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Abstract

Following a theoretical analysis of the scope of Nash implementation for a given
mechanism, we study the formal framework for computational identification of Nash
implementability. We provide computational tools for Nash implementation in finite
environments. In particular, we supply Python codes that identify (i) the domain of
preferences that allows Nash implementation by a given mechanism, (ii) the maximal
domain of preferences that a given mechanism Nash implements Pareto efficiency, (iii)
all consistent collections of sets of a given social choice correspondence (SCC), the
existence of which is a necessary condition for Nash implementation of this SCC, and
(iv) check whether some of the well-known sufficient conditions for Nash implementa-
tion hold for a given SCC. Our results exhibit that the computational identification of all
collections consistent with an SCC enables the planner to design appealing mechanisms.
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1 Introduction

Implementation theory deals with the problem of designing a mechanism such that the

optimal alternatives prescribed by the designer coincide with the equilibrium outcomes of

this mechanism. There has been a vast literature on implementation following Maskin

(1999, circulated since 1977), which is the first paper that identifies necessary as well as

sufficient conditions for implementation when the equilibrium notion under consideration is

Nash Equilibrium. Despite the vast literature on implementation and advances in computa-

tional tools, to the best of our knowledge, computational tools have not been employed in the

implementation literature.1 In this paper, we aim to fill the gap by providing computational

tools for Nash implementation.

The classical approach in Nash implementation (based on the seminal works Maskin

(1999), Moore and Repullo (1990), and Dutta and Sen (1991)) seeks to identify social choice

correspondences (SCCs) defined on unrestricted domains of preferences that are attainable

as Nash equilibrium outcomes of mechanisms.2 To implement such an SCC, the planner no

longer needs to acquire information about the true preference profile of the society as the

mechanism the planner employs indirectly provides her with the relevant information: The

SCC coincides with the set of Nash equilibrium outcomes of the mechanism at every realized

state of the world. If Nash implementation of an SCC is not achievable on unrestricted

domains of preferences, it might still be possible to Nash implement this SCC on a restricted

domain of preferences.

In a nutshell, there are three essential components of Nash implementation: (i) a domain

of feasible preferences; (ii) the optimal outcomes described by an SCC, i.e., the desired goal;

(iii) a mechanism (game form) the Nash equilibria of which equal the optimal outcomes at

every preference profile in the domain of feasible preferences. The main goal of the mecha-

1There is a computational mechanism design literature that focuses on Myersonian mechanism design (par-
tial implementation) by restricting attention to direct mechanisms thanks to the revelation principle (Dash et
al., 2003). Yet, this literature neglects implementation theory.

2For more on the standard approach to Nash implementation, please see Maskin and Sjöström (2002),
Palfrey (2002), and Serrano (2004).
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nism designer then can be thought of as identifying (iii) given (i) and (ii), i.e., identifying a

mechanism that Nash implements a given SCC on the feasible domain of preferences.

Our results in this paper are divided into two parts: In the first part, we ask what can

be achieved in terms of Nash implementation by a given mechanism. As opposed to the

standard approach, we identify (i) and (ii) given (iii). That is, we characterize the SCCs

along with the domain of preferences they are defined on that are implementable in Nash

equilibrium via a given mechanism. Our results, therefore, describe the scope of Nash im-

plementation by a given mechanism in detail. In the second part of the paper, we turn back to

the standard approach: By revisiting the standard necessity and sufficiency results, we pro-

vide computational tools that describe the scope of Nash implementation for a given SCC on

a given domain of feasible preferences.

In the first part of the paper, for a given mechanism, we establish that the set of attainable

Nash equilibrium outcomes of this mechanism partitions the domain of preferences under

which there is a Nash equilibrium of this mechanism (Theorem 1). This partition identifies

the boundaries of Nash implementation under the mechanism at hand: Given a mechanism,

the set of SCCs and the corresponding domain of preferences under which Nash implemen-

tation is viable are precisely those that respect the intrinsic relation described by the partition

structure induced by this mechanism (Theorem 2).

Our findings unfold the precise incompatibilities between the desired set of alternatives

and the domain of preferences for any SCC that fails to be Nash implementable by a given

mechanism. Identifying these incompatibilities empowers us to characterize the maximal

domain of preferences where Nash implementation of a given SCC is attainable by the given

mechanism. We demonstrate this using the Pareto efficient SCC: Given any mechanism, we

delineate the maximal domain of preferences under which efficiency restricted to this domain

is Nash implementable by this mechanism.

In the second part of the paper, we first focus on the prominent Maskin-monotonicity

condition as a necessary Nash implementation condition. Generalizing Maskin (1999)’s

results on Nash implementation to behavioral domains, de Clippel (2014) defines the concept

of a consistent collection of sets for a given SCC, the existence of which is equivalent to
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Maskin-monotonicity under rationality. The set of all consistent collections of sets of a

given SCC on a given domain of preferences defines the boundaries of Nash implementation

of this SCC. We exemplify that by identifying the set of all consistent collections of sets

for an SCC, the designer might construct eligible mechanisms to implement the given SCC.

Then, we turn to the well-known sufficiency conditions for Nash implementation and provide

codes that check whether a given SCC satisfies the sufficiency conditions.

In particular, when there are at least three individuals in the society, the existence of a

consistent collection of sets is both necessary and sufficient for Nash implementation in an

economic environment. We provide codes that check whether the domain of preferences

of an SCC satisfies the economic environment assumption. Furthermore, when there are at

least three individuals in the society, no-veto-power (NVP) property is sufficient for Nash

implementation when the SCC under consideration has a consistent collection. We also

provide codes that check for the NVP property of an SCC.

The results in the second part of our paper can be generalized to behavioral domains as

in de Clippel (2014). Instead of the domain of rational preferences, our results also accom-

modate the domain of individual choices that do not necessarily satisfy the weak axiom of

revealed preferences (WARP).

The organization of the rest of the paper is as follows. We present the preliminaries in

Section 2. The first part of our results where we analyze the scope of Nash implementation

by a given mechanism is in Section 3. The second part of our results where we provide

computational tools for Nash implementation of a given SCC is in Section 4. Section 5

provides a brief literature review. Meanwhile, Section 6 concludes. Unless stated other-

wise, the proofs are presented in the Appendix. Our Python codes are available online at

http://dalkiran.bilkent.edu.tr/Python Computational Implementation.zip

2 Preliminaries

Let N = {1, ..., n} denote a society with at least two individuals, X a set of alternatives,

2X the set of all subsets of X, and X the set of all non-empty subsets of X.

We denote by Ω the set of all possible states of the world capturing all the payoff-relevant

3

http://dalkiran.bilkent.edu.tr/Python_Computational_Implementation.zip


characteristics of the environment. The preferences of individual i ∈ N at state ω ∈ Ω is

captured by a complete and transitive binary relation, a ranking, Rω
i ⊆ X × X.3 The ranking

profile of the society, R = (Rω
i )i∈N, ω∈Ω, is in one-to-one correspondence with Ω. Given

i ∈ N, ω ∈ Ω, and x ∈ X, Lωi (x) := {y ∈ X | xRω
i y} denotes the lower contour set of

individual i at state ω of alternative x. For all i ∈ N, all ω ∈ Ω, and all S ∈ X, define

Cω
i (S ) := {x ∈ S | xRω

i y,∀y ∈ S }.

We refer to Θ ⊂ Ω as a domain. A social choice correspondence (SCC) defined on a

domain Θ is f : Θ → X, a non-empty valued correspondence mapping Θ into X. Given

θ ∈ Θ, f (θ), the set of f -optimal alternatives at θ, consists of alternatives that the planner

desires to sustain at θ.

A mechanism µ = (M, g) assigns each individual i ∈ N a non-empty message space Mi

and specifies an outcome function g : M → X where M = × j∈N M j. M denotes the set of

all mechanisms. Given µ ∈ M and m−i ∈ M−i := × j,iM j, the opportunity set of individ-

ual i pertaining to others’ message profile m−i in mechanism µ is Oµ
i (m−i) := g(Mi,m−i) =

{g(mi,m−i) | mi ∈ Mi}. Consequently, a message profile m∗ ∈ M is a Nash equilibrium of

mechanism µ at state ω ∈ Ω if g(m∗) ∈ ∩i∈NCω
i (Oµ

i (m∗
−i)). Given µ ∈ M, the correspondence

NEµ : Ω � 2X identifies Nash equilibrium outcomes of mechanism µ at state ω ∈ Ω and

is defined by NEµ(ω) := {x ∈ X | ∃m∗ ∈ M s.t. g(m∗) ∈ ∩i∈NCω
i (Oµ

i (m∗
−i)) and g(m∗) = x}.

3 Implementation with a given mechanism

In what follows, we first show that the set of attainable Nash equilibrium outcomes of a

given mechanism partitions the domain of preferences under which there is a Nash equilib-

rium of this mechanism. Using this, we establish that the domain of preferences under which

Nash implementation is viable via the given mechanism are precisely those that respect the

intrinsic partition structure of this mechanism.4

3A binary relation R ⊆ X × X is complete if for all x, y ∈ X either xRy or yRx or both; transitive if for all
x, y, z ∈ X with xRy and yRz implies xRz.

4Our results are related to the literature on realizations, message processes, and communication protocols
with verification properties. We refer the interested reader to Hurwicz and Reiter (2006) for more on this
subject. Section 5 provides further discussions of the related literature.
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Given µ ∈ M and x ∈ X, the set of states that sustain x as a Nash equilibrium outcome

in mechanism µ is given by Πµ({x}) := {ω ∈ Ω | x ∈ NEµ(ω)}. Clearly, for all x < g(M),

Πµ({x}) = ∅. Consequently, for any S ∈ X, define Πµ(S ) := ∩x∈S Πµ({x}). Indeed, for any

ω ∈ Πµ(S ), S ⊂ NEµ(ω). Finally, given µ ∈ M and S ∈ X, the set of states at which Nash

equilibrium outcomes of mechanism µ equal S is Φµ(S ) := Πµ(S )\Πµ(X\S ); alternatively,

Φµ(S ) := ∩x∈S Πµ({x}) \ ∪y<S Πµ({y}). We define the set of states at which the set of Nash

equilibrium outcomes of mechanism µ are non-empty by Φµ := {ω ∈ Ω | NEµ(ω) , ∅}.

It is easy to see that Φµ = ∪S∈XΦµ(S ). Moreover, the following lemma offers an equivalent

definition of Φµ.

Lemma 1. Given mechanism µ = (M, g), Φµ = ∪x∈XΠµ({x}).

The family of sets of alternatives sustained as a Nash equilibrium outcome of mechanism

µ at some state ω ∈ Ω is given by Sµ := {S ∈ X | ∃ω ∈ Ω s.t. NEµ(ω) = S }. It is useful to

note that Sµ := {S ∈ X | Φµ(S ) , ∅}, and Φµ = ∪S̃∈SµΦ
µ(S̃ ).

The following result establishes a useful partition property:

Theorem 1. Given mechanism µ = (M, g), {Φµ(S ) | S ∈ Sµ} is a partition of Φµ.

Example 1.5 The following helps exemplify our construction: Consider a situation with two

individuals, Ann and Bob, and the set of alternatives X = {a, b, c}. We restrict attention to all

strict ranking profiles of Ann and Bob, and hence, Ω corresponds to all strict ranking profiles

of a, b, c. There are 6 × 6 strict ranking profiles and hence possible states of the world. We

adopt the notation where xyz denotes the strict preference order with x is strictly preferred to

y, y to z, and x, y, z are distinct elements in {a, b, c}.

We analyze mechanism µ = (M, g) with MA = {U,C,D} and MB = {L,M,R} where the

outcome function g : M → X is as given in Table 1.

Now, we determine the set of states at which alternative a is among the Nash equilibrium

outcomes, i.e., Πµ({a}) ⊂ Ω. As there are two message profiles, (C, L) and (U,M), that

5We refer the interested reader to the “Examples in the Manuscript\Example 1 in the Manuscript” in
“Python Codes Computational Implementation Barlo Dalkiran.zip” for the computational codes/outputs.
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Bob

Ann

L M R
U b a c
C a b b
D c b c

Table 1: Outcome function of mechanism µ.

deliver a as an outcome, we identify the strict ranking profiles at which at least one of these

message profiles is a Nash equilibrium of µ.

The set of strict ranking profiles at which (C, L) is among the Nash equilibrium outcomes

of µ is such that Ann ranks a as the first alternative while Bob strictly prefers a to b. Thus,

Ann’s possible strict rankings are given by abc, acb and Bob’s by abc, acb, cab. Therefore,

(C, L) is a Nash equilibrium of µ at any state corresponding to {{abc, acb} × {abc, acb, cab}}.

Similarly, the strict ranking profiles at which (U,M) is among the Nash equilibrium out-

comes of µ are {{abc, acb, cab} × {abc, acb}}. So, Πµ({a}) = {{abc, acb} × {abc, acb, cab}} ∪

{{abc, acb, cab} × {abc, acb}}. Thus,

Πµ({a}) =




a

b

c

a

b

c

 ,


a

b

c

a

c

b

 ,


a

b

c

c

a

b

 ,


a

c

b

a

b

c

 ,


a

c

b

a

c

b

 ,


a

c

b

c

a

b

 ,


c

a

b

a

b

c

 ,


c

a

b

a

c

b


 .

By repeating the same arguments, we obtain

Πµ({b}) =




b

a

c

b

a

c

 ,


b

a

c

b

c

a

 ,


b

c

a

b

a

c

 ,


b

c

a

b

c

a

 ,


b

a

c

c

b

a

 ,


b

c

a

c

b

a

 ,


c

b

a

b

a

c

 ,
c

b

a

b

c

a

 ,


c

b

a

c

b

a

 ,


b

a

c

a

b

c

 ,


b

c

a

a

b

c

 ,


c

b

a

a

b

c

 ,


a

b

c

b

a

c

 ,


a

b

c

b

c

a

 ,


a

b

c

c

b

a




Πµ({c}) =




c

a

b

a

c

b

 ,


c

a

b

c

b

a

 ,


c

a

b

c

a

b

 ,


c

b

a

a

c

b

 ,


c

b

a

c

b

a

 ,


c

b

a

c

a

b

 ,


a

c

b

c

a

b

 ,


a

c

b

c

b

a

 ,


a

c

b

a

c

b




As for any S ∈ X, Πµ(S ) := ∩x∈S Πµ({x}), we see that
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Πµ({a, b}) = ∅, Πµ({a, c}) =




a

c

b

a

c

b

 ,


a

c

b

c

a

b

 ,


c

a

b

a

c

b


 ,

Πµ({b, c}) =




c

b

a

c

b

a


 , Πµ({a, b, c}) = ∅.

We observe that there is no ranking profile at which both a and b appear among the Nash

equilibrium outcomes of µ.

Next, for any non-empty subset S of {a, b, c}, we construct the set of states at which Nash

equilibrium outcomes of mechanism µ equals S , namely, Φµ(S ). As Φµ(S ) := ∩x∈S Πµ({x}) \

∪y<S Πµ({y}) for any non-empty S that is a subset of {a, b, c}, we obtain these sets by using

Πµ({x}) with x ∈ {a, b, c}. Noting Φµ({a}) = Πµ({a}) \ (Πµ({b}) ∪ Πµ({c})), we observe that

Φµ({a}) =




a

b

c

a

b

c

 ,


a

b

c

a

c

b

 ,


a

b

c

c

a

b

 ,


a

c

b

a

b

c

 ,


c

a

b

a

b

c


 .

Equivalently, as Πµ({a, b}) = Πµ({a, b, c}) = ∅, we have Φµ({a}) = Πµ({a}) \ Πµ({a, c}). That

is, Φµ({a}) consists of all the set of states at which only a (and neither b nor c) is among the

Nash equilibrium outcomes of µ. Similar arguments establish the following:

Φµ({b}) = Πµ({b}) \ Πµ({b, c})

=




b

a

c

b

a

c

 ,


b

a

c

b

c

a

 ,


b

c

a

b

a

c

 ,


b

c

a

b

c

a

 ,


b

a

c

c

b

a

 ,


b

c

a

c

b

a

 ,


c

b

a

b

a

c

 ,
c

b

a

b

c

a

 ,


b

a

c

a

b

c

 ,


b

c

a

a

b

c

 ,


c

b

a

a

b

c

 ,


a

b

c

b

a

c

 ,


a

b

c

b

c

a

 ,


a

b

c

c

b

a


 ,

Φµ({c}) = Πµ({b}) \ (Πµ({a, c}) ∪ Πµ({b, c}))

=




c

a

b

c

b

a

 ,


c

a

b

c

a

b

 ,


c

b

a

a

c

b

 ,


c

b

a

c

a

b

 ,


a

c

b

c

b

a


 ,
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Φµ({a, b}) = ∅,

Φµ({a, c}) = Πµ({a}) ∩ Πµ({c}) \ Πµ({b}) =




a

c

b

a

c

b

 ,


a

c

b

c

a

b

 ,


c

a

b

a

c

b


 ,

Φµ({b, c}) = Πµ({b}) ∩ Πµ({c}) \ Πµ({a}) =




c

b

a

c

b

a


 ,

Φµ({a, b, c}) = ∅.

Therefore, we conclude that Sµ = {{a}, {b}, {c}, {a, c}, {b, c}}.

Table 2 presents an application of Theorem 1 by demonstrating the partition {Φµ(S ) | S ∈

Sµ} of Φµ in our example.

Φµ({a})︷                                      ︸︸                                      ︷ab
c

a
b
c

 , ab
c

a
c
b

 , ab
c

c
a
b

 , ac
b

a
b
c

 , ca
b

a
b
c

,
Φµ({c})︷                                      ︸︸                                      ︷ca

b

c
b
a

 , ca
b

c
a
b

 , cb
a

a
c
b

 , cb
a

c
a
b

 , ac
b

c
b
a

,
Φµ({a,c})︷                  ︸︸                  ︷ac

b

a
c
b

 , ac
b

c
a
b

 , ca
b

a
c
b

,
Φµ({b,c})︷︸︸︷cb

a

c
b
a


ba

c

b
a
c

 , ba
c

b
c
a

 , bc
a

b
a
c

 , bc
a

b
c
a

 , ba
c

c
b
a

 , bc
a

c
b
a

 , cb
a

b
a
c

 , cb
a

b
c
a

 , ba
c

a
b
c

 , bc
a

a
b
c

 , cb
a

a
b
c

 , ab
c

b
a
c

 , ab
c

b
c
a

 , ab
c

c
b
a

︸                                                                                                                            ︷︷                                                                                                                            ︸
Φµ({b})

Table 2: The partition {Φµ(S ) | S ∈ Sµ} of Φµ in our example.

3.1 Nash implementable SCCs by a given mechanism µ = (M, g)

The definition of Nash implementability of an SCC f : Θ → X by a given mechanism µ

can be stated as follows:

Definition 1. Given a mechanism µ = (M, g), an SCC f defined on a domain Θ ⊂ Ω,

f : Θ→ X, is Nash implementable by µ if for all θ ∈ Θ,

f (θ) = S if and only if θ ∈ Φµ(S ). (1)

F µ denotes the Nash implementable SCCs for a given mechanism µ.
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This definition signifies that the association proposed by an SCC f : Θ → X between

states in its domain Θ and non-empty subsets of alternatives must respect mechanism µ’s

inherent association between the states in Φµ and subsets of alternatives in Sµ whenever this

SCC is Nash implementable by µ. Indeed, from (1), we see that if there is θ ∈ Θ such

that θ < Φµ( f (θ)), then f is not Nash implementable. The existence of θ ∈ Θ such that

θ < Φµ( f (θ)) subsumes the situation when either θ < Φµ or θ ∈ Φµ but θ < Φµ( f (θ)). In

words, f is not Nash implementable by µ whenever either there is a state θ ∈ Θ at which

there is no Nash equilibrium of µ or there is no state θ ∈ Θ at which the Nash equilibrium

outcomes of µ at θ equals f (θ).

The following corollary to Theorem 1 summarizes these findings that are useful when

constructing SCCs that are Nash implementable by mechanism µ:

Corollary 1. An SCC f : Θ→ X with domain Θ ⊂ Ω is not in F µ, whenever

(i) either θ < Φµ,

(ii) or θ ∈ Φµ and θ < Φµ( f (θ)).

In Example 1, Φµ ⊂ Ω does not contain any ω such that NEµ(ω) = {a, b} (i.e., {a, b} <

Sµ). Thus, any SCC f : Θ → X with f (θ) = {a, b} for some θ ∈ Θ cannot be Nash

implementable (Corollary 1-(i)). Moroever, from Table 2 we know that at θ = (abc, cab),

NEµ(θ) = {a}; so, if f (θ) = {a, c} (the efficient alternatives at θ), then f would not be

implementable since f (θ) = {a, c} and θ < Φµ({a, c}) but θ ∈ Φµ({a}) (Corollary 1-(ii)).

Using the partition structure formalized in Theorem 1, we obtain the following conse-

quence of Nash implementability that also signifies a robustness argument:

Corollary 2. Suppose a pair of SCCs, f : Θ → X and f̃ : Θ̃ → X, with domains Θ, Θ̃ ⊂ Ω,

are in F µ. Then, for all θ ∈ Θ and θ̃ ∈ Θ̃

f (θ) = f̃ (θ̃) if and only if θ ∈ Φµ( f̃ (θ̃)).

In words, a pair of SCCs, f and f̃ , being Nash implementable by mechanism µ means

that the desired alternatives under f at θ coinciding with those under f̃ at θ̃ is equivalent to θ

and θ̃ being in the same partition associated with µ.
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In Example 1, we see that Corollary 2 implies the following: From Table 2, we observe

that θ = (abc, cab) and θ̃ = (acb, abc) are in Φµ({a}); thus, any pair of Nash implementable

SCCs f , f̃ where θ (θ̃) is in the domain of f ( f̃ , resp.) must be such that f (θ) = {a} = f̃ (θ̃).

An equivalent and useful way to define Nash implementability is as follows:

Lemma 2. Given a mechanism µ = (M, g), an SCC f defined on a domain Θ ⊂ Ω, f : Θ →

X, is Nash implementable by mechanism µ if and only if

for all θ ∈ Θ, x ∈ f (θ) if and only if θ ∈ Πµ({x}). (2)

The construction of Nash implementable SCCs and corresponding domains can now be

described using these observations. Given mechanism µ, we first identify Pµ := {Πµ({x}) ⊂

Ω | x ∈ X}. Using Pµ, we obtain {Φµ(S ) ⊂ Ω | S ∈ X}. By Lemma 1, Φµ defined by

∪S∈XΦµ(S ) equals ∪x∈XΠµ({x}). By Corollary 1, for any SCC f : Θ→ X, Θ * Φµ, we know

that f < F µ. Hence, in what follows we restrict attention to cases with Θ ⊂ Φµ. So, for all

θ ∈ Θ ⊂ Φµ = ∪x∈XΠµ({x}), NEµ(θ) , ∅. Recalling that Sµ = {S ∈ X | ∃ω ∈ Ω s.t. NEµ(ω) =

S }, and Φµ = ∪S̃∈SµΦ
µ(S̃ ), by Corollary 1, we observe the following: Any SCC f : Θ → X

with f (θ) < Sµ for some θ ∈ Θ implies f < F µ, i.e., f is not Nash implementable by µ. As

a result, we restrict attention to situations in which for all θ ∈ Θ, f (θ) ∈ Sµ. But then as

Fµ := {Φµ(S ) ⊂ Ω | S ∈ Sµ} is a partition of Φµ, the characterization of SCCs that are Nash

implementable by µ are as follows (as described by Corollary 2): For any θ ∈ Θ ⊂ Φµ, f (θ)

must equal S such that θ is in the partition Φµ(S ). These deliver the following:

Theorem 2. Given mechanism µ,

F µ =
{
f : Θ→ Sµ | f −1(S ) ⊂ Φµ(S ),∀S ∈ Sµ

}
. (3)

In our example with the mechanism µ defined as in Table 1,Sµ = {{a}, {b}, {c}, {a, c}, {b, c}},

Φµ is a strict subset of Ω, and the partition of Φµ, {Φµ(S ) | S ∈ Sµ}, is as given in Ta-

ble 2. Thus, only SCCs that are defined on a restricted domain Θ ⊂ Φµ and resulting in

a set of alternatives other than {a, b} and {a, b, c} are Nash implementable by µ. Indeed,

the set of Nash implementable SCCs by our mechanism µ is as follows: If f (θ) = S with

S ∈ {{a}, {b}, {c}, {a, c}, {b, c}}, then θ ∈ Φµ(S ) where Φµ(S ) is as given in Table 2.
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3.2 Maximal domains

Implementation literature often involves an SCC defined on the full domain of prefer-

ences, Ω, given by f : Ω → X. When Nash implementation with a fixed mechanism µ is

under consideration, the natural question concerns the scope of the domain of preferences,

Θ ⊂ Ω, under which SCC f restricted to Θ is Nash implementable by µ.

Efficiency provides a natural example towards that regard. Following de Clippel (2014)

which extends the notion of efficiency to behavioral environments, the efficient SCC feff :

Ω→ X is defined as follows: For all ω ∈ Ω,

feff(ω) :=
{
x ∈ X | ∃(Yi)i∈N ∈ X

N s.t. x ∈ ∩i∈NCω
i (Yi) and ∪i∈N Yi = X

}
. (4)

When individuals are all rational (i.e., their choice correspondences satisfy the weak axiom

of revealed preferences), de Clippel efficiency coincides with Pareto optimality.

Recall that in Example 1 with mechanism µ defined as in Table 1, we have that Sµ =

{{a}, {b}, {c}, {a, c}, {b, c}}, and Φµ and its partition {Φµ(S ) | S ∈ Sµ} are as given in Table

2. Therefore, our mechanism µ cannot implement feff : Ω → X in Nash equilibrium due

to Corollary 1 as Φµ is a strict subset of Ω. In what follows, we characterize the maximal

domain of preferences under which feff is Nash implementable by µ. Towards that regard,

we present the association between Nash implementability by µ and efficiency in Table 3,

where the corresponding efficient alternatives are depicted with circles.

Φµ({a})︷                                   ︸︸                                   ︷ab
c

a
b
c


a

,

ab
c

a
c
b


a

,

ab
c

c
a
b


a c

,

ac
b

a
b
c


a

,

ca
b

a
b
c


a c

,

Φµ({c})︷                                   ︸︸                                   ︷ca
b

c
b
a


c

,

ca
b

c
a
b


c

,

cb
a

a
c
b


a c

,

cb
a

c
a
b


c

,

ac
b

c
b
a


a c

,

Φµ({a,c})︷                 ︸︸                 ︷ac
b

a
c
b


a

,

ac
b

c
a
b


a c

,

ca
b

a
c
b


a c

,

Φµ({b,c})︷︸︸︷cb
a

c
b
a


c

Φµ({b})︷                                                                                                                      ︸︸                                                                                                                      ︷ba
c

b
a
c


b

,

ba
c

b
c
a


b

,

bc
a

b
a
c


b

,

bc
a

b
c
a


b

,

ba
c

c
b
a


b c

,

bc
a

c
b
a


b c

,

cb
a

b
a
c


b c

,

cb
a

b
c
a


b c

,

ba
c

a
b
c


a b

,

bc
a

a
b
c


a b

,

cb
a

a
b
c


a b c

,

ab
c

b
a
c


a b

,

ab
c

b
c
a


a b

,

ab
c

c
b
a


a b c

Table 3: Efficient alternatives associated with mechanism µ.
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From Table 3, we observe that at ω = (abc, cab), NEµ(ω) = {a} but feff(ω) = {a, c};

at ω̃ = (acb, acb), NEµ(ω̃) = {a, c} but feff(ω̃) = {a}. Thus, neither ω nor ω̃ can be in the

maximal domain of preferences under which mechanism µ implements feff in Nash equilib-

rium. Hence, the maximal domain of preferences under which mechanism µ implements feff

in Nash equilibrium consists of all states ω̂ such that NEµ(ω̂) = feff(ω̂). Similarly, {b, c} can-

not be sustained as a Nash equilibrium outcome of µ when µ Nash implements feff . This is

because Φµ({b, c}) = (cba, cba) while feff(cba, cba) = {c}; i.e., the unique efficient alternative

in the unique state that sustains {b, c} as a Nash equilibrium outcome of µ equals c. These

lead us to conclude that the maximal domain of preferences under which our mechanism µ

implements feff in Nash equilibrium is as given in Table 4.

Φµ({a})︷                 ︸︸                 ︷ab
c

a
b
c


a

,

ab
c

a
c
b


a

,

ac
b

a
b
c


a

,

Φµ({c})︷                 ︸︸                 ︷ca
b

c
b
a


c

,

ca
b

c
a
b


c

,

cb
a

c
a
b


c

,

Φµ({a,c})︷        ︸︸        ︷ac
b

c
a
b


a c

,

ca
b

a
c
b


a c

,

Φµ({b})︷                          ︸︸                          ︷ba
c

b
a
c


b

,

ba
c

b
c
a


b

,

bc
a

b
a
c


b

,

bc
a

b
c
a


b

Table 4: Maximal domain of efficiency Nash implementable via mechanism µ.

In general, the maximal domain of preferences under which a given SCC f : Ω → X

is Nash implementable by mechanism µ is

Φ
µ
f := {ω ∈ Ω | f (ω) = S if and only if ω ∈ Φµ(S )}. (5)

The implementation literature contains interesting work identifying the maximal domain

of preferences, Θ f , under which a given SCC f : Ω → X restricted to Θ f ⊂ Ω is Maskin

monotonic.6 To provide a comparison with ours, first we remind the reader of the following

well-known definition:

Definition 2. An SCC f : Ω → X restricted to a domain Θ ⊂ Ω is Maskin monotonic on

domain Θ if x ∈ f (θ) \ f (θ̃) with θ, θ̃ ∈ Θ implies there exists j ∈ N such that Lθj(x) * Lθ̃j(x).

The following theorem is a reaffirmation of Maskin’s necessity result on restricted do-

6See Sanver (2008) and Sanver (2017) among others.
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mains: The maximal domain of preferences under which f is Nash implementable by mecha-

nism µ is a subset of the maximal domain of preferences under which f is Maskin monotonic.

Theorem 3. Φ
µ
f ⊂ Θ f .

To see that this containment relation may be strict, we turn to Example 1: Φ
µ
feff

is as in

Table 4, while we know that Θ f = Ω since SCC feff is Nash implementable (by the canonical

mechanism) on the whole domain Ω (see de Clippel (2014)).

4 Computational Nash implementation of an SCC

We now turn to the more standard approach in implementation theory. We revisit the

necessity and sufficiency results from the literature and exemplify how we can employ com-

putational tools to analyze the scope of Nash implementation of an SCC.

4.1 Necessity

We start with the necessary conditions for Nash implementation. Before going on, we

recall the definition of Nash implementability of an SCC: An SCC f : Θ → X is Nash

implementable if there exists a mechanism µ ∈ M such that f (θ) = NEµ(θ) for all θ ∈ Θ.

Below is Maskin’s necessity result for Nash implementability of an SCC.

Theorem 4 (Maskin (1999)). If f : Θ → X is Nash implementable, then it is Maskin-

monotonic.

de Clippel (2014) generalizes Maskin’s result on Nash implementation to behavioral do-

mains, domains where individuals’ choices do not necessarily satisfy WARP. The necessary

condition that de Clippel (2014) identifies for Nash implementation of an SCC is the exis-

tence of a collection of sets that are consistent with this SCC:

Definition 3. For any given SCC f : Θ→ X, we say that a collection of sets S := {S i(x, θ) |

i ∈ N, θ ∈ Θ, x ∈ f (θ)} is consistent with f if for any θ, θ′ ∈ Θ,

(i) if x ∈ f (θ), then x ∈ ∩i∈NCθ
i (S i(x, θ)),

(ii) if x ∈ f (θ) \ f (θ′), then x < ∩i∈NCθ′

i (S i(x, θ)).
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In words, a consistent collection of sets of alternatives, is a family of choice sets indexed

for each individual i ∈ N and each state θ ∈ Θ and each alternative x that is f -optimal at

θ such that the following hold: Alternative x is chosen by every individual i at state θ from

the corresponding choice set, S i(x, θ); and if alternative x is f -optimal at state θ but not at

state θ′, then there is an individual j who does not choose x at θ′ from S j(x, θ), j’s choice set

corresponding to x and θ.

To demonstrate consistency, we revert to Example 1 and consider a domain Θ = {θ, θ′}

where θ = (cab, acb) and θ′ = (cba, abc) and the SCC f is such that f (θ) = {a, c} and

f (θ′) = {b}. Then, by (i) of consistency, the collection S given by S A(a, θ), S A(c, θ), S B(a, θ),

S B(c, θ), S A(b, θ′), and S B(b, θ′) must be such that the following hold: a ∈ Cθ
i (S i(a, θ)),

c ∈ Cθ
i (S i(c, θ)), and b ∈ Cθ′

i (S i(b, θ) for i = A, B. Thus, we observe that

S A(a, θ) ∈
{
{a, b}, {a}

}
, S A(c, θ) ∈

{
{a, b, c}, {a, c} , {b, c}, {c}

}
, and S A(b, θ′) ∈

{
{a, b} , {b}

}
;

S B(a, θ) ∈
{
{a, b, c} , {a, b}, {a, c}, {a}

}
, S B(c, θ) ∈

{
{b, c} , {c}

}
, and S B(b, θ′) ∈

{
{b, c} , {b}

}
.

(6)

The collection indicated with rectangles above satisfies (i) of consistency, but not (ii): a ∈

f (θ) and a < f (θ′), but a ∈ Cθ′

A ({a}) ∩ Cθ′

B ({a, b, c}) where S A(a, θ) = {a} and S B(a, θ) =

{a, b, c}. Therefore, this collection is not consistent with f . That said we observe that

S A(a, θ) = {a, b}, S A(c, θ) = {a, b, c}, and S A(b, θ′) = {b};

S B(a, θ) = {a}, S B(c, θ) = {b, c}, and S B(b, θ′) = {b, c}.
(7)

is a collection of sets consistent with f : Notice that this collection satisfies (i) of consistency

as it is one of the collections captured in (6). Now, for (ii) of consistency consider the

following: a ∈ f (θ) \ f (θ′) and a < Cθ′

A ({a, b}) = {b} (where S A(a, θ) = {a, b}); c ∈ f (θ) \ f (θ′)

and c < Cθ′

B ({b, c}) = {b} (where S B(c, θ) = {b, c}); b ∈ f (θ′) \ f (θ) and b < Cθ
B({b, c}) = {c}

(where S B(b, θ′) = {b, c}). In what follows, we provide another collection of sets consistent

with f that follows from our necessity result with consistency, Theorem 5.

In Section 4.3, we explain how to identify consistent collections using the computational

tools we provide.

When individuals have rational preferences, Maskin-monotonicity of an SCC is equiva-

lent to the existence of a collection of sets that is consistent with this SCC:
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Lemma 3. An SCC f : Θ → X is Maskin-monotonic if and only if there exists a collection

of sets that is consistent with f .

The following theorem is de Clippel’s necessity result for Nash implementation on the

behavioral domain.

Theorem 5 (de Clippel (2014)). If f : Θ → X is Nash implementable, then there exists a

collection of sets consistent with f .

In the rational domain, Theorem 5 follows directly from Theorem 4 and Lemma 3.

Notwithstanding, employing consistency may provide computational advantages for Nash

implementation as searching for such collections may be easier or more intuitive than check-

ing whether or not an SCC is Maskin-monotonic. Indeed, the planner’s selection from

consistent collections may help her design cognitively simpler or more intuitive/appealing

mechanisms.

Going back to Example 1, we note that Theorem 2 establishes that the mechanism of

Table 1 implements f : Θ → X where Θ = {θ, θ′} with θ = (cab, acb) and θ′ = (cba, abc),

and f (θ) = {a, c} and f (θ′) = {b}. As a result, Theorem 5 empowers us to conclude that the

following collection is consistent with f :

S A(a, θ) = {a, b}, S A(c, θ) = {a, b, c}, and S A(b, θ′) = {a, b};

S B(a, θ) = {a, b, c}, S B(c, θ) = {b, c}, and S B(b, θ′) = {b, c}.
(8)

This is due to the following: Given the mechanism of Table 1, one can show that at θ, (U,M)

and (D, L) are the only Nash equilibria, while at θ′ the unique Nash equilibrium equals

(D,M). As g(U,M) = a, we obtain S A(a, θ) = Oµ
A(M) = {a, b} and S B(a, θ) = Oµ

B(U) =

{a, b, c}. Similarly, g(D, L) = c implies S A(c, θ) = Oµ
A(L) = {a, b, c} and S B(c, θ) = Oµ

B(D) =

{b, c}; g(D,M) = b implies S A(b, θ′) = Oµ
A(M) = {a, b} and S B(b, θ′) = Oµ

B(D) = {b, c}.

In general, if an SCC f is implementable in Nash equilibrium by a mechanism µ, then for

every state θ and for every f -optimal alternative at θ, x ∈ f (θ), there is a Nash equilibrium

of µ at θ that delivers x. In turn, the collection of opportunity sets obtained at this Nash

equilibrium satisfies (i) of consistency. Moreover, if x is not f optimal at θ′, then there
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must be an agent who does not choose x from the opportunity set associated with the Nash

equilibrium at θ that sustains x; because otherwise, x would be a Nash equilibrium outcome

at θ′ as well and hence x would have to be in f (θ′), a contradiction delivering the conclusion

that the collection of opportunity sets also satisfies (ii) of consistency.

Nash implementation with two individuals is inherently different than Nash implemen-

tation with three or more individuals. A straightforward but important observation is that

any message of an individual can be thought of as an opportunity set generated for the other

individual in a two-individual mechanism. This helps us sharpen consistency for the case of

two individuals as follows:

Definition 4. For any given SCC f : Θ→ X, we say that a pair of collections of sets (S1,S2)

with S1 := {S 1(x, θ) | θ ∈ Θ, x ∈ f (θ)} and S2 := {S 2(x, θ) | θ ∈ Θ, x ∈ f (θ)} is two-individual

consistent with f if for any θ, θ′ ∈ Θ, and any x, y ∈ X

(i) If x ∈ f (θ), then x ∈ Cθ
1(S 1(x, θ)) ∩Cθ

2(S 2(x, θ)),

(ii) If x ∈ f (θ) \ f (θ′), then there is j ∈ {1, 2} such that x < Cθ′

j (S j(x, θ)).

(iii) If x ∈ f (θ) and y ∈ f (θ′), then S 1(x, θ) ∩ S 2(y, θ′) , ∅.

Going back to Example 1 where the SCC f : Θ → X is such that Θ = {θ, θ′} with θ =

(cab, acb) and θ′ = (cba, abc), and f (θ) = {a, c} and f (θ′) = {b}, we wish to remind that the

collection given in (7) is consistent with f . But this collection is not two-individual consistent

since (iii) of two-individual consistency does not hold as S A(b, θ′)∩ S B(a, θ) = {b} ∩ {a} = ∅.

Indeed, thanks to our necessity result with two individuals, Theorem 6, presented below, the

collection given in (8) is two-individual consistent as the two-individual mechanism of Table

1 Nash implements f .

The following presents our necessity result with two individuals:7

7The necessary condition analyzed here can be strengthened by replacing (iii) of two-individual consistency
with the following requirement: (iii′) there exists a function e : X ×Θ× X ×Θ→ X such that for any θ, θ′ ∈ Θ,
x ∈ f (θ), and x′ ∈ f (θ′) such that (iii′.1) e(x, θ, x′, θ′) ∈ S 1(x, θ) ∩ S 2(x′, θ′); and (iii′.2) e(x, θ, x′, θ′) ∈ f (θ∗)
if e(x, θ, x′, θ′) ∈ Cθ∗

1 (S 1(x, θ)) ∩ Cθ∗

2 (S 2(x′, θ′)). In the current paper, we have chosen the weaker necessary
condition presented in Definition 4 for computational reasons.
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Theorem 6. Let n = 2. If f : Θ → X is Nash implementable, then there exists a pair of

collections of sets, (S1,S2), that is two-individual consistent with f .

4.2 Simplicity

There is growing interest in simple mechanisms in the mechanism design literature.8

However, “[t]he question as to what constitutes a “simple” mechanism is a difficult and

controversial one” (Dutta, Sen, & Vohra, 1995).

As in Barlo and Dalkıran (2020), we consider the total number of message profiles of a

mechanism as a measure of its simplicity.9 This measure is similar in spirit with the total size

of message spaces used to analyze communication complexity in Nisan and Segal (2006),

Segal (2007, 2010) building upon the literature on realization, message processes, and com-

munication protocols.10 These studies aim to describe the “minimal information that must be

elicited by the designer in order to achieve the goals” within the framework of nondetermin-

istic communication protocols with privacy preservation and verification properties. On the

other hand, our analysis seeks to answer the same question restricting attention directly to

mechanisms implementing a given goal. As a result, even though our simplicity notions are

similar, they do not produce perfectly aligned implications (see Appendix B for the details).

Our necessity results bring about useful insights into the lower bounds on the number of

messages required for Nash implementation: As we restrict ourselves to finite setups, there

can only be finitely many consistent collections of an SCC. Let {Sk}k=1,...,K be the set of all

collections of sets consistent with a given SCC, f : Θ → X, represented by Sk = {Sk
i }i∈N for

each k ∈ {1, . . . ,K} with Sk
i = {S k

i (x, θ) | x ∈ f (θ), θ ∈ Θ}. Thanks to our necessity result, we

know that if f is Nash implementable, then any mechanism that Nash implements f has to

induce one of the consistent collections in {Sk}k∈K . This observation leads us to the following:

8See for example, Li (2017), Börgers and Li (2019), and Pycia and Troyan (2019).
9Parts of this section overlap with Section 9 of the current version of Barlo and Dalkıran (2020) analyzing

ex-post implementation in a behavioral incomplete information setup. Moreover, Section 9 (along with its
Appendix F) will be discarded in the next draft of that paper due to the associated editorial decisions.

10See Mount and Reiter (1974), Hurwicz et al. (1980), Saari (1984), Williams (1986), Reichelstein and
Reiter (1988), Mount and Reiter (1996), Mount and Reiter (2002), and Hurwicz and Reiter (2006).
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Theorem 7. Let f : Θ → X be Nash implementable and {Sk}k=1,...,K be the set of all collec-

tions of sets consistent with f . Then, in any mechanism that Nash implements f ,

(i) the minimum number of messages of individual i is mink=1,...,K maxS∈Sk
i
#S ,

(ii) the minimum number of message profiles required for the individuals other than i is

mink=1,...,K #Sk
i , and

(iii) the minimum number of total message profiles is

max
{
mink=1,...,K maxi∈N(#Sk

i maxS∈Sk
i
#S ),mink=1,...,K(

∏
i∈N maxS∈Sk

i
#S )
}
.

We present the proof of Theorem 7 here as a discussion: Suppose that Sk is a consistent

collection induced by a mechanism that Nash implements f . Then, individual i is able to

generate any set in Sk
i , and hence i must have at least as many messages as the cardinality of

the maximal set in Sk
i in this mechanism. This implies that the minimum number of messages

of individual i in any mechanism that Nash implements f is mink∈{1,...,K}maxS∈Sk
i
#S . On the

other hand, for each different set in Sk
i , there must exist a particular message profile of the

individuals other than i that should allow i to generate this particular set, which implies that in

any mechanism that Nash implements f the minimum number of message profiles required

for the individuals other than i is mink∈{1,...,K} #Sk
i . Hence, the total number of message profiles

in this mechanism must be at least as much as the cardinality of Sk
i times the cardinality of the

maximal set in Sk
i for each i ∈ N. That is, the number of message profiles in this mechanism

must be at least maxi∈N(#Sk
i maxS∈Sk

i
#S ). Moreover, the total number of message profiles in

this mechanism must also be greater than
∏

i∈N maxS∈Sk
i
#S . Therefore, the total number of

message profiles in any mechanism that Nash implements f must be greater than or equal to

max{mink∈{1,...,K}maxi∈N(#Sk
i maxS∈Sk

i
#S ), mink∈{1,...,K}(

∏
i∈N maxS∈Sk

i
#S )}.

4.3 Computation of consistent collections: Example 2

For expositional simplicity, we exemplify the computation of consistent collections of

an SCC in a two-individual setup:11 Suppose Alice and Bob are to collectively choose one

11We refer the interested reader to the “Examples in the Manuscript\Example 2 in the Manuscript” in
“Python Codes Computational Implementation Barlo Dalkiran.zip” for the computational codes/outputs.
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of the options in X = {x, y, z}. The feasible domain of preference is Θ = {θ1, θ2, θ3} with

θ1 = (xyz, xyz), θ2 = (xzy, zxy), and θ3 = (zxy, zyx).

We analyze the Nash implementation of the Pareto efficient SCC, feff : Θ→ X, which is

given as feff(θ1) = {x}, feff(θ2) = {x, z}, feff(θ3) = {z}. The feasible domain of preferences, Θ,

and the Pareto efficient SCC are summarized in Table 5, where the corresponding efficient

alternatives are depicted with circles.

Θ =


θ1xy

z

x
y
z


x

,

θ2xz
y

z
x
y


x z

,

θ3zx
y

z
y
x


z

 .
Table 5: The feasible domain of preferences, Θ, and the corresponding efficient alternatives.

Our Python code that computes the two-individual consistent collections reports that

there are 1233 two-individual consistent collections for feff : Θ → X described above. Let

{Sk}1233
k=1 be the corresponding set of all consistent collections of sets of feff . We observe that

mink=1,...,K maxS∈Sk
i
#S = 2 for both i = A, B. That is, the best one can hope for is a 2 × 2

mechanism. Table 6 provides a two-individual consistent collection where each individual

has two sets in their collections and the sets in these collections with maximal number of

elements has two elements.12

SA: S A(x, θ1) = {x, z} S A(x, θ2) = {x, z} S A(z, θ2) = {y, z} S A(z, θ3) = {y, z}
SB: S B(x, θ1) = {x, y} S B(x, θ2) = {x, y} S B(z, θ2) = {z} S B(z, θ3) = {z}

Table 6: A two-individual consistent collection (SA,SB) of feff : Θ→ X.

Indeed, it is straightforward to check that the mechanism given in Table 7 Nash imple-

ments feff : Θ→ X.

Bob

Alice
{x, z} {y, z}

{x, y} x y
{z} z z

Table 7: A 2 × 2 mechanism that Nash implements feff : Θ→ X.

12Two-individual consistent collection #1202 given in “Two-Individual Consistent Collections.xslx” in the
“Examples in the Manuscript\Example 2 in the Manuscript” folder.

19



Looking at the mechanism given in Table 7, we observe the following: Alice has the

option to enforce alternative z on Bob. Furthermore, considering state θ2, {x, z} is a weakly

dominant action for Bob. That is, even though the Nash equilibrium message profile (z, {y, z})

at θ2 leads to z and z is feff-optimal at θ2, Bob might rather prefer the weakly dominant

message {x, z} at θ2. Hence, the designer might look for a “better” mechanism where an

undominated Nash equilibrium achieves the goal.

Searching through the list of consistent collections of feff computed by our Python codes,

the consistent collection in Table 8 leads to a more appealing mechanism:13

SA: S A(x, θ1) = {x, y} S A(x, θ2) = {x, y} S A(z, θ2) = {y, z} S A(z, θ3) = {x, z}
SB: S B(x, θ1) = {x, y} S B(x, θ2) = {x, y} S B(z, θ2) = {y, z} S B(z, θ3) = {x, z}

Table 8: Another two-individual consistent collection (SA,SB) of feff : Θ→ X.

Let each individual veto one alternative. If the vetoed alternatives differ the remaining

alternative becomes the outcome. On the other hand, if both individuals veto x, then the

outcome is z and if they both veto z, then the outcome is x. Finally, if they both veto y the

outcome is x.14 This mechanism is depicted in Table 9:

Bob

Alice

Veto z→ {x, y} Veto y→ {x, z} Veto x→ {y, z}
Veto z→ {x, y} x x y
Veto y→ {x, z} x x z
Veto x→ {y, z} y z z

Table 9: A symmetric 3 × 3 mechanism that Nash implements feff : Θ→ X.

Now, we show that the mechanism of Table 9 sustains the two-individual consistent

collection of sets depicted in Table 8. At θ1, a Nash equilibrium of this mechanism is

(Veto z,Veto z) which delivers x and there are no other Nash equilibrium outcomes and

hence S i(x, θ1) = Oµ
i (Veto z) = {x, y} for i = A, B. At θ2, x, z are the only Nash equilib-

rium outcomes of this mechanism sustained by Nash equilibrium (Veto z,Veto z) for x, and

(Veto x,Veto x) for z. Hence, S i(x, θ2) = Oµ
i (Veto z) = {x, y} and S i(z, θ2) = Oµ

i (Veto x) =

13Two-individual consistent collection #738 given in “Two-Individual Consistent Collections.xslx” in the
“Examples in the Manuscript\Example 2 in the Manuscript” folder.

14When both individuals veto y, choosing the outcome as z also works.
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{y, z} for i = A, B. Finally, at θ3, a Nash equilibrium of this mechanism is (Veto x,Veto x)

which delivers z and there are no other Nash equilibrium outcomes and hence S i(z, θ3) =

Oµ
i (Veto x) = {y, z} for i = A, B.

This example showcases that employing the specific features of consistent collections

may help the planner design more appealing mechanisms. Notwithstanding, we wish to note

that even though the mechanism of Table 9 is more appealing (on the grounds of implemen-

tation via undominated Nash equilibria and its intuitive use of vetoing), it is less simple than

the mechanism of Table 7 as the simplicity measure of the former is nine while that of the

latter equals four. Therefore, this example also exhibits a potential trade-off between our

notion of simplicity and intuitive criteria that the planner may wish to use when designing

mechanisms.

4.4 Sufficiency

We now turn to the sufficiency results. Below, we first slightly improve the two well-

known sufficiency results in the literature and then illustrate how we can computationally

check them for a given SCC.

We start with the well-known no-veto-power (NVP) property:

Definition 5. An SCC f : Θ → X satisfies the no-veto-power (NVP) property if for any

j ∈ N, x ∈ ∩i, jCθ
i (X) implies x ∈ f (θ).

In words, an SCC, f , satisfies the NVP property if an alternative is f -optimal whenever

there are at least n − 1 individuals who choose this alternative from the set of all possible

alternatives. That is, if there are at least n − 1 individuals who top-rank an alternative, then

this alternative must be f -optimal.

We continue with the economic-environment property:

Definition 6. The economic-environment (EE) property holds if for any ω ∈ Ω and any

x ∈ X, there are i, j ∈ N with i , j such that x < Cω
i (X) and x < Cω

j (X).

The EE property holds whenever for any alternative, there are two individuals who do not

choose this particular alternative from the set of all possible alternatives. We note that the EE
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property implies that the NVP property holds vacuously as no alternative will be top-ranked

by n − 1 or more individuals in an economic environment.

The well-known sufficiency result of Maskin (1999) is as follows: When there are at

least three individuals, any Maskin-monotonic SCC that satisfies the NVP property is Nash

Implementable.

Next, we provide a slight generalization of this sufficiency result. To do so, we need to

slightly modify the NVP and EE properties so that they accommodate a consistent collection.

Definition 7. A collection of sets S consistent with f : Θ→ X satisfies

(i) the NVP∗ property if there exists an X̄ ⊂ X such that ∪S∈SS ⊂ X̄ and for any j ∈ N,

x ∈ ∩i, jCθ
i (X̄) implies x ∈ f (θ);

(ii) the EE∗ property if there exists an X̄ ⊂ X such that ∪S∈SS ⊂ X̄ and for any θ ∈ Θ, any

x ∈ X̄, there are i, j ∈ N with i , j such that x < Cθ
i (X̄) and x < Cθ

j(X̄).

We are ready to present our slight generalization of Maskin (1999)’s sufficiency result:

Theorem 8. Let n ≥ 3. If there is a collection of sets consistent with SCC f : Θ → X that

satisfies either NVP∗ property or EE∗ property, then f is Nash implementable.

Even though the existence of a consistent collection is necessary for Nash implementa-

tion of an SCC, it is not sufficient. Our sufficiency result, on the other hand, highlights the

fact that the existence of a consistent collection of sets that satisfies NVP∗ or EE∗ guarantees

the Nash implementability of this SCC.

We note that if S is a collection consistent with f : Θ → X and f satisfies the regular

NVP property, then X̄ = X implies that S satisfies the NVP∗ property. Similarly, if S is a

collection consistent with f : Θ→ X and the regular EE property holds, then X̄ = X implies

that S satisfies the EE∗ property. The converse directions of these statements do not hold, as

we shall see in the following example.
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4.5 Computation of consistent collections that satisfy NVP∗ or EE∗: Example 3

We now illustrate the computation of consistent collections that satisfy NVP∗ or EE∗

through an example.15 This example also exhibits that the sufficiency result we provide

above is a slight generalization of that of Maskin (1999).

Consider Ann, Bob, and Chris who are to collectively choose an alternative among X =

{x, y, z, t}. Suppose that the set of feasible domain of preferences Θ is as given in Table 10:

Θ =


θ1

x
y
z
t

y
x
t
z

z
y
x
t

,
θ2

y
z
x
t

z
x
y
t

z
y
x
t

,
θ3

x
z
t
y

x
t
y
z

y
x
t
z



.

Table 10: The feasible domain of preferences for Ann, Bob, and Chris.

Suppose the designer would like to implement SCC f : Θ → X such that f (θ1) = y,

f (θ2) = z, and f (θ3) = t.

We note that f : Θ→ X does not satisfy the NVP property as x is top-ranked by Ann and

Bob at θ3, but x < f (θ3) = {t}. Furthermore, the EE property does not hold as well since z is

top-ranked by Bob and Chris at θ2 and x is top-ranked by both Ann and Bob at θ3. Therefore,

we cannot employ the sufficiency result of Maskin (1999) in this example.

Our Python codes reveal that there are 390120 consistent collections of f : Θ→ X. 4704

of these consistent collections satisfy the NVP∗ property with the associated set X̄ = {y, z, t},

and none of them satisfy the EE∗ property. From this information, we immediately learn that

SCC f is Nash implementable.

The designer can search through the consistent collections to design a mechanism with

some appealing criteria. To do so, the planner can filter the list of consistent collections

(provided by the output of our Python Codes) based on these desirable criteria.

As an example, suppose that the planner considers the following criteria to design a

mechanism: (i) no pair of individuals can enforce a specific outcome on the odd-man-out,

15We refer the interested reader to the “Examples in the Manuscript\Example 3 in the Manuscript” in
“Python Codes Computational Implementation Barlo Dalkiran.zip” for the computational codes/outputs.
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i.e., none of the opportunity sets induced by this mechanism is a singleton; (ii) each con-

sistent collection induced by the mechanism makes use of only two sets of alternatives; and

(iii) this mechanism is one of the simplest (according to our notion of simplicity) among

those satisfying requirements (i) and (ii).16 Filtering 390120 consistent collections of sets,

we see that only three consistent collections satisfy these properties. One of these consistent

collections is given in Table 11.

SA: S A(y, θ1) = {y, t} S A(z, θ2) = {z, t} S A(t, θ3) = {y, t}
SB: S B(y, θ1) = {y, z} S B(z, θ2) = {z, t} S B(t, θ3) = {z, t}
SC: S C(y, θ1) = {y, t} S C(z, θ2) = {z, t} S C(x, θ2) = {z, t}

Table 11: A consistent collection S = (SA,SB,SC) of f : Θ→ X.

It is easy to see that the consistent collection S given in Table 11 satisfies the NVP∗

property: y is the best alternative for Ann and Bob in X̄ = {y, z, t} at θ1 and f (θ1) = y;

similarly, z is the best alternative for Bob and Chris in X̄ = {y, z, t} at θ2 and f (θ2) = z; and

finally, at θ3, none of the alternatives is the best for two individuals simultaneously.

Therefore, we can construct a mechanism that Nash implements f by using the consistent

collection given in Table 11. Indeed, mechanism µ = (M, g) where MA = {U,D}, MB = {L,R}

and MC = {W, E} with the outcome function, g : M → X, presented in Table 12 Nash

implements f :

Chris
W E
Bob

Ann
L R

U y z
D t z

Bob

Ann
L R

U t y
D z t

Table 12: A 2 × 2 × 2 mechanism that Nash implements f : Θ→ X.

This example demonstrates that even when the number of consistent collections is large,

filtering them based on desirable criteria helps the planner design eligible mechanisms.

Therefore, computational identification of collections consistent with a given SCC that the

planner seeks to implement in Nash equilibrium offers practical and theoretical significance.
16Under the requirements of (i) and (iii), the planner seeks a consistent collection such that the number of

alternatives in each set in that collection equals two.
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5 Literature

Following the seminal work of Maskin (1999), there has been a huge literature on Nash

implementation, and it is not possible to cite all the interesting work here. Instead, we refer

the reader to the following surveys on Nash implementation: Jackson (2001), Maskin and

Sjöström (2002), Palfrey (2002), and Serrano (2004).

Our paper is mostly related to de Clippel (2014), which is the first paper highlighting

the idea of consistent collections of an SCC. Even though de Clippel obtains his results on

a behavioral domain, our results show that they are indeed useful for Nash implementation

in the domain of rational preferences as well. Besides de Clippel (2014), there are other

papers on implementation that takes individual choices as primitives such as Korpela (2012),

Hayashi et al. (2020), Altun et al. (2021), and Barlo and Dalkıran (2021). Other relatively

recent interesting work on implementation includes Doğan and Koray (2015), Koray and

Yildiz (2018), Laslier et al. (2021), Núñez and Sanver (2021) among others.

The motivation for our paper bears some similarities with those of a strand of Nash im-

plementation literature that analyzes “the possibility of implementing specific social choice

correspondences by means of mechanisms that avoid the complexities of canonical mecha-

nisms.” (Dutta et al., 1995) Toward that regard, these papers employ simplicity notions suited

for the environment they restrict their attention to, such as pure exchange economies, public

good environments. Meanwhile, Saijo (1988) and McKelvey (1989) consider the attainabil-

ity of Nash implementation with minimal message spaces in general social choice environ-

ments. Building upon Hurwicz (1960, 1972), and Mount and Reiter (1974), the literature

on realizations, message processes, and communication protocols contains Hurwicz et al.

(1980), Saari (1984), Williams (1986), and Reichelstein and Reiter (1988). See Hurwicz and

Reiter (2006) for more on this subject. On the other hand, related work analyzing the com-

munication complexity include Mount and Reiter (1996), Mount and Reiter (2002), Nisan

and Segal (2006) and Segal (2007, 2010). Moreover, a recent strand in the mechanism design

literature focuses on other notions of simplicity of mechanisms, see, e.g., Li (2017), Börgers

and Li (2019), and Pycia and Troyan (2019).
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6 Concluding remarks

In this paper, we delineate the scope of Nash implementation with the help of computa-

tional tools.

In the first part of the paper, we analyze the scope of Nash implementation for a given

mechanism. Our findings are of help to a planner who is familiar with a given mechanism

(possibly on account of having used it in similar instances) and desires to know its boundaries

of Nash implementability. For a given mechanism, we describe all the Nash implementable

SCCs along with their domains on which they are Nash implementable. The planner may

also utilize our results/codes to diagnose the maximal domain of preferences under which

an SCC defined on the unrestricted domain of preferences (e.g., efficiency) is Nash imple-

mentable by the mechanism the planner has in mind.

In the second part of the paper, we turn to the computational analysis of Nash implemen-

tation of a given SCC. To the best of our knowledge, our paper is the first paper that exhibits

the potential benefits of computational identification of collections consistent with an SCC

for purposes of Nash implementation. We portray that searching through consistent collec-

tions enables the planner to design appealing mechanisms based on some desirable criteria.

We hope that our results and codes will pave the way for further computational contributions

in the implementation literature.
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Appendix

A Proofs

A.1 Proof of Lemma 1

By definition, Φµ = ∪S∈XΦµ(S ) = ∪S∈X(Πµ(S ) \ Πµ(X \ S )). As for all S ∈ X, the

subset X \ S ∈ X, we see that Φµ = ∪S∈X(Πµ(S ) \ Πµ(X \ S )) = ∪S∈XΠµ(S ). As for

all x ∈ X, {x} ∈ X, ∪x∈XΠµ({x}) ⊂ ∪S∈XΠµ(S ). Moreover, as for any S ∈ X and for

any x ∈ S , ∩x̃∈S Πµ({x̃}) ⊂ Π({x}), ∪S∈XΠµ(S ) = ∪S∈X(∩x̃∈S Πµ({x̃})) ⊂ ∪x∈XΠµ({x}). Thus,

Φµ = ∪S∈XΠµ(S ) = ∪x∈XΠµ({x}). �

A.2 Proof of Theorem 1

By definition, for all S ∈ Sµ, Φµ(S ) , ∅, and ∪S∈SµΦ
µ(S ) = Φµ. Thus, all what we need

to show is that for all S , S̃ ∈ Sµ, S , S̃ implies Φµ(S ) ∩ Φµ(S̃ ) = ∅. For a contradiction,

suppose that ω∗ ∈ Φµ(S ) ∩ Φµ(S̃ ), while S , S̃ . Without loss of generality, let x∗ ∈ S \ S̃ .

Since ω∗ ∈ Φµ(S ) = ∩x∈S Πµ({x}) \ ∪y<S Πµ({ỹ}), we see that ω∗ ∈ Πµ({x∗}). As x∗ < S̃ and

ω∗ ∈ Πµ({x∗}), we observe that ω∗ ∈ ∪ỹ<S̃ Πµ({ỹ}) and hence ω∗ < Φµ(S̃ ), a contradiction. �

A.3 Proof of Lemma 2

For the necessity direction, suppose that x ∈ f (θ) and for all θ̃ ∈ Θ, f (θ̃) = S if and

only if θ̃ ∈ Φµ(S ). Thus, x ∈ f (θ) implies θ ∈ Φµ( f (θ)) = ∩x̃∈ f (θ)Π
µ({x̃}) \ ∪ỹ< f (θ)Π

µ({ỹ}) ⊂

∩x̃∈ f (θ)Π
µ({x̃}) ⊂ Πµ({x}); establishing the only if direction of (2). To establish the if direction

of (2), suppose, for a contradiction, that θ ∈ Πµ({x}) and x < f (θ). Then, θ ∈ ∪ỹ< f (θ)Π
µ({ỹ}).

Thus, regardless of whether or not θ ∈ ∩x̃∈ f (θ)Π
µ({x̃}), θ < Φµ( f (θ)), contradicting with our

hypothesis.

For the sufficiency direction, suppose that (2) of the lemma holds and we need to show

that for all θ ∈ Θ, f (θ) = S if and only if θ ∈ Φµ(S ). Now, suppose θ ∈ Θ is such

that f (θ) = S and x ∈ f (θ). Then, by the only if direction of (2), θ ∈ Πµ({x}), thus θ ∈

∩x̃∈ f (θ)Π
µ({x̃}). On the other hand, if θ ∈ ∪ỹ< f (θ)Π

µ({ỹ}), then there is y ∈ X \ f (θ) such
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that θ ∈ Πµ({y}). So by the if direction of (2), y ∈ f (θ), which is a contradiction. Thus,

θ < ∪ỹ< f (θ)Π
µ({ỹ}). Therefore, θ ∈ Φµ( f (θ)) = Φµ(S ). Now, if θ ∈ Θ is such that, θ ∈ Φµ(S ) =

∩x̃∈S Πµ({x̃}) \ ∪ỹ<S Πµ({ỹ}), we observe that for all x ∈ S , θ ∈ Πµ({x}); so, by the if direction

of (2), x ∈ f (θ). Hence, S ⊂ f (θ). Finally, to see that f (θ) ⊂ S , observe that for any y < S ,

as θ ∈ Φµ(S ) = ∩x̃∈S Πµ({x̃}) \ ∪ỹ<S Πµ({ỹ}) implies θ < ∪ỹ<S Πµ({ỹ}) and in turn θ < Πµ({y}).

By the contrapositive of the only if direction of (2), y < f (θ). �

A.4 Proof of Theorem 3

We prove that if SCC f : Ω → X restricted to a domain Θ ⊂ Ω is Nash implementable

by mechanism µ, then f is Maskin monotonic on domain Θ. Suppose θ, θ̃ ∈ Θ are such that

x ∈ f (θ)\ f (θ̃). Then, by the only if direction of (2) of Lemma 2, x ∈ f (θ) implies θ ∈ Πµ({x}).

Hence, there is mx with g(mx) = x and x ∈ ∩i∈NCθ
i (Oµ

i (mx
−i)); ergo, Oµ

i (mx
−i) ⊂ Lθi (x) for all

i ∈ N. On the other hand, by the contrapositive of the if direction of (2), x < f (θ̃) implies

θ̃ < Πµ({x}). Thus, x < ∩i∈NC θ̃
i (Oµ

i (mx
−i)); so, there is j ∈ N such that Oµ

j (m
x
− j) * Lθ̃j(x).

Therefore, Oµ
j (m

x
− j) ⊂ Lθj(x) and Oµ

j (m
x
− j) * Lθ̃j(x) implies Lθj(x) * Lθ̃j(x). �

A.5 Proof of Theorem 4

Let µ = (M, g) be a mechanism such that f (θ) = NEµ(θ) for all θ ∈ Θ. Then, for any

x ∈ f (θ), there is mx ∈ M such that g(mx) = x and g(mx) ∈ ∩i∈NCi(O
µ
i (mx

−i)). Suppose, for

contradiction, x ∈ f (θ) and [for all i ∈ N and y ∈ X, xRθ
i y =⇒ xRθ′

i y] but x < f (θ′). Then,

as x < f (θ′), mx cannot be a Nash equilibrium at θ′. This means there is j ∈ N such that

x < Cθ′

j (Oµ
j (m− j)). Therefore, there is y ∈ Cθ′

j (Oµ
j (m− j)) such that yPθ′

j x. On the other hand,

x ∈ Cθ
j(O

µ
j (m− j)) and hence xRθ

jy. But, this is a contradiction since xRθ
jy but ¬xRθ′

j y. �

A.6 Proof of Theorem 5

Let µ = (M, g) be a mechanism such that f (θ) = NEµ(θ) for all θ ∈ Θ. Then, for

any x ∈ f (θ), there is mx ∈ M such that g(mx) = x and g(mx) ∈ ∩i∈NCi(O
µ
i (mx

−i)). If

x ∈ f (θ) \ f (θ′), then g(mx) is not a Nash equilibrium outcome at θ′. Then, there is j ∈ N

such that g(mx) < C j(O
µ
j (m

x
− j)). For all i ∈ N, θ ∈ Θ, x ∈ f (θ), setting S i(x, θ) := Oµ

i (mx
−i),
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we obtain (i) and (ii) of Definition 3. Therefore, S := {S i(x, θ) | i ∈ N, θ ∈ Θ, x ∈ f (θ)} is a

consistent collection with f . �

A.7 Proof of Lemma 3

(⇒) Let f : Θ → X be Maskin-monotonic. Construct the collection of sets S :=

{S i(x, θ) | i ∈ N, θ ∈ Θ, x ∈ f (θ)} such that S i(x, θ) := Lθi (x) = {y ∈ X | xRθ
i y}, i.e.,

S i(x, θ) is the lower contour set of agent i at state θ of alternative x. Observe that (i) of con-

sistency (Definition 3) immediately follows as for any x ∈ f (θ), x ∈ Cθ
i (Lθi (x)) for all i ∈ N. If

x ∈ f (θ) \ f (θ′), then it follows from the definition of Maskin-monotonicity that there exists

j ∈ N and y ∈ X such that xRθ
i y but yPθ′

i x. This means x < Cθ′

j (Lθi (x)), i.e., x < Cθ′

j (S j(x, θ))

implying (ii) of consistency.

(⇐) Let S := {S i(x, θ) | i ∈ N, θ ∈ Θ, x ∈ f (θ)} be a collection of sets that is consistent

with f : Θ → X. Let x ∈ X and θ, θ′ ∈ Θ, suppose, for contradiction, x ∈ f (θ) and [for

all i ∈ N and y ∈ X, xRθ
i y =⇒ xRθ′

i y] but x < f (θ′). Then, as x ∈ f (θ) \ f (θ′), by (ii) of

consistency, there is j ∈ N such that x < Cθ′

j (S j(x, θ)). Therefore, there is y ∈ S j(x, θ) such

that yPθ′

j x. On the other hand, by (i) of consistency, x ∈ Cθ
j(S j(x, θ)) and hence xRθ

jy. But,

this is a contradiction since xRθ
jy but ¬xRθ′

j y. �

A.8 Proof of Theorem 6

Let µ = (M, g) be a mechanism with f (θ) = NEµ(θ) for all θ ∈ Θ. For all i ∈ N, θ ∈ Θ, x ∈

f (θ), set S i(x, θ) := Oµ
i (mx

−i). Then, (i) and (ii) of Definition 4 follow directly as in the proof

of Theorem 5. Let x ∈ f (θ) and y ∈ f (θ′). Then, there exist mx ∈ M and my ∈ M such that

g(mx) = x ∈ Cθ
1(S 1(x, θ)) ∩Cθ

2(S 2(x, θ)) and g(my) = y ∈ Cθ′

1 (S 1(y, θ′)) ∩Cθ′

2 (S 2(y, θ′)). Since

S 1(x, θ) = Oµ
1(mx

2) = {g(m1,mx
2) | m1 ∈ M1} and S 2(y, θ′) = Oµ

2(my
1) = {g(my

1,m2) | m2 ∈ M2},

we have g(my
1,m

x
2) ∈ Oµ

1(mx
2)∩Oµ

2(my
1) = S 1(x, θ)∩ S 2(y, θ′), i.e., S 1(x, θ)∩ S 2(y, θ′) , ∅. �

A.9 Proof of Theorem 7

The proof is presented as a discussion in the text right after Theorem 7. �
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A.10 Proof of Theorem 8

Let S := {S i(x, θ) | i ∈ N, θ ∈ Θ, x ∈ f (θ)} be a consistent collection of sets associated

with f : Θ → X that satisfies either NVP∗ or EE∗ and X̄ ⊂ X be the corresponding set with

∪S∈S ⊂ X̄. The proof employs the canonical mechanism µ = (M, g) constructed employing

the consistent collection S: Let Mi := Θ × X̄ ×N with mi = (θ(i), x(i), k(i)) ∈ Mi. The outcome

function g : M → X is given by

Rule 1 : g(m) = x
if mi = (θ, x, ·) for all i ∈ N

with x ∈ f (θ),

Rule 2 : g(m) =

 x′ if x′ ∈ S j(x, θ)

x otherwise.

if mi = (θ, x, ·) for all i ∈ N \ { j}

with x ∈ f (θ), and

m j = (θ′, x′, ·) , (θ, x, ·),

Rule 3 : g(m) = x(i∗) where otherwise.

i∗ = min{ j ∈ N : k( j) ≥ maxi′∈N k(i′)}

For any θ ∈ Θ and x ∈ f (θ), consider m∗ ∈ M with m∗i = (θ, x, 1) for all i ∈ N. Then,

by Rule 1, g(m∗) = x. Given Rule 1 and Rule 2, the corresponding opportunity set of

each i ∈ N is S i(x, θ), i.e., Oµ
i (m∗

−i) = S i(x, θ). Then, by (i) of consistency (Definition 3),

g(m∗) ∈ ∩i∈NCθ
i (Oµ

i (m∗
−i)). That is, g(m∗) = x is a Nash equilibrium outcome at θ. Therefore,

f (θ) ⊂ NEµ(θ) for each θ ∈ Θ.

To see that NEµ(θ) ⊂ f (θ) for each θ ∈ Θ, observe that (i) when S satisfies EE∗, all

Nash equilibria arise under Rule 1; (ii) if S satisfies NVP∗, then whenever there is a Nash

equilibrium at some θ ∈ Θ under Rule 2 or Rule 3, the corresponding Nash equilibrium

outcome must be f -optimal at θ since the opportunity set of at least n − 1 individuals then

is X̄. Therefore, it is enough to check whether Nash equilibrium outcomes that arise under

Rule 1 are f -optimal. Let m̃ ∈ M be a Nash equilibrium of µ at some θ such that Rule 1

holds. Then, for all i ∈ N, m̃i = (θ̃, x̃, ·) for some θ̃ ∈ Θ and x̃ ∈ f (θ̃). Then, by Rule 1,

g(m̃) = x̃. Suppose, for contradiction, x̃ < f (θ) so that we have x̃ ∈ f (θ̃) \ f (θ). Then,

by (ii) of consistency (Definition 3), there is j ∈ N such that x̃ < Cθ
j(S j(x̃, θ̃)). Since, by

construction, Oµ
j (m̃− j) = S j(x̃, θ̃), this implies g(m̃) < Cθ

j(O
µ
j (m̃− j)), a contradiction to m̃

being a Nash equilibirum at θ. �
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B Simplicity versus communication complexity

Nisan and Segal (2006), Segal (2007), and Segal (2010) address the problem of commu-

nication in economic mechanisms and analyze nondeterministic communication protocols

realizing a social choice rule:

A nondeterministic communication protocol (Segal, 2010) is a triple Γ = 〈L, ν, h〉 where

L is the (joint) message space, ν : Θ � L is the message correspondence satisfying Privacy

Preservation: ν(θ) = ∩i∈Nνi(θi) for all θ ∈ Θ, where νi : Θi � L for all i ∈ N, and h : L →

X is the outcome function of the communication protocol. We say that a communication

protocol Γ realizes the SCC f : Θ → X if ∅ , h(ν(θ)) ⊂ f (θ) for all θ ∈ Θ; fully realizes

the SCC f : Θ → X if h(ν(θ)) = f (θ) for all θ ∈ Θ. Moreover, a (joint) message ` ∈ L in

protocol Γ verifies alternative x ∈ X in the SCC f if ν−1(`) ⊂ f −1(x), i.e., x < f (θ) implies

there is j ∈ N such that ` < ν j(θ j).

The communication complexity of Segal (2007, 2010) is based on the following: A

(joint) message ˜̀ in protocol Γ̃ = 〈L̃, ν̃, h̃〉 is less informative than message ` in protocol Γ =

〈L, ν, h〉 if ν−1(`) ⊂ ν̃−1( ˜̀); messages ` and ˜̀ are equivalent if they are equally informative,

i.e., ν−1(`) = ν̃−1( ˜̀). Moreover, message ` is a minimally informative message verifying

alternative x ∈ X if it verifies x, and any less informative message verifying x is equivalent

to `. We extend the notion of informative messages to communication protocols by: For any

pair Γ and Γ̃ fully realizing a given SCC f , we say that Γ is a more informative communication

protocol than Γ̃ if for all ` ∈ L and ˜̀ ∈ L̃ both minimally verifying an alternative x ∈ X, ˜̀ is

less informative than `.

Next, we provide an example that showcases the following: The implications of our sim-

plicity on mechanisms that implement an SCF is not in line with the implications of using

the communication complexity of Segal (2007, 2010) to evaluate the communication proto-

cols (associated with these mechanisms that also satisfy the needed verification properties)

concerning the same SCF.

Let N = {1, 2}; X = {a, b, c, d, e}; Θ1 = Θ2 = {θH, θL}; Θ = Θ1 × Θ2. The SCF

f : Θ → X is given by f (θH, θH) = a, f (θH, θL) = b, f (θL, θH) = c, and f (θL, θL) =
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d. We consider two communication protocols Γ = 〈L, ν, h〉 and Γ̃ = 〈L̃, ν̃, h̃〉. Γ is such

that L = {I, II, III, IV}2; ν1(θH) = {(I, I), (II, II)}, ν1(θL) = {(III, III), (IV, IV)}, ν2(θH) =

{(I, I), (III, III)}, and ν2(θL) = {(II, II), (IV, IV)}. Then, ν(θH, θH) = ν1(θH) ∩ ν2(θH) =

{(I, I), (II, II)} ∩ {(I, I), (III, III)} = {(I, I)}, (and by repeating this argument, we observe

that) ν(θH, θL) = {(II, II)}, ν(θL, θH) = {(III, III)}, and ν(θL, θL) = {(IV, IV)}. The out-

come function h is such that h(I, I) = a, h(II, II) = b, h(III, III) = c, h(IV, IV) = d,

and h(`) = e for all other ` ∈ L. Meanwhile, Γ̃ is defined by L̃ = {α, β}2; ν̃1(θH) =

{(α, α), (α, β)}, ν̃1(θL) = {(β, α), (β, β)}, ν̃2(θH) = {(α, α), (β, α)}, and ν̃2(θL) = {(α, β), (β, β)}.

Now, ν̃(θH, θH) = {(α, α)}, ν̃(θH, θL) = {(α, β)}, ν̃(θL, θH) = {(β, α)}, and ν̃(θL, θL) = {(β, β)}.

The outcome function h̃ is such that h̃(α, α) = a, h̃(α, β) = b, h̃(β, α) = c, h̃(β, β) = d.

Notice that ν−1(I, I) = (θH, θH), ν−1(II, II) = (θH, θL), ν−1(III, III) = (θL, θH), and

ν−1(IV, IV) = (θL, θL), while ν−1(`) = ∅ for all other ` ∈ L; ν̃−1(α, α) = (θH, θH), ν̃−1(α, β) =

(θH, θL), ν̃−1(β, α) = (θL, θH), and ν̃−1(β, β) = (θL, θL). So, ν−1(I, I) = ν̃−1(α, α), ν−1(II, II) =

ν̃−1(α, β), ν−1(III, III) = ν̃−1(β, α), ν−1(IV, IV) = ν̃−1(β, β) while ν−1(`) = ∅ for all other

` ∈ L. We also observe that Γ and Γ̃ both fully realizes the SCC f ; (I, I) in Γ and (α, α) in Γ̃

are the minimally informative messages verifying alternative f (θH, θH) = a, (II, II) in Γ and

(α, β) in Γ̃ are the minimally informative messages verifying f (θH, θL) = b, (III, III) in Γ

and (β, α) in Γ̃ are the minimally informative messages verifying f (θL, θH) = c, and (IV, IV)

in Γ and (β, β) in Γ̃ are the minimally informative messages verifying f (θL, θL) = d.

Therefore, Γ = 〈L, ν, h〉 and Γ̃ = 〈L̃, ν̃, h̃〉 are equally informative communication proto-

cols as Γ is a more informative communication protocol than Γ̃ and Γ̃ is a more informative

communication protocol than Γ.

The mechanisms in Table 13 can be associated with the communication protocols Γ and

Γ̃. On the other hand, according to our definition of simplicity of mechanisms, µ̃, the mech-

anism associated with Γ̃, is simpler than µ, the mechanism associated with Γ. Ergo, even

though our simplicity notion is inherently similar in spirit with the communication complex-

ity of Segal (2007, 2010), they do not produce perfectly aligned implications.
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Ind. 2

Ind. 1

I II III IV
I a e e e
II e b e e
III e e c e
IV e e e d

Ind. 2

Ind. 1
α β

α a b
β c d

Mechanism µ associated with Γ Mechanism µ̃ associated with Γ̃

Table 13: Mechanisms associated with the communication protocols
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