Asymptotically good towers of function fields with small p-rank

Nurdagül Anbar¹, Henning Stichtenoth¹, Seher Tutdere²

¹Sabancı University MDBF, Orhanlı, Tuzla, 34956 İstanbul, Turkey E-mail: nurdagulanbar2@gmail.com E-mail: henning@sabanciuniv.edu ²Balıkesir University Department of Mathematics, Altıeylül, 10145, Balıkesir, Turkey E-mail: stutdere@gmail.com

Abstract

Over any quadratic finite field we construct function fields of large genus that have simultaneously many rational places, small *p*-rank, and many automorphisms.

keywords: towers of function fields, rational places, genus of a function field, automorphisms of function fields, *p*-rank **MSC**[2010]: 11G20, 14G50, 14H05,

1 Introduction

Let \mathbb{F}_q be the finite field of characteristic p > 0 and cardinality q, and let Fbe a function field over \mathbb{F}_q with full constant field \mathbb{F}_q . We denote by g(F)the genus and by N(F) the number of rational places of F/\mathbb{F}_q . By a *tower of function fields* we mean an infinite sequence $\mathcal{F} = (F_i)_{i\geq 0}$ of function fields with full constant field \mathbb{F}_q such that $F_0 \subseteq F_1 \subseteq F_2 \subseteq \ldots$, all extensions F_{i+1}/F_i are separable, and $g(F_i) \to \infty$ for $i \to \infty$. It is easy to see that the limit

$$\lambda(\mathcal{F}) := \lim_{i \to \infty} N(F_i) / g(F_i)$$

exists, and it is called the *limit* of the tower [18, Section 7.2]. The Drinfeld–Vladut bound [20] implies that

$$0 \le \lambda(\mathcal{F}) \le \sqrt{q} - 1.$$

A tower \mathcal{F} is called *asymptotically good* if $\lambda(\mathcal{F}) > 0$; otherwise, it is called *asymptotically bad.* Moreover, if $\lambda(\mathcal{F}) = \sqrt{q} - 1$, then \mathcal{F} is called *asymptotically optimal.* Asymptotically good towers exist and they have been studied extensively, see [2, 3, 6, 7, 8, 10, 11, 12, 18] and the references therein. We remark that it is a non-trivial task to construct asymptotically good towers. In fact, most known examples of explicitly constructed towers are asymptotically bad. The reason is that $g(F_i)$ often increases too fast or $N(F_i)$ does not grow fast enough.

An important invariant of a function field F/\mathbb{F}_q is its p-rank s(F) (which is sometimes called the Hasse–Witt invariant of F), see [13, Section 6.7]. It is defined as follows: Let F' be the constant field extension of F with the algebraic closure \mathbb{F}_q of \mathbb{F}_q . The group of divisor classes of F' which are annihilated by p is a finite abelian group of exponent p, and s(F) is defined as the dimension as a \mathbb{F}_p -vector space of this group. By [13, Theorem 6.96], the inequality $0 \leq s(F) \leq g(F)$ holds for every function field F over \mathbb{F}_q .

Another characterization of s(F) is as follows. Let $L_F(t) = \sum_{i=0}^{2g(F)} a_i t^i \in \mathbb{Z}[t]$ denote the *L*-polynomial of F/\mathbb{F}_q , see [18, Chapter 5.1]. The coefficients a_i are divisible by q for $i = g(F) + 1, \ldots, 2g(F)$. Let $\overline{L}(t) \in \mathbb{F}_p[t]$ be its reduction modulo p. Then s(F) is equal to the degree of $\overline{L}(t)$, see [19]. This degree is 'in general' close to the genus g(F), and $\deg(\overline{L}(t)) = g(F)$ if and only if the coefficient $a_{g(F)}$ is not divisible by p. In this sense, 'most' function fields are *ordinary*; i.e., s(F) = g(F). We refer to [1] for the proof of the fact that there are 'few' curves of fixed genus g over \mathbb{F}_q with p-rank less than g.

For a tower $\mathcal{F} = (F_i)_{i \geq 0}$ of function fields over \mathbb{F}_q , the quantity

$$\sigma(\mathcal{F}) := \liminf_{i \to \infty} s(F_i) / g(F_i)$$

is called the *asymptotic p-rank* of \mathcal{F} . Clearly we have the inequality

$$0 \le \sigma(\mathcal{F}) \le 1.$$

The asymptotic *p*-rank was introduced by Cramer et al. [9] to analyse the behaviour of various constructions related to multi-party computations and fast multiplication algorithms. According to their construction, it is desirable to have asymptotically good towers \mathcal{F} with $\sigma(\mathcal{F})$ as small as possible. The aim of our paper is to construct such towers. By considering the above remarks, one may expect that for a 'general' tower of function fields, the asymptotic *p*-rank should be equal or close to 1.

We first recall some known results from the literature. The tower over a *quadratic* field \mathbb{F}_q (i.e., q is a square) given by Garcia and Stichtenoth in [12]

is asymptotically optimal and its asymptotic *p*-rank is $1/(\sqrt{q}+1)$, see [5, 9]. This is the smallest value of an asymptotic *p*-rank that has been hitherto observed among asymptotically good towers over \mathbb{F}_q . The asymptotic *p*-rank of some asymptotically good towers over a *cubic* field \mathbb{F}_q (i.e., $q = p^{3a}$) has been determined in [2, 5], their *p*-rank values are close to 1/4.

In Section 4 we will construct asymptotically good towers over quadratic fields whose asymptotic p-rank is significantly smaller than the asymptotic p-rank of the above-mentioned towers. More specifically, we will show in Theorem 4.3 that:

For any $\epsilon > 0$, there exists an asymptotically good tower \mathcal{F} over \mathbb{F}_q such that its asymptotic p-rank is $\sigma(\mathcal{F}) < \epsilon$.

We will also consider towers of function fields that have many automorphisms. Recall that an *automorphism* of a function field F/\mathbb{F}_q is a field automorphism of F that fixes every element of \mathbb{F}_q . It is known that the automorphism group $\operatorname{Aut}(F)$ of F/\mathbb{F}_q is always finite, see [13, Theorem 11.56]. By [15], function fields of fixed genus $g \geq 3$ having non-trivial automorphism groups are rare; i.e., in general $|\operatorname{Aut}(F)| = 1$ for function fields of fixed genus $g \geq 3$. For large classes of function fields (for instance if $\operatorname{Aut}(F)$ is abelian or if the order of $\operatorname{Aut}(F)$ is prime to p), there is a *linear* upper bound

$$|\operatorname{Aut}(F)| \le A \cdot g(F)$$

with an absolute constant A > 0, see [14, 16]. A similar situation can be observed among the known examples of explicitly constructed towers. We will show in Section 4 (see Theorem 4.9) that over quadratic fields \mathbb{F}_q the following holds:

For any $\epsilon > 0$, there exist a constant B > 0, depending on q, and an asymptotically good tower $\mathcal{F} = (F_i)_{i \geq 0}$ over \mathbb{F}_q such that

$$\sigma(\mathcal{F}) < \epsilon \quad and \quad |\operatorname{Aut}(F_i)| \ge B \cdot g(F_i) \text{ for all } i \ge 0.$$

In other words, there exist function fields over \mathbb{F}_q of *large genus* which have simultaneously many rational points, many automorphisms and small p-rank.

2 Preliminaries

Let $E \supseteq F$ be a finite separable extension of function fields. Denote by $\mathbb{P}(F)$ the set of places of F. For a place $Q \in \mathbb{P}(E)$ lying above $P \in \mathbb{P}(F)$, we write Q|P and denote by e(Q|P) the ramification index and by d(Q|P) the different exponent of Q|P. The genera of F and E are then related as follows, see [18, Theorem 3.4.13].

Lemma 2.1. [Hurwitz genus formula] Let E/F be a finite separable extension of function fields over the same constant field \mathbb{F}_q . Then

$$2g(E) - 2 = [E:F] \cdot (2g(F) - 2) + \sum_{P \in \mathbb{P}(F)} \sum_{Q \in \mathbb{P}(E), Q|P} d(Q|P) \cdot \deg Q .$$

For the *p*-ranks of F and E, such a formula does not hold in general. However, in the important special case where E/F is a Galois extension of degree p, one has the following formula, see [17, Theorem 2].

Lemma 2.2. [Deuring–Shafarevich formula] Let E/F be a Galois extension of degree p of function fields over the same constant field \mathbb{F}_q . Then the pranks of F and E satisfy

$$s(E) - 1 = p \cdot (s(F) - 1) + \sum_{P \in \mathbb{P}(F)} \sum_{Q \in \mathbb{P}(E), Q \mid P} (e(Q|P) - 1)) \cdot \deg Q \ .$$

We will need the following generalization of Lemma 2.2:

Lemma 2.3. Let E/F be an extension of function fields of degree $[E:F] = p^m$ over the same constant field \mathbb{F}_q . Assume that there exist intermediate fields $F = F_0 \subseteq F_1 \subseteq \cdots F_{n-1} \subseteq F_n = E$ such that all extensions F_{i+1}/F_i are Galois. Then the p-ranks of F and E satisfy

$$s(E) - 1 = [E:F] \cdot (s(F) - 1) + \sum_{P \in \mathbb{P}(F)} \sum_{Q \in \mathbb{P}(E), Q \mid P} (e(Q|P) - 1)) \cdot \deg Q .$$

Proof. We can refine the sequence $F = F_0 \subseteq F_1 \subseteq \cdots \in F_{n-1} \subseteq F_n = E$ such that all extensions F_{i+1}/F_i are Galois of degree p. Then the claim follows from Lemma 2.2 by induction.

Let $b \geq 1$ be an integer. A separable extension E/F of function fields is called *b*-bounded if for every place $P \in \mathbb{P}(F)$ and every $Q \in \mathbb{P}(E)$ lying above P, the different exponent d(Q|P) satisfies the equation

$$d(Q|P) = b \cdot (e(Q|P) - 1).$$

Remark 2.4. We remark that our definition of *b*-boundedness differs slightly from [3, 8], where the authors replace the condition " $d(Q|P) = b \cdot (e(Q|P) - 1)$ " by " $d(Q|P) \le b \cdot (e(Q|P) - 1)$ ".

A tower $\mathcal{F} = (F_i)_{i\geq 0}$ is called *b*-bounded if all extensions F_{i+1}/F_i are *b*-bounded, see [2, Section 3.3]. The property of being *b*-bounded is transitive as follows from the transitivity of ramification index and different exponent, see [18, Corollary 3.4.12]:

Lemma 2.5. Let $F \subseteq E \subseteq H$ be separable extensions of function fields. If H/E and E/F are b-bounded, then H/F is also b-bounded.

As most towers of function fields that we consider in this paper are p-towers, we give the definition of a p-tower.

Definition 2.6. A tower $\mathcal{F} = (F_i)_{i\geq 0}$ is called a *p*-tower over \mathbb{F}_q if all extensions F_{i+1}/F_i are Galois and their degrees $[F_{i+1}:F_i]$ are powers of p.

We will need two more notions associated to a tower $\mathcal{F} = (F_i)_{i \ge 0}$. The sets of places

Split $(\mathcal{F}) = \{P \in \mathbb{P}(F_0) \mid \deg P = 1 \text{ and } P \text{ splits completely in } F_i/F_0 \text{ for all } i \ge 1\},\$ and

 $\operatorname{Ram}(\mathcal{F}) = \{ P \in \mathbb{P}(F_0) \mid P \text{ is ramified in } F_i/F_0 \text{ for some } i \ge 1 \}$

are called the *splitting locus* and the *ramification locus* of \mathcal{F} , respectively. Note that the inequality $N(F_i) \geq [F_i : F_0] \cdot |\text{Split}(\mathcal{F})|$ holds for all $i \geq 0$.

3 Composing a tower $\mathcal{B} = (B_i)_{i \ge 0}$ with an extension E/B_0

Starting from a given tower $\mathcal{B} = (B_i)_{i\geq 0}$ (called the *basic tower*), we will construct new towers by composing \mathcal{B} with an extension E/B_0 . In the next section we will specify the basic tower \mathcal{B} and the field E to prove our main results. We assume that \mathcal{B} and E satisfy the following conditions:

- (B1) \mathcal{B} is an asymptotically good *p*-tower over \mathbb{F}_q .
- (E1) The extension E/B_0 is finite of degree *m* relatively prime to *p*, and \mathbb{F}_q is the full constant field of *E*.

We set $E_i := E \cdot B_i$ for $i \ge 0$. It follows from (B1) and (E1) that $\mathcal{E} = E \cdot \mathcal{B} := (E_i)_{i>0}$ is also a *p*-tower over \mathbb{F}_q .

Proposition 3.1. Under the assumptions (B1) and (E1), the limits

$$L_1(\mathcal{E}) = \lim_{i \to \infty} \frac{g(E_i)}{[E_i : E_0]}, \ L_2(\mathcal{E}) = \lim_{i \to \infty} \frac{s(E_i)}{[E_i : E_0]} \ and \ L_3(\mathcal{E}) = \lim_{i \to \infty} \frac{N(E_i)}{[E_i : E_0]}$$

exist, and we have that

$$L_1(\mathcal{E}) > 0, \ L_2(\mathcal{E}) \ge 0 \ and \ L_3(\mathcal{E}) \ge 0.$$

Proof. By [19, Lemma 7.2.3], the sequence $((g(E_i) - 1)/[E_i : E_0])_{i\geq 0}$ is monotonically non-decreasing. To prove that $L_1(\mathcal{E})$ exists, it suffices to show that this sequence is bounded from above. By Castelnuovo's Inequality [19, Theorem 3.11.3], we have

$$g(E_i) \le g(E_0)[E_i:E_0] + mg(B_i) + ([E_i:E_0] - 1)(m - 1)$$

Then the fact that $[E_i : E_0] = [B_i : B_0]$ implies the following inequalities.

$$\frac{g(E_i)}{[E_i:E_0]} \le g(E_0) + m \frac{g(B_i)}{[B_i:B_0]} + \frac{[E_i:E_0] - 1}{[E_i:E_0]} (m-1) \le g(E_0) + m - 1 + m \frac{g(B_i)}{[B_i:B_0]}$$
(3.1)

Since \mathcal{B} is an asymptotically good tower, $g(B_i)/[B_i:B_0]$ is bounded above, see [19, Proposition 7.2.6]. Then we get the existence of $L_1(\mathcal{E})$ by Equation (3.1). Note that $g(E_i) > 0$ for all sufficiently large $i \ge 0$, i.e., $L_1(\mathcal{E}) > 0$.

By Lemma 2.3, we obtain that $(s(E_i) - 1)/[E_i : E_0] \leq (s(E_{i+1}) - 1)/[E_{i+1} : E_0]$ for all $i \geq 0$; i.e., the sequence $((s(E_i) - 1)/[E_i : E_0])_{i\geq 0}$ is monotonically non-decreasing. Also, by the fact $s(E_i) \leq g(E_i)$ we have

$$\frac{s(E_i) - 1}{[E_i : E_0]} \le \frac{g(E_i)}{[E_i : E_0]},$$

hence the sequence is bounded above. Hence, it is convergent. Moreover, $L_3(\mathcal{E}) = \lim_{i \to \infty} \frac{N(E_i)}{[E_i:E_0]}$ exists by [19, Lemma 7.2.3] and $L_3(\mathcal{E}) \ge 0$.

An immediate consequence of Proposition 3.1 is the following theorem:

Theorem 3.2. Let $\mathcal{E} = E \cdot \mathcal{B}$, where \mathcal{B} and E satisfy the properties (B1) and (E1). Then the limit and the asymptotic p-rank of \mathcal{E} are given by

$$\lambda(\mathcal{E}) = L_3(\mathcal{E})/L_1(\mathcal{E})$$
 and $\sigma(\mathcal{E}) = L_2(\mathcal{E})/L_1(\mathcal{E}).$

We obtain more precise results on the asymptotic values $L_i(\mathcal{E})$ of the tower \mathcal{E} under additional conditions. These assumptions are as follows:

(B2) \mathcal{B} is b-bounded for some $b \geq 1$.

(B3) The ramification locus $\operatorname{Ram}(\mathcal{B})$ is finite and non-empty.

(E2) Every place $P \in \text{Ram}(\mathcal{B})$ is totally ramified in the extension E/B_0 .

We remark that the existence of a totally ramified place in the extension E/B_0 implies that \mathbb{F}_q is the full constant field of E.

Proposition 3.3. With the above notation and assuming that (B1), (B2), (B3) and (E1), (E2) hold, the following hold:

(i) Let $P \in \text{Ram}(\mathcal{B})$ and $R \in \mathbb{P}(B_i)$ with R|P. Then R is totally ramified in E_i/B_i ; i.e., R has exactly one extension Q in E_i , and $\deg R = \deg Q$. In particular, if $\text{Ram}(\mathcal{B}) = \{P_1, \ldots, P_r\}$ then $\text{Ram}(\mathcal{E}) = \{Q_1, \ldots, Q_r\}$, where Q_j is the unique extension of P_j in E_0 .

(ii) The tower \mathcal{E} is c-bounded, with c = mb - m + 1.

Proof. The proof of item (i) is straightforward, hence we prove only item (ii). Let $Q \in \mathbb{P}(E_{i+1})$ with $i \geq 0$ that is ramified over E_i . We set $P := Q \cap E_i$, $Q_0 := Q \cap B_{i+1}$ and $P_0 := Q \cap B_i$. Then $Q_0|P_0$ is ramified, hence $P|P_0$ and $Q|Q_0$ are ramified with $e(P|P_0) = e(Q|Q_0) = m$ by (i). By considering the extensions $B_i \subseteq E_i \subseteq E_{i+1}$ and $B_i \subseteq B_{i+1} \subseteq E_{i+1}$, we apply the transitivity of the different exponents. Then the b-boundedness of the tower \mathcal{B} yields

$$d(Q|P_0) = d(Q|P) + (m-1)e(Q|P) = (m-1) + mb(e(Q_0|P_0) - 1)$$

Observing that $e(Q|P) = e(Q_0|P_0)$, we obtain d(Q|P) = (mb-m+1)(e(Q|P)-1), as desired.

Proposition 3.4. With the above notation and assuming that (B1), (B2), (B3) and (E1), (E2) hold, we have for all $i \ge 0$:

$$g(E_i) - 1 = [B_i : B_0](g(E_0) - 1) + \frac{mb - m + 1}{b} \cdot \left((g(B_i) - 1) - [B_i : B_0](g(B_0) - 1) \right),$$

and

$$s(E_i) - 1 = [B_i : B_0](s(E_0) - 1) + \left((s(B_i) - 1) - [B_i : B_0](s(B_0) - 1)\right).$$

Proof. We set

$$\Delta_i := \sum_{P \in \mathbb{P}(B_0)} \sum_{Q \in \mathbb{P}(B_i), Q \mid P} (e(Q \mid P) - 1)) \cdot \deg Q.$$

Since B_i/B_0 is b-bounded, the degree of the different divisor of B_i/B_0 is equal to $b\Delta_i$. Then by the Hurwitz genus formula,

$$g(B_i) - 1 = [B_i : B_0](g(B_0) - 1) + \frac{b}{2} \cdot \Delta_i.$$
(3.2)

By Proposition 3.3.(i), we conclude that $R \in \mathbb{P}(E_i)$ is ramified in E_i/E_0 if and only if $R \cap B_i = Q$ is ramified in B_i/B_0 . Moreover, the ramification indices are the same and degR = degQ. Therefore, by Proposition 3.3.(ii), the degree of the different divisor of E_i/E_0 is equal to $(mb-m+1)\Delta_i$. Then by the Hurwitz genus formula and the fact $[E_i : E_0] = [B_i : B_0]$, we have

$$g(E_i) - 1 = [B_i : B_0](g(E_0) - 1) + \frac{mb - m + 1}{2} \cdot \Delta_i.$$
 (3.3)

Substituting Δ_i from Equation (3.2) into Equation (3.3), we get the first claim. The second claim of the proposition follows by the same argument, using Lemma 2.3.

4 Main results

In this section we assume that $q = \ell^2$ is a square, and we specify the basic tower \mathcal{B} and the extension $E \supseteq B_0$. We take $\mathcal{B} := \mathcal{G} = (G_i)_{i \ge 0}$ as the optimal tower introduced by Garcia and Stichtenoth in [11].

4.1 Some properties of the tower by Garcia and Stichtenoth

The tower introduced by Garcia and Stichtenoth in [11] is defined as follows: $G_1 := \mathbb{F}_q(x_1)$ is a rational function field, $G_0 := \mathbb{F}_q(x_0)$ with $x_0 = x_1^{\ell} + x_1$, and for $i \ge 1$,

$$G_{i+1} = G_i(x_{i+1})$$
 with $x_{i+1}^{\ell} + x_{i+1} = \frac{x_i^{\ell}}{x_i^{\ell-1} + 1}$

Its properties that we need here, are:

- (GS1) $G_0 = \mathbb{F}_q(x_0)$ is a rational function field.
- (GS2) All extensions G_{i+1}/G_i are Galois *p*-extensions; i.e., \mathcal{G} is a *p*-tower.
- (GS3) The ramification locus of \mathcal{G} consists of the zero and the pole of x_0 in G_0 , hence $|\text{Ram}(\mathcal{G})| = 2$ by [10, Lemma 3.3.(ii)].
- (GS4) \mathcal{G} is 2-bounded by [10, Lemma 3.3.(ii) and 3.5.(iii)].
- (GS5) The splitting locus of \mathcal{G} consists of the zeros of $x_0 a$, $a \in \mathbb{F}_{\ell}^{\times}$, hence $|\operatorname{Split}(\mathcal{G})| = \ell 1$ by [10, Lemma 3.9].
- (GS6) The tower \mathcal{G} is optimal by [10, Theorem 3.1]; i.e., its limit is $\lambda(\mathcal{G}) = \ell 1$.
- $(GS7) \lim_{i \to \infty} g(G_i) / [G_i : G_0] = 1 \text{ by } [10, \text{ Remark 3.8}], \text{ and hence by } (GS5) \text{ and } (GS6)$ $\lim_{i \to \infty} N(G_i) / [G_i : G_0] = |\text{Split}(\mathcal{G})| = \ell 1.$

(GS8) For a rational place
$$P \in \mathbb{P}(G_0) \setminus \text{Split}(\mathcal{G})$$
, by (GS7) one has
$$\lim_{i \to \infty} \frac{|\{Q \in \mathbb{P}(G_i); Q \text{ is rational and } Q|P\}|}{[G_i:G_0]} = 0.$$

We will need one more property of the tower \mathcal{G} :

$$(GS9) \lim_{i \to \infty} s(G_i) / [G_i : G_0] = 1.$$

Proof of (GS9). We use the quantity Δ_i as in the proof of Proposition 3.4. By Lemma 2.1, (*GS4*) and (*GS7*),

$$\lim_{i \to \infty} \Delta_i / [G_i : G_0] = \lim_{i \to \infty} g(G_i) / [G_i : G_0] + 1 = 2$$

Then we obtain from (GS2) and Lemma 2.3:

$$\lim_{i \to \infty} s(G_i) / [G_i : G_0] = -1 + 2 = 1.$$

An immediate consequence of (GS7) and (GS9) is that \mathcal{G} is an ordinary tower; i.e., its asymptotic *p*-rank is $\sigma(\mathcal{G}) = 1$. This fact has already been observed in [5]. Note that the tower \mathcal{G} satisfies (B1) by (GS2) and (GS6), (B2) by (GS4) and (B3) by (GS3).

4.2 Compositum over the tower by Garcia and Stichtenoth and its Galois closure

Let $m \ge 1$ be an integer relatively prime to q. We consider the extension field $E \supseteq G_0$ defined as follows:

$$E := G_0(y) = \mathbb{F}_q(x_0, y)$$
 with $y^m = x_0$.

Note that E/G_0 is an extension of degree m, and the zero and the pole of x_0 are the only ramified places of G_0 in E, which are totally ramified. In particular, E satisfies the properties (E1) and (E2) by (GS3). Observe also that $E = \mathbb{F}_q(y)$ is a rational function field.

Proposition 4.1. Let $\mathcal{E} = E \cdot \mathcal{G} = (E_i)_{i \geq 0}$ be the composite of the function field E (as defined above) with the tower \mathcal{G} . Then:

- (i) $L_1(\mathcal{E}) = \lim_{i \to \infty} g(E_i) / [G_i : G_0] = m,$
- (ii) $L_2(\mathcal{E}) = \lim_{i \to \infty} s(E_i) / [G_i : G_0] = 1.$

Proof. To prove item (i), we observe first that the function field $E = \mathbb{F}_q(x_0, y) = \mathbb{F}_q(y)$ has genus g(E) = 0. Now Proposition 3.4 and (GS4), (GS7) yield

$$\lim_{i \to \infty} \frac{g(E_i)}{[G_i : G_0]} = g(E) - 1 + \frac{m+1}{2} \cdot \left(\lim_{i \to \infty} \frac{g(G_i)}{[G_i : G_0]} - (g(G_0) - 1)\right)$$
$$= -1 + \frac{m+1}{2}(1+1) = m.$$

(iii) We apply Proposition 3.4 and (GS9) and get

$$\lim_{i \to \infty} \frac{s(E_i)}{[G_i : G_0]} = s(E) - 1 + \lim_{i \to \infty} \frac{s(G_i)}{[G_i : G_0]} - (s(G_0) - 1) = -1 + 1 + 1 = 1.$$

Proposition 4.2. For the tower \mathcal{E} as in Proposition 4.1, we have

$$L_3(\mathcal{E}) = \lim_{i \to \infty} N(E_i) / [G_i : G_0] = (\ell - 1) \cdot \gcd(\ell + 1, m)$$

Proof. In a rational function field $\mathbb{F}_q(z)$, we denote by (z = a) the rational place which is the zero of the element z - a, for $a \in \mathbb{F}_q$. Let $P \in \mathbb{P}(E_0)$ be a rational place of $E_0 = \mathbb{F}_q(y)$ which lies over a place $(x_0 = a) \in \text{Split}(\mathcal{G})$. Then P = (y = b) with $b \in \mathbb{F}_q$ and $b^m = a \in \mathbb{F}_{\ell}^{\times}$, by (GS5). On the other hand, if $P \in \mathbb{P}(E_0)$ lies above a rational place $P_0 \in \mathbb{P}(G_0) \setminus \text{Split}(\mathcal{G})$, then

$$\lim_{i \to \infty} \frac{|\{Q \in \mathbb{P}(E_i); Q \text{ is rational and } Q|P\}|}{[G_i:G_0]} = 0,$$

as follows from (GS8). Therefore $\lim_{i\to\infty} N(E_i)/[G_i:G_0]$ is equal to the cardinality of the set

$$M := \{ b \in \mathbb{F}_q \, | \, b^m \in \mathbb{F}_{\ell}^{\times} \}.$$

We observe that for an element $b \in \overline{\mathbb{F}}_q$,

$$b \in M \Longleftrightarrow b^{q-1} = b^{m(\ell-1)} = 1 \Longleftrightarrow b^{\gcd(q-1,m(\ell-1))} = 1.$$

Therefore, $|M| = \gcd(q-1, m(\ell-1)) = (\ell-1) \cdot \gcd((\ell+1), m)$, as desired. \Box

Putting together the results of Proposition 4.1 and 4.2, we obtain our main result. We recall that $q = \ell^2$.

Theorem 4.3. The limit and the asymptotic p-rank of the tower \mathcal{E} as defined above, are

$$\lambda(\mathcal{E}) = (\ell - 1) \cdot \frac{\gcd(\ell + 1, m)}{m} \text{ and } \sigma(\mathcal{E}) = \frac{1}{m}.$$

Proof. We have $L_1(\mathcal{E}) = m$, $L_2(\mathcal{E}) = 1$ by Proposition 4.1 and $L_3(\mathcal{E}) = (\ell-1) \operatorname{gcd}(\ell+1,m)$ by Proposition 4.2. Then the result follows from Theorem 3.2.

Corollary 4.4. For any divisor $m|(\ell + 1)$ there exists an asymptotically optimal tower \mathcal{E} over \mathbb{F}_q , whose asymptotic *p*-rank is $\sigma(\mathcal{E}) = 1/m$. In particular, for given $\epsilon > 0$ there exist a large enough even power $q = \ell^2$ of *p* and an asymptotically optimal tower \mathcal{E} of function fields over \mathbb{F}_q with $\sigma(\mathcal{E}) \leq \epsilon$.

Remark 4.5. Corollary 4.4 was already known in the case $m = \ell + 1$, see [9].

Corollary 4.6. For every $\epsilon > 0$ there exists an asymptotically good tower \mathcal{E} over \mathbb{F}_q whose asymptotic *p*-rank is less than ϵ . In other words, there is a constant C > 0 such that for infinitely many integers $g \in \mathbb{N}$ there exists a function field F/\mathbb{F}_q of genus g(F) = g that satisfies

$$N(F) \ge C \cdot g(F)$$
 and $s(F) \le \epsilon \cdot g(F)$.

We can choose $C = (\ell - 1) \cdot M_{\ell,\epsilon}$, where

$$M_{\ell,\epsilon} = \max_{m} \{ \gcd(\ell+1, m)/m \; ; \; \gcd(m, \ell) = 1 \text{ and } m > \epsilon^{-1} \}.$$

Remark 4.7. By the Drinfeld–Vladut bound we observe that $M_{\ell,\epsilon} \leq 1$. Note that for small ϵ , the constant C in our construction is also small. We do not know (but find it unlikely) if for every $\epsilon > 0$ there exist asymptotically *optimal* towers over a fixed constant field \mathbb{F}_q whose asymptotic p-rank is less than ϵ .

Remark 4.8. It is easy to construct towers whose asymptotic *p*-rank is 0. For example, the tower $\mathcal{G} = (G_i)_{i \geq 0}$ defined as

$$G_0 = \mathbb{F}_q(x_0)$$
 and for $i \ge 0$, $G_{i+1} = G_i(x_{i+1})$ with $x_{i+1}^q + x_{i+1} = f(x_i)$,

where $f(x_i)$ is a polynomial of degree *d* relatively prime to *q*, has asymptotic *p*-rank 0. We do not know, however, if there exist asymptotically good towers whose asymptotic *p*-rank is 0.

The extensions E_{i+1}/E_i in the tower \mathcal{E} above are Galois, but the extensions E_i/E_0 are not Galois, for all $i \geq 2$. However, a slight modification of our construction will produce a *p*-tower having that additional property. For convenience, we will call a tower $\mathcal{F} = (F_i)_{i\geq 0}$ a *Galois p-tower* if for all $i \geq 1$, the extension F_i/F_0 is a Galois *p*-extension.

Now we will use as the basic tower the Galois closure \mathcal{G}^* of the Garcia-Stichtenoth tower \mathcal{G} in [11]. It is defined as follows: $\mathcal{G}^* = (G_i^*)_{i\geq 0}$ where G_i^* is the Galois closure of G_i over G_0 . This tower has all properties as listed in (GS1) - (GS9) if we replace there the fields G_i by G_i^* , see [10]. Note that \mathcal{G}^* satisfies (B1), (B2), (B3), and E satisfies (E1), (E2). Then the composite tower $\mathcal{E}^* := E \cdot \mathcal{G}^*$ is a Galois p-tower which satisfies:

Theorem 4.9. The limit and the asymptotic p-rank of the tower \mathcal{E}^* are

$$\lambda(\mathcal{E}^*) = (\ell - 1) \cdot \frac{\gcd(\ell + 1, m)}{m} \text{ and } \sigma(\mathcal{E}^*) = \frac{1}{m}.$$

Moreover, the automorphism group of E_i^* over \mathbb{F}_q has order

$$|\operatorname{Aut}(E_i^*)| \ge [E_i^*: E_0^*] \ge m^{-1} \cdot g(E_i^*).$$

If m is a divisor of (q-1), then $|\operatorname{Aut}(E_i^*)| \ge g(E_i^*)$.

Proof. The calculation of $L_1(\mathcal{E}^*)$, $L_2(\mathcal{E}^*)$ and $L_3(\mathcal{E}^*)$ is done in the same way as in Proposition 4.1 and 4.2. Then by Theorem 3.2 we obtain the desired result for $\lambda(\mathcal{E}^*)$ and $\sigma(\mathcal{E}^*)$.

The Galois group $\operatorname{Gal}(E_i^*/E_0^*)$ of the extension E_i^*/E_0^* is a subgroup of $\operatorname{Aut}(E_i^*)$, hence

$$|\operatorname{Aut}(E_i^*)| \ge |\operatorname{Gal}(E_i^*/E_0^*)| = [E_i^*:E_0^*].$$

Moreover, the inequality $g(E_i^*) \leq m[E_i^*: E_0^*]$ is shown as in Proposition 4.1.(i), which gives the desired result. Finally, if m is a divisor of (q-1), then E/G_0^* is a Galois extension of degree m. Since the extensions fields E and G_i^* are Galois and linearly disjoint over G_0^* , their compositum E_i^* is also Galois over G_0^* , and

$$\operatorname{Gal}(E_i^*/G_0^*) \cong \operatorname{Gal}(E/G_0^*) \times \operatorname{Gal}(G_i^*/G_0^*).$$

Therefore, $|\operatorname{Aut}(E_i^*)| \ge m \cdot [G_i^* : G_0^*]$. Then the fact that $[G_i^* : G_0^*] = [E_i^* : E_0^*]$ gives the desired result.

Remark 4.10. The number of *m*-th roots of unity in \mathbb{F}_q is equal to $d = \gcd(m, q - 1)$. Note that for a *m*-th root of unity ζ the map $\tau_{\zeta} : E \mapsto E$ defined by $\tau_{\zeta}(y) = \zeta y$ is an automorphism of $E = E_0^*$. Since E_i^*/E_0^* is a Galois extension, there are $[E_i^* : E_0^*]$ distinct automorphisms of E_i^* whose restriction to E is equal to τ_{ζ} . That is, $|Aut(E_i^*)| \ge \gcd(m, q - 1)[E_i^* : E_0^*]$.

Remark 4.11. The precise Galois groups $\operatorname{Gal}(\mathcal{G}_i^*/\mathcal{G}_0^*)$ have been computed in [4]. In particular, the extension degree $[\mathcal{G}_i^* : \mathcal{G}_0^*]$ is known, and so is $[E_i^* : E_0^*]$.

Acknowledgements

We are grateful to the reviewers for their valuable suggestions which helped to improve the paper substantially.

N. A. was supported by the Austrian Science Fund (FWF): Project F5505– N26 and Project F5511–N26, which is a part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications".

References

- J.D. Achter, R. Pries, Monodromy of the *p*-rank strata of the moduli space of curves, Int. Math. Res. Not. IMRN (2008) no. 15, Art. ID rnn053, 25 pp.
- [2] N. Anbar, P. Beelen, N. Nguyen, A new tower meeting Zink's bound with good *p*-rank, Acta Arith. 177 (2017) no. 4, 347–374.
- [3] A. Bassa, P. Beelen, A. Garcia, H. Stichtenoth, Towers of function fields over non-prime finite fields, Mosc. Math. J. 15 (1) (2015), 1–29.

- [4] A. Bassa, P. Beelen, The Galois closure of Drinfeld modular towers, J. Number Theory 131 (3) (2011), 561–577.
- [5] A. Bassa, P. Beelen, The Hasse-Witt invariant in some towers of function fields over finite fields, Bull. Braz. Math. Soc. (N.S.) 41 (2010) no. 4, 567–582.
- [6] A. Bassa, A. Garcia, H. Stichtenoth, A new tower over cubic finite fields, Mosc. Math. J. 8 (3) (2008), 401–418.
- [7] J. Bezerra, A. Garcia, H. Stichtenoth, An explicit tower of function fields over cubic finite fields and Zink's lower bound, J. Reine Angew. Math. 589 (2005), 159–199.
- [8] N. Caro, A. Garcia, On a tower of Ihara and its limit, Acta Arith. 151 (2) (2012), 191–200.
- [9] I. Cascudo, R. Cramer, C. Xing, Torsion limits and Riemann-Roch systems for function fields and applications, IEEE Trans. Inform. Theory 60 (7) (2014), 3871–3888.
- [10] A. Garcia, H. Stichtenoth, On the Galois closure of towers. Recent trends in coding theory and its applications, 83–92, AMS/IP Stud. Adv. Math., 41, Amer. Math. Soc., Providence, RI, 2007.
- [11] A. Garcia, H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, J. Number Theory 61 (2) (1996), 248– 273.
- [12] A. Garcia, H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math. 121 (1) (1995), 211–222.
- [13] J.W.P. Hirschfeld, G. Korchmaros, F. Torres, Algebraic curves over a finite field, Princeton University Press, 2013.
- [14] S. Nakajima, On abelian automorphism groups of algebraic curves, J. London Math. Soc. (2) 36 (1987) no. 1, 23–32.
- [15] H. Popp, The singularities of the moduli schemes of curves, J. Number Theory 1 (1969), 90–107.
- [16] P. Roquette, Abschätzung der Automorphismenanzahl von Funktionenkörpern bei Primzahlcharakteristik, (German) Math. Z. 117 (1970), 157–163.

- [17] M. Rosen, Some remarks on the *p*-rank of an algebraic curve, Arch. Math. (Basel) 41 (1983) no. 2, 143–146.
- [18] H. Stichtenoth, Algebraic function fields and codes, 2nd edition, Graduate Texts in Mathematics, 254. Springer-Verlag, Berlin, 2009.
- [19] H. Stichtenoth, Die Hasse-Witt-Invariante eines Kongruenzfunktionenkörpers, (German) Arch. Math. (Basel) 33 (1979) no. 4, 357–360.
- [20] S.G. Vladut, V.G. Drinfeld, Number of points of an algebraic curve, (Russian) Funktsional. Anal. i Prilozhen. 17 (1983) no. 1, 68–69.