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Abstract
In this variant of the constrained shortest path problem, the time of traversing an 
arc is given by a non-negative continuous random variable. The problem is to find a 
minimum cost path from an origin to a destination, ensuring that the probability of 
reaching the destination within a time limit meets a certain reliability threshold. To 
solve this problem, we extend the pulse algorithm, a solution framework for short-
est path problems with side constraints. To allow arbitrary non-negative continuous 
travel-time distributions, we model the random variables of the travel times using 
Phase-type distributions and Monte Carlo simulation. We conducted a set of experi-
ments over small- and medium-size stochastic transportation networks with and 
without spatially-correlated travel times. As an alternative to handling correlations, 
we present a scenario-based approach in which the distributions of the arc travel 
times are conditioned to a given scenario (e.g., variable weather conditions). Our 
methodology and experiments highlight the relevance of considering on-time arrival 
probabilities and correlations when solving shortest path problems over stochastic 
transportation networks.
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1 Introduction

Transportation networks are subject to uncertainty caused by random events such 
as changing weather conditions, demand fluctuations, traffic delay at intersec-
tions, signal failures, mixed traffic flow, collisions, vehicle breakdowns, or even 
natural disasters. Consequently, travel times in transportation networks are inher-
ently uncertain and neglecting their stochastic nature may lead to poor routing 
decisions.

In the case of finding shortest paths in a network, several efficient algorithms 
exist for graphs with deterministic parameters (e.g., cost or time) (Dijkstra 1959; 
Gallo and Pallottino 1988; Ahuja et al. 1993). However, leveraging on such algo-
rithms to identify the path with the least expected travel time on a stochastic 
network, may not necessarily lead to a reliable solution in terms of travel times 
(Zeng et  al. 2015). Hence, several authors have modeled travel times as ran-
dom variables to capture the underlying uncertainty on stochastic transportation 
networks.

In the literature of stochastic shortest path problems, the pioneering work by 
Frank (1969) estimated the probability distribution of the shortest path and com-
pared paths pairwise according to the probability that the shortest path is less than 
a given threshold. This work assumes that the probabilistic information is known 
and continuous. Later, Mirchandani (1976) proposed a recursive algorithm to solve 
a discrete version of Frank’s problem, which entailed enumerating paths and travel 
times. Sigal et  al. (1980) derived the probability that a given path is shorter than 
all other paths in a network through the concept of path optimality index. Sivaku-
mar and Batta (1994) solved the problem of finding a path with the least expected 
travel cost, subject to not exceeding a given threshold on the variance of the travel 
cost. After linearizing this constrained shortest path, they solved the problem with 
Lagrangean relaxation on a 50-node network. An alternative bi-objective approach 
by Sen et al. (2001), simultaneously minimizes the travel time’s mean and variance 
for the whole path. Their approach requires to solve a series of relaxed 0–1 quadratic 
programming models. They solved instances on sparse networks with less than 70 
nodes. The least expected travel time (LET) problem on stochastic and time-varying 
networks (Hall 1986; Miller-Hooks and Mahmassani 1998) has led to a significant 
stream of research in stochastic networks (Miller-Hooks and Mahmassani 2000; 
Miller-Hooks 2001; Miller-Hooks and Mahmassani 2003; Prakash 2018). Although 
the LET problem considers uncertainty, it often falls short in coping with the risk-
averse behavior of travelers. Yang et al. (2013) proposed a two-stage stochastic pro-
gramming model that considers discrete random scenario-based travel times. Wang 
et al. (2016) formulated the stochastic constrained shortest path problem as a binary 
programming model that finds a path with the least expected travel time. They 
model travel times using discrete random variables and allow a correlation structure. 
They proposed a Lagrangean relaxation-based algorithm to solve this constrained 
shortest path problem.

In the context of stochastic transportation networks, Chen and Ji (2005) pro-
posed the concept of an �-reliable path, with the premise that it is of utmost 
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importance for travelers to reach their destination on time. The problem is to find 
a path with the minimum travel time budget, ensuring a given on-time arrival 
probability � , that is, the probability of not exceeding the time budget is at least 
� . They formulated the �-reliable path problem as a chance-constrained optimiza-
tion model and solved it with a simulation-based genetic algorithm. The semi-
nal work by Chen and Ji (2005) led to a fruitful stream of research on �-reliable 
paths. Ji et al. (2011) extended the �-reliable path to a multiobjective version to 
accommodate multiple confidence requirements (e.g., the probability of on-time 
arrival and average time) and incorporated travel time (spatial) correlations. They 
solved the underlying multi-objective chance-constrained optimization model 
with a multi-objective simulation-based genetic algorithm. Nie and Wu (2009) 
developed a label-correcting algorithm to solve the most reliable path problem 
by generating non-dominated paths under first-order stochastic dominance. Chen 
et al. (2012) solved the reliable shortest path where travel times are spatially cor-
related using a multi-criteria A* algorithm. Zeng et  al. (2015) solved an �-reli-
able path in a stochastic network with spatially correlated travel times. To make 
it computationally tractable, the path travel time distribution was approximated 
by a normal distribution. They solved the problem using Lagrangean relaxation. 
Recently, Shen et al. (2019) proposed a novel application in the context of elec-
tric vehicles, where it is necessary to find reliable and energy-efficient paths in 
stochastic traffic networks with spatially-correlated travel times. They proposed a 
biobjective optimization approach capable of unveiling non-dominated solutions.

Several stochastic variants of shortest path problems can be seen as special cases 
of constrained shortest paths. Two prominent examples are the variance-constrained 
shortest path problem by Sivakumar and Batta (1994) and the stochastic constrained 
shortest path problem by Wang et al. (2016). Many approaches have been proposed 
in the literature to tackle the constrained shortest path (CSP) problem, including 
dynamic programming based labeling algorithms (Dumitrescu and Boland 2003; 
Joksch 1966; Thomas et al. 2019) and path ranking approaches (Handler and Zang 
1980; Santos et  al. 2007; Sedeño-Noda and Alonso-Rodríguez 2015). A competi-
tive approach for the CSP was proposed by Lozano and Medaglia (2013) and coined 
with the term pulse algorithm. This exact algorithm uses depth-first search com-
bined with effective pruning strategies to make an implicit exploration of the solu-
tion space of the CSP. In addition to being one of the state-of-the-art algorithms 
for the CSP, efficiently solving real-road networks with up to 6 million nodes and 
15 million arcs in Cabrera et al. (2020), the pulse algorithm has been successfully 
extended to solve other hard shortest path variants. The same principles have been 
applied to solve the elementary shortest path problem with resource constraints 
(Lozano et al. 2016; Li and Han 2019), the biobjective shortest path problem (Duque 
et al. 2015), the weight constrained shortest path problem with replenishment (Bolí-
var et al. 2014), the orienteering problem with time windows (Duque et al. 2014), 
and the scenario-based robust shortest path problem (Duque and Medaglia 2019), 
among other shortest path variants.

The aim of this paper is to contribute to the body of knowledge in the domain of 
stochastic shortest path problems in transportation networks. First, we introduce 
the shortest �-reliable path (S-�RP) as the problem of finding a minimum-cost 
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path ensuring a given on-time arrival probability � for a given travel time budget. 
Second, we consider travel times as non-negative continuous random variables, 
without making strong distribution assumptions (i.e., normality or additivity). To 
overcome the usual difficulties found in the literature, we propose to model travel 
times using phase-type (PH) distributions. Using this family of distributions, we 
can closely approximate any positive, continuous distribution and compute the 
on-time arrival probability with arbitrary precision. Third, we present a Monte 
Carlo simulation approach to compute the on-time arrival probability with spa-
tially-correlated travel times. Our approach throughout the paper is adaptable to 
many situations given the availability of travel time data from sensors or mobile 
devices, to which we can fit the flexible PH distributions. Fourth, we introduce an 
alternative scenario-based approach where it is possible to model some situations 
were correlated travel times arise as the product of external factors (e.g., weather) 
influencing the whole state of the network. Finally, by modeling the problem as 
a constrained shortest path problem, we are able to extend the pulse algorithm 
(Lozano and Medaglia 2013) to solve the S-� RP problem efficiently.

The rest of the paper is organized as follows. Section  2 formally defines the 
S-�RP. Section  3 describes the proposed algorithm that solves the S-� RP and 
shows in detail its core components. Section 4 describes the two proposed ways 
to model the stochastic travel times and shows how to compute estimations of the 
on-time arrival probability. Section 5 presents the computational experiments of 
each of the versions of the proposed algorithm over small- and medium-size sto-
chastic transportation networks with and without spatially-correlated travel times. 
This section also presents the results of the scenario-based approach to handle 
correlations. Finally, Sect. 6 concludes the paper and outlines future work.

2  Problem definition

The shortest �-reliable path problem is defined over a directed graph 
G = (N,A) , where N = {v1,… , vi,… , vn} is the set of nodes, and 
A ⊆ {(i, j)|vi ∈ N, vj ∈ N, i ≠ j} is the set of arcs. Each arc (i, j) ∈ A has a cost ci,j 
(e.g., the expected travel time, distance, or fuel cost) and a time represented by 
the random variable t̃i,j . A path Pi,j from node vi to vj is described as a sequence 
of nodes {v(1),… , v(k),… , v(r)} where v(1) = vi , v(r) = vj , v(k) represents the node at 
the k-th position of the sequence and (v(k), v(k+1)) ∈ A for 1 ≤ k ≤ r − 1 . With a 
slight abuse of notation, we also refer to a path P = {… , (i, j)(k),…} as an ordered 
sequence of arcs, where arc (i, j)(k) ∈ A is the kth arc in the sequence. In general, 
the set of all possible paths from node vi ∈ N  to node vj ∈ N  is denoted by �i,j.

S-� RP consists of finding a minimum cost path from a start node vs ∈ N  to 
an end node ve ∈ N  , while ensuring a given on-time arrival probability � , that 
is, the probability of not exceeding the maximum time budget T is at least � . A 
mathematical formulation of the S-� RP is stated as follows:
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where c(P) ≜
∑

(i,j)∈P

ci,j and t̃(P) ≜
∑

(i,j)∈P

t̃i,j represent the cost and the random varia-

ble of the traversing time of path P , respectively. We call a path P ∈ �s,e a complete 
path from the start node vs ∈ N  to the end node ve ∈ N .

3  Methodology

In this section, we present an overview of the original pulse algorithm (PA) by 
Lozano and Medaglia (2013), followed by a detailed explanation of the proposed 
pruning strategies and extensions required to solve the S-�RP.

3.1  Overview of the pulse algorithm

The pulse algorithm (PA) explores the network by propagating recursively a partial 
path (pulse) from the start node vs ∈ N  . This pulse, traverses the network, storing 
crucial information, like the nodes in path Ps,i , the cost, and the resource consump-
tion. Once a pulse reaches the target node ve ∈ N  , the PA tries to update an upper 
bound on the minimal cost and backtracks to continue the recursive search through 
the network. If nothing prevents the pulse propagation, the PA enumerates all paths 
from vs to ve ensuring that the optimal path P∗ is found.

Considering that the number of paths grows exponentially as the size of the net-
work grows, what makes the PA efficient is how it uses the pulse information to pre-
vent it from propagating when there is enough evidence that the partial path will not 
lead to an improved or feasible solution. For this matter, several pruning strategies 
have been developed. The three core strategies proposed by Lozano and Medaglia 
(2013) are pruning by infeasibility (see Sect.  3.2.1), bounds (see Sect.  3.2.2) and 
dominance (see Sect. 3.2.3). The pruning by infeasibility strategy stops propagating 
a pulse as soon as it is known that it will not meet the side constraint(s); the pruning 
by bounds strategy prunes the pulse as soon as it is known that it will not improve 
the current best solution; and finally, dominance relationships help prune dominated 
partial paths. The earlier the pulses are pruned, the fewer paths are explored, thus 
improving the algorithm’s performance.

3.2  Pulse extensions for the S‑̨ RP

The input for the PA for the S-� RP are the graph G , a start node vs , an end node 
ve , the maximum time T, and the on-time arrival probability (reliability thresh-
old) � . The output of PA is a minimum cost reliable path, namely, a path that 
satisfies the on-time arrival probabilistic constraint ℙ(t̃(P) ≤ T) ≥ 𝛼 , if such path 
exists. For the S-�RP, a pulse travels through the network with the cumulative 

(S-αRP)
min
P∈𝛺s,e

c(P)

s.t ℙ(t̃(P) ≤ T)≥ 𝛼,
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cost, c(P) , and the random cumulative time, t̃(P) . Algorithm 1 outlines the PA 
for the S-�RP. Lines 1–3 initialize P , c(P) and t̃(P) . Line 4 calculates shortest 
paths from any node vi to the end node ve . This preprocessing step also uses 
properties of the random variables to calculate free-flow travel times from each 
node vi ∈ N  in the network to the end node ve . Line 5 invokes the recursive 
pulse function (Algorithm 2) from the start node vs . Finally, line 6 returns an 
optimal path found in the recursion.

Algorithm 1 Pulse Algorithm for the S-αRP
Require: G, directed graph; vs, start node; ve, end node; T , maximum time; α, reliability

threshold.
Ensure: P∗, optimal path.
1: P∗ ← ∅
2: c(P) ← 0
3: t̃(P) ← 0
4: preprocess(G)
5: pulse(vs, c(P), t̃(P),P)
6: return P∗

Algorithm  2 shows the recursive function pulse for the S-�RP. Lines 
1–3 perform Boolean function checks that return true if the pulse is pruned 
(false, otherwise). Line 4 updates the partial path. Lines 5-8 propa-
gate a pulse to all nodes in the forward star of vi , i.e., vj ∈ � +(vi) , where 
� +(vi) = {vj ∈ N|(i, j) ∈ A} . For each node vj ∈ � +(vi) , lines 6 and 7 update 
the partial cost and the random variable of the time of the partial path Ps,i , and 
finally, line 8 invokes again the pulse function. Every time the pulse function 
is invoked on the final node ve , the information of the best path (incumbent) is 
updated, the pulse is no longer propagated, and backtracking starts. The follow-
ing sections describe in detail the pruning strategies for the S-�RP.

Algorithm 2 Recursive function pulse

Require: vi, current node; c(P), cumulative cost; t̃(P), cumulative time; P, partial path.
1: if ¬check feasibility(vi, t̃(P)) then � see §3.2.1
2: if ¬check bounds(vi, c(P)) then � see §3.2.2
3: if ¬check dominance(vi, c(P), t̃(P)) then � see §3.2.3
4: P ← P ∪ {vi}
5: for vj ∈ Γ+(vi) do
6: c(P ′) ← c(P) + ci,j
7: t̃(P ′) ← t̃(P) + t̃i,j
8: pulse(vj , c(P ′), t̃(P ′),P ′)
9: end for
10: end if
11: end if
12: end if
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3.2.1  Infeasibility pruning

The idea behind this pruning strategy is to discard paths at an early stage, as soon as 
it is known that the traveling pulse will not be able to reach the final node ve meet-
ing the chance constraint. Thus, if ℙ(t̃(Ps,i) ≤ T) < 𝛼 we can safely say that any path 
from vs to ve that contains the partial path Ps,i will not meet the chance constraint, 
that is, it will not arrive to the node ve with the required on-time arrival probability.

We can further strengthen this strategy, based on some properties of the underly-
ing random variables. Since we are modeling travel times, we assume that each ran-
dom variable has a non-negative lower bound. This lower bound corresponds to the 
travel time at free-flow speed (Gómez et al. 2016). Accordingly, we decompose each 
t̃i,j into a deterministic part accounting for this free-flow speed time, denoted by ti,j , 
and a stochastic component that considers the variability of each arc travel time, 
denoted by t̂i,j . Figure  1 shows the probability density functions, ft̂i,j (t) and ft̃i,j (t) , 
respectively. Accordingly, we have that t̃i,j = ti,j + t̂i,j , and that ti,j, t̂i,j ≥ 0.

Considering the deterministic part of the arc travel times, the minimum time con-
sumption t(i) from any node vi to the final node ve under the best possible scenario 
can be computed by minimum-time paths as in Lozano and Medaglia (2013). This 
best possible scenario is the one in which every arc traversal is done at free-flow 
speed, namely, a road network in ideal conditions. This t(i) corresponds to the time 
of the minimum-time path Pt

i,e
 from node vi ∈ N  to the end node ve ∈ N  , under 

the best possible scenario. The procedure required to find all the t(i) values is pre-
computed at the initialization of the PA.

With the t(i) for each node vi ∈ N  , we can improve our infeasibility pruning strat-
egy by computing the probability of arriving on time to the end node ve , under the 
best possible scenario for path Pi,e . If under this scenario the chance constraint is not 
met, it is not possible for the path to arrive on time to the end node ve , under other 
less favorable scenarios. The probability of arriving on time under the best possible 
scenario denoted by �(Ps,i) , is computed as follows:

0 ti,j t

f(·)(t)

Shift

ft̂i,j (t) ft̃i,j (t)

Fig. 1  Shifted travel time distributions
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Let T(i) ≜ T − t(i) be the maximum allowed time consumption for a partial path up 
to node vi . If for a partial path Ps,i arriving to node vi , the probability of arriving on 
time to the end node ve under the best scenario does not meet the reliability thresh-
old � , then the partial path Ps,i is already infeasible and it is not worth keep propa-
gating that pulse. In other words if 𝜋(Ps,i) = ℙ

(
t̃(Ps,i) ≤ T(i)

)
≤ 𝛼 , then the pulse 

represented by the partial path Ps,i can be safely pruned.

3.2.2  Bounds pruning

This pruning strategy remains unchanged from the original bounds pruning strategy 
presented by Lozano and Medaglia (2013), although for the sake of completeness 
we briefly describe it here. Every time a feasible solution is found (i.e., every time 
a pulse reaches the final node), a global primal bound is updated to keep track of 
the minimum cost. We use this primal bound, denoted by c̄ , to prune partial paths 
that promise no improvement. Similarly to the minimum time consumption t(i) , we 
denote a bound c(i) with the minimum-cost path Pc

i,e
 from node vi to the end node 

ve . As these paths Pc
i,e

 ignore the time consumption, the value c(i) is a lower bound 
on the minimum cost subject to the chance constraint. In this sense, given a partial 
path Ps,i from vs to vi , we can safely prune the pulse if c(Ps,i) + c(i) > c̄ . This means 
that as soon as we know that a partial path does not promise an improvement on the 
global cost, it is not worth keep propagating that pulse.

3.2.3  Dominance pruning

During the recursive search, a node vi could be reached more than once by different 
pulses. By defining dominance relations between paths, we can compare them and 
decide which paths are worth extending and which are better not.

Definition 1 (Dominance) Let P1
s,i
,P2

s,i
∈ �s,i be partial paths from the start node vs 

to node vi ∈ N  . We say that partial path P1
s,i

 strongly dominates P2
s,i

 if

In addition, we say that partial path P1
s,i

 weakly dominates P2
s,i

 if

𝜋(Ps,i) = ℙ(t̃(Ps,i ∪ Pt
i,e
) ≤ T|t̃(Pt

i,e
) = t(i))

= ℙ(t̃(Ps,i) + t(i) ≤ T)

= ℙ(t̃(Ps,i) ≤ T − t(i)).

c(P1
s,i
) < c(P2

s,i
) and 𝜋(P1

s,i
) > 𝜋(P2

s,i
).

c(P1
s,i
) = c(P2

s,i
) and 𝜋(P1

s,i
) > 𝜋(P2

s,i
)

or c(P1
s,i
) < c(P2

s,i
) and 𝜋(P1

s,i
) = 𝜋(P2

s,i
).
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Given these dominance relations, we use a limited set of labels to check if an 
incoming pulse to node vi ∈ N  is dominated. We define a limited set of labels 
L(vi) = {(cl,�l)|l = 1,… ,R} , where cl and �l are the cost and probability (defined in 
Sect. 2), respectively; and R denotes the total number of labels (i.e., memory size). 
More importantly, the fact that not all labels are stored does not preclude us of find-
ing the optimal solution. Although it is possible that some dominated paths may 
inefficiently pass through node vi and will reach the end node ve , this action will 
never prune the optimal solution.

4  Probability estimation

The proposed PA for the S-� RP relies on the calculation of the on-time arrival prob-
ability (reliability) of each partial path Ps,i . This task requires computing the convo-
lution of travel time random variables along the path. Depending on the probability 
distributions assumed for the random variables, this can be a trivial (e.g., normal 
distributions) or a complex task (e.g., lognormal distributions).

Gómez et al. (2016) discuss the difficulty of choosing a unique family of distribu-
tions with additive properties to model travel times. They propose the application of 
phase-type (PH) distributions as a versatile family that could provide many appro-
priate shapes of the probability density function. Furthermore, the additive property 
holds for this family of distributions, making it a good fit to model stochastic travel 
times in shortest path problems.

In this section, we present two distinct approaches for the estimation of the reli-
ability of a path. Following Gómez et  al. (2016), our first approach is to model 
random travel times with PH distributions, taking advantage of their properties to 
model the travel times for each arc (i, j) ∈ A , a crucial decision when implementing 
the PA for solving the S-�RP. Under the assumption of independence, this family 
of distributions allows us to approximate any positive continuous distribution with 
precision, compute convolutions exactly, and express in closed form its cumulative 
distribution function, and thus the reliability (in terms of on-time arrival probability) 
for any path.

In our context, the application of PH distributions involves an initial fitting phase 
and assuming independence between the travel times of adjacent arcs. To relax the 
assumption of independence, our second approach employs Monte Carlo simulation 
to estimate the on-time arrival probabilities under spatially-correlated networks.

We begin this section by introducing the PH family of distributions and describ-
ing our first approach to model travel times via the PH distribution. Then, we pre-
sent our Monte Carlo approach and in the next section we demonstrate their respec-
tive performance on a series of computational experiments.

4.1  Phase‑type distributions

This section introduces PH distributions and states the main properties that support 
the PA for the S-�RP. Latouche and Ramaswami (1999) define the PH family of 
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distributions as the distribution of the time until absorption of a continuous time 
Markov chain (CTMC) with one absorbing state and all others transient. Consider 
a continuous time Markov process on the states {0, 1,… , n} with initial probability 
vector (�0, �) and infinitesimal generator:

where � is a row vector of size n, Z is an n × n matrix, and z is a column vector of 
size n. Since Q is a generator matrix of a CTMC, we must have that Zii < 0 , Zi,j ≥ 0 , 
zi ≥ 0 for 1 ≤ i ≠ j ≤ n , and Z1+ t = 0 , where 1 is a column vector of ones. We 
also have that �0 + 1� = 1 and that �0 represents the probability of beginning in the 
absorbing state (Latouche and Ramaswami 1999). In this way, any PH distribution 
is completely determined by the parameters (� ,Z) . Henceforth, a random variable X 
that follows a PH distribution will be denoted as X ∼ PH(� ,Z).

Under this approach, modeling the stochastic travel times is based on two 
assumptions. First, we assume that all travel times can be well approximated by PH 
distributions, and second, we assume that all the t̃i,j are independent random vari-
ables. Under these assumptions, we benefit from the following three properties that 
allow us to estimate and express in closed form the on-time arrival probabilities.

First, PH distributions are dense in the set of continuous density functions with 
support on [0,∞) . This means that there exists a PH distribution arbitrarily close to 
any positive distribution, as discussed in chapter 2.7 of Latouche and Ramaswami 
(1999). Accordingly, PH distributions are a versatile tool for modeling stochastic 
travel times, considering that travel times are always positive (Gómez et al. 2016). 
Finding those PH distributions, based on data describing arc travel times, is a pro-
cess known as distribution fitting. Many efficient algorithms exist for fitting PH 
distributions to data. These algorithms estimate the parameters either by matching 
moments or by solving a nonlinear problem for maximum likelihood or minimum 
distance estimation (Bobbio et  al. 2005; Asmussen et  al. 1996; Thummler et  al. 
2006).

Second, the sum of finite PH distributed random variables is again a PH dis-
tribution (see Theorem 2.6.1 in Latouche and Ramaswami (1999)). Let t̃i,j and t̃k,l 
be two independent random variables modelling the random travel times of arcs 
(i, j) ∈ A and (k, l) ∈ A , respectively. Let us assume that t̃i,j ∼ PH(� i,j,Zi,j) with ni,j 
phases, and t̃k,l ∼ PH(�k,l,Zk,l) with nk,l phases. Then, their sum t̃i,j + t̃k,l follows a 
PH(� i,k,Zi,k) with ni,j + nk,l phases, where

and

Due to the closure property of the PH distributions, the random variable repre-
senting the travel time of every path in the graph G , follows a PH distribution with 

Q =

[
0 0

z Z

]
,

(4.1)� i,k = [� i,j, �i,j0 ⋅ �k,l]

(4.2)Zi,k =

[
Zi,j zi,j ⋅ �k,l
0 Zk,l

]
.
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parameters (�P,ZP) . Note that �P and ZP can be computed inductively from � i,j and 
Zi,j for (i, j) ∈ P with Eqs. (4.1) and (4.2).

Third, and last, the cumulative distribution function of a PH can be expressed 
in closed form in terms of � and Z (see Theorem 2.4.1 in Latouche and Ramas-
wami (1999)). So, if t̃P ∼ PH(�P,ZP) , then its distribution function is given by

where the matrix exponential is defined by

By modeling the stochastic travel times as independent PH random variables, the 
on-time arrival probability to the end node ve given the free-flow speed scenario, 
namely �(Ps,i) , is given by the following closed form expression:

4.2  Monte Carlo simulation

Aside from using PH distributions we propose an alternative way of estimat-
ing the probabilities �(Ps,i) for each partial path within the PA for the S-�RP. 
In contrast to the PH distribution approach, this alternative does not assume any 
family of distributions over the arc travel times in the network, nor it assumes 
independence. This method uses for each arc in the network the distribution that 
best fits its data and on-time arrival probabilities are estimated via Monte Carlo 
simulation.

In general, Monte Carlo simulation estimates expectations of the form �[g(Y)] , 
where Y is a random vector (variable) of dimension ℝm , and g ∶ ℝ

m
→ ℝ is an 

arbitrary function. So given a sample Y1,… ,Yn of n independent and identically 
distributed (i.i.d) realizations of the random vector Y , a Monte Carlo estimator of 
�[g(Y)] is given by the sample mean ĝ(Y) = 1

n

n∑
i=1

g(Yi).

To estimate the on-time arrival probability �(P) of the incoming partial path 
P ∈ �s,v to node v ∈ N  , we must formally define its Monte Carlo estimator. By def-
inition, we have that for each partial path P in the graph, t̃(P) =

∑
(i,j)∈P

t̃i,j . We let

be a random vector, where t̃(i,j)(k) represents the random travel time of the k-th arc of 
the path. We define the indicator function of the event 

{
1
T tP ≤ T(v)

}
 as

(4.3)ℙ(tP ≤ x) = F(x) = 1 − �P ⋅ exp (ZP ⋅ x) ⋅ 1, for x ≥ 0,

(4.4)exp (A) =

∞∑
n=0

1

n!
An.

(4.5)𝜋(Ps,i) = ℙ(t̃(Ps,i) < T(i)) = 1 − �Ps,i
⋅ exp (ZPs,i

) ⋅ 1.

tP =

⎛⎜⎜⎜⎜⎜⎝

t̃(i,j)(1)
⋮

t̃(i,j)(k)
⋮

t̃(i,j)(�P�)

⎞⎟⎟⎟⎟⎟⎠
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and we have that

Let t(1)
P
,… , t

(�)

P
,… , t

(n)

P
 be n i.i.d realizations of the random vector tP , a Monte Carlo 

estimator for �(P) is given by

Note that 
{
t
(�)

P

}
�=1,…,n

 being i.i.d does not mean that the 
(
t̃(i,j)

)
(i,j)∈P

 are independ-

ent. To induce a correlation structure in the estimation of the probability �(P) , we 
must generate the samples of tP with target correlations. Therefore, our goal is to 
generate random vectors with the following two properties: 

1. Let us denote by Fk the cumulative distribution function of t̃(i,j)(k) , the random time 
of the k-th arc of path P . Then, 

{
t
(�)

(i,j)(k)

}
�=1,…,n

∼ Fk for k = 1,… , |P|.
2. Cov[tP] = � tP

 , where � tP
 corresponds to the target covariance matrix of tP.

There are several methods that allow us to generate correlated random vectors. Haas 
(1999) proposed a procedure based on copulas, in which the copula and its param-
eters have to be specified as input to the random number generation procedure. Find-
ing the appropriate copula for any given correlation metric may be challenging, thus, 
the majority of methods focus on transforming multivariate normal distribution into 
a multivariate distribution with target marginals and correlations. Li and Hammond 
(1975) proposed an analytical method based on this principle, but their procedure 
leads to the numerical solution of double-integral equations that might become com-
putationally intensive and unstable given a certain degree of accuracy. To overcome 
this practical limitation, van der Geest (1998) developed an algorithm to stabilize 
and increase the accuracy of Li and Hammond’s method while Lurie and Goldberg 
(1998) presented a modified version in which a non linear optimization procedure 
minimizes the distance between the achieved and target correlation matrix. Cario 
and Nelson (1997) proposed NORTA (normal-to-anything), an approach in which 
a multivariate normal distribution is transformed into any multivariate distribution 
with a target correlation matrix.

We use the NORTA method to generate the correlated random vectors by pre-
senting tP as a transformation of a |P|-dimensional, standard multivariate normal 
vector Z = (Z1,… ,Z|P|) with covariance matrix �Z as follows:

I{1T tP≤T(v)} =

{
1 if 1T tP ≤ T(v)

0 otherwise

𝜋(P) = ℙ(t̃(P) ≤ T(v)) = 𝔼

[
I{1T tP≤T(v)}

]
.

�̂�(P) =
1

n

n∑
�=1

I{
1
T t

(�)

P
≤T(v)

}.
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As stated by Cario and Nelson (1997), the difficulty of this procedure is to select an 
accurate correlation matrix �Z that produces the target correlation matrix � tP

.

5  Computational experiments

We begin this section by describing the test instances used for our computational 
analyses. Then, we proceed to test the proposed algorithm in its two variants. First, 
we model the stochastic travel times as flexible (yet independent) PH random vari-
ables (PA-PH) and use their properties to compute the on-time arrival probabilities. 
Second, we model the stochastic travel times with arbitrary distributions and esti-
mate the probabilities via Monte Carlo simulation (PA-MC). In addition, to illustrate 
the effects of spatial correlation when solving the S-�RP, we present an experiment 
over the Sioux Falls network and compare the results with and without spatial corre-
lations using PA-MC. Finally, we present experiments in which the distributions of 
the arc travel times are conditioned to a given scenario (e.g., variable weather condi-
tions), in order to further illustrate an alternative to handling correlations.

5.1  Instances and implementation

To test our proposed algorithm, we adapted two networks from a repository (Stabler 
2016) widely used in the literature in the context of stochastic transportation prob-
lems (Chen and Nie 2015; Li et al. 2010; Nie and Wu 2009). For these networks, 
the repository provides the cost, free-flow time, the expected value of the traversing 
time, the average flow (in terms of vehicles per hour), and the capacity (in terms 
of vehicles per hour) for each arc. Since the repository does not contain data sam-
ples, we adapted these networks to the stochastic context assuming that all travel 
times are lognormally distributed. We fixed the mean of the lognormal distribution 
to the value given by the repository and determined its standard deviation as a func-
tion of the coefficient of variation (CV) of the shifted distribution. More specifi-
cally, for each arc (i, j) ∈ A and given a CV the standard deviation is assumed to be 
𝜎i,j = CV ⋅

(
�[t̃(i,j)] − ti,j

)
 . Note that the CV will be treated as a parameter for the 

experiments, and it will be the same for all travel times in the network. In this sense, 
we can modify the total variance of the network by varying the CV.

We generated random variates from these lognormal distributions for each arc 
and fitted them to the PH family of distributions (for PA-PH) and a list of conven-
tional travel-time distributions (for PA-MC). For the fitting process of the PH distri-
butions, we used the algorithm proposed by Thummler et al. (2006) with the Java 

tP =

⎛⎜⎜⎜⎜⎜⎝

t̃(i,j)(1)
⋮

t̃(i,j)(k)
⋮

t̃(i,j)(�P�)

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝

F−1
1

�
𝛷(Z1)

�
⋮

F−1
k

�
𝛷(Zk)

�
⋮

F−1
�P�
�
𝛷(Z�P�)

�

⎞⎟⎟⎟⎟⎟⎠

.
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implementation provided by the jMarkov package (Perez et  al. 2017). This algo-
rithm requires as input parameter the number of phases for the fitted PH distribution. 
In our case, balancing the tradeoff between computational effort and precision, we 
fit distributions with three and five phases for each arc. For the fitting process of the 
time-travel distributions we used Lognormal, Gamma, and Weibull distributions, as 
they are often used in the literature (Zang et al. 2018). Then, we chose the distribu-
tion that minimized the �2 estimator of the goodness-of-fit test.

Given a network G = (N,A) with the cost of each arc ci,j and the fitted distribu-
tion of travel times, we characterize an instance by its start node vs , its end node 
ve , its time budget T, and its reliability � . To stress the algorithm we must choose 
a combination of time budget T and reliability � that makes it challenging to find 
a path that satisfies our chance constraint for a given (vs, ve) pair. To design such 
instances, we take advantage of the fact that we can easily obtain the minimum 
cost path ( Pc ), and the least expected travel time path ( Pt ), by solving determinis-
tic shortest path problems. After finding these paths, we use their travel time ran-
dom variables, t̃(Pcn) and t̃

(
Pt
)
 to compute their �-quantiles, denoted by Tc(�) and 

Tt(�) , respectively (see Fig. 2). By using these values we can define a tightness fac-
tor ( � ∈ [0, 1] ) proposed by Santos et al. (2007) to set the time budget T for a given 
( vs, ve, � ) triplet as follows:

Finally, PA-PH was implemented in Java and compiled with Eclipse SDK version 
4.12. The original PA and PA-MC were implemented in Python version 3.7.6. All 
experiments were executed on an Intel Xeon E5-2673 v4 @2.30GHz with 56GB of 
RAM.

5.2  Solving the S‑̨  RP on the Chicago‑sketch network

With the procedure described in Sect. 5.1 we derived 20 instances from the Chi-
cago-sketch network (Stabler 2016). This middle-sized network with 933 nodes 

T = Tt(�) + (Tc(�) − Tt(�))(1 − �).

Fig. 2  Time budget selection
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and 2950 arcs is a fairly realistic, yet aggregate, representation of the Chicago 
area (Chen and Nie 2015; Li et al. 2010; Nie and Wu 2009). To generate these 
instances we chose 20 random (vs, ve) pairs and the time budget T for a target 
threshold of � = 0.90 , � = 0.4 and global CV = 0.8 . Table 1 lists the (vs, ve) pair 
and the time budget for the 20 instances.

For this experiment, let us recall that we have assumed that travel times fol-
low a lognormal distribution as described in Sect. 5.1. For each arc (i, j) ∈ A we 
have a sample of data generated from these lognormal distributions. Algorithm 
PA only uses the expected values for the time travel of each arc (i, j) ∈ A , and dis-
regards the shape of the distributions. In contrast, algorithms PA-MC and PA-PH-
3/5 fit the distributions on the observed realizations of t̃i,j ’s and make an estimate 
of the ℙ(t̃(P) ≤ T) based on fitted Monte Carlo simulation or the PH distributions, 
respectively. After the optimal paths are found we evaluate their reliability by 
sampling the lognormal distributions of the t̃i,j ’s (10,000 evaluations). We call 
this the ex-post evaluation, because we already know the optimal path and the 
underlying distribution. To assess the quality of the probability estimates, for the 
PA-MC and PA-PH-3/5, we report the ex-ante estimate, the estimation of the reli-
ability found with the fitted distributions. Note that this ex-ante estimate of the 
reliability is the estimate used by the algorithms (PA-MC, PA-PH-3/5).

In Table  2, we report in column 1, the instance name; columns 2, 4, 6, and 8 
report the ex-post reliability for PA, PA-MC, PA-PH-3, and PA-PH-5, respectively; 

Table 1  Chicago-sketch 
instances

Instance Source (vs) Target (ve) Time budget (T)

S-�RP-1 761 376 2307
S-�RP-2 217 268 4411
S-�RP-3 897 477 3826
S-�RP-4 274 84 3412
S-�RP-5 478 448 2171
S-�RP-6 818 70 4638
S-�RP-7 918 159 7152
S-�RP-8 788 488 4073
S-�RP-9 663 902 1779
S-�RP-10 865 757 4139
S-�RP-11 221 195 1724
S-�RP-12 517 444 2850
S-�RP-13 143 417 2445
S-�RP-14 542 750 6468
S-�RP-15 450 223 5125
S-�RP-16 729 353 5852
S-�RP-17 216 61 2973
S-�RP-18 211 144 3172
S-�RP-19 852 831 2668
S-�RP-20 735 382 5003
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columns 3, 5, and 7 report the ex-ante reliability for PA-MC, PA-PH-3, and PA-PH-
5, respectively; column 9 shows the average reliability of the paths found for the 
S-� RP against the reliability of the paths found for the CSP. This reliability improve-
ment is computed as the difference (in %) of the ex-post reliability of the optimal 
path found for the CSP, and the average ex-post reliability of the paths found for the 
S-� RP by the three proposed variants. Finally, as a measure of the accuracy of the 
ex-ante estimation of the reliability, we report on the last row of Table 2 the average 
percentage error of the ex-ante and ex-post estimation of the reliability for each of 
the variants.

As expected, from Table 2, we can see that none of the paths found by the PA 
meets the reliability constraint of the S-�RP. In contrast, the PA-MC finds 90%
-reliable solutions in 19 out of the 20 instances. Although PA-MC provides an 
accuracy within 0.95% of error on average, PA-MC tends to overestimate the reli-
ability in 18 out of 20 instances. In general, PA-MC performs well, yet in instance 
9 it estimates a reliability of 91.50% (> 90%) when the ex-post evaluation shows 

Table 2  Ex-ante (fit) vs. ex-post (real) reliability ( ℙ(t̃(P) ≤ T) ) for a target threshold of � = 0.90

Instance CSP S-�RP(� = 0.90)

PA PA-MC PA-PH-3 PA-PH-5 Avg. reliability 
improvement 
(%)

Ex-post Ex-ante Ex-post Ex-ante Ex-post Ex-ante Ex-post

S-�RP-1 0.7785 0.9995 0.9989 0.9977 0.9994 0.9996 0.9991 28.34
S-�RP-2 0.6829 1.0000 0.9999 0.9863 0.9997 0.9974 0.9999 46.41
S-�RP-3 0.6892 1.0000 1.0000 0.9963 1.0000 0.9996 1.0000 45.10
S-�RP-4 0.6224 0.9986 0.9984 0.9284 0.9989 0.9046 0.9837 59.65
S-�RP-5 0.7307 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 36.86
S-�RP-6 0.6517 0.9103 0.9233 0.9744 1.0000 0.9933 1.0000 49.52
S-�RP-7 0.7387 0.9966 0.9956 0.9543 0.9976 0.9832 0.9971 34.94
S-�RP-8 0.7491 0.9128 0.9098 0.9306 0.9878 0.9602 0.9927 28.61
S-�RP-9 0.7803 0.9150 0.7659 0.9862 1.0000 0.9969 1.0000 18.16
S-�RP-10 0.6297 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 58.81
S-�RP-11 0.7410 0.9999 1.0000 0.9998 0.9999 1.0000 0.9999 34.94
S-�RP-12 0.6731 0.9893 0.9825 0.9806 0.9828 0.9924 0.9842 46.07
S-�RP-13 0.7632 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 31.03
S-�RP-14 0.7564 0.9598 0.9639 0.9918 0.9984 0.9727 0.9819 29.75
S-�RP-15 0.7688 1.0000 1.0000 0.9925 1.0000 0.9990 1.0000 30.07
S-�RP-16 0.7754 0.9167 0.9169 0.9907 0.9983 0.9977 0.9975 25.21
S-�RP-17 0.5827 0.9956 0.9956 0.9113 0.9958 0.9402 0.9952 70.85
S-�RP-18 0.8017 0.9999 0.9998 0.9971 0.9998 0.9995 1.0000 24.72
S-�RP-19 0.7400 0.9986 0.9974 0.9987 0.9976 0.9989 0.9983 34.83
S-�RP-20 0.7157 0.9959 0.9955 0.9826 0.9961 0.9936 0.9955 39.12
Avg. Error  − 0.95%  1.77%  0.99% 38.65
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a reliability of just 76.59% , well below 90% . Similarly, PA-PH provides 90%-reli-
able path for all instances, both for three and five phases. In contrast to PA-MC, 
PA-PH-3/5 tends to underestimate the reliability, being more conservative over-
all and avoiding mistakes like the one PA-MC makes in instance 9. In summary, 
Table 2 shows how the �-reliable paths found for the S-� RP improve the on-time 
arrival probability by 38.6% (on average) over the optimal paths found by the 
original PA for the CSP.

Table 3 compares the costs of the optimal paths found for the CSP, with the 
traditional PA, against the cost of optimal paths found for the S-�RP, with the pro-
posed variants of the PA. Column 1 reports the instance name; column 2 shows 
the cost of the optimal path for the CSP found with the original pulse algorithm—
PA—; columns 3, 5, and 7 report the cost of the optimal path found for the S-� RP 
with the PA with Monte Carlo simulation—PA-MC—(column 3) and the PA with 
PH distributions with three and five phases,—PA-PH-3 and PA-PH-5—(columns 
5 and 7), respectively. Finally, columns 4, 6, and 8 show the relative difference 
between the cost of the optimal path found for the CSP and the S-�RP.

Table 3  Cost of the �-reliable paths for the Chicago-sketch instances

Instance CSP S-�RP  ( � = 0.90)

PA PA-MC %� (vs. CSP) 
(%)

PA-PH-3 %� (vs. CSP) 
(%)

PA-PH-5 %� (vs. CSP) 
(%)

S-�RP-1 4485 4517 0.71 4517 0.71 4517 0.71
S-�RP-2 8024 8115 1.13 8115 1.13 8115 1.13
S-�RP-3 8231 9072 10.22 9072 10.22 9072 10.22
S-�RP-4 6537 6557 0.31 6557 0.31 6557 0.31
S-�RP-5 4244 4665 9.92 4665 9.92 4665 9.92
S-�RP-6 7992 8218 2.83 8313 4.02 8313 4.02
S-�RP-7 11,037 11,040 0.03 11,040 0.03 11,040 0.03
S-�RP-8 5340 5395 1.03 5417 1.44 5417 1.44
S-�RP-9 3027 3027 0.00 3042 0.5 3042 0.5
S-�RP-10 8548 8687 1.63 8687 1.63 8687 1.63
S-�RP-11 3548 3578 0.85 3578 0.85 3578 0.85
S-�RP-12 6435 6468 0.51 6468 0.51 6468 0.51
S-�RP-13 5630 5779 2.65 5779 2.65 5779 2.65
S-�RP-14 7475 7506 0.41 7593 1.58 7498 0.31
S-�RP-15 9057 9145 0.97 9145 0.97 9145 0.97
S-�RP-16 12,200 12,313 0.93 12,318 0.97 12,318 0.97
S-�RP-17 5124 5133 0.18 5193 1.35 5133 0.18
S-�RP-18 6009 6030 0.35 6030 0.35 6030 0.35
S-�RP-19 5542 5557 0.27 5557 0.27 5557 0.27
S-�RP-20 11,555 12,257 6.08 12,257 6.08 12,257 6.08
Avg. reliability cost 2.05 2.27 2.15
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Since the CSP is a relaxation of the S-�RP, the optimal cost is always less than or 
equal to the optimal cost for the S-�RP. The difference between the cost of the CSP 
and the S-� RP can be interpreted as the cost we are willing to pay for a reliable path. 
One of the advantages of using the �-reliable paths found by solving the S-�RP, is 
that just by paying an extra 2.1% one can find alternative paths with large on-time 
arrival probabilities.

Finally, Table 4 compares the proposed variants for solving the S-� RP in terms 
of computational times. Column 1 shows the instance name; columns 2–5 report 
the computational time in seconds achieved with PA, PA-MC, and PA-PH-3/5, 
respectively. In addition, columns 6 and 7 show the speedups achieved by PA-PH-
3/5 against PA-MC, respectively; and column 8 show the speedups achieved by 
PA-PH-3 against PA-PH-5. The overall averages represent the geometric means of 
the respective column. Finally, in the last row we present the computational time 
required to fit the distributions for each of the variants of the PA.

Because PA-MC and PA-PH used different languages (Python and Java, respec-
tively), we avoid a direct comparison. Overall, as expected, the deterministic PA 
runs much faster than the PA-MC and PA-PH-3/5. For instance, PA runs on aver-
age 564% faster than PA-PH-3, the best performer among the two PH implementa-
tions (in terms of computational time). Note that adding more phases improves the 
reliability accuracy by 44.07% (dropping the average error from 1.77 to 0.99%, as 
seen in Table 2), yet this precision comes at a fivefold increment in computational 
cost (Table 4). Here, it is also important to consider the fitting times for each of the 
PA-PH variants. In the case we use the PH distributions, improving the accuracy 
does not only imply a greater computational cost while doing the search, but also the 
preprocessing time takes twice as longer when fitting five rather than three phases. 
In contrast, the preprocessing times for PA-MC is 1.2 times faster than PA-PH-3, the 
best performer among the two PH implementations (in terms of preprocessing time).

5.3  Illustrative example of spatially‑correlated travel times

In real transportation networks, travel times are likely to be correlated (Zeng et al. 
2015; Huang and Gao 2012; Zhang 2019; Bobbio et al. 2005; Xing and Zhou 2011). 
To illustrate the impact of including spatial correlations, we implemented PA-MC 
with the procedure described in Sect. 4.2. With the procedure described in Sect. 5.1 
we derived 20 instances from the Sioux Falls road network (24 nodes and 76 arcs) 
(Stabler 2016) by choosing 20 random (vs, ve) pairs and the time budget T for a target 
threshold of � = 0.95 , � = 0.5 and CV = 1.2 . Table 5 lists the (vs, ve) pair and the 
time budget for the 20 instances.

To account for the correlation structure, we defined a correlation matrix  
�G for the arc travel times of the network. Since we are considering spatial  
correlations for each arc a = (vi, vj) ∈ A , we define sets of arcs at two  
adjacency levels, L1(a) and L2(a) ; these sets are defined as follows: (1) 
L1(a) =

{
a� = (v�

i
, v�

j
) ∈ A ∶ v�

i
= vj

}
 and (2) L2(a) =

⋃
a�∈L1(a)

L1(a
�) . Figure  3 

shows for an arc a = (vi, vj) (in blue), the arcs at L1(a) (in red) and the arcs at 
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Table 5  Sioux falls instances Instance Source ( vs) Target ( ve) Time budget (T)

S-�RP-�-1 13 7 3426
S-�RP-�-2 12 7 2819
S-�RP-�-3 18 12 3352
S-�RP-�-4 15 24 1948
S-�RP-�-5 4 19 3467
S-�RP-�-6 14 8 2949
S-�RP-�-7 13 16 3676
S-�RP-�-8 3 6 1149
S-�RP-�-9 3 20 3354
S-�RP-�-10 8 15 2004
S-�RP-�-11 7 5 2354
S-�RP-�-12 6 19 3110
S-�RP-�-13 19 4 3482
S-�RP-�-14 19 1 3434
S-�RP-�-15 14 3 2184
S-�RP-�-16 4 20 3020
S-�RP-�-17 10 2 3879
S-�RP-�-18 10 20 2132
S-�RP-�-19 4 15 2405
S-�RP-�-20 8 12 2755

Fig. 3  Arcs correlated with 
a = (v

i
, v

j
) ∈ A (in blue): set 

of arcs L
1
(a) in red; set of arcs 

L
2
(a) in orange (color figure 

online)

vi vj

L2(a) (in orange). For an arc a = (vi, vj) ∈ A , we induce the correlation coeffi-
cients � and �

2
 between arcs at the first and second adjacency levels, respectively. 

Based on these correlations, the covariance matrix �G is defined as follows:
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where �(⋅) denotes the standard deviation of a random variable. Note that we have 
induced this correlation structure �G , but in a real context, the matrix �G would 
be the covariance matrix estimated from the sample data of travel times. Given the 
covariance matrix �G and applying the procedure presented by Cario and Nelson 
(1997), we computed the covariance matrix �Z and followed the procedure pre-
sented in Sect. 4.2. Figure 4 illustrates the different optimal paths found with and 
without correlations with PA-MC. Even in this small-sized network, the reliable 
paths may vary drastically under spatially correlated travel times.

Table  6 shows for each of the instances (column 1) the cost of the optimal 
path for the S-� RP without and with spatial correlation structure �G , namely, 
PA-MC-0 (zero correlation) in column 2 and PA-MC-� in column 3, respectively. 
Additionally column 4 represents the price paid for finding paths with a cor-
relation structure against finding paths ignoring correlations. As we can see in 
Table 6, in 25% of the instances the optimal path changed between the correlated 
and uncorrelated scenarios. Note that the paths found by the PA-MC-� are 9.37% 
more expensive on average. This means that under spatially correlated travel 
times the solution space tends to be tighter and the optimal paths more expensive.

Table  7 reports the ex-post estimates of the on-time arrival probabilities of 
paths found by PA-MC-0 and PA-MC-� , respectively. For each instance (column 

𝛴Ga,a�
=

⎧
⎪⎨⎪⎩

𝜌 ⋅ 𝜎(t̃a) ⋅ 𝜎(t̃a� ) a� ∈ L1(a)
𝜌

2
⋅ 𝜎(t̃a) ⋅ 𝜎(t̃a� ) a

� ∈ L2(a)

0 otherwise

Fig. 4  Reliable paths obtained with PA-MC with and without correlation. Green path: with correlation 
( � = 0.5 ); blue path: without correlation (color figure online)
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1), we report in columns 2 and 5 the ex-post reliability considering the correlation 
structure of the optimal paths found by PA-MC-0 and PA-MC-� , respectively; 
columns 3 and 6 show the ex-post reliability under the assumption of independ-
ence found by PA-MC-0 and PA-MC-� , respectively; and finally, columns 4 and 7 
report the difference between reliabilities with and without correlations. Table 7 
highlights the importance of considering correlations when solving the S-�RP. As 
one can see, the optimal paths found by PA-MC-� meet the reliability constraint 
in both cases: a scenario in which the travel times are spatially correlated, and a 
scenario in which this random travel times are independent. In contrast, PA-MC-0 
fails sometimes to deliver reliable routes under the scenario with a spatially cor-
related network. Although in several instances the ex-post reliability meets the 
target threshold ( � = 0.95 in this case), in some instances these paths fail to sat-
isfy the reliability constraint under correlated travel times (see instances 1, 7, 9, 
12, and 14). Nevertheless, the robustness of the reliable paths found by PA-MC-� 
comes at an average overcost of 9.37% (Table 6).

Finally, Table 8 presents the computational times. Column 1 shows the instance 
name; columns 2 and 3 report the computational time in seconds for PA-MC-0 and 
PA-MC-� , respectively; and column 4 shows the speedup achieved by PA-MC-� over 

Table 6  Cost of the optimal path 
for the Sioux Falls instances 
( � = 0.5)

Instance PA-MC-0 PA-MC-� %� (PA-MC-0 
vs. PA-MC-� ) 
(%)

S-�RP-�-1 3211 5239 63.16
S-�RP-�-2 4732 4732 0.00
S-�RP-�-3 5070 5070 0.00
S-�RP-�-4 1859 1859 0.00
S-�RP-�-5 3042 3042 0.00
S-�RP-�-6 3549 3549 0.00
S-�RP-�-7 3380 5577 65.00
S-�RP-�-8 2535 2535 0.00
S-�RP-�-9 4394 5070 15.38
S-�RP-�-10 2704 2704 0.00
S-�RP-�-11 3042 3042 0.00
S-�RP-�-12 2535 3549 40.00
S-�RP-�-13 3042 3042 0.00
S-�RP-�-14 4394 4563 3.85
S-�RP-�-15 2366 2366 0.00
S-�RP-�-16 4394 4394 0.00
S-�RP-�-17 2873 2873 0.00
S-�RP-�-18 2197 2197 0.00
S-�RP-�-19 2704 2704 0.00
S-�RP-�-20 4225 4225 0.00
Avg. overcost 304.2 9.37
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PA-MC-0. The overall averages represent the geometric mean of the computational 
times in its respective column. Surprisingly, the computational times drop drasti-
cally when choosing PA-PH-� over PA-MC-0 to solve the S-�RP. The computational 
times when solving the S-� RP with correlation structure is on average seven times 
faster than under the assumption of independence. This may be due to the fact that 
the correlated random travel times help the algorithm prune pulses early and leads 
to explore less paths. In terms of preprocessing, note that fitting times are the same 
in both variants, since they share the marginal distributions. The difference arises in 
the estimation of the covariance matrix �Z for the NORTA procedure. This covari-
ance matrix estimation relies on a numerical computation of double integrals that 
can be expensive. Note that this covariance matrix has dimensions |A| × |A| , where 
A is the set of arcs of the underlying network, so obtaining this target covariance 
matrix �Z for the NORTA procedure may pose some computational challenges.

5.4  Scenario‑based experiments

In transportation networks the travel time distributions are likely to depend on 
bad weather, rush hours, or particular traffic patterns, among other factors. In this 

Table 7  Ex-post ( � ) vs. ex-post reliability ( ℙ(t̃(P) ≤ T) ) for a target threshold of � = 0.95

Instance PA-MC-0 PA-MC-�

Ex-post ( �) Ex-post (0) %� (0 vs. � ) (%) Ex-post ( �) Ex-post (0) %� (0 vs. � ) (%)

S-�RP-�-1 0.8670 0.9508 9.67 0.9998 0.9999 0.01
S-�RP-�-2 0.9866 0.9870 0.04 0.9872 0.9894 0.22
S-�RP-�-3 0.9959 1.0000 0.41 0.9966 0.9999 0.33
S-�RP-�-4 0.9820 0.9638 1.86 0.9836 0.9655 1.84
S-�RP-�-5 0.9763 0.9987 2.30 0.9784 0.9982 2.02
S-�RP-�-6 0.9698 0.9935 2.45 0.9712 0.9933 2.28
S-�RP-�-7 0.9008 0.9743 8.16 0.9970 0.9993 0.23
S-�RP-�-8 0.9973 1.0000 0.27 0.9978 1.0000 0.22
S-�RP-�-9 0.8866 0.9539 7.60 0.9998 1.0000 0.02
S-�RP-�-10 0.9845 0.9962 1.19 0.9840 0.9957 1.19
S-�RP-�-11 0.9831 0.9994 1.66 0.9850 0.9992 1.44
S-�RP-�-12 0.9436 0.9731 3.12 0.9568 0.9669 1.06
S-�RP-�-13 0.9622 0.9979 3.71 0.9620 0.9981 3.75
S-�RP-�-14 0.8717 0.9671 10.95 0.9870 0.9995 1.27
S-�RP-�-15 0.9644 0.9819 1.82 0.9662 0.9809 1.52
S-�RP-�-16 0.9998 0.9999 0.01 0.9996 1.0000 0.04
S-�RP-�-17 0.9996 1.0000 0.04 0.9996 1.0000 0.04
S-�RP-�-18 0.9839 0.9749 0.91 0.9844 0.9783 0.62
S-�RP-�-19 0.9705 0.9840 1.39 0.9714 0.9831 1.20
S-�RP-�-20 0.9939 0.9999 0.61 0.9952 1.0000 0.48
Overall Avg. 2.91 0.99
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section, we illustrate how our proposed algorithm obtains costs and reliability esti-
mates using scenario-dependent arc travel times.

More specifically, we condition the travel times on a particular scenario s in a set 
of scenarios S . We define a discrete probability distribution over the set of scenarios, 
where ps represents the probability of the whole network being under scenario s ∈ S . 
Given a scenario, we assume that the arc travel times are independent. For each arc 
(i, j) ∈ A we draw travel times from its scenario distribution. In other words, by chang-
ing the distribution parameters of each arc based on a given scenario, we simulate 

Table 8  Computational times 
for the Sioux Falls instances (in 
seconds)

Instance PA-MC-0 PA-MC-� Speedup

S-�RP-�-1 6.2660 5.5003 1.1392
S-�RP-�-2 28.7989 4.1095 7.0079
S-�RP-�-3 81.5053 8.0790 10.0885
S-�RP-�-4 7.7974 0.7344 10.6179
S-�RP-�-5 18.9856 2.4376 7.7888
S-�RP-�-6 20.6106 2.4689 8.3482
S-�RP-�-7 81.9118 9.4378 8.6791
S-�RP-�-8 4.1407 0.5939 6.9716
S-�RP-�-9 59.7852 6.4067 9.3317
S-�RP-�-10 19.8450 2.2034 9.0065
S-�RP-�-11 7.9068 1.0004 7.9037
S-�RP-�-12 15.9698 2.7817 5.7410
S-�RP-�-13 15.5010 2.2975 6.7470
S-�RP-�-14 51.4252 7.0629 7.2810
S-�RP-�-15 2.9374 0.4062 7.2313
S-�RP-�-16 29.7208 3.7191 7.9915
S-�RP-�-17 17.9077 3.5784 5.0044
S-�RP-�-18 5.2815 0.5938 8.8940
S-�RP-�-19 10.2038 1.3126 7.7736
S-�RP-�-20 19.1423 2.3591 8.1142
Overall Avg. 16.7245 2.3598 7.0874

Fig. 5  Conditioned distributions for arc (i, j) ∈ A with S = {− 2,− 1, 0, 1, 2} and mean �s

ij
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different network conditions such as heavy vs. light traffic. Figure 5 shows an example 
of different distributions for a specific arc, under five different scenarios.

For the experiments in this section, we adapted the Chicago-sketch road network 
(933 nodes and 2950 arcs) from Stabler (2016). We assume that all travel times, in 
every scenario, follow a lognormal distribution with mean �s

(i,j)
 and standard deviation 

�s
(i,j)

 , which need to be determined. For each arc, we assume its unconditional expected 
travel time to be the value reported in the repository (i.e., �[t̃(i,j)] ). The means �s

(i,j)
 are 

fixed, such that

holds, where 𝜇s
(i,j)

≜ �[t̃(i,j)|s] for s ∈ S . To choose the values of �s
(i,j)

 we set an inte-
ger n ∈ ℕ and take S = {s ∈ ℤ ∶ |s| ≤ n} , where scenario s = 0 represents the neu-
tral scenario, with 𝜇0

i,j
= �[t̃(i,j)] for all arc (i, j) ∈ A . We assume a symmetric dis-

crete distribution for ps , e.g., ps =
1

|S| , and define a step size 𝛿i,j =
�
[
t̃ij|s

]
−tij

n+1
. Then the 

conditional means that make Eq. (5.1) hold can be expressed as 𝜇s
i,j
= �[t̃(i,j)] + s ⋅ 𝛿i,j . 

For each arc we assume a fixed coefficient of variation (CV) of the shifted distribu-
tion. Therefore, for each arc (i, j) ∈ A and scenario s ∈ S , the standard deviation is 
assumed to be �s

i,j
= CV ⋅ �s

(i,j)
.

(5.1)

∑
s∈S

ps ⋅ 𝜇
s
(i,j)

= �[t̃(i,j)]

Table 9  Scenario approach 
instances

Instance Source ( vs) Target ( ve) Time budget (T)

S-�RP-S-1 393 897 8104
S-�RP-S-2 660 920 7706
S-�RP-S-3 849 378 9347
S-�RP-S-4 526 781 8318
S-�RP-S-5 561 239 6247
S-�RP-S-6 723 911 7502
S-�RP-S-7 893 379 9344
S-�RP-S-8 171 892 6469
S-�RP-S-9 792 898 10,587
S-�RP-S-10 213 910 8399
S-�RP-S-11 45 899 7152
S-�RP-S-12 886 255 8634
S-�RP-S-13 736 418 5794
S-�RP-S-14 241 383 10,435
S-�RP-S-15 850 374 8263
S-�RP-S-16 258 365 9191
S-�RP-S-17 727 362 6877
S-�RP-S-18 531 239 7210
S-�RP-S-19 823 198 6292
S-�RP-S-20 415 442 5762
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With the procedure described in Sect. 5.1 we derived 20 instances from the Chicago-
sketch road network (933 nodes and 2950 arcs) (Stabler 2016) by choosing 20 random 
(vs, ve) pairs and the time budget T for a target threshold of � = 0.80 , � = 0.2 and a 
CV = 0.8 . Table 9 lists the (vs, ve) pair and the time budget for the 20 instances. The 
experiments in this section aim to estimate the expected cost c̄(vs, ve) and the expected 
reliability �̄�(vs, ve) over all scenarios when going from vs to ve . To this end, we solve for 
each instance and each scenario the S-�RP, and then estimate c̄(vs, ve) and �̄�(vs, ve) as

where Ps
vs,ve

 is the optimal path found when solving the S-� RP for scenario s ∈ S . 
For the experiments in this section we used PA-PH3 on five scenarios ( n = 2 ). For 
the sake of clarity, henceforth the scenario s ∈ S will be denoted by s ⋅ � (e.g., sce-
nario − 2 will be denoted by − 2�).

In Table  10, we report in column 1, the instance name; columns 2–6 report 
the costs of the paths found by PA-PH3 for the respective scenario; and col-
umn 7 reports the estimate of c̄(vs, ve) based on the total probability theorem (in 

(5.2)c̄(vs, ve) =
∑
s∈S

psc ⋅ (P
s
vs,ve

), �̄�(vs, ve) =
∑
s∈S

ps ⋅ 𝜋(P
s
vs,ve

),

Table 10  Cost for the scenario approach and a target threshold of � = 0.80

Instance Scenario c̄(vs, ve)

− 2� − � 0 � 2�

S-�RP-S-1 13,517 13,517 13,517 13,547 13,735 13,567
S-�RP-S-2 12,863 12,863 12,863 12,885 12,887 12,872
S-�RP-S-3 16,375 16,375 16,375 16,412 16,629 16,433
S-�RP-S-4 14,620 14,620 14,620 14,627 15,946 14,887
S-�RP-S-5 11,595 11,595 11,595 11,602 11,945 11,666
S-�RP-S-6 13,823 13,823 13,823 13,996 14,982 14,089
S-�RP-S-7 19,118 19,118 19,118 19,148 19,365 19,173
S-�RP-S-8 13,169 13,169 13,169 13,174 13,306 13,197
S-�RP-S-9 16,761 16,761 16,761 16,798 16,966 16,809
S-�RP-S-10 14,702 14,702 14,702 14,732 15,044 14,776
S-�RP-S-11 12,781 12,781 12,872 12,872 13,060 12,873
S-�RP-S-12 16,094 16,094 16,094 16,131 16,214 16,125
S-�RP-S-13 11,131 11,131 11,131 11,172 11,332 11,179
S-�RP-S-14 23,744 23,744 24,066 24,137 25,201 24,178
S-�RP-S-15 14,694 14,694 14,694 14,824 15,334 14,848
S-�RP-S-16 15,450 15,450 15,450 15,487 15,799 15,527
S-�RP-S-17 12,600 12,600 12,600 12,641 12,843 12,657
S-�RP-S-18 12,944 12,944 12,944 12,951 13,294 13,015
S-�RP-S-19 11,538 11,538 11,538 11,579 11,693 11,577
S-�RP-S-20 11,755 11,755 11,760 11,760 11,878 11,782
Avg. % � vs. 0 − 0.10% − 0.10% – 0.27% 2.60% 0.53%
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(5.2)). Finally, the last row reports the average cost difference against the neutral 
scenario.

In Table  11, we report in column 1, the instance name; columns 2–6 report the 
ex-ante reliability of the paths found by the proposed algorithm for the respective 
scenario; and column 7 reports the estimation of �̄�(vs, ve) through the total prob-
ability theorem (in (5.2)).

As observed in Table 10, the cost of the paths found by the algorithm increases 
as the scenario is stressed (by the increment on the expected value of the arc 
travel times). Note that the more stressed the scenario is, the fewer reliable paths 
exist; in other words, the solution space reduces and the objective function dete-
riorates. However, the same monotonicity does not hold when assessing the reli-
ability. As seen in Table 11, in many instances the path found for scenario 2� is 
more reliable than the path found for the neutral scenario (see instances S-�RP-S
-1/2/5/9/11/12/14). Therefore, the reliability of the more stressed scenarios comes 
at a cost. As shown in Table 10 the paths found for scenario 2� have an average of 
2.60% overcost relative to the neutral scenario.

Table 11  Reliability for the 
scenario approach and a target 
threshold of � = 0.80

Instance Scenario �̄�(vs, ve)

− 2� − � 0 � 2�

S-�RP-S-1 1.0000 0.9973 0.8512 0.8341 0.8904 0.9146
S-�RP-S-2 1.0000 0.9989 0.8042 0.9541 0.8609 0.9236
S-�RP-S-3 1.0000 1.0000 0.9530 0.9682 0.8345 0.9511
S-�RP-S-4 1.0000 1.0000 0.9879 0.8398 0.8327 0.9321
S-�RP-S-5 1.0000 0.9942 0.8055 0.8594 0.9544 0.9227
S-�RP-S-6 1.0000 1.0000 0.9971 0.8420 0.9355 0.9549
S-�RP-S-7 1.0000 1.0000 0.9907 0.9659 0.8073 0.9528
S-�RP-S-8 1.0000 1.0000 0.8981 0.8893 0.8166 0.9208
S-�RP-S-9 1.0000 0.9984 0.8457 0.8311 0.8767 0.9104
S-�RP-S-10 1.0000 1.0000 0.9854 0.9873 0.8011 0.9548
S-�RP-S-11 1.0000 0.9769 0.9691 0.8303 0.9858 0.9524
S-�RP-S-12 1.0000 0.9998 0.8470 0.9179 0.9809 0.9491
S-�RP-S-13 1.0000 1.0000 0.9952 0.8300 0.8012 0.9253
S-�RP-S-14 1.0000 0.9652 0.8113 0.9687 0.8163 0.9123
S-�RP-S-15 1.0000 1.0000 0.9953 0.8285 0.9237 0.9495
S-�RP-S-16 1.0000 1.0000 0.9753 0.9804 0.8038 0.9519
S-�RP-S-17 1.0000 1.0000 0.9712 0.8214 0.8310 0.9247
S-�RP-S-18 1.0000 1.0000 0.9853 0.8661 0.8378 0.9378
S-�RP-S-19 1.0000 1.0000 0.9834 0.8003 0.9697 0.9507
S-�RP-S-20 1.0000 0.9981 0.9957 0.8758 0.8447 0.9429



314 D. Corredor-Montenegro et al.

1 3

6  Conclusions

In this work we extended the pulse algorithmic framework to solve the shortest �
-reliable path problem. The S-� RP is modeled as a chance-constrained shortest 
path problem with random arc travel times. To treat uncertainty, we propose two 
approaches: the first one models travel times as independent Phase-type distributed 
random variables (PA-PH); and the second approach uses Monte-Carlo simulation to 
model travel times with arbitrary distributions with a correlation structure (PA-MC).

We conducted a series of experiments over road networks widely used in the 
transportation literature. The �-reliable paths found for the S-� RP with PA-MC and 
PA-PH improve the on-time arrival probability by 38.6% (on average) over the opti-
mal paths found by a pulse algorithm that uses expected travel times and ignores 
the inherent randomness. This dramatic improvement in reliability comes at the 
expense of a 2.1% marginal increment in cost. We observed that adding more phases 
(from three to five) in the PA-PH improves the reliability accuracy, dropping the 
average error from 1.77 to 0.99%. However, this precision comes at a hefty price 
of a fivefold increment in computational cost. Having more phases also takes a toll 
in preprocessing, as PH distributions with five phases takes twice as longer to fit 
than those with three phases. In contrast, PA-MC takes 1.2 less preprocessing than 
the best performer PA-PH-3. When considering correlated travel times, the reliable 
paths found by PA-MC-� came at an average overcost of 9.37%.

We also introduced an alternative scenario-based approach where it is possible 
to model some situations were correlated travel times naturally arise, such as those 
found in urban transportation settings where external factors such as the weather 
and traffic influencing the whole state of the network. This approach provides an 
alternative to tackle correlated arc travel times by grouping them into scenarios and 
then, applying the total probability theorem to compute cost and reliability estimates 
(across scenarios). It is worth noting that this approach demands more data, as mul-
tiple scenarios are built based on the factors affecting the whole network (e.g., time 
of the day, weather conditions). 

The PA-PH and PA-MC developed for the S-� RP open several avenues for future 
research. For example, we noted that the PA-PH is conservative and in general it 
underestimates the on-time arrival probabilities. This underestimation causes the 
algorithm to declare some instances infeasible, when some paths that meet the reli-
ability constraint exist. We also see the opportunity that extended chance-constrained 
models may be able to handle other risk measures (e.g., VaR or CVaR) in the sto-
chastic constraints. These other variants could be relatively easy handled by the pulse 
algorithmic framework based on the foundation laid out for the S-�RP. Another line 
of research could handle variants with stochastic objectives such as finding the most 
reliable path (Chen and Ji 2005). We leave these considerations for further research.

Appendix

See Table 12.
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Table 12  Notation table

Pulse algorithm for the S �RP:
   G = (N,A) Directed graph
   N Set of nodes N = {v1,… , vn}

   A Set of arcs A ⊆ {(i, j)|vi ∈ N, vj ∈ N, i ≠ j}

   � +(vi) Forward star of vi , � +(vi) = {vj ∈ N|(i, j) ∈ A}

   Pi,j A path from node vi to vj . Sequence of nodes 
{vi,… , v(k),… , vj} or sequence of arcs P = {… , (i, j)(k),…}

   Pt
i,e

Minimum-time path from node vi ∈ N  to the end node 
ve ∈ N  , under the best possible scenario

   Pc
i,e

Minimum-cost path from node vi to the end node ve
   �i,j Set of all possible paths from node    vi ∈ N  to node vj ∈ N

   ci,j Cost of traversing arc (i, j) ∈ A

   c(P) ≜
∑

(i,j)∈P ci,j Cost of traversing path P
   c̄ Global primal bound of the minimum cost
   c(i) Lower bound on the cost from node vi ∈ N  to the end node 

ve ∈ N  . Corresponds to the cost of Pc
i,e

   � On-time arrival probability (reliability) threshold
   T Maximum time budget
   t̃i,j Random variable of the traversing time of arc (i, j) ∈ A

   ti,j Deterministic part of the traversing time of arc (i, j) ∈ A 
accounting for this free-flow speed time

   t̂i,j Stochastic component of the traversing time of arc (i, j) ∈ A

   t(i) Minimum time consumption from any node vi to the final 
node ve under the best possible scenario

   t̃(P) ≜
∑

(i,j)∈P t̃i,j Random variable of the traversing time of path P

   T(i) ≜ T − t(i) Maximum allowed time consumption for a partial path up to 
node vi

   𝜋(P) ≜ ℙ
(
t̃(Ps,i) ≤ T(i)

)
≤ 𝛼 The probability of arriving on time under the best possible 

scenario denoted
   L(vi) Limited set of labels to check if an incoming pulse to node 

vi ∈ N  is dominated
   R Total number of labels (i.e., memory size)

Phase-type distributions
   (�0, �) Initial probability vector
   Q Infinitesimal generator
   Z Infinitesimal generator of the transient states
   z Absorption rates

Monte Carlo simulation
   tP Random vector, where t̃(i,j)(k) represents the random travel time 

of the k-th arc of the path P
   I{1T tP≤t̄(v)} Indicator function of the event 

{
1
T tP ≤ t̄(v)

}
 for v ∈ N

   �̂�(P) Monte Carlo estimator of the �(P)
   Fk Cumulative distribution function of t̃(i,j)(k) , the random time of 

the k-th arc of the path P
   Cov[tP] Covariance matrix of tP
   Z |P|-dimensional, standard multivariate normal vector
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