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Abstract
Over any quadratic finite field we construct function fields of large
genus that have simultaneously many rational places, small p-rank,
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1 Introduction

Let I, be the finite field of characteristic p > 0 and cardinality ¢, and let F'
be a function field over F, with full constant field F,. We denote by g(F)
the genus and by N (F') the number of rational places of F'/F,. By a tower of
function fields we mean an infinite sequence F = (F;);>o of function fields
with full constant field F, such that Fop € Fy C F» C ..., all extensions
Fi+1/F; are separable, and g(F;) — oo for i — oo. It is easy to see that the
limit
A(F) = lim N(F;)/g(F;)
1— 00

exists, and it is called the limit of the tower [I8, Section 7.2]. The Drinfeld-
Vladut bound [20] implies that

0<XANF)<q—1



A tower F is called asymptotically good if \(F) > 0; otherwise, it is called
asymptotically bad. Moreover, if \(F) = /g — 1, then F is called asymptoti-
cally optimal. Asymptotically good towers exist and they have been studied
extensively, see [2], B 6] [7, 8, 10, 1T], 12} 18] and the references therein. We
remark that it is a non-trivial task to construct asymptotically good towers.
In fact, most known examples of explicitly constructed towers are asymptot-
ically bad. The reason is that g(F;) often increases too fast or N(F;) does
not grow fast enough.

An important invariant of a function field F'/FF, is its p-rank s(F') (which
is sometimes called the Hasse-Witt invariant of F), see [13, Section 6.7].
It is defined as follows: Let F’ be the constant field extension of F with
the algebraic closure F, of F,. The group of divisor classes of F’ which are
annihilated by p is a finite abelian group of exponent p, and s(F') is defined
as the dimension as a F)-vector space of this group. By [13, Theorem 6.96],
the inequality 0 < s(F') < g(F') holds for every function field F over F,.

Another characterization of s(F') is as follows. Let Lp(t) = Z?i (OF) a;it’ €
Z[t] denote the L-polynomial of F'/IF,, see [I8, Chapter 5.1]. The coefficients
a; are divisible by ¢ for i = g(F) + 1,...,2g(F). Let L(t) € F,[t] be its
reduction modulo p. Then s(F) is equal to the degree of L(t), see [19].
This degree is ‘in general’ close to the genus g(F), and deg(L(t)) = g(F) if
and only if the coefficient a4y is not divisible by p. In this sense, ‘most’
function fields are ordinary; i.e., s(F') = g(F). We refer to [I] for the proof
of the fact that there are ‘few’ curves of fixed genus g over F, with p-rank
less than g.

For a tower F = (Fj)i>o of function fields over F,, the quantity

o(F) = liminf s(F;)/g(F;)
71— 00
is called the asymptotic p-rank of F. Clearly we have the inequality
0<o(F) <L

The asymptotic p-rank was introduced by Cramer et al. [9] to analyse the
behaviour of various constructions related to multi-party computations and
fast multiplication algorithms. According to their construction, it is desir-
able to have asymptotically good towers F with o(F) as small as possible.
The aim of our paper is to construct such towers. By considering the above
remarks, one may expect that for a ‘general’ tower of function fields, the
asymptotic p-rank should be equal or close to 1.

We first recall some known results from the literature. The tower over a
quadratic field F, (i.e., q is a square) given by Garcia and Stichtenoth in [12]



is asymptotically optimal and its asymptotic p-rank is 1/(,/g+1), see [5] 9.
This is the smallest value of an asymptotic p-rank that has been hitherto
observed among asymptotically good towers over F,. The asymptotic p-rank
of some asymptotically good towers over a cubic field F, (i.e., ¢ = p3*) has
been determined in [2, 5], their p-rank values are close to 1/4.

In Section 4 we will construct asymptotically good towers over quadratic
fields whose asymptotic p-rank is significantly smaller than the asymptotic
p-rank of the above-mentioned towers. More specifically, we will show in
Theorem [4.3] that:

For any € > 0, there exists an asymptotically good tower F over F, such
that its asymptotic p-rank is o(F) < €.

We will also consider towers of function fields that have many automor-
phisms. Recall that an automorphism of a function field F'/F, is a field
automorphism of F' that fixes every element of F,. It is known that the au-
tomorphism group Aut(F) of F//F, is always finite, see [13, Theorem 11.56].
By [15], function fields of fixed genus g > 3 having non-trivial automorphism
groups are rare; i.e., in general |Aut(F')| = 1 for function fields of fixed genus
g > 3. For large classes of function fields (for instance if Aut(F) is abelian
or if the order of Aut(F’) is prime to p), there is a linear upper bound

[Aut(F)] < A-g(F)

with an absolute constant A > 0, see [I4] [I6]. A similar situation can be
observed among the known examples of explicitly constructed towers. We
will show in Section 4 (see Theorem that over quadratic fields IF, the
following holds:

For any ¢ > 0, there exist a constant B > 0, depending on q, and an
asymptotically good tower F = (Fj);>o over Fy such that

o(F)<e and |Aut(F;)| > B-g(F;) for alli> 0.

In other words, there exist function fields over F, of large genus which have
simultaneously many rational points, many automorphisms and small p-
rank.



2 Preliminaries

Let £ O F be a finite separable extension of function fields. Denote by
P(F) the set of places of F. For a place Q € P(F) lying above P € P(F),
we write Q|P and denote by e(Q|P) the ramification index and by d(Q|P)
the different exponent of Q|P. The genera of F' and E are then related as
follows, see [18, Theorem 3.4.13].

Lemma 2.1. [Hurwitz genus formula] Let E/F be a finite separable exten-
sion of function fields over the same constant field F,. Then

29(E) —2=[E: F]- (29 + Y ) dQIP)-degQ .

PeP(F) QeP(E), Q|P

For the p-ranks of F' and FE, such a formula does not hold in general.
However, in the important special case where E/F is a Galois extension of
degree p, one has the following formula, see [17, Theorem 2].

Lemma 2.2. [Deuring—Shafarevich formula] Let E/F be a Galois extension
of degree p of function fields over the same constant field F,. Then the p-
ranks of F and E satisfy

s(E)—1=p-(s(F + ) Z (e(QIP) — 1)) - deg @ .

PEP(F) QeP(E), Q|P
We will need the following generalization of Lemma

Lemma 2.3. Let E/F be an extension of function fields of degree [E : F] =
p™ over the same constant field F,. Assume that there exist intermediate
fields F = Fy C Fy C ---F,_1 C F,, = E such that all extensions Fi1/F;
are Galois. Then the p-ranks of F and E satisfy

s(E) =1 =[E: F]- (s(F + Y Y. (e@QIP) 1)) -degQ .

PeP(F) QeP(E),Q|P

Proof. We can refine the sequence F' = Fy C F; C ---F,,_1 C F,, = F such
that all extensions Fj.1/F; are Galois of degree p. Then the claim follows
from Lemma [2.2] by induction. O

Let b > 1 be an integer. A separable extension E/F of function fields
is called b-bounded if for every place P € P(F) and every @ € P(E) lying
above P, the different exponent d(Q|P) satisfies the equation

d(QIP) =b- (e(QP) = 1).



Remark 2.4. We remark that our definition of b-boundedness differs slightly
from [3], 8], where the authors replace the condition “d(Q|P) = b- (e(Q|P) —

1)” by “d(Q[P) < b- (e(Q|P) —1)".

A tower F = (F});i>0 is called b-bounded if all extensions Fj;1/F; are b-
bounded, see [2, Section 3.3]. The property of being b-bounded is transitive
as follows from the transitivity of ramification index and different exponent,
see [18, Corollary 3.4.12]:

Lemma 2.5. Let FF C E C H be separable extensions of function fields. If
H/E and E/F are b-bounded, then H/F is also b-bounded.

As most towers of function fields that we consider in this paper are p-
towers, we give the definition of a p-tower.

Definition 2.6. A tower F = (Fj);>o is called a p-tower over F, if all
extensions Fj;1/F; are Galois and their degrees [F;11 : F;] are powers of p.

We will need two more notions associated to a tower F = (F;);>o. The
sets of places

Split (F) = {P € P(Fp) | degP = 1 and P splits completely in F;/Fy for all i > 1},
and
Ram (F) = {P € P(Fp) | P is ramified in F;/F, for some i > 1}

are called the splitting locus and the ramification locus of F, respectively.
Note that the inequality N(F;) > [F; : Fo| - [Split(F)| holds for all ¢ > 0.

3 Composing a tower B = (B;);>0 with an extension
E/B,

Starting from a given tower B = (B;);>0 (called the basic tower), we will
construct new towers by composing B with an extension F/By. In the next
section we will specify the basic tower B and the field E to prove our main
results. We assume that B and F satisfy the following conditions:

(B1) B is an asymptotically good p-tower over F,.
(E1) The extension E/By is finite of degree m relatively prime to p, and
[F, is the full constant field of E.

We set E; := E - B; for i > 0. It follows from (B1) and (E1) that £ =
E - B:= (E;)i>0 is also a p-tower over F,.



Proposition 3.1. Under the assumptions (B1) and (E1), the limits

. o s(E) - N(E)
= — =1 — =1 7
1—00 [Ez : E‘o]7 L2 (5) ZLI?O [Ez : E()] and L3(8> zirgo [EZ : E()]

exist, and we have that
Ll(g) > 0, LQ((‘:) >0 and L3(5) > 0.

Proof. By [19, Lemma 7.2.3], the sequence ((¢(E;) — 1)/[E; : Ep])io is
monotonically non-decreasing. To prove that Li(€) exists, it suffices to show
that this sequence is bounded from above. By Castelnuovo’s Inequality [19)
Theorem 3.11.3], we have

9(Ei) < g(Eo)[E; : Eo] +mg(B;) + ([Ei : Eo] —1)(m —1).

Then the fact that [E; : Ey] = [B; : By| implies the following inequalities.

9(Ei) 9(Bi) | [Ei:Ep] -1
] S 9B +mire + [Ei:(j%] (m—1)
<g(E0)—|—m—l+m[gi(:BiB)O] (3.1)

Since B is an asymptotically good tower, g(B;)/[B; : Bo] is bounded above,
see [19, Proposition 7.2.6]. Then we get the existence of L;(£) by Equation
(3-1). Note that g(E;) > 0 for all sufficiently large ¢ > 0, i.e., Li(€) > 0.
By Lemma we obtain that (s(E;) — 1)/[E; @ Eo] < (s(Eit1) —
1)/[Eit1 @ Ep] for all i > 0; i.e., the sequence ((s(E;) — 1)/[E; : Eo))i>o0
is monotonically non-decreasing. Also, by the fact s(E;) < g(E;) we have

s(Bi) =1 _ _g(Ei)
[Ez : Eo] - [El : E0]7

hence the sequence is bounded above. Hence, it is convergent. Moreover,

L3(€&) = llggo [J;Z_(:Eég] exists by [19, Lemma 7.2.3] and L3(€) > 0. O

An immediate consequence of Proposition [3.1] is the following theorem:

Theorem 3.2. Let £ = E - B, where B and E satisfy the properties (B1)
and (E1). Then the limit and the asymptotic p-rank of € are given by

AME) = Ls3(€)/L1(E)  and o(E) = L2(E)/L1(E).



We obtain more precise results on the asymptotic values L;(£) of the
tower £ under additional conditions. These assumptions are as follows:

(B2) B is b-bounded for some b > 1.
(B3) The ramification locus Ram(B5) is finite and non-empty.
(E2) Every place P €Ram(B) is totally ramified in the extension E/Bj.

We remark that the existence of a totally ramified place in the extension
E/By implies that Fy is the full constant field of E.

Proposition 3.3. With the above notation and assuming that (B1), (B2),
(B3) and (E1), (E2) hold, the following hold:

(i) Let P € Ram(B) and R € P(B;) with R|P. Then R is totally ramified
in E;/Bj; i.e., R has exactly one extension @ in E;, and deg R = deg Q.
In particular, if Ram(B) = {Pi,..., P} then Ram(€) = {Q1,...,Qr},
where Q) is the unique extension of P; in Fy.

(ii) The tower & is c-bounded, with ¢ = mb —m + 1.

Proof. The proof of item (i) is straightforward, hence we prove only item (ii).
Let @ € P(F;11) with ¢ > 0 that is ramified over E;. We set P := Q N Ej,
Qo := QN Bi11 and Py := QN B;. Then Qq|Fy is ramified, hence P|Py and
Q|Qo are ramified with e(P|Py) = e(Q|Qo) = m by (i). By considering the
extensions B; C F; C ;1 and B; C B;+1 C E;41, we apply the transitivity
of the different exponents. Then the b-boundedness of the tower B yields

d(Q|Fy) = d(Q[P) + (m — 1)e(Q|P) = (m — 1) + mb(e(Qo|Fo) — 1).

Observing that e(Q|P) = e(Qo|P), we obtain d(Q|P) = (mb—m+1)(e(Q|P)—
1), as desired. O

Proposition 3.4. With the above notation and assuming that (B1), (B2),
(B3) and (E1), (E2) hold, we have for all i > 0:

9(E)~1 = B : Bol(g(Eo) )+ " "2 ((g(B) 1) ~(B; : Bol(o(Bo)-1)

and
S(EZ> —-1= [Bz : Bo](S(E()) — 1) + <(8(Bz> — 1) — [Bz . B()](8<B0> — 1)) .
Proof. We set

= > > (eQP)-1)) - degQ.

PeP(By) QeP(B;), Q|P

7



Since B;/By is b-bounded, the degree of the different divisor of B;/By is
equal to bA;. Then by the Hurwitz genus formula,

A (3.2)

N | o

g(B;) =1 = [B;: Bol(g(Bo) — 1) +

By Proposition [3.3] (i), we conclude that R € P(E;) is ramified in E;/Ej if
and only if RN B; = @ is ramified in B;/By. Moreover, the ramification
indices are the same and degR = deg(@. Therefore, by Proposition (ii),
the degree of the different divisor of E;/Ej is equal to (mb—m+1)A;. Then
by the Hurwitz genus formula and the fact [E; : Eg| = [B; : Byl, we have

mb—m+1

g(E;) =1 = [Bi: Bol(g(Eo) — 1)+ 5

A;. (3.3)
Substituting A; from Equation (3.2]) into Equation (3.3]), we get the first
claim. The second claim of the proposition follows by the same argument,
using Lemma [2:3] O

4 Main results

In this section we assume that ¢ = £2 is a square, and we specify the basic
tower B and the extension E O Bjy. We take B := G = (Gj)i>0 as the
optimal tower introduced by Garcia and Stichtenoth in [11].

4.1 Some properties of the tower by Garcia and Stichtenoth

The tower introduced by Garcia and Stichtenoth in [I1] is defined as follows:
G1 := Fy(x1) is a rational function field, Go := F (o) with 2o = z{ + 1,
and for ¢ > 1,

¢

Ly

xe_l—i—l'

)

Gz’+1 = Gi(.%'i+1) with xfﬂ +Tip1 =



Its properties that we need here, are:

(GS1) Go = Fy(xp) is a rational function field.

(GS2) All extensions G;41/G; are Galois p-extensions; i.e., G is a p-tower.

(GS3) The ramification locus of G consists of the zero and the pole of zy in Gy ,
hence |[Ram(G)| = 2 by [10, Lemma 3.3.(ii)].

(GS4) G is 2-bounded by [10, Lemma 3.3.(ii) and 3.5.(iii)].

(GS5) The splitting locus of G consists of the zeros of zg — a, a € F/, hence
|Split(G)| = £ — 1 by [10, Lemma 3.9].

(GS6) The tower G is optimal by [10, Theorem 3.1]; i.e., its limit is A\(G) = ¢ — 1.

(GST7) zllglog(Gl)/[Gl : Go] = 1 by [10, Remark 3.8], and hence by (G\S5) and (GS6)

lim N(G;)/[G; : Go] = |Split(G)| = ¢ — 1.
1—00
(GS8) For a rational place P € P(Gy) \ Split(G) , by (GST7) one has

lim HQ € P(Gy); Q is rational and Q|P}|

We will need one more property of the tower G:

(GSg) hl’n S(G,)/[GZ . Go] =1.

1— 00

Proof of (GS9). We use the quantity A; as in the proof of Proposition
By Lemma 2.1 (GS4) and (GS7),

71— 00 71— 00
Then we obtain from (G\S2) and Lemma

lim S(Gz)/[Gz : Go] =—-14+2=1.

1—00

g

An immediate consequence of (GS7) and (GS9) is that G is an ordinary
tower; i.e., its asymptotic p-rank is o(G) = 1. This fact has already been
observed in [5]. Note that the tower G satisfies (B1) by (GS2) and (GS6),
(B2) by (GS4) and (B3) by (GS3).



4.2 Compositum over the tower by Garcia and Stichtenoth
and its Galois closure

Let m > 1 be an integer relatively prime to q. We consider the extension
field £ O G defined as follows:

E = Go(y) =Fy(zo,y) with y™ =

Note that E/Gy is an extension of degree m, and the zero and the pole of
xo are the only ramified places of Gy in F, which are totally ramified. In
particular, E satisfies the properties (FE1) and (E2) by (GS3). Observe also
that £ = F,(y) is a rational function field.

Proposition 4.1. Let £ = E -G = (E;);>0 be the composite of the function
field E (as defined above) with the tower Q Then:

(1) L1(€) = limj o0 g(E;)/[Gs : Go] =
(i) Lo(€) = limje0 $(E;)/[Gi : Go] = 1

Proof. To prove item (i), we observe first that the function field F =
Fq(x0,y) = Fy(y) has genus g(E) = 0. Now Proposition[3.4and (GS4), (GST)
yield
g(E;) m+1 . 9(Gy)
li = gB)—1+— (lim =——— — (g(Gg) — 1
S reren A (5& Gi:Go) WG )
1
— 14 %(1 1) =

(iii) We apply Proposition and (GS9) and get

s(E;) s(Gy) L B
lim G = s(B) = L Jim o = (5(Go) — 1) = —1+ T+ 1= 1

O

Proposition 4.2. For the tower £ as in Proposition[{.1], we have
L3(8) = lim N(Ez)/[GZ : Go] = (5 — 1) . ng(E + 1,m) .
1—00

Proof. In a rational function field Fy(z), we denote by (z = a) the rational
place which is the zero of the element z — a, for a € Fy. Let P € P(Ey) be
a rational place of Ey = F,(y) which lies over a place (zg = a) € Split(G).
Then P = (y = b) with b € F, and b™ = a € F/, by (GS5). On the other
hand, if P € P(FE)y) lies above a rational place Py € P(Gy) \ Split(G), then

m {Q € P(E;); Q is rational and Q|P}|
1—00 [G,L : Go]

:0’

10



as follows from (GS8). Therefore lim; o, N(E;)/[G; : Gyl is equal to the
cardinality of the set

M:={beF,|b" eF,}.
We observe that for an element b € F,
be M = b1t =yl = 1 = peedla=lm=1) = 1
Therefore, | M| = ged(¢g—1,m(¢—1)) = ({—1)-ged((¢+1),m) , as desired. [

Putting together the results of Proposition and [.2] we obtain our
main result. We recall that ¢ = ¢2.

Theorem 4.3. The limit and the asymptotic p-rank of the tower £ as defined
above, are

d(+1 1
gedllLm) o d o) = -

m m

Proof. We have L1(£) = m, Ls(E) = 1 by Proposition and L3(&) =
(¢—1) ged(¢+1,m) by Proposition[4.2] Then the result follows from Theorem
3. 2) O

AE) = (£—1)-

Corollary 4.4. For any divisor m|(¢ + 1) there exists an asymptotically
optimal tower € over Fq, whose asymptotic p-rank is o(€) = 1/m. In par-
ticular, for given € > 0 there exist a large enough even power q = £? of p and
an asymptotically optimal tower € of function fields over Fy with o(£) <.

Remark 4.5. Corollary [£.4] was already known in the case m = £+ 1, see

[9].

Corollary 4.6. For every € > 0 there exists an asymptotically good tower
& over Fy whose asymptotic p-rank is less than €. In other words, there is
a constant C' > 0 such that for infinitely many integers g € N there exists a
function field F/F, of genus g(F) = g that satisfies

N(F)>C-g(F)and s(F)<e-g(F).
We can choose C = (¢ — 1) - My, where

My, = max {ged(£ + 1,m)/m ; ged(m, ) =1 andm > ¢ '}.

11



Remark 4.7. By the Drinfeld-Vladut bound we observe that M, < 1.
Note that for small ¢, the constant C' in our construction is also small. We
do not know (but find it unlikely) if for every € > 0 there exist asymptotically
optimal towers over a fixed constant field F, whose asymptotic p-rank is less
than e.

Remark 4.8. It is easy to construct towers whose asymptotic p-rank is 0.
For example, the tower G = (G;);>0 defined as

GO = Fq(ﬂjo) and for ¢ > 0, Gi+l == Gi(xi—i-l) with l‘?+1 + Ti+1 = f(CL‘l),

where f(z;) is a polynomial of degree d relatively prime to ¢, has asymptotic
p-rank 0. We do not know, however, if there exist asymptotically good towers
whose asymptotic p-rank is 0.

The extensions F;11/FE; in the tower £ above are Galois, but the exten-
sions F;/Ey are not Galois, for all ¢ > 2. However, a slight modification
of our construction will produce a p-tower having that additional property.
For convenience, we will call a tower F = (F;);>0 a Galois p-tower if for all
i > 1, the extension F;/Fy is a Galois p-extension.

Now we will use as the basic tower the Galois closure G* of the Garcia-
Stichtenoth tower G in [I1]. It is defined as follows: G* = (G} );>0 where G}
is the Galois closure of G; over Gg. This tower has all properties as listed in
(GS1) —(GS9) if we replace there the fields G; by G}, see [10]. Note that G*
satisfies (B1), (B2), (B3), and E satisfies (E1), (E2). Then the composite
tower £* := E - G* is a Galois p-tower which satisfies:

Theorem 4.9. The limit and the asymptotic p-rank of the tower £* are

d(/+1 1
A(g*):(gfl).m an ‘
m m
Moreover, the automorphism group of E over Fy has order
mt - g(E7).
If m is a divisor of (¢ — 1), then |Aut(E})| > g(E}).

Proof. The calculation of L1(£*), La(E*) and L3(E*) is done in the same
way as in Proposition [{.1] and {2l Then by Theorem [3.2] we obtain the
desired result for A(£*) and o(E*).

The Galois group Gal(E/Ef) of the extension E}/Ej is a subgroup of
Aut(E?), hence

[Aut(E7)| > [E; - Eg >

[Aut(E7)| > |Gal(E7/Eg)| = [E} : Eq.

12



Moreover, the inequality g(E;) < m[E} : E{] is shown as in Proposition
(i), which gives the desired result. Finally, if m is a divisor of (¢ — 1),
then E/G} is a Galois extension of degree m. Since the extensions fields £
and G} are Galois and linearly disjoint over G, their compositum E is also
Galois over G, and

Gal(E!/Gy) = Gal(E/GY) x Gal(G?/GY).

Therefore, |Aut(E})| > m - [G} : Gj]. Then the fact that [G} : G§] = [E; :
Ej) gives the desired result. O

Remark 4.10. The number of m-th roots of unity in I, is equal to d =
ged(m, g — 1). Note that for a m-th root of unity ¢ the map 7. : £ — E
defined by 7¢(y) = (y is an automorphism of £ = Ej. Since E}/Ef is a
Galois extension, there are [EY : Ef] distinct automorphisms of Ef whose
restriction to E is equal to 7¢. That is, [Aut(E})| > ged(m, q — 1)[E} : Ej].

Remark 4.11. The precise Galois groups Gal(G;/G;) have been computed
in [4]. In particular, the extension degree [G/ : Gj] is known, and so is
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