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1 Introduction

Let Fq be the finite field of characteristic p > 0 and cardinality q, and let F
be a function field over Fq with full constant field Fq. We denote by g(F )
the genus and by N(F ) the number of rational places of F/Fq. By a tower of
function fields we mean an infinite sequence F = (Fi)i≥0 of function fields
with full constant field Fq such that F0 ⊆ F1 ⊆ F2 ⊆ . . ., all extensions
Fi+1/Fi are separable, and g(Fi)→∞ for i→∞. It is easy to see that the
limit

λ(F) := lim
i→∞

N(Fi)/g(Fi)

exists, and it is called the limit of the tower [18, Section 7.2]. The Drinfeld–
Vladut bound [20] implies that

0 ≤ λ(F) ≤ √q − 1.
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A tower F is called asymptotically good if λ(F) > 0; otherwise, it is called
asymptotically bad. Moreover, if λ(F) =

√
q− 1, then F is called asymptoti-

cally optimal. Asymptotically good towers exist and they have been studied
extensively, see [2, 3, 6, 7, 8, 10, 11, 12, 18] and the references therein. We
remark that it is a non-trivial task to construct asymptotically good towers.
In fact, most known examples of explicitly constructed towers are asymptot-
ically bad. The reason is that g(Fi) often increases too fast or N(Fi) does
not grow fast enough.

An important invariant of a function field F/Fq is its p-rank s(F ) (which
is sometimes called the Hasse–Witt invariant of F ), see [13, Section 6.7].
It is defined as follows: Let F ′ be the constant field extension of F with
the algebraic closure F̄q of Fq. The group of divisor classes of F ′ which are
annihilated by p is a finite abelian group of exponent p, and s(F ) is defined
as the dimension as a Fp-vector space of this group. By [13, Theorem 6.96],
the inequality 0 ≤ s(F ) ≤ g(F ) holds for every function field F over Fq.

Another characterization of s(F ) is as follows. Let LF (t) =
∑2g(F )

i=0 ait
i ∈

Z[t] denote the L-polynomial of F/Fq, see [18, Chapter 5.1]. The coefficients
ai are divisible by q for i = g(F ) + 1, . . . , 2g(F ). Let L̄(t) ∈ Fp[t] be its
reduction modulo p. Then s(F ) is equal to the degree of L̄(t), see [19].
This degree is ‘in general’ close to the genus g(F ), and deg(L̄(t)) = g(F ) if
and only if the coefficient ag(F ) is not divisible by p. In this sense, ‘most’
function fields are ordinary ; i.e., s(F ) = g(F ). We refer to [1] for the proof
of the fact that there are ‘few’ curves of fixed genus g over Fq with p-rank
less than g.

For a tower F = (Fi)i≥0 of function fields over Fq, the quantity

σ(F) := lim inf
i→∞

s(Fi)/g(Fi)

is called the asymptotic p-rank of F . Clearly we have the inequality

0 ≤ σ(F) ≤ 1.

The asymptotic p-rank was introduced by Cramer et al. [9] to analyse the
behaviour of various constructions related to multi-party computations and
fast multiplication algorithms. According to their construction, it is desir-
able to have asymptotically good towers F with σ(F) as small as possible.
The aim of our paper is to construct such towers. By considering the above
remarks, one may expect that for a ‘general’ tower of function fields, the
asymptotic p-rank should be equal or close to 1.

We first recall some known results from the literature. The tower over a
quadratic field Fq (i.e., q is a square) given by Garcia and Stichtenoth in [12]
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is asymptotically optimal and its asymptotic p-rank is 1/(
√
q+1), see [5, 9].

This is the smallest value of an asymptotic p-rank that has been hitherto
observed among asymptotically good towers over Fq. The asymptotic p-rank
of some asymptotically good towers over a cubic field Fq (i.e., q = p3a) has
been determined in [2, 5], their p-rank values are close to 1/4.

In Section 4 we will construct asymptotically good towers over quadratic
fields whose asymptotic p-rank is significantly smaller than the asymptotic
p-rank of the above-mentioned towers. More specifically, we will show in
Theorem 4.3 that:

For any ε > 0, there exists an asymptotically good tower F over Fq such
that its asymptotic p-rank is σ(F) < ε.

We will also consider towers of function fields that have many automor-
phisms. Recall that an automorphism of a function field F/Fq is a field
automorphism of F that fixes every element of Fq. It is known that the au-
tomorphism group Aut(F ) of F/Fq is always finite, see [13, Theorem 11.56].
By [15], function fields of fixed genus g ≥ 3 having non-trivial automorphism
groups are rare; i.e., in general |Aut(F )| = 1 for function fields of fixed genus
g ≥ 3. For large classes of function fields (for instance if Aut(F ) is abelian
or if the order of Aut(F ) is prime to p), there is a linear upper bound

|Aut(F )| ≤ A · g(F )

with an absolute constant A > 0, see [14, 16]. A similar situation can be
observed among the known examples of explicitly constructed towers. We
will show in Section 4 (see Theorem 4.9) that over quadratic fields Fq the
following holds:

For any ε > 0, there exist a constant B > 0, depending on q, and an
asymptotically good tower F = (Fi)i≥0 over Fq such that

σ(F) < ε and |Aut(Fi)| ≥ B · g(Fi) for all i ≥ 0.

In other words, there exist function fields over Fq of large genus which have
simultaneously many rational points, many automorphisms and small p-
rank.
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2 Preliminaries

Let E ⊇ F be a finite separable extension of function fields. Denote by
P(F ) the set of places of F . For a place Q ∈ P(E) lying above P ∈ P(F ),
we write Q|P and denote by e(Q|P ) the ramification index and by d(Q|P )
the different exponent of Q|P . The genera of F and E are then related as
follows, see [18, Theorem 3.4.13].

Lemma 2.1. [Hurwitz genus formula] Let E/F be a finite separable exten-
sion of function fields over the same constant field Fq. Then

2g(E)− 2 = [E : F ] · (2g(F )− 2) +
∑

P∈P(F )

∑
Q∈P(E), Q|P

d(Q|P ) · degQ .

For the p-ranks of F and E, such a formula does not hold in general.
However, in the important special case where E/F is a Galois extension of
degree p, one has the following formula, see [17, Theorem 2].

Lemma 2.2. [Deuring–Shafarevich formula] Let E/F be a Galois extension
of degree p of function fields over the same constant field Fq. Then the p-
ranks of F and E satisfy

s(E)− 1 = p · (s(F )− 1) +
∑

P∈P(F )

∑
Q∈P(E), Q|P

(e(Q|P )− 1)) · degQ .

We will need the following generalization of Lemma 2.2:

Lemma 2.3. Let E/F be an extension of function fields of degree [E : F ] =
pm over the same constant field Fq. Assume that there exist intermediate
fields F = F0 ⊆ F1 ⊆ · · ·Fn−1 ⊆ Fn = E such that all extensions Fi+1/Fi
are Galois. Then the p-ranks of F and E satisfy

s(E)− 1 = [E : F ] · (s(F )− 1) +
∑

P∈P(F )

∑
Q∈P(E), Q|P

(e(Q|P )− 1)) · degQ .

Proof. We can refine the sequence F = F0 ⊆ F1 ⊆ · · ·Fn−1 ⊆ Fn = E such
that all extensions Fi+1/Fi are Galois of degree p. Then the claim follows
from Lemma 2.2 by induction.

Let b ≥ 1 be an integer. A separable extension E/F of function fields
is called b-bounded if for every place P ∈ P(F ) and every Q ∈ P(E) lying
above P , the different exponent d(Q|P ) satisfies the equation

d(Q|P ) = b · (e(Q|P )− 1).

4



Remark 2.4. We remark that our definition of b-boundedness differs slightly
from [3, 8], where the authors replace the condition “d(Q|P ) = b · (e(Q|P )−
1)” by “d(Q|P ) ≤ b · (e(Q|P )− 1)”.

A tower F = (Fi)i≥0 is called b-bounded if all extensions Fi+1/Fi are b-
bounded, see [2, Section 3.3]. The property of being b-bounded is transitive
as follows from the transitivity of ramification index and different exponent,
see [18, Corollary 3.4.12]:

Lemma 2.5. Let F ⊆ E ⊆ H be separable extensions of function fields. If
H/E and E/F are b-bounded, then H/F is also b-bounded.

As most towers of function fields that we consider in this paper are p-
towers, we give the definition of a p-tower.

Definition 2.6. A tower F = (Fi)i≥0 is called a p-tower over Fq if all
extensions Fi+1/Fi are Galois and their degrees [Fi+1 : Fi] are powers of p.

We will need two more notions associated to a tower F = (Fi)i≥0. The
sets of places

Split (F) = {P ∈ P(F0) | degP = 1 and P splits completely in Fi/F0 for all i ≥ 1},
and

Ram (F) = {P ∈ P(F0) | P is ramified in Fi/F0 for some i ≥ 1}

are called the splitting locus and the ramification locus of F , respectively.
Note that the inequality N(Fi) ≥ [Fi : F0] · |Split(F)| holds for all i ≥ 0.

3 Composing a tower B = (Bi)i≥0 with an extension
E/B0

Starting from a given tower B = (Bi)i≥0 (called the basic tower), we will
construct new towers by composing B with an extension E/B0. In the next
section we will specify the basic tower B and the field E to prove our main
results. We assume that B and E satisfy the following conditions:

(B1) B is an asymptotically good p-tower over Fq.
(E1) The extension E/B0 is finite of degree m relatively prime to p, and

Fq is the full constant field of E.

We set Ei := E · Bi for i ≥ 0. It follows from (B1) and (E1) that E =
E · B := (Ei)i≥0 is also a p-tower over Fq.
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Proposition 3.1. Under the assumptions (B1) and (E1), the limits

L1(E) = lim
i→∞

g(Ei)

[Ei : E0]
, L2(E) = lim

i→∞

s(Ei)

[Ei : E0]
and L3(E) = lim

i→∞

N(Ei)

[Ei : E0]

exist, and we have that

L1(E) > 0, L2(E) ≥ 0 and L3(E) ≥ 0.

Proof. By [19, Lemma 7.2.3], the sequence ((g(Ei) − 1)/[Ei : E0])i≥0 is
monotonically non-decreasing. To prove that L1(E) exists, it suffices to show
that this sequence is bounded from above. By Castelnuovo’s Inequality [19,
Theorem 3.11.3], we have

g(Ei) ≤ g(E0)[Ei : E0] +mg(Bi) + ([Ei : E0]− 1)(m− 1).

Then the fact that [Ei : E0] = [Bi : B0] implies the following inequalities.

g(Ei)

[Ei : E0]
≤ g(E0) +m

g(Bi)

[Bi : B0]
+

[Ei : E0]− 1

[Ei : E0]
(m− 1)

≤ g(E0) +m− 1 +m
g(Bi)

[Bi : B0]
(3.1)

Since B is an asymptotically good tower, g(Bi)/[Bi : B0] is bounded above,
see [19, Proposition 7.2.6]. Then we get the existence of L1(E) by Equation
(3.1). Note that g(Ei) > 0 for all sufficiently large i ≥ 0, i.e., L1(E) > 0.

By Lemma 2.3, we obtain that (s(Ei) − 1)/[Ei : E0] ≤ (s(Ei+1) −
1)/[Ei+1 : E0] for all i ≥ 0; i.e., the sequence ((s(Ei) − 1)/[Ei : E0])i≥0
is monotonically non-decreasing. Also, by the fact s(Ei) ≤ g(Ei) we have

s(Ei)− 1

[Ei : E0]
≤ g(Ei)

[Ei : E0]
,

hence the sequence is bounded above. Hence, it is convergent. Moreover,
L3(E) = lim

i→∞
N(Ei)
[Ei:E0]

exists by [19, Lemma 7.2.3] and L3(E) ≥ 0.

An immediate consequence of Proposition 3.1 is the following theorem:

Theorem 3.2. Let E = E · B, where B and E satisfy the properties (B1)
and (E1). Then the limit and the asymptotic p-rank of E are given by

λ(E) = L3(E)/L1(E) and σ(E) = L2(E)/L1(E).
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We obtain more precise results on the asymptotic values Li(E) of the
tower E under additional conditions. These assumptions are as follows:

(B2) B is b-bounded for some b ≥ 1.

(B3) The ramification locus Ram(B) is finite and non-empty.

(E2) Every place P ∈Ram(B) is totally ramified in the extension E/B0.

We remark that the existence of a totally ramified place in the extension
E/B0 implies that Fq is the full constant field of E.

Proposition 3.3. With the above notation and assuming that (B1), (B2),
(B3) and (E1), (E2) hold, the following hold:

(i) Let P ∈ Ram(B) and R ∈ P(Bi) with R|P . Then R is totally ramified
in Ei/Bi; i.e., R has exactly one extension Q in Ei, and degR = degQ.
In particular, if Ram(B) = {P1, . . . , Pr} then Ram(E) = {Q1, . . . , Qr},
where Qj is the unique extension of Pj in E0.

(ii) The tower E is c-bounded, with c = mb−m+ 1.

Proof. The proof of item (i) is straightforward, hence we prove only item (ii).
Let Q ∈ P(Ei+1) with i ≥ 0 that is ramified over Ei. We set P := Q ∩ Ei,
Q0 := Q ∩Bi+1 and P0 := Q ∩Bi. Then Q0|P0 is ramified, hence P |P0 and
Q|Q0 are ramified with e(P |P0) = e(Q|Q0) = m by (i). By considering the
extensions Bi ⊆ Ei ⊆ Ei+1 and Bi ⊆ Bi+1 ⊆ Ei+1, we apply the transitivity
of the different exponents. Then the b-boundedness of the tower B yields

d(Q|P0) = d(Q|P ) + (m− 1)e(Q|P ) = (m− 1) +mb(e(Q0|P0)− 1).

Observing that e(Q|P ) = e(Q0|P0), we obtain d(Q|P ) = (mb−m+1)(e(Q|P )−
1), as desired.

Proposition 3.4. With the above notation and assuming that (B1), (B2),
(B3) and (E1), (E2) hold, we have for all i ≥ 0:

g(Ei)−1 = [Bi : B0](g(E0)−1)+
mb−m+ 1

b
·
(

(g(Bi)−1)−[Bi : B0](g(B0)−1)
)
,

and

s(Ei)− 1 = [Bi : B0](s(E0)− 1) +
(

(s(Bi)− 1)− [Bi : B0](s(B0)− 1)
)
.

Proof. We set

∆i :=
∑

P∈P(B0)

∑
Q∈P(Bi), Q|P

(e(Q|P )− 1)) · degQ.
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Since Bi/B0 is b-bounded, the degree of the different divisor of Bi/B0 is
equal to b∆i. Then by the Hurwitz genus formula,

g(Bi)− 1 = [Bi : B0](g(B0)− 1) +
b

2
·∆i. (3.2)

By Proposition 3.3.(i), we conclude that R ∈ P(Ei) is ramified in Ei/E0 if
and only if R ∩ Bi = Q is ramified in Bi/B0. Moreover, the ramification
indices are the same and degR = degQ. Therefore, by Proposition 3.3.(ii),
the degree of the different divisor of Ei/E0 is equal to (mb−m+1)∆i. Then
by the Hurwitz genus formula and the fact [Ei : E0] = [Bi : B0], we have

g(Ei)− 1 = [Bi : B0](g(E0)− 1) +
mb−m+ 1

2
·∆i. (3.3)

Substituting ∆i from Equation (3.2) into Equation (3.3), we get the first
claim. The second claim of the proposition follows by the same argument,
using Lemma 2.3.

4 Main results

In this section we assume that q = `2 is a square, and we specify the basic
tower B and the extension E ⊇ B0. We take B := G = (Gi)i≥0 as the
optimal tower introduced by Garcia and Stichtenoth in [11].

4.1 Some properties of the tower by Garcia and Stichtenoth

The tower introduced by Garcia and Stichtenoth in [11] is defined as follows:
G1 := Fq(x1) is a rational function field, G0 := Fq(x0) with x0 = x`1 + x1,
and for i ≥ 1,

Gi+1 = Gi(xi+1) with x`i+1 + xi+1 =
x`i

x`−1i + 1
.
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Its properties that we need here, are:

(GS1) G0 = Fq(x0) is a rational function field.

(GS2) All extensions Gi+1/Gi are Galois p-extensions; i.e., G is a p-tower.

(GS3) The ramification locus of G consists of the zero and the pole of x0 in G0 ,

hence |Ram(G)| = 2 by [10, Lemma 3.3.(ii)].

(GS4) G is 2-bounded by [10, Lemma 3.3.(ii) and 3.5.(iii)].

(GS5) The splitting locus of G consists of the zeros of x0 − a, a ∈ F×` , hence

|Split(G)| = `− 1 by [10, Lemma 3.9].

(GS6) The tower G is optimal by [10, Theorem 3.1]; i.e., its limit is λ(G) = `− 1.

(GS7) lim
i→∞

g(Gi)/[Gi : G0] = 1 by [10, Remark 3.8], and hence by (GS5) and (GS6)

lim
i→∞

N(Gi)/[Gi : G0] = |Split(G)| = `− 1.

(GS8) For a rational place P ∈ P(G0) \ Split(G) , by (GS7) one has

lim
i→∞

|{Q ∈ P(Gi) ; Q is rational and Q|P}|
[Gi : G0]

= 0 .

We will need one more property of the tower G:

(GS9) lim
i→∞

s(Gi)/[Gi : G0] = 1.

Proof of (GS9). We use the quantity ∆i as in the proof of Proposition 3.4.
By Lemma 2.1, (GS4) and (GS7),

lim
i→∞

∆i/[Gi : G0] = lim
i→∞

g(Gi)/[Gi : G0] + 1 = 2 .

Then we obtain from (GS2) and Lemma 2.3:

lim
i→∞

s(Gi)/[Gi : G0] = −1 + 2 = 1 .

�

An immediate consequence of (GS7) and (GS9) is that G is an ordinary
tower; i.e., its asymptotic p-rank is σ(G) = 1. This fact has already been
observed in [5]. Note that the tower G satisfies (B1) by (GS2) and (GS6),
(B2) by (GS4) and (B3) by (GS3).
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4.2 Compositum over the tower by Garcia and Stichtenoth
and its Galois closure

Let m ≥ 1 be an integer relatively prime to q. We consider the extension
field E ⊇ G0 defined as follows:

E := G0(y) = Fq(x0, y) with ym = x0.

Note that E/G0 is an extension of degree m, and the zero and the pole of
x0 are the only ramified places of G0 in E, which are totally ramified. In
particular, E satisfies the properties (E1) and (E2) by (GS3). Observe also
that E = Fq(y) is a rational function field.

Proposition 4.1. Let E = E · G = (Ei)i≥0 be the composite of the function
field E (as defined above) with the tower G. Then:

(i) L1(E) = limi→∞ g(Ei)/[Gi : G0] = m,
(ii) L2(E) = limi→∞ s(Ei)/[Gi : G0] = 1.

Proof. To prove item (i), we observe first that the function field E =
Fq(x0, y) = Fq(y) has genus g(E) = 0. Now Proposition 3.4 and (GS4), (GS7)
yield

lim
i→∞

g(Ei)

[Gi : G0]
= g(E)− 1 +

m+ 1

2
·
(

lim
i→∞

g(Gi)

[Gi : G0]
− (g(G0)− 1)

)
= −1 +

m+ 1

2
(1 + 1) = m.

(iii) We apply Proposition 3.4 and (GS9) and get

lim
i→∞

s(Ei)

[Gi : G0]
= s(E)− 1 + lim

i→∞

s(Gi)

[Gi : G0]
− (s(G0)− 1) = −1 + 1 + 1 = 1 .

Proposition 4.2. For the tower E as in Proposition 4.1, we have

L3(E) = lim
i→∞

N(Ei)/[Gi : G0] = (`− 1) · gcd(`+ 1,m) .

Proof. In a rational function field Fq(z), we denote by (z = a) the rational
place which is the zero of the element z − a, for a ∈ Fq. Let P ∈ P(E0) be
a rational place of E0 = Fq(y) which lies over a place (x0 = a) ∈ Split(G).
Then P = (y = b) with b ∈ Fq and bm = a ∈ F×` , by (GS5). On the other
hand, if P ∈ P(E0) lies above a rational place P0 ∈ P(G0) \ Split(G), then

lim
i→∞

|{Q ∈ P(Ei) ; Q is rational and Q|P}|
[Gi : G0]

= 0 ,
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as follows from (GS8). Therefore limi→∞N(Ei)/[Gi : G0] is equal to the
cardinality of the set

M := {b ∈ Fq | bm ∈ F×` }.

We observe that for an element b ∈ F̄q,

b ∈M ⇐⇒ bq−1 = bm(`−1) = 1 ⇐⇒ bgcd(q−1,m(`−1)) = 1 .

Therefore, |M | = gcd(q−1,m(`−1)) = (`−1)·gcd((`+1),m) , as desired.

Putting together the results of Proposition 4.1 and 4.2, we obtain our
main result. We recall that q = `2.

Theorem 4.3. The limit and the asymptotic p-rank of the tower E as defined
above, are

λ(E) = (`− 1) · gcd(`+ 1,m)

m
and σ(E) =

1

m
.

Proof. We have L1(E) = m, L2(E) = 1 by Proposition 4.1 and L3(E) =
(`−1) gcd(`+1,m) by Proposition 4.2. Then the result follows from Theorem
3.2.

Corollary 4.4. For any divisor m|(` + 1) there exists an asymptotically
optimal tower E over Fq, whose asymptotic p-rank is σ(E) = 1/m. In par-
ticular, for given ε > 0 there exist a large enough even power q = `2 of p and
an asymptotically optimal tower E of function fields over Fq with σ(E) ≤ ε.

Remark 4.5. Corollary 4.4 was already known in the case m = ` + 1, see
[9].

Corollary 4.6. For every ε > 0 there exists an asymptotically good tower
E over Fq whose asymptotic p-rank is less than ε. In other words, there is
a constant C > 0 such that for infinitely many integers g ∈ N there exists a
function field F/Fq of genus g(F ) = g that satisfies

N(F ) ≥ C · g(F ) and s(F ) ≤ ε · g(F ) .

We can choose C = (`− 1) ·M`,ε, where

M`,ε = max
m
{gcd(`+ 1,m)/m ; gcd(m, `) = 1 and m > ε−1}.
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Remark 4.7. By the Drinfeld–Vladut bound we observe that M`,ε ≤ 1.
Note that for small ε, the constant C in our construction is also small. We
do not know (but find it unlikely) if for every ε > 0 there exist asymptotically
optimal towers over a fixed constant field Fq whose asymptotic p-rank is less
than ε.

Remark 4.8. It is easy to construct towers whose asymptotic p-rank is 0.
For example, the tower G = (Gi)i≥0 defined as

G0 = Fq(x0) and for i ≥ 0, Gi+1 = Gi(xi+1) with xqi+1 + xi+1 = f(xi),

where f(xi) is a polynomial of degree d relatively prime to q, has asymptotic
p-rank 0. We do not know, however, if there exist asymptotically good towers
whose asymptotic p-rank is 0.

The extensions Ei+1/Ei in the tower E above are Galois, but the exten-
sions Ei/E0 are not Galois, for all i ≥ 2. However, a slight modification
of our construction will produce a p-tower having that additional property.
For convenience, we will call a tower F = (Fi)i≥0 a Galois p-tower if for all
i ≥ 1, the extension Fi/F0 is a Galois p-extension.

Now we will use as the basic tower the Galois closure G∗ of the Garcia-
Stichtenoth tower G in [11]. It is defined as follows: G∗ = (G∗i )i≥0 where G∗i
is the Galois closure of Gi over G0. This tower has all properties as listed in
(GS1)−(GS9) if we replace there the fields Gi by G∗i , see [10]. Note that G∗
satisfies (B1), (B2), (B3), and E satisfies (E1), (E2). Then the composite
tower E∗ := E · G∗ is a Galois p-tower which satisfies:

Theorem 4.9. The limit and the asymptotic p-rank of the tower E∗ are

λ(E∗) = (`− 1) · gcd(`+ 1,m)

m
and σ(E∗) =

1

m
.

Moreover, the automorphism group of E∗i over Fq has order

|Aut(E∗i )| ≥ [E∗i : E∗0 ] ≥ m−1 · g(E∗i ) .

If m is a divisor of (q − 1), then |Aut(E∗i )| ≥ g(E∗i ) .

Proof. The calculation of L1(E∗), L2(E∗) and L3(E∗) is done in the same
way as in Proposition 4.1 and 4.2. Then by Theorem 3.2 we obtain the
desired result for λ(E∗) and σ(E∗).

The Galois group Gal(E∗i /E
∗
0) of the extension E∗i /E

∗
0 is a subgroup of

Aut(E∗i ), hence

|Aut(E∗i )| ≥ |Gal(E∗i /E
∗
0)| = [E∗i : E∗0 ].
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Moreover, the inequality g(E∗i ) ≤ m[E∗i : E∗0 ] is shown as in Proposition
4.1.(i), which gives the desired result. Finally, if m is a divisor of (q − 1),
then E/G∗0 is a Galois extension of degree m. Since the extensions fields E
and G∗i are Galois and linearly disjoint over G∗0, their compositum E∗i is also
Galois over G∗0, and

Gal(E∗i /G
∗
0)
∼= Gal(E/G∗0)×Gal(G∗i /G

∗
0).

Therefore, |Aut(E∗i )| ≥ m · [G∗i : G∗0]. Then the fact that [G∗i : G∗0] = [E∗i :
E∗0 ] gives the desired result.

Remark 4.10. The number of m-th roots of unity in Fq is equal to d =
gcd(m, q − 1). Note that for a m-th root of unity ζ the map τζ : E 7→ E
defined by τζ(y) = ζy is an automorphism of E = E∗0 . Since E∗i /E

∗
0 is a

Galois extension, there are [E∗i : E∗0 ] distinct automorphisms of E∗i whose
restriction to E is equal to τζ . That is, |Aut(E∗i )| ≥ gcd(m, q − 1)[E∗i : E∗0 ].

Remark 4.11. The precise Galois groups Gal(G∗i /G∗0) have been computed
in [4]. In particular, the extension degree [G∗i : G∗0 ] is known, and so is
[E∗i : E∗0 ].
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