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Abstract: In this work a feedforward control approach based on SINDYc (Sparse Identification
of Nonlinear Dynamics with Control) is proposed for increasing the trajectory tracking accuracy
of industrial robots. Initially, the dynamic relationship between the desired and the actual
trajectory is sparsely identified using polynomial basis functions. Then a new trajectory is
created from the desired trajectory using a feedforward controller based on the inverse of the
sparsely identified dynamic model. The effectiveness of the proposed approach is evaluated
by a simulation study in which 4 different KUKA robots were tasked to follow 16 distinct
trajectories based on ISO 9283 standard. The obtained results show that the proposed method
successfully models the dynamic relationship between the desired and the actual trajectory
with accuracies above 98.09% when all of the robots are considered. Moreover, the developed
feedforward controller improves the trajectory tracking accuracy of industrial robots by at least
91.1% and 94.5% for position and orientation tracking, respectively while providing parsimonious
models.
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1. INTRODUCTION

Industrial robots are required to perform several repeti-
tive tasks such as assembly, pick and place, loading and
unloading, etc., with a very high accuracy. Moreover, they
are planned to replace conventional CNC systems in ma-
chining tasks in the near future. However, their relatively
low trajectory tracking accuracy during machining tasks
is the main hindrance in their widespread adoption (Klim-
chik et al. (2017)). Therefore, there exists many works in
literature which deal with increasing the trajectory track-
ing accuracy of industrial robots by making the output
trajectory as close as to the desired trajectory.

One of the most well known approaches for this is the Com-
puted Torque Control (CTC) in which a precise dynamic
model of a robot is assumed to be known. Moreover, to
overcome uncertainties adaptive CTC methods have been
proposed in literature. An example of this approach is
the work by Wang (2016) in which a highly accurate task
space trajectory tracking was performed under uncertain
dynamics using an adaptive CTC. In another work by
Chen et al. (2016), an adaptive fuzzy control algorithm
was used with CTC to achieve better trajectory tracking
while reducing the effect of uncertainties on the robot.

While CTC methods are effective, obtaining precise dy-
namic models is not an easy task. Therefore, another
popular approach in dealing with repetitive tasks is the
utilization of feedforward control. In this type of approach,
the disturbances in the system are compensated using

prior knowledge about the task. This is often achieved
through the utilization of the inverse plant model. This
way a new reference signal can be generated that will
make the robot to follow the desired trajectory more
accurately. An example of this approach is the work by
Camoriano et al. (2016), where the inverse dynamics of
a multi axis robot is learned using a semi-parametric
method. In their work the rigid body dynamics is used
to build a parametric model in addition to an incremental
kernel method as a nonparametric model. They show that
the proposed method makes the robot to have better
trajectory tracking accuracy under different conditions.
Another approach used in literature for repetitive tasks is
the Iterative Learning Control (ILC) method. In the work
by Marchal et al. (2014) a machine vision based tracker
was used to improve the tracking accuracy of an industrial
robot through ILC of a six Degree of Freedom (DOF)
industrial robot during robotic manipulation. In another
work by Hsiao and Huang (2017) an ILC based method was
proposed for increasing the trajectory tracking accuracy of
an industrial robot by following a path repetitively.

Moreover, data driven modeling have become increasingly
popular in the recent years due to the abundance of data
(Aran and Unel (2018), Alcan et al. (2019), Mumcuoglu
et al. (2020)). Some examples of these can be seen in
the works by Gao et al. (2017) and Doan et al. (2018)
where uncertainties for an industrial robot were modeled
and compensated using radial basis functions and neural
networks. Some works in literature have also been pro-
posed for learning feedforward control using neural net-



works and Gaussian Process Regression (GPR) methods.
In the work by Cuong and Minh (2015) the feedforward
control is learned through neural networks during free
motion of manipulators and the accuracy of the robot is
increased using the proposed method. As for GPR based
methods, the trajectory tracking accuracy of an industrial
robot equipped with a laser cutter is improved through
utilization of a GPR based feedforward control (Wang
et al. (2015)). Moreover, Meier and Schaal (2016) pro-
posed a drifting GPR based approach to learn the inverse
dynamics of an industrial robot and use it for increasing
the tracking accuracy of an industrial robot. As seen, there
are a multitude of literature on the effectiveness of data
driven methods for learning feedforward control to increase
tracking accuracy of industrial robots.

Typically, in the aforementioned works the robotic ma-
nipulator is assumed to be open in terms of control, i.e.
the user has full access to the control algorithm deployed
in the manipulator. However, this is not always the case,
especially for industrial robots where the manufacturers
have deployed their own control algorithms and the users
have no access to the control architecture of the robot.
The only thing that the users have access to are the
desired trajectories to be followed by the robot. This
desired trajectory is typically in the form of the pose
of the end effector with six components, where three of
them represent the position and the other three represent
the orientation of the end effector. Moreover, in an in-
dustrial setting, robot manipulators are typically tasked
with following a trajectory repeatedly. Thus, the same
level of accuracy is expected for these repetitive tasks.
Therefore, it is imperative to make use of this information
in order to improve the robot’s accuracy when tasked with
the same work. Motivated by these facts, in this work
an approach based on Sparse Identification of Nonlinear
Dynamics with Control (SINDYc, Brunton et al. (2016))
is proposed to obtain dynamic models of repetitive tasks
and then generate feedforward controllers based on this
dynamic model. SINDYc is a data driven method known
to provide parsimonious models which are easy to train. To
train these models, the ground truth data for trajectory
tracking can be obtained from a highly accurate sensor
such as a laser tracker. The generated feedforward con-
troller modifies the input trajectory and generates a new
one so that the robot follows the desired trajectory more
accurately without having to modify the control algorithm
of the robot. Therefore, the objective of the proposed
approach is to manipulate the reference trajectories in
terms of the end effector’s pose fed to the robot so that the
robot follows a desired trajectory accurately and precisely.

The rest of this paper is structured as follows: In Section 2,
the proposed methodology for increasing tracking accuracy
is presented in detail. The effectiveness of the proposed
approach is validated through a simulation study for four
distinct robots in Section 3, followed by the conclusion in
Section 4.

2. IMPROVED TRAJECTORY TRACKING USING
SPARSE REGRESSION

In this section a sparse regression based approach is
proposed for increasing the trajectory tracking accuracy

of industrial robots. Typically the desired trajectories to
be followed by an industrial robot are given as the pose of
the end effector with respect to a reference frame. This
pose input contains six components of which the first
three denoted as x, y, and z are for translation along X,Y,
and Z axes, respectively and the other three denoted as
φ, θ, and ψ are for orientation around X,Y, and Z axes,
respectively. This work proposes an approach based on
Sparse Identification of Nonlinear Dynamics with Control
(SINDYc) proposed by Brunton et al. (2016). The SINDYc
algorithm is a data driven approach which can be used
to determine the sparse vectors of coefficients that define
the dynamics of a physical system in the presence of an
external input. In this work we formulate the SINDYc
algorithm to obtain a dynamic process model relating the
desired and the actual trajectories followed by a robot as
follows:

P tA = Ω∆(P t−1
A ) + ΓP tD (1)

where

P tA =


xA(t1) xA(t2) · · · xA(tn)
yA(t1) yA(t2) · · · yA(tn)
zA(t1) zA(t2) · · · zA(tn)
φA(t1) φA(t2) · · · φA(tn)
θA(t1) θA(t2) · · · θA(tn)
ψA(t1) ψA(t2) . . . ψA(tn)

 (2)

P tD =


xD(t1) xD(t2) · · · xD(tn)
yD(t1) yD(t2) · · · yD(tn)
zD(t1) zD(t2) · · · zD(tn)
φD(t1) φD(t2) · · · φD(tn)
θD(t1) θD(t2) · · · θD(tn)
ψD(t1) ψD(t2) . . . ψD(tn)

 (3)

where P tA ∈ R6×n is the actual trajectory followed by the
end effector for n times steps and it is typically provided
by a laser tracker, P t−1

A ∈ R6×n is the actual trajectory
at the previous time step, P tD ∈ R6×n is the control
input defining the desired trajectory to be followed by the
end effector for n time steps, ∆(.) ∈ RK×n is a library
containing K candidate functions of P t−1

A for n time steps,
Ω ∈ R6×K contains the sparse vectors of coefficients for K
candidate functions for each component of the trajectory
and Γ ∈ R6×6 is the input matrix.

Using this formulation one can learn the dynamic model
(Ω) relating PD to PA through the sequential thresholded
least-squares algorithm (Brunton et al. (2016)). In this al-
gorithm only two parameters need to be provided, namely
the sparsification knob denoted as λ and the number of
iterations. However, in order to use this algorithm Eq.1
will need be rewritten as follows:

P tA = Ω̄∆̄(P t−1
A , P tD) (4)

where Ω̄ = [Ω|Γ] ∈ R6×(K+6).

With this formulation ∆̄(., .) ∈ R(K+6)×n now contains
K + 6 candidate functions of the actual trajectory at the
previous time step (P t−1

A ) along with the control input
(P tD) at the current time step. This way, a dynamic model
relating the desired and the actual trajectory followed
by a robot can be obtained. Each row of the augmented
library ∆̄(., .) represents a candidate function for defining



the relationship between the desired and the ground truth
trajectory. There is total freedom in choosing these func-
tions which can be polynomials, trigonometric functions,
etc.

Now that the process model is obtained, the next step is
to generate a feedforward controller based on the pseudo
inverse of this dynamic model as follows:

∆̄(P t−1
A , P tD) = Ω̄+P tA (5)

Then, assuming the obtained model (Ω̄) is fixed for the
desired operation, which is quite true for industrial robots
having very high repeatability, one can use the pseudo
inverse of (Ω̄) as a feedforward controller to generate a
new optimized trajectory as follows:

∆̄(P t−1
D , P̄ tD) = Ω̄+P tD (6)

where P̄ tD ∈ R6×n is the optimized trajectory for current
time step.

In this work the utilization of 1st order polynomials in
the augmented library was determined to be sufficient
to obtain satisfactory models, therefore the augmented
matrix is defined as follows:
s

∆̄(P t−1
D , P̄ tD) =


11×n

P t−1
D

P̄ tD

 (7)

Here, the optimized trajectory (P̄ tD) corresponds to the

last 6 rows of ∆̄(P t−1
D , P̄ tD) ∈ R(K+6)×n. We should note

that in the case of 1st order polynomials K = 7. One
can use the new optimized trajectory (P̄ tD) along with the
identified process model (Ω̄) to obtain and validate the
new output trajectory as follows:

P̂ t = Ω̄∆̄(P̂ t−1, P̄ tD) (8)

where P̂ t ∈ R6×n is the estimated output trajectory when
the optimized trajectory (P̄ tD) is used at the input of the
robot.

The proposed method was coded in MATLAB software
and optimized using sequentially thresholded least squares
algorithm. The proposed approach can be used with an
industrial robot that does not allow any modifications to
its control algorithm, as is the case with many of them in
the market. The user only needs to modify the reference
trajectories which is the only adjustable parameter in
closed systems. Therefore, it does not alter the embedded
closed-loop control algorithm. Typically, in an industrial
setting the robots perform the same task repeatedly, thus
one can train models using the proposed method for each
task using a highly accurate external sensor. Moreover,
a single external tracker is sufficient to train models for
multiple robots, thus reducing the need for an external
tracker for each robot. This way, the proposed method
can be used to generate optimized trajectories for each
task individually for each robot. The overall flowchart of
the proposed method for increasing the trajectory tracking
accuracy via sparse regression is illustrated in Fig. 1.

Fig. 1. The proposed SINDYc based approach

3. SIMULATION RESULTS AND DISCUSSIONS

In order to evaluate the effectiveness of the proposed
approach we assume the availability of one to one corre-
spondences between the desired and the actual trajectory
followed by an industrial robot. Typically, the desired tra-
jectory for industrial robots are obtained via CAD/CAM
software which provide the set points to be followed by
the robot. As for the actual trajectory followed by the
robots, they can be obtained through highly accurate laser
trackers. In order to perform a high fidelity simulation,
the dataset from our previous work (Bilal et al. (2020))
was used as a basis for the simulations of this work.
This dataset contains 16 distinct trajectories followed by
a KUKA KR240 R2900 ultra robot’s end effector based
on ISO 9283 standard. The end effector was tasked to
move to 5 specific points in each of these trajectories while
continuously changing its orientation. The trajectory of
the end effector was tracked in realtime using a Leica
AT960 laser tracker and 63551 trajectory points were
acquired as shown in Fig. 2. Then, this data was used as
the desired trajectory to be followed by various industrial
robots in simulation environment. In this work, various
KUKA industrial robots were considered where their re-
peatability provided by the manufacturer was utilized as
given in Table 1. To perform the simulations in MATLAB,
filtered white noise, i.e. colored noise, was added to the
trajectories obtained through the ISO 9283 experiment by
setting the white noise’s mean and variance based on the
robots’ specifications given by Table 1.

Fig. 2. The position and orientation trajectories used in
simulations based on ISO 9283 standard

For the training and validation dataset, we used only
30% of the data for training the models. We should note
that by using only 30% of the data for training and the
remaining 70% for validation we are still getting successful
models. The process model was identified by setting the
sparsification parameter (λ) and the number of iterations



Table 1. Specifications of the KUKA industrial
robots used in the simulations

Robot Type Robot ID Repeatability (mm)

KR 3 R540 1 ±0.02
KR 22 R1610-2 2 ±0.04
KR 70 R2100 3 ±0.05
KR 240 R2900 ultra 4 ±0.06

to 0.002 and 10, respectively in the sequential thresholded
least-squares algorithm. As for learning the feedforward
control, it was performed based on the pseudo inverse of
the process model as described in Section 2. Training the
process and feedforward models required only 0.012458
and 0.00045 seconds, respectively 1 . The accuracy of the
obtained process model between the desired and actual
trajectory of the robot for each of the individual axis are
given in Table 2 using the best fit criterion. As seen, the
proposed method provides process models with accuracies
of at least 98.09% when validated on the remaining 70%
of the dataset.

Table 2. Accuracy of the process models ob-
tained using the SINDYc approach

Accuracy (%)
Robot ID

1 2 3 4

x 98.96 98.93 98.91 98.89
y 98.94 98.88 98.86 98.83
z 98.95 98.90 98.87 98.85
φ 98.36 98.36 98.35 98.35
θ 98.12 98.14 98.12 98.12
ψ 98.10 98.10 98.11 98.09

To quantify the performance of the proposed method
for improving trajectory tracking, the maximum, mean,
minimum and the standard deviation of absolute errors
between the desired and the estimated trajectories of the
robots were utilized. The absolute errors for position and
orientation were calculated as follows:

ET =
√
E2
x + E2

y + E2
z (9)

ER =
√
E2
φ + E2

θ + E2
ψ (10)

where Ex, Ey, Ez, Eθ, Eφ, and Eψ are the absolute errors
between the desired and the estimated trajectory, and ET
and ER are the absolute errors for position and orientation
trajectories.

The effectiveness of the obtained feedforward controllers
is observed by the results plotted in Figures 3 to 6, which
show the maximum, mean, minimum and standard devia-
tion of absolute errors, respectively when validated on the
remaining 70% of the dataset. The proposed method was
evaluated on the aforementioned 4 KUKA robots and the
black lines represent the original absolute errors between
the desired and the output trajectory of the robot’s end
effector and the red lines represent the results obtained
through the proposed approach. Moreover, the absolute
tracking errors for the last 200 samples of X, Y and Z axes
are shown in Fig. 7 for the KR 240 robot. As observed,
the proposed method provides consistent improvements for
each individual axis.
1 Tested on a laptop with Intel Core I7-10750H CPU with 16 GB of
RAM.

Fig. 3. Maximum absolute errors for position and orienta-
tion tracking

Fig. 4. Mean of absolute errors for position and orientation
tracking

Fig. 5. Minimum absolute errors for position and orienta-
tion tracking

Fig. 6. Standard deviation of absolute errors for position
and orientation tracking



Fig. 7. Absolute trajectory tracking errors for X, Y and Z
axes

The magnitudes of the absolute errors are given in Tables
3 to 5. As seen from these results, the proposed approach
reduces the absolute errors significantly for all of the
robots which have varying position accuracy and precision.
As seen from Table 3, the proposed method reduces the
maximum position errors by at least 86.6% and upto 96.6%
when all of the robots are considered. As for the maximum
orientation errors, they are improved by at least 91.1%
and upto 95.6%. Moreover, as observed from Table 4, the
proposed approach reduces the mean of position errors
by at least 91.1% and upto 97.4%. The proposed method
reduces the mean of orientation errors by at least 94.5%
and upto 97.9%. As for reducing the minimum of position
errors, from Table 5 it is seen that the proposed approach
reduces them by at least 89.1% and upto 99.8%, while the
orientation errors are reduced by at least 98.9% and upto
99.8% when all of the robots are considered.

Table 3. Maximum of absolute errors for posi-
tion and orientation tracking results

Position Errors (mm) Orientation Errors (°)
Robot Type Original SINDYc Original SINDYc

KR 3 R540
13.3935 0.4593 8.5750 0.6876

(96.6%) (91.9%)

KR 22 R1610-2
13.6191 1.0139 8.5776 0.3808

(92.6%) (95.6%)

KR 70 R2100
13.6928 1.8375 8.5695 0.3858

(86.6%) (95.5%)

KR 240 R2900 ultra
13.8669 1.2535 8.5849 0.7600

(90.9%) (91.1%)

The (%) shows the improvement percentage.

Table 4. Mean of absolute errors for position
and orientation tracking results

Position Errors (mm) Orientation Errors (°)
Robot Type Original SINDYc Original SINDYc

KR 3 R540
5.2706 0.1365 3.3619 0.1824

(97.4%) (94.5%)

KR 22 R1610-2
5.2896 0.2254 3.3604 0.0693

(95.7%) (97.9%)

KR 70 R2100
5.3084 0.4679 3.3609 0.0710

(91.1%) (97.8%)

KR 240 R2900 ultra
5.3227 0.3224 3.3606 0.1735

(93.9%) (94.8%)

The (%) shows the improvement percentage.

Table 5. Minimum of absolute errors for posi-
tion and orientation tracking results

Position Errors (mm) Orientation Errors (°)
Robot Type Original SINDYc Original SINDYc

KR 3 R540
0.00047 1.06E-06 0.0002 6.55E-07

(99.8%) (99.7%)

KR 22 R1610-2
0.00011 1.21E-05 8.24E-05 3.28E-07

(89.1%) (99.6%)

KR 70 R2100
0.00021 7.23E-06 0.00013 1.49E-06

(96.5%) (98.9%)

KR 240 R2900 ultra
0.00013 2.86e-06 0.00017 2.23E-07

(97.8%) (99.8%)

The (%) shows the improvement percentage.

Moreover, the proposed method improves the robots’ pre-
cision as well as seen from the standard deviation of
absolute errors given in Table 6. From these results it is
observed that the proposed approach reduces the standard
deviation of errors by at least 88.3% and upto 96.5%
for position and by at least 93.2% and upto 96.9% for
orientation tracking, respectively.

Table 6. Standard deviation of absolute errors
for position and orientation tracking results

Position Errors (mm) Orientation Errors (°)
Robot Type Original SINDYc Original SINDYc

KR 3 R540
3.4991 0.1200 2.6443 0.1665

(96.5%) (93.7%)

KR 22 R1610-2
3.4819 0.2057 2.6437 0.0796

(94.1%) (96.9%)

KR 70 R2100
3.4745 0.4048 2.6438 0.0964

(88.3%) (96.3%)

KR 240 R2900 ultra
3.4668 0.2840 2.6436 0.1779

(91.8%) (93.2%)

The (%) shows the improvement percentage.

The process model parameters obtained via SINDYc are
given in Table 7 for the KR240 robot. As observed, the pro-
posed method provides sparse coefficients where most of
the parameters are inactive i.e. they have zero coefficients.
The same pattern is observed for the model obtained for
the feedforward control as shown in Table 8. From this
table it is observed that most of the coefficients are close
to zero. Therefore, the proposed approach provides parsi-
monious models where only the most effective parameters
are active.

Table 7. Process model obtained via SINDYc
for KR240 robot

Parameters xtA ytA ztA φtA θtA ψt
A

1 0 -0.0052 0 0 0 0

xt−1
A 0 0 0 0 0 0

yt−1
A 0 0 0 0 0 0

zt−1
A 0 0 0 0 0 0

φt−1
A 0 -0.01023 0.029123 0.022664 0 0

θt−1
A 0 0.014491 -0.00348 0 0 0

ψt−1
A 0.014711 0.018288 0.009626 0.00392 0 0.015931
xtD 0.999998 0.014995 0.00892 0 0 0
ytD 0 1.000076 0.014739 0.008724 0 0
ztD 0 0 0.999589 0.014653 0.008904 0
φtD 0 0.008675 -0.02887 0.977815 0.015352 0.009448
θtD 0.008928 -0.01524 0.003025 0 0.999893 0.014998
ψt
D 0 -0.01004 -0.00984 -0.00381 0 0.984303



Table 8. Feedforward control obtained via
SINDYc for KR240 robot

Parameters x̄tD ȳtD z̄tD φ̄tD θ̄tD ψ̄t
D

xtD 0.99979 -0.01525 -0.00883 0.00021 7.54E-05 -0.00024
ytD -0.00027 0.99932 -0.01478 -0.00851 0.00026 -0.00021
ztD -6.20E-05 0.00019 0.99902 -0.0157 -0.00866 0.00013
φtD 8.63E-05 -0.00902 0.02885 1.02172 -0.01594 -0.00963
θtD -0.00893 0.01521 -0.0033 -0.00012 1.00014 -0.01523
ψt
D -0.00024 0.00986 0.00979 0.00366 -0.00014 1.01564

4. CONCLUSION

In this work a sparse regression based feedforward control
approach for increasing the trajectory tracking accuracy
of industrial robots is proposed. The proposed method is
based on Sparse Identification of Nonlinear Dynamics with
Control (SINDYc). First, the SINDYc algorithm was used
to obtain a dynamic model relating the desired trajectory
to the output one, where the desired trajectory is provided
by the user and the output trajectory is obtained using a
laser tracker. Then, a feedforward controller was developed
based on the inverse of the process model which takes in
the desired trajectory and provides an optimized one. This
optimized trajectory was used along with the identified
process model in order to show that the robot follows
the original desired trajectory more accurately when the
optimized trajectory is used at the input of the robot.

The proposed method was evaluated in a high fidelity sim-
ulation where the data obtained via a laser tracker while
tracking an industrial robot’s end effector was used as a
basis for the simulations. The simulation data consisted
of 16 distinct trajectories based on ISO 9283 standard
where both the position and orientation of the end effector
of the robot changed continuously along the trajectory.
To evaluate the effectiveness of the proposed approach,
4 KUKA industrial robots with varying accuracies and
precisions were considered. From the results it is seen that
the proposed approach provided process models relating
the desired and actual trajectories with accuracies above
98.09%. Moreover, the developed feedforward controllers
decreased the mean of absolute errors during trajectory
tracking by at least 91.1% for position and by 94.8%
for orientation tracking when all of the robots were con-
sidered. Additionally, the standard deviation of absolute
errors were reduced at least by 88.3% and 93.2% for
position and orientation tracking, respectively. It should
be noted that even with less estimation data (30% of
the total dataset), the proposed technique works without
any problem. As shown, the proposed method significantly
increases the trajectory tracking accuracy and precision of
various industrial robots. Moreover, obtaining the process
and feedforward models via the proposed method is re-
markably fast while providing parsimonious models.
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