaos environment and scarcity for others. Since the elderly, disabled and working people cannot shop in regular times, they are much more affected in this panic-buying chaos. When reaching a product becomes hard,

the value of a product also starts to increase. Another negative effect of stock-pilling is it creates a competition environment that leads prices to increase (Chen et al., 2020). Empty shelves, problems in restocking and extreme crowds in local stores led people to shop online. Most of the retailers were not ready for increasing demand in online market resulted as 3-4 days delays on deliveries. Late deliveries in online markets, empty shelves in local stores, increasing prices in competitors led people to spend much more money in this period. The consumers who could not found the product that they are looking for had to go to other more distant stores (Chen et al., 2020).

After a year from Covid started, even though people not stock-pilling right now, the effects of stock-pilling still show itself. Many of the stores are still trying to deal with disruptions that they had faced. Supply-chains are looking for permanent solutions for upcoming threats. Governments working on preventing panic-buying behavior in case of possible disasters. Online-market options increasing day by day. Many of the current retailers started to launch their own apps which allows people to order easily. They provide more product options compared to their physical stores by establishing warehouses dedicated solely on online orders.

3. Data set, Methodology and Applications

This project focuses on real case study based on a big retailer in Turkey during Covid-19. It covers the transactions experienced on the product portfolio during March 2020 until December 2020. To extract knowledge from a mass data to solve real life problems requires a systematical process. The Cross Industry Standard Process for Data Mining (CRISP-DM) is one of these processes that providing a structure when solving data analytical problems. The CRISP-DM model can be seen in Figure 3.1. The model consists of 6 steps, namely; Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation and Deployment. Overall model with iterative steps is mainly used for data exploration. (Shearer, 2000)

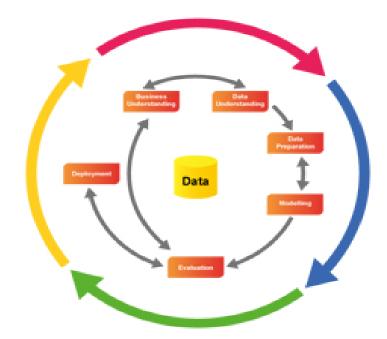


Figure 3.1 CRISP-DM Model (Shearer, 2000)

The process starts with Business Understanding. It is important to understand the problem that will be solved. Business problems might be vague and unclear to solve usually. Understanding and naming the main problem is an important process to design a solution. To reach the optimal solution, it is important to go through these steps several times as needed. In this research, these iterations also done several times until understanding the real problem that will be solved. There were several options or different methodologies to be focused on. This research mainly focused on 'How consumer behavior changed in retail industry during Covid-19 process' by looking at physical market and online market sales data of a big retailer in Turkey for the period March 2020 to December 2020. This topic was one of the major problems that businesses encountered.

Data Understanding is important step for to understand if the dataset is suitable for the problem that will be solved. There might be limitations on data that may prevent to find a solution to the problem. If there are any limitations the process can iterate to the first step again to find out a new problem that can be solved with the dataset. It is important to understand the structure of the problem and the data to be able to work with data mining techniques afterwards. This step can iterate between first step several times until finding the optimal solution and problem. Before starting this research, several meetings were done with the retailer company. Data warehouse and reporting manager and also one of the data science researcher were guide this research about what they need, their current problem and the data that they are collecting every day from each store. After discussing several different problems and research topics, the research topic was decided to be Covid effect on changing consumer habits. If the dataset they are collecting was not sufficient enough to do this research, the topic must be changed. The analyst of this research and data science researcher of the retailing company decided on which information will be needed in this research. Before they send the dataset, the data analysts of the retailing company explained everything that the dataset consists. All of the columns and single elements under those columns explained through several meetings. As was mentioned before, without understanding the data it would be very challenging to solve business problems. It is important to work and communicate with the businesses for this step.

Data preparation step moves along with data understanding step. To understand the dataset better some manipulations and cleaning can be done. This step involves conversions of the dataset, removing missing or unnecessary values, normalization and scaling. Making the dataset ready to analyze depending on the models that will be used is a very important step for reaching the solution. In this research, the data preparation step done by several times according to model that used.

Modelling step is where the data analysis techniques are applied. Depending on the model that will be used, this step might made analysts to make some changes and conversions on the dataset. This research used three different datasets according to models that have been applied. First, the research used the original dataset that the retailer provided and cleaned it to create the second dataset. After the cleaning process 30 main group were decided for further analysis. Second dataset derived from the first set for cluster analysis. It contains percentage change in sales from January 2019 to December 2020 for each group and market format on monthly basis. Third dataset were created to run regression analysis. It was done after the cluster analysis and consists sales level information of clusters, along with Covid-19 case numbers and 3 dummy dates.

Evaluation of the models is an important step which gave researchers a confidence to move along with the research that they are conducting if the results are valid and fitted for the main problem. It is important that the results are satisfying the business problem. Even if the model provides accurate results, evaluation in the business context is equally important. If there is any inconsistency between the results and the main problem, the process can start over to reach an optimal solution. In this research, all the models that have been applied and their results are evaluated statistically as well by considering the main business problem. Luckily, the models that had been applied gives an understanding of the business problem the retailer investigated is experiencing the consumers' changing shopping habits during Covid-19 period. Based on empirical findings, it is possible to see that consumer behavior shifted during Covid-19 process and number of Covid cases are one of the reasons of this change

The last step is Deployment. In this step the results of data analysis put into real life. Implementing a business model or information system is deployment examples. From this research, results or models can be implement into real life problems and help other retailers and researchers to take an example the result (Provost & Fawcett, 2017).

3.1 The Dataset

The data set that had been used and examined throughout this research was retrieved from a large retail company in Turkey. There are over 5 million rows of data for each month from 2019 to 2020. From the data set that have been used in this paper, it is possible to see the daily transactions throughout the country with sales units and prices. To understand the shopping habits before and after Covid, the shopping data of both 2019 and 2020 are analyzed together. As unit prices changed a lot during these two years, the paper focused on the quantities sold for to understand the habit change regardless of price. To get rid of the effects of different measurements on products such as kg, gram , liter and ml, the paper used the quantity changes between years of investigated month. The dataset mainly consist of 18 columns. Those are as follows:

Table 3.1 Variables of the retailer data

Period :	Gives an information about which month and year $(Ex:201901)$
Date:	Shows specific dates for each month
City Code:	The government stated city codes from 01-81
City Name:	All city names in Turkey
Format Code:	Specified format code of large retailer
Format Name:	Specified format name of large retailer
Degree Code:	Specified degree code of large retailer. Much detailed version of format code
Degree Name:	Specified degree name of large retailer. Much detailed version of format name
Main Group Number:	Specified group numbers of large retailer
Main Group Name:	Most general grouped version of single products
Sub Group Number:	Specified sub group numbers of large retailer
Sub Group Name:	Grouped version of main classes
Main Class Number:	Specified main class number of large retailer
Main Class Name:	More generalized classed version of sub class products
Sub Class Number:	Specified class number of a single product
Sub Class Name:	Contains each product name in details
Sales Price:	Sales price for a product
Quantities Sold:	The quantities sold for a product

For data understanding step, 9 meetings are conducted with Data warehouse& Reporting Manager and Data Science Researcher of the retailing company through July 2020 to December 2020. It was important to match the dataset to the business problem. This period mainly passed by evaluating the alternative problems and deciding which one is most important among them along with evaluating the dataset that they are collecting throughout the years. (Details and examples of the data set can be found in the appendix section.)

3.2 Data Preparation

In the initial phase of the analysis, the data set were cleaned and unnecessary information were eliminated. As CRISP process suggested, it is important to prepare the data according to business problem. In that manner, the research only considered the main consumption products that can show the consumer behavior. Besides that product groups all other insignificant groups were cleared from the dataset. Such as, expenses that company made for their stores or boxes, bottles and shelves that currently using in stores. For cleaning process, basic R commands were used (James, Witten, Hastie & Tibshirani, 2013). Main group items were consisting Turkish characters which R could not process. After deciding which main groups to be eliminated, their related code numbers took into consideration and rows that are consisting unnecessary information cleaned according to these code numbers. As the main aim was to investigate the effect of Covid-19's effect on consumer behavior the main groups were decreased to 30 main group after the cleaning process. At the end of the cleaning process the main groups were as follows;

Table 3.2 30 Main Groups after cleaning process

Alcoholic Beverages	Non-Alcoholic Beverages	Fish&Seafood	Chips&Snacks	Cleaning	Frozen Goods
Cookies, Chocolate & Candy	Electronics	Imported Fruit	Meat-Deli	House Care	Takeouts
Paper&Baby	Meat	Beauty	Seasonal Products	Cheese	Textile
Canned, Beverages & Break fast	Poultry	Toys,Pet Care&Media	Dairy Products	Tobacco	Eggs
Grains, Pasta&Sides	Packaged Meat	Produce :Vegetables&Fruits	Bread&Bakery	Olive Oil&Butters	Glassware

The same main group cleaning process is applied to online-market dataset. However, as the government regulations do not allow to sell Alcoholic beverages and Tobacco products through online channels, there are total of 28 main groups in online version of this dataset. The subsequent analyses were done based on these 30 for physical and 28 for online main group elements.

3.3 Methods

In order to decide on the methods that will be used in this research, the business problem that retailers went through Covid-19 process was considered. In the 9 meetings held, it was determined that the research questions of the company managers were as follows:

1-Which product groups had similar purchases during the Covid -19 period?

2-How has Covid-19 affected customer buying habits?

3-Are there any shifts from physical market to online market?

In order to answer these research questions, initially cluster analysis is conducted to group the products showing similar shopping behavior. Subsequently, different regression methods are used and their efficiency are compared.

Cluster Analysis: To understand which product groups acted together in Covid-19

process. Which product groups are selling together and behaving in the same manner.

Stepwise Regression Analysis: To see if the clusters that found in previous method are affected by the Covid-19 case numbers from March to end of December. This method allowing to understand that which product groups affected the most from case numbers during this period. Also it is important to see the difference between online market and physical market conditions.

Lasso: Similarly to Stepwise Regression, the research also focused on Lasso regression aiming to find a better model that explains the Covid effect.

Best Subset Model Selection: Even if the two methodologies above gave accurate results, the evaluation process of a business problems needs a satisfying model that explains the business problem. Best subset selection also done to make sure the research shows a best an optimal solution for the business problem.

To calculate the efficiency of the models, 10-fold cross validation was applied and the results were evaluated considering Cp, Adjusted R squared and Cross-Validation test error rate.

3.3.1 Cluster Analysis

In order to find the product groups showing similar purchase behavior a cluster analysis is conducted. Hierarchical clustering was used in this part of the research. Contrary to K-means, Hierarchical clustering does not limit the number of groups and grouping them according to their similarity. (James et al., 2013) The result of hierarchical clustering can be seen through a graph called dendrogram. Dendrograms are tree-shaped diagrams that consisting of nodes. The nodes consist of initial data and it groups upwards to the top. The arrows between these nodes represents the distance between individual nodes. This distance is very important when deciding on clusters. Hierarchical clustering aims to group individual data points that have the least distance between them. Dendrogram mainly gives the best result at the earlier fusions that have been investigated. Observations that fused close to the top will be show less similarity. For that manner, a threshold should be set according to fusions. Hierarchical Clustering does not tell where to cut the tree or how many clusters there are. The dendrogram should be cut at a given height to partition the data (Kassambra, 2013). Limiting the threshold to 10, gave the best groups for this research. Neither too similar nor too distant groups were created according to their distance. Also, the number of clusters was not either too many to handle nor too less to be insignificant.

A different data set was created to run the clustering algorithm. For this purpose, the difference in sales levels from 2019 to 2020 for each 6 different market formats that large retailer has and total sales levels were considered. As stated above there were 30 main groups that have been investigated during this process. In order to prepare the data for clustering, a pivot table analysis is conducted. The pivot tables consist of 30 main groups as rows and 6 different store types as well as their sum as columns and filled the numbers with sales numbers for the sale levels for 24 months from January 2019 to December 2020 were created

In order to find the change in the consumption of the products , to find out the change compared to 2019, the percentage change for each month were calculated.(Example of this tables provided in Appendix section). Then, to run the clustering analysis all 12 month changes consisting 30 groups and 6 different stores and total number of sales were merged as single table. Since the main aim is to understand which product groups acted together and consumed more or less during Covid process, Hierarchical Clustering were applied by looking at their similarities. In this case the similarity is the percentage change in sales numbers compared to 2019.

However, this dataset generation methodology could only be applied to the physical market. The reason of not applying this method to online market is that online market structure is not the same with physical market. The large retailer was provided the orders only from its large scaled markets in 2019. There are no data points for small sized markets for online orders in 2019. However, when the orders started to increase in 2020 after Covid-19 cases started to increase as well, they started to send orders to small-sized stores and there are data points for that store formats in 2020. Since this research consider the change in sales compared to 2019, when there is no data point in small-sized formats, the analysis shows insignificant change results. Taking only the total change in months for online-market creates 12 columns to 30 rows dataset which gives poor result of clustering analysis as a result.

Since, the aim is comparing the physical market to online market and see the Covid effect, for further analysis this research used physical market clusters to understand the online market. However, using the same clusters that were revealed from physical market, even a clustering analysis did not work on online market, gave the similar result for online market too. It can be seen that the same cluster groups also behaved the same way in online market dataset. As a result, similar trends observed in online market gave a possibility to compare physical and online market for same clusters for further parts of this research.

3.3.2 Stepwise Regression Analysis

After running the cluster analysis, different regression models were applied to understand the Covid effect on clusters much more efficiently. The 3 questions that have been asked for this analysis were as follows;

-> Is there a relationship between covid case numbers and sales levels of a specific cluster?

-> How strong is the relationship between covid case numbers and sales levels of a specific cluster?

->Which cluster is affected the most in 2020 from Covid-19?

Initially, Stepwise regression which is the combination of backward and forward model is used. Stepwise starts as a blank model with no variable in it. When it goes forward it adds variables that fits the model most. P-values can be increase when new variables entered the model until a threshold point. After reached at its threshold that variable will be removed from the model. This process continues forward and backwards, adding and removing until all variables have significantly lower p-values. For this research, stepwise model had been used and evaluated. (James et al., 2013)

A new dataset were created for to run stepwise regression. The data set for regression analysis were created as follows;

Table 3.3 Variables that have been used in regression analysis

Date:	Starting from March 2020 at the end of December 2020
LnCaseNum:	Natural logarithm of case numbers
LnCluster(A):	Natural logarithm of total sales numbers for each cluster
$LnCluster(A_1):$	Natural logarithm of total sales numbers 1 day before the original date
$LnCluster(A_2):$	Natural logarithm of total sales numbers 2 day before the original date
$LnCluster(A_3):$	Natural logarithm of total sales numbers 3 day before the original date
$LnCluster(A_4):$	Natural logarithm of total sales numbers 4 day before the original date
$LnCluster(A_5):$	Natural logarithm of total sales numbers 5 day before the original date
$LnCluster(A_6)$:	Natural logarithm of total sales numbers 6 day before the original date
$LnCluster(A_7):$	Natural logarithm of total sales numbers 7 day before the original date
DUM24_05:	Dummy variable for the 24 of May because there is a significant decrease of sales for every cluster
DUM01_06:	Dummy variable for 1st of June because there is a significant increase on that day
DUM12_12	Dummy variable for 12th of Decembers because there is a significant increase on that day.

Stepwise Regression Analysis is made by using R-studio. The package called 'olsrr' was used to conduct stepwise regression (Hebbali, 2020). This package is useful when conducting Ordinary Least Squares regression models, variable selection and model fit assessments. Logarithmic transformation is applied for all of the variables. Case numbers and Cluster data were not in normal distribution. In some dates, mainly because of the restrictions that had been applied to supermarkets, sales

numbers were too low or too high that affecting the overall performance of the dataset. Also, the case numbers showed a highly skewed performance. To overcome this issue, all of the variables related with case numbers and cluster sales numbers normalized. This process applied for all clusters in both physical and online market dataset. Dummy variables were created for 24-25-26th of May, 1st of June and 12th of December. These dummy dates were added after noticing that there is a significant change on those days in sales numbers. These 7 variables have the same values with LnCluster(A) but follows the values with 1-7 days later. These were added to capture the dynamic relationship between case numbers and sales numbers change for each day. (Details about the dataset prepared for regression can be found in the Appendix section)

3.3.3 Lasso

The predictive accuracy of stepwise regression is analyzed by comparing its results with Lasso and best fit model. In general, Lasso regression provides a better prediction method and an alternative model for research. The logic of the Lasso is, it shrinks all the coefficient to zero and even exactly zero when the alpha gets higher. Since Lasso also use variable selection, it gives better and simpler model for interpretation better than both linear and ridge regression (James et al., 2013).(Details related to Lasso equation can be found in the appendix)

3.3.4 Best Subset Model Selection

Best subset model selection allows to calculate all possible models. For this research it is important to find the best fitting model that explains the relationship between Covid cases and sales shifts. Best subset model selection fits separate least square regressions for all possible combination of the predictors. In this research, its 11 predictors to explain cluster sales numbers. It starts creating models with each predictor individually and continues with two, three, four... It creates 2^p models and the aim is finding the best subset model that explains the best among others (James et al., 2013). (The detailed results of the best subset selection model are given in the appendix)

3.3.5 Comparison of the regression models

In order to analyze the efficiency of the regression models cross-validation analysis were applied. This approach randomly divided the dataset into approximately equal 10 groups. The first fold set aside as validation set and the model implemented on the other 9 groups. This process continued 10 times by making one different group validation set. The Mean Squared Error were calculated at each step for validation set. Again, this process repeated 10 times until all MSE values for each validation set found. The average of these MSE values provides Cross Validation Test Error value. With that result, it can be easily understood that if the model is good or not. The lower the test error rate, the better model fits. (James et al., 2013) Additionally, the regression model's results are also compared according to the Cp, Adjusted R2 values along with the 10-fold cross-validation test error rate. The best model were provided for each cluster in both market type.

4. Results & Evaluation

Empirical findings are given in four parts. Initially, Cluster Analysis results which have been obtained using SPSS were provided The resulting clusters are given "names" according to their general characteristics. Afterwards, all of the clusters were added in graph format for both physical and online market to show the relationship and trend among variables in clusters. The second part provides regression analysis results conducted with different models , namely stepwise regression, Lasso and best-subset, and the prediction accuracy of them are compared in order to select the best model for each cluster for the physical market. The third part gives the same analysis for online market. The last section provides information about the comparisons between physical and online market. For each cluster, their best models compared according to their Cp, Adjusted R squared and CV test error values.

4.1 Cluster Analysis

Hierarchical Clustering results that are provided below is conducted using by SPSS (IBM, 2016). One of the problems with Hierarchical Clustering is that the researcher had to define a threshold point, a height, to define the clusters (Kassambra, 2013). The threshold point was set at 10 for this research. Neither too similar nor too distant groups were created according to their distance. Also, the number of clusters was not either too many to handle nor too less to be insignificant. If the threshold point, were set at 5 it was going to create 14 different set of groups mostly with ungrouped single items. To decrease the number of groups to an optimal point, the threshold was set at 10. With this threshold the total number of clusters is 6 where 2 of them has single item. Also, the Data Warehouse and Reporting Center Manager of the large retailer stated that they were mostly explain 'Alcoholic Beverages' and 'Electronics' as single items on their research. The Data Warehouse & Reporting

Center Manager and Data Science Researcher that have been discussed with believed that the purchasing behavior of the alcoholic beverages show differences with respect to the size of the town. In fact, they believed that this behaviour is different in big town when compared to small towns. For the small towns in Turkey, this retailer mostly is the only place that sells Alcoholic Beverages. The research conducted in this thesis also supported their claim. These two items acting differently from other items.

	Rescaled Distance Cluster Combine 5 10 15 20	25
MEAT-DELI OLIVE OIL & BUTTERS CHEESE HOUSE CARE CLUSTER 3		
HOUSE CARE CLUSTER 3 POULTRY FISH & SEAFOOD	18	
MEAT PACKAGED MEAT PRODUCE : VEG. & FRUITS FROZEN GOODS		
CHIPS & SNACKS DAIRY PRODUCTS MPORTED FRUIT CLUSTER 4 EGGS ANNED,BEVERAGES & BREAKFAST		
GRAINS, PASTA & SIDES PAPER &BABY	17	
CLEANING BEAUTY		
SEASONAL PRODUCTS GLASSWARE TEXTILE CLUSTER 2 TOBACCO	22 30 24 25	
COOKIES,CHOCOLATE& CANDY BREAD & BAKERY		
NON-ALCOHOLIC BEVERAGES TAKEOUTS TOYS & PET CARE & MEDIA		
ELECTRONICS CLUSTER 6	8	

Figure 4.1 Hierarchical Clustering Result based on Physical Market

The cluster results can be found below. The clusters are named based on their general qualifications.

Table 4.1 Cluster Results

ALCOHOLIC BEVERAGES	DAILY NEEDS	PROTEIN-BASED	BASIC CONSUMPTION GOODS	COLD CHAIN PRODUCTS	ELECTRONICS
ALCOHOLIC BEVERAGES	SEASONAL PRODUCT	MEAT-DELI	CHIPS /& SNACKS	MEAT	ELECTRONICS
	GLASSWARE	OLIVE-OIL /& BUTTERS	DAIRY PRODUCTS	PACKAGED MEAT	
	TEXTILE	CHEESE	IMPORTED FRUIT	PRODUCE : VEGETABLES /& FRUIT	
	TOBACCO	HOUSECARE	EGGS	FROZEN GOODS	
	COOKIES, CHOCOLATE & CANDY	POULTRY	CANNED, BEVERAGES/& BREAKFAST		
	BREAD & BAKERY	FISH & SEAFOOD	GRAINS, PASTA/& SIDES		
	NON-ALCOHOLIC BEVERAGES		PAPER /& BABY		
	TAKEOUTS		CLEANING		
	TOYS, PET CARE & MEDIA		BEAUTY		
1	9	6	9	4	1

4.1.1 Alcoholic Beverages

According to research results, the Alcoholic Beverages saw a significant decrease March 2020. It was the month that first Covid case seen and people were started to be getting anxious and serious about this disease. With that period most of the doctors and scientist were warning people about self-care and hazardous effect of alcoholic beverages and tobacco on human body. Following months after the first shock the consumption increased to its regular levels and with the home restrictions on May 2020 it reached its peak for the first wave of Covid. After the normalization period started in June 2020 the sales mostly stayed at the normal levels. However, we can see that after November, the sales enormously increased at the second wave period of Turkey. There is no information related to online market for this product group because it is forbidden to sell Alcoholic Beverages by government

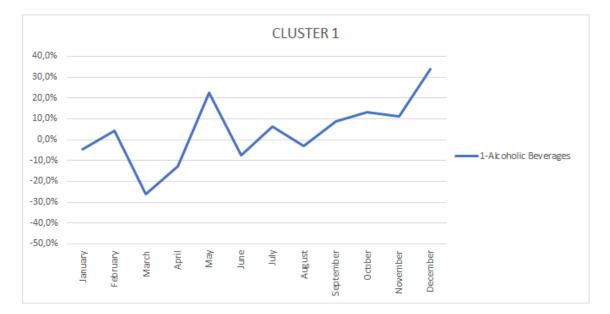


Figure 4.2 Alcoholic Beverages January-December trends on physical market

4.1.2 Daily Needs

Cluster 2 elements shows the same behavior from January to December 2020. Whether there are differences at their level of increase, when one of them increases the other elements has an increase for the next month. The same rule applies for online market too. From the physical market side, there is a significant decrease in April for all elements in this cluster. This may be due to the fact that people started to bake their own goods at home much often compared to 2019 because of the restrictions. Since July 2020, it can be seen that these levels did not turn into normal spending. After the normalization period it can be seen that people started to spend more. Whether it is still lower compared to 2019, we can say that they started to bake less and buy more. In July 2020, Seasonal Products have a significant increase. Normally, this is an expected increase. However, even with the Covid cases increasing day by day, people again preferred to buy pool supplies, sea toys or products related with vacation. At the time of second wave, between October to December, it can be seen that the numbers stay at the higher levels compare to first shock. This suggest that people getting used to live with the idea of this virus.

When we look at the online market trends, it can be seen that decrease in April 2020 for physical market is not the case for online market. This suggest that people preferred to buy mostly from online store instead of physical markets. It can be seen that there is a significant increase in Bread &Bakery and Cookies, Chocolate & Candy in April. At the beginning of the year 2020 we can see that there is an increase in preference of online market. When we look at the end of the year, it can be seen that whether it decreases compared to 1st wave, people still prefers to shop online.

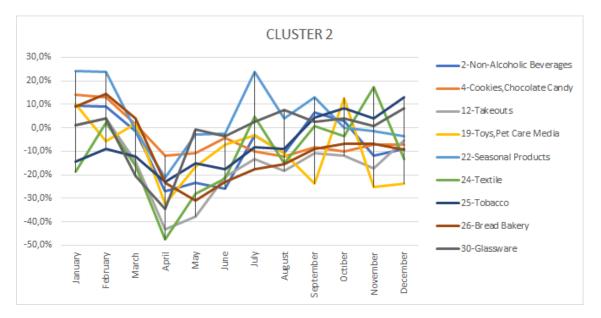


Figure 4.3 Daily Needs January-December trends on physical market

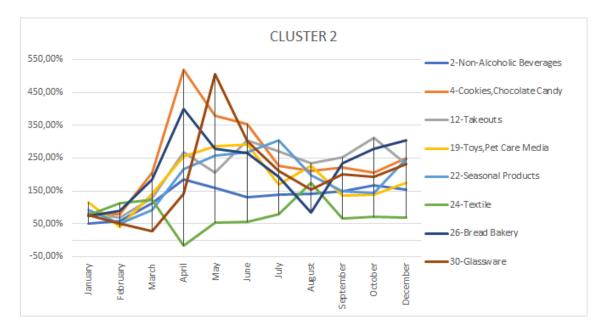


Figure 4.4 Daily Needs January-December trends on online market

4.1.3 Protein-Based Products

The third cluster also shows similar trends from January to December. For physical market there is an enormous change in House-care products in March 2020. House care products also contains elements similar to Cleaning. With the first cases started to show up in Turkey, people started to be stock-pilling of house-care products on their home in case of emergency. It can be seen that the other elements stayed mostly at the same levels till the end of the year. The most changed in this period is House care products.

For the online side, again we see similar behavior on these 6 groups. At the beginning of Covid period, there is an increase similar to other clusters. Compared to physical market it can be seen that people mostly preferred to shop online. Instead of housecare fish & seafood category sees an extreme increase with respect to others.

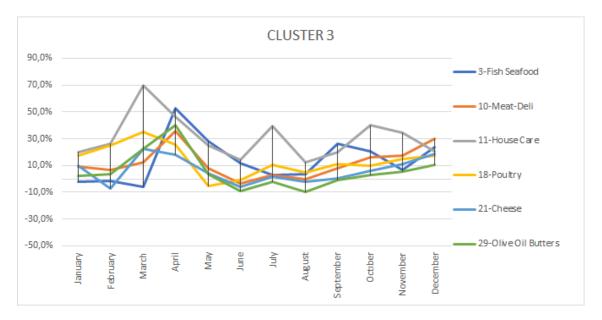


Figure 4.5 Protein-Based Products January-December trends on physical market

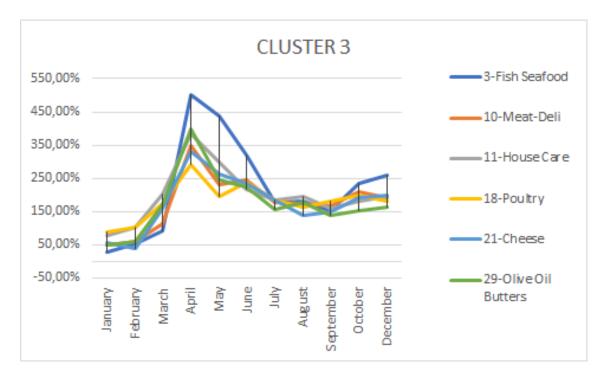


Figure 4.6 Protein-Based Products January-December trends on online market

4.1.4 Basic Consumption Goods

With the effect of the first cases, we can see that the most affected elements are "Grains,Pasta and sides", "Paper & Baby products" and "Cleaning supplies". These 3 categories also were the most affected categories throughout the world. People

started to stock-pilling of these categories in case of emergency and sanitary purposes. Most of the markets were out-of-stock in this period for these groups of products. People could not find diapers or toilet papers for weeks. Markets on the other hand, could not met the needs and filled their shelves as a result of this sudden shock.

For the online market, compared to physical we see that most preferred groups are not the most popular ones in the 1st wave period. Instead of "Grains,Pasta and sides", "Paper & Baby products" and "Cleaning supplies", Chips & Snacks has a sudden increase. Interestingly, Grains, Pasta & sides sees an extreme decrease in August.

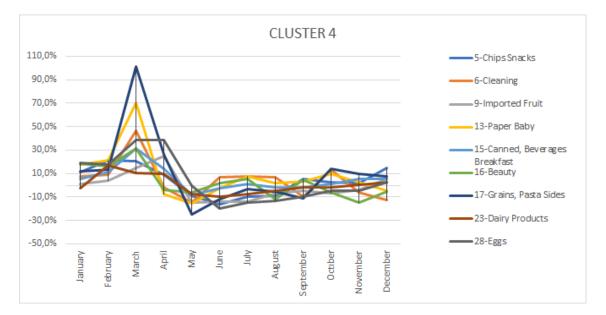


Figure 4.7 Basic Consumption Goods January-December trends on physical market

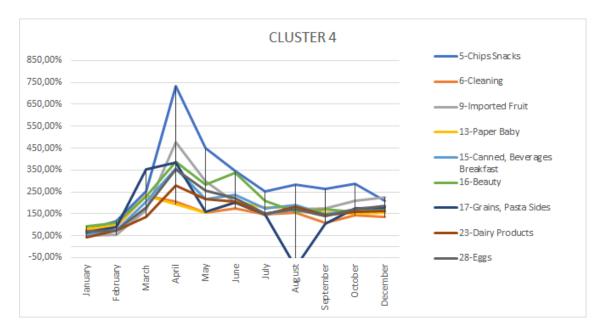


Figure 4.8 Basic Consumption Goods January-December trends on online market

4.1.5 Cold-Chain Products

This cluster shows that, after the first shock till normalization period(June 2020-September 2020) this group of products stayed at the normal levels. However, with the beginning of normalization period the sales were decreased. The reason behind this decrease is that people started to go and eat outside in this period. So, started to cook less in their home and with this way spend less on these products. When the second wave started, we see that there is again significant demand on these products. Since the number of cases had increased a lot and winter came, people started to spend much more time at home and cook more often.

For online market, 4 groups are acting in a similar way to the physical market. Again, the first shock of Covid can be seen from the graph.

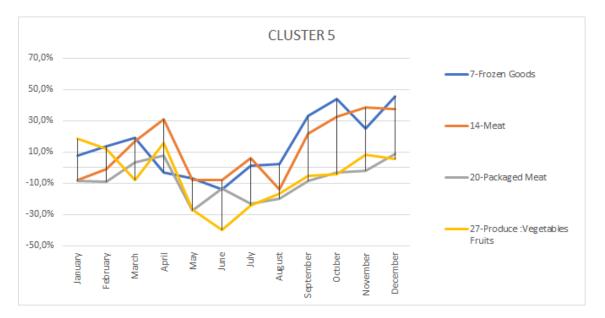


Figure 4.9 Cold-Chain Products January-December trends on physical market

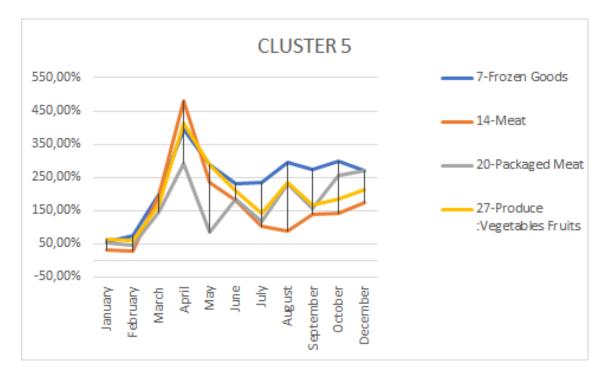


Figure 4.10 Cold-Chain Products January-December trends on online market

4.1.6 Electronics

There is a limited access to these products. The variety of the electronics equipment mostly differs for different format sizes of the retailer. It can be seen that there is a significant decrease in this product type. Compared to first three months of 2020, the sales of electronics could not reach its normal levels till the end of the year. However, there is a significant increase in June 2020. Before June 2020, people were restricted at their home. This led most of the people to renovate their home or change the electronic products that they own for better ones in between April and May 2020. With the beginning of the normalization period in June 2020, this increase may be the result of this need of change. However, since the retailer mostly focused on food and beverages and there are electronic shops that giving more options, even with that demand large retailer could not reached its normal levels that we see in January and February.

For the online market, despite not having all products in all market types, the application provides all electronic products that they are selling. As stated in previous part, large retailer started to send their orders from small-sized markets of their own after Covid period started. This method gave an opportunity to the customers to reach different electronics much more easily instead of finding them in physical stores. It can be seen that there is again a significant increase in June for electronics. Compared to physical market we can see that online market ,even for electronics, preferred much more in this period.

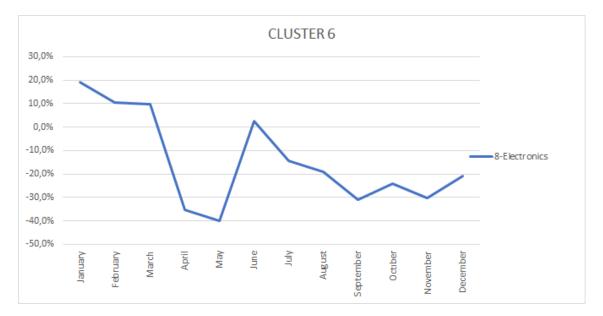


Figure 4.11 Electronics January-December trends on physical market

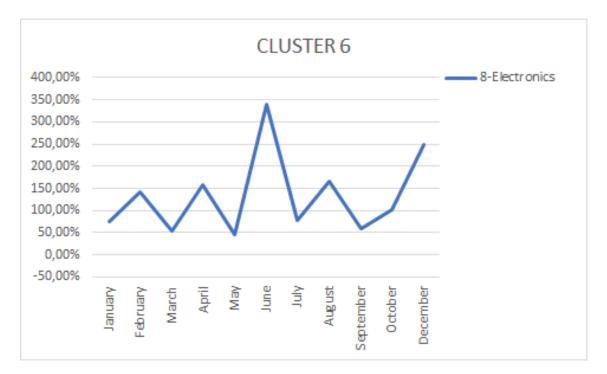


Figure 4.12 Electronics January-December trends on online market

4.2 Physical Market Results

Physical Market Results sectioned into 6 parts. Below parts will provide results of three regression models that had been applied for each cluster separately. These clusters were examined with three different models. Stepwise regression, Lasso regression and Best Subset Model Selection. These three models were evaluated by 3 performance metrics which are R-squared, Cp and Cross-Validation Test error. R squared value shows how close the data to the fitted regression line. The higher the r-squared, the model better explains the variability of the data around its mean. Mallow's Cp should be close to the number of predictors plus constant to be considered as unbiased and a good estimation on coefficients. When comparing these three models, test error rate mainly took into consideration. The final model coefficients were provided under 'Comparison between Physical and Online Market' section for each cluster.

4.2.1 Alcoholic Beverages

Table 4.2 shows the results of these three models on Alcoholic Beverages cluster. As can be seen from the table, the model that the lowest test error rate is Best Subset Selection. R-squared value is greater than the other models which suggests a better explanation of the dataset. Cp value of best subset regression suggest that the model uses all 11 predictors and the constant. As a result , CV Test Error value is smaller and R-squared, Cp values are higher than the other models which is statistically significant to claim that the best model is Best Subset Selection.

Alcoholic Beverages	R-Squared	Ср	Cv Test Error
Stepwise	0.825	11	2.317
Lasso	0.824	10	2.108
Best Subset	0.826	12	0.944

 Table 4.2 Alcoholic Beverages Model Results

4.2.2 Daily Needs

Table 4.3 shows the results of these three models on Daily Needs cluster. As can be seen from the table, the model that the lowest test error rate is Best Subset Selection. R-squared value is greater than the other models which suggests a better explanation of the dataset. Cp value of 8.75 considered as 9 predictors. As a result, Cp, R-squared and CV test error rate gives a statistically significant and better result than the other models. Best Subset Model was selected for the final and significant model among others.

Table 4.3 Daily Needs Model Results

Daily Needs	R-Squared	Cp	Cv Test Error
Stepwise	0.728	9	0.138
Lasso	0.713	8	0.135
Best Subset	0.735	8.75	0.100

4.2.3 Protein-Based Products

Table 4.4 shows the results of these three models on Protein-Based Products cluster. As can be seen from the table, the model that the lowest test error rate is Best Subset Selection. R-squared value is greater than the other models which suggests a better explanation of the dataset. Cp value is giving the best result in Stepwise Regression. However, Stepwise regression results as high test error rate compared to Best Subset Selection. As a result, Cp, R-squared and CV test error rate gives a statistically significant and better result than the other models. Best Subset Model was selected for the final and significant model among others.

Protein-Based Products	R-Squared	Cp	Cv Test Error
Stepwise	0.772	10	0.215
Lasso	0.738	6	0.190
Best Subset	0.773	8.31	0.142

Table 4.4 Protein-Based Products Model Results

4.2.4 Basic Consumption Goods

Table 4.5 shows the results of these three models on Protein-Based Products cluster. As can be seen from the table, the model that the lowest test error rate is Best Subset Selection. R-squared value is greater than the other models which suggests a better explanation of the dataset. Cp value is giving the best result in Stepwise Regression. However, Stepwise regression results as high test error rate compared to Best Subset Selection. As a result, Cp, R-squared and CV test error rate gives a statistically significant and better result than the other models. Best Subset Model was selected for the final and significant model among others.

Table 4.5 Basic Consumption Goods Model Results

Basic Consumption Goods	R-Squared	Ср	Cv Test Error
Stepwise	0.753	10	0.184
Lasso	0.726	7	0.167
Best Subset	0.753	8.24	0.128

4.2.5 Cold-Chain Products

Table 4.6 shows the results of these three models on Protein-Based Products cluster. As can be seen from the table, the model that the lowest test error rate is Best Subset Selection. R-squared value is greater than the other models which suggests a better explanation of the dataset. Cp value is giving the best result in Stepwise Regression. However, Stepwise regression results as high test error rate compared to Best Subset Selection. As a result, Cp, R-squared and CV test error rate gives a statistically significant and better result than the other models. Best Subset Model was selected for the final and significant model among others.

Cold-Chain Products	R-Squared	Cp	Cv Test Error	
Stepwise	0.764	10	0.207	
Lasso	0.729	7	0.179	
Best Subset	0.764	8.27	0.135	

Table 4.6 Cold Chain Products Model Results

4.2.6 Electronics

Table 4.7 shows the results of these three models on Electronics cluster. As can be seen from the table, the model that the lowest test error rate is Lasso. However, R-squared value is also slightly lower than the other models. However, when three models compared T values of Lasso resulted statistically significant than the others. As a result, Lasso model was chosen as final model because having significantly lower value of CV test error rate compared to other models.

 Table 4.7 Electronics Model Results

Electronics	R-Squared	Cp	Cv Test Error
Stepwise	0.666	7	0.199
Lasso	0.664	7	0.162
Best Subset	0.673	12	0.165

4.3 Online Shopping Results

Online Shopping Results sectioned into 5 parts same as physical market results. Since Online Market dataset did not have any information for Alcoholic Beverages cluster, that cluster had to be eliminated for this part of this research. Below parts will again provide results of three regression models that had been applied for each cluster separately. The final model coefficients were provided under 'Comparison between Physical and Online Market' section for each cluster.

4.3.1 Daily Needs

For this cluster, Best Subset Model has the highest R-squared value among other models. Cp value is exactly 12 in Best Subset as wanted. There is a significant difference in CV test error rate among three models. Best Subset model provides the lowest Cv test error rate among others. When considering the lowest CV test error and highest R-squared and Cp value, the final model for this cluster is Best Subset Model.

Daily Needs	R-Squared	Cp	Cv Test Error
Stepwise	0.886	10	0.495
Lasso	0.883	7	0.264

12.00

Table 4.8 Daily Needs Model Results

0.886

4.3.2 Protein-Based Products

Best Subset

For Protein-Based products, the CV test error of the Best Subset Model is the lowest one. Cp value also statistically the best value. Whether R-squared value is the highest in Stepwise Regression, stepwise regression resulted as the highest test error rate compared to other models. The best result for this cluster achieved by using Best Subset Model.

0.171

Protein-Based Products	R-Squared	Cp	Cv Test Error
Stepwise	0.886	10	0.440
Lasso	0.844	7	0.251
Best Subset	0.867	12	0.188

 Table 4.9 Protein-Based Products Model Results

4.3.3 Basic Consumption Goods

Basic consumption goods again have the lowest CV test error rate in Best Subset Model. Additionally, R-squared value is higher compared to Lasso. Cp value is 10.04 which is closer to 12. The results are similar with Stepwise regression. Since the main consideration when deciding the final model for this research is CV test error rate, the final model decided as Best Subset Model.

Table 4.10 Basic Consumption Goods Model Results

Basic Consumption Goods	R-Squared	Cp	Cv Test Error
Stepwise	0.870	10	0.608
Lasso	0.776	7	0.358
Best Subset	0.870	10.04	0.210

4.3.4 Cold-Chain Products

Cold-Chain Products again has the lowest CV test error rate in Best Subset Model. Additionally, R-squared value is higher than the other models. Cp value is 10.30 which is closer to 12. The results are similar with Stepwise regression but stepwise regression resulted as a very high test error rate. The final model decided as Best Subset Model.

Cold-Chain Products	R-Squared Cp		Cv Test Error
Stepwise	0.880	10	0.410
Lasso	0.865	7	0.225
Best Subset	0.8815	10.30	0.177

Table 4.11 Cold-Chain Products Model Results

4.3.5 Electronics

Compared to Physical Market Electronics result, online market dataset gave the best result in Best Subset Model by having a highest value of R-squared, significant Cp value and lowest CV test error rate. Comparing R-squared, Cp and most importantly Cv test error rate with other models, Best Subset Model provides a much more statistically significant result.

 Table 4.12 Electronics Model Results

Electronics	R-Squared	Cp	Cv Test Error
Stepwise	0.656	8	0.489
Lasso	0.654	10	0.540
Best Subset	0.659	10.00	0.409

4.4 Comparison between Physical and Online Market

This section compares the physical and online market results for each cluster with their final model that had been selected. Related coefficients of the final models, T-values and P-values will provide an insight about Covid-19 effect on sales for each cluster. As comparing physical and online market models the research aimed to see the shift between physical to online market during Covid-19 process. 4 main predictors took into consideration for comparison. Namely; LnCasenum(Natural Logarithm of number of cases between March 2020 to December 2020), DUM24_5(24th)

of May-Holiday-significant change on sales levels), DUM01_06(1st of June 2020-Beginning of the normalization period and significant change on sales levels) and lastly DUM12_12 (significant change on sales levels). The Comparison part sectioned into 6 parts according to clusters.

4.4.1 Alcoholic Beverages

It can be seen that Case numbers has no specific effect on sales of Alcoholic Beverages. The coefficient of LnCasenum statistically low. However, when looking at the T-value and P-value of Case numbers, the effect of case numbers on sales levels cannot be denied. On the other hand, all three dummy dates have a significant negative effect on sales numbers. It can be said that during these days the sales levels were statistically low than usual. T-values and P-values also proving that claim. Since there is no data for online market in this cluster. The results were only provided for physical market.

Alcoholic Beverages	Predictors	Coefficients	T values	P values
	(Intercept)	3.94	5.11	0.00
	LnCasenum	-0.08	-2.37	0.01
	Lnclust1_1	0.36	10.55	0.00
	$Lnclust1_2$	-0.24	-6.43	0.00
	$Lnclust1_3$	0.05	1.42	0.15
Physical	Lnclust1_4	0.07	1.82	0.06
r iiysicai	Lnclust1_5	-0.23	-5.62	0.00
	Lnclust1_6	0.23	5.33	0.00
	Lnclust1_7	0.48	13.02	0.00
	DUM24_05	-10.03	-16.78	0.00
	DUM12_12	-12.51	-13.01	0.00
	DUM01_06	9.36	8.64	0.00

Table 4.13 Alcoholic Beverages-Physical Market Final Model Result

4.4.2 Daily Needs

For physical market, it can be seen that Case numbers has no specific effect on sales of Daily Needs. The coefficient of LnCasenum statistically low. However, when looking at the T-value and P-value of Case numbers, the effect of case numbers on sales levels cannot be denied. On the other hand, DUM24_05 had a negative effect on sales levels. It can be said that during these days the sales levels were statistically low than usual. On the contrary, DUM01_06 has a positive effect on sales levels.T-values and P-values of these two dates also proving that claim.

On the online market, it can be seen that Case numbers has positive effect compared to physical market on sales of Daily Needs. The coefficient of LnCasenum statistically low. However, when looking at the T-value and P-value of Case numbers, the effect of case numbers on sales levels cannot be denied. On the other hand, DUM24_05 had a significant negative effect on sales levels. It can be said that during these days the sales levels were statistically low than usual. On the contrary, DUM01_06 has a significant positive effect on sales levels.T-values and P-values of these two dates also proving that claim.

Online market results proving the claim of a shift from physical to online market for this cluster by suggesting a higher value of coefficients, T-values and better P-values.

Daily Needs	Predictors	Coefficients	T values	P values
	(Intercept)	4.22000	4.505	0.00
	LnCasenum	-0.01629	-1.442	0.15
	Lnclust2_1	0.29661	7.023	0.00
	Lnclust2_2	-0.18145	-4.044	0.00
	Lnclust2_3	0.03032	0.660	0.50
Dhysical	Lnclust2_4	0.08434	1.822	0.06 .
Physical	Lnclust2_5	-0.13263	-2.813	0.00
	Lnclust2_6	0.14605	3.125	0.00
	$Lnclust2_7$	0.48271	12.090	0.00
	$DUM24_5$	-2.87985	-14.239	0.00
	DUM12_12	-0.18367	-0.580	0.56
	DUM1_6	2.51723	7.141	0.00

Table 4.14 Daily Needs-Physical Market Final Model Result

Daily Needs	Predictors	Coefficients	T values	P values
	(Intercept)	8.28224	15.766	0.00
	LnCasenum	0.07459	4.714	0.00
	Lnclust2_1	0.22889	6.395	0.00
	Lnclust2_2	-0.37918	-10.280	0.00
	Lnclust2_3	0.17105	4.375	0.00
Online	Lnclust2_4	0.01915	0.484	0.62
Omme	Lnclust2_5	-0.16515	-4.177	0.00
	Lnclust2_6	0.13807	3.719	0.00
	Lnclust2_7	0.25181	7.871	0.00
	$DUM24_5$	-9.71935	-28.824	0.00
	DUM12_12	0.37904	0.928	0.35
	DUM1_6	4.42341	8.404	0.00

Table 4.15 Daily Needs-Online Market Final Model Result

4.4.3 Protein-Based Products

For physical market, it can be seen that case numbers have no specific effect on sales of Protein-Based Products. The coefficient of LnCasenum statistically low. However, when looking at the T-value and P-value of Case numbers, the effect of case numbers on sales levels cannot be denied. On the other hand, DUM24_05 had a negative effect on sales levels. It can be said that during these days the sales levels were statistically low than usual. On the contrary, DUM01_06 has a positive effect on sales levels.T-values and P-values of these two dates also proving that claim.

On the online market, it can be seen that case numbers have similar but positive effect compared to physical market on sales of Protein-Based Products. The coefficient of LnCasenum statistically low. However, when looking at the T-value and P-value of Case numbers, the effect of case numbers on sales levels cannot be denied. DUM24_05 had a significant negative effect on sales levels. It can be said that during these days the sales levels were statistically low than usual. DUM01_06 has a significant positive effect on sales levels.T-values and P-values of these two dates also proving that claim.

Online market results proving the claim of a shift from physical to online market for this cluster by suggesting a higher value of coefficients, T-values and better P-values.

Protein-Based Products	Predictors	Coefficients	T values	P values
	(Intercept)	6.974998	8.298	0.00
	LnCasenum	-0.030281	-2.280	0.02
	Lnclust3_1	0.259949	6.491	0.00
	Lnclust3_2	-0.185242	-4.418	0.00
	Lnclust3_3	-0.001608	-0.038	0.96
Dhysical	Lnclust3_4	0.112936	2.615	0.00
Physical	Lnclust3_5	-0.203428	-4.520	0.00
	Lnclust3_6	0.164681	3.597	0.00
	Lnclust3_7	0.342701	9.359	0.00
	DUM24_5	-5.055043	-19.748	0.00
	DUM12_12	-0.211549	-0.561	0.57
	DUM1_6	3.206452	6.998	0.00

Table 4.16 Protein-Based Products-Physical Market Final Model Result

Table 4.17 Protein-Based Products-Online Market Final Model Result

Protein-Based Products	Predictors	Coefficients	T values	P values
	(Intercept)	6.88227	13.166	0.00
	LnCasenum	0.05259	3.180	0.00
	Lnclust3_1	0.26290	7.099	0.00
	Lnclust3_2	-0.33695	-8.758	0.00
	Lnclust3_3	0.11268	2.797	0.00
Online	Lnclust3_4	0.05814	1.427	0.15
Omme	Lnclust3_5	-0.19793	-4.805	0.00
	Lnclust3_6	0.15940	4.074	0.00
	Lnclust3_7	0.28866	8.712	0.00
	DUM24_5	-8.75795	-25.863	0.00
	DUM12_12	0.31999	0.746	0.45
	DUM1_6	5.05109	9.312	0.00

4.4.4 Basic Consumption Goods

For physical market, it can be seen that case numbers have no specific effect on sales of Basic Consumption Goods. The coefficient of LnCasenum statistically low. However, when looking at the T-value and P-value of Case numbers, the effect of case numbers on sales levels cannot be denied. On the other hand, DUM24_05 had a negative effect on sales levels. It can be said that during these days the sales levels were statistically low than usual. On the contrary, DUM01_06 has a positive effect on sales levels.T-values and P-values of these two dates also proving that claim.

On the online market, it can be seen that case numbers have same but positive effect compared to physical market on sales of Basic Consumption Goods. The coefficient of LnCasenum statistically low. However, when looking at the T-value and P-value of Case numbers, the effect of case numbers on sales levels cannot be denied. DUM24_05 had a significant negative effect on sales levels. It can be said that during these days the sales levels were statistically low than usual. DUM01_06 has a significant positive effect on sales levels.T-values and P-values of these two dates also proving that claim.

Online market results proving the claim of a shift from physical to online market for this cluster by suggesting a higher value of coefficients, T-values and better P-values.

Basic Consumption Goods	Predictors	Coefficients	T values	P values
	(Intercept)	7.111703	7.254	0.00
	LnCasenum	-0.038233	-2.976	0.00
	Lnclust4_1	0.266468	6.466	0.00
	Lnclust4_2	-0.184126	-4.268	0.00
	Lnclust4_3	-0.006281	-0.143	0.88
Physical	Lnclust4_4	0.102171	2.294	0.02
i iiysicai	Lnclust4_5	-0.183306	-3.990	0.00
	Lnclust4_6	0.157594	3.403	0.00
	Lnclust4_7	0.383103	10.068	0.00
	$DUM24_5$	-4.200313	-17.624	0.00
	DUM12_12	-0.168354	-0.470	0.63
	DUM1_6	2.994115	7.069	0.00

 Table 4.18 Basic Consumption Goods-Physical Market Final Model Result

Basic Consumption Goods	Predictors	Coefficients	T values	P values
	(Intercept)	8.52205	14.637	0.00
	LnCasenum	0.03354	1.999	0.00
	Lnclust4_1	0.25291	6.687	0.00
	Lnclust4_2	-0.39198	-9.964	0.00
	Lnclust4_3	0.18274	4.374	0.00
Online	Lnclust4_4	0.00865	0.205	0.83
Omme	Lnclust4_5	-0.15094	-3.588	0.00
	Lnclust4_6	0.13106	3.322	0.00
	Lnclust4_7	0.26859	7.857	0.00
	$DUM24_5$	-9.89079	-26.478	0.00
	DUM12_12	0.35507	0.781	0.43
	DUM1_6	4.82857	8.332	0.00

 Table 4.19 Basic Consumption Goods-Online Market Final Model Result

4.4.5 Cold-Chain Products

For physical market, it can be seen that case numbers have no specific effect on sales of Cold-Chain Products. The coefficient of LnCasenum statistically low. However, when looking at the T-value and P-value of Case numbers, the effect of case numbers on sales levels cannot be denied. On the other hand, DUM24_05 had a negative effect on sales levels. It can be said that during these days the sales levels were statistically low than usual. On the contrary, DUM01_06 has a positive effect on sales levels.T-values and P-values of these two dates also proving that claim.

On the online market, it can be seen that case numbers have some more higher and positive effect compared to physical market on sales of Cold-Chain Products. The coefficient of LnCasenum statistically low. However, when looking at the T-value and P-value of Case numbers, the effect of case numbers on sales levels cannot be denied. DUM24_05 had a significant negative effect on sales levels. It can be said that during these days the sales levels were statistically low than usual. DUM01_06 has a significant positive effect on sales levels.T-values and P-values of these two dates also proving that claim.

Online market results proving the claim of a shift from physical to online market for this cluster by suggesting a higher value of coefficients, T-values and better P-values.

Cold-Chain Products	Predictors	Coefficients	T values	P values
	(Intercept)	6.591133	7.413	0.00
	LnCasenum	-0.030444	-2.338	0.02
	Lnclust5_1	0.269870	6.781	0.00
	Lnclust5_2	-0.183991	-4.398	0.00
	Lnclust5_3	-0.004747	-0.111	0.91
Physical	Lnclust5_4	0.114220	2.647	0.00
r nysicai	Lnclust5_5	-0.204178	-4.550	0.00
	Lnclust5_6	0.163787	3.600	0.00
	Lnclust5_7	0.371445	10.094	0.00
	DUM24_5	-4.709145	-19.175	0.00
	DUM12_12	-0.189945	-0.515	0.60
	DUM1_6	3.399490	7.662	0.00

Table 4.20 Cold-Chain Products-Physical Market Final Model Result

Table 4.21 Cold-Chain Products-Online Market Final Model Result

Cold-Chain Products	Predictors	Coefficients	T values	P values
	(Intercept)	7.81728	14.878	0.00
	LnCasenum	0.06015	3.726	0.00
	Lnclust5_1	0.23830	6.833	0.00
	Lnclust5_2	-0.32138	-8.954	0.00
	Lnclust5_3	0.09473	2.528	0.00
Online	Lnclust5_4	0.05906	1.553	0.12
Omme	Lnclust5_5	-0.21260	-5.489	0.00
	Lnclust5_6	0.16577	4.482	0.00
	Lnclust5_7	0.25960	8.457	0.00
	DUM24_5	-9.40371	-28.451	0.00
	DUM12_12	0.22916	0.549	0.58
	DUM1_6	5.11184	9.507	0.00

4.4.6 Electronics

For physical market, it can be seen that case numbers are not add to the Lasso model. This suggest that case numbers had no significant effect on sales levels so it did not added to the final model. On the other hand, DUM24_05 had a negative

effect on sales levels. It can be said that during these days the sales levels were statistically low than usual. On the contrary, DUM01_06 has a positive effect on sales levels.T-values and P-values of these two dates also proving that claim.

On the online market, it can be seen that case numbers have some effect on sales of Electronics. This believed that online market providing much more electronics product options. The coefficient of LnCasenum statistically low. However, when looking at the T-value and P-value of Case numbers, the effect of case numbers on sales levels cannot be denied. DUM24_05 had a significant negative effect on sales levels. It can be said that during these days the sales levels were statistically low than usual. DUM01_06 has a significant positive effect on sales levels.T-values and P-values of these two dates also proving that claim.

Online market results proving the claim of a shift from physical to online market for this cluster by suggesting a higher value of coefficients, T-values and better P-values.

Electronics	Predictors	Coefficients	T values	P values
	(Intercept)	4.19186	7.357	0.00
	Lnclust6_1	0.36515	7.712	0.00
	Lnclust6_2	-0.15418	-3.687	0.00
Physical	Lnclust6_6	0.06268	1.469	0.14
	Lnclust6_7	0.30210	6.873	0.00
	$DUM24_5$	-3.62236	-13.624	0.00
-	DUM1_6	2.06296	4.599	0.00

Table 4.22 Electronics-Physical Market Final Model Result

Table 4.23 I	Electronics-Online	Market Final	Model Result
--------------	--------------------	--------------	--------------

Electronics	Predictors	Coefficients	T values	P values
	(Intercept)	1.527323	4.071	0.00
	LnCasenum	0.087545	3.378	0.00
	$Lnclust6_1$	0.433464	8.686	0.00
	Lnclust6_2	-0.183326	-3.417	0.00
	Lnclust6_3	0.002154	0.040	0.96
Online	Lnclust6_4	0.011608	0.214	0.83
Onnie	Lnclust6_5	-0.083583	-1.514	0.13
	$Lnclust6_6$	0.144355	2.612	0.00
	Lnclust6_7	0.321085	6.943	0.00
	DUM24_5	-4.160791	-10.224	0.00
	DUM12_12	0.589596	0.926	0.35
	DUM1_6	4.066505	5.759	0.00

5. Conclusion and Further Suggestions

Initially, this research aimed to find an answer to following questions.

Which product groups experienced a significant shopping behavior change compared to 2019?

With the cluster analysis had been done, it can be clearly seen that all of the clusters had experienced a significant change compared to 2019. Most demanded product groups in both physical and online market were Basic Consumption Goods(which are grains pasta and sides, cleaning and paper products). Online market sales increased for all product groups compared to 2019. Even after the curfews started, physical market sales were still significantly higher than 2019 for all product groups. Is there any difference between online shopping and physical market sales compared to 2019?

All of the clusters both in physical and online market seen a sudden increase in sales at the beginning of the Covid-19 period. This increase suggesting stock-pilling and panic-buying behavior in both shopping types. At the end of 2020, it can be seen that these panic behaviors turning into normal buying behaviors since the sales numbers starts to be decrease after months passed. Online-market still has a significantly higher sales ratio. That is believed that people are starting to be getting used to shop from online as online market provides more variety of products and easy. How has the Covid-19 affected customer buying habits?

As with the regression analysis were done on this research, it can be seen that Covid-19 case numbers had an effect on shopping habits. Also, there is a significant effect of curfews on sales numbers. The dummy dates that had been created after noticing a significant change on 25th of May, 1st of June and 12th of December showed that these dates affected the sales numbers a lot. Limitations, curfews and case numbers made people to shift from physical market to online market. People started to be preferred to shop online rather than physical market as the case numbers and curfews increased.

To answer the questions above, this research used CRISP-DM process. The dataset

was provided from one of the largest retailers in Turkey and the topic were decided to solve one of the business problems that they are encountering during this process. Data analysis techniques were applied such as cleaning dataset, clustering the product groups, creating models and calculating the efficiency of the models to answer this business problem. Implementing a business model or information system from this research can be beneficial for businesses to overcome their similar problems related with changing shopping habits during Covid-19. With the methods or results derived from this research, companies can evaluate their own customers, act according to result and overcome their problems much faster. Deployment is an important step for companies to overcome their business problems by implementing the results that had been found like in this research. This research will also be a useful guideline for other countries which are still dealing with the changing consumer behaviors and its responses on demand. Since the dataset is only limited to one retailer, adding more retailers to the models that had been implemented will definitely change the results. Whether the consumer behavior mostly changed similar all around the world, adding much more information on the methods that had been applied will give much more statistically significant results. So, this topic will be open to any further examinations to understand how the consumer behavior affected from COVID-19 process.

BIBLIOGRAPHY

- Brock, T. C. (1968). Implications of commodity theory for value change. *Physchological foundations of attitudes*, 243–275.
- Chen, Y., Rajabifard, A., Sabri, S., Potts, K., & Laylavi, F. (2020). A discussion of irrational stockpiling behaviour during crisis. *Journal of Safety Science and Resilience*.
- Hall, M., Prayag, G., Fieger, P., & Dyason, D. (2020). Beyond panic buying: consumption displacement and covid-19. Journal of Service Management, 32(1), 113–128.
- Hebbali, A. (2020). Olsrr: Tools for building ols regression models, https://olsrr.rsquaredacademy.com/index.html.
- IBM (2016). Hierarchical cluster analysis. *IBM Documentation*, https://www.ibm.com/docs/en/spss-statistics/24.0.0?topic=optionhierarchical-cluster-analysis.
- Ivanov, D. (2020). Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the covid-19 pandemic. Annals of Operations Research.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer.
- Kassambra, A. (2013). Practical Guide To Cluster Analysis in R. Sebastopol: STHDA.
- Lund, S., Manyika, J., Woetzel, J., Barribal, E., Krishnan, M., Alicke, K., Birshnan, M., George, K., Smit, S., Swan, D., & Hutzler, K. (2020). Risk, resilience, and rebalancing in global value chains. *McKinsey Global Institute*.
- Micalizzi, L., Zambrotta, N., & Bernstein, M. (2021). Stockpiling in the time of covid-19. British Journal of Health Psychology.
- Owid (2020). Covid-19 data explorer. Our world in data, https://ourworldindata.org/explorers/coronavirus-data-explorer.
- Park, K., Brumberg, A., & Yonezawa, K. (2020). The covid-19 shopper: Shopping habits during covid-19. Department of Applied Economics and Management Cornell University Extension Bulletin.
- Provost, F. & Fawcett, T. (2017). Data Science for Business. O'Reilly.
- Saenz, H., Stephan, J., Terino, J., Bysong, T., & Gnamm, J. (2021). How to trace a path to resilient, sustainable supply chains. *Bain Company*.
- Sarkis, J. (2021). Supply chain sustainability: learning from the covid-19 pandemic. International Journal of Operations Production Management, 41(1), 63–73.
- Sarkis, J., Cohen, M., Dewick, P., & Schröder, P. (2020). A brave new world: Lessons from the covid-19 pandemic for transitioning to sustainable supply and production. *Resources, Conservation Recycling.*
- Shearer, C. (2000). The crisp-dm model: the new blueprint for data mining. *Journal* of Data Warehousing, 5(4), 13–22.
- Simchi-Levi, D. & Simchi-Levi, E. (2020). Building resilient supply chains. *Harvard Business Review*.
- Tversky, A. & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.

Who (2021). Coronavirus disease(covid-19) pandemic. World Health Organization, https://www.who.int/emergencies/diseases/novel-coronavirus-2019.

Wikipedia (2021). Covid-19 pandemic in turkey. Wikipedia Free Encyclopedia, https://en.wikipedia.org/wiki/Timeline_of_the_COVID-19_pandemic_in_Turkey.

APPENDIX A

Table A.1	Examp	le from	the	dataset
-----------	-------	---------	-----	---------

PERIOD	DATE	CITY CODE	CITY NAME	MAIN GROUP NAME	SUB GROUP NAME	MAIN CLASS NAME	SUB CLASS NAME	SALES PRICE	QTY SOLD
201901	01.01.2019	01	ADANA	CLEANING	LAUNDRY DETERGENT	FABRIC SOFTENER	CONCENTRATED	53.30	3
201902	06.02.2019	06	ANKARA	GRAINS, PASTA&SIDES	SALT & SPICE	SPICE	CUMIN	11.12	2
201911	23.11.2019	34	İSTANBUL	GLASSWARE	HOUSE DECORATION	DECORATIVE PRODUCTS	FRAME	15.90	1
202004	08.04.2020	35	İZMİR	NON-ALC BEV.	CARBONATED BEVERAGE	ENERGY DRINKS	ENERGY DRINKS	18.95	1
202012	19.12.2020	09	AYDIN	PAPER & BABY	CLEANING PAPERS	TOILET PAPERS	PREMIUM TOILET PAPERS	71.60	3

Notes :NON-ALC. BEV is an acronym for Non-Alcoholic beverages. There are total of 18 columns in this dataset, which also mentioned in Dataset,Methods and Applications part. However, the company that provided this dataset wanted their company codes and format names to be confidential. That is why those columns were not added to the table above.

Table A.2 Example from the pivot table

	Jan_Hipermarket	January_1	January_Lux	January_Fast	January_2	January_3	January_Total
1-Alcoholic Beverages	-10,10%	-5,51%	6,09%	1,36%	-6,46%	-7,19%	-4,43%
2-Non-Alcoholic Beverages	-7,17%	14,28%	1,51%	23,86%	10,39%	5,48%	9,59%
3-Fish&Seafood	-9,39%	3,02%	6,94%	20,00%	-2,86%	1,40%	-2,10%
4-Cookies, Chocolate & Candy	8,21%	13,57%	7,98%	21,52%	17,37%	9,63%	14,25%
5-Chips&Snacks	1,66%	10,98%	7,70%	16,40%	$15,\!28\%$	7,12%	10,98%
6-Cleaning	6,89%	11,38%	2,80%	12,14%	11,21%	-3,96%	7,24%
7-Frozen Goods	-0,52%	10,13%	4,80%	11,78%	11,73%	3,55%	7,96%
8-Electronics	21,31%	36,57%	-9,46%	43,20%	35,49%	3,82%	19,13%
9-Imported Fruit	-5,01%	$0,\!28\%$	12,84%	4,77%	1,95%	-0,12%	1,17%
10-Meat-Deli	-2,54%	9,09%	9,22%	14,65%	12,55%	6,44%	8,93%
11-House Care	10,57%	26,37%	12,02%	19,22%	24,73%	12,70%	19,64%
12-Takeouts	-15,94%	17,21%	18,36%	24,07%	9,93%	-2,20%	0,96%
13-Paper&Baby	10,52%	14,99%	6,61%	34,14%	22,28%	12,75%	17,79%
14-Meat	-11,69%	-9,42%	-5,68%	-11,75%	-5,29%	-6,90%	-7,65%
15-Canned, Beverages&Breakfast	-3,66%	6,35%	2,40%	9,84%	9,94%	1,55%	5,70%
16-Beauty	21,32%	18,00%	1,58%	29,98%	17,11%	15,21%	18,29%
17-Grains, Pasta&Sides	0,99%	14,66%	15,64%	18,97%	14,64%	7,24%	12,13%
18-Poultry	11,60%	16,13%	5,47%	27,80%	19,94%	14,03%	17,43%
19-Toys,Pet Care&Media	7,38%	7,67%	2,36%	10,51%	11,60%	14,16%	10,14%
20-Packaged Meat	-24,42%	-6,25%	5,32%	5,18%	-8,21%	-18,13%	-8,42%
21-Cheese	4,34%	12,04%	5,37%	15,14%	12,96%	5,51%	10,12%
22-Seasonal Products	17,30%	25,91%	20,34%	26,56%	$27,\!84\%$	$21,\!38\%$	24,14%
23-Dairy Products	-10,55%	-2,26%	2,83%	5,82%	-1,03%	-7,28%	-2,52%
24-Textile	-16,31%	-23,84%	-30,19%	-37,40%	-14,68%	-12,98%	-18,65%
25-Tobacco	-17,38%	-16,38%	-10,32%	-11,28%	-14,46%	-16,86%	-14,34%
26-Bread&Bakery	0,58%	9,08%	7,79%	22,08%	12,46%	1,78%	9,13%
27-Produce :Vegetables&Fruits	15,56%	20,66%	2,75%	46,82%	19,24%	10,53%	18,65%
28-Eggs	11,04%	22,94%	3,18%	30,67%	22,72%	10,12%	19,13%
29-Olive Oil&Butters	-8,50%	4,82%	5,51%	11,78%	4,30%	-2,74%	2,50%
30-Glassware	-7,47%	11,29%	10,46%	24,95%	0,09%	-5,32%	1,08%

	LnCasenum	LnClust3	LnClust3 1	LnClust3_2	LnClust3_3	LnClust3_4	LnClust3_5	LnClust3_6	LnClust3_7	DUM24_5	DUM12_12	DUM1_6
1.03.2020	0	13	Lincitato_1	hierasto_2	inclusto_o	Lincitato_1	Lineitasto_0	Lincitubio_0	Lineitasto_1	0	0	0
2.03.2020	0	13	13							0	0	0
3.03.2020	0	13	13	13						0	0	0
4.03.2020	0	13	13	13	13					0	0	0
5.03.2020	0	13	13	13	13	13				0	0	0
6.03.2020	0	13	13	13	13	13	13			0	0	0
7.03.2020	0	13	13	13	13	13	13	13		0	0	0
8.03.2020	0	13	13	13	13	13	13	13	13	0	0	0
9.03.2020	0	13	13	13	13	13	13	13	13	0	0	0
10.03.2020	0	13	13	13	13	13	13	13	13	0	0	0
11.03.2020	1	13	13	13	13	13	13	13	13	0	0	0
12.03.2020	0	13	14	13	13	13	13	13	13	0	0	0
13.03.2020	2	13	13	13	13	13	13	13	13	0	0	0
14.03.2020	0	14	13	14	13	13	13	13	13	0	0	0
		13	14	13	14	13	13	13	13	0	0	0
15.03.2020 16.03.2020	1											
	3	14	13	14	14	13	14	13	13	0	0	0
17.03.2020	3	14	14	13	14	14	13	14	13	0	0	0
18.03.2020	4	14	14	14	13	14	14	13	14	0	0	0
19.03.2020	5	14	14	14	14	13	14	14	13	0	0	0
20.03.2020	5	14	14	14	14	14	13	14	14	0	0	0
21.03.2020	6	14	14	14	14	14	14	13	14	0	0	0
22.03.2020	6	13	14	14	14	14	14	14	13	0	0	0
23.03.2020	6	13	13	14	14	14	14	14	14	0	0	0
·												
			-									
22.05.2020	7	14	14	14	13	13	12	12	14	0	0	0
23.05.2020	7	13	14	14	14	13	13	12	12	0	0	0
24.05.2020	7	7	13	14	14	14	13	13	12	1	0	0
25.05.2020	7	7	7	13	14	14	14	13	13	1	0	0
26.05.2020	7	8	7	7	13	14	14	14	13	1	0	0
27.05.2020	7	14	8	7	7	13	14	14	14	0	0	0
28.05.2020	7	13	14	8	7	7	13	14	14	0	0	0
29.05.2020	7	14	13	14	8	7	7	13	14	0	0	0
30.05.2020	7	13	14	13	14	8	7	7	13	0	0	0
31.05.2020	7	12	13	14	13	14	8	7	7	0	0	0
1.06.2020	7	13	12	13	14	13	14	8	7	0	0	1
2.06.2020	7	13	13	12	13	14	13	14	8	0	0	0
3.06.2020	7	13	13	13	12	13	14	13	14	0	0	0
10.12.2020	10	13	13	13	13	12	12	14	13	0	0	0
11.12.2020	10	14	13	13	13	13	12	12	14	0	0	0
12.12.2020	10	13	14	13	13	13	13	12	12	0	1	0
13.12.2020	10	12	13	14	13	13	13	13	12	0	0	0
14.12.2020	10	13	10	13	14	13	13	13	13	0	0	0
15.12.2020	10	13	13	12	13	10	13	13	13	0	0	0
16.12.2020	10	13	13	13	10	13	14	13	13	0	0	0
17.12.2020	10	13	13	13	13	10	13	14	13	0	0	0
18.12.2020	10	13	13	13	13	12	12	13	13	0	0	0
19.12.2020		13	13	13	13	13	13	12	13	0	0	0
20.12.2020	10	13	14	13	13	13	13	12	13	0	0	0
21.12.2020	10	13	13	14	13	13	13	13	12	0	0	0
22.12.2020	10	13	13	13	14	13	13	13	13	0	0	0
23.12.2020	10	13	13	13	13	14	13	13	13	0	0	0
23.12.2020	10	13	13	13	13	13	14 13	13	13	0	0	0
		13			13				13	0		
25.12.2020	10 10		13 14	13 13	13	13 13	13 13	13 13			0	0
26.12.2020		13		13			13		13	0	0	
27.12.2020	10	13	13		13	13		13	13	0		0
28.12.2020	10	14	13	13	14	13	13	13	13	0	0	0
29.12.2020	10	14	14	13	13	14	13	13	13	0	0	0
30.12.2020	10	14	14	14	13	13	14	13	13	0	0	0
31.12.2020	10	14	14	14	14	13	13	14	13	0	0	0

Table A.3 Example from Regression Dataset

STEPWISE RESULTS

Final Model (output										
		Model S	Summary	/							
R R-Squared Adj. R-Square Pred R-Square	≥d	0.909 0.826 0.819 -Inf	C N	MSE Coef. Var ISE IAE	0.955 7.810 0.912 0.418						
MSE: Mean So	RMSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error										
			ANOVA	λ							
	Sum of Squares		DF	Mean Square	F	Sig.					
Regression Residual Total	1242.333 262.520 1504.853	2	10 288 298	124.233 0.912	136.292	0.0000					
			F	Parameter Esti	mates						
model	Beta	Std.	Error	Std. Beta	t	Sig	lower	upper			
(Intercept)	4.099		0.767		5.346	0.000	2.590	5.608			
DUM24_5	-10.009		0.599		-16.712	0.000	-11.187	-8.830			
LnClust1_7	0.491		0.037	0.437	13.204	0.000	0.418	0.564			
DUM12_12	-12.489		0.963	-0.321	-12.968	0.000	-14.384	-10.593			
LnClust1_1	0.353		0.033	0.352	10.579	0.000	0.287	0.418			
DUM1_6	9.520		1.079		8.820	0.000	7.396	11.645			
LnClust1_2 LnClust1_5	-0.210 -0.252		0.030		-7.043	0.000	-0.269				
LnClust1_5	-0.252 0.234		0.039	-0.239	-6.400	0.000	-0.330 0.150	-0.175			
LnClust1_4	0.108		0.043			0.001					
LnCasenum	-0.087		0.031	-0.063	-2.443	0.015	-0.157				

Figure A.1 Alcoholic Beverages Physical Market Regression Result

Residuals: Min 10 Median 30 Max -2.16770 -0.05375 0.02160 0.07254 1.29277 Coefficients:
Min 10 Median 30 Max -2.16770 -0.05375 0.02160 0.07254 1.29277 Coefficients:
-2.16770 -0.0537\$` 0.02160 0.07254` 1.29277 Coefficients:
Coefficients:
Estimate Etd. Ennon t value Bn/sltl)
Estimate Std. Error t value Pr(> t)
(Intercept) 5.17061 0.87735 5.893 1.05e-08 ***
LnClust2_1 0.27887 0.04145 6.727 9.22e-11 ***
LnClust2_2 -0.14846
LnClust2_6 0.11559 0.04530 2.552 0.0112 *
LnClust2_7 0.48858 0.04015 12.169 < 2e-16 ***
LnCasenum -0.01926 0.01130 -1.704 0.0894 .
DUM24_5 -2.84101 0.20315 -13.985 < 2e-16 ***
DUM1_6 2.43109 0.35076 6.931 2.71e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3145 on 290 degrees of freedom
(7 observations deleted due to missingness)
Multiple R-squared: 0.7285, Adjusted R-squared: 0.721
F-statistic: 97.24 on 8 and 290 DF, p-value: < 2.2e-16

Figure A.2 Daily Needs Physical Market Regression Result

Final Model (Output										
		Model Summar	у								
R R-Squared Adj. R-Square Pred R-Square	ed ed	0.879 0.773 0.766 -Inf	RMSE Coef. Var MSE MAE 	0.371 2.820 0.137 0.208							
RMSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error											
		ANOV	A								
	Sum of Squares	DF	Mean Square	F	Sig.						
Regression	135.074	9 289	15.008	109.205	0.0000						
			arameter Estir								
model			Std. Beta		Sig	lower	upper				
(Intercept)	6.970	0.833		8.372	0.000	5.332					
DUM24_5 LnClust3_7	-5.061	0.253	-0.660 0.341	-20.005	0.000	-5.559	-4.563				
Lnclust3_7	0.344 3.219	0.036	0.341 0.243	9.432	0.000	0.272 2.322	0.415				
DUM1_6 LnClust3 1	3.219 0.259	0.456	0.243	7.058	0.000						
LnClust3_2	-0.186	0.040	-0.185	-5.301	0.000						
LnCasenum			-0.066								
LnClust3_5		0.045	-0.204	-4.587		-0.293					
	0.166		0.166			0.077					
LnClust3_4	0.113	0.037	0.112	3.059	0.002	0.040	0.185				

Figure A.3 Protein-Based Products Physical Market Regression Result

output											
	Model Summary	y									
20	0./45	Coef. Var MSE	0.352 2.407 0.124 0.192	-							
RMSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error											
	ANOVA										
Sum of Squares	DF N	Mean Square	F	Sig.							
109.269 35.813 145.081	289	12.141 0.124	97.975	0.0000							
	Pi	arameter Esti	mates								
Beta	Std. Error	Std. Beta	t	Sig	lower	upper					
-4.207 0.384 3.000 0.266 -0.187 -0.039 -0.184 0.159	0.236 0.038 0.421 0.041 0.036 0.013 0.045 0.045 0.046	-0.602 0.381 0.249 0.265 -0.186 -0.091 -0.183 0.158	-17.796 10.137 7.132 6.551 -5.221 -3.045 -4.062 3.461	0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001	-4.672 0.309 2.172 0.186 -0.258 -0.064 -0.273 0.069						
	ed ed Mean Square Juare Error Solute Error Squares 109.269 35.813 145.081 	Model Summary 0.868 0.753 ed 0.753 ed -Inf Mean Square Error puare Error Solute Error ANOVA Sum of Squares 109.269 35.813 298 Procession of Squares 109.269 35.813 298 Procession of Squares 109.269 9 35.813 298 145.081 298 0.384 0.037 0.236 0.384 0.038 3.000 0.421 0.266 0.187 0.038 0.013 -0.184 0.045	Model Summary 0.868 RMSE 0.753 Coef. Var ed 0.745 mail of the second se	Model Summary 0.868 RMSE 0.352 0.753 Coef. Var 2.407 ed 0.745 MSE 0.124 ed -Inf MAE 0.192 Mean Square Error MAE 0.192 Mean Square Error ANOVA	Model Summary 0.868 RMSE 0.352 0.753 Coef. Var 2.407 ed 0.745 MSE 0.124 ed -Inf MAE 0.192 Mean Square Error MoVA	Model Summary 0.868 RMSE 0.352 0.753 Coef. Var 2.407 ed 0.745 MSE 0.124 ed -Inf MAE 0.192 Mean Square Error MAE 0.192 ANOVA Solute Error ANOVA Sum of Squares DF Mean Square F Sig. 109.269 9 12.141 97.975 0.0000 35.813 289 0.124 145.081 298 Parameter Estimates Reta Std. Error Std. Beta t Sig Iower 7.093 0.970 7.313 0.000 5.184 -4.207 0.236 -0.602 -17.796 0.000 -4.672 0.384 0.038 0.381 10.137 0.000 0.309 3.000 0.421 0.249 7.132 0.000 2.172 <					

Figure A.4 Basic Consumption Goods Physical Market Regression Result

Final Medal	Output								
Final Model									
		Model Summa	ry						
R R-Squared Adj. R-Squar Pred R-Squar	ed ed	0.874 0.765 0.757 -Tnf	RMSE Coef. Var MSE MAF	0.363 2.715 0.132 0.214					
K-Squared 0.765 Coef. Var 2.715 Adj. R-Squared 0.757 MSE 0.132 Pred R-Squared -Inf MAE 0.214 									
MAE: Mean A	bsolute Err	or							
		ANO	VA						
	Sum of Squares	DF	Mean Square	F	Sig.				
Regression Residual Total	123.535 38.007 161.542	9 289 298	13.726 0.132	104.37	0.0000				
			Parameter Esti	mates					
model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper		
(Intercept) DUM24_5 LnClust5_7	6.563 -4.716 0.372 3.411 0.269	0.878 0.243 0.037 0.441 0.039	-0.639 0.371 0.268	7.477 -19.407 10.165 7.730 6.848	0.000 0.000 0.000 0.000 0.000	4.835 -5.194 0.300 2.543	8.290 -4.238 0.444 4.280 0.347		
LnCasenum LnClust5_5 LnClust5_6 LnClust5_4		0.044 0.045	-0.069 -0.204 0.165 0.112	-4.617 3.678	0.000	-0.057 -0.292 0.077 0.040	-0.118 0.255		

Figure A.5 Cold-Chain Products Physical Market Regression Result

Residuals: Min 1Q Median 3Q Max -2.01436 -0.14539 -0.02899 0.14513 1.29176
Coefficients:
Estimate Std. Error t value $Pr(> t)$
(Intercept) 4.564837 0.540742 8.442 1.48e-15 ***
LnClust6_1 0.362777 0.047499 7.638 3.18e-13 ***
LnClust6_2 -0.156320 0.041945 -3.727 0.000233 ***
$LnClust6_7$ 0.333916 0.038250 8.730 < 2e-16 ***
LnCasenum -0.003422 0.014198 -0.241 0.809697
DUM24_5 -3.628497 0.267086 -13.586 < 2e-16 ***
DUM1 6 1.925429 0.441527 4.361 1.80e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4002 on 292 degrees of freedom
(7 observations deleted due to missingness)
Multiple R-squared: 0.6661, Adjusted R-squared: 0.6593
F-statistic: 97.1 on 6 and 292 DF. p-value: < 2.2e-16

Figure A.6 Electronics Physical Market Regression Result

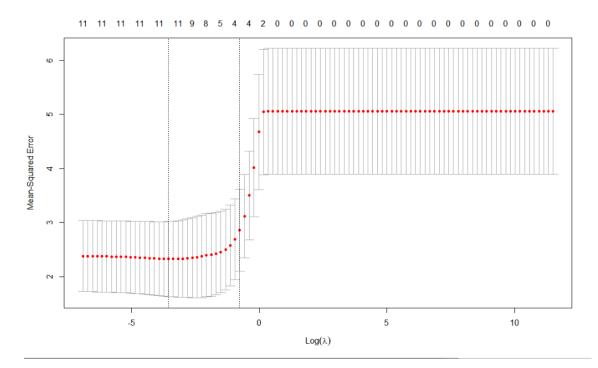
Cimal Model (Durthout t							
Final Model (
		Nodol Cum						
		Model Sum	nary 					
R		0.941	RMSE		0.405			
R R-Squared Adj. R-Square Reed R-Square		0.886	Coef.	Var	3.404			
Adj. R-Square	ed	0.882	MSE		0.164			
Pred R-Square	Pred R-Squared		MAE		0.224			
RMSE: Root M	lean Square	e Error						
MSE: Mean So MAE: Mean A								
MAE: Mean A	bsolute Err	ror						
		A	NOVA					
	Sum of							
	Squares	DF	Mean S	5quare	F	Sig.		
Regression Residual Total	367.229	9	4	40.803	248.758	0.0000		
Residual	47.404	289		0.164				
IOLAI 	414.633							
			Paramet	tor Esti	mates			
model	Beta	Std. Err	or Sto	d. Beta	t	Sig	lower	upper
(Intercept) DUM24_5 LnClust2_7	8.334	0.5	04		16.525	0.000	7.342	9.327
_DUM24_5	-9.744	0.3	31	-0.825	-29.413	0.000	-10.396	-9.092
LnClust2_7	0.250	0.03	2	0.250	7.879	0.000	0.188	0.313
DUM1_6	4.367	0.5	13	0.214	8.506	0.000	3.356	5.377
LnClust2_2					-10.579	0.000		
LnClust2_1					6.416 4.895		0.158	
LnCasenum LnClust2_3	0.077						0.046	
LnClust2_3		0.03	ő –	0.183	6.039 -5.016	0.000	-0.212	-0.093
LnClust2_6		0.03	6	0.134	3.695	0.000	0.062	0.205

Figure A.7 Daily Needs Online Market Regression Result

Final Model (Output	Model Summa	rv								
R R-Squared Adj. R-Square Pred R-Square		0.930 0.866	RMSE Coef. Var MSE	0.426 3.867 0.182 0.244							
RMSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error											
		AND	VA								
	Sum of Squares	DF	Mean Square	F	Sig.						
Regression Residual Total	338.437 52.466 390.903	9 289 298	37.604 0.182	207.135	0.0000						
			Parameter Esti	mates							
model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper				
LnClust3_7 DUM1_6 LnClust3_2 LnClust3_1 LnCasenum LnClust3_3	-8.829 0.283 4.888 -0.345 0.256 0.056 0.147	0.335 0.033 0.531 0.038 0.037 0.016 0.032	-0.770 0.282 0.247 -0.345 0.256 0.080 0.147	8.594 9.201 -9.077 6.982 3.416 4.569	0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001	-9.488 0.218 3.843 -0.420 0.184 0.024 0.084	-8.170 0.348 5.934 -0.270 0.329 0.088 0.210				
	-0.161 0.148	0.032 0.038	-0.161 0.148	-4.956 3.853		-0.225 0.072	-0.097 0.224				

Figure A.8 Protein-Based Products Online Market Regression Result

Final Model (Dutput						
		Model Summa	ry				
R R-Squared Adj. R-Squar Pred R-Squar	ed ed	0.933 0.870 0.866 -Inf	RMSE Coef. Var MSE MAE	0.450 3.621 0.202 0.255			
RMSE: Root M MSE: Mean So MAE: Mean Al	quare Érror	•					
		ANO					
	Sum of Squares	DF	Mean Square	F	Sig.		
Regression Residual Total	391.351 58.509 449.860	9 289 298	43.483 0.202	214.781	0.0000		
			Parameter Esti	mates			
model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
LnClust4_7 DUM1_6 LnClust4_2	0.268	0.034	-0.804 0.267 0.226 -0.393 0.253 0.188	7.887	0.000	0.201 3.687 -0.469	0.335 5.921 -0.318
LnClust4_1 LnClust4_3 LnClust4_5 LnClust4_6 LnCasenum	-0.145 0.129 0.035	0.032 0.038 0.017	-0.144 0.128 0.047	-4.535 3.362 2.100	0.000 0.001 0.037	0.002	0.251 -0.082 0.204 0.068


Figure A.9 Basic Consumption Goods Online Market Regression Result

Final Model (R R-Squared Adi. R-Square		Model Summar 0.938 0.880 0.877	 RMSE Coef. Var	0.415 3.634 0.172			
Préd R-Square RMSE: Root M MSE: Mean So MAE: Mean Al	lean Square quare Error		MAE	0.226			
		ANOV	A				
			Mean Square				
Regression Residual Total	366.294 49.772 416.066	9 289 298	40.699 0.172	236.319	0.0000		
		P	arameter Estin	mates			
model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
DUM1_6 LnClust5_2 LnClust5_1 LnCasenum LnClust5_5 LnClust5_6	-9.492 0.252 4.925 -0.327 0.229 0.064	0.326 0.030 0.525	-0.802 0.253 0.241 -0.328 0.229 0.088 -0.177	8.306 9.378 -9.167 6.662 3.988 -5.669 4.265	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-10.133 0.192	-8.850 0.312 5.958 -0.257 0.296 0.095 -0.115 0.227

Figure A.10 Cold-Chain Products Online Market Regression Result

Final Model C	utput						
		Model Summar	У				
R R-Squared Adj. R-Squared Pred R-Squared		0.810 RMSE 0.656 Coef. Var 0.647 MSE -Inf MAE		0.631 10.431 0.399 0.419			
RMSE: Root N MSE: Mean So MAE: Mean Ab	uare Érror						
	Sum of Squares	DF	Mean Square	F			
Regression Residual Total	220.831 115.996 336.827	7 291 298	31.547 0.399	79.143	0.0000		
			arameter Estir				
			Std. Beta				
LNCIUST6_7 DUM1_6 LNCIUST6 2	3.822	0.046 0.689 0.044	0.437 -0.390 0.328 0.208 -0.181	7.302 5.546 -4.151	0.000 0.000 0.000	0.243 2.465 -0.268	0.422 5.178 -0.096
LnClust6_6	0.084	0.025 0.044		2.011	0.001	0.034 0.002	0.133

Figure A.11 Electronics Online Market Regression Result

LASSO RESULTS

Figure A.12 Alcoholic Beverages Physical Market Lasso Result

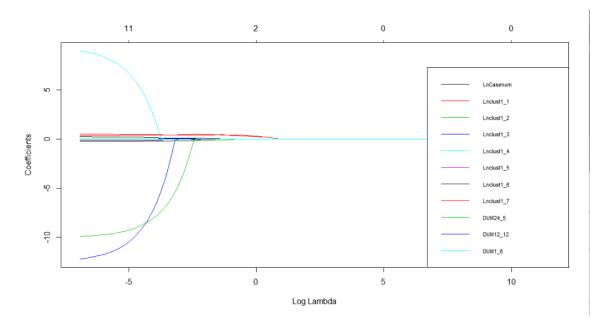


Figure A.13 Alcoholic Beverages Physical Market Lasso Result

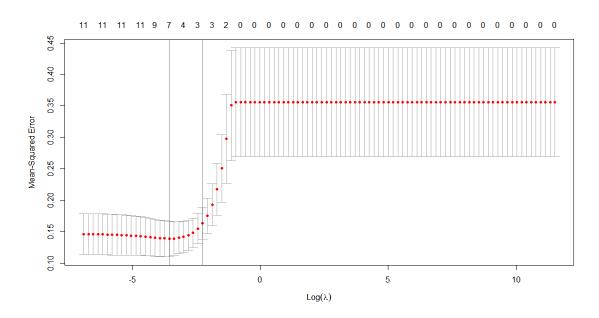


Figure A.14 Daily Needs Physical Market Mean Squared Error Result

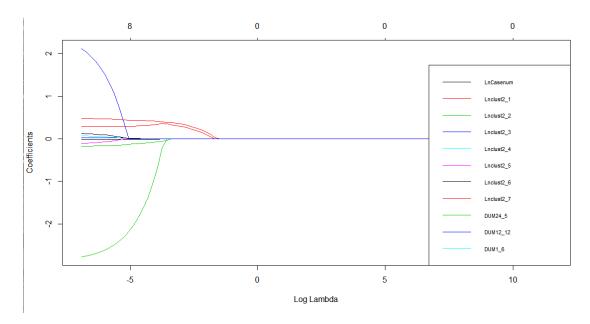


Figure A.15 Daily Needs Physical Market Lasso Result

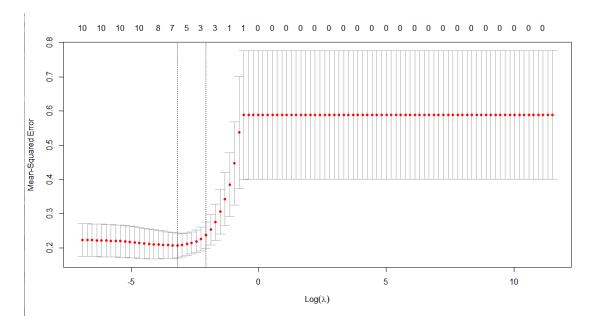


Figure A.16 Protein-based products Physical Market Mean Squared Error

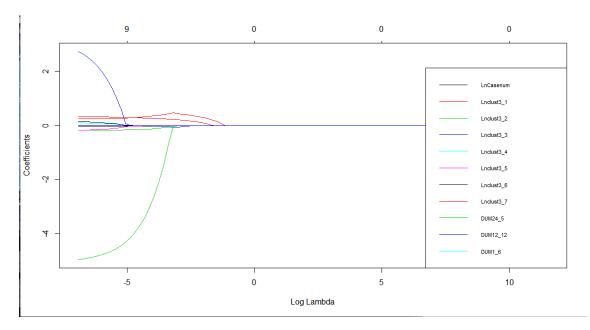


Figure A.17 Protein-based products Physical Market Lasso Result

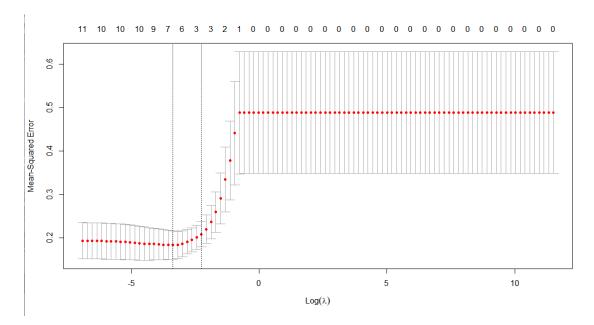


Figure A.18 Basic Consumption Goods Physical Market Mean Squared Error

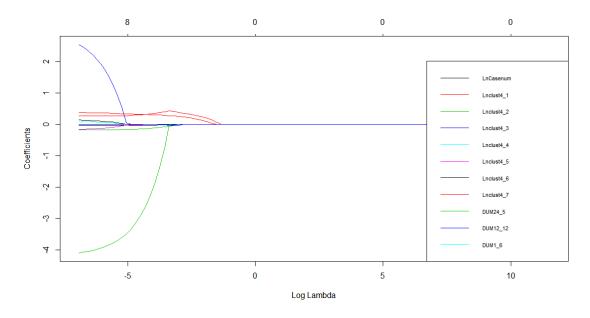


Figure A.19 Basic Consumption Goods Physical Market Lasso Result

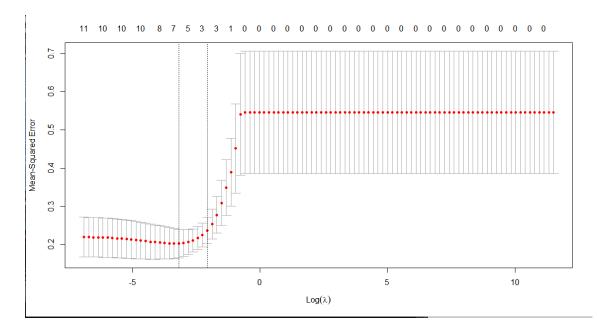


Figure A.20 Cold Chain products Physical Market Mean Squared Error

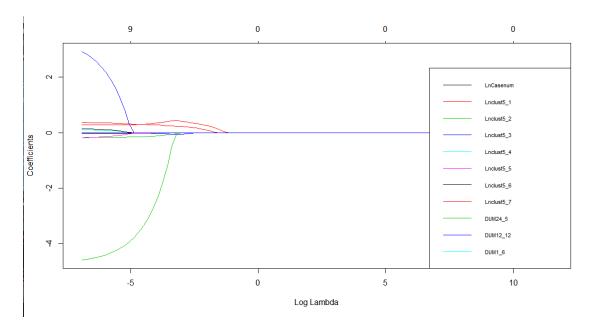


Figure A.21 Cold Chain products Physical Market Lasso Result

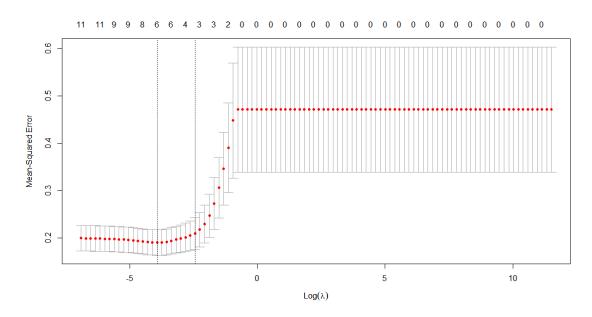


Figure A.22 Electronics Physical Market Mean Squared Error

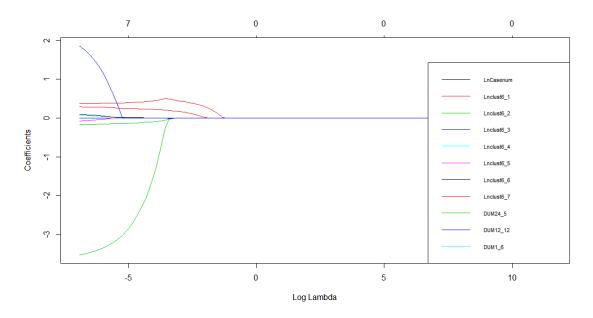


Figure A.23 Electronics Physical Market Lasso Result

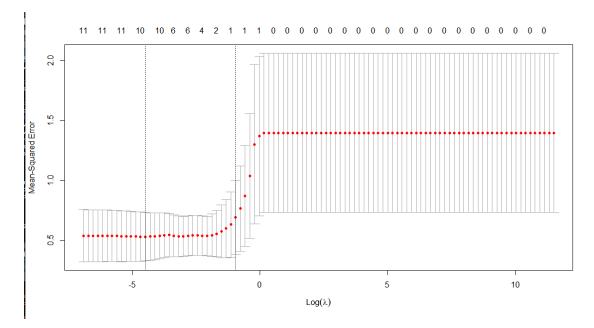


Figure A.24 Daily Needs Online Market Mean Squared Error Result

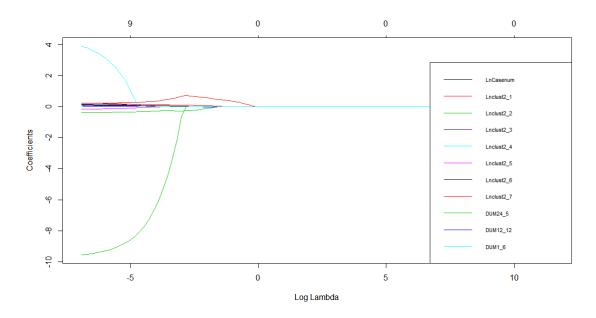


Figure A.25 Daily Needs Online Market Lasso Result

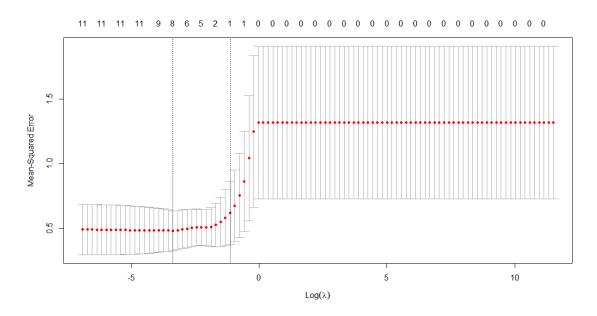


Figure A.26 Protein-based products Online Market Mean Squared Error

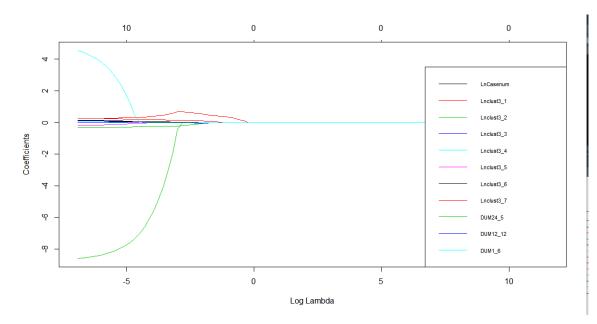


Figure A.27 Protein-based products Online Market Lasso Result

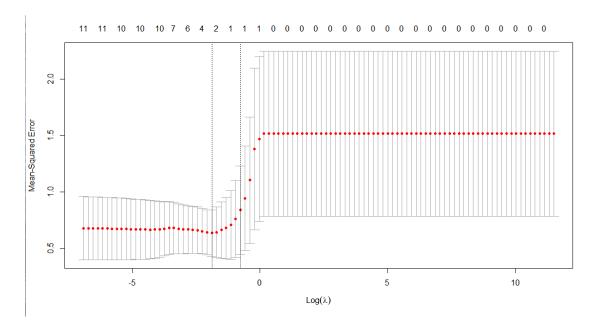


Figure A.28 Basic Consumption Goods Online Market Mean Squared Error

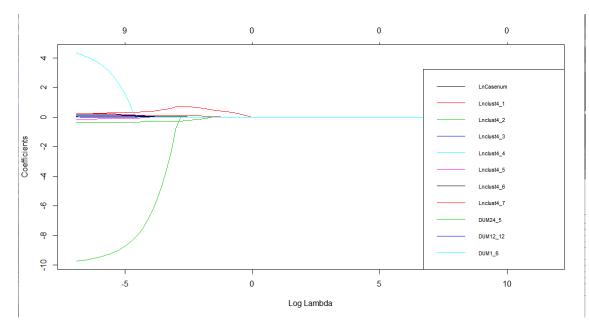


Figure A.29 Basic Consumption Goods Online Market Lasso Result

Figure A.30 Basic Consumption Goods Online Market Lasso Result

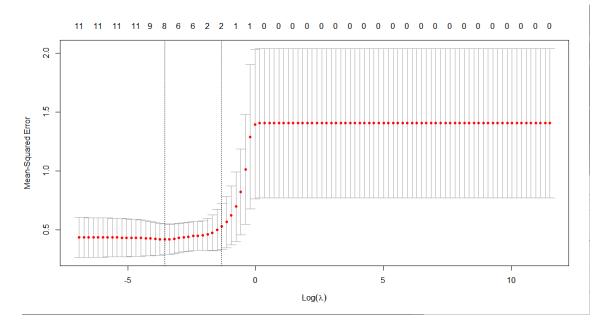


Figure A.31 Cold Chain products Online Market Mean Squared Error

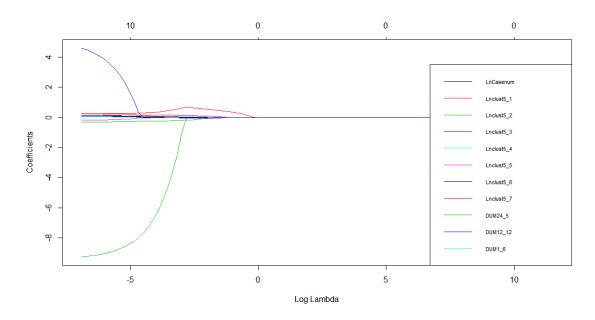


Figure A.32 Cold Chain products Online Market Lasso Result

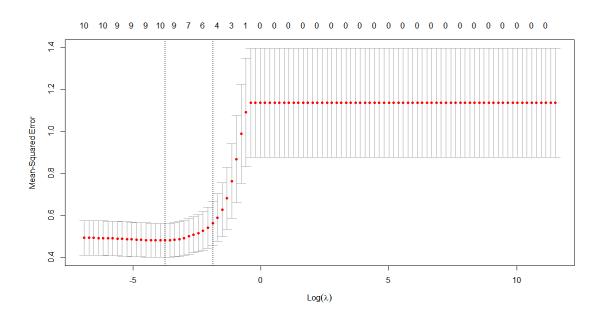


Figure A.33 Electronics Online Market Mean Squared Error

Figure A.34 Electronics Online Market Lasso Result

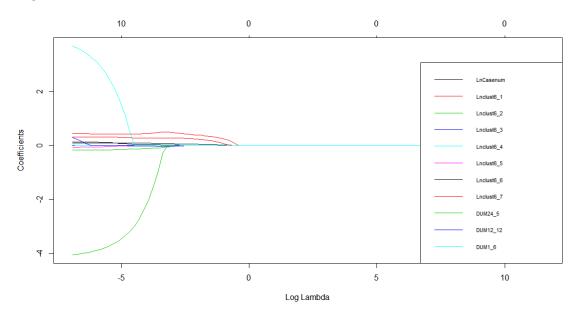


Figure A.35 Electronics Online Market Lasso Result

BEST	SUBSET	MODEL	RESULTS
------	--------	-------	---------

del I	ndex Pred	lictors									
1	Lncl	ust1_7									
2		ust1_7 DUM24	5								
3		ust1_7 DUM24									
4	Lncl	ust1_1 Lnclu	st1_7 DUM24_	5 DUM12_12							
5	Lncl	ust1_1 Lnclu	st1_7 DUM24_	5 DUM12_12 D	DUM1_6						
6	Lncl	ust1_1 Lnclu	st1_2 Lnclus	t1_7 DUM24_5	DUM12_12 DUM	11_6					
					:1_7 DUM24_5 C						
8							M12_12 DUM1_6				
9							7 DUM24_5 DUM1				
10							Lnclust1_7 DU				
11	LnCa	senum Lnclus	t1_1 Lnclust	1_2 Lnclust1	_3 Lnclust1_4	Lnclust1_5	Lnclust1_6 Ln	clust1_7 DUM2	4_5 DUM12_	12 DUM1_6	
					Whente Dognos	cion Summan					
				S	Subsets Regres	sion Summary	′ 				
		Adj.	Pred								
odel	R-Square	Adj. R-Square	Pred R-Square	C(p)	Subsets Regres	ssion Summary SBIC	sbc	MSEP	FPE	HSP	APC
1	0.3036	R-Square 0.3013						M5EP 1054.9872	FPE 3.5520	HSP 0.0119	APC 0.7057
1 2	0.3036 0.5864	R-Square 0.3013 0.5836	R-Square 0.2433 0.5284	C(p) 858.7401 392.1990	AIC 1229.5098 1075.7143	SBIC 376.9234 223.1719	5BC 1240.6111 1090.5161	1054.9872 628.6742	3.5520 2.1237	0.0119 0.0071	0.7057
1 2 3	0.3036 0.5864 0.6891	R-Square 0.3013 0.5836 0.6859	R-Square 0.2433 0.5284 -Inf	C(p) 858.7401 392.1990 224.1416	AIC 1229.5098 1075.7143 992.4193	5BIC 376.9234 223.1719 140.1854	SBC 1240.6111 1090.5161 1010.9216	1054.9872 628.6742 474.2531	3.5520 2.1237 1.6073	0.0119 0.0071 0.0054	0.7057 0.4220 0.3194
1 2 3 4	0.3036 0.5864 0.6891 0.7366	R-Square 0.3013 0.5836 0.6859 0.7330	R-Square 0.2433 0.5284 -Inf -Inf	C(p) 858.7401 392.1990 224.1416 147.3489	AIC 1229.5098 1075.7143 992.4193 944.7854	5BIC 376.9234 223.1719 140.1854 92.9144	SBC 1240.6111 1090.5161 1010.9216 966.9881	1054.9872 628.6742 474.2531 403.0855	3.5520 2.1237 1.6073 1.3706	0.0119 0.0071 0.0054 0.0046	0.7057 0.4220 0.3194 0.2723
1 2 3 4 5	0.3036 0.5864 0.6891 0.7366 0.7733	R-Square 0.3013 0.5836 0.6859 0.7330 0.7695	R-Square 0.2433 0.5284 -Inf -Inf -Inf	C(p) 858.7401 392.1990 224.1416 147.3489 88.5189	AIC 1229.5098 1075.7143 992.4193 944.7854 901.8956	5BIC 376.9234 223.1719 140.1854 92.9144 50.8421	SBC 1240.6111 1090.5161 1010.9216 966.9881 927.7987	1054.9872 628.6742 474.2531 403.0855 348.0807	3.5520 2.1237 1.6073 1.3706 1.1875	0.0119 0.0071 0.0054 0.0046 0.0040	0.7057 0.4220 0.3194 0.2723 0.2359
1 2 3 4 5 6	0.3036 0.5864 0.6891 0.7366 0.7733 0.7943	R-Square 0.3013 0.5836 0.6859 0.7330 0.7695 0.7901	R-Square 0.2433 0.5284 -Inf -Inf -Inf -Inf	C(p) 858.7401 392.1990 224.1416 147.3489 88.5189 55.7443	AIC 1229.5098 1075.7143 992.4193 944.7854 901.8956 874.8398	58IC 376.9234 223.1719 140.1854 92.9144 50.8421 24.5694	58C 1240.6111 1090.5161 1010.9216 966.9881 927.7987 904.4433	1054.9872 628.6742 474.2531 403.0855 348.0807 316.9323	3.5520 2.1237 1.6073 1.3706 1.1875 1.0847	0.0119 0.0071 0.0054 0.0046 0.0040 0.0036	0.7057 0.4220 0.3194 0.2723 0.2359 0.2155
1 2 3 4 5 6 7	0.3036 0.5864 0.6891 0.7366 0.7733 0.7943 0.8001	R-Square 0.3013 0.5836 0.6859 0.7330 0.7695 0.7901 0.7952	R-Square 0.2433 0.5284 -Inf -Inf -Inf -Inf -Inf	C(p) 858.7401 392.1990 224.1416 147.3489 88.5189 55.7443 48.2642	AIC 1229, 5098 1075, 7143 992, 4193 944, 7854 901, 8956 874, 8398 868, 4032	58IC 376.9234 223.1719 140.1854 92.9144 50.8421 24.5694 18.3007	SBC 1240.6111 1090.5161 1010.9216 966.9881 927.7987 904.4433 901.7072	1054.9872 628.6742 474.2531 403.0855 348.0807 316.9323 309.1772	3.5520 2.1237 1.6073 1.3706 1.1875 1.0847 1.0616	0.0119 0.0071 0.0054 0.0046 0.0040 0.0036 0.0036	0.7057 0.4220 0.3194 0.2723 0.2359 0.2155 0.2109
1 2 3 4 5 6 7 8	0.3036 0.5864 0.6891 0.7366 0.7733 0.7943 0.8001 0.8133	R-Square 0.3013 0.5836 0.6859 0.7330 0.7695 0.7901 0.7952 0.8082	R-Square 0.2433 0.5284 -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 858.7401 392.1990 224.1416 147.3489 88.5189 55.7443 48.2642 28.2876	AIC 1229.5098 1075.7143 992.4193 944.7854 901.8956 874.8398 868.4032 849.8784	58IC 376.9234 223.1719 140.1854 92.9144 50.8421 24.5694 18.3007 0.7523	5BC 1240.6111 1090.5161 1010.9216 966.9881 927.7987 904.4433 901.7072 886.8829	1054.9872 628.6742 474.2531 403.0855 348.0807 316.9323 309.1772 289.6647	3.5520 2.1237 1.6073 1.3706 1.1875 1.0847 1.0616 0.9979	0.0119 0.0071 0.0054 0.0046 0.0040 0.0036 0.0036 0.0034	0,7057 0,4220 0,3194 0,2723 0,2359 0,2155 0,2109 0,1983
1 2 3 4 5 6 7 8 9	0.3036 0.5864 0.6891 0.7366 0.7733 0.7943 0.8001 0.8133 0.8219	R-Square 0.3013 0.5836 0.6859 0.7330 0.7695 0.7901 0.7952 0.8082 0.8164	R-Square 0.2433 0.5284 -Inf -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 858.7401 392.1990 224.1416 147.3489 88.5189 55.7443 48.2642 28.2876 16.0149	AIC 1229.5098 1075.7143 992.4193 944.7854 901.8956 874.8398 868.4032 849.8784 837.7520	58IC 376.9234 223.1719 140.1854 92.9144 50.8421 24.5694 18.3007 0.7523 -10.5034	SBC 1240.6111 1090.5161 1010.9216 966.9881 927.7987 904.4433 901.7072 886.8829 878.4569	1054.9872 628.6742 474.2531 403.0855 348.0807 316.9323 309.1772 289.6647 277.2569	3.5520 2.1237 1.6073 1.3706 1.1875 1.0847 1.0616 0.9979 0.9582	0.0119 0.0071 0.0054 0.0046 0.0040 0.0036 0.0036 0.0034 0.0032	0.7057 0.4220 0.3194 0.2723 0.2359 0.2155 0.2109 0.1983 0.1904
1 2 3 4 5 6 7 8	0.3036 0.5864 0.6891 0.7366 0.7733 0.7943 0.8001 0.8133	R-Square 0.3013 0.5836 0.6859 0.7330 0.7695 0.7901 0.7952 0.8082	R-Square 0.2433 0.5284 -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 858.7401 392.1990 224.1416 147.3489 88.5189 55.7443 48.2642 28.2876	AIC 1229.5098 1075.7143 992.4193 944.7854 901.8956 874.8398 868.4032 849.8784	58IC 376.9234 223.1719 140.1854 92.9144 50.8421 24.5694 18.3007 0.7523	5BC 1240.6111 1090.5161 1010.9216 966.9881 927.7987 904.4433 901.7072 886.8829	1054.9872 628.6742 474.2531 403.0855 348.0807 316.9323 309.1772 289.6647	3.5520 2.1237 1.6073 1.3706 1.1875 1.0847 1.0616 0.9979	0.0119 0.0071 0.0054 0.0046 0.0040 0.0036 0.0036 0.0034	0,7057 0,4220 0,3194 0,2723 0,2359 0,2155 0,2109 0,1983

Figure A.36 Alcoholic Beverages Physical Market Best Subset Model Result

				Best	: Subsets Reg	ression					
Model I	ndex Pred	ictors									
1	DUM2	4_5									
2	Lncl	ust2_7 DUM24	_5								
3	Lncl	ust2_7 DUM24	_5 DUM1_6								
4	Lncl	ust2_1 Lnclu	st2_7 DUM24_	5 DUM1_6							
5			st2_2 Lnclus								
6					:2_7 DUM24_5						
7						_7 DUM24_5 DU					
8						_6 Lnclust2_7					
9						5 Lnclust2_6					
10						4 Lnclust2_5					
11	LnCa	senum Lnclus	t2_1 Lnclust	2_2 Lnclust2	_3 Lnclust2_	4 Lnclust2_5	Lnclust2_6 L	nclust2_7 [DUM24_5 DUM	12_12 DUM	1_6
				C -1		· · · · · · · · · · · · · · · · · · ·					
				Suc	sets Regress	fion Summary					
		Adj.	Pred								
Model	R-Square	R-Square	R-Square	С(р)	AIC	SBIC	SBC	MSEP	FPE	HSP	APC
1	0.3660	0.3639	0.3603	393.7108	407.1665	-444.2626	418.2678	67.4220	0.2270	8e-04	0.6425
2	0.6371	0.6346	0.6041	101.2296	242.3579	-607.7334	257.1597	38.7243	0.1308	4e-04	0.3703
3	0.6780	0.6747	-Inf	58.8256	208.6278	-641.1020	227.1300	34.4795	0.1169	4e-04	0.3308
4	0.7050	0.7009	-Inf	31.4957	184.4457	-664.7593	206.6483	31.6965	0.1078	4e-04	0.3051
5	0.7194	0.7146	-Inf	17.8610	171.4918	-677.2649	197.3949	30.2535	0.1032	3e-04	0.2921
6	0.7228	0.7171	-Inf	16.1202	169.8002	-678.8237	199.4037	29.9850	0.1026	3e-04	0.2905
7	0.7259	0.7193	-Inf	14.7197	168.4044	-680.0521	201.7084	29.7486	0.1021	3e-04	0.2891
8	0.7330	0.7256	-Inf	9.0817	162.6334	-685.3403	199.6379	29.0857	0.1002	3e-04	0.2836
9	0.7351	0.7269	-Inf	8.7549	162.2255	-685.5212	202.9304	28.9526	0.1001	3e-04	0.2832
10	0.7355	0.7263	-Inf	10.3366	163.7905	-683.8451	208.1958	29.0112	0.1006	3e-04	0.2847
11	0.7358	0.7257	-Inf	12.0000	165.4400	-682.0852	213.5458	29.0785	0.1011	3e-04	0.2863
	··· · · ·										
		tion Criteri									
			ion Criteria								
		ian Criteria									
	inal Predict		ction, assum	ning multivar	iate normali	ту					
	inal Predict	ton Error									

Figure A.37 Daily Needs Physical Market Best Subset Model Result

					Subsets Reg						
del Ind	lex Pred	ictors									
1	DUM2										
2		ust3_7 DUM24									
3		ust3_7 DUM24									
4		ust3_1 Lnclu									
5				t3_7 DUM24_5							
6					_7 DUM24_5 D						
7						_7 DUM24_5 DU					
8						_6 Lnclust3_7			6		
9						5 Lnclust3_6				6	
10 11						5 Lnclust3_6 4 Lnclust3_5					1 6
11	LIICa	senum Literus	CJ_I LIICIUSU	.j_z Liiciusti		4 LICTUSES_5	LICTUSCS_0 L	incruses_/ u	00124_3 000	112_12 000	1_0
				Sub	sets Regress	ion Summary					
de1	R-Square	Adj. R-Square	Pred R-Square	Sut C(p)	osets Regress	ion Summary SBIC	SBC	MSEP	FPE	HSP	APC
	R-Square 0.5807						SBC 445.2355	MSEP 73.7857	FPE 0. 2484	HSP 8e-04	APC
 L 2	0.5807	R-Square 0.5793 0.6878	R-Square 0.5775 0.6572	С(р)	AIC 434.1341 345.8788	SBIC		73.7857 54.7453			
 - 	0.5807 0.6899 0.7173	R-Square 0.5793 0.6878 0.7144	R-Square 0.5775 0.6572 -Inf	C(p) 235.1898 99.0455 66.4921	AIC 434.1341 345.8788 320.2918	SBIC -416.5156 -504.1831 -529.5960	445.2355 360.6806 338.7940	73.7857 54.7453 50.0901	0.2484 0.1849 0.1698	8e-04	0.4250 0.316 0.2904
 2 3	0.5807 0.6899 0.7173 0.7334	R-Square 0.5793 0.6878 0.7144 0.7297	R-Square 0.5775 0.6572 -Inf -Inf	C(p) 235.1898 99.0455 66.4921 48.1288	AIC 434.1341 345.8788 320.2918 304.7559	SBIC -416.5156 -504.1831 -529.5960 -544.9259	445.2355 360.6806 338.7940 326.9586	73.7857 54.7453 50.0901 47.3981	0.2484 0.1849 0.1698 0.1612	8e-04 6e-04 6e-04 5e-04 5e-04	0.4250 0.316 0.2904 0.2757
 2 3 4	0.5807 0.6899 0.7173 0.7334 0.7504	R-Square 0.5793 0.6878 0.7144 0.7297 0.7462	R-Square 0.5775 0.6572 -Inf -Inf -Inf	C(p) 235.1898 99.0455 66.4921 48.1288 28.5850	AIC 434.1341 345.8788 320.2918 304.7559 287.0108	SBIC -416.5156 -504.1831 -529.5960 -544.9259 -562.1506	445.2355 360.6806 338.7940 326.9586 312.9139	73.7857 54.7453 50.0901 47.3981 44.5211	0.2484 0.1849 0.1698 0.1612 0.1519	8e-04 6e-04 6e-04 5e-04 5e-04 5e-04	0.4250 0.316 0.2904 0.2757 0.2598
 2 3 4 5 5	0.5807 0.6899 0.7173 0.7334 0.7504 0.7550	R-Square 0.5793 0.6878 0.7144 0.7297 0.7462 0.7500	R-Square 0.5775 0.6572 -Inf -Inf -Inf -Inf	C(p) 235.1898 99.0455 66.4921 48.1288 28.5850 24.7678	AIC 434.1341 345.8788 320.2918 304.7559 287.0108 283.4479	58IC -416.5156 -504.1831 -529.5960 -544.9259 -562.1506 -565.5664	445.2355 360.6806 338.7940 326.9586 312.9139 313.0514	73.7857 54.7453 50.0901 47.3981 44.5211 43.8506	0.2484 0.1849 0.1698 0.1612 0.1519 0.1501	8e-04 6e-04 6e-04 5e-04 5e-04 5e-04 5e-04	0.4250 0.316 0.2904 0.2757 0.2598 0.2567
L 2 3 4 5 5 7	0.5807 0.6899 0.7173 0.7334 0.7504 0.7550 0.7607	R-Square 0.5793 0.6878 0.7144 0.7297 0.7462 0.7500 0.7550	R-Square 0.5775 0.6572 -Inf -Inf -Inf -Inf -Inf	C(p) 235.1898 99.0455 66.4921 48.1288 28.5850 24.7678 19.5219	AIC 434.1341 345.8788 320.2918 304.7559 287.0108 283.4479 278.3708	SBIC -416.5156 -504.1831 -529.5960 -544.9259 -562.1506 -565.5664 -570.3410	445.2355 360.6806 338.7940 326.9586 312.9139 313.0514 311.6748	73.7857 54.7453 50.0901 47.3981 44.5211 43.8506 42.9726	0.2484 0.1849 0.1698 0.1612 0.1519 0.1501 0.1476	8e-04 6e-04 6e-04 5e-04 5e-04 5e-04 5e-04 5e-04	0.4250 0.3163 0.2904 0.2757 0.2598 0.2567 0.2524
L 2 3 4 5 5 7 8	0.5807 0.6899 0.7173 0.7334 0.7550 0.7607 0.7684	R-Square 0.5793 0.6878 0.7144 0.7297 0.7462 0.7500 0.7550 0.7620	R-Square 0.5775 0.6572 -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 235.1898 99.0455 66.4921 48.1288 28.5850 24.7678 19.5219 11.8481	AIC 434.1341 345.8788 320.2918 304.7559 287.0108 283.4479 278.3708 270.6535	SBIC -416.5156 -504.1831 -529.5960 -544.9259 -562.1506 -565.5664 -570.3410 -577.4945	445.2355 360.6806 338.7940 326.9586 312.9139 313.0514 311.6748 307.6579	73.7857 54.7453 50.0901 47.3981 44.5211 43.8506 42.9726 41.7424	0.2484 0.1849 0.1698 0.1612 0.1519 0.1501 0.1476 0.1438	8e-04 6e-04 6e-04 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04	0.425(0.316 0.2904 0.275 0.2598 0.256 0.2524 0.2524
 1 2 3 4 5 5 6 6 7 8 9	0.5807 0.6899 0.7173 0.7334 0.7504 0.7550 0.7607 0.7684 0.7728	R-Square 0.5793 0.6878 0.7144 0.7297 0.7462 0.7500 0.7550 0.7620 0.7657	R-Square 0.5775 0.6572 -Inf -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 235.1898 99.0455 66.4921 48.1288 28.5850 24.7678 19.5219 11.8481 8.3160	AIC 434.1341 345.8788 320.2918 304.7559 287.0108 283.4479 278.3708 270.6535 266.9511	-416.5156 -504.1831 -529.5960 -544.9259 -562.1506 -565.5664 -570.3410 -577.4945 -580.7642	445.2355 360.6806 338.7940 326.9586 312.9139 313.0514 311.6748 307.6579 307.6560	73.7857 54.7453 50.0901 47.3981 44.5211 43.8506 42.9726 41.7424 41.0960	0.2484 0.1849 0.1698 0.1612 0.1519 0.1501 0.1476 0.1438 0.1420	8e-04 6e-04 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04	0.425(0.316) 0.2904 0.2757 0.2594 0.2567 0.2524 0.2567 0.2524 0.2460 0.2430
L 2 3 4 5 5 7 8	0.5807 0.6899 0.7173 0.7334 0.7550 0.7607 0.7684	R-Square 0.5793 0.6878 0.7144 0.7297 0.7462 0.7500 0.7550 0.7620	R-Square 0.5775 0.6572 -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 235.1898 99.0455 66.4921 48.1288 28.5850 24.7678 19.5219 11.8481	AIC 434.1341 345.8788 320.2918 304.7559 287.0108 283.4479 278.3708 270.6535	SBIC -416.5156 -504.1831 -529.5960 -544.9259 -562.1506 -565.5664 -570.3410 -577.4945	445.2355 360.6806 338.7940 326.9586 312.9139 313.0514 311.6748 307.6579	73.7857 54.7453 50.0901 47.3981 44.5211 43.8506 42.9726 41.7424	0.2484 0.1849 0.1698 0.1612 0.1519 0.1501 0.1476 0.1438	8e-04 6e-04 6e-04 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04	0.425(0.316 0.2904 0.275 0.2598 0.256 0.2524 0.2524

Figure A.38 Protein-Based Products Physical Market Best Subset Model Result

				Rost	Subsets Req	rection					
				Dest	. Subsets Key						
odel Index	Pred	ictors									
1	DUM24	4_5									
2	Lnclu	ust4_7 DUM24	_5								
3	Lnclu	ust4_7 DUM24	_5 DUM1_6								
4			st4_7 DUM24_								
5	Lnclu	ust4_1 Lnclu	st4_2 Lnclus	t4_7 DUM24_5	DUM1_6						
6	LnCas	senum Lnclus	t4_1 Lnclust	4_2 Lnclust4	_7 DUM24_5 D	UM1_6					
7						7 DUM24_5 DUM					
8						6 Lnclust4_7					
9						5 Lnclust4_6					
10						5 Lnclust4_6					
11	LnCas	senum Lnclus	t4_1 Lnclust	4_2 Lnclust4	_3 Lnclust4_	4 Lnclust4_5	Lnclust4_6 L	nclust4_7 D	UM24_5 DUM	12_12 DUM	1_6
odel R-S	Square	Adj. R-Square	Pred R-Square	C(p)	AIC	SBIC	SBC	MSEP	FPE	HSP	APC
	5quare 			C(p) 278,9949	AIC 427.0016	5BIC 	SBC 438.1030	MSEP 	FPE 0.2426	HSP 	
1 (R-Square	R-Square								APC 0.4999 0.3504
1 (2 (R-Square 0.5051	R-Square 0.5028	278.9949	427.0016	-423.8990	438.1030	72.0464	0.2426	8e-04	0.499
1 (0 2 (0 3 (0	.5067).6566	R-Square 0.5051 0.6543	R-Square 0.5028 0.6221	278.9949 106.6276	427.0016 320.7375	-423.8990 -529.4253	438.1030 335.5393	72.0464 50.3303	0.2426 0.1700	8e-04 6e-04	0.499 0.350 0.317
1 0 2 0 3 0 4 0), 5067), 6566), 6906	R-Square 0.5051 0.6543 0.6875	R-Square 0.5028 0.6221 -Inf	278.9949 106.6276 69.0301	427.0016 320.7375 291.5382	-423.8990 -529.4253 -558.4006	438.1030 335.5393 310.0405	72.0464 50.3303 45.4975	0.2426 0.1700 0.1542	8e-04 6e-04 5e-04	0.499 0.350 0.317 0.299
1 0 2 0 3 0 4 0 5 0).5067).6566).6906).7108	R-Square 0.5051 0.6543 0.6875 0.7068	R-Square 0.5028 0.6221 -Inf -Inf	278.9949 106.6276 69.0301 47.5610	427.0016 320.7375 291.5382 273.3831	-423.8990 -529.4253 -558.4006 -576.2830	438.1030 335.5393 310.0405 295.5858	72.0464 50.3303 45.4975 42.6768	0.2426 0.1700 0.1542 0.1451	8e-04 6e-04 5e-04 5e-04 5e-04	0.499 0.350 0.317 0.299 0.282
1 0 2 0 3 0 4 0 5 0 6 0), 5067), 6566), 6906), 7108), 7286	R-Square 0.5051 0.6543 0.6875 0.7068 0.7240	R-Square 0.5028 0.6221 -Inf -Inf -Inf -Inf	278.9949 106.6276 69.0301 47.5610 28.7654	427.0016 320.7375 291.5382 273.3831 256.3130	-423.8990 -529.4253 -558.4006 -576.2830 -592.8550	438.1030 335.5393 310.0405 295.5858 282.2161	72.0464 50.3303 45.4975 42.6768 40.1770	0.2426 0.1700 0.1542 0.1451 0.1371	8e-04 6e-04 5e-04 5e-04 5e-04 5e-04	0.499 0.350 0.317 0.299 0.282 0.285
1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0). 5067). 6566). 6906). 7108). 7286). 7286). 7375). 7401). 7472	R-Square 0.5051 0.6543 0.6875 0.7068 0.7240 0.7321 0.7339 0.7402	R-Square 0.5028 0.6221 -Inf -Inf -Inf -Inf	278.9949 106.6276 69.0301 47.5610 28.7654 20.4847 19.4249 13.1766	427.0016 320.7375 291.5382 273.3831 256.3130 248.4161 247.4061 241.1380	-423.8990 -529.4253 -558.4006 -576.2830 -592.8550 -600.4072 -601.3006 -607.0927	438.1030 335.5393 310.0405 295.5858 282.2161 278.0196 280.7101 278.1424	72.0464 50.3303 45.4975 42.6768 40.1770 39.0025	0.2426 0.1700 0.1542 0.1451 0.1371 0.1335 0.1330 0.1303	8e-04 6e-04 5e-04 5e-04 5e-04 4e-04	0.499 0.350 0.317 0.299 0.282 0.275 0.274 0.268
1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0). 5067). 6566). 6906). 7108). 7286). 7286). 7375). 7401). 7472). 7472). 7532	R-Square 0.5051 0.6543 0.6875 0.7068 0.7240 0.7321 0.7339 0.7402 0.7455	R-Square 0.5028 0.6221 -Inf -Inf -Inf -Inf -Inf -Inf -Inf	278.9949 106.6276 69.0301 47.5610 28.7654 20.4847 19.4249 13.1766 8.2417	427.0016 320.7375 291.5382 273.3831 256.3130 248.4161 247.4061 241.1380 236.0050	-423,8990 -529,4253 -558.4006 -576.2830 -592.8550 -600.4072 -601.3006 -607.0927 -611.7049	438.1030 335.5393 310.0405 295.5858 282.2161 278.0196 280.7101 278.1424 276.7099	72.0464 50.3303 45.4975 42.6768 40.1770 39.0025 38.7450 37.8187 37.0554	0.2426 0.1700 0.1542 0.1451 0.1371 0.1335 0.1330 0.1303 0.1281	8e-04 6e-04 5e-04 5e-04 5e-04 4e-04 4e-04 4e-04 4e-04	0.4999 0.3504 0.3178 0.2991 0.2825 0.2751 0.2742 0.2685 0.2685
1 0 2 0 3 0 5 0 6 0 7 0 8 0 9 0 9 0). 5067). 6566). 6906). 7108). 7286). 7286). 7375). 7401). 7472	R-Square 0.5051 0.6543 0.6875 0.7068 0.7240 0.7321 0.7339 0.7402	R-Square 0.5028 0.6221 -Inf -Inf -Inf -Inf -Inf -Inf -Inf	278.9949 106.6276 69.0301 47.5610 28.7654 20.4847 19.4249 13.1766	427.0016 320.7375 291.5382 273.3831 256.3130 248.4161 247.4061 241.1380	-423.8990 -529.4253 -558.4006 -576.2830 -592.8550 -600.4072 -601.3006 -607.0927	438.1030 335.5393 310.0405 295.5858 282.2161 278.0196 280.7101 278.1424	72.0464 50.3303 45.4975 42.6768 40.1770 39.0025 38.7450 37.8187	0.2426 0.1700 0.1542 0.1451 0.1371 0.1335 0.1330 0.1303	8e-04 6e-04 5e-04 5e-04 5e-04 4e-04 4e-04 4e-04	0.499 0.350 0.317 0.299 0.282 0.275 0.274 0.268

Figure A.39 Basic Consumption Goods Physical Market Best Subset Model Result

odel Ir				Best	Subsets Reg	ression					
	ndex Pred	lictors									
1	DUM2	4_5									
2	Lncl	ust5_7 DUM24	_5								
3	Lncl	ust5_7 DUM24	_5 DUM1_6								
4	Lncl	ust5_1 Lnclu	st5_7 DUM24_	5 DUM1_6							
5	Lncl	ust5_1 Lnclu	st5_2 Lnclus	t5_7 DUM24_5	DUM1_6						
6		isenum Lnclus									
7						_7 DUM24_5 DU					
8						_6 Lnclust5_7					
9						5 Lnclust5_6					
10						5 Lnclust5_6					
11	LnCa	isenum Lnclus	t5_1 Lnclust	5_2 Lnclust5	_3 Lnclust5_	4 Lnclust5_5	Lnclust5_6 L	nclust5_7 D	DUM24_5 DUM	112_12 DUN	1_6
		Adi.	Pred								
		R-Square	R-Square	C(p)	AIC	SBIC	SBC	MSEP	FPE	HSP	APC
odel	R-Square	it bquure									
odel 1	0.5400	0.5384	0.5365	266.6768	438.2625	-412.5709	449.3638	74.8115	0.2519	8e-04	0.466
1 2	0.5400 0.6680	0.5384 0.6658	0.5365 0.631	266.6768 112.3563	342.7406	-507.4966	449.3638 357.5423	74.8115 54.1737	0.1830	8e-04 6e-04	0.338
1 2 3	0.5400 0.6680 0.7037	0.5384 0.6658 0.7007	0.5365 0.631 -Inf	266.6768 112.3563 70.8171	342.7406 310.7659	-507.4966 -539.2086	357.5423 329.2681	54.1737 48.5194	0.1830 0.1644	6e-04 6e-04	0.4662 0.3387 0.3044
1 2 3 4	0.5400 0.6680 0.7037 0.7237	0.5384 0.6658 0.7007 0.7199	0.5365 0.631 -Inf -Inf	266.6768 112.3563 70.8171 48.3745	342.7406 310.7659 291.8523	-507.4966 -539.2086 -557.8363	357.5423 329.2681 314.0549	54.1737 48.5194 45.3961	0.1830 0.1644 0.1544	6e-04 6e-04 5e-04	0.3387 0.3044 0.2857
1 2 3 4 5	0.5400 0.6680 0.7037 0.7237 0.7410	0.5384 0.6658 0.7007 0.7199 0.7366	0.5365 0.631 -Inf -Inf -Inf	266.6768 112.3563 70.8171 48.3745 29.2322	342.7406 310.7659 291.8523 274.5020	-507.4966 -539.2086 -557.8363 -574.6831	357.5423 329.2681 314.0549 300.4051	54.1737 48.5194 45.3961 42.6970	0.1830 0.1644 0.1544 0.1457	6e-04 6e-04 5e-04 5e-04	0.3387 0.3044 0.2857 0.2690
1 2 3 4 5 6	0.5400 0.6680 0.7037 0.7237 0.7410 0.7461	0.5384 0.6658 0.7007 0.7199 0.7366 0.7409	0.5365 0.631 -Inf -Inf -Inf -Inf -Inf	266.6768 112.3563 70.8171 48.3745 29.2322 25.0242	342.7406 310.7659 291.8523 274.5020 270.5738	-507.4966 -539.2086 -557.8363 -574.6831 -578.4518	357.5423 329.2681 314.0549 300.4051 300.1774	54.1737 48.5194 45.3961 42.6970 42.0026	0.1830 0.1644 0.1544 0.1457 0.1438	6e-04 6e-04 5e-04 5e-04 5e-04	0.3387 0.3044 0.2857 0.2696 0.2661
1 2 3 4 5 6 7	0.5400 0.6680 0.7037 0.7237 0.7410 0.7461 0.7519	0.5384 0.6658 0.7007 0.7199 0.7366 0.7409 0.7459	0.5365 0.631 -Inf -Inf -Inf -Inf -Inf	266.6768 112.3563 70.8171 48.3745 29.2322 25.0242 19.9756	342.7406 310.7659 291.8523 274.5020 270.5738 265.6974	-507.4966 -539.2086 -557.8363 -574.6831 -578.4518 -583.0381	357.5423 329.2681 314.0549 300.4051 300.1774 299.0014	54.1737 48.5194 45.3961 42.6970 42.0026 41.1892	0.1830 0.1644 0.1544 0.1457 0.1438 0.1414	6e-04 6e-04 5e-04 5e-04 5e-04 5e-04	0.3387 0.3044 0.2857 0.2690 0.2662 0.2618
1 2 3 4 5 6 7 8	0.5400 0.6680 0.7037 0.7237 0.7410 0.7461 0.7519 0.7600	0.5384 0.6658 0.7007 0.7199 0.7366 0.7409 0.7459 0.7534	0.5365 0.631 -Inf -Inf -Inf -Inf -Inf	266.6768 112.3563 70.8171 48.3745 29.2322 25.0242 19.9756 12.0382	342.7406 310.7659 291.8523 274.5020 270.5738 265.6974 257.7260	-507.4966 -539.2086 -557.8363 -574.6831 -578.4518 -583.0381 -590.4339	357.5423 329.2681 314.0549 300.4051 300.1774 299.0014 294.7304	54.1737 48.5194 45.3961 42.6970 42.0026 41.1892 39.9761	0.1830 0.1644 0.1544 0.1457 0.1438 0.1414 0.1377	6e-04 6e-04 5e-04 5e-04 5e-04 5e-04 5e-04	0.3387 0.3044 0.2857 0.2699 0.2661 0.2618 0.2549
1 2 3 4 5 6 7 8 9	0.5400 0.6680 0.7037 0.7237 0.7410 0.7461 0.7519 0.7660 0.7647	0.5384 0.6658 0.7007 0.7199 0.7366 0.7409 0.7459 0.7534 0.7574	0.5365 0.631 -Inf -Inf -Inf -Inf -Inf -Inf -Inf	266.6768 112.3563 70.8171 48.3745 29.2322 25.0242 19.9756 12.0382 8.2770	342.7406 310.7659 291.8523 274.5020 270.5738 265.6974 257.7260 253.7890	-507.4966 -539.2086 -557.8363 -574.6831 -578.4518 -583.0381 -590.4339 -593.9234	357.5423 329.2681 314.0549 300.4051 300.1774 299.0014 294.7304 294.4939	54.1737 48.5194 45.3961 42.6970 42.0026 41.1892 39.9761 39.3262	0.1830 0.1644 0.1544 0.1457 0.1438 0.1414 0.1377 0.1359	6e-04 6e-04 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04	0.338 0.3044 0.2857 0.2690 0.2661 0.2618 0.2510
1 2 3 4 5 6 7 8	0.5400 0.6680 0.7037 0.7237 0.7410 0.7461 0.7519 0.7600	0.5384 0.6658 0.7007 0.7199 0.7366 0.7409 0.7459 0.7534	0.5365 0.631 -Inf -Inf -Inf -Inf -Inf	266.6768 112.3563 70.8171 48.3745 29.2322 25.0242 19.9756 12.0382	342.7406 310.7659 291.8523 274.5020 270.5738 265.6974 257.7260	-507.4966 -539.2086 -557.8363 -574.6831 -578.4518 -583.0381 -590.4339	357.5423 329.2681 314.0549 300.4051 300.1774 299.0014 294.7304	54.1737 48.5194 45.3961 42.6970 42.0026 41.1892 39.9761	0.1830 0.1644 0.1544 0.1457 0.1438 0.1414 0.1377	6e-04 6e-04 5e-04 5e-04 5e-04 5e-04 5e-04	0.3387 0.3044

Figure A.40 Cold-Chain Products Physical Market Best Subset Model Result

		set(model6)									
				Best	Subsets Reg	ression					
odel I	index Pred	ictors									
1	DUM2	4_5									
2		ust6_7 DUM24									
3		ust6_1 Lnclu									
4		ust6_1 Lnclu									
5		ust6_1 Lnclu									
6					6_7 DUM24_5						
7						_7 DUM24_5 DU					
8 9						_6 Lnclust6_7 _6 Lnclust6_7			e		
10						_6 Lnclust6_6				6	
11						4 Lnclust6_5					11 6
				Sub	sets Regress	ion Summary					
		Adj.	Pred								
odel	R-Square	R-Square	R-Square	С(р)	AIC	SBIC	SBC	MSEP	FPE	HSP	APC
1	0.4778	0.4761	0.4738	164.1335	433.4939	-416.6697	444.5953	73.6279	0.2479	8e-04	0.5292
1 2	0.4778 0.5781	0.4761 0.5753	0.4738	164.1335 77.9563	433.4939 371.7302	-416.6697 -478.0342	444.5953 386.5319	73.6279 59.6892	0.2479 0.2016	8e-04 7e-04	0.5292
2	0.5781	0.5753	0.5536	77.9563	371.7302	-478.0342	386.5319	59.6892	0.2016	7e-04	0.4304
2 3	0.5781 0.6286	0.5753 0.6248	0.5536 0.5868	77.9563 35.5817	371.7302 335.6363	-478.0342 -513.5789	386.5319 354.1385	59.6892 52.7278	0.2016 0.1787	7e-04 6e-04	0.4304 0.3815
2 3 4 5 6	0.5781 0.6286 0.6502 0.6661 0.6685	0.5753 0.6248 0.6455 0.6604 0.6617	0.5536 0.5868 -Inf -Inf -Inf	77.9563 35.5817 18.5492 6.6091 6.4541	371.7302 335.6363 319.6829 307.8135 307.6109	-478.0342 -513.5789 -529.1219	386.5319 354.1385 341.8855 333.7166 337.2144	59.6892 52.7278 49.8244 47.7289 47.5414	0.2016 0.1787 0.1694 0.1628 0.1627	7e-04 6e-04 6e-04	0.4304 0.3815 0.3617
2 3 4 5 6 7	0.5781 0.6286 0.6502 0.6661 0.6685 0.6698	0.5753 0.6248 0.6455 0.6604 0.6617 0.6619	0.5536 0.5868 -Inf -Inf -Inf -Inf	77.9563 35.5817 18.5492 6.6091 6.4541 7.3328	371.7302 335.6363 319.6829 307.8135 307.6109 308.4582	-478.0342 -513.5789 -529.1219 -540.4921 -540.5533 -539.5911	386.5319 354.1385 341.8855 333.7166 337.2144 341.7622	59.6892 52.7278 49.8244 47.7289 47.5414 47.5218	0.2016 0.1787 0.1694 0.1628 0.1627 0.1632	7e-04 6e-04 6e-04 5e-04 5e-04 5e-04	0.4304 0.3815 0.3617 0.3476 0.3474 0.3484
2 3 4 5 6 7 8	0.5781 0.6286 0.6502 0.6661 0.6685 0.6698 0.6734	0.5753 0.6248 0.6455 0.6604 0.6617 0.6619 0.6644	0.5536 0.5868 -Inf -Inf -Inf -Inf -Inf	77.9563 35.5817 18.5492 6.6091 6.4541 7.3328 6.1514	371.7302 335.6363 319.6829 307.8135 307.6109 308.4582 307.1638	-478.0342 -513.5789 -529.1219 -540.4921 -540.5533 -539.5911 -540.6221	386.5319 354.1385 341.8855 333.7166 337.2144 341.7622 344.1682	59.6892 52.7278 49.8244 47.7289 47.5414 47.5218 47.1637	0.2016 0.1787 0.1694 0.1628 0.1627 0.1632 0.1625	7e-04 6e-04 5e-04 5e-04 5e-04 5e-04 5e-04	0.4304 0.3815 0.3617 0.3476 0.3474 0.3484 0.3469
2 3 4 5 6 7 8 9	0.5781 0.6286 0.6502 0.6661 0.6685 0.6698 0.6734 0.6735	0.5753 0.6248 0.6455 0.6604 0.6617 0.6619 0.6644 0.6634	0.5536 0.5868 -Inf -Inf -Inf -Inf -Inf -Inf	77.9563 35.5817 18.5492 6.6091 6.4541 7.3328 6.1514 8.0387	371.7302 335.6363 319.6829 307.8135 307.6109 308.4582 307.1638 309.0465	-478.0342 -513.5789 -529.1219 -540.4921 -540.5533 -539.5911 -540.6221 -538.6488	386.5319 354.1385 341.8855 333.7166 337.2144 341.7622 344.1682 349.7513	59.6892 52.7278 49.8244 47.7289 47.5414 47.5218 47.1637 47.3089	0.2016 0.1787 0.1694 0.1628 0.1627 0.1632 0.1635	7e-04 6e-04 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04	0.4304 0.3815 0.3617 0.3476 0.3474 0.3484 0.3469 0.3490
2 3 4 5 6 7 8	0.5781 0.6286 0.6502 0.6661 0.6685 0.6698 0.6734	0.5753 0.6248 0.6455 0.6604 0.6617 0.6619 0.6644	0.5536 0.5868 -Inf -Inf -Inf -Inf -Inf	77.9563 35.5817 18.5492 6.6091 6.4541 7.3328 6.1514	371.7302 335.6363 319.6829 307.8135 307.6109 308.4582 307.1638	-478.0342 -513.5789 -529.1219 -540.4921 -540.5533 -539.5911 -540.6221	386.5319 354.1385 341.8855 333.7166 337.2144 341.7622 344.1682	59.6892 52.7278 49.8244 47.7289 47.5414 47.5218 47.1637	0.2016 0.1787 0.1694 0.1628 0.1627 0.1632 0.1625	7e-04 6e-04 5e-04 5e-04 5e-04 5e-04 5e-04	0.4304 0.3815 0.3617 0.3476 0.3474 0.3484 0.3469

Figure A.41 Electronics Physical Market Best Subset Model Result

					Subsets Reg						
Iodel In	dex Pred	ictors									
1	DUM2	4_5									
2		ust2_7 DUM24									
3		ust2_7 DUM24									
4			st2_7 DUM24_								
5			st2_2 Lnclus								
6					_7 DUM24_5 D						
						7 DUM24_5 DUM					
8						5 Lnclust2_7					
9						5 Lnclust2_6					
10						5 Lnclust2_6					
11	LnCa	senum Lnclus	t2_1 Lnclust	2_2 Lnclust2	_3 Lnclust2_	4 Lnclust2_5	Lnclust2_6 L	.nclust2_7 DU	M24_5 DUM1	.2_12 DUM1_	_6
			Pred	Su	bsets Regres	sion Summary					
	R-Square	Adj. R-Square	Pred R-Square	Su C(p)	bsets Regres 	sion Summary SBIC	SBC	MSEP	FPE	HSP	APC
 Model 	R-Square 						5BC	M5EP 104.4760	FPE 0.3518	HSP 0.0012	
		R-Square	R-Square	С(р)	AIC	SBIC					APC 0.2537 0.2037
1	0.7497	R-Square 0.7489 0.7990 0.8273	R-Square 0.6916 0.7182 -Inf	C(p) 335.7012 210.0760 139.8765	AIC 538.1241 472.5229 428.2019	SBIC - 313.0580 - 378.7654 - 422.9592	549.2254	104.4760	0.3518 0.2825 0.2435	0.0012	0.2537
1 2	0.7497	R-Square 0.7489 0.7990 0.8273 0.8412	R-Square 0.6916 0.7182 -Inf -Inf	C(p) 335.7012 210.0760	AIC 538.1241 472.5229	SBIC -313.0580 -378.7654	549.2254 487.3247	104.4760 83.6173	0.3518 0.2825	0.0012 9e-04	0.2537
1 2 3	0.7497 0.8004 0.8290 0.8433 0.8571	R-Square 0.7489 0.7990 0.8273 0.8412 0.8547	R-Square 0.6916 0.7182 -Inf -Inf -Inf	C(p) 335.7012 210.0760 139.8765 105.7866 73.0372	AIC 538.1241 472.5229 428.2019 404.0466 378.4972	58IC -313.0580 -378.7654 -422.9592 -447.0227 -472.1198	549.2254 487.3247 446.7041 426.2492 404.4003	104.4760 83.6173 71.8605 66.0662 60.4573	0.3518 0.2825 0.2435 0.2246 0.2062	0.0012 9e-04 8e-04 8e-04 7e-04	0.2537 0.2037 0.1756 0.1620 0.1487
1 2 3 4 5 6	0.7497 0.8004 0.8290 0.8433 0.8571 0.8678	R-Square 0.7489 0.7990 0.8273 0.8412 0.8547 0.8651	R-Square 0.6916 0.7182 -Inf -Inf -Inf -Inf	C(p) 335.7012 210.0760 139.8765 105.7866 73.0372 48.1129	AIC 538.1241 472.5229 428.2019 404.0466 378.4972 357.2572	SBIC -313.0580 -378.7654 -422.9592 -447.0227 -472.1198 -492.7227	549.2254 487.3247 446.7041 426.2492 404.4003 386.8607	104.4760 83.6173 71.8605 66.0662 60.4573 56.1284	0.3518 0.2825 0.2435 0.2246 0.2062 0.1921	0.0012 9e-04 8e-04 8e-04 7e-04 6e-04	0.2537 0.2037 0.1756 0.1620 0.1487 0.1385
1 2 3 4 5 6 7	0.7497 0.8004 0.8290 0.8433 0.8571 0.8678 0.8757	R-Square 0.7489 0.7990 0.8273 0.8412 0.8547 0.8651 0.8727	R-Square 0.6916 0.7182 -Inf -Inf -Inf -Inf -Inf	C(p) 335.7012 210.0760 139.8765 105.7866 73.0372 48.1129 30.2392	AIC 538.1241 472.5229 428.2019 404.0466 378.4972 357.2572 340.8644	SBIC -313.0580 -378.7654 -422.9592 -447.0227 -472.1198 -492.7227 -508.3923	549.2254 487.3247 446.7041 426.2492 404.4003 386.8607 374.1684	104.4760 83.6173 71.8605 66.0662 60.4573 56.1284 52.9618	0.3518 0.2825 0.2435 0.2246 0.2062 0.1921 0.1819	0.0012 9e-04 8e-04 8e-04 7e-04 6e-04 6e-04	0.2537 0.2037 0.1756 0.1620 0.1487 0.1385 0.1311
1 2 3 4 5 6 7 8	0.7497 0.8004 0.8290 0.8433 0.8571 0.8678 0.8757 0.8803	R-Square 0.7489 0.7990 0.8273 0.8412 0.8547 0.8651 0.8727 0.8770	R-Square 0.6916 0.7182 -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 335.7012 210.0760 139.8765 105.7866 73.0372 48.1129 30.2392 20.7095	AIC 538.1241 472.5229 428.2019 404.0466 378.4972 357.2572 340.8644 331.6512	SBIC -313.0580 -378.7654 -422.9592 -447.0227 -472.1198 -492.7227 -508.3923 -517.0358	549.2254 487.3247 446.7041 426.2492 404.4003 386.8607 374.1684 368.6556	104.4760 83.6173 71.8605 66.0662 60.4573 56.1284 52.9618 51.1889	0.3518 0.2825 0.2435 0.2246 0.2062 0.1921 0.1819 0.1763	0.0012 9e-04 8e-04 8e-04 7e-04 6e-04 6e-04 6e-04	0.2537 0.2037 0.1756 0.1620 0.1487 0.1385 0.1311 0.1272
1 2 3 4 5 6 7 8 9	0.7497 0.8004 0.8290 0.8433 0.8571 0.8678 0.8757 0.8803 0.8857	R-Square 0.7489 0.7990 0.8273 0.8412 0.8547 0.8651 0.8727 0.8770 0.8821	R-Square 0.6916 0.7182 -Inf -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 335.7012 210.0760 139.8765 105.7866 73.0372 48.1129 30.2392 20.7095 9.0964	AIC 538.1241 472.5229 428.2019 404.0466 378.4972 357.2572 340.8644 331.6512 319.8465	58IC -313.0580 -378.7654 -422.9592 -447.0227 -472.1198 -492.7227 -508.3923 -517.0358 -527.9246	549.2254 487.3247 446.7041 426.2492 404.4003 386.8607 374.1684 368.6556 360.5514	104.4760 83.6173 71.8605 66.0662 60.4573 56.1284 52.9618 51.1889 49.0490	0.3518 0.2825 0.2435 0.2246 0.2062 0.1921 0.1819 0.1763 0.1695	0.0012 9e-04 8e-04 8e-04 7e-04 6e-04 6e-04 6e-04 6e-04	0.2537 0.2037 0.1756 0.1620 0.1487 0.1385 0.1311 0.1272 0.1222
1 2 3 4 5 6 7 8	0.7497 0.8004 0.8290 0.8433 0.8571 0.8678 0.8757 0.8803	R-Square 0.7489 0.7990 0.8273 0.8412 0.8547 0.8651 0.8727 0.8770	R-Square 0.6916 0.7182 -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 335.7012 210.0760 139.8765 105.7866 73.0372 48.1129 30.2392 20.7095	AIC 538.1241 472.5229 428.2019 404.0466 378.4972 357.2572 340.8644 331.6512	SBIC -313.0580 -378.7654 -422.9592 -447.0227 -472.1198 -492.7227 -508.3923 -517.0358	549.2254 487.3247 446.7041 426.2492 404.4003 386.8607 374.1684 368.6556	104.4760 83.6173 71.8605 66.0662 60.4573 56.1284 52.9618 51.1889	0.3518 0.2825 0.2435 0.2246 0.2062 0.1921 0.1819 0.1763	0.0012 9e-04 8e-04 8e-04 7e-04 6e-04 6e-04 6e-04	0.2537 0.2037 0.1756 0.1620 0.1487 0.1385 0.1311 0.1272

Figure A.42 Daily Needs Online Market Best Subset Model Result

 015_51 	tep_best_sub										
				Best	Subsets Reg	ression					.=
odel In	ndex Pred	ictors									
1	DUM2	4_5									-
2	Lncl	ust3_7 DUM24	_5								
3	Lncl	ust3_7 DUM24	_5 DUM1_6								
4		ust3_2 Lnclu									
5				t3_7 DUM24_5							
6					_7 DUM24_5 D						
7						7 DUM24_5 DUM					
8						3_6 Lnclust3_7					
9						5 Lnclust3_6					
10						4 Lnclust3_5					
						4 Inclust3 5	Inclust3 6 L	.nclust3_7 DL	M24_5 DUM1	L2_12 DUM1_	.6
		senum Lnclus	t3_1 Lnclust								
	R-Square	senum Enclus Adj. R-Square	T3_1 Lnclust Pred R-Square			sion Summary	SBC	MSEP	FPE	HSP	APC
		 Adj.	Pred R-Square 0.6717	Su	bsets Regres	sion Summary		MSEP 113.0811	FPE 0.3807	HSP 0.0013	APC
odel 1	R-Square	Adj. R-Square	Pred R-Square		bsets Regres	sion Summary SBIC	SBC				
odel 1 2 3	R-Square 0.7127 0.7778 0.8131	Adj. R-Square 0.7117 0.7763 0.8112	Pred R-Square 0.6717 0.7084 -Inf	C(p) 324.9936 186.3787 112.2527	AIC 561.7892 436.8810 437.1756	58IC -289.3431 -364.1851 -413.5515	58C 572.8906 501.6827 455.6779	113.0811 87.7306 74.0499	0.3807 0.2964 0.2510	0.0013 0.0010 8e-04	0.2912 0.2267 0.1920
odel 1 2 3 4	R-Square 0.7127 0.7778 0.8131 0.8238	Adj. R-Square 0.7117 0.7763 0.8112 0.8214	Pred R-Square 0.6717 0.7084 -Inf -Inf	C(p) 324.9936 186.3787 112.2527 91.1316	AIC 561.7892 486.8810 437.1756 421.5209	58IC -289.3431 -364.1851 -413.5515 -429.2297	58C 572.8906 501.6827 455.6779 443.7236	113.0811 87.7306 74.0499 70.0424	0.3807 0.2964 0.2510 0.2382	0.0013 0.0010 8e-04 8e-04	0.2912 0.2267 0.1920 0.1822
odel 1 2 3 4 5	R-Square 0.7127 0.7778 0.8131 0.8238 0.8444	Adj. R-Square 0.7117 0.7763 0.8112 0.8214 0.8418	Pred R-Square 0.6717 0.7084 -Inf -Inf	C(p) 324.9936 186.3787 112.2527 91.1316 48.6369	AIC 561.7892 486.8810 437.1756 421.5209 386.2991	SBIC -289.3431 -364.1851 -413.5515 -429.2297 -463.5598	SBC 572.8906 501.6827 455.6779 443.7236 412.2022	113.0811 87.7306 74.0499 70.0424 62.0556	0.3807 0.2964 0.2510 0.2382 0.2117	0.0013 0.0010 8e-04 8e-04 7e-04	0.2912 0.2267 0.1920 0.1822 0.1619
odel 1 2 3 4 5 6	R-Square 0.7127 0.7778 0.8131 0.8238 0.8444 0.8502	Adj. R-Square 0.7117 0.7763 0.8112 0.8214 0.8418 0.8472	Pred R-Square 0.6717 0.7084 -Inf -Inf -Inf -Inf	C(p) 324.9936 186.3787 112.2527 91.1316 48.6369 38.1175	AIC 561.7892 486.8810 421.5209 386.2991 376.9330	58IC -289.3431 -364.1851 -413.5515 -429.2297 -463.5598 -472.6484	58C 572.8906 501.6827 455.6779 443.7236 412.2022 406.5365	113.0811 87.7306 74.0499 70.0424 62.0556 59.9462	0.3807 0.2964 0.2510 0.2382 0.2117 0.2052	0.0013 0.0010 8e-04 8e-04 7e-04 7e-04	0.2912 0.2267 0.1920 0.1822 0.1619 0.1569
odel 1 2 3 4 5 6 7	R-Square 0.7127 0.7778 0.8131 0.8238 0.8444 0.8502 0.8542	Adj. R-Square 0.7117 0.7763 0.8112 0.8214 0.8418 0.8472 0.8507	Pred R-Square 0.6717 0.7084 -Inf -Inf -Inf -Inf -Inf	C(p) 324.9936 186.3787 112.2527 91.1316 48.6369 38.1175 31.5677	AIC 561.7892 486.8810 437.1756 421.5209 386.2991 376.9330 370.9147	SBIC -289.3431 -364.1851 -413.5515 -429.2297 -463.5598 -472.6484 -478.4072	SBC 572.8906 501.6827 455.6779 443.7236 412.2022 406.5365 404.2187	113.0811 87.7306 74.0499 70.0424 62.0556 59.9462 58.5613	0.3807 0.2964 0.2510 0.2382 0.2117 0.2052 0.2011	0.0013 0.0010 8e-04 8e-04 7e-04 7e-04 7e-04	0.2912 0.2267 0.1920 0.1822 0.1619 0.1569 0.1538
odel 1 2 3 4 5 6 7 8	R-Square 0. 7127 0. 7778 0. 8131 0. 8238 0. 8444 0. 8502 0. 8542 0. 8542	Adj. R-Square 0.7117 0.7763 0.8112 0.8214 0.8418 0.8472 0.8507 0.8565	Pred R-Square 0.6717 0.7084 -Inf -Inf -Inf -Inf -Inf	C(p) 324.9936 186.3787 112.2527 91.1316 48.6369 38.1175 31.5677 20.2871	AIC 561.7892 486.8810 437.1756 421.5209 386.2991 376.9330 370.9147 360.0172	SBIC -289, 3431 -364, 1851 -413, 5515 -429, 2297 -463, 5598 -472, 6484 -478, 4072 -488, 6448	58C 572.8906 501.6827 455.6779 443.7236 412.2022 406.5365 404.2187 397.0216	113.0811 87.7306 74.0499 70.0424 62.0556 59.9462 58.5613 56.2830	0.3807 0.2964 0.2510 0.2382 0.2117 0.2052 0.2011 0.1939	0.0013 0.0010 8e-04 8e-04 7e-04 7e-04 7e-04 7e-04	0.2912 0.2267 0.1920 0.1822 0.1619 0.1569 0.1538 0.1483
odel 1 2 3 4 5 6 7 8 9	R-Square 0.7127 0.7778 0.8131 0.8238 0.8444 0.8502 0.8542 0.8542 0.8658	Adj. R-Square 0.7117 0.7763 0.8112 0.8214 0.8418 0.8472 0.8507 0.8565 0.8516	Pred R-Square 0.6717 0.7084 -Inf -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 324, 9936 186, 3787 112, 2527 91, 1316 48, 6369 38, 1175 31, 5677 20, 2871 10, 5957	AIC 561.7892 486.8810 437.1756 421.5209 386.2991 376.9330 370.9147 360.0172 350.1834	SBIC -289.3431 -364.1851 -413.5515 -429.2297 -463.5598 -472.6484 -478.4072 -488.6448 -497.6945	SBC 572.8906 501.6827 455.6779 443.7236 412.2022 406.5365 404.2187 397.0216 390.8883	113.0811 87.7306 74.0499 70.0424 62.0556 59.9462 58.5613 56.2830 54.2868	0.3807 0.2964 0.2510 0.2382 0.2117 0.2052 0.2011 0.1939 0.1876	0.0013 0.0010 8e-04 8e-04 7e-04 7e-04 7e-04 7e-04 6e-04	0.2912 0.2267 0.1920 0.1822 0.1619 0.1569 0.1538 0.1483 0.1435
odel 1 2 3 4 5 6 7 8	R-Square 0. 7127 0. 7778 0. 8131 0. 8238 0. 8444 0. 8502 0. 8542 0. 8542	Adj. R-Square 0.7117 0.7763 0.8112 0.8214 0.8418 0.8472 0.8507 0.8565	Pred R-Square 0.6717 0.7084 -Inf -Inf -Inf -Inf -Inf	C(p) 324.9936 186.3787 112.2527 91.1316 48.6369 38.1175 31.5677 20.2871	AIC 561.7892 486.8810 437.1756 421.5209 386.2991 376.9330 370.9147 360.0172	SBIC -289, 3431 -364, 1851 -413, 5515 -429, 2297 -463, 5598 -472, 6484 -478, 4072 -488, 6448	58C 572.8906 501.6827 455.6779 443.7236 412.2022 406.5365 404.2187 397.0216	113.0811 87.7306 74.0499 70.0424 62.0556 59.9462 58.5613 56.2830	0.3807 0.2964 0.2510 0.2382 0.2117 0.2052 0.2011 0.1939	0.0013 0.0010 8e-04 8e-04 7e-04 7e-04 7e-04 7e-04	0.2912 0.2267 0.1920 0.1822 0.1619 0.1569 0.1538 0.1483

Figure A.43 Protein-Based Products Online Market Best Subset Model Result

odel In	ndex Pred	ictors									
1	DUM2	4_5									
2	Lncl	ust4_7 DUM24	_5								
3	Lncl	ust4_7 DUM24	_5 DUM1_6								
4	Lncl	ust4_2 Lnclu	st4_7 DUM24_	5 DUM1_6							
5				t4_7 DUM24_5							
6					:4_7 DUM24_5						
						_7 DUM24_5 DU					
8						_6 Lnclust4_7					
9						5 Lnclust4_6					
10						5 Lnclust4_6					
11	LnCa	senum Lnclus	t4_1 Lnclust	4_2 Lnclust4	_3 Lnclust4_	4 Lnclust4_5	Lnclust4_6 L	nclust4_7 DU	M24_5 DUM1	L2_12 DUM1_	6
				Su	ıbsets Regres	sion Summary					
lodel	R-Square	Adj. R-Square	Pred R-Square	Su 	bsets Regres		SBC	MSEP	FPE	нѕр	APC
10del	R-Square 0.7376						SBC	MSEP 118.8188	FPE 0.4000	HSP 0.0013	APC 0.2659
		R-Square	R-Square 0.6722 0.6955	C(p)	AIC	SBIC					
1	0.7376	R-Square 0.7368	R-Square 0.6722 0.6955 -Inf	C(p) 285.2464	AIC 576.5881	SBIC -274.3458	587.6894	118.8188	0.4000	0.0013	0.2659
1 2	0.7376 0.7867	R-Square 0.7368 0.7853	R-Square 0.6722 0.6955	C(p) 285.2464 178.7557	AIC 576.5881 516.6976	5BIC -274.3458 -334.2930	587.6894 531.4994	118.8188 96.9303	0.4000 0.3274	0.0013 0.0011	0.2659 0.2176
1 2 3 4 5	0.7376 0.7867 0.8166 0.8343 0.8490	R-Square 0.7368 0.7853 0.8148 0.8321 0.8464	R-Square 0.6722 0.6955 -Inf -Inf -Inf	C(p) 285.2464 178.7557 114.55407 77.3998 47.0677	AIC 576.5881 516.6976 473.4768 445.1295 419.5074	5BIC -274.3458 -334.2930 -377.2881 -405.3029 -430.2995	587.6894 531.4994 491.9791 467.3322 445.4105	118.8188 96.9303 83.6087 75.7970 69.3451	0.4000 0.3274 0.2834 0.2577 0.2366	0.0013 0.0011 0.0010 9e-04 8e-04	0.2659 0.2176 0.1883 0.1713 0.1572
1 2 3 4 5 6	0.7376 0.7867 0.8166 0.8343 0.8490 0.8592	R-Square 0.7368 0.7853 0.8148 0.8321 0.8464 0.8563	R-Square 0.6722 0.6955 -Inf -Inf -Inf -Inf	C(p) 285.2464 178.7557 114.5407 77.3998 47.0677 26.3680	AIC 576.5881 516.6976 473.4768 445.1295 419.5074 400.4674	5BIC -274.3458 -334.2930 -377.2881 -405.3029 -430.2995 -448.6171	587.6894 531.4994 491.9791 467.3322 445.4105 430.0710	118.8188 96.9303 83.6087 75.7970 69.3451 64.8553	0.4000 0.3274 0.2834 0.2577 0.2366 0.2220	0.0013 0.0011 0.0010 9e-04 8e-04 7e-04	0.2659 0.2176 0.1883 0.1713 0.1572 0.1475
1 2 3 4 5 6 7	0.7376 0.7867 0.8166 0.8343 0.8490 0.8592 0.8628	R-Square 0.7368 0.7853 0.8148 0.8321 0.8464 0.8563 0.8595	R-Square 0.6722 0.6955 -Inf -Inf -Inf -Inf -Inf	C(p) 285.2464 178.7557 114.5407 77.3998 47.0677 26.3680 20.3865	AIC 576.5881 516.6976 473.4768 445.1295 419.5074 400.4674 394.7029	58IC -274, 3458 -334, 2930 -377, 2881 -405, 3029 -430, 2995 -448, 6171 -454, 0541	587.6894 531.4994 491.9791 467.3322 445.4105 430.0710 428.0069	118.8188 96.9303 83.6087 75.7970 69.3451 64.8553 63.4107	0.4000 0.3274 0.2834 0.2577 0.2366 0.2220 0.2177	0.0013 0.0011 0.0010 9e-04 8e-04 7e-04 7e-04	0.2659 0.2176 0.1883 0.1713 0.1572 0.1475 0.1447
1 2 3 4 5 6 7 8	0.7376 0.7867 0.8166 0.8343 0.8490 0.8592 0.8628 0.8628	R-Square 0.7368 0.7853 0.8148 0.8321 0.8464 0.8563 0.8595 0.8643	R-Square 0.6722 0.6955 -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 285.2464 178.7557 114.5407 77.3998 47.0677 26.3680 20.3865 11.0428	AIC 576.5881 516.6976 473.4768 445.1295 419.5074 400.4674 394.7029 385.3089	58IC -274. 3458 -334. 2930 -377. 2881 -405. 3029 -430. 2995 -448. 6171 -454. 0541 -452. 7887	587.6894 531.4994 491.9791 467.3322 445.4105 430.0710 428.0069 422.3133	118.8188 96.9303 83.6087 75.7970 69.3451 64.8553 63.4107 61.2510	0.4000 0.3274 0.2834 0.2577 0.2366 0.2220 0.2177 0.2110	0.0013 0.0011 0.0010 9e-04 8e-04 7e-04 7e-04 7e-04	0.2659 0.2176 0.1883 0.1713 0.1572 0.1475 0.1447 0.1402
1 2 3 4 5 6 7 8 9	0.7376 0.7867 0.8166 0.8343 0.8490 0.8592 0.8628 0.8680 0.8699	R-Square 0.7368 0.7853 0.8148 0.8321 0.8464 0.8563 0.8595 0.8643 0.8659	R-Square 0.6722 0.6955 -Inf -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 285.2464 178.7557 114.5407 77.3998 47.0677 26.3680 20.3865 11.0428 8.6527	AIC 576.5881 516.6876 473.4768 445.1295 419.5074 400.4674 394.7029 385.3089 382.7801	58IC -274.3458 -334.2930 -377.2881 -405.3029 -430.2995 -448.6171 -454.0541 -462.7887 -464.9593	587.6894 531.4994 491.9791 467.3322 445.4105 430.0710 428.0069 422.3133 423.4850	118.8188 96.9303 83.6087 75.7970 69.3451 64.8553 63.4107 61.2510 60.5397	0.4000 0.3274 0.2834 0.2577 0.2366 0.2220 0.2177 0.2110 0.2092	0.0013 0.0011 0.0010 9e-04 8e-04 7e-04 7e-04 7e-04 7e-04	0.2659 0.2176 0.1883 0.1713 0.1572 0.1475 0.1447 0.1402 0.1391
1 2 3 4 5 6 7 8	0.7376 0.7867 0.8166 0.8343 0.8490 0.8592 0.8628 0.8628	R-Square 0.7368 0.7853 0.8148 0.8321 0.8464 0.8563 0.8595 0.8643	R-Square 0.6722 0.6955 -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 285.2464 178.7557 114.5407 77.3998 47.0677 26.3680 20.3865 11.0428	AIC 576.5881 516.6976 473.4768 445.1295 419.5074 400.4674 394.7029 385.3089	58IC -274. 3458 -334. 2930 -377. 2881 -405. 3029 -430. 2995 -448. 6171 -454. 0541 -452. 7887	587.6894 531.4994 491.9791 467.3322 445.4105 430.0710 428.0069 422.3133	118.8188 96.9303 83.6087 75.7970 69.3451 64.8553 63.4107 61.2510	0.4000 0.3274 0.2834 0.2577 0.2366 0.2220 0.2177 0.2110	0.0013 0.0011 0.0010 9e-04 8e-04 7e-04 7e-04 7e-04	0.2659 0.2176 0.1883 0.1713 0.1572 0.1475 0.1447 0.1402

Figure A.44 Basic Consumption Goods Online Market Best Subset Model Result

											-
odel In	ndex Pred	ictors									
1	DUM2										-
2		ust5_7 DUM24									
3		ust5_7 DUM24									
4			st5_7 DUM24_								
5			st5_2 Lnclus								
6			t5_1 Lnclust								
						7 DUM24_5 DUM					
8						_6 Lnclust5_7					
9						5 Lnclust5_6					
10						4 Lnclust5_5					
			t5 1 Inclust	5 2 Inclust5	3 Lnclust5	4 Lnclust5_5	Inclust5 6 L	nclust5 7 DU	M24 5 DUM1	2 12 DUM1	6
11	LICA	senum Lincius					enerases_o e				
						sion Summary			_		
	Lnca	 Adj.	Pred								
	R-Square		.				SBC	MSEP	FPE	HSP	-
lode1	R-Square	Adj. R-Square	- Pred R-Square	Su С(р)	bsets Regres	sion Summary SBIC	SBC	MSEP	FPE	HSP	
		 Adj.	Pred	Su	bsets Regres	sion Summary					- APC 0. 25 80 0. 2062
 odel 1	R-Square 0.7454	Adj. R-Square 0.7446	Pred R-Square 0.7132		AIC 544.2457	sion Summary SBIC -306.8703 -373.8949		MSEP 106.6370	FPE 0. 35 90	HSP 0.0012	0.2580
odel 1 2	R-Square 0.7454 0.7979	Adj. R-Square 0.7446 0.7965	Pred R-Square 0.7132 0.7403	C(p) 321.5541 196.5337	AIC 544.2457 477.2686	sion Summary SBIC -306.8703	58C 555.3470 492.0704	MSEP 106.6370 84.9551	FPE 0. 35 90 0. 2870	HSP 0.0012 0.0010	0.2580
odel 1 2 3	R-Square 0.7454 0.7979 0.8286	Adj. R-Square 0.7446 0.7965 0.8269	Pred R-Square 0.7132 0.7403 -Inf	C(p) 321.5541 196.5337 124.0521	AIC 544.2457 477.2686 429.9188	5BIC -306.8703 -373.8949 -420.9997	58C 555.3470 492.0704 448.4210	MSEP 106.6370 84.9551 72.2743	FPE 0. 35 90 0. 2870 0. 2449	HSP 0.0012 0.0010 8e-04	0.2580 0.2062 0.1760
odel 1 2 3 4	R-Square 0.7454 0.7979 0.8286 0.8404	Adj. R-Square 0.7446 0.7965 0.8269 0.8382	Pred R-Square 0.7132 0.7403 -Inf -Inf	C(p) 321.5541 196.5337 124.0521 97.5039	AIC 544.2457 477.2686 429.9188 410.6115	5BIC -306.8703 -373.8949 -420.9997 -440.2803	58C 555.3470 492.0704 448.4210 432.8141	MSEP 106.6370 84.9551 72.2743 67.5328	FPE 0.3590 0.2870 0.2449 0.2296	HSP 0.0012 0.0010 8e-04 8e-04	0.2580 0.2062 0.1760 0.1650
odel 1 2 3 4 5	R-Square 0.7454 0.7979 0.8286 0.8404 0.8586	Adj. R-Square 0.7446 0.7965 0.8269 0.8382 0.8562	Pred R-Square 0.7132 0.7403 -Inf -Inf -Inf	C(p) 321.5541 196.5337 124.0521 97.5039 55.3479	AIC 544.2457 477.2686 429.9188 410.6115 376.3385	SBIC -306.8703 -373.8949 -420.9997 -440.2803 -473.7383	SBC 555.3470 492.0704 448.4210 432.8141 402.2416	MSEP 106.6370 84.9551 72.2743 67.5328 60.0224	FPE 0.3590 0.2870 0.2449 0.2296 0.2048	HSP 0.0012 0.0010 8e-04 8e-04 7e-04	0.2580 0.2062 0.1760 0.1650 0.1471
 odel 2 3 4 5 6	R-Square 0.7454 0.7979 0.8286 0.8404 0.8586 0.8652	Adj. R-Square 0.7446 0.7965 0.8269 0.8382 0.8562 0.8624	Pred R-Square 0.7132 0.7403 -Inf -Inf -Inf -Inf	C(p) 321.5541 196.5337 124.0521 97.5039 55.3479 41.5561	AIC 544.2457 477.2686 429.9188 410.6115 376.3385 364.2179	58IC 	58C 555.3470 492.0704 448.4210 432.8141 402.2416 393.8215	MSEP 106.6370 84.9551 72.2743 67.5328 60.0224 57.4504	FPE 0.3590 0.2870 0.2449 0.2296 0.2048 0.1966	HSP 0.0012 0.0010 8e-04 8e-04 7e-04 7e-04	0.2580 0.2062 0.1760 0.1650 0.1471 0.1413
odel 1 2 3 4 5 6 7	R-Square 0.7454 0.7979 0.8286 0.8404 0.8586 0.8652 0.8659	Adj. R-Square 0.7446 0.7965 0.8269 0.8382 0.8362 0.8624 0.8658	Pred R-Square 0.7132 0.7403 -Inf -Inf -Inf -Inf -Inf	C(p) 321.5541 196.5337 124.0521 97.5039 55.3479 41.5561 34.4316	AIC 544.2457 477.2686 429.9188 410.6115 376.3385 364.2179 357.7445	SBIC -306.8703 -373.8949 -420.9997 -440.2803 -473.7383 -485.5029 -491.7165	58C 555.3470 492.0704 448.4210 432.8141 402.2416 393.8215 391.0485	MSEP 106.6370 84.9551 72.2743 67.5328 60.0224 57.4504 56.0378	FPE 0. 3590 0. 2870 0. 2249 0. 2296 0. 2048 0. 1966 0. 1924	HSP 0.0012 0.0010 8e-04 8e-04 7e-04 7e-04 6e-04	0.2580 0.2062 0.1760 0.1650 0.1471 0.1413 0.1383
lode1 1 2 3 4 5 6 7 8	R-Square 0.7454 0.7979 0.8286 0.8404 0.8586 0.8652 0.8689 0.8738	Adj. R-Square 0.7446 0.7965 0.8269 0.8382 0.8562 0.8562 0.8624 0.8658 0.8703	Pred R-Square 0.7132 0.7403 -Inf -Inf -Inf -Inf -Inf	C(p) 321.5541 196.5337 124.0521 97.5039 55.3479 41.5561 34.4316 24.6537	AIC 544.2457 477.2686 429.9188 410.6115 376.3385 364.2179 357.7445 348.4394	sion Summary SBIC -306.8703 -373.8949 -420.9997 -440.2803 -473.7383 -473.7383 -485.5029 -491.7165 -500.4786	58C 555.3470 492.0704 448.4210 432.8141 402.2416 393.8215 391.0485 385.4438	MSEP 106.6370 84.9551 72.2743 67.5328 60.0224 57.4504 56.0378 54.1453	FPE 0.3590 0.2870 0.2449 0.2296 0.2048 0.1966 0.1924 0.1865	HSP 0.0012 0.0010 8e-04 8e-04 7e-04 7e-04 6e-04 6e-04	0.2580 0.2062 0.1760 0.1650 0.1471 0.1413 0.1383 0.1340

Figure A.45 Cold-Chain Products Online Market Best Subset Model Result

				Best	Subsets Reg	ression					
odel I	ndex Pred	lictors									
1	Lncl	ust6_1									-
2	Lncl	ust6_7 DUM24	_5								
3	Lncl	ust6_1 Lnclu	st6_7 DUM24_	5							
4			ist6_7 DUM24_								
5			st6_2 Lnclus								
6			t6_1 Lnclust								
						7 DUM24_5 DUM					
8						6 Lnclust6_7					
9						6 Lnclust6_7					
10 11						5 Lnclust6_6 4 Lnclust6_5					~
	Enca	isenum Enclus	LO_L LNCTUST	.o_z inclust6	_5 LNCTUST6_	4 Enclusto_5	Enclusto_6 L	.nclusto_/ Du	M24_5 DUM1	.2_12 DOM1_	0
											-
				Su	bsets Regres	sion Summary					-
		Adj.	Pred	Su	bsets Regres	sion Summary					. <u> </u>
	R-Square	Adj. R-Square	Pred R-Square	Su C(p)	bsets Regres	sion Summary SBIC	SBC	MSEP	FPE	HSP	 APC
	R-Square 0.3513						SBC 771.8564	MSEP 219.9813	FPE 0.7406	HSP 0.0025	APC
odel		R-Square	R-Square	С(р)	AIC	SBIC					
odel 1 2 3	0.3513 0.4977 0.5838	R-Square 0.3491 0.4943 0.5796	R-Square 0.3242 0.4773 0.5505	C(p) 252.4205	AIC 760.7551	5BIC -89.9972	771.8564	219.9813	0.7406	0.0025 0.0019 0.0016	0.6575
lodel 1 2 3 4	0.3513 0.4977 0.5838 0.6178	R-Square 0.3491 0.4943 0.5796 0.6126	R-Square 0.3242 0.4773 0.5505 -Inf	C(p) 252.4205 130.8885 60.1719 33.5413	AIC 760.7551 686.2868 632.0166 608.5883	SBIC -89.9972 -164.1798 -217.7413 -240.6775	771.8564 701.0886 650.5189 630.7910	219.9813 170.9173 142.0787 130.9406	0.7406 0.5774 0.4815 0.4452	0.0025 0.0019 0.0016 0.0015	0.6575 0.5125 0.4274 0.3952
odel 1 2 3 4 5	0.3513 0.4977 0.5838 0.6178 0.6338	R-Square 0.3491 0.4943 0.5796 0.6126 0.6276	R-Square 0.3242 0.4773 0.5505 -Inf -Inf	C(p) 252.4205 130.8885 60.1719 33.5413 21.9994	AIC 760.7551 686.2868 632.0166 608.5883 597.7637	SBIC -89.9972 -164.1798 -217.7413 -240.6775 -251.1520	771.8564 701.0886 650.5189 630.7910 623.6668	219.9813 170.9173 142.0787 130.9406 125.8726	0.7406 0.5774 0.4815 0.4452 0.4294	0.0025 0.0019 0.0016 0.0015 0.0014	0.6575 0.5125 0.4274 0.3952 0.3812
odel 1 2 3 4 5 6	0.3513 0.4977 0.5838 0.6178 0.6338 0.6508	R-Square 0.3491 0.4943 0.5796 0.6126 0.6276 0.6437	R-Square 0.3242 0.4773 0.5505 -Inf -Inf -Inf	C(p) 252.4205 130.8885 60.1719 33.5413 21.9994 9.6386	AIC 760.7551 686.2868 632.0166 608.5883 597.7637 585.5343	58IC -89.9972 -164.1798 -217.7413 -240.6775 -251.1520 -262.7842	771.8564 701.0886 650.5189 630.7910 623.6668 615.1378	219.9813 170.9173 142.0787 130.9406 125.8726 120.4351	0.7406 0.5774 0.4815 0.4452 0.4294 0.4122	0.0025 0.0019 0.0016 0.0015 0.0014 0.0014	0.6575 0.5125 0.4274 0.3952 0.3812 0.3659
odel 1 2 3 4 5 6 7	0.3513 0.4977 0.5838 0.6178 0.6338 0.6508 0.6556	R-Square 0.3491 0.4943 0.5796 0.6126 0.6276 0.6437 0.6473	R-Square 0.3242 0.4773 0.5505 -Inf -Inf -Inf -Inf	C(p) 252.4205 130.8885 60.1719 33.5413 21.9994 9.6386 7.5990	AIC 760.7551 686.2868 632.0166 608.5883 597.7637 585.5343 583.4065	58IC -89.9972 -164.1798 -217.7413 -240.6775 -251.1520 -262.7842 -264.6578	771.8564 701.0886 650.5189 630.7910 623.6668 615.1378 616.7105	219.9813 170.9173 142.0787 130.9406 125.8726 120.4351 119.1935	0.7406 0.5774 0.4815 0.4452 0.4294 0.4122 0.4093	0.0025 0.0019 0.0016 0.0015 0.0014 0.0014 0.0014	0.6575 0.5125 0.4274 0.3952 0.3812 0.3659 0.3633
odel 1 2 3 4 5 6 7 8	0.3513 0.4977 0.5838 0.6178 0.6338 0.6508 0.6556 0.6558	R-Square 0.3491 0.4943 0.5796 0.6126 0.6276 0.6437 0.6473 0.6494	R-Square 0.3242 0.4773 0.5505 -Inf -Inf -Inf -Inf -Inf	C(p) 252.4205 130.8885 60.1719 33.5413 21.9994 9.6386 7.5990 6.9339	AIC 760.7551 686.2868 632.0166 608.5883 597.7637 585.5343 583.4065 582.6517	58IC -89.9972 -164.1798 -217.7413 -240.6775 -251.1520 -262.7842 -264.6578 -265.1847	771.8564 701.0886 650.5189 630.7910 623.6668 615.1378 616.7105 619.6561	219.9813 170.9173 142.0787 130.9406 125.8726 120.4351 119.1935 118.5090	0.7406 0.5774 0.4815 0.4452 0.4294 0.4122 0.4093 0.4082	0.0025 0.0019 0.0016 0.0015 0.0014 0.0014 0.0014 0.0014	0.6575 0.5125 0.4274 0.3952 0.3812 0.3659 0.3633 0.3624
odel 1 2 3 4 5 6 7 8 9	0.3513 0.4977 0.5838 0.6178 0.6338 0.6508 0.6556 0.6558 0.6558	R-Square 0.3491 0.4943 0.5796 0.6126 0.6276 0.6437 0.6473 0.6494 0.6492	R-Square 0.3242 0.4773 0.5505 -Inf -Inf -Inf -Inf -Inf -Inf	C(p) 252.4205 130.885 60.1719 33.5413 21.9994 9.6386 7.5990 6.9339 8.0773	AIC 760.7551 686.2868 632.0166 608.5883 597.7637 585.5343 583.4065 582.6517 583.7609	SBIC -89.9972 -164.1798 -217.7413 -240.6775 -251.1520 -262.7842 -264.6578 -265.1847 -263.9372	771.8564 701.0886 650.5189 630.7910 623.6668 615.1378 615.6561 624.4658	219,9813 170,9173 142.0787 130,9406 125.8726 120,4351 119,1935 118.5090 118.5667	0.7406 0.5774 0.4815 0.4452 0.4294 0.4122 0.4093 0.4082 0.4098	0.0025 0.0019 0.0016 0.0015 0.0014 0.0014 0.0014 0.0014 0.0014	0.6575 0.5125 0.4274 0.3952 0.3812 0.3659 0.3633 0.3624 0.3637
odel 1 2 3 4 5 6 7 8	0.3513 0.4977 0.5838 0.6178 0.6338 0.6508 0.6556 0.6558	R-Square 0.3491 0.4943 0.5796 0.6126 0.6276 0.6437 0.6473 0.6494	R-Square 0.3242 0.4773 0.5505 -Inf -Inf -Inf -Inf -Inf	C(p) 252.4205 130.8885 60.1719 33.5413 21.9994 9.6386 7.5990 6.9339	AIC 760.7551 686.2868 632.0166 608.5883 597.7637 585.5343 583.4065 582.6517	58IC -89.9972 -164.1798 -217.7413 -240.6775 -251.1520 -262.7842 -264.6578 -265.1847	771.8564 701.0886 650.5189 630.7910 623.6668 615.1378 616.7105 619.6561	219.9813 170.9173 142.0787 130.9406 125.8726 120.4351 119.1935 118.5090	0.7406 0.5774 0.4815 0.4452 0.4294 0.4122 0.4093 0.4082	0.0025 0.0019 0.0016 0.0015 0.0014 0.0014 0.0014 0.0014	0.6575 0.5125 0.4274 0.3952 0.3812 0.3659 0.3633 0.3624

Figure A.46 Electronics Online Market Best Subset Model Result

FINAL MODEL RESULTS

AC3 144413 .							
Min	1Q Mediar	1 3Q	Max				
-7.2574 -0.0	0682 0.0478	3 0.1339	5.7498				
Coefficients	5:						
	Estimate S	Std. Error	t value	Pr(> t)			
(Intercept)	3.94932	0.77248	5.113	5.82e-07	***		
LnCasenum	-0.08421	0.03550	-2.372	0.0183	±		
Lnclust1_1	0.36697	0.03475	10.559	< 2e-16	***		
Lnclust1_2	-0.24331	0.03784	-6.431	5.29e-10	***		
Lnclust1_3	0.05558	0.03905	1.423	0.1557			
Lnclust1_4	0.07283	0.04001	1.820	0.0698			
Lnclust1_5	-0.23366	0.04153	-5.627	4.37e-08	***		
Lnclust1_6	0.23016	0.04313	5.336	1.93e-07	***		
Lnclust1_7	0.48577	0.03728	13.029	< 2e-16	***		
DUM24_5	-10.03756	0.59815	-16.781	< 2e-16	***		
DUM12_12	-12.51643	0.96155	-13.017	< 2e-16	***		
DUM1_6	9.36646	1.08293	8.649	3.75e-16	***		
Signif. cod	es: 0 '***	0.001 '*	*' 0.01 '	'*' 0.05 '	.' 0.1 ' ' 1		

Figure A.47 Alcoholic Beverages Physical Market Final Model Result

Residuals: Min 1Q Median 3Q Max -2.15930 -0.05216 0.01137 0.06492 1.21257
Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) 4.22000 0.93676 4.505 9.67e-06 ***
LnCasenum -0.01629 0.01129 -1.442 0.15035
Lnclust2_1 0.29661 0.04223 7.023 1.57e-11 ***
Lnclust2_2 -0.18145 0.04487 -4.044 6.75e-05 ***
Lnclust2_3 0.03032 0.04593 0.660 0.50972
Lnclust2_4 0.08434 0.04630 1.822 0.06956 .
Lnclust2_5 -0.13263 0.04714 -2.813 0.00524 **
Lnclust2_6 0.14605 0.04674 3.125 0.00196 **
Lnclust2_7 0.48271 0.03993 12.090 < 2e-16 ***
DUM24_5 -2.87985 0.20224 -14.239 < 2e-16 ***
DUM12_12 -0.18367 0.31659 -0.580 0.56228
DUM1_6 2.51723 0.35251 7.141 7.64e-12 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure A.48 Daily Needs Physical Market Final Model Result

Residuals:						
Min	1Q Med	ian	3Q	Max		
-2.20907 -0.	08616 -0.00	522 0.113	27 1.56	5468		
Coefficients	s:					
	Estimate S	td. Error	t value	Pr(> t)		
(Intercept)	6.974998	0.840587	8.298	4.19e-15	***	
LnCasenum	-0.030281	0.013279	-2.280	0.02331	*	
Lnclust3_1	0.259949	0.040047	6.491	3.73e-10	***	
Lnclust3_2	-0.185242	0.041929	-4.418	1.41e-05	***	
Lnclust3_3	-0.001608	0.042705	-0.038	0.96999		
Lnclust3_4	0.112936	0.043186	2.615	0.00939	**	
Lnclust3_5	-0.203428	0.045007	-4.520	9.06e-06	***	
Lnclust3_6	0.164681	0.045789	3.597	0.00038	***	
Lnclust3_7	0.342701	0.036618	9.359	< 2e-16	***	
DUM24_5	-5.055043	0.255976	-19.748	< 2e-16	***	
DUM12_12	-0.211549	0.376994	-0.561	0.57514		
DUM1_6	3.206452	0.458191	6.998	1.84e-11	***	
Signif. code	es: 0 '***'	0.001 '**	0.01	** 0.05	'.' 0.1 ' ' 1	

Figure A.49 Protein-Based Products Physical Market Final Model Result

Call: lm(formula = Lnclust4 ~ ., data = denemeeC4)						
Residuals:						
Min 1Q Median 3Q Max						
-2.10484 -0.06375 0.00014 0.09591 1.37823						
Coefficients:						
Estimate Std. Error t value Pr(> t)						
(Intercept) 7.111703 0.980449 7.254 3.80e-12 ***						
LnCasenum -0.038233 0.012847 -2.976 0.003168 **						
Lnclust4_1 0.266468 0.041211 6.466 4.32e-10 ***						
Lnclust4_2 -0.184126 0.043141 -4.268 2.68e-05 ***						
Lnclust4_3 -0.006281 0.043976 -0.143 0.886520						
Lnclust4_4 0.102171 0.044541 2.294 0.022520 *						
Lnclust4_5 -0.183306 0.045945 -3.990 8.40e-05 ***						
Lnclust4_6 0.157594 0.046314 3.403 0.000762 ***						
Lnclust4_7 0.383103 0.038052 10.068 < 2e-16 ***						
DUM24_5 -4.200313 0.238334 -17.624 < 2e-16 ***						
DUM12_12 -0.168354 0.358350 -0.470 0.638852						
DUM1_6 2.994115 0.423527 7.069 1.19e-11 ***						
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						

Figure A.50 Basic Consumption Goods Physical Market Final Model Result

Call:							
<pre>lm(formula = Lnclust5 ~ ., data = denemeeC5)</pre>							
Residuals:							
Min 1Q Median 3Q Max							
-2.16971 -0.12371 0.01222 0.12324 1.64196							
Coefficients:							
Estimate Std. Error t value Pr(> t)							
(Intercept) 6.591133 0.889168 7.413 1.40e-12 ***							
LnCasenum -0.030444 0.013020 -2.338 0.020061 *							
Lnclust5_1 0.269870 0.039800 6.781 6.81e-11 ***							
Lnclust5_2 -0.183991 0.041836 -4.398 1.54e-05 ***							
Lnclust5_3 -0.004747 0.042643 -0.111 0.911446							
Lnclust5_4 0.114220 0.043143 2.647 0.008558 **							
Lnclust5_5 -0.204178 0.044875 -4.550 7.93e-06 ***							
Lnclust5_6 0.163787 0.045491 3.600 0.000374 ***							
Lnclust5_7 0.371445 0.036800 10.094 < 2e-16 ***							
DUM24_5 -4.709145 0.245583 -19.175 < 2e-16 ***							
DUM12_12 -0.189945 0.369071 -0.515 0.607188							
DUM1_6 3.399490 0.443677 7.662 2.83e-13 ***							
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							

Figure A.51 Cold-Chain Products Physical Market Final Model Result

Min -2.00948 -0.	1Q Med 14588 -0.02		3Q 14 1.2	Max 8093				
Coefficients	Coefficients:							
	Estimate St	d. Error t	value	Pr(> t)				
(Intercept)	4.19186	0.56974	7.357	1.91e-12	***			
Lnclust6_1	0.36515	0.04735	7.712	1.97e-13	***			
Lnclust6_2	-0.15418	0.04181 -	-3.687	0.00027	***			
Lnclust6_6	0.06268	0.04266	1.469	0.14281				
Lnclust6_7	0.30210	0.04396	6.873	3.81e-11	***			
DUM24_5	-3.62236	0.26588 -1	13.624	< 2e-16	***			
DUM1_6	2.06296	0.44853	4.599	6.32e-06	***	i .		
						i .		
Signif. cod	es: 0 '***'	0.001 '**'	0.01	'*' 0.05	'.' 0.1	.''1		

Figure A.52 Electronics Physical Market Final Model Result

Figure A.53 Daily Needs Online Market Final Model Result

Residuals: Min	•	ian 30			
-2.26339 -0. Coefficients		018 0.17078	1.59308		
coerricients			1 n= (
		d. Error t va			
(Intercept)	6.88227	0.52273 13.	166 < 2e-16	***	
LnCasenum	0.05259	0.01654 3.	180 0.00163	**	
Lnclust3_1	0.26290	0.03703 7.	099 9.87e-12	***	
Lnclust3_2	-0.33695	0.03847 -8.	758 < 2e-16	***	
Lnclust3_3	0.11268	0.04028 2.	797 0.00550	**	
Lnclust3_4	0.05814	0.04074 1.	427 0.15467		
Lnclust3_5	-0.19793	0.04119 -4.	805 2.50e-06	***	
Lnclust3_6	0.15940	0.03912 4.	074 5.98e-05	***	
Lnclust3_7	0.28866	0.03313 8.	712 2.42e-16	***	
DUM24_5	-8.75795	0.33863 -25.	863 < 2e-16	***	
DUM12 12	0.31999	0.42885 0.	746 0.45618		
DUM1_6	5.05109	0.54243 9.	312 < 2e-16	***	
Signif. code	es: 0 '***'	0.001 '**' 0	.01 '*' 0.05	·.' 0.1 · ' 1	L

Figure A.54 Protein-Based Products Online Market Final Model Result

Coefficients:						
	Estimate St	td. Error	t value	Pr(> t)		
(Intercept)	8.52205	0.58223	14.637	< 2e-16	***	
LnCasenum	0.03354	0.01678	1.999	0.046541	*	
Lnclust4_1	0.25291	0.03782	6.687	1.19e-10	***	
Lnclust4_2	-0.39198	0.03934	-9.964	< 2e-16	***	
Lnclust4_3	0.18274	0.04178	4.374	1.71e-05	***	
Lnclust4_4	0.00865	0.04214	0.205	0.837523		
Lnclust4_5	-0.15094	0.04207	-3.588	0.000391	***	
Lnclust4_6	0.13106	0.03945	3.322	0.001010	**	
Lnclust4_7	0.26859	0.03418	7.857	7.92e-14	***	
DUM24_5	-9.89079	0.37355	-26.478	< 2e-16	***	
DUM12_12	0.35507	0.45436	0.781	0.435174		
DUM1_6	4.82857	0.57952	8.332	3.32e-15	***	
Signif. code	es: 0 '***	' 0.001 '*	**' 0.01	'*' 0.05	·.' 0.1 ' ' 1	

Figure A.55 Basic Consumption Goods Online Market Final Model Result

	,		
Residuals:			
Min 1	LQ Median	3Q Max	
-2.28393 -0.0752	20 0.01693 0.13	3591 1.47175	
Coefficients:			
Esti	imate Std. Error	t value Pr(> t)
(Intercept) 7.8	0.52541	14.878 < 2e-1	6 ***
nCasenum 0.0	06015 0.01614	3.726 0.00023	5 ***
_nclust5_1 0.2	23830 0.03487	6.833 4.98e-1	1 ***
_nclust5_2 -0.3	32138 0.03589	-8.954 < 2e-1	6 ***
_nclust5_3 0.0	0.03747	2.528 0.01200	5 *
_nclust5_4 0.0	0.03803	1.553 0.12151	3
_nclust5_5 -0.2	0.03873	-5.489 8.91e-0	8 ***
_nclust5_6 0.1	0.03698	4.482 1.07e-0	5 ***
_nclust5_7 0.2	25960 0.03069	8.457 1.41e-1	5 ***
	0.33052		
	22916 0.41752		
	0.53767		
Signif. codes:	0 '***' 0.001 '	**' 0.01 '*' 0.0	5 '.' 0.1 ' ' 1
Could be a could be	01001	0.01	

Figure A.56 Cold-Chain Products Online Market Final Model Result

Residuals: Min -2.78324 -0.	1Q Medi 27371 -0.005	an 194 0.256		
Coefficients	5:			
	Estimate St	d. Error	t value Pr(> t)	
(Intercept)	1.527323	0.375197	4.071 6.07e-05	***
LnCasenum	0.087545	0.025920	3.378 0.000832	***
Lnclust6_1	0.433464	0.049904	8.686 2.90e-16	***
Lnclust6_2	-0.183326	0.053650	-3.417 0.000725	***
Lnclust6_3	0.002154	0.054126	0.040 0.968285	
Lnclust6_4	0.011608	0.054172	0.214 0.830479	
Lnclust6_5	-0.083583	0.055200	-1.514 0.131079	
Lnclust6_6	0.144355	0.055259	2.612 0.009466	**
Lnclust6_7	0.321085		6.943 2.56e-11	
DUM24_5	-4.160791	0.406980	-10.224 < 2e-16	***
DUM12_12	0.589596	0.636405	0.926 0.354991	
DUM1_6	4.066505	0.706130	5.759 2.18e-08	***
Signif. code	25: 0 '***'	0.001 ***	' 0.01 '*' 0.05	.'0.1 ''1

Figure A.57 Electronics Online Market Final Model Result