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A B S T R A C T

In this paper we present a novel transshipment problem for a large apparel retailer that operates an extensive
retail network. Our problem is inspired by the logistics operations of a very large fast fashion retailer in
Turkey, LC Waikiki, with over 475 retail branches and thousands of products. The purpose of transshipments
is to rebalance stocks across the retail network to better match supply with demand. We formulate this problem
as a large mixed integer linear program and develop a Lagrangian relaxation with a primal–dual approach to
find upper bounds and a simulated annealing based metaheuristic to find promising solutions, both of which
have proven to be quite effective. While our metaheuristic does not always produce better solutions than a
commercial optimizer, it has consistently produced solutions with optimality gaps lower than 7% while the
commercial optimizer may produce very poor solutions with optimality gaps as high as almost 300%. We have
also conducted a set of numerical experiments to uncover implications of various operational practices of LC
Waikiki on its system’s performance and important managerial insights.

1. Introduction

Due to its impact on revenues, costs, and more importantly, on
service levels, logistics management has become increasingly critical
in the apparel industry (Kiesmüller and Minner, 2009). As consumers
demand greater product variety and higher levels of responsiveness
at lower prices, effective management of logistics activities arises as
a key competitive advantage for the retailers in this industry. The
main challenges faced by these retailers are short selling seasons and
unpredictable demands. Since forecasts are mostly inaccurate, firms
usually have either excess inventories that are sold at markdown prices
or stock-outs that lead to lost sales. The problem is exacerbated with
short selling seasons which prevent firms to replenish their stocks.
Therefore, an effective logistics strategy is key to avoid both of these
undesirable outcomes.

Logistics decisions of apparel retailers include initial ordering before
the season begins, allocation to the branches at the beginning of the
season, and eventually phasing-out of the products at the end of the
selling season. Increasingly, however, retailers are also practicing what
is called ‘‘transshipment’’ or ‘‘transfer’’ policies, which involve the
reallocation of products among retail branches in mid-season (Li et al.,
2013). These policies help retailers to reduce stock-outs as well as
excess inventories. This is the issue that is addressed in this paper.
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The problem that we consider here is inspired by the logistics
operations at the largest apparel retailer in Turkey, LC Waikiki, which
has positioned itself as a ‘‘fast fashion’’ retailer. The term fast fashion
used to refer to inexpensive designs that appeared on catwalks and
were quickly moved to store shelves. Fast fashion items based on
the most recent trends have shaped mass-merchandized clothing col-
lections. Therefore, mass-merchandise retailers compete to introduce
latest fashion trends in their collections. Although the term was first
used in the US in the 1980s, the expression did not receive worldwide
adoption until popularized by the Spanish-based apparel giant Zara.
The crucial issue in fast fashion is providing inexpensive collections that
also respond to fast changing consumer tastes and trends. Therefore, the
entire fast fashion supply chain must be sufficiently agile to operate
with products for which life cycles are measured not in months but
rather in weeks.

On the plus side, the speed at which fast fashion moves tends to
help retailers avoid markdowns. Typically, these retailers do not place
very large orders months before the actual selling season, but rather
work with smaller initial orders and renew collections more frequently.
On the negative side, however, the fast-paced environment calls for
higher turnover and more frequent introduction of new designs, a
setting that necessitates shorter design and production lead times. As
a result, companies need to rely on more expensive local sources and
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accommodate large design teams. This fast-paced environment also
creates new logistics challenges for retailers: When will these products
be replaced? Should they be completely removed from the stores or
kept at display at select stores? What will happen to the leftover items;
reintroduced elsewhere, sold at discount, or simply written-off? Fast
fashion companies need to deal with these issues much more frequently
than traditional retailers.

Facing such challenges, leading fast fashion companies such as Zara
and another Spanish company, Mango, the Japanese World Co., and
Swedish H&M have built supply chains aiming at quickly responding to
consumers’ changing demands while decreasing the excess inventories
at branches and hence, lowering costs (Caro and Gallien, 2007). For
instance, Zara developed a decision support system featuring demand
updating and a dynamic optimization module for initial shipment
decisions to avoid stock-outs as well as excess inventories (Gallien et al.,
2015). In addition to correct initial shipment decisions, the transfer or
transshipment decisions among retail locations are also instrumental to
reduce stock-outs and excess inventories.

The main benefit of transfer actions is better matching inventory
and demand at different locations. It uses up-to-date sales information
and inventory data and redistribute available inventory among the
retail locations. Due to socio-economic and geographical differences
among retailer locations, it is possible that a product sells very well in
some stores while less so in others. Transfer actions can be adopted as
a tool to increase the inventory levels at receiver stores while providing
extra shelf space at sender stores. This action can be adopted by bypass-
ing the central depot to facilitate the quick movement of merchandise.
As a result, the revenues are increased while costs are reduced as
compared to a system where no transshipment is utilized (Tagaras,
1989). There are a number works in the literature that describe how
retailers take advantage of transfers to improve their performances. For
example, Archibald et al. (2009, 2010) address transshipment issues at
a tire retailer that has a network of 50 stores. In another work, Hu
and Yu (2014) present a proactive transshipment problem for a famous
fashion brand in China that has network for 43 retailers in Shanghai.
The problem that we introduce here is motivated by the largest apparel
retailer in Turkey.

In the next section, we provide a detailed background of our prob-
lem that includes the transfer practices at the company that motivated
this work and a detailed description of the problem setting. In Section 3
we give a brief literature review. Section 4 presents the progressive de-
velopment of the mathematical model. Section 5 presents our solution
methods that include a Lagrangian relaxation based upper bounding
method and simulated annealing based metaheuristic to find good
feasible solutions. Section 6 reports on our numerical experiments
followed by a few concluding remarks in Section 7.

2. Background

Textile is one of the key sectors in the Turkish economy in terms
of GDP, domestic employment, and exports. Textile accounts for 10%
of the Turkish GDP and 20% of employment in the manufacturing
sector.1 In 2016 Turkey exported around 15 Billion USD, mainly to
the European Union countries and was ranked as the 6th biggest
textile exporting country (see Fig. 1).2 LC Waikiki, which has provided
motivation to this work, is the largest textile retailer in Turkey with
significant international presence.

LC Waikiki was founded in 1988 in France by a French designer
and his friend. The LC Waikiki brand name is created by adding the
word Waikiki, a famous beach in Hawaii, to LC, the abbreviation of
the French word ‘‘Les Copains’’ meaning ‘‘friends’’. TEMA, a Turkey
based group which was then a major supplier of the company, bought

1 blog.tcp.gov.tr.
2 www.wikipedia.com.

the LC Waikiki brand in 1997 undertook a major restructuring that
included focusing on domestic market. In the same year, the group
entered the Turkish fashion retail market with 21 stores. In 2009, it
opened its first international store in Romania since the TEMA group
had purchased the brand. Over the years, the group has followed an
aggressive expansion strategy both domestically and internationally.
Today, LC Waikiki has more than 500 stores in 46 countries in Asia,
Africa, and Europe, in addition to over 475 stores in Turkey. In 2011,
LC Waikiki became the leader of the ‘‘Ready-to-Wear’’ market in Turkey
and remains as the largest apparel retailer in terms of sales as well as
the number of stores. Fig. 1 depicts LC Waikiki’s phenomenal growth
in terms of the total number of stores over the years.

LC Waikiki has a highly centralized order planning and logistics
system in which all initial orders and subsequent distribution decisions
are made by the headquarters. New merchandise is received at a
single central warehouse located in Istanbul, which then distributes
essentially the entire amount to the retail branches (there are varying
practices for international stores which are excluded from the consider-
ation in this study). The retail practice at LC Waikiki can be considered
as fast fashion in that it aims to keep items in stores only for about six to
eight weeks. During this period, if the sales realize below expectations,
they may reduce prices or if the sales display disparities across the
stores, they may utilize transfers among the stores. Finally, at the end
of their shelf-life, products are returned to the central warehouse and
later sent to outlet stores (about 40 of the 475 stores are designated
as outlet stores) or simply given away to charities. Stock-outs and
excess inventories are critical issues at LC Waikiki as in any fast fashion
company due to forecast errors. Since LC Waikiki initially distributes
all of the items to stores, transfer remains essentially as the only tool
to deal with these issues by rebalancing inventories across the retail
network. It is these transfer decisions that is the subject of this paper.

Currently, a group at the headquarters manages transfer decisions.
This group utilizes a mathematical model accompanied with some pre-
and post-processing activities. However, we cannot disclose the precise
nature of the model and the activities due to proprietary nature of
these information. After transfer solutions are obtained, orders are
automatically generated and transmitted to the stores. Store employees
collect the products that have been chosen for transfer from the shelves
and move them to a storage room. In the storage room, products
are put in the boxes, each destined to a specific store without any
re-assortments. Since the storage room capacities are limited, stores
cannot to transfer more than what they can hold at their storage room.
Once boxing is finished, the logistics company picks up the boxes and
delivers them to their destinations. The boxes are ideally delivered
before the weekend so that the transferred items can be put on shelves
for the weekend sales.

Although our work is motivated by LC Waikiki’s logistics operations,
we believe many of the features of our model would resonate with
issues fast fashion retailers need to consider. In our model, we maximize
a measure of the total profit which is the total revenue less the total
logistics cost that includes transportation, handling, and inventory
holding costs. We also include a number of operational constraints that
represent the real practice of the company. For example, we consider
a centrally managed system where stores have no control over the
decisions, i.e., they may not refuse the transfer decisions. This is valid
particularly for firms that own their stores and manage them centrally.
We also restrict the total number of items and the total number of stores
to which each store can make shipments. Both of these constraints are
justified by the limited number of employees in the stores and sizes
of the storage rooms. Furthermore, in our model once a product is
decided to be transferred from one store to the other, the entire stock
(all the available sizes) is sent to the same store. LC Waikiki justifies this
practice by the simplicity of the picking operations, which otherwise
would be too labor intensive. Here, we will also investigate the effects
of these restrictions on system performance.

https://blog.tcp.gov.tr
http://www.wikipedia.com
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Fig. 1. Left: Global export market share, Right: Growth in the total number of stores.

There are a number of issues relevant to the fashion logistics deci-
sions that we leave out of the scope of this work: (i) Initial allocation
decisions, (ii) Uncertainty in demand, and (iii) Dynamic nature of the
decision making process. At LC Waikiki the initial shipment decisions
are made after a pilot sales experiment in which they obtain sales
information from about 30 stores. They then make initial allocations
in which they essentially distribute the entire stock to the stores.
Certainly, the option of transfers might impact the initial allocation.
However, we believe that the impact is small due to two aspects in
this logistics system. First, the company has a policy to allocate almost
all of the available inventory to the stores keeping none at the central
depot. Therefore, the firm cannot use central depot for reallocation
of products. Second, since the company has flat transportation cost
rate independent of origin–destination pair, regional risk pooling effect
becomes irrelevant. Therefore, the impact of subsequent transfer prac-
tice on initial allocation decisions has lessened. Demand uncertainty is
always a concern particularly in the fashion industry, and in fact, it
is the demand uncertainty that makes the transfer problem relevant.
However, at the time a product is considered for transfer, there is
demand information for at least for a couple of weekends. Therefore,
the company is able to make much more accurate demand forecasts
after this initial sales information, as compared to the time the initial
allocation decisions are made. Finally, the transfer problem ideally
should consider the fact that transfer decisions are made every week
and hence, there are subsequent recourse opportunities. However, con-
sidering a multi-stage decision environment under demand uncertainty
is simply beyond analysis for the sizes that we envision, particularly
with complicating operational constraints. Instead, we envision a set-
ting where the firm makes demand forecast until a product is planned to
stay on shelves and the transfer problem is solved on a rolling-horizon
basis. This setting, we believe, is a reasonable compromise given the
other complexities of the system. Similarly, initial replenishment deci-
sions are also important and they would be impacted by subsequent
transfer options. However, considering transshipment and replenish-
ment decisions jointly would also be extremely difficult considering the
scale of our problem and particular operational constraints.

We have also assumed that each product’s shelf life is known. This
assumption is justified by the practice of the company where they
keep merchandize for about six to eight weeks. Decision to continue
displaying products on the shelves or removing them involves a number
of other factors to consider. It requires information on new product
designs as well as space considerations at the stores for different mer-
chandize groups. These issues are also rather involved and therefore,
kept out of the current study, but certainly worthwhile to consider in
the future.

3. Related literature

There is a vast literature as far back as the 1950’s on lateral
transshipment or, as we call here, transfer issues. Although both terms
commonly describe the decisions considered here and we use them
interchangeably, the term transshipment has a wider meaning and
usage. Time and again, various studies have shown that transfer op-
tion between retailers improves supply chain performance in terms of
costs, revenues, and service levels. For example, Tagaras (1989) shows
that utilizing transfer in a system with two retail locations leads to
significant cost reductions. Although transfers considerably increase
transportation cost, systems with these options are superior to systems
without them (Banerjee et al., 2003). Furthermore, transfers enhance
customer service levels without the burden of carrying extra safety
stock at retail locations (Burton and Banerjee, 2005).

There are essentially two types of transfers: emergency or reactive
transfers and preventive or proactive transfers, which are differentiated
mainly with respect to their timing (Lee et al., 2007; Paterson et al.,
2011; Seidscher and Minner, 2013; Ahmadi et al., 2016). Reactive
transfer refers to responding to realized stock-outs at a retail location by
using available inventory at another location whereas proactive transfer
refers to redistribution of inventories among locations before the actual
demand is realized. The literature can be classified primarily along this
dimension, although there are also works that consider them jointly.

Perhaps the earliest work that considers reactive transfers is by Kr-
ishnan and Rao (1965) who study a centralized one-echelon inventory
system with the objective of minimizing the total cost through transfers.
One of the main motivations for reactive transfer models comes from
spare parts distribution systems for repairable items, as exemplified by
one of the more notable earlier works by Lee (1987) who studies a
single-echelon model, which is then extended by Axsäter (1990) to a
two-echelon system. More recent works on spare parts systems can be
attributed to van Wijk et al. (2019) who consider a two-location system
with lateral transshipment as well as an outside emergency option and
Boucherie et al. (2018) who consider a complex two-echelon inventory
system with multiple local warehouses.

Models with reactive transfer policies have also been studied for
non-repairable items. A notable contribution is due to Robinson (1990),
who provides structural results for a two-retailer system and develops
a heuristic for the initial ordering decisions considering the subse-
quent transshipments. Herer et al. (2006) extend this work by con-
sidering more general cost structures and Özdemir et al. (2013) ex-
tend it considering capacity constraints on the transportation network.
More recently, transshipment policies in systems with perishable items
have also attracted research (see for example, Nakandala et al., 2017;
Dehghani and Abbasi, 2018 for such recent works).
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Proactive transfer is based on the concept of inventory rebalancing
and is mostly utilized in periodic review inventory control framework.
Allen (1958) provides perhaps the earliest model that considers proac-
tive transfers in a single-period setting, which is then generalized by
Das (1975) who also considers the initial replenishment decision. There
are also models that include the timing of the transshipment as decision
in a dynamic setting (Agrawal et al., 2004; Tiacci and Saetta, 2011) as
well as in a static setting (Kiesmüller and Minner, 2009).

Although the type of transfers may be dictated by operational condi-
tions of the setting, proactive transfer policies are found to be superior
to purely reactive policies both in terms of costs and stock-out levels
(see for example, Banerjee et al., 2003; Burton and Banerjee, 2005).
In some settings, however, companies may also have opportunities to
implement these policies jointly (see for example, Lee et al., 2007 for
such a model). Finally, although all of the works mentioned above and
majority of research on the transshipment issues, assume that the sys-
tems are centrally operated decentralized systems where retailers might
refuse transshipment requests have also attracted research recently (see
for example, Çömez et al., 2012; Li et al., 2013).

As we have noted earlier, the literature on transshipment issues is
vast with considerable growth in the last two decades. Since reviewing
this voluminous literature is not possible here, we have only offered a
very selective review. Aside from the types of the transfer (i.e., reactive
vs. proactive), the literature on transshipment is also divided along
two other important dimensions: Whether the models consider only
transshipment decisions or jointly with replenishment decisions and
whether they consider multiple locations or just two locations. We have
classified aforementioned works and few others with respect to these
characteristics as shown in Table 1. We choose to put some classic and
some more recent ones, but it is still far from portraying a complete
picture. We refer the reader to a somewhat older, but an excellent
review by Paterson et al. (2011) who also provide a more thorough
classification and a comprehensive review up to its publication date.

Despite many simplification attempts, solving transfer problem to
optimality remains a challenge. Even in the presence of many simplify-
ing assumptions such as single product, single-period, limited number
of retail locations, static transfer timing and so on, past works can
only provide approximate solutions. The problem that we present here
considers proactive transfers, but since it is motivated by the actual
logistics operations at a large fashion retailer, it has many complexities
that would be quite challenging to resolve under demand uncertainty or
in a dynamic fashion. Therefore, we need to make restrictive assump-
tions along these dimensions. Certainly we are not alone in this respect;
there are numerous other works that consider deterministic demand for
transshipment models. Not surprisingly, these works also contain other
complicating factors. For example, Herer and Tzur (2001, 2003) in their
multi-period model consider fixed ordering costs in transshipments;
Lim et al. (2005) and Ma et al. (2011) study transshipment decisions
via cross-docking locations under time windows; Qi (2006) considers
transshipment and production scheduling decisions jointly; Lee (2015)
considers concave production and transportation costs; Coelho et al.
(2012), Mirzapour Al-e hashem and Rekik (2014), and Peres et al.
(2017) consider routing issues alongside transshipments; Rahmouni
et al. (2015) and Feng et al. (2017) develop EOQ-based delivery
scheduling models with transshipment while considering multiple prod-
ucts and resource constraints. Our setting too has a few operational
practices that force us to model a static and deterministic problem.

4. Problem description and model formulation

We consider a retail logistics system that consists of a number of
retail stores, each carrying a set of products of different sizes (SKUs).
The firm has the precise stock information; that is, how many of each
SKU the stores have and the projected demands of each SKU at each
location during the remainder of the sales period. The problem is how

to reallocate (some of) the products to maximize a profit measure that
is total revenue less transfer, handling, and inventory holding costs.

The firm has a single price policy in that the same price is applied to
a product at all locations, which is indeed the practice of many retail
chains and particularly of LC Waikiki. Each product also has a fixed
transfer cost regardless of the origin–destination pair. This assumption
is also motivated by the practice at LC Waikiki which has outsourced
the transportation operations to a logistics company. The transfers are
made by standard sized boxes for which LC Waikiki pays a fixed amount
regardless of its contents and the locations of the sender and receiver
stores. Since the number of products that fit in a box depends on the
volume of the product, transportation cost differs for each product, but
not on origin–destination pairs. The transfer cost can be estimated by
adding the handling cost to the transportation cost for each product.
However, none of these assumptions are really essential either for
modeling or for our solution method and they can easily be relaxed.

We also assume that transfer time has no effect on the sales. The
main purpose is to finalize the delivery of transfer items before the
weekend where the bulk of the sales materialize. Hence, delivering a
day earlier or later presumably does not make much difference, as long
as the products arrive for the weekend. Furthermore, the geography
of Turkey does not allow wide variations in transfer times, but we
also recognize that considering transfer time effects would be valuable
in some settings. Finally, we assume that there are no replenishment
opportunities from the central warehouse at the time of the transfer de-
cisions. Since the company has a policy to allocate the entire inventory
of a product to the stores at the beginning rather than keeping some at
the warehouse, this assumption is well justified. As another operational
practice, they do not consider a second replenishment option. This is
a common practice among the fast-fashion retailers whose business
practices involve speedy turnover of designs as exemplified by Zara’s
practice (see for example, Gallien et al., 2015).

In addition to these requirements, we assume a single-period setting
and deterministic demand. At LC Waikiki, most of the sales occur
at weekends and therefore, the inventory levels of each product are
updated at the beginning of each week. Likewise, demand forecasts are
also revised after observing weekend sales. As a result, LC Waikiki,
solves the transshipment problem once a week which allows us to
consider single-period assumption to decrease the complexity of the
problem. Deterministic demand is assumed since the forecast from
the company is fairly accurate. After two or three weekend sales, the
company can have a fairly good idea about the demand in the rest of
the products’ shelf lives. It is stated that their forecast error is below
15%. Many papers related to fast-fashion also state that forecast errors
are considerably smaller towards the end of shelf lives of products (see
for example, Caro and Gallien, 2010). Finally, as mentioned earlier, the
company has a few operational practices that we include in our model:
If a product is transferred from a store, its entire available inventory
(all SKUs) is shipped to a single store. Also, there are limits on the total
number of SKUs that can be transferred from a store and the number
of different destinations to which a store can make transfers. All these
assumptions could be relaxed or generalized, but we choose to stay with
the company practices as much as possible.

As we will see shortly, without the aforementioned operational con-
straints, the problem can simply be formulated as a profit-maximizing
transportation problem, which can easily be solved as a linear program.
We are also ensured integer solutions if the demand and inventory
values are integers. When we add the restriction on the total number
of SKUs that can be transferred from a store, the problem can still be
solved as a linear program. When we further add the restriction on the
number of stores that a store can ship to, however, we need to introduce
binary variables to keep track of whether a shipment is made from
one store to another. Finally, when we include the single-destination
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Table 1
Main characteristics of reviewed transfer-related papers.

Replenishment Single period Multiple periods

2 retailers Multiple retailers 2 retailers Multiple retailers

Proactive Yes Das (1975)
Tagaras and Vlachos
(2002)

Karmarkar and Patel
(1977)
Hoadley and Heyman
(1977)

Tiacci and Saetta (2011)
Abouee-Mehrizi et al.
(2015)

Diks and De Kok (1996)
Ahmadi et al. (2016)
Feng et al. (2017)

No Kiesmüller and
Minner (2009)
Li et al. (2013)

Allen (1958)
Agrawal et al. (2004)

Dan et al. (2016) Bertrand and Bookbinder
(1998)
Banerjee et al. (2003)
Burton and Banerjee
(2005)
Acimovic and Graves
(2014)
Peres et al. (2017)

Reactive Yes Herer and Rashit
(1999)
Minner and Silver
(2005)
Liao et al. (2014)
Olsson (2015)
Dehghani and
Abbasi (2018)

Lee (1987)
Axsäter (1990)
Herer et al. (2006)
Johansson and Olsson
(2018)
Boucherie et al. (2018)

Archibald et al. (1997)
Herer and Tzur (2001)
van Wijk et al. (2019)

Archibald et al. (2009)
van Wijk et al. (2012)
Özdemir et al. (2013)

No Herer and Rashit
(1995)
Shao et al. (2011)
Liao et al. (2014)

Nonås and Jörnsten (2007)
Hu and Yu (2014)
Patriarca et al. (2016)
Bhatnagar and Lin (2019)

Tagaras (1989)
Çömez et al. (2012)
Shao (2018)

Robinson (1990)
Banerjee et al. (2003)
Burton and Banerjee
(2005)
Dijkstra et al. (2017)

constraint (i.e., when a product is shipped from one store to another, all
the SKUs of the product must be shipped) the problem becomes much
more difficult because we now also need to define a much larger set of
binary decision variables to keep track of shipments between stores.

We now give the preliminary definitions, followed by the formula-
tion of the model. We start with the base model without considering
the operational requirements of the company and progressively extend
the model by adding each of these constraints. We call two stores as
‘‘connected’’ if at least one product is transferred from one store to the
other.

Sets and indices

𝑖, 𝑗 ∈ 𝐼 ∶ Set of stores,
𝑝 ∈ 𝑃 ∶ Set of products,
𝑘 ∈ 𝐾𝑝 ∶ Set of sizes for each product 𝑝 ∈ 𝑃 .

Parameters

𝑠𝑖𝑝𝑘 ∶ Stock level of size 𝑘 of product 𝑝 at store 𝑖,

𝑑𝑖𝑝𝑘 ∶ Demand of size 𝑘 of product 𝑝 at store 𝑖,
𝑟𝑝 ∶ Unit net revenue of product 𝑝,
𝑐𝑝 ∶ Unit transfer cost of product 𝑝,
ℎ𝑝 ∶ Holding cost of product 𝑝.

Decision variables

𝑥𝑖𝑗𝑝𝑘 ∶ Amount of size 𝑘 of product 𝑝 transferred from store 𝑖

to store 𝑗,

𝑧𝑖𝑝𝑘 ∶ Sales of size 𝑘 of product 𝑝 at store 𝑖,

𝑤𝑖𝑝𝑘 ∶ Amount of size 𝑘 of product 𝑝 store 𝑖 has after the transfers.

Relaxed model

max𝛱 =
∑

𝑗∈𝐼

∑

𝑘∈𝑘𝑝

∑

𝑝∈𝑃
𝑟𝑝𝑧𝑗𝑝𝑘 −

∑

𝑖∈𝐼

∑

𝑗∈𝐼
𝑗≠𝑖

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

𝑐𝑝𝑥𝑖𝑗𝑝𝑘

−
∑

𝑖∈𝐼

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

ℎ𝑝(𝑤𝑖𝑝𝑘 − 𝑧𝑖𝑝𝑘) (1a)

s.t. 𝑤𝑖𝑝𝑘 =
∑

𝑗∈𝐼
𝑥𝑗𝑖𝑝𝑘, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (1b)

𝑧𝑖𝑝𝑘 ≤ 𝑤𝑖𝑝𝑘, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (1c)

𝑧𝑖𝑝𝑘 ≤ 𝑑𝑖𝑝𝑘, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (1d)
∑

𝑗∈𝐼
𝑥𝑖𝑗𝑝𝑘 ≤ 𝑠𝑖𝑝𝑘, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (1e)

𝑥𝑖𝑗𝑝𝑘 ≥ 0, for all 𝑖, 𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (1f)

𝑧𝑖𝑝𝑘 ≥ 0, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝. (1g)

The objective function (1a) maximizes the total profit where the first
term represents the total revenue obtained from sales, the second term
is the total transfer cost, and the last term is the total holding cost.
Constraints (1b) define the stock level of each SKU after the transfers
are completed. Constraints (1c) and (1d) ensure that sales are less than
or equal to demand or the available stock of SKUs after the transfers
are made. Constraints (1e) guarantee that a store may not transfer
more than its inventory. Constraints (1f) and (1g) define the decision
variables.

As mentioned earlier, above problem is simply a profit maximizing
transportation problem and can be easily solved by commercial opti-
mizers. Now we extend the problem (1a)–(1g) by adding one of the
capacity constraints:

max (1a) (2a)
s.t.

∑

𝑗∈𝐼
𝑗≠𝑖

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

𝑥𝑖𝑗𝑝𝑘 ≤ 𝐴𝑖, for all 𝑖 ∈ 𝐼, (2b)

(1b)–(1g). (2c)
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where Constraints (2b) ensure that a store does not transfer more SKUs
than it is allowed. This constraint does not pose a challenge as the
problem is still a linear program.

Next, we add the second capacity constraint to the current model.
To do so, however, we need to introduce a binary decision variable 𝑦𝑖𝑗
that represents if stores 𝑖 and 𝑗 are connected. The extended model is
formulated as follows:

max (1a) (3a)
s.t.

∑

𝑗∈𝐼
𝑗≠𝑖

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

𝑥𝑖𝑗𝑝𝑘 ≤ 𝐴𝑖, for all 𝑖 ∈ 𝐼, (3b)

∑

𝑗∈𝐼
𝑗≠𝑖

𝑦𝑖𝑗 ≤ 𝐵𝑖, for all 𝑖 ∈ 𝐼, (3c)

∑

𝑗∈𝐼
𝑥𝑖𝑗𝑝𝑘 ≤ 𝑠𝑖𝑝𝑘𝑦𝑖𝑗 , for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (3d)

(1b)–(1d), (1f), and (1g). (3e)

where Constraints (3c) do not allow a particular store to transfer to
more than a given number of stores. Constraints (3d) allow trans-
fer between two stores only if they are connected; these constraints
essentially replace Constraints (1e).

Finally, single-destination constraint is added to the model. This
constraint requires a change in one decision variable set that represents
the SKU flow. We now define a binary decision variable 𝑥𝑖𝑗𝑝 that
represents if product 𝑝 is transferred from store 𝑖 to store 𝑗, or not. Then,
𝑥𝑖𝑗𝑝𝑘 = 𝑠𝑖𝑝𝑘𝑥𝑖𝑗𝑝, which allows us to drop the original flow variables from
the formulation. The final model is given below.

The final model

max𝛱 =
∑

𝑖∈𝐼

∑

𝑘∈𝑘𝑝

∑

𝑝∈𝑃
𝑟𝑝𝑧𝑖𝑝𝑘 −

∑

𝑖∈𝐼

∑

𝑗∈𝐼
𝑗≠𝑖

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

𝑐𝑝𝑠𝑖𝑝𝑘𝑥𝑖𝑗𝑝

−
∑

𝑖∈𝐼

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

ℎ𝑝(𝑤𝑖𝑝𝑘 − 𝑧𝑖𝑝𝑘) (4a)

s.t. 𝑧𝑖𝑝𝑘 ≤
∑

𝑗∈𝐼
𝑠𝑗𝑝𝑘𝑥𝑗𝑖𝑝, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (4b)

𝑧𝑖𝑝𝑘 ≤ 𝑑𝑖𝑝𝑘, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (4c)

𝑤𝑖𝑝𝑘 =
∑

𝑗∈𝐼
𝑥𝑗𝑖𝑝𝑠𝑗𝑝𝑘, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (4d)

∑

𝑗∈𝐽
𝑥𝑖𝑗𝑝 = 1, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 , (4e)

∑

𝑗∈𝐼
𝑗≠𝑖

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

𝑠𝑖𝑝𝑘𝑥𝑖𝑗𝑝 ≤ 𝐴𝑖, for all 𝑖 ∈ 𝐼, (4f)

∑

𝑗∈𝐼
𝑗≠𝑖

𝑦𝑖𝑗 ≤ 𝐵𝑖, for all 𝑖 ∈ 𝐼, (4g)

𝑥𝑖𝑗𝑝 ≤ 𝑦𝑖𝑗 , for all 𝑖, 𝑗 ∈ 𝐼, 𝑗 ≠ 𝑖 and 𝑝 ∈ 𝑃 , (4h)

𝑥𝑖𝑗𝑝 ∈ {0, 1}, for all 𝑖, 𝑗 ∈ 𝐼 and 𝑝 ∈ 𝑃 , (4i)

𝑦𝑖𝑗 ∈ {0, 1}, for all 𝑖, 𝑗 ∈ 𝐼, (4j)

𝑧𝑖𝑝𝑘 ≥ 0, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝. (4k)

where Constraints (4e) ensure that if a product is transferred from a
store, its entire inventory is moved to exactly one store. As a result,
assignment to multiple stores is not allowed and similarly, a store may
not also keep a portion of the inventory. As we have elaborated before,
this ‘‘single-destination’’ practice is rather peculiar, but nonetheless it
is the case at LC Waikiki. The company justify this practice on the
grounds that without this they would have to devote too much of their
sales personnels’ times for collection, which they are not willing to do.
Clearly, this assumption may have a substantial impact on the profit, as

it may severely restrict options to better match demand with the supply.
Indeed, in our numerical experiments we try to give a sense of the
implications of this assumption. As we have also noted, this assumption
also complicates the problem substantially, without which the problem
can be solved much more effectively.

Before we move to the analysis of the problem, we like to point out
that the final model is indeed quite difficult. The following proposition
shows that the problem is NP-hard.

Proposition 1. Problem (4a)–(4k) is NP-hard.

Proof. We will prove the proposition by reduction. Assume that there
is only one product (𝑃 = {1}), no holding cost, (ℎ = 0) and the product
has only one size (𝐾1 = {1}). Furthermore, assume that the unit net
revenue of the product is zero, (𝑟 = 0), and there is no limitation on the
number of stores to which each store can be connected (unlimited 𝐵𝑖).
Since 𝑟 = 0, Constraints (4b) and (4c) become redundant. Moreover,
if 𝐵𝑖 is unlimited, Constraints (4g) become redundant. Consequently,
since any 𝑦𝑖𝑗 can be one, Constraints (4h) are also redundant. Now the
problem reduces to:

min𝛷 =
∑

𝑖,𝑗∈𝐼
𝑗≠𝑖

𝑐𝑥𝑖𝑗 (5a)

s.t.
∑

𝑗∈𝐼
𝑥𝑖𝑗 = 1, for all 𝑖 ∈ 𝐼, (5b)

∑

𝑗∈𝐼
𝑗≠𝑖

𝑠𝑖𝑥𝑖𝑗 ≤ 𝐴𝑖, for all 𝑖 ∈ 𝐼, (5c)

𝑥𝑖𝑗 ∈ {0, 1}, for all 𝑖, 𝑗 ∈ 𝐼. (5d)

Problem (5a)–(5d) is the well-known generalized assignment problem
which belongs to class of NP-hard problems (Savelsbergh, 1997).

As the proposition shows, our problem (4a)–(4k) is a very difficult
mixed integer linear problem. As we will present later, our experiments
with a commercial optimizer demonstrated that this problem could not
be solved effectively. At LC Waikiki, the number of products that are
considered for transfer is about 2000, on average. On the other hand,
the number of stores is approximately 475 nationwide. Therefore, the
proposed mixed integer linear program can be huge and a heuristic
approach seems to be a reasonable way to proceed. The next section
describes such a heuristic method.

5. Solution approach

We have developed a Lagrangian Relaxation (LR) based approach
to obtain good upper bounds in reasonable time. LR has shown ex-
ceptional success in solving large scale combinatorial optimization
problems (Fisher, 1981). LR is also used in the context of transshipment
and it is shown that it can provide acceptable bounds to the optimal
solution (Wong et al., 2005, 2006). A solution of the Lagrangian dual
provides an upper bound on the optimal solution of the problem (4a)–
(4k). To obtain a lower bound (i.e., a feasible solution), we have
developed a two-stage heuristic that consists of a construction heuristic
and simulated annealing based metaheuristic to improve the solution.
Different heuristic and metaheuristic methods are applied to transship-
ment problems. For example, Patriarca et al. (2016) and Peres et al.
(2017) develop metaheuristics to solve transshipment in inventory-
routing problems. The latter applied a variable neighborhood search
based algorithm, while the former developed a genetic algorithm.
Moreover, local search based methods are utilized in transshipment
problems. For instance, Wong et al. (2005, 2006) developed a simulated
annealing based metaheuristic to find promising feasible solutions.
Therefore, we have also opted for such metaheuristic. In the rest of
this section, we describe these methods in detail.
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5.1. Obtaining upper bounds

Note that in the formulation, Constraints (4c), (4g), and (4f) are
similar to knapsack constraints and Constraints (4e) are basic assign-
ment constraints, all of which are well-known in the literature. On the
other hand, Constraints (4b) and (4h) complicate the problem because
they connect ‘‘𝑧’’ variables to ‘‘𝑥’’ variables and ‘‘𝑥’’ variables to ‘‘𝑦’’
variables, respectively. Thus, problem (4a)–(4k) can be decomposed in
well-known problems by relaxing these complicating constraints.

Let 𝜶 = {𝛼𝑖𝑝𝑘 ∈ R+ ∶ 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 , 𝑘 ∈ 𝐾𝑝} and 𝜷 = {𝛽𝑖𝑗𝑝 ∈ R+ ∶
𝑖, 𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 } represent vectors of Lagrangian multipliers associated
with Constraints (4b) and (4h), respectively. Then the relaxed problem
can be written as

max𝛱𝐿𝑅(𝜶, 𝜷) =
∑

𝑖∈𝐼

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

𝑟𝑝𝑧𝑖𝑝𝑘 −
∑

𝑖∈𝐼

∑

𝑗∈𝐼
𝑗≠𝑖

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

𝑐𝑝𝑠𝑖𝑝𝑘𝑥𝑖𝑗𝑝

−
∑

𝑖∈𝐼

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

ℎ𝑝(𝑤𝑖𝑝𝑘 − 𝑧𝑖𝑝𝑘)

−
∑

𝑖∈𝐼

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

𝛼𝑖𝑝𝑘(𝑧𝑖𝑝𝑘 −
∑

𝑗∈𝐼
𝑠𝑗𝑝𝑘𝑥𝑗𝑖𝑝)

−
∑

𝑖∈𝐼

∑

𝑗∈𝐼
𝑗≠𝐼

∑

𝑝∈𝑃
𝛽𝑖𝑗𝑝(𝑥𝑖𝑗𝑝 − 𝑦𝑖𝑗 ) (6a)

s.t. (4c)–(4g) and (4i)–(4k). (6b)

This problem can be decomposed into three subproblems, which are
given as Eqs. (7a)–(9c), (8a)–(8e), and (9a)–(9c) in Box I.

Among these problems, Problem (7a)–(7c) is solvable by inspection.
Problem (9a)–(9c) can be decomposed into knapsack problems for
each store. Problem (8a)–(8e) seems to be computationally the most
challenging of the three since this problem is similar to the generalized
assignment problem. However, it is also separable for each store, which
allows us to efficiently solve it. The subproblems for each 𝑖 ∈ 𝐼 can be
written as

max𝛱𝑥𝑖
𝐿𝑅(𝜶, 𝜷) =

∑

𝑗∈𝐼
𝑗≠𝑖

∑

𝑝∈𝑃
𝑥𝑖𝑗𝑝((

∑

𝑘∈𝐾𝑝

(−𝑐𝑝 + 𝛼𝑗𝑝𝑘 − ℎ𝑝)𝑠𝑖𝑝𝑘) − 𝛽𝑖𝑗𝑝)

+
∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

(𝛼𝑖𝑝𝑘 − ℎ𝑝)𝑠𝑖𝑝𝑘𝑥𝑖𝑖𝑝 +
∑

𝑗∈𝐼

∑

𝑝∈𝑃
ℎ𝑝𝑤𝑖𝑝𝑘 (10a)

s.t.
∑

𝑗∈𝐽
𝑥𝑖𝑗𝑝 = 1, for all 𝑝 ∈ 𝑃 , (10b)

∑

𝑗∈𝐼
𝑗≠𝑖

∑

𝑝∈𝑃
𝑠𝑖𝑝𝑘𝑥𝑖𝑗𝑝 ≤ 𝐴𝑖, (10c)

𝑤𝑖𝑝𝑘 =
∑

𝑗∈𝐼
𝑥𝑗𝑖𝑝𝑠𝑗𝑝𝑘, for all 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (10d)

𝑥𝑖𝑗𝑝 ∈ {0, 1}, for all 𝑗 ∈ 𝐼 and 𝑝 ∈ 𝑃 . (10e)

Suppose that Lagrangian multipliers 𝛼𝑖𝑝𝑘 and 𝛽𝑖𝑗𝑝 are set to some
values. Then, let us define ẑ = {𝑧𝑖𝑝𝑘 ∶ 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 , 𝑘 ∈ 𝐾𝑝}, x̂ = {𝑥𝑖𝑗𝑝 ∶
𝑖, 𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 }, and ŷ = {𝑦𝑖𝑗 ∶ 𝑖, 𝑗 ∈ 𝐼} as the corresponding optimal
solutions to the subproblems (7a)–(7c), (8a)–(8e) and (9a)–(9c), respec-
tively. We can then improve the Lagrangian bounds for a given solution
by revising these Lagrangian multipliers. We achieve this by solving the
Lagrangian dual while retaining the primal solutions. Interested reader
can refer to Litvinchev (2007) for a detailed account of this approach.
The Lagrangian dual can be formulated as Eq. (11a)–(11h) in Box II.

The objective function (11a) is the objective function of the dual
problem. Since the solutions x̂, ŷ, and ẑ are known, Constraints (11b)–
(11h) are added to modify the Lagrangian multipliers while retaining
the primal solutions. Constraints (11b) ensure that if a product 𝑝 is sent
from store 𝑖 to any other store 𝑗, then the coefficient of 𝑥𝑖𝑗𝑝 in the
objective function must be less than the coefficient of 𝑥𝑖𝑖𝑝. Similarly,
the coefficient of 𝑥𝑖𝑗𝑝 must be less than the coefficient of any other
𝑥𝑖𝑗∗𝑝, which is guaranteed by Constraints (11c). On the other hand, if
𝑥𝑖𝑖𝑝 = 1, that is, product 𝑝 remains at its original location, then 𝑥𝑖𝑗𝑝 = 0,

which is ensured by Constraints (11d). Constraints (11e) guarantee
that multipliers 𝛼𝑖𝑝𝑘 are not greater than corresponding unit revenues
plus holding cost to prevent 𝑧𝑖𝑝𝑘 to be zero. Likewise, Constraints
(11f) set upper bounds on 𝛽𝑖𝑗𝑝. Finally, multipliers 𝛼𝑖𝑝𝑘 and 𝛽𝑖𝑗𝑝 must
be non-negative which are ensured by Constraints (11g) and (11h),
respectively.

The optimal solution to this problem is a tighter upper bound as
compared to the solution obtained from the relaxed problem. Naturally,
this solution provides an upper bound to the optimal solution of the
original problem as well.

5.2. Obtaining lower bounds

As mentioned earlier, we obtain lower bounds, i.e., feasible solu-
tions, via a construction heuristic followed by an improvement meta-
heuristic. The construction heuristic consists of two steps, in the first
of which we iteratively connect stores until there is no improvement.
We start by dividing all store-product combinations into two groups as
sender and receiver based on their stock and demand levels without
considering the sizes. For each product, if the stock level in a store
is more than its demand, the store is classified as sender; otherwise,
it is classified as a receiver. Note that, a store can be either in the
sender group or in the receiver group for a product (or, in none
of the groups in case the stock and demand levels are equal). We
then sequentially connect senders to receivers by selecting products
randomly. For each store in the sender group, we find a candidate store
from the receiver group that creates the highest profit, i.e., revenue less
implied costs. A transfer decision is made if Constraints (4f) and (4g)
remain feasible. After all products are selected, we update the sender
and receiver groups considering the current transfers. That is, a store
that was initially in the sender group and sends its entire inventory
to another store may be included in the receiver group in the next
iteration. Moreover, a store in the receiver group can continue to stay in
the same group, if it still has needs. Otherwise, it will not be considered
as a sender or a receiver. This procedure is repeated until there is no
improvement in the solution. In the second step, we further investigate
profitable transfers that were not made in the previous step due to
Constraints (4g). Now, we search for beneficial transfers by choosing
among the destinations that a store is already connected, so that the
constraint remains feasible, while the solution is improved.

At the improvement stage, we have developed a simulated an-
nealing based metaheuristic. The proposed metaheuristic essentially
destroys the current feasible solution by removing a transfer and then
repairing it by inserting another transfer. It removes transfers according
to three rules that are applied randomly. In the first rule, the transfer
to be removed is also selected randomly. The other two rules use the
‘‘residual demand’’ information for each store-product pair, i.e., the
difference between the demand and the transfer it receives in the
current solution. That is, those with the negative residual demand
are the ones that receive more than their demand. The second rule
randomly chooses a store-product pair among those that have negative
residual demands. And finally, for the third rule we first list all store-
product pairs that have negative residual demand. Then we select the
product that appears the most in the list and then choose from the stores
that also appears the most in the list and paired with this product. After
selecting a store-product pair, that transfer is removed and another
transfer is inserted while maintaining the feasibility of Constraints (4e).
The destination store is chosen randomly among the ones that have
positive residual demand. The purpose of these rules is to enable moving
to worse as well as better solutions than the current one.

The algorithm allows non-improving moves to include diversity as
in the simulated annealing (SA) approach. It is adopted as follows: If
the profit of the new transfer is greater than or equal to the profit of
the removed one, the transfer is accepted. Otherwise, we accept it with
probability 𝑒

−(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃 𝑟𝑜𝑓𝑖𝑡−𝑛𝑒𝑤𝑃𝑟𝑜𝑓𝑖𝑡)
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 , where 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃 𝑟𝑜𝑓𝑖𝑡 and 𝑛𝑒𝑤𝑃𝑟𝑜𝑓𝑖𝑡

denote the profits of the removed transfer and the newly added one,
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𝑆𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚 1 ∶ max𝛱𝑧
𝐿𝑅(𝜶) =

∑

𝑖∈𝐼

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

𝑧𝑖𝑝𝑘(𝑟𝑝 − 𝛼𝑖𝑝𝑘 + ℎ𝑝) (7a)

s.t. 𝑧𝑖𝑝𝑘 ≤ 𝑑𝑖𝑝𝑘, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (7b)

𝑧𝑖𝑝𝑘 ≥ 0, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝. (7c)

𝑆𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚 2 ∶ max𝛱𝑥
𝐿𝑅(𝜶, 𝜷) =

∑

𝑖∈𝐼

∑

𝑗∈𝐼
𝑗≠𝑖

∑

𝑝∈𝑃
𝑥𝑖𝑗𝑝(

∑

𝑘∈𝐾𝑝

((−𝑐𝑝 + 𝛼𝑗𝑝𝑘 − ℎ𝑝)𝑠𝑖𝑝𝑘) − 𝛽𝑖𝑗𝑝)

+
∑

𝑖∈𝐼

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

(𝛼𝑖𝑜𝑘 − ℎ𝑝)𝑠𝑖𝑜𝑘𝑥𝑖𝑖𝑝 +
∑

𝑖∈𝐼

∑

𝑗∈𝐼

∑

𝑝∈𝑃
ℎ𝑝𝑤𝑖𝑝𝑘 (8a)

s.t.
∑

𝑗∈𝐽
𝑥𝑖𝑗𝑝 = 1, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 , (8b)

∑

𝑗∈𝐼
𝑗≠𝑖

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

𝑠𝑖𝑝𝑘𝑥𝑖𝑗𝑝 ≤ 𝐴𝑖, for all 𝑖 ∈ 𝐼, (8c)

𝑤𝑖𝑝𝑘 =
∑

𝑗∈𝐼
𝑥𝑗𝑖𝑝𝑠𝑗𝑝𝑘, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (8d)

𝑥𝑖𝑗𝑝 ∈ {0, 1}, for all 𝑖, 𝑗 ∈ 𝐼 and 𝑝 ∈ 𝑃 . (8e)

𝑆𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚 3 ∶ max𝛱𝑦
𝐿𝑅(𝜷) =

∑

𝑖∈𝐼

∑

𝑗∈𝐼
𝑗≠𝐼

∑

𝑝∈𝑃
𝛽𝑖𝑗𝑝𝑦𝑖𝑗 (9a)

s.t.
∑

𝑗∈𝐼
𝑗≠𝑖

𝑦𝑖𝑗 ≤ 𝐵𝑖, for all 𝑖 ∈ 𝐼, (9b)

𝑦𝑖𝑗 ∈ {0, 1}, for all 𝑖, 𝑗 ∈ 𝐼. (9c)

Box I.

min
𝛼,𝛽

max𝛥(ẑ, x̂, ŷ) =
∑

𝑖∈𝐼

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

𝑧𝑖𝑝𝑘(𝑟𝑝 − 𝛼𝑖𝑝𝑘 + ℎ𝑝) +
∑

𝑖∈𝐼

∑

𝑗∈𝐼
𝑗≠𝐼

∑

𝑝∈𝑃
𝛽𝑖𝑗𝑝𝑦𝑖𝑗 +

∑

𝑖∈𝐼

∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

(𝛼𝑖𝑝𝑘 − ℎ𝑝)𝑠𝑖𝑝𝑘𝑥𝑖𝑖𝑝

+
∑

𝑖∈𝐼

∑

𝑗∈𝐼
𝑗≠𝑖

∑

𝑝∈𝑃
𝑥𝑖𝑗𝑝((

∑

𝑘∈𝐾𝑝

(−𝑐𝑝 + 𝛼𝑗𝑝𝑘 − ℎ𝑝)𝑠𝑖𝑝𝑘) − 𝛽𝑖𝑗𝑝) (11a)

s.t.
∑

𝑘∈𝐾𝑝

(𝛼𝑗𝑝𝑘 − 𝑐𝑝 − ℎ𝑝)𝑠𝑖𝑝𝑘 − 𝛽𝑖𝑗𝑝 ≤
∑

𝑘∈𝐾𝑝

(𝛼𝑖𝑝𝑘 − ℎ𝑝)𝑠𝑖𝑝𝑘, for all 𝑖 ≠ 𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 , 𝑘 ∈ 𝐾𝑝 if 𝑥𝑖𝑗𝑝 = 1, 𝑖 = 𝑗, (11b)

∑

𝑘∈𝐾𝑝

(𝛼𝑗𝑝𝑘 − 𝑐𝑝 − ℎ𝑝)𝑠𝑖𝑝𝑘 − 𝛽𝑖𝑗𝑝 ≤
∑

𝑘∈𝐾𝑝

(𝛼𝑗∗𝑝𝑘 − 𝑐𝑜 − ℎ𝑝)𝑠𝑖𝑝𝑘 − 𝛽𝑖𝑗∗𝑝, for all 𝑖, 𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 , 𝑘 ∈ 𝐾𝑝 if 𝑥𝑖𝑗𝑝 = 1, 𝑖 ≠ 𝑗, 𝑗∗, (11c)

∑

𝑘∈𝐾𝑝

(𝛼𝑖𝑝𝑘 − ℎ𝑝)𝑠𝑖𝑝𝑘 ≤
∑

𝑘∈𝐾𝑝

(𝛼𝑗∗𝑝𝑘 − 𝑐𝑝 − ℎ𝑝)𝑠𝑖𝑝𝑘 − 𝛽𝑖𝑗∗𝑝, for all 𝑖, 𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 , 𝑘 ∈ 𝐾𝑝 if 𝑥𝑖𝑗𝑝 = 1, 𝑖 ≠ 𝑗 ≠ 𝑗∗, (11d)

𝛼𝑖𝑝𝑘 ≤ 𝑟𝑝 + ℎ𝑝, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (11e)

𝛽𝑖𝑗𝑝 ≤
∑

𝑘∈𝐾𝑝

((−𝑐𝑝 + 𝑟𝑝 − ℎ𝑝)𝑠𝑖𝑝𝑘), for all 𝑖, 𝑗 ∈ 𝐼 and 𝑝 ∈ 𝑃 , (11f)

𝛼𝑖𝑝𝑘 ≥ 0, for all 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾𝑝, (11g)

𝛽𝑖𝑗𝑝 ≥ 0, for all 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼, and 𝑝 ∈ 𝑃 . (11h)

Box II.

respectively and 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 is the current temperature, which is a
parameter of SA. Initially, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 is equal to the total profit of
current solution so that the 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 becomes high and the chance of
accepting a worse solution is high. The 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 is decreased at each

iteration using the formula 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒×𝜏, where 0 < 𝜏 <
1 is the 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒. A 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 keeps the number of worse solutions
accepted. The 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 is calculated by 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 1∕𝑐𝑜𝑢𝑛𝑡𝑒𝑟.
The best solution is kept and updated whenever a better solution is
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found. To avoid being trapped in local optima, the algorithm continues
to search from either the best solution or second best solution if there
is no improvement in a predefined number of iterations. The algorithm
stops if either the total number of iterations reaches to its upper bound
or the time limit hast been reached.

6. Computational results

In this section, we report on our computational experiments that
consist of two main parts. In the first part, our purpose is to compare
the effectiveness of our solution method to that of a commercial solver.
Towards this purpose, the generated instances that are first solved by
Gurobi 8.1 and then by our algorithm, which is implemented in Python
3.6 and the subproblems are also solved with Gurobi. All experiments
are conducted on a High-Performance Computing (HPC) cluster with
Linux system, 44 GB RAM, and 2.40 GHz processors with two cores.
In the second part, our purpose is to develop insights into the effects
of the operational constraints on the system performance and the
impact of initial replenishment levels on the benefits of transshipment
opportunities. Towards this end, we develop another set of instances,
all of which are solved by Gurobi.

LC Waikiki has about 475 stores (excluding the outlet ones) and
about 2000 items considered for transfer at any week. Unfortunately,
problems of this scale cannot be directly handled by Gurobi. Therefore,
we have targeted 50 and 100 as the number of stores and 100, 200,
500, and 1000 as the number of products. The number of sizes varies
according to the product. However, most of the products have five to 10
different sizes (e.g., S, M, L, XL, and XXL or 28, 30, 32, 34, 36, 38, 40,
42, 44, and 46 for two different products). Thus, in the test problems,
the number of sizes is set to either five or 10. Detailed information on
the combination of sizes of the instances are given in the first columns
of Tables 2, 3, and 4. In total, we have solved instances of 14 different
size combinations.

We randomly generated demands (𝑑𝑖𝑝𝑘) and initial stock levels (𝑠𝑖𝑝𝑘)
from a discrete uniform distribution that is defined between 0 and 10.
The prices of the products are set between 20 and 50 Turkish Lira (TL)
while the transfer costs for these products are set between 0.4 to 1.5
TL. We generated the selling prices and transfer costs randomly from
uniform distributions with the bounds given above. To set the holding
cost rate we should have also drawn unit costs but in the interest of
simplicity we used the unit revenues. The holding cost per week is
taken as the 0.5% of the unit revenue, which corresponds to about 30%
or less, annually. Although we have not used any real data from LC
Waikiki to develop these instances, we have decided on these values
upon our conversations with the group that deals with the transfers;
hence, we believe our instances are quite realistic.

In order to find the parameters of two of the operational constraints,
first we solved each instance by ignoring all three restrictions. We then
found the number of items each store sends and the number of stores
it is connected. These are essentially, the maximum values when there
are no operational constraints. Based on these numbers, we then set
three levels of 𝐴𝑖 and 𝐵𝑖 for each store as low (1/3 of the maximum),
medium (1/2 of the maximum), and high (2/3 of the maximum).

For each size and (𝐴𝑖, 𝐵𝑖) combinations, we have randomly gen-
erated 10 instances. We have reached at this number through a small
numerical experiment. We took three instance sizes, generated 100 ran-
dom instances of each, solved them with our algorithm, and computed
the average gaps progressively. It turned out that after 10th replication
the progressive average of gaps becomes nearly constant for all three
sets of instances as illustrated in Fig. 2. Therefore, we concluded that
10 instances would be enough to have a reliable performance metric
in terms of average gaps. As a result, we have generated and tested a
total of 14 × 3 × 10 = 420 instances.

The results are illustrated in Tables 2, 3, and 4. The first column
depicts the size of each instance with respect to the number of stores,
products, and sizes. The Gurobi column reports the average of best

Fig. 2. Sensitivity of progressive optimality gap to the number of replications.

feasible solutions, the minimum, maximum, and average optimality
gaps of 10 replications that Gurobi achieved and the time limit that we
set. We have given a one-hour time limit for smaller sized problems,
two-hour time limit for medium sized ones, and six-hour time limit
to the larger sized instances, in addition to the problem loading times
to Gurobi. The metaheuristic column also reports the average of best
feasible solutions, the minimum, maximum, and average optimality
gaps of 10 replications and the time our algorithms spent to find the
upper and lower bounds. We calculated the optimality gaps as 𝑈𝐵−𝐿𝐵

𝐿𝐵
where 𝑈𝐵 and 𝐿𝐵 represent the upper and lower bounds found by
Gurobi and our method.

The results show that our algorithm is comparable to, and in some
cases much more effective than, Gurobi. First of all, our algorithm
spends about one-third to one-half of the time that we give to Gurobi
excluding the time it takes to load the problem to Gurobi, which could
be rather substantial in larger instances. In terms of the optimality
gaps, the results are somewhat mixed. There are many instance sets, for
which Gurobi found better solutions (lower bounds) than our method
did. However, Gurobi’s solutions deteriorate faster than our method
with increasing problem size. Although our approach also suffers, it
can solve most medium-sized problems with around 1% optimality gaps
and large-sized problems with a maximum gap of about 7%.

The most important problem with Gurobi, however, is that it is
rather unreliable. In some cases the solutions it found were just terrible,
with optimality gaps hovering around 300%. Upon close inspection,
we noticed that these poor results belong to the instances where there
are five different sizes, whereas the instances with the same number
of stores and products but 10 different sizes for each products, the
behavior was quite the opposite. This was rather puzzling; after all, the
latter instances are of larger size, but with closer inspection we were
able to conclude that it was the combination of several factors that led
to this unexpected results. First of all, since the transportation costs
are quite low as compared to the revenues, as long as it is revenue-
improving the optimal solution tends to have large number of transfers.
Secondly, when there are 10 sizes for each product, there are fewer
profitable opportunities for transfers as compared to the same number
of stores and products with five sizes for each product. This might seem
unclear at first, but single-destination constraint is mainly responsible
for these results. For example, if there is only one size, then there
would be many profitable opportunities for transfer. When there are
two sizes, the opportunities would diminish because there would be
more sales opportunities at the original sources and there would be
fewer alternative stores that would have demand for both sizes. This
would be even more prominent with increasing the number of sizes.
This is indeed what we have observed in a simple experiment that
we have conducted with 20 stores, 100 products and no operational
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Table 2
Results for low level of 𝐴𝑖 and 𝐵𝑖.

Instance Gurobi Metaheuristic

𝐼-𝑃 -𝐾 Average Gap Average Average Gap Average

Lower bound Min Average Max Runtime Lower bound Min Average Max Runtime

50-100-5 848,013 0.71 0.79 0.89 3600 841,322 1.04 2.07 3.67 1285
50-100-10 307,259 0.00 0.00 0.01 7.04 302,956 0.50 2.41 5.33 1017
50-200-5 1,519,767 0.78 0.87 1.01 3600 1,500,891 1.06 3.00 5.38 1424
50-200-10 935,098 0.79 1.09 1.37 3600 924,970 1.77 3.39 8.32 1318
50-500-5 2,317,320 282.10 288.27 296.74 3600 6,244,111 4.22 4.48 4.76 2001
50-500-10 2,417,042 0.34 0.40 0.45 3600 2,398,677 0.98 2.40 3.65 1960
50-1000-5 4,663,613 262.45 284.38 302.65 3600 11,074,571 2.50 3.76 4.29 1966
50-1000-10 3,507,723 0.09 0.14 0.22 3600 3,487,356 0.76 1.04 1.44 2082
100-100-5 950,596 283.04 287.71 293.21 7200 2,695,145 3.47 5.30 6.20 1492
100-100-10 1,890,957 0.22 0.31 0.41 7200 1,882,898 0.57 1.58 3.29 3707
100-500-5 4,666,991 284.15 287.76 294.74 7200 12,141,278 6.10 6.57 6.96 4313
100-500-10 7,809,377 0.71 0.91 1.11 7200 7,714,316 0.85 3.52 5.16 4414
100-1000-5 9,303,094 284.71 288.34 291.90 21600 18,948,867 0.49 0.94 1.24 9245
100-1000-10 12,997,254 0.39 0.99 1.28 21600 12,906,313 1.33 2.45 3.22 6475

Table 3
Results for medium level of 𝐴𝑖 and 𝐵𝑖.

Instance Gurobi Metaheuristic

𝐼-𝑃 -𝐾 Average Gap Average Average Gap Average

Lower bound Min Average Max Runtime Lower bound Min Average Max Runtime

50-100-5 1,023,543 0.42 0.49 0.56 3600 1,015,396 0.82 2.57 4.95 1274
50-100-10 547,922 0.01 0.01 0.01 169 542,032 0.63 1.74 3.05 1181
50-200-5 1,794,245 0.72 0.83 0.95 3600 1,760,781 1.60 3.58 5.37 1404
50-200-10 1,249,620 0.47 0.56 0.66 3600 1,224,849 1.09 3.36 6.11 1366
50-500-5 5,085,082 6.65 90.41 287.53 3600 6,501,742 3.70 3.96 4.23 2000
50-500-10 3,192,027 0.08 0.10 0.13 3600 3,149,863 0.73 3.53 4.67 1982
50-1000-5 4,663,613 283.04 287.71 293.21 3600 12,553,494 1.12 1.80 2.93 1974
50-1000-10 6,070,388 0.10 0.14 0.19 3600 5,984,386 1.08 1.75 2.56 2075
100-100-5 3,008,779 0.52 0.82 1.18 7200 2,997,312 2.57 4.49 5.21 1475
100-100-10 1,890,938 0.07 0.08 0.10 7200 1,879,030 0.34 2.79 4.13 3774
100-500-5 4,636,738 284.96 289.79 294.74 7200 12,713,377 4.81 5.30 5.76 4754
100-500-10 9,447,082 0.94 1.06 1.17 7200 9,363,384 2.09 2.74 3.43 4514
100-1000-5 9,325,113 284.71 287.41 289.97 21600 20,854,343 1.83 2.50 2.92 9028
100-1000-10 15,871,661 0.01 0.42 1.22 21600 15,780,238 1.11 1.55 2.52 6109

Table 4
Results for high level of 𝐴𝑖 and 𝐵𝑖.

Instance Gurobi Metaheuristic

𝐼-𝑃 -𝐾 Average Gap Average Average Gap Average

Lower bound Min Average Max Runtime Lower bound Min Average Max Runtime

50-100-5 1,171,178 0.33 0.39 0.48 15 1,154,752 1.79 2.96 5.17 1290
50-100-10 819,047 0.01 0.02 0.06 2845 805,510 0.37 2.13 3.10 1333
50-200-5 2,042,125 0.58 0.79 1.37 3600 2,017,624 1.52 3.36 5.10 1448
50-200-10 1,507,772 0.31 0.37 0.46 3600 1,496,739 1.31 2.63 3.88 1423
50-500-5 7,151,269 0.12 0.28 0.41 3600 7,120,120 0.72 1.06 1.97 1778
50-500-10 4,456,310 0.01 0.01 0.01 154 4,296,653 3.37 4.28 4.77 2131
50-1000-5 12,891,943 0.07 0.12 0.16 3600 12,839,782 0.46 0.75 1.13 1971
50-1000-10 8,840,304 0.01 0.01 0.02 1963 8,462,620 1.46 2.12 2.98 2064
100-100-5 3,021,758 0.20 0.30 0.46 7200 3,010,490 3.76 4.55 5.64 1464
100-100-10 1,891,297 0.53 0.56 0.63 7200 1,872,998 4.41 5.23 5.96 3647
100-500-5 14,830,650 0.49 1.27 2.16 7200 14,685,243 2.66 3.87 5.58 4201
100-500-10 9,492,130 0.02 0.14 0.29 7200 9,373,087 1.10 2.19 3.02 4512
100-1000-5 29,909,041 0.56 0.82 1.56 21600 29,313,762 1.55 3.39 5.72 9014
100-1000-10 19,301,509 0.00 0.01 0.01 11479 19,217,184 0.65 1.09 1.43 6004

constraints. We then set the number of sizes as 2, 5, 8, 10, and 15 and
have randomly drawn 10 instances for each size. Table 5 reports the
results, which confirm our intuition. Hence, since there are far fewer
transfers in the optimal solution as the number of sizes increases most
stores do not perform any transfers but keep at the source. As a result,
Gurobi can eliminate a substantial number of potential transfers across
the stores and finds solutions easier in instances where there are 10
sizes as compared to five. To conclude, while our approach does not
produce better solutions than Gurobi all the time, due to its robustness
to problem characteristics, it is a much better alternative of the two.

In the second part of our experiments, our purpose is to shed some
light into the effects of particular operational restrictions used by LC

Waikiki. The restrictions include the two capacity constraints and the
single-destination policy. Towards this end, we considered six problem
sizes as illustrated in Fig. 3. We randomly generated 10 instances for
each of these problem sizes. As we have done in the first part, we have
created further instances based on how tight the capacity constraints
are. Similarly, we first solved each instance by ignoring all three
restrictions, found the maximum values 𝐴𝑖 and 𝐵𝑖 can take for each
store, and then created four combinations of (𝐴𝑖, 𝐵𝑖) by setting them
to either ‘‘low’’ (1/3 of the maximum) or ‘‘high’’ (2/3 of the maximum).
Therefore, altogether we have solved a total of 240 instances.

The unconstrained version of the problem, i.e., (1a)–(1g), is solved
first, and then the problem with the transfer capacity constraint,
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Table 5
Effect of the number of sizes on the number of transfers.
𝐾 Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6 Instance 7 Instance 8 Instance 9 Instance 10

2 1038 1074 1009 1013 1031 1030 1069 1011 998 1038
5 616 626 624 650 630 625 634 653 612 621
8 327 371 334 366 352 353 315 335 315 354
10 208 226 220 220 206 231 204 244 207 237
15 42 55 65 57 48 53 59 57 78 50

i.e., (2a)–(2c), which is followed by the problem with both capacity
constraints, i.e., (3a)–(3e), and finally, the full problem (4a)–(4k) is
solved. All these problems are solved with Gurobi. Although not all
problems are solved to optimality, the gaps are rather small, so the
results are quite reliable.

Fig. 3 depicts the summary results. Each graph in the figure contains
results based on the combinations of (𝐴𝑖, 𝐵𝑖) pairs. In the figure,
optimum solution of each unconstrained instance is normalized to 100
and the objective functions of each instance’s constrained versions
are found as percentage of the optimal value of the unconstrained
version. The graphs report the averages of these percentages over
10 instances. The effect of the constraint on the number of SKUs
that can be transferred is quite clear. The optimal values for low 𝐴𝑖
instances reduce to roughly 50%–70% of the maximum possible under
unconstrained values (top two graphs). On the other hand, in most
of the instances with high 𝐴𝑖’s the optimal values do not decrease
significantly. Although in some instances they may drop to less than
85% of the maximum possible, in most instances they drop to around
mid-90% of the maximum possible. The addition of the second capacity
constraint that restricts the number of stores deteriorates optimal val-
ues particularly when 𝐴𝑖’s are high, but not when they are low. When
𝐴𝑖’s are already low, further drop on the optimal value is around 5%
and most drop happens in the instances with 10 sizes for each product.
This result is intuitive because when there are 10 sizes, there are simply
more opportunities to match the demand and supply as there are more
sizes (because there is no single-destination constraint yet). Therefore,
restricting the number of stores eliminates more of those opportunities.
When the 𝐴𝑖’s are high, however, the impact of the addition of the
second capacity constraint has a much more detrimental effect across
all instances, but particularly more so again in the 10-size instances due
to the same reason. In the end, however, the constraint that restricts
the number of items is more ‘‘constraining’’ than the constraint that
restricts the number of stores. As one can see from the graphs, while
in low 𝐴𝑖 and high 𝐵𝑖 cases (top-right graph) the optimal value drops
to 40%–65% of the maximum, in high 𝐴𝑖 and low 𝐵𝑖 cases (bottom-left
graph) the optimal value drops to around 65%–85% of the maximum
possible.

We can observe that the single-destination constraint, after the
capacity constraints, has a modest deteriorating impact on the optimal
value. Depending on the cases, it has roughly an additional 5%–15%
negative impact on the maximum possible values. This impact gets
somewhat stronger when there are fewer opportunities for transfers,
that is when there are fewer stores and products. For example, the
largest impact of this constraint can be seen for the instances of
20 stores, 100 products, and 10 sizes (i.e., 20–100–10). This result
is also quite intuitive because when there are more stores and/or
more products, there are potentially larger number of attractive single-
destination transfer options and therefore, the impact of this constraint
is lessened. However, when the alternatives are already scarce, the
single-destination constraint leads to yet fewer transshipment moves,
deteriorating the objective function further.

In the last part of our experiments, we investigate the effect of initial
replenishment levels on transshipment benefits under the particular
operational constraints and practices. We must remark that we do not
attempt to solve a joint replenishment-transshipment problem; such
would be a daunting undertaking for the environment we are consider-
ing. Not only the problem sizes are enormous with hundreds of stores

and thousands of SKUs, but also the particular operational character-
istics and practices and the need to include demand uncertainty make
the task almost impossible. Therefore, what we try to demonstrate here
is how our model can be used to quantify the transshipment benefits
under a few replenishment levels. Towards this end we conducted a
limited set of experiments with 10 instances of the problem with 20
stores, 100 products, and five sizes. Although other instances show a
similar pattern, since these results ultimately depend on the particular
way the problem parameters are generated, our results should be
considered illustrative rather than suggestive.

To find the transshipment benefits, we first calculated the objective
function value for each instance without any transshipment; that is,
each store can only sell what it has and incur inventory holding cost
for the remaining SKUs. We then solved six transshipment problems
for each instance. The first one is the problem (1a)–(1g) where there
is no constraint on transshipments, which gives the maximum possible
benefit of the transshipment option. We then solved the main problem
(4a)–(4k) with five capacity settings; four of which are the high-low
capacity combinations as in the previous experiment and the fifth one is
the unlimited capacity case, which is included to investigate the impact
of the single-destination constraint alone. We then found the ratio of
the objective function values under each transshipment scenario to that
of the no transshipment case and then took the average of the ratios
over 10 instances, which we use as a measure of the transshipment
benefits under different conditions. In other words, we measure the
‘‘relative’’ benefit of the transshipment cases with respect to the no
transshipment option.

The way we include different replenishment levels into the anal-
ysis is through modification of the current SKU inventories by some
amount. For example, for a product where the current inventories of
the five sizes are (2,3,1,0,2), a reduced replenishment level can be
approximated with the modified inventories of (1,2,0,0,1), i.e., each
SKU inventory is reduced by one. Similarly, an increased replenishment
level can be approximated with (3,4,2,1,3), i.e., each is increased by
one. This type of modification is a rough approximation of a decision
to decrease or increase the initial replenishment order by one for each
SKU and for each store. Such a setting is admittedly rough; firstly,
because it involves some assumptions on what happens to the SKUs
with zero inventories and secondly, it assumes that the company treats
all SKUs and stores the same. However, dealing with such complexities
require many other assumptions and instances with different settings.
Therefore, we set aside those complexities and focus only on these
rough approximations of replenishment level decisions.

Fig. 4 depicts our results, where ‘‘supply’’ case refers to the instances
with the original inventory values, while the others are the instances in
which the inventories are reduced or increased by one or two. Firstly,
we can observe that as the constraints on transshipments are more
relaxed, relative transshipment benefits increase, which is expected. For
example, in the original instances, while the average ratio could be
higher than 3.00 for the unconstrained transshipment case, the same
could be as low as 1.8 for the instances with low 𝐴𝑖’s, and somewhere
in between for the other cases. Secondly, as the inventories decrease,
relative transshipment benefits increase slightly or stay roughly the
same. This observation suggests that even if the company tends to
reduce the initial replenishment quantities, the transshipment benefits
continue to be substantial. On the other hand, when the inventories
are increased there is a sharp decrease in the relative transshipment
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Fig. 3. Effect of adding capacity and single-destination constraints on the objective function value (OFV). Top-left: low 𝐴𝑖 and low 𝐵𝑖, top-right: low 𝐴𝑖 and high 𝐵𝑖, bottom-left:
high 𝐴𝑖 and low 𝐵𝑖, and bottom-right: high 𝐴𝑖 and high 𝐵𝑖.

benefits in most cases. This result is also expected because as the
inventories at the branches are increased, there are much fewer stores
and SKUs that would need extra items. The only exception to this
result is the cases with low 𝐴𝑖’s when there is only modest increase
in the inventories. In these cases a slight increase in the inventories
may actually improve the relative transshipment benefits or deteriorate
them less. The reason for this result is that when the inventories
get slightly larger, the model may find more attractive cases under
tight capacity constraints. However, as the inventories increase further
(e.g., the ‘‘supply+2’’ case), relative benefits of transshipment decrease
for these cases as well. Eventually, the differences between all the cases
tend to reduce as the inventories increase. This result is also intuitive
because when inventories are increased substantially, fewer stores and
SKUs would have additional needs, which in turn reduces the needs
for transshipments in the system and therefore, the negative effects of
operational constraints on transshipment lessen as well.

To summarize the managerial implications of the first part of the
experiments, we can conclude that in general, (i) it is the restriction
on the total number of SKUs that can be transferred rather than the
restrictions on the number of destinations that has a more negative
effect, (ii) single-destination constraint has a more detrimental effect
when the capacities are less restrictive, and finally, (iii) all the negative
effects are usually more pronounced when there are larger number
of sizes per product. Therefore, if a firm wishes to relax the single-
destination constraint, it should start from products with larger number
of sizes and accompany it relaxing restrictions on the transfer capaci-
ties. From the second part of the experiments, we can conclude that
while reduced replenishment levels almost never lessen the relative
benefits of transshipments, increased replenishment levels do lessen the
relative benefits particularly when the constraints on transshipments
are more relaxed. As a side result, we can also conclude that if the

Fig. 4. Effect of initial replenishment level on transshipment benefit.

company considers relaxing some of the constraints on transshipments
(for example, single-destination) at least for some products, it should
consider lower inventory items first.

7. Concluding remarks

In this paper we introduce a novel proactive transshipment problem
motivated by the practice at the largest fast fashion retailer in Turkey,
LC Waikiki. The company, after allocating the initial inventory to over
475 stores and observing sales for a few weeks, engages in lateral
transshipments among the stores. When a product has different sales



International Journal of Production Economics 227 (2020) 107687

13

S. Naderi et al.

performances across the stores, lateral transshipments can improve the
overall system performance. Not only such a practice helps the com-
pany better match supply with demand but also eliminates additional
handling and transportation operations at its central depot.

Its large scale and particular operational restrictions necessitate the
development of a novel model. We formulate the transfer problem of LC
Waikiki as a mixed integer linear programming problem. With around
475 stores, 2000 products, and a variety of operational constraints,
this problem becomes a very large mixed integer program and solving
it optimally becomes a challenge. Therefore, we have developed a
simulated annealing based metaheuristic to solve the problem. We also
applied Lagrangian relaxation with a primal–dual approach to obtain
sharp upper bounds on the optimal solution of the original problem.
We generated 420 problem instances of varying sizes to evaluate the
performance of the proposed algorithm against the commercial opti-
mizer Gurobi. Each instance is solved by the proposed algorithm and
Gurobi. The results show that although the solutions prescribed by
Gurobi are better than ours in small-size instances and those with loose
capacities, the proposed algorithm outperforms Gurobi in instances that
are characterized by having a large number of potentially beneficial
transfers and tighter capacity constraints. These instances are the ones
where the combinatorial nature of the problem becomes the most
challenging. Gurobi fails spectacularly in these instances, while our
algorithm performs without a significant loss in its performance. Hence,
our algorithm is quite robust to changing program characteristics.
Finally, our algorithm is also quicker in finding solutions, spending
only about one-third to one-half of the time spent by Gurobi. This
feature makes our approach particularly attractive when companies
need speedy solutions to these problems.

We have also conducted a carefully designed numerical experiment
to uncover the effect of the particular operational constraints of the
company. First, we have solved the instances without any of those
constraints and found the maximum potential gross revenue (i.e., the
base gross revenue) that can be obtained with transshipments. We have
then added those constraints one by one to observe their effects. We
observe that constraints on the total number of products a store can
send may have a significant impact and depending on how tight those
restrictions are, it may reduce the gross revenue to as low as 50% of its
base level. The second capacity restriction, i.e., the number stores that
a store can make shipments, usually has very little negative impact if
the first constraint is already tight, but its impacts increase otherwise.
Depending on the cases, it can result in an additional 5–20% decrease
of the base revenue We have also measured the effect of the single-
destination practice and have found that it may reduce the revenues
by another 5–15% of the base revenue depending on how tight the
capacity constraints are. When the capacity constraints are already
tight, the negative impact of this practice is quite small, but where
the capacities are loose the negative impact of this practice is quite
significant. We have also observed that the number of sizes also plays
a significant role in these results. In our sample instances we have used
five and 10 as the number of sizes. Naturally, when there are 10 sizes
of products, single-destination practice renders much fewer number of
transfers as potentially beneficial and therefore, this practice becomes
more detrimental to the base revenue when the number of sizes in-
creases. Finally, we have investigated the effect of initial replenishment
level on relative transshipment benefits. The results show that, while
the reduced replenishment levels usually does not reduce the relative
benefits of transshipments, increased replenishment levels may do so,
particularly if the constraints in the transshipments are more relaxed.

We had to make a number of simplifying assumptions to effectively
deal with this very large problem that has complicating operational
constraints. Therefore, there are a number of avenues for future re-
search. While one may have accurate demand forecasts as in this case,
there are always forecast errors, and therefore, considering demand
uncertainty is naturally an important extension to this study. In a
similar vein, initial shipment decisions under demand uncertainty may

also be considered jointly with the transfer decisions. Another poten-
tially important avenue is to develop integrated models that include
transfer decisions as well as markdown decisions, an avenue that we
are currently pursuing. Finally, the frequency at which the collections
are renewed can also be made jointly with transfer as well as other
logistical decisions.
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