[1 THE SOFTWARE ASPECT OF
PRESERVING DIGITAL ART
Cemal Yilmaz

In order to understand the technical challenges and

issues regarding the preservation of software-based

digital art, one needs to first understand the root

causes of the problem. To this end, we begin with a

brief description of the hardware and software stack
present in today’s computing platforms.

At a very high level, the hardware and software
stack is organized in a layered manner. At the
bottom of this hierarchy, we have the hardware
layer. The hardware layer consists of components,
such as CPU (central processing unit), RAM (random
access memory), and I/0 (input/output) devices,

and is responsible for executing low-level machine
instructions. On top of the hardware layer, we

have the software stack, which is organized into
three layers; operating system layer, application
support layer, and application layer. The ultimate
goal of this layered architecture is to provide

an increasingly higher level of abstraction from
bottom to the top of the hierarchy. That is, each
layer in this architecture is responsible for hiding
the details of the lower levels from the upper
levels. The operating system layer (e.g., Windows
10, Linux, and Unix), which resides right on top of
the hardware layer, makes the hardware transparent
to the applications, so that applications do not
need to deal with the complicated details of the
hardware components in order to operate. Similarly,
the application support layer, which consists of
components, such as development environments, window
managers, and user interfaces, makes the underlying
operating system transparent to the applications, so
that applications are not affected by the changes

in the operating system. On top of the application
support layer, we have the application layer where
the applications we use on a daily basis, such as Web
browsers and social media applications, operate.

Software-based digital art typically resides in

the application layer, benefiting from all the
abstractions provided by the underlying layers.
Although this helps develop better, faster, and more
reliable software components in art projects, it also
creates dependencies between the artwork and the
underlying layers. When this is coupled with the fact
that the artwork has no control over the hardware

and software stack, it amounts to a proliferation

of maintenance issues (if care is not taken). In
particular, the underlying layers can change. Their
interfaces and semantics can change. The way they
interact with each other can change. And, they may
even become obsolete. In the presence of such changes
(note that this is not a question of if, but when),
the artwork needs to be maintained in a timely manner
by accommodating the changes to ensure a longer term
preservation.

In this essay, we introduce the concept of
preservability assurance to refer to all activities
and tasks, which focus on providing confidence that
digital art will have a long-term preservability.
Next, we discuss a number of preservability assurance
activities. Note that not all of these activities

may be meant to be carried out by non-technical
stakeholders. Our point of view, however, is that
non-technical stakeholders in art projects, such

as artist, should at the very least understand



the preservability issues and risks, and be
knowledgeable, at a high level, about possible
solution approaches, so that they can make better
managerial decisions when it comes to balancing the
preservability concerns with artistic expression.
The suggestions made by this work can be developed
by researchers, thought by educational institutions,
such as universities, and made practical and
promoted by art institutions, such as museums.

Last but not least, for this work we are solely
concerned with the preservability assurance of
software components in art works. As software is
quite different from the other artifacts in art
projects, such as hardware, the discussions in this
paper may not readily be applicable for them.

Archiving vs. Maintaining

Simply archiving the executables and/or the source
code belonging to a piece of software may not be
enough for preservation as all the dependencies the
software has (i.e., the underlying layers, including
the hardware layer) may also need to be archived.
Although storing the software stack (compared to
storing the hardware stack) is relatively easy as
software does not wear out, software needs hardware
to run on. And, keeping redundant copies of hardware
will go as far as the last copy wears out.

Regularly maintaining software components in

digital art to accommodate changes in the software
and hardware stack, especially in the presence

of disruptive technologies, is, therefore, a more
effective and reliable strategy for ensuring long-
term preservation. The longer the maintenance is
delayed, the more challenging and costly it will be,
thus the more the risks become reality. This is
mainly due to the accumulated technical debt (Tom et
al., 2013) - a concept used in software engineering
to reflect the implied cost of additional rework

caused by ignoring issues or implementing easier,
but improper solutions for them.

Note that software is intangible. One cannot touch
and feel the shape of a piece of software. It simply
runs in the background, orchestrating the hardware.
Therefore, software can be maintained without
modifying its externally visible behavior, thus
without at all affecting the artistic expression of
the artwork.

Preservability assurance, but when?

Most (if not all) of the related works in the
literature solely concerns preserving digital art
after it has been created. This, however, seems to
be the exactly the same mistake we, as software
engineers, used to make. In particular, we used

to think that quality, such as preservability, is
something that needs to be addressed after the
systems have been developed. After decades of
failed software projects, we, however, came to

the conclusion that this does not work and that
quality is something that needs to be addressed
right from the beginning. Preservability concerns
regarding digital art is no exception. Therefore,
preservability assurance shall be an integral part
of any digital art project right from the beginning.
Waiting until after artwork has been created to
address the preservability concerns, can be too
little, too late.

Preservability assurance, but by whom?

All the stakeholders in an art project, including
the artists, should contribute to the preservability
assurance activities, given that preservability

is indeed a concern; not all artists may consent

to preservation. One can, however, argue that the
creativity of an artist should not be restricted due

105



to some technical issues. By all means, we agree
with that. We, however, observe that artists often
work with technical stakeholders in art projects,
such as software engineers. We, therefore, believe
that they, as non-technical stakeholders, should be
provided with guidelines, approaches, and tools, so
that they can make better managerial decisions when
it comes to balancing the preservability concerns
with artistic expression. It is, indeed, the artists
themselves in the end, who will decide the level

of importance that should be attributed to the
preservability concerns.

Preservability assurance, but how?

In the software industry, it is not uncommon to
have non-technical managers - a role, which is most
likely to be played by an artist in a digital art
project. As expected, they may have difficulties

in evaluating the value and/or consequences of the
technologies used in development. To help non-
technical managers with their business decisions,
we, as the software engineering community, have
developed the concept of software governance
(Chulani et al., 2008). The ultimate goal of
software governance is to quantify the business
value of each software module or even each line

of code, such that non-technical managers can

make better decisions or take educated risks.
Consequently, similar approaches can also be
developed for preservability governance to help
non-technical stakeholders in art projects evaluate
the benefits, risks, and the costs of the design
decisions made during development.

One frequently exercised practice in software
governance (and also in other related activities)
is to use software metrics (Fenton, 1991), which
aim to quantify different quality attributes

of software systems. From the perspective of

preservability assurance, one example type of
software metrics that can be used is portability
metrics (Washizaki et al., 2004), quantifying the
ability of running the same software in different
environments. These metrics can be used to

evaluate various characteristics of portability,
including installability, replaceability, and
adaptability. Furthermore, as many of these metrics
can be extracted from source code as well as

from documents, such as requirements and design
specification documents, they allow the assessment
of the preservability risks even at the very early
stages of development. Note that portability is
important because one way to preserve digital art
can be to port it to a different hardware and
software stack (by, for example, replacing obsolete
layers).

Software governance approaches are typically
developed with the needs of especially the non-
technical stakeholders in mind. For technical
stakeholders in art projects, we also have a wide
spectrum of approaches that they can use for
preservability assurance. Next, we briefly discuss
some of these approaches. Note that, since the
requirements in art projects typically come from
the artists, they can enforce the types of the
approaches to be employed in the project.

From the perspective of software engineering,
preservation generally falls into the category of
software maintenance (Bennett et al., 2000). And,
software maintenance, for the most part, cannot

be carried out in the absence of source code.
Therefore, it is of at utmost importance to maintain
a repository (such as git (Git, 2020)) of not just
the codebase, but also the different artifacts,

such as documents and test cases, produced during
development. All forms of documentations, including
software requirements and design specifications, are

107



of great practical importance as the maintenance
team for a piece of art is likely to have a high
turnover rate.

Considering the nature of digital art projects, as
the requirements are likely to change frequently
during development, following agile development
processes, such as Scrum (Schwaber, 2002), can

be a better fit. At a very high level, the motto
for agile processes is “Delivery quickly. Change
quickly. Change often.” One dilemma, however, is
that agile processes value working software over
comprehensive documentation (Fowler et al., 2001).
Therefore, agile projects typically have little

or no emphasis at all on documentation. In agile
projects, the source code itself is considered to
be the documentation. This necessitates that the
source code needs to be clean, simple, and easy to
understand, which, in turn, necessitates frequent
refactoring - a technique to restructure the
internal structure of a piece of software (often
for the purpose of improving the maintainability)
without changing its externally visible behavior
(Mens et al., 2004). Therefore, all the stakeholders
in an agile project, including the artists, shall
recognize the value of refactoring and accept all
the implied costs (e.g., additional time and effort
required for refactoring).

Developing and maintaining test cases is also
vital as they need to be run to ensure that

recent maintenance activities do not adversely
affect the functionality and performance of the
software system. All forms of testing, including
unit testing, integration testing, system testing,
performance testing, and the regression testing
(Myers et al., 2004), shall be exercised as they
address different quality assurance concerns.

Another approach that can be used to check for
regression errors is to have some assertions
(Rosenblum, 1995) embedded in the source code.

In a nutshell, an assertion is a condition that
needs to hold true at runtime. Violating a valid
assertion indicates that the system deviates from
its expected behavior. Another quite practical
property of assertions is that they can be turned

on and off at will. For example, they are typically
turned off before the system is deployed. Therefore,
having assertions, especially the ones regarding the
critical functionalities of a digital art project,
is a good practice as these assertions can be turned
on during preservation activities to make sure that
these activities do not have any adverse effects on
the artwork.

An advanced form of asserting expectations can

be achieved by employing the design by contract
approach (Mitchell et al., 2001). In this approach,
a software module is shipped with a contract,
specifying not only what the user should expect
from the module, but also what the module expects
from the user. The contracts are expressed in

the form of preconditions, postconditions, and
invariants, specifying what is to be expected
before, after, and during the executions of the
modules. The contracts are also executable. That
a contract can be activated to determine whether i
is breached at runtime, which indicates that the
system does not work the way it is intended. Digital
art can be distributed with executable contracts,
which not only help detect regression errors during
maintenance activities, but also help determine
whether an art installation works as expected. Note
that, in the presence of a breach, since the parts
of the contract being violated will be known, using
executable contracts can also help reduce the space
of potential root causes for failures, which, in
turn, can greatly improve the turnaround time for

e
t »n
-

109



bug fixes.

Likely contracts can even be automatically
discovered by collecting data at runtime and
analyzing the collected data using, for example,
artificial intelligence and statistical approaches,
to infer behavioral patterns (Ernst et al., 2001).
The behavior of digital art can then be checked
automatically against these observed patterns

to increase the level of confidence after the
maintenance activities and/or art installations.
Although the representativeness of the discovered
patterns is restricted by that of the data used

for the analysis (i.e., observed behavior may

not precisely specify expected behavior), many
empirical studies strongly suggest that event rough
approximations can be of great practical help to
software engineers (Podgurski, 2003).

Another approach that can significantly improve the
preservability of software components in digital
art is to design and implement these components

in a highly cohesive and loosely coupled manner.

In software engineering, cohesion describes how
strongly the contents of a module are related to
each other, whereas coupling (i.e., dependency)
describes how strongly a module is related to

other modules (Bass et al., 2003). While increasing
cohesion helps get well-defined modules, reducing
coupling helps these modules to be standalone, both
of which play an integral role for preservability
assurance. More specifically, it is typically easier
to replace a software module with another module
providing the same or similar functionalities, when
the module to be replaced is a highly cohesive and
loosely coupled module.

To materialize these design ideas, software design
patterns (Gamma, 1995) can be used. The rationale
behind software design patterns stems from a simple

observation that there are some reoccurring design
problems in software engineering. The ultimate

goal of the design patterns is to determine these
reoccurring problems, solve them in an efficient

and effective manner, and document the solutions,
such that they can readily be adopted in different
contexts and projects, rather than solving these
problems from scratch every time they are faced. As
software engineers, we have developed and documented
a large number of software design patterns. Not only
the existing design patterns can be leveraged in

art projects, but also specific design patterns for
preservability assurance can be developed.

In addition to the design patterns, we have also
developed a wide range of software design principles
(Sommerville, 2011). Some of the important design
principles from the perspective of preservability
assurance are 1) anticipate obsolescence, i.e., plan
in advance for potential changes in the hardware and
software stack; 2) design for testing and debugging, m
i.e., design the system, such that testing and
debugging can be automated to the extent possible;
and 2) design for portability, i.e., design the
system, such that it can run on as many different
computing platforms as possible by, for example,
using open standards rather than proprietary
technologies.

When it comes to portability and managing
dependencies, perhaps the most effective technology
to be used is the virtualization technology
(Campbell et al., 2006). At a very high level,
virtualization can be defined as running a virtual
instance of a system on another system. By using
this approach, digital art can be distributed

in the form of a virtual machine (an emulated
equivalent of a computer system) or in the form of a
virtual container (a lighter weight virtualization
technology), where all the dependencies, including



the hardware and software stack, are pre-
installed. Therefore, deploying a virtual
machine (which is typically a straightforward
task) automatically deploys everything required
by the artwork to operate. Note however that
virtualization is not a solution for all the
issues we have been discussing so far. After
all, a virtual machine is good as long as we
have a host platform (e.g., a host machine

and a host operating system) supporting the
virtualization technology used by the machine.
That is, virtualization technologies can change
over time and they too can become obsolete.

We have so far focused solely on the internal
dependencies they may be possessed by a software
system. Digital art can also have external
dependencies. For example, an artwork may depend
on an information source available on the Web

or an artistic expression may depend on certain
properties of existing technologies (e.g., “the
speed of the internet”). As is the case with
internal dependencies, the nature of these
external dependencies can change over time.

For example, the information source, on which

an artwork depends, may become obsolete or the
characteristics of the data being published by
this source may change or the properties of the
technologies may change, e.g., the internet can
get faster. These changes not only can create
some technical issues, but also may greatly

harm the artistic expression. To alleviate

these issues, one approach that can be used is
mocking (Mostafa et al., 2014). In particular,
mock objects can be created for the external
dependencies that are likely to change and these
mock objects can then be distributed with digital
art. In this context, although a mock object
replaces an original object, it does not nothing
but replay pre-recorded results. Going back to

the external information source example, a mock
object can automatically be created by capturing

the messages being exchanged by the art work and

the information source and then these messages

can be replayed as needed to reproduce the same
artistic expression without requiring the presence
of the actual information source - a frequently-used
approach known as capture and replay (Zeller, 2009).

The software engineering community has for quite

a while been dealing with the same or similar
issues, with which the art community struggles to
ensure the long-term preservation of software-based
digital art. We believe that this presents a win-
win situation. On one hand, many of the technologies
and processes developed by the software engineering
community can readily be employed to preserve
digital art. On the other hand, the art community
can offer us novel problems and challenges to
address. In any case, preservability assurance shall
be an integral part of any digital art project right 13
from the beginning and art works shall regularly be
maintained.



References

Tom, E., Aurum, A.& Vidgen, R. (2013). An Exploration of
technical debt. Journal of Systems and Software, 86(6),
1498-1516.

Chulani, S., Williams, C. & Yaeli, A. (2008). Software
development governance and its concerns. In Proceedings
of the 1st international workshop on software
development governance.

Fenton, N. E. (1991). Software metrics: A rigorous
approach. Chapman & Hall.

Washizaki, H., Yamamoto H. & Fukazawa, Y. (2004). A
metrics suite for measuring reusability of software
components. In 5th International Workshop on Enterprise
Networking and Computing in Healthcare Industry (IEEE
Cat. No. @3EX717).

Bennett, K. H. & Rajlich, V. T. (2000). Software
maintenance and evolution: A roadmap. In Proceedings of
the Conference on The Future of Software Engineering.

Git. (2020). https://git-scm.com.

Schwaber, K. & Beedle, M. (2002). Agile software
development with Scrum. Prentice Hall Upper Saddle
River.

Fowler, M., Highsmith, J. & others (2001). The Agile
manifesto. Software Development, 9(8), 28-35.

Mens, T. & Tourwe, T. (2004). A Survey of software
refactoring. IEEE Transactions on Software Engineering,
30(2), 126-139.

Myers, G. J., Badgett, T., Thomas, T. M. & Sandler, C.
(2004). The Art of software testing (2nd ed.). Wiley.

Rosenblum, D. S. (1995). A Practical approach to
programming with assertions. IEEE Transactions on
Software Engineering, 21(1), 19-31.

Mitchell, R., McKim, J. & Meyer, B. (2001). Design
by contract: By example. Addison-Wesley Publishing
Company.

Ernst, M. D., Cockrell, J., Griswold, W. G. & Notkin,
D. (2001). Dynamically discovering likely program
invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2), 99-123.

Podgurski, A., Leon, D., Francis, P., Masri, W.,
Minch, M., Sun, J. & Wang, B. (2003). Automated
support for classifying software failure reports. In
Proceedings of the 25th International Conference on
Software Engineering.

Bass, L., Clements, P. & Kazman, R. (2003).
Software architecture in practice. Addison-Wesley
Professional.

Gamma, E. (1995). Design patterns: Elements of
reusable object-oriented software. Pearson Education
India.

Somerville, I. (2011). Software engineering. Pearson.

Campbell, S. & Jeronim, M. (2006). An introduction to
virtualization. In Applied Virtualization (pp. 1-15).
Intel.

Mostafa, S. & Wang, X. (2014). An empirical study on
the usage of mocking frameworks in software testing.
In Proceedings of the 14th international conference
on quality software.

Zeller, A. (2009). Why programs fail: A guide to
systematic debugging. Elsevier.

115



