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Abstract

Brain-Computer Interfaces (BCIs) based on steady-state visual evoked potential
(SSVEP) responses are among the most frequently used non-invasive BCI systems
due to their feasibility, portability, and low cost. SSVEPs are the brain responses to
flickering visual stimuli at a specific frequency. One of SSVEP’s critical applications
is SSVEP-based BCI speller; this system allows disabled people to communicate
directly by using their brain signals without dependence on speech production. An
SSVEP-based BCI speller incorporates a variety of flickering characters or numbers.
Therefore, decoding brain activities for an SSVEP-based BCI speller requires solv-
ing a multi-class classification problem. Over the last few years, various studies
have attempted to achieve higher frequency recognition accuracy and faster infor-
mation transfer rates to enhance the recognition performance. This thesis employs
an ensemble method called Error-Correcting Output Codes (ECOC) to tackle the
above-mentioned multi-class classification problem. To the best of our knowledge,
the ECOC framework has not been explored for the SSVEP classification problems to
date. We present an extensive set of comparisons among four prominent ECOC cod-
ing matrix designs, one-vs-all (OVA), one-vs-one (OVO), random dense, and random
sparse. Furthermore, three feature extraction methods are investigated to evaluate
the overall performance of such designs. The utilized feature extraction methods
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include Canonical Correlation Analysis (CCA), Power Spectrum Density Analysis
(PSDA) via Welch’s method, and Correlated Components Analysis (CORRCA).
Using the ECOC ensemble method improves the general performance compared to
the standard methods such as standard CCA and standard CORRCA. Moreover,
the results indicate the superiority of the feature extraction method CORRCA es-
pecially for a short time window and the OVA coding matrix design. In conclusion,
The presented approach has the ability to incorporate high-performance BCI speller
systems based on SSVEP.
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ÖZET

salınım yapan görsel uyaranlara tepkisidir. DGHUP’ ın önemli uygulamaların-
dan birisi de DHGUP bazlı BBA heceleyicidir. Bu sistem engelli bireylerin
çevreleriyle, konuşmadan Durağan hal görsel uyarılmış potansiyel (DHGUP) ba-
zlı beyin-bilgisayar arayüzü (BBA), makul, taşınabilir ve daha az masraflı olması
sebebiyle girişimsel olmayan (non-invaziv) BBA sistemleri arasında kullanılan en
yaygın yöntemdir. DHGUP sinyalleri, beynin belirli frekansta , sadece beyin sinyal-
lerini kullanarak iletişim kurabilmelerine olanak sağlar. DHGUP bazlı BBA hece-
leyicide birçok salınım yapan karakter ve sayılar kullanır. Bu yüzden, beyin ak-
tivitelerini anlamlandırmak, çok sınıflı bir sınıflandırma problemidir. Geçtiğimiz
yıllarda, birçok çalışma daha iyi bir performans elde edebilmek için, yüksek doğru-
luk oranlı frekans kestirimi ve yüksek bilgi aktarım hızı elde etmeye çalışmışlardır.
Bu tezde, bahsedilen çok sınıflı sınıflandırma problemini çözmek için bir torbalama
yöntemi olan, Hataya Dayanıklı Çıktı Kodları (HDÇK) kullanılmıştır. Bildiğimiz
ka.darıyla bugüne kadar, HDÇK yöntemi DHGUP sinyallerini sınıflandırma proble-
minde kullanılmamıştır. HDÇK matris tasarım algoritmalarından 4 tanesinin, bire-
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bir kodlama, bire-hepsi kodlama, yoğun ve ayrık rastgele kodlama, arasında kapsamlı
bir karşılaştırma sunulmuştur. Ayrıca üç tane öznitelik çıkarma metodu, bu matris
tasarımlarının performanslarını incelemek için kullanılmıştır. Kullanılan öznitelik
çıkarma metotları, kanonik korelasyon analizi (KKA), korelasyonlu parçacık analizi
(KORRPA), Welch metodu ile güç spektral yoğunluğu analizidir (GSYA). HDÇK
metodu, standart metotlara göre, örneğin standart KKA ve standart KORRPA
metotlarına göre, performansı iyileştirmiştir Sonuçlar, KORRPA öznitelik çıkarma
metodunun, özellikle kısa zaman aralıklarında, diğer öznitelik çıkarma metotlarına
göre, bire-hepsi matris tasarımının diğer matris tasarımlarına göre, daha iyi perfor-
mans verdiğini göstermiştir. Sonuç itibariyle, sunulan yöntem, yüksek performanslı
DHGUP bazlı BBA heceleyici sistemlerinin uygulanmasında, bir potansiyele sahip-
tir.

vii



ACKNOWLEDGEMENTS

I would like to take this opportunity to convey to my thesis advisor Assist. Prof.
Dr. Hüseyin Özkan my profound and sincere appreciation for giving me the oppor-
tunity to work with him and providing me with exceptional supervision, invaluable
guidance, and endless support. He has taught me how to carry out the research
framework and with his support and patience, which has enabled me to complete
my thesis journey.

I would also like to thank my thesis co-supervisor Assist. Prof. Dr. Nihan Alp for
her endless help, support, gaudiness and valuable suggestions during each meeting.

I would like to thank my jury members Prof. Özgür Gürbüz, Prof. Berrin Yanıkoğlu
and Assoc. Prof. Şuayb Ş. Arslan to join my thesis presentation and for valuable
discussion.

I also would like to thank Osman Berke Guney, Begum Sonmez and Serkan Musellim
for providing their valuable insights to my work.

I would like to thank my parents for their unconditional love, efforts and support
throughout in shaping up my life. I would like to thanks also my sisters and brother
for their encouragement and support.

I am also thankful for my lab-mates, and my friends who join me in my journey
Mastaneh Torkamani Azar, Sara Atito Ali Ahmed, Aysa Jafari and Naida Fetic.

I would like to acknowledge the financial support provided by Sabanci university
Dean office for granting me the scholarship and opportunity for my M.Sc. studies. I
am grateful for this scholarship and hoping that the program can keep on to support
many students to accomplish their dreams.

All the glory and praise to God, for bestowing upon me strength, endurance and
inspiration.

viii



Dedication
To my beloved parents

ix



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvii

1. Introduction to Thesis Topic . . . . . . . . . . . . . . . . . . . . . 1
1.1. Scope and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Thesis Outline and Organization . . . . . . . . . . . . . . . . . . 3

2. Background on BCIs and SSVEP-based BCI Spellers . . . . . . . . . . . . . . 4
2.1. Brain-Computer Interfaces (BCIs) . . . . . . . . . . . . . . . . . 4
2.2. Types of BCI Systems . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.0.1. Electroencephalogram (EEG) . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Steady State Visually-Evoked Potential (SSVEP) . . . . . . . . . 8

2.3.1. The Effect of the Target Stimuli Design . . . . . . . . . . . 10
2.3.2. The Number of Channels and Electrodes Locations . . . . . 12
2.3.3. Signal Processing Methods for Target Identification in

SSVEP-based BCI . . . . . . . . . . . . . . . . . . . . . . 13

3. Problem Formulation and a Summary of the Introduced Approach
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. Feature Extraction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1. Canonical Correlation Analysis (CCA) . . . . . . . . . . . . . . . 17

4.1.1. Feature Extraction using CCA for SSVEP-based BCI Speller . 18
4.2. Power Spectrum Density Analysis (PSDA) . . . . . . . . . . . . . 20

4.2.1. Feature Extraction using PSDA for SSVEP-based BCI Speller 21
4.3. Correlated Components Analysis (CORRCA) . . . . . . . . . . . 22

4.3.1. Feature Extraction using CORRCA for SSVEP-based BCI
Speller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

x



5. Error-Correcting Output Codes (ECOC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1. Introduction to ECOC Framework . . . . . . . . . . . . . . . . . 25
5.2. Coding Matrix Designs . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1. One-vs-all (OVA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2. One-vs-one (OVO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.3. Random Dense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.4. Random Sparse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3. Binary Learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.1. Support Vector Machine (SVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6. Experimental Results and Discussion . . . . . . . . . . . . . . . . 32
6.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1.1. SSVEP Benchmark Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1.2. Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 34
6.3. Analysis of ECOC Designs with Several Feature Extraction Methods. 35

6.3.1. Analysis of ECOC Structures using CCA Features . . . . . 35
6.3.1.1. Evaluation and Results using ECOC Framework

with CCA Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3.1.1.1. Training Each Subject Individually (Train-

ing Per Subject)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3.1.1.2. Combining the Features from Overall Sub-
jects with a Single Model Training (Train-
ing the Combination of Subjects)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3.2. Analysis of ECOC Structures using PSDA features . . . . . . . . . . . . 45
6.3.2.0.1. PSD Computation using Channels’ Mean

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.2.0.2. PSD Computation using Concatenation of

Channels
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.2.1. Evaluation and Results using PSDA via Welch’s
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.3. Analysis of ECOC Structures using CORRCA Features . . 51
6.3.3.1. Evaluation and Results using ECOC Framework

with CORRCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
xi



BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xii



LIST OF TABLES

Table 6.1. Classification accuracy for 1 s time window per block, each
block is the overall average of 35 subjects, and the last row presents
the average of the six blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 6.2. Classification accuracy for 3 s time window per block, each
block is the overall average of 35 subjects, and the last row presents
the average of the six blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 6.3. Frequency recognition accuracy using PSD with OVA and ran-
dom sparse ECOCs for 5 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 6.4. Frequency recognition accuracy using PSD with OVA and ran-
dom sparse ECOCs for 1 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 6.5. ITR score using PSD with OVA and random sparse ECOCs for
1 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 6.6. ITR Score using PSD with OVA and random sparse ECOCs
for 5 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 6.7. Accuracy and ITR using CORRCA features with two ECOC
structure OVA and random sparse ECOCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 6.8. Classification accuracy using CORRCA with OVA ECOC. Six
time windows (i.e., 0.5, 1, 2, 3, 4 and 5 s) were used for corresponding
to the six series.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xiii



LIST OF FIGURES

Figure 2.1. A typical BCI framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2.2. A comparison between invasive and non-invasive BCI . . . . . . . . . 7
Figure 2.3. An example of EEG signals, taken from [23] . . . . . . . . . . . . . . . . . . . 8
Figure 2.4. A general paradigm for SSVEP-based BCI process . . . . . . . . . . . . 9
Figure 2.5. An example of SSVEP-based BCI speller experiment, taken

from [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 4.1. Geometric interpretation of CCA [50] . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 4.2. An illustration of the standard CCA method for SSVEP fre-

quency recognition. X is a multidimensional SSVEPs signal, Y is the
reference signal and K is the number of target stimuli . . . . . . . . . . . . . . . . 20

Figure 4.3. Diagram explaining the standard CORRCA method . . . . . . . . . . 24
Figure 4.4. Diagram illustrates CORRCA features that are used in this

study, where Z is the training data, Y is the template signal, and SN
is the number of bandpass filters, taken from [54] . . . . . . . . . . . . . . . . . . . . 24

Figure 5.1. ECOC framework for multi-classification tasks, taken from [63] 26
Figure 5.2. Example of the error-correcting, the output vector is classified

to class c2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 5.3. One-vs-all ECOC design for a 4-class problem, the black re-

gions coded by 1 and the white regions to -1 . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 5.4. One-vs-one ECOC design for a 4-class problem, the black re-

gions coded by 1, the white regions to -1 and the gray position is the
0 symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 5.5. Random dense ECOC design for a 4-class problem, the black
regions coded by 1 and the white regions to -1 . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 5.6. Random sparse ECOC design for a 4-class problem, the black
regions coded by 1, the white regions to -1 and the gray position is
the 0 symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 5.7. Margin and the optimal hyperplane are illustrated for a two-
class classification problem on two dimensional (2D) feature space. . . . 30

xiv



Figure 6.1. Frequency and phase values for all stimuli and their corre-
sponding characters, numbers and symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 6.2. The 9 channels that are used in the experiment are highlighted
in green color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 6.3. A comparison of standard CCA method with 64 channels and
9 channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 6.4. A comparison of standard CCA method with two different
number of harmonic 2 and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 6.5. A general paradigm for CCA feature extraction steps and the
the final feature dimension for one subject one block . . . . . . . . . . . . . . . . . . 38

Figure 6.6. The average accuracies across all subjects using Linear SVM
and SVM with RBF kernel as base classifier with CCA features from
1 s to 5 s time window with 1s interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 6.7. The diagram explains the first training method based on ex-
tracting the features from each subject separately and creating a sin-
gle training model for each feature set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 6.8. The diagram illustrates the second training method that uses
the combinations of the features to train a single model . . . . . . . . . . . . . . 42

Figure 6.9. A comparison between two ways of training strategies for both
ECOC structures OVA and OVO, the first method is training each
subject individually and the second method is training the combina-
tion of subjects, the CCA features are used with different data lengths
from 1 s to 5 s with a step of 1 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 6.10. (a) Classification accuracies averaged across all subjects ob-
tained by CCA features with ECOC framework for four different
ECOC structures OVA, OVO, random dense and random sparse with
a SVM RBF kernel as binary learner for a different data lengths from
0.5 s to 5 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 6.11. ITRs corresponding to the accuracy graph in part(b) when a
binary learner is a kernel SVM. The error bars indicate standard errors 44

Figure 6.12. The first block shows the raw EEG signals, and then a band-
pass filter is applied for the signals, in the next step, the PSD is
computed for 9 channels. Finally, the mean of those PSDs is calcu-
lated (The diagram presents the fifth flickering stimulus ’E’ with 12
Hz frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 6.13. PSD feature applied for each nine channels . . . . . . . . . . . . . . . . . . . 46
Figure 6.14. Concatenation of PSD features from nine channels . . . . . . . . . . . 47
Figure 6.15. Average accuracy across subjects using the concatenation of

PSD using random sparse as coding matrix structer . . . . . . . . . . . . . . . . . . 48

xv



Figure 6.16. ITR score using the concatenation of PSD using random sparse
as a coding matrix structure. Hence, two ITR scores are reported with
gaze shifting time 0.64 and without considering it . . . . . . . . . . . . . . . . . . . . . 48

Figure 6.17. A comparison between standard CORRCA and CORRCA fea-
ture with ECOC structure for frequency recognition . . . . . . . . . . . . . . . . . 51

Figure 6.18. The ITR score using CORRCA feature with OVA coding ma-
trix. Two ITR scores are reported with gaze shifting time 0.64 and
without considering it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xvi



LIST OF ABBREVIATIONS

BCI: Brain-Computer Interface

SSVEP: Steady-State Visual Evoked Potential

EEG: Electroencephalogram

ITR: Information Transfer Rate

SVM: Support Vector Machine

ECOC: Error-Correcting Output Codes

CCA: Canonical Correlation Analysis

CORRCA: Correlated Components Analysis

PSDA: Power Spectrum Density Analysis

xvii



1. Introduction to Thesis Topic

A direct contact path between the human brain and an external system is presented
through brain-computer interfaces (BCIs). Thus, the BCI system translates the
brain signals into commands such that a device like a computer executes. By using
the brain signals without the need for muscle movement, this system helps disabled
people to regulate and communicate with their environments.
One of the recent BCI paradigms is based on steady-state visual evoked potential
(SSVEPs) in which a user is placed in front of a computer screen, and this screen
displays several flickering targets at various frequencies. The essence of this method
is when a user gazes at a particular stimulus that flickers at a specific frequency,
the EEG signals that are recorded from the scalp generates electrical activity at the
same frequency and its harmonics.
In other words, SSVEPs are the brain’s responses to the repetitively flickering visual
stimuli that flash at various frequencies. Furthermore, it is a photomotor response
characterized by sinusoidal-like waveforms at the frequency of the flickering stimulus
and its multiple frequencies (harmonics) [1].
SSVEP-based BCI systems have gained interest over the last several years due to
several advantages: high information transfer rate (ITR) and little user training.
SSVEP spellers are one of the most widely used SSVEP-based BCI systems [2].
These systems provide a possible way of communication for the people who suffer
from motor neuron disease (MND) or amyotrophic lateral sclerosis (ALS). Therefore,
researchers and developers seek to enhance this system performance to build an
efficient and high-speed SSVEP-based BCI speller.

1.1 Scope and Motivation

In this thesis, we are motivated to improve the SSVEP-based BCI speller perfor-
mance. In other words, we aim to build a high-speed BCI speller with high-frequency
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recognition accuracy. In fact, several factors can affect SSVEP speller systems’ per-
formance, such as the number of flickering stimuli, the number of channels, electrode
locations, and signal processing methods for target identification. In this study, we
focus on investigating a novel approach for SSVEP target identification. Therefore,
an ECOC framework is applied to deal with multi-class classification. Thus, the user
can efficiently elect a specific target from several possibilities. We select the most
convenient and efficient feature extraction methods for SSVEP-based BCI in the
literature to evaluate the ensemble ECOC method. Three different feature extrac-
tion methods are included: canonical correlation analysis (CCA), power spectrum
density analysis (PSDA) via Welch’s method, and correlated components analysis
(CORRCA). The ECOC method’s performance with different feature sets is mea-
sured by computing the classification accuracy averaged across all subjects based
on a publicly available large SSVEP speller benchmark dataset, and this dataset is
recorded from 35 subjects. Moreover, another measurement is used to evaluate the
performance, which is the information transfer rate (ITR), and this measurement
determines the amount of transformed information and the speed of the SSVEP
speller system.

1.2 Thesis Contributions

This thesis’s contributions can be summarized as follows:

• This study demonstrates the applicability of merging novel and state-of-the-art
techniques with a complicated task of dynamic brain decoding. It researches and
improves the way for building reliable and portable brain speller systems that can
enhance the quality of life for patients suffering from various neuromuscular issues.

• In this study, an ensemble method called Error-Correcting Output Codes (ECOC)
is investigated to solve the multi-class classification problem. To the best of our
knowledge, the ECOC paradigm has not been applied previously to the SSVEP
classification problems.

• To analyze the performance of SSVEP-based BCI speller with the ECOC
ensemble method, we use three different feature extraction methods, which are
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canonical correlation analysis (CCA) and power spectrum density analysis (PSDA)
via Welch’s and correlated components analysis (CORRCA).

• An extensive set of comparisons is performed among the most widely known
ECOC coding matrix designs, one-vs-all (OVA), one-vs-one (OVO), random dense,
and random sparse. The overall performance is measured in terms of classification
accuracy and information transfer rate (ITR).

• As a result, the ECOC framework improves SSVEP-based BCI speller’s perfor-
mance compared to the standard methods like standard CCA and standard COR-
RCA. Furthermore, we compare several ECOC coding matrix designs, OVA, OVO,
random dense, and random sparse, and the results show that the coding matrix
designs, OVA and random sparse, have superior performance than others. More-
over, for each feature extraction method using the ECOC framework, we report the
performance of coding matrix designs with various data lengths from 0.5 s to 5s.
Consequently, using the OVA coding matrix design with CORRCA features leads
to more reliable results compared to other alternatives.

1.3 Thesis Outline and Organization

The remainder of the thesis is organized as follows:
Chapter 2 provides general background on brain-computer interfaces (BCIs), EEG
signals, steady-state visually-evoked potential (SSVEP). Furthermore, it gives an
introduction of SSVEP-BCI speller and also states some related work.
Chapter 3 provides the problem description and the general contribution of this
thesis.
Chapter 4 explains the general framework of feature extraction methods, Canonical
Correlation Analysis (CCA), Power Spectrum Density Analysis (PSDA) via Welch’s
method, and Correlated Components Analysis (CORRCA).
Chapter 5 gives a background on the ECOC method and discusses the most well
known ECOC matrix designs, OVA, OVO, random dense, and random sparse.
Chapter 6 provides an analysis of ECOC structures with the three feature extrac-
tion methods CCA, PSD, and CORRCA. Furthermore, this chapter presents the
final results in terms of classification accuracy and the information transfer rate.
Finally, the thesis is concluded in Chapter 7.
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2. Background on BCIs and SSVEP-based BCI Spellers

This chapter provides the basic concepts of brain-computer interfaces (BCIs), EEG
signals, steady-state visually-evoked potential (SSVEP), and SSVEP-based BCI
spellers. Moreover, it includes a general review of some related works and previous
methods.

2.1 Brain-Computer Interfaces (BCIs)

BCI technology was introduced at the beginning of the 1970s [3]. Nowadays, many
research areas have focused on enhancing the quality of life for individuals who
suffer from stroke, Parkinson’s disease, and Amyotrophic Lateral Sclerosis (ALS) by
allowing them to gain some control in order to contact their external environment
[4]. The BCI system has been developed to permit an alternative communication
method for disabled people by interpreting their brain activity.
Thus, brain-computer interface (BCI) is a process that grants direct interaction
between the brain and the external world like computers or any device. In this
process, the brain activities are recorded and then translated into commands
without using any muscular activity [5].

Figure 2.1 A typical BCI framework
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In general, a typical BCI system has several consecutive stages. The first stage is
signal acquisition. For signal acquisition, two main methods are primarily utilized:
invasive and non-invasive BCI signal acquisition. Most non-invasive BCI technology
mainly uses Electroencephalography (EEG) to record brain activities [6]. In EEG,
the signals are compared between two electrodes as a voltage transition, and the
electrodes are positioned over the human scalp at various locations. After collecting
the signals, some preprocessing methods are usually applied to clean the contami-
nated signals that are resulted from noise and artifacts. The relevant features are
then extracted and decoded into commands that the device can understand, and
this can be achieved by using an efficient classification method. Some systems can
provide feedback, as shown in Fig. 2.1. The feedback is commonly presented in a
visual or acoustic version. For example, it can give a beep sound after encoding each
command. In addition, some applications use the feedback to keep the participant
concentrated and focused during the experiment.
A conventional BCI process consists of three main steps: signal preprocessing,
feature extraction, and classification; each step is crucial to obtain a feasible BCI
system.

• Signal Preprocessing:
The raw data collected from the scalp of the brain is often a signal contaminated
by noise due to eye movements, muscle activities, and external resources. The
preprocessing step is an essential process to eliminate the unwanted data and
artifacts from the signals [7]. These artifacts may be generated due to physiological
or non-physiological sources. The physiological sources can be eye and muscle
activities, and non-physiological causes such as impedance mismatch, power-line
coupling, etc. Different kinds of filters are usually applied for preprocessing the
signals, like spatial and spectral filters, to compress the generated contaminated
signals. As a consequence, many studies have shown that applying the prepossess-
ing method to raw data could significantly affect the BCIs system’s performance,
and especially this can have a numerous influence on the classification accuracy [8, 9].

• Feature Extraction:
Feature extraction is a procedure of dimensionality reduction by getting manageable
information from the raw data. In other words, the obtained feature set resulted
from the feature extraction method is a reduced set of features that compiles
the most valuable information from the initial set of features [10]. The feature
extraction process is usually applied to the signals after some preprocessing
methods, and based on BCI applications or area of interest, the appropriate feature
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extraction method is selected.

• Classification:
The classification method is commonly chosen based on the obtained feature set,
and it bases on matching the features coming from signals to their corresponding
commands. One of the crucial measurements to evaluate the BCI system perfor-
mance is the classification accuracy, and it is calculated by The number of correctly
categorized commands compared to the total number of system-categorized
commands. Various frequency recognition methods related to SSVEP-based BCI
speller of some previous studies will be discussed and compared in Section 2.3.3.

2.2 Types of BCI Systems

There are two kinds of BCI systems for signal acquisition process:
• Invasive BCIs:
In invasive BCI, the signals are recorded directly from the cortex; specifically,
electrodes are implemented into the grey matter during neurosurgery. High-quality
signals are extracted in this system due to the direct connection with the brain [6].
However, it has some disadvantages, like it is prone to scar-tissue build-up, or the
patient’s body may not accept the implemented object [11]. Besides, it is costly
and hard to implement, such as electrocorticography (ECoG) [12]. Therefore, most
of the experiments with invasive BCI is often conducted for some medical purposes.

• Non-invasive BCIs:
In the non-invasive BCI, sensor electrodes are usually used for the signals acquisition,
where these sensors are placed on the scalp of the brain. The signals in non-invasive
BCI systems have a lower signal to noise ratio compared to the invasive system
[13]. However, it is more feasible, practical, and easy to implement. Fig. 2.2
shows different types of BCI system with their electrodes placement. In an invasive
system, electrodes are implemented in the cortical surface of the patient’s brain. In
contrast, the electrodes are located on the brain surface in a non-invasive system.
The most common BCI systems are generally used the sensor electrodes to record
the brain activity like magnetoencephalography (MEG)) [14], functional magnetic
resonance imaging (fMRI) [15], functional near-infrared spectroscopy (fNIRS) [16],
positron emission tomography (PET) [17], and electroencephalogram (EEG), which
is considered one of the most popular non-invasive technique [18].
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Figure 2.2 A comparison between invasive and non-invasive BCI

2.2.0.1 Electroencephalogram (EEG)

The electroencephalogram (EEG) is utilized as the foundation for BCI [19].
Additionally, EEG is one of the most preferred non-invasive signal acquisition
tools due to its various advantages. Those advantages include simplicity in usage
and implementation. Besides, using EEG for signal acquisition doesn’t expose
the patient’s body to any magnetic field or x-ray. Therefore, it doesn’t contain
any side effects, and also the experiments can be readily conducted several times.
Furthermore, it has a low cost compared to other non-invasive tools. EEG measures
the electrical activity of the brain using electrodes located on the scalp of the
brain. Thus, it provides a high temporal resolution. Moreover, it can be helpful
to easily evaluate how brain function can change in response to stimuli, and can
also be advantageous in measuring irregular brain activity, as in epileptic seizures
[20]. Fig. 2.3 illustrates a brief example about EEG signals. In an EEG-based BCI
framework, the recorded signals from an EEG amplifier are first preprocessed and
then classified to decode the intent of the user. Therefore, EEG signals can present
the input signals for several applications like robotic arm control [21] and cursor
control [22].
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Figure 2.3 An example of EEG signals, taken from [23]

2.3 Steady State Visually-Evoked Potential (SSVEP)

Steady-state visual evoked potentials (SSVEP) are the brain responses in electroen-
cephalographic (EEG) signals to repetitive flickering visual stimuli. In the SSVEP
experiment, the subject is placed at a specific distance from a screen that displays
stimuli. These stimuli are flickering at various frequencies, and each frequency corre-
sponds to an individual command. Moreover, by gazing at a particular stimulus, the
user can elect the requisite command. The frequency of responses corresponds with
the frequency of stimulation, harmonics, and subharmonics for the corresponding
stimulus of the subject.
BCI has a plethora of paradigms, including motor imaginary, P300, and SSVEP.
However, over the last few years, SSVEP-based BCI drew attention due to the
several benefits such as high information transfer ratio (ITR), ease of system con-
figuration, and little time for training [24].
The general process of the SSVEP-based BCI system is illustrated in Fig. 2.4.
After collecting the user’s data using EEG for a non-invasive BCI system, the signals
are preprocessed to reduce the external artifacts, and then the essential information
is extracted from the signals. The next phase is to choose an appropriate classifica-
tion method in order to relate the extracted features to its corresponding class, and
the last step is translating the final results to be understood by a device.
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Figure 2.4 A general paradigm for SSVEP-based BCI process

• SSVEP-based BCI Speller

One of the primary applications for SSVEP-based BCI fields is the SSVEP-
based BCI speller. Fig. 2.5 gives a brief example of an SSVEP-based BCI
experiment. The subject is placed in front of a screen monitor that presents certain
characters and symbols. Each command is flickering in a specific frequency, and
the subject is gazing into certain stimuli that flicker in a particular frequency.

Figure 2.5 An example of SSVEP-based BCI speller experiment, taken from [25].

In the last few years, researchers and developers have investigated the SSVEP-based
BCI in several aspects to enhance the SSVEP paradigm.
Some principal characters have significant effects on SSVEP-based BCI, such as
(a) The effect of the target stimuli design (stimulus display and number of targets),
(b) The number of channels and electrodes locations, and
(c) Signal processing methods for target identification.
Other than these aspects, it is also stated that the participants’ physical conditions

9



might affect SSVEP performance, such as their age [26].

2.3.1 The Effect of the Target Stimuli Design

One of the critical components that can affect SSVEP-based BCI performance is
designing the appropriate stimuli for the BCI system. The number of stimuli and
its location have a significant impact on the SSVEP-based BCI. Generally, the
visual stimulator is flickering targets that it is possible to present using flashing
light-emitting diodes (LEDs) or displayed on a liquid crystal display (LCD) like
a monitor of device or computer [1]. Using a computer monitor is convenient,
especially for programming feedback. However, a wide range of stimulation
frequencies and, thus, a much broader frequency band are needed for the vast
number of targets. Nevertheless, humans exhibit superior SSVEP responses only in
a specific range of frequencies [27]. The computer monitor utilizes as a stimulator
that is only able to generate a confined range of frequencies due to the limitation
of the refresh rate of the screen. Thus, the available stimulation frequencies for
SSVEP-based BCI was restricted [28]. Therefore, several approaches have been
used to resolve this limitation. One of the proposed methods is called Multiple
Frequencies Sequential Coding (MSFC), in which multiple frequencies are used
sequentially to code the targets instead of only a constant frequency [29]. The
MFSC method is based on permutation theory. For example, if N frequencies
are used for target coding and M is the length of the coding sequence, then NM

permutation sequences can be coded in this method, unlike the single frequency
coding method that can code only N targets.
Moreover, one study introduced the combination of phase and frequency to design
the stimuli [30]. Hence, a phase shift was added to target encoding to improve
the number of stimuli with a limited range of frequency. The design of the target
stimulus was as follows; 6 of the stimulus are flickering at frequency of 10 Hz with
a phase of 60◦ degree between neighbouring stimuli, 5 other stimulus are flickering
with a frequency of 12 Hz with phase 72◦ between neighbouring stimuli, and the
last 4 stimulus are flickering with 15 Hz frequency with phase of 90◦ between
nearby stimuli. The results indicate that using mixed-phase and frequency coding
improved the ITR rate.
An alternative method is named Frequency Shift Keying (FSK)-Modulated Visual
Stimuli [31], in which a codeword represents the visual stimuli. In other words,
the frequencies of the flickering stimulus are identified by binary digits. There are
two main parts of the FSK technique: encoding and modulation. This technique’s
output target determination also consists of two steps: demodulation and decoding.
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This technique can overcome the restriction of the number of stimuli; as the length
of the codeword increases, more commands can be generated. The outcome showed
that eight subjects out of 10 subjects obtained adequate precision using FSK
modulation.
On the other hand, the performance of SSVEP-based BCI can be influenced by
stimulus properties such as the color, scale, and location of visual stimuli [24].
Some studies examined the effect of the luminance and chromatic properties of the
target flickering on the performance of BCIs. In one study, nine flickering targets
were tested with three different conditions for optimizing the stimulation design:
luminance, color, and (luminance and color) conditions for each target [28]. As a
result, the combination of chromatic and luminance has enhanced the classification
accuracy for SSVEP-based BCI.
Furthermore, the refresh rate of the monitor can also affect the classification
performance of the SSVEP-based BCI. One of the studies compares the perfor-
mances of SSVEP spellers when two different values (120Hz - 75Hz) are used as
the refresh rate of the computer [1]. The outcome of the analysis indicates that
the performance of the 120 Hz refresh rate classification is slightly better than the
75 Hz refresh rate. The variance is substantial, however. Even, a high refresh rate
will increase the reliability of the high-frequency flickering stimuli by reducing the
distance between the two adjacent frequencies.
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2.3.2 The Number of Channels and Electrodes Locations

Many studies have recognized that the performance of SSVEP-based BCI speller
vitally depended on the electrode positions. For this reason, some of the research
tried different electrode positions while testing their methods, and others just
attempted to find the optimal electrode position design. Researchers examined
three different channel sets while testing their method and observed that for most
of the users, the best set was the one that covers the occipital area [32].
A more recent study completely focused on electrode positions and reducing
the electrode number [33]. In this study, only four frequencies were used to tag
four boxes that contained Latin alphabet characters along with ’delete’, ’back’
commands—at least three steps required for a successful spelling. The experiment
consisted of 3 phases, and after each phase, the number of electrodes are reduced to
16, 6, 4, respectively. A minimum energy combination is utilized in the processing
part. For each subject, the best channels are selected for the next phase. The
accuracies and ITRs are (94.61% and 27.50 bit/min), (91.27% and 24.09 bit/min),
and (93.22% and 23.23 bit/min) for 16, 6, 4 electrodes respectively.
For some speller systems, electrolyte gel is applied on the skin (mostly on the
hairy parts) to receive decent signals. For this reason, the real-life applications of
spellers seem harder. A study has focused on this problem and tried to discover
if it is possible to receive a feasible signal from the skin’s hairless areas [34]. 256
channels are utilized, and electrodes are located on the face, behind ears, and
neck areas, along with the ordinary parts. In an offline experiment, the stimulus
consists of only five frequencies; However, in an online experiment, 12 frequencies
are used for designing the stimuli, and extended CCA is used for classification.
As they expected, the occipital area performed much better than the other areas,
but behind the ear areas also performed well at long time windows. This study
concluded that it is possible to obtain the EEG data from the back of the ears for
patients that have to lie down face up.
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2.3.3 Signal Processing Methods for Target Identification in SSVEP-

based BCI

In recent studies, Canonical Correlation Analysis (CCA) method has been widely
applied in many experiments, and it is considered one of the most powerful meth-
ods for distinguishing between possible frequencies in the frequency component
of SSVEP [35, 36]. CCA is a statistical multivariable tool for calculating the
correlation of multidimensional variables between two sets. Yet, better performance
than standard CCA was obtained by different approaches.
In one study, a new frequency recognition method called Multivariate Synchro-
nization Index (MSI) has been developed [37]. This approach is based on the
S-estimator, a nonlinear dynamic theory algorithm that estimates the synchro-
nization of EEGs and reference signals. The results show that the MSI has higher
accuracy in shorter data length and fewer channels. Out of three frequency
recognition methods (CCA, MEC, MSI), MSI is the most reliable than the other
two methods. Furthermore, MSI has been extended in the same study as EMSI. In
this method, during the calculation of the synchronization index, the time delayed
version of the EEG data was incorporated. Results showed that the extended
method outperformed the previous one with an ITR rate of 49.76 as an average of
11 subjects [38]. Furthermore, another extended MSI approach called Temporally
Local MSI (TMSI) has been refined by [39]. Because the extraction of information
by the TMSI method discriminates by taking advantages of the temporally local
EEG signals structure, the classification accuracy has improved for different time
windows than standard MSI. Another approach compared with CCA is named
Multiset Canonical Correlation Analysis (Mset CCA). The purpose of this approach
is to refine the reference signal generated from standard features, and this optimized
reference signal is focused solely on training data. The Mset CCA improves the
efficiency of frequency recognition, particularly for short data lengths and for a
small number of channels compared to the CCA [40].

Based on the combination of two previous methods, CCA and Mset CCA, a new
method is created and it is called Multilayer Correlation Maximization (MCM).
Therefore, it incorporates the strengths of both approaches. Using three layers of
[41] correlation, the MCM approach can obtain frequency information and regular
features. This research shows that, compared to using fewer layers, using the three
correlation layers method contributes to the highest accuracy.

Another study is based on the CCA method. In this study [42], the training
data is involved in the CCA reference signal instead of only using an artificial
reference signal that consists of a sin-cos wave. In other words, the principle
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of incorporating features from training data into the reference signal has been
suggested. Consequently, the frequency detection for SSVEP-based BCI can be
effectively improved by integrating individual SSVEP training data.
Task-related component analysis (TRCA) was one of the spatial filtering methods
that improves the steady-state visual-evoked potentials (SSVEPs) for a high-speed
brain speller. By removing the background electroencephalographic (EEG) ac-
tivities, this approach promotes the increase in the signal-to-noise ratio [43]—the
experimental part of this research was broken down into tests that were offline and
online. For the offline part, 12 participants have been recorded, while the data
were obtained from 20 participants for the online part.Participants were asked to
look at a flickering stimulus matrix of 5×8 that includes characters, numbers, and
symbols. The stimuli was encoded between each target with a phase difference of
0.35π, although only nine channels were used to record EEG signals from the scalps
of the subjects. From 8 Hz to 15.8 Hz, with an interval of 0.2 Hz, the frequency
range was chosen. The offline part results show that the TRCA methodology has
greatly increased the classification accuracy and ITR relative to the extended CCA
method. This study records the highest ITR with 325.33 ± 38.17 bits/min in a
cue-guided task.It was the highest ITR in EEG-based BCIs recorded.

As a result, it was sufficient to incorporate phase information to design the visual
flickering to increase the number of targets. Besides, another study is called Phase
Constrained Canonical Correlation Analysis (p-CCA) [44] has introduced a new
idea. This method is based on adding a constraint to the reference signal. The
estimated SSVEP response phase is added as a constraint. As a conclusion of this
study, adding a constraint to the CCA method leads to enhanced performance.
Hence, the accuracy increases by approximately 6.8 %.
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3. Problem Formulation and a Summary of the Introduced

Approach

This thesis aims to enhance the frequency recognition of SSVEP-based BCI to build
a reliable speller system that assists disabled people to interact with their environ-
ment. On a computer screen, a speller matrix of 5× 8 is shown, and this matrix
contains several characters and numbers that flicker repeatedly at different frequen-
cies. The goal is to recognize the target character, i.e., frequency, from Nc stimulus
frequencies. Furthermore, we use the SSVEP benchmark dataset in this study [45],
and this dataset is composed of 40 flickering targets. Therefore, we are dealing with
a 40-class classification problem. Moreover, the dataset is recorded from 64 EEG
channels, and also it is collected from 35 subjects. X ∈RC×N , X is a multi-channel
EEG signal, C is the number of channels, and N is the number of time samples. In
this study, only 9 channels out of 64 channels are used. Given that X is a multi-
channel EEG, some preprocessing methods such as band-pass filters are performed
to minimize noise and artifacts. Afterward, we obtain the necessary information
from the signals by employing a feature extraction method. The number of stimuli
equals the number of classes, i.e., Yi ∈ {1, ...,Nc} are the labels for Zi, where Zi is
the extracted feature set from EEG signal that corresponds to subject i. We use
three different feature extraction methods in this work, Canonical Correlation Anal-
ysis (CCA), Power Spectrum Density Analysis (PSDA) via Welch’s method, and
Correlated Components Analysis (CORRCA) to explore its performance with our
framework. ECOC paradigm is investigated to solve the multi-class classification
problem. In general, the ECOC framework contains two primary steps: encoding
and decoding. In the encoding part, an ECOC coding matrix MNc×n is utilized,
where Nc denotes the number of classes and n denotes the number of binary classi-
fiers. Hence, in the coding matrix, the rows represent the codeword, and the columns
represent the base classifiers. For three or more classes, the ECOC algorithm reduces
the classification problem to a n series of binary classification subproblems, where n
is the length of the codewords. The length of the codeword can vary, and it depends
on the coding matrix design. There are two types of coding matrix, binary matrix
that contains two elementsM ∈ {1,−1}Nc×n and ternary matrixM ∈ {1,0,−1}Nc×n

that includes zero elements as well to ignore some classes during the training process
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of the base classifiers. The output of all classifiers are combined, and a decoding
method is used for class prediction. We use loss-weighted decoding for the decoding
part. SVM is one of the most used binary classification algorithms. Therefore, we
use it to train our classifiers. Furthermore, we examine the performance of differ-
ent coding matrix designs of the ECOC framework with three feature extraction
methods.
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4. Feature Extraction Methods

Feature extraction is the process for dimensionality reduction, and it is one of the
main processes that need to be applied to obtain critical information from the data
before applying the classification method.
However, selecting the best feature extraction method is challenging; therefore,
we choose three different feature extraction methods to evaluate the classification
algorithm’s efficiency. Recently, there are several feature extraction methods for
SSVEP-based BCI. Our current study investigated three feature extraction methods
with the ECOC framework; the first feature extraction method is called CCA,
and it will be explained in Section 4.1 and the second feature extraction method
is named PSD, and it is clarified in Section 4.2, and the last feature extraction
method is called CORRCA, and it demonstrates in Section 4.3.

4.1 Canonical Correlation Analysis (CCA)

Canonical correlation analysis is a statistical method used to recognize and describe
the relationship between two sets of random vectors [46]. This method is simi-
lar to reducing the original signals’ dimensionality by accounting for two signals’
correlation. The mathematical relationship between two sets is established using
the covariance matrices of the corresponding vectors [47]. CCA was introduced in
1936 by [48] to determine the relationship between two sets of variables for instruc-
tional research and generalized for more than two sets of variables in [49]. Thus, it
represents a general method for obtaining the relationship between two sets of mul-
tidimensional data. By considering the correlation of one set of linear combinations
of variables and another set of linear combinations of variables, CCA obtains the re-
lation. The objective is to evaluate the linear pair of the highest correlation between
combinations [47]. Pairs of linear combinations are referred to as canonical variables,
whereas canonical correlations are their correlations. In this way, the strength of
the association between two sets of random vectors is measured. By maximization,
we focus on a high dimensional relationship between two sets of random vectors in
a few pairs of canonical variables. Geometrically CCA measures angles from two
linear subspaces, and canonical relations represent cosines of principal angles be-
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tween the corresponding subspaces [50]. In two signal spaces, X and Y , the CCA
seeks instructions in such a way that there is a maximum correlation between the
projections following these directions. Consider a CCA on 20 two-dimensional X
and Y observations. Arrows represent the desired directions in the original signal
space Projections of the sample onto one-dimensional subspaces are presented in
the graphs below. The original space is high-dimensional, while the basis of the
low-dimensional subspace spanned by the canonical factors determined using CCA
are Wx and Wy.

Figure 4.1 Geometric interpretation of CCA [50]

4.1.1 Feature Extraction using CCA for SSVEP-based BCI Speller

In many recent studies, canonical correlation analysis (CCA) has been widely
used for frequency recognition in the SSVEP-based BCI framework [35, 36].
Besides, CCA is one of the most efficient methods to discriminate against possible
frequencies in the frequency component of SSVEP. Furthermore, the fundamental
association between two sets of multidimensional data is calculated by a statistical
method. Let’s consider X, Y are the two multidimensional variables, where X in
the case of SSVEP-based BCI data is the multi-channel EEG data set and Y is
corresponding to a set of artificial reference signals and both X and Y have the same
length, the following x = XTWx and y = Y TWy are their linear combinations.
The CCA works to obtain the Wx and Wy weight vectors that optimize the
correlation between X and Y by addressing the following formula:
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The maximum of ρ concerning wx and wy is the maximum canonical correlation.
The reference signal Y in CCA method is an artificial signal which is generated by
sin-cos wave signals due to the fact the SSVEPs signals are characterized at the
stimulus frequency and its harmonics by sinusoidal-like waveforms. Y ∈R2Nh×Ns is
described as the following:
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Where, Nh is the number of harmonics, fs denotes the sampling rate and Ns refers
to the time points in each channel.
After finding the correlation between two signals, the highest ρ indicated by the
maximum canonical correlation, taking under consideration Wx and Wy, while pro-
jections onto Wx and Wy (i.e. x and y) denote the canonical variants, and the
output for frequency recognition for standard CCA method is determined by for-
mula 4.3 as clarified in Fig. 4.2 :

(4.3) O = argmax ρfi
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Figure 4.2 An illustration of the standard CCA method for SSVEP frequency
recognition. X is a multidimensional SSVEPs signal, Y is the reference signal and

K is the number of target stimuli

4.2 Power Spectrum Density Analysis (PSDA)

Periodic signals besides their time dependent intensities can be analyzed by their
power spectral density. Spectral analysis aims to decompose the signal into a sum
of weighted sinusoids, enabling the analysis of the signal’s frequency content. PSD
enables observation of the frequency content of y [n] varying with the frequency.

Let us consider discrete time signal {y (t) ; t= 0,±1,±2, . . .} , set of random variables
with a mean of zero

(4.4) E {y (t)}= 0 for all t
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Assuming that y (t) is a second order stationary sequence, its covariance function is
defined as

(4.5) r (k) = E {y (t)y∗ (t−k)}

The power spectral density is defined as

(4.6) φ(ω) =
∞∑

k=−∞
r (k)e−iωk

PSD is used in many applications to obtain frequency components of a signal for
analysis. This method’s main advantage is that it allows us to view a signal by its
frequency components.

4.2.1 Feature Extraction using PSDA for SSVEP-based BCI Speller

Power spectral density analysis (PSDA) is one of the traditional and popular meth-
ods in detecting the desired command in SSVEP-based BCI. It depends on the
reality that a periodic sample with an equivalent frequency as the stimulation fre-
quency or its harmonics is derived from the brain signals. Once an SSVEP is present
within the brain signals, the frequency domain might be measured with a narrow
bandwidth that has been covered from a periodic pattern. Welch’s method is a
nonparametric method that applies the Fast Fourier Transform (FFT) to estimate
the power spectral density (PSD). The welch method consists of three main steps:
- The input data is the EEG signals recorded from brain activity and are divided
into N segments (overlapping) that have an equal length.

(4.7) eegi[m] = eeg[m+ iD], i= 0, ...,K−1,m= 0, ....,M −1

- A window will be applied for each segment, and then the periodogram on each
window segment will be calculated.

(4.8) Pi(f) = 1
NU

|
N−1∑
n=0

w[m].eegi[m]e−j2πfm |2, i= 0, ...,L−1
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- The estimator of the spectral density will be obtained by averaging the peri-
odograms from N segments.

(4.9) PW (f) = 1
N

N−1∑
i=0

Pi(f)

To compute the welch feature, the function “pwelch” in MATLAB is used.

4.3 Correlated Components Analysis (CORRCA)

Correlated components analysis (CORRCA) method is similar to the CCA method.
CORRCA is produced based on a previous technique called COCA [51], which is
based on maximizing the Pearson product-moment correlation coefficient. Hence,
CORRCA intends to find the linear components of the data that maximize the
correlation coefficient between two multidimensional signals. It creates only one
projection vector for the two multidimensional signals, making the difference with
the CCA method. CORRCA has been used previously to examine cross-subject
synchrony of neural processing [52]. However, in recent studies, it has been used for
frequency detection in SSVEP-based BCI [53, 54]. This algorithm’s main assump-
tion is that the signal consists of reproducible signal and non-reproducible noise and
the directions of the reproducible signal are shared between subjects [55]. CORRCA
transforms observed data into components to compute the source of covariation [56].
Let X ∈RC×N and Y ∈RC×N be two sets of random vectors where C is the number
of channels, and N is the number of time samples. The objective of the algorithm
is to find w ∈ RC×1 weight vector such that the linear combinations x = wTX and
y = wTY are maximally correlated. That is to obtain maximum correlation coeffi-
cient as follows:

ρ̂= argmax
w

xT y

‖x‖‖y‖

= wTR12w√
wTR11w

√
wTR22w

(4.10)

where R11,R12, and R22 are sample covariance matrices Rij = 1
NXiX

T
j ,i = 1,2. In

order to obtain weight vector w that corresponds to the maximum value ρ̂ we differ-
entiate the (4.10) with respect w and set to zero. Assuming that wTR11w=wTR22w

we obtain the following eigenvalue equation
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(R12 +R21)w = λ(R11 +R22)w(4.11)

The maximum value of ρ̂ corresponds to the principal eigenvector of

(4.12) (R11 +R22)−1 (R12 +R21)

Represents the strongest correlation between x and y. The second strongest corre-
lation corresponds to the projection of data matrices corresponding to the second
strongest value. Similarly, the highest correlation vector kth is obtained by project-
ing the data matrices to the strongest eigenvector kth.

4.3.1 Feature Extraction using CORRCA for SSVEP-based BCI Speller

CORRCA is one of the effective strategies for identifying frequencies for BCI-SSVEP.
We use the CORRCA method as an alternative method for feature extraction. To
adapt the above formula 4.10 to SSVEP-BCI system, we consider the two multi-
dimensional signal, X is the training data, and y is the template signals obtained
by the average of multiple training trials. Fig. 4.3, shows the standard CORRCA
method. Hence, the targets will be chosen based on the maximum correlation as
the following:

f =maxf ρ̂(4.13)

Fig. 4.4, clarifies the CORRCA extracted features that are used in this study.
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Figure 4.3 Diagram explaining the standard CORRCA method

Figure 4.4 Diagram illustrates CORRCA features that are used in this study,
where Z is the training data, Y is the template signal, and SN is the number of

bandpass filters, taken from [54]
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5. Error-Correcting Output Codes (ECOC)

5.1 Introduction to ECOC Framework

Manipulating machine learning algorithms that solve binary problems to distinguish
between two classes is usually more manageable than solving a multi-class problem
that includes several classes. Some supervised machine learning algorithms are nat-
urally designed to manage a multi-class classification, such as Decision Tree, and
Naive Bayes [57, 58]. On the other hand, some algorithms, such as Adaboost and
Support Vector Machine (SVM), cannot easily convert into multi-class problems [59,
60]. Besides, many machine learning techniques have focused on solving only binary
problems. However, most real-world applications are more complex than having
only two classes or labels. In other words, they require to map the input into the
corresponding class out of several classes. Researchers and developers over the last
few years aim to extend the binary classifier problem to multi-classifiers. One of
the effective methods that deals with multi-class classification are Error-Correcting
Output Codes (ECOC).
ECOC method has been introduced by Zhang [58], and it is one of the ensemble
methods that handles multi-class classification problems. In particular, the essence
of this method is combining several binary classifiers to solve a multi-class problem.
ECOC framework consists of two fundamental parts: encoding and decoding [61,
62]. The encoding part is based on a coding matrix, where each column in the
coding matrix represents a binary classifier, and the rows of this matrix are called
codewords; thus, each codeword indicates a class. There are several designs for the
coding matrix. Those matrices can differ in the number of classifiers that will be
trained, and also the distribution of the elements in each coding matrix can vary.
There are two primary types of the coding matrix: binary coding and ternary cod-
ing [61]. In binary coding, the coding matrix consists of two elements M ∈ {1,−1},
while in ternary coding, three elements are used to design the matrixM ∈ {−1,0,1}.
In this coding matrix design, zero elements are added in order to ignore some classes
during the training. Fig. 5.1 shows the ensemble method framework. Several base
classifiers will be trained, and the output vector is the combination of the base clas-
sifiers outputs. Then, in the decoding phase, we compare the output vector with
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the coding matrix codewords to find the closest codeword. This framework enables
correcting some mistakes of the base classifiers. To clarify, Fig. 5.2, gives a brief
example of the error-correcting; the output vector is classified to class c2, and thus
it corrects the mistake of the fourth base classifier D4. Moreover, there are numer-
ous strategies for finding the closest codeword, like Hamming distance, Euclidean
distance, etc. We use loss-weighted decoding in this study, which is also suitable for
ternary coding.

Figure 5.1 ECOC framework for multi-classification tasks, taken from [63]

Figure 5.2 Example of the error-correcting, the output vector is classified to class c2
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5.2 Coding Matrix Designs

The coding matrix is used as the encoding stage for the ECOC framework. In the
literature, there is no definitive decision about which ECOC design needs to be
selected. Therefore, in this work, we investigate several coding matrix designs to
evaluate and compare their performance using the SSVEP benchmark dataset. We
utilize the most well-known coding matrix designs in this study, one-vs-all (OVA),
one-vs-one (OVO), random dense, and random sparse. These strategies are divided
into two sections: binary coding and ternary coding. One-vs-all (OVA) and random
dense are binary codes that include only two elements (-1,1), and in binary coding,
the number of the classifier is usually less than ternary coding, and one-vs-one
(OVO) and random sparse are ternary coding that includes “0” elements.

5.2.1 One-vs-all (OVA)

One-vs-all is one of the conventional ECOC coding matrices. In this matrix, the
rows are the codewords, and the columns are the classifiers. In each classifier, there
is only one class positive and others are negative classes. Let Nm be the number
of classifiers in the coding matrix, and Nc is the number of classes for the given
classification problem. In one-vs-all (OVA), one class is considered a positive class
(+1) while the others are negative (-1), as shown in Fig. 5.3. The coding matrix
M ∈{−1,1}N×

c NM . The number of classifiers in this matrix design equals the number
of classes.

Figure 5.3 One-vs-all ECOC design for a 4-class problem, the black regions coded
by 1 and the white regions to -1
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5.2.2 One-vs-one (OVO)

One-vs-one coding matrix is a combination of several binary classifiers such that in
each classifier, there are three elements (-1, 0, +1), one class is positive while others
are negative classes, and some classes will take a value “0” means it will be ignored.
Let Nm be the number of classifiers in the coding matrix and Nc represents the
number of classes. The coding matrix M ∈ {−1,0,1}N×

c NM .
The number of classifiers that are used in this method is equal to Nc(Nc−1)

2 .

Figure 5.4 One-vs-one ECOC design for a 4-class problem, the black regions coded
by 1, the white regions to -1 and the gray position is the 0 symbol

5.2.3 Random Dense

The random dense coding matrix is a matrix that is designed randomly and M ∈
{−1,1}N×

c NM , Nm is the number of classifiers in the coding matrix and Nc is the
number of classes.
The function “designecoc” in MATLAB is used to generate the matrix in this study.
The software allocates (+1) or (-1) to each element with equal probability of the
Nc×NM coding matrix, where NM ≈ 10log2(Nc). In this study, there are 40 classes;
the number of classifiers in a random dense matrix for 40 classes were 60 classifiers.
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Figure 5.5 Random dense ECOC design for a 4-class problem, the black regions
coded by 1 and the white regions to -1

5.2.4 Random Sparse

The random sparse coding matrix is a matrix that is generated randomly and M ∈
{−1,0,1}N×

c NM , Nm is the number of classifiers in the coding matrix and Nc is
the number of classes. The function “designecoc” in MATLAB was also used to
design the random sparse matrix. The software assigns (+1) and (-1) with equal
probability, which is 0.25, and assigns (0) elements with 0.5 probability. The number
of classifiers NM ≈ 15log2(Nc). Hence, this matrix design has the highest number of
classifiers. In this study, 40 classes are used; the number of classifiers for 40 classes
in the random sparse method is 90.

Figure 5.6 Random sparse ECOC design for a 4-class problem, the black regions
coded by 1, the white regions to -1 and the gray position is the 0 symbol
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5.3 Binary Learner

5.3.1 Support Vector Machine (SVM)

One of the supervised machine learning algorithms is the support vector machine
(SVM) and it is introduced in 1999 [60]. SVM’s primary concept is to evaluate the
ideal hyperplane that maximizes the margin between two groups. The hyperplane
is chosen to separate one class entries from other ones with a maximal margin
[64]. Fig. 5.7 shows an example of two-class classification using the SVM method.
Moreover, In order to represent patterns in greater dimensions than the dimension
of the original feature space, SVM can use a nonlinear mapping platform. Data
samples from two distinct classes become separable by a hyperplane for the sake of
mapping. [65].
Given a data {(~xi,yi), ~xi ∈Rn,yi ∈ {−1,+1}, i= 1, ....,N}. The binary classification
can be solved by minimizing the following objective function:

minw,b,ξF = 1
2 ‖w‖

2 +C
N∑
i=1

ξi(5.1)

s.t.yi(wTφ(xi)+ b≥ 1− ξi, i= 1, ...,N,ξi ≥ 0, i= 1, ....,N(5.2)

where ξ is the slack variable and C trades-off margin width and misclassifications.

Figure 5.7 Margin and the optimal hyperplane are illustrated for a two-class
classification problem on two dimensional (2D) feature space.

In Fig. 5.7, the support vector machines estimate an input-output mapping function
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from a set of labeled training data. The function is obtained by maximizing the
margin between the support vectors of two classes. In addition, several binary
learners can be used with the ECOC framework, like KNN and logistic regression.
In this study, SVM is used as a binary learner for the ECOC framework.
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6. Experimental Results and Discussion

One of the challenging problems is creating an efficient algorithm for the SSVEP-
based BCI system to classify the EEG signals to their corresponding stimuli effec-
tively. This thesis demonstrates the ability to design an effective speller system that
can provide people with a disability an alternative way of communication. Recently,
researchers and developers have focused on enhancing the classification procedure
of the SSVEP-based BCI system. Thus, some SSVEP-based BCI applications, like
spellers have many flickering targets and it challenging to deal with multi-class clas-
sification. In the literature, some supervised techniques were used, like standard
CCA and CORRCA. This study uses an ensemble method called Error-Correcting
Output Codes (ECOC) to handle the multi-class classification. Furthermore, three
different feature techniques were used to evaluate the performance of the classifica-
tion ensemble method. In addition, for performance measurements, both accuracy
and information transfer rate are reported. Four coding matrix designs of ECOC
structure are used. This chapter will provide the results of applying the ECOC
ensemble methods with different feature extraction methods.

6.1 Dataset

To evaluate the performance of the ECOC ensemble method with SSVEP-based BCI.
We choose a publicly available SSVEP benchmark dataset [45]. This dataset can
provide us with reliable measurements since it collects it from 35 subjects compared
to other datasets that use a lower number of participants. Furthermore, to test the
multi-class classification algorithm, the data includes 40 flickering targets.

6.1.1 SSVEP Benchmark Dataset

Over the last few years, the SSVEP benchmark dataset has been widely used
in several experiments. Some results showed that this dataset was collected
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efficiently to meet the requirements for various experimental tests [66, 67, 68].
One of its advantages is that this data includes a high number of stimuli (40
stimuli). Thus, it can provide reliable measurements. Moreover, this dataset is
recorded from 35 healthy subjects (17 females and 18 males). Each subject is
placed in front of a monitor that displays a 5× 8 matrix of flickering targets.
These targets are flashing at different frequencies and the frequency range of
[8-15.8Hz] with an interval of 0.2 Hz. Fig. 6.1 shows the flickering targets with
their corresponding frequencies. The forty targets are twenty-six English alphabets,
ten digits, and four symbols. Sixty-four channels are utilized to record the data,
and the experiment contains six blocks for each subject. Each block consists of
forty trails for each target. As a visual cue, each trial begins with a red square, and
it is displayed on the monitor for 0.5 s. Subjects are requested to shift their gaze
to the target as soon as possible during the cue duration. Each trial is recorded
within 6 s length. Hence, the stimuli are flickering for 5 s, and between each trail,
there is a blank screen for 0.5 s. During the experiments, subjects are asked to
avoid eye blinks. Furthermore, the data first is downsampled to 250 Hz, and then
a notch filter at 50 Hz is utilized to remove and eliminate the noise of the power-line.

Figure 6.1 Frequency and phase values for all stimuli and their corresponding
characters, numbers and symbols
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6.1.2 Data Preprocessing

In the SSVEP benchmark dataset, 64 channels were used to collect data and infor-
mation from the participants. In this study, only 9 channels are selected out of 64
channels, and this selection is based on electrodes location, mainly the electrodes
located in the occipital area; this area is responsible for visual processing. These
channels’ electrode names are Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2. In
Fig. 6.2, the electrodes position are highlighted in green.
The data is first downsampled to 250 Hz to reduce the workload and increase data
processing speed. Then, with an infinite impulse response (IIR) filter, we apply
band-pass filters from 8 Hz to 88 Hz. Using the filtfilt() feature in MATLAB, zero-
phase forward and reverse filtering was implemented. In addition, we consider a
delay of 140 ms as the subject shifts their gaze towards the stimuli.

Figure 6.2 The 9 channels that are used in the experiment are highlighted in green
color

6.2 Performance Evaluation

The frequency recognition accuracy generally measures BCI-spellers’ performance,
and to design a reliable speller system, a high-speed system is required.
Accuracy: It shows how the system can be accurate in detecting the desired target
frequency and the accuracy is measured by the number of the correct classified
target over the total number of target identifications. The percentage of the correct
target identifiers, percent accuracy is recorded.
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Accuracy = Number of correct target identifications
Total number of target identification ×100

Information Transfer Rate (ITR): The speed of the system is usually measured
by ITR score (i.e. how fast Information may be transferred in one minute in terms
of bits). The ITR calculation formula is provided below:

ITR (bits per min) = [log(N)+P log(P )+(1−P ) log
( 1−P
N −1

)
]× 60

T

where, N = the number of targets
P = the accuracy of the classification
T = time required to identify one target in seconds

In ITR calculation, we report two different ITR scores. In the first score, we consider
the gaze shifting time, while in the other, it is not included in the calculation.

6.3 Analysis of ECOC Designs with Several Feature Extraction Methods

The experimental setup and results are demonstrated in Section 6.3.1 to Section
6.3.3. We explore the ECOC ensemble method with three feature extraction methods
CCA, PSDA, and CORRCA.

6.3.1 Analysis of ECOC Structures using CCA Features

Section 4.1 explains the mathematical analysis for the CCA feature extraction
method. In this section, we define the essential parameters for the CCA method.
The result of applying CCA features with ECOC framework using different coding
matrix designs is presented in Section 6.3.1.1. In this work, we employ the standard
CCA method to determine the fundamental parameters preliminary. Then, we carry
on this result to our framework. One of the main parameters that can affect SSVEP
spellers performance is the number of channels. Besides, the SSVEP benchmark
dataset is recorded using 64 channels, and some previous studies have selected only
9 channels out of 64, and these channels are located in the central visual area [25,
69].
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Figure 6.3 A comparison of standard CCA method with 64 channels and 9 channels

Fig. 6.3 shows that using the full set of channels (64 channels) with the standard
CCA method reduces performance, especially for a short time window. For example,
at 1 s, selecting nine channels improves accuracy by approximately 30%. Further-
more, another critical parameter that can affect the CCA performance is the number
of harmonics. The number of harmonics is usually included in the artificial reference
signal, as shown in the formula 4.2. In previous studies, the optimal number of har-
monics was obscure. Our study reports two numbers of harmonic 2 and 5 because
the other number of harmonics like 3 and 4 have a similar performance.
Fig. 6.4 confirms that for a short time data segment from 0.5 s to 1.5 s, using five
as the number of harmonic leads to better results. Hence, at 1s, the difference is
significant, and it is close to 20% improvement in the accuracy.
In conclusion, based on our experimental results, the CCA parameters are selected
as follows: the number of channels is nine, and the number of harmonics for the
reference signal is five.
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Figure 6.4 A comparison of standard CCA method with two different number of
harmonic 2 and 5

Fig. 6.5, illustrates the process of feature extraction using the CCA method for
a single subject and one block that is containing 40 trails. The first block in the
diagram shows the raw EEG signals using nine channels, and in the second block, a
band-pass filter with a range of 8-88 Hz is applied to EEG signals. Then a canonical
correlation analysis (CCA) method is performed. The output is a vector of correlated
coefficients with a dimension {1,40} for one character/trail, N denotes the number
of classes. The final feature matrix for one subject and a single block is a 40× 40
matrix.
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Figure 6.5 A general paradigm for CCA feature extraction steps and the the final
feature dimension for one subject one block

6.3.1.1 Evaluation and Results using ECOC Framework with CCA Fea-

tures

Despite the standard CCA method efficiency, a potential problem is that using
the maximum correlation coefficient selection to determine the desired frequency
for SSVEP was not adequate to get a high ITR score and classification accuracy
especially, for a short time window. To address this problem, this study proposes a
novel approach based on an ensemble method to deal with a multi-class classification
problem, which is Error-Correcting Output Codes (ECOC). Using CCA features,
we apply the ECOC framework for the frequency recognition part. Several coding
matrix designs perform the ECOC framework; the four main coding matrices are
one-vs-all (OVA), one-vs-one (OVO), random sparse, and random dense. In this
study, the four coding matrix structures are used to evaluate the best coding matrix
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design performance. In this thesis, the main interest is to get a higher information
transformation rate (ITR) for a short time segment compared to a standard feature
extraction methods such as standard CCA and standard CORRCA.
In the ECOC framework, each column in the ECOC structure represents a single
binary classifier; in our experiments, we use SVM as a base classifier; both Linear
SVM and SVM with RBF kernel are integrated into this study. As a result, using a
nonlinear SVM with ECOC improves the recognition accuracy compared to linear
SVM. Fig. 6.6, shows that using ECOC for frequency recognition can enhance the
overall performance compared to the standard CCA method. In both coding matrix
design, OVA and OVO using SVM with RBF kernel as a binary learner for ECOC
classifiers increase accuracy, especially for a short time window. Meanwhile, for time
windows like 4 s and 5 s, the difference is not significant.

Figure 6.6 The average accuracies across all subjects using Linear SVM and SVM
with RBF kernel as base classifier with CCA features from 1 s to 5 s time window

with 1s interval
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In this part the technical details about CCA feature extraction method with ECOC
framework are discussed in details. Furthermore, before applying feature extraction
technique, we preprocess the raw EEG signals to reduce the external artifacts in
the signals and make it smoother as discussed in Section 4.1.1.
In general, the canonical correlations in the CCA method are bounded between [0
- 1], and the higher value means the correlation between the two variables is high.
SSVEP benchmark dataset is gathered from 35 subjects. Each subject can perform
differently during the experiments due to several reasons like eye movement, age,
etc. Therefore, to evaluate our framework with SSVEP-based BCI speller system,
two strategies were used for training the BCI system. The first strategy is described
in Section 6.3.1.1.1 and the second in Section 6.3.1.1.2.

6.3.1.1.1 Training Each Subject Individually (Training Per Subject)
In this strategy, the features are extracted from each subject separately since

participants can behave differently during the experiments. The dataset that we use
consists of 35 participants, eight of them had some previous experience of using the
SSVEP-based BCI speller experimental setup from some studies [69, 25]. In contrast,
the other 27 subjects were naïve to this kind of experiment. After extracting the
features from each subject separately, a single training model is created. We consider
that each subject performs individually throughout the experiments, thanks to many
reasons like eye movement, age, etc. Therefore, we report the performance of each
subject individually and also the average of 35 subjects.
Furthermore, Due to the limited number of features by considering each subject
separately, as a data augmentation step, to increase the feature set’s size, we use
a 50% overlap time window. For example, For 1 s time window, the features are
extracted from these time intervals (0-1, 0.5-1.5, 1-2, 1.5-2.5, 2-3, 2.5-3.5, 3-4, 3.5-
4.5, 4-5 s). As a result, nine different intervals are used to extract the features for 1
s time window. In the end, these features that are coming from different intervals
are combined as one feature set. However, the test set is extracted from the mean
interval of the time window. For example, for 1 s, the interval is selected from 2.5-
3.5 s time window. Fig. 6.7 describes the general manner of training each subject
separately.
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Figure 6.7 The diagram explains the first training method based on extracting the
features from each subject separately and creating a single training model for each

feature set

6.3.1.1.2 Combining the Features from Overall Subjects with a Single
Model Training (Training the Combination of Subjects)
In this training strategy, the features are extracted from each subject, and then

they are combined by concatenating it vertically as a single feature set, as shown in
Fig. 6.8. For this method, a single model is trained. However, we test this model
based on several test sets coming from each subject of an alternative block. The
dataset consists of 6 blocks; therefore, we select four blocks for training, one for
validation, and the remaining block for testing.

As a conclusion of both training criteria, training per subject method has a
better performance than training the combination of overall subjects in the ECOC
framework using CCA features.
To clarify, Fig. 6.9 illustrates that training each subject individually and average
results across subjects can improve the frequency recognition accuracy for a short
time window. Hence, for a short time window like 1 s and 2 s, training each subject
individually and then taking the average of them can improve the performance
than combining the features from all subjects and using a single model for training.
In addition, for the training process, we split the data into three portions, training,
testing, and validation. The SSVEP benchmark dataset consisted of 6 blocks for
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Figure 6.8 The diagram illustrates the second training method that uses the
combinations of the features to train a single model

Figure 6.9 A comparison between two ways of training strategies for both ECOC
structures OVA and OVO, the first method is training each subject individually
and the second method is training the combination of subjects, the CCA features

are used with different data lengths from 1 s to 5 s with a step of 1 s

each subject. Each block is containing 40 trials corresponding to all 40 characters.
We use four blocks for training, one block as a validation block, and one block
for the experiments’ test set. Furthermore, A leave-one-out cross-validation is
employed to evaluate the classification accuracy. Since four blocks are used for
training and one for validation and one block left-out as a test block, to get accurate
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results, we repeated this process six times with an alternative test block. In the
final result, the average across all blocks are reported.
Moreover, the base classifier for the ECOC framework in this study is the support
vector machine (SVM). To determine its optimal parameters, which are C (in case
of MATLAB box constraint) and sigma (σ) (MATLAB: kernel scale) in SVM with
radial basis function (RBF) kernel, and just C in linear SVM.
Our training strategy in this study is to train a first model and search for the
optimal parameters that minimize the loss function by using Bayesian optimization;
then after selecting the best parameters C and (σ) in the case of SVM with RBF
kernel and C for the linear SVM, the best parameters are utilized to train a new
model.
We endeavor to compare several coding matrix designs like OVA, OVO, random
sparse, and random dense in this work. As a result, many designs behave similarly,
but there is a small significant difference. The number of classifiers is different in
each structure, and some coding matrix designs like OVA and random dense are a
binary ECOC, while others are ternary ECOC means some classes are ignored in
the training process. Fig. 6.10 shows the ECOC structure results for 5 s for all four
coding matrix designs.

Figure 6.10 (a) Classification accuracies averaged across all subjects obtained by
CCA features with ECOC framework for four different ECOC structures OVA,

OVO, random dense and random sparse with a SVM RBF kernel as binary learner
for a different data lengths from 0.5 s to 5 s
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Figure 6.11 ITRs corresponding to the accuracy graph in part(b) when a binary
learner is a kernel SVM. The error bars indicate standard errors

Table 6.1 Classification accuracy for 1 s time window per block, each block is the
overall average of 35 subjects, and the last row presents the average of the six blocks.

Block Number OVA OVO Random Dense Random Sparse CCA

B1 89.30± 11.77 91.45± 10.08 87.68± 11.27 91.58± 10.04 68.35± 19.83

B2 89.27± 15.40 90.67± 11.38 85.35± 20.26 91.90± 9.61 67.14± 23.67

B3 61.45± 19.63 61.05± 19.41 60.70± 20.82 63.04± 19.20 66.21± 22.04

B4 59.32± 17.51 59.98± 16.86 56.11± 19.58 60.82± 17.28 65.28± 18.94

B5 89.85± 11.97 91.14± 10.60 87.98± 12.66 91.84± 9.52 66.14± 21.85

B6 89.11± 10.05 89.92± 9.56 90.11± 11.47 92.97± 9.28 65.35± 21.49

Total Blocks 79.72± 12.32 80.70± 10.87 77.99± 15.47 82.03± 11.15 66.41± 20.04

Table 6.2 Classification accuracy for 3 s time window per block, each block is the
overall average of 35 subjects, and the last row presents the average of the six blocks.

Block Number OVA OVO Random Dense Random Sparse CCA

B1 99.38± 1.48 98.91± 2.19 98.51± 3.52 98.51± 2.66 92.71± 10.02

B2 99.57± 1.31 98.63± 3.82 99.31± 1.71 99.23± 2.35 90.57± 15.14

B3 99.54± 1.07 99.02± 2.15 99.58± 0.87 99.4± 2.07 91.57± 13.10

B4 99.57± 0.91 98.87± 2.81 98.93± 3.34 98.31± 4.87 91.21± 12.76

B5 99.57± 0.91 99.02± 2.4 98.85± 3.37 98.58± 3.12 89.92± 15.10

B6 97.40± 4.43 97.28± 4.17 97.78± 3.99 96.54± 6.32 90.71± 14.54

Total Blocks 99.10± 1.31 98.62± 2.36 98.83± 1.68 98.43± 3.10 91.12± 12.44
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6.3.2 Analysis of ECOC Structures using PSDA features

In this part, another feature extraction method is investigated in our framework.
This feature extraction method is based on power spectrum density analysis (PSDA)
via Welch method. We use the function “pwelch” in MATLAB to compute the
welch features. However, some parameters need to be defined, such as the Hamming
window and the overlapping. The hamming window in this experiment is selected
twice the sampling rate frequency with 50% overlap, and for a short time window
like 1 s, the hamming window is equal to the sampling rate.
One of the PSD feature extraction methods’ obstacles is that this method is
designed for a single channel, but the SSVEP-EEG signal is a multi-channel signal.
In this study, we use two approaches to deal with a multi-channel problem for PSD
feature extraction. The first approach is explained in Section 6.3.2.0.1 and the
second in Section 6.3.2.0.2.

6.3.2.0.1 PSD Computation using Channels’ Mean

Based on CCA channel selection results, only nine channels are used with
PSD features. However, the PSD algorithm is based on single channels. First
approach to overcome the multi-channel EEG signal problem is to apply the
algorithm to individual channels and then we take the mean. Fig. 6.12 illustrate
the process of computing PSD features by taking the mean of 9 channels.

6.3.2.0.2 PSD Computation using Concatenation of Channels
An alternative way to manipulate the PSD feature with multi-channel EEG sig-

nals, is to concatenate the PSD features from 9 channels as one vector. Fig. 6.14
displays the PSD features that are extracted from each channels with their electrode
number and the last graph shows how we concatenate them.

6.3.2.1 Evaluation and Results using PSDA via Welch’s Method

After computing the PSD features in three different criteria, we calculate the PSD
feature for a single channel in the first criteria. However, in the second criteria,
we compute the mean of PSDs of 9 channels, and in the last criteria, we calculate
the PSDs of 9 channels, and then we concatenate them in the row dimension.
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Figure 6.12 The first block shows the raw EEG signals, and then a band-pass filter
is applied for the signals, in the next step, the PSD is computed for 9 channels.
Finally, the mean of those PSDs is calculated (The diagram presents the fifth

flickering stimulus ’E’ with 12 Hz frequency)

Figure 6.13 PSD feature applied for each nine channels
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Figure 6.14 Concatenation of PSD features from nine channels

The ECOC framework is utilized to classify these features; in concord with CCA
features, the best three coding matrix designs are OVA, OVO, and random sparse.
In this work, our goal is to enhance the target identification accuracy as well as
the ITR score to establish an SVEP-based BCI speller with high speed and reliable
performance. Therefore, both results from a short time window (1 s) and a large
time window (5 s) are reported.
The results revealed that the information transfer rate (ITR) when we use PSD
features is different from using CCA features. In other words, the ITR score using
the CCA feature has only one peak at a short time window (in our experiments,
the peak appears at 1 s time window), and then it keeps decreasing along with a
higher time window. In contrast, the ITR score using PSD features is fluctuating.
Hence, two peaks are developed in our results, the highest peak at 1 s and the next
one is located at 3 s time window.
Consequently, the ITR score of CCA feature outperforms the ITR of PSD features.
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Figure 6.15 Average accuracy across subjects using the concatenation of PSD using
random sparse as coding matrix structer
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Figure 6.16 ITR score using the concatenation of PSD using random sparse as a
coding matrix structure. Hence, two ITR scores are reported with gaze shifting

time 0.64 and without considering it

We report the frequency recognition accuracy for three types of PSD features, the
first type is calculating the PSD for a single channel. The experimental results
show that using the channel that is recorded from electrode “Oz” has the highest
performance compared to other channels. However, the concatenation of PSDs with
random sparse coding matrix design has the highest accuracy compared to other
coding matrix designs. As shown in the table 6.3.
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Table 6.3 Frequency recognition accuracy using PSD with OVA and random sparse
ECOCs for 5 s.

Electrode Numbers Electrode Names Accuracy OVA Accuracy RSP Accuracy OVO

48 PZ 49.87 44.38 45.5

54 PO5 57.94 54.98 54.14

55 PO3 68.88 65.67 65.62

56 POz 77.68 75.14 75.01

57 PO4 68.87 64.55 64.79

58 PO6 55.58 50.45 49.52

61 O1 66.46 65.35 63.53

62 Oz 80.04 79.23 78.73

63 O2 67.18 64.55 64.02
Mean of 9 Channels

combination of subjects 9 Channels 80.59 80.14 79.44

Concatenation of 9 Channels
combination of subjects 9 Channels 83.13 85.20 80.25

Average of 35 subjects using
Mean of 9 Channels 9 Channels 64.46 61.27 51.95

Average of 35 subjects using
Concatenation 9 Channels 70.78 67.36 65.52

Table 6.4 Frequency recognition accuracy using PSD with OVA and random sparse
ECOCs for 1 s.

Electrode Numbers Electrode Names Accuracy OVA Accuracy RSP Accuracy OVO

48 PZ 8.98 8.84 11.33

54 PO5 10.45 10.59 13.58

55 PO3 16.87 17.33 19.76

56 POz 22.71 22.17 24.54

57 PO4 14.71 13.97 16.90

58 PO6 9.24 9.32 11.66

61 O1 14.45 14.91 16.92

62 Oz 21.17 22.02 23.45

63 O2 13.15 13.32 15.97
Mean of 9 Channels

combination of subjects 9 Channels 21.51 22.40 24.9

Concatenation of 9 Channels
combination of subjects 9 Channels 25.69 27.20 28.05

Average of 35 subjects using
Mean with 50% overlap 9 Channels 21.83 22.20 23.62

Average of 35 subjects using
Concatenation with 50% overlap 9 Channels 30.83 34.84 31.178
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Table 6.5 ITR score using PSD with OVA and random sparse ECOCs for 1 s.

Electrode Numbers Electrode Names ITR OVA ITR RSP

48 PZ 2.75 2.65

54 PO5 3.86 3.98

55 PO3 10.01 10.51

56 POz 16.97 16.28

57 PO4 7.73 7.00

58 PO6 2.94 3.00

61 O1 7.47 7.12

62 Oz 15.05 16.09

63 O2 6.22 6.38
Mean of 9 Channels

combination of subjects 9 Channels 15.44 16.57

Concatenation of 9 Channels
combination of subjects 9 Channels 21.31 23.04

Average of 35 subjects using
Mean with 50% overlap 9 Channels 15.85 16.32

Average of 35 subjects using
Concatenation with 50% overlap 9 Channels 28.34 34.58

Table 6.6 ITR Score using PSD with OVA and random sparse ECOCs for 5 s.

Electrode Numbers Electrode Names ITR OVA ITR RSP

48 PZ 17.79 14.80

54 PO5 25.40 20.74

55 PO3 29.60 27.44

56 POz 35.91 34.03

57 PO4 29.59 26.70

58 PO6 21.09 18.11

61 O1 27.96 27.23

62 Oz 37.72 37.09

63 O2 28.44 26.70
Mean of 9 Channels

combination of subjects 9 Channels 38.14 37.79

Concatenation of 9 Channels
combination of subjects 9 Channels 39.97 41.86

Average of 35 subjects using
Mean 9 Channels 26.64 24.59

Average of 35 subjects using
Concatenation 9 Channels 30.91 28.56

50



6.3.3 Analysis of ECOC Structures using CORRCA Features

CORRCA is one of the efficient methods for frequency recognition for BCI-SSVEP.
It has been introduced with BCI paradigm in the following study [70]. In another
study [53], the results showed that the standard CORRCA method outperforms the
standard CCA method. Therefore, we use the CORRCA method as an alternative
method for feature extraction. We investigate this feature with ECOC framework
and compare it with other features’ performance.

6.3.3.1 Evaluation and Results using ECOC Framework with CORRCA

This section presents the results of applying the ECOC framework with CORRCA
features. As an initial step, we compare the performance of standard CORRCA
method with CORRCA features with ECOC framework.
Fig. 6.17 displays the average classification accuracy across 35 subjects. The results
indicate that using the ensemble ECOC framework can improve accuracy. For ex-
ample, at 1 s, the accuracy using ECOC structure increase by approximately 10%
compared to the standard CORRCA method.

Figure 6.17 A comparison between standard CORRCA and CORRCA feature with
ECOC structure for frequency recognition
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Figure 6.18 The ITR score using CORRCA feature with OVA coding matrix. Two
ITR scores are reported with gaze shifting time 0.64 and without considering it

Table 6.7 Accuracy and ITR using CORRCA features with two ECOC structure
OVA and random sparse ECOCs.

CORRCA Features Accuracy OVA AccuracyRSP ITR OVA ITR RSP

1s 84.24 72.61 231.62 181.63

2s 91.00 87.48 132.29 123.48

3s 93.64 90.91 93.436 88.04

4s 95.56 93.367 72.37 69.28

5s 96.075 94.975 58.50 57.22
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Table 6.8 Classification accuracy using CORRCA with OVA ECOC. Six time win-
dows (i.e., 0.5, 1, 2, 3, 4 and 5 s) were used for corresponding to the six series.

Subject Number OVA 05s OVA 1S OVA 2S OVA 3S OVA 4S OVA 5S
S1 35 65.875 85.125 76.625 82.875 91.00
S2 36.5 69.75 90.625 92.5 95 96.25
S3 51 79.25 95.125 93.875 95.25 95.13
S4 70.5 92.875 96.625 95.625 96.25 96.63
S5 45 84.125 97.625 98.75 99.75 99.75
S6 50 84.125 94.875 96.75 97.625 98.38
S7 23 64.75 87 93.625 98.875 99.25
S8 30 53.375 64.625 72.75 78.625 83.00
S9 18.5 30.625 46.25 52.5 59.375 69.38
S10 23.5 51.125 64.25 73.375 74.75 77.00
S11 28 64.875 82.5 88.5 89 92.38
S12 68 93.875 99.5 98.375 99.5 99.50
S13 57.5 90.75 96 96.625 96.875 96.88
S14 36.5 76.375 92.125 93 94.75 96.38
S15 31 69.25 87.25 93.875 95.25 95.63
S16 7.5 7.625 14.125 20.375 20.125 29.63
S17 12 22.75 34.125 60.375 60.125 74.50
S18 22 50.625 66 82.125 85.625 92.38
S19 8.5 10.5 16.375 25 29.625 39.38
S20 21.5 39.25 78.25 92.125 94.375 98.00
S21 6.5 15.5 23.25 21.5 19.875 23.88
S22 59 81.125 95.125 97.875 98.5 99.38
S23 23.5 48.375 72.75 71.5 81.75 81.50
S24 16 41.5 71.875 83.875 88.5 94.63
S25 69.5 92.875 99.75 97.75 99.125 99.00
S26 76.5 91.75 99.125 98.625 99 99.00
S27 24.5 52.25 72.625 81.25 83 89.88
S28 24 49.75 74.25 71.75 79 86.13
S29 26.5 50.125 64.75 76 80.5 85.25
S30 27 42.5 66.5 80.375 83.625 90.25
S31 88 97.5 100 99.75 100 100.00
S32 59 86.5 92.75 98 97.375 98.75
S33 3 7.375 12.25 11.875 10.625 9.00
S34 60 90.125 98.625 97.75 98.875 98.50
S35 32 58.875 81.625 87.5 87.75 92.00

Average of 35 subjects 36.3 60.22 74.67 79.2 81.46 84.785
Average of 35 subjects
without Bad subjects 40.16 66.67 82.18 86.88 89.38 92.43

Combination of 35 subjects 45.23 84.24 91 93.64 95.56 96.075
Standard CORRCA 51.07 77.012 85.369 89.357 91.869 92.786
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7. Conclusions

Recently, researchers have focused on improving the classification procedure of the
SSVEP-based BCI system. This thesis investigates an ECOC ensemble method to
improve the target identification for SSVEP-based BCI speller. This method deals
with multi-class classification problems, and our speller system consists of 40 targets.
The results show that the ECOC ensemble method with BCI framework has been
executed efficiently to classify the character/target to its corresponding class. We
examine these classification methods with some common and conventional feature
extraction methods. Those feature extraction methods are PSD via Welch and CCA,
and CORRCA. Furthermore, several coding matrix designs for ECOC structures are
utilized to evaluate the performance of the ECOC framework. In this thesis, we are
interested in improving the information transfer rate (ITR) for a short time window
to design a fast and efficient BCI speller. The result showed that using the PSD
feature with the ECOC method has the lowest performance than the other feature
extraction methods. Hence, PSD’s highest ITR score with random sparse ECOC
coding design at 1 s is 56 bit/min. Besides, using CCA features outperform the
PSD feature with the ECOC ensemble method, and the highest ITR score for CCA
feature 222 bits/min for a 1 s time window. Eventually, the CORRCA features with
ECOC framework have a better performance than CCA features. The results show
that the highest ITR is 231 bits/min at a 1 s time window with an OVA coding ma-
trix. Furthermore, the ECOC ensemble method outperforms both standard method
standard CCA and standard CORRCA. Moreover, the performance of the coding
matrix designs in terms of the target identification accuracy seems to be similar.
However, OVA and random sparse ECOC designs have a slightly more reliable per-
formance than other designs. To conclude, using the ECOC ensemble method for
target identification for SSVEP-based BCI can improve the speller performance and
build a reliable speller system with a high speed.
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