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Abstract

In this thesis, we study the Castelnuovo-Mumford regularity of edge ideals as-

sociated to graphs. We first give a detailed proof of celebrated theorem of Fröberg

which characterizes edge ideals with linear resolution. We also collect recent results

on different bounds and exact values of regularity of edge ideals associated to dif-

ferent classes of graphs. In the last part, we study some bounds and exact values of

regularity of powers of edge ideals.



KENAR İDEALLERİN DÜZENLİLİĞİ VE ONLARIN KUVVETLERİ

Elshani Kamberi
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Tez Danışmanı: Yrd. Doç. Dr. Ayesha Asloob Qureshi

Anahtar Kelimeler: Kenar idealler, Castelnuovo-Mumford düzenliliği, graflar,
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Özet

Bu tezde graflarla ilişkili kenar ideallerinin Castelnuovo-Memford düzenliliği üzerine

çalıştık. Önce, Frönberg’in kenar ideallerini doğrusal çözünürlükle karakterize eden

meşhur teoreminin detaylı bir ispatını vereceğiz. Ayrıca, farklı graf sınıflarıyla ilişkili

kenar ideallerinin düzenliliğinin farklı sınırları ve kesin değerleri hakkındaki son

sonuçları topluyoruz. Son bölümde, kenar ideallerin kuvvetlerinin düzenliliğinin

bazı sınırlarını ve kesin değerlerini inceliyoruz.
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Introduction

Monomial ideals are one of the main algebraic tools that connects commutative

algebra with combinatorics. Following the work of Richard Stanley, in the late 1970’s

a new and exciting trend started in commutative algebra, namely, the combinatorial

study of squarefree monomial ideals. One can associate a simplicial complex with a

squarefree monomial ideal and vice versa. In particular, every squarefree monomial

ideal generated in degree 2 can be naturally associated with a finite simple graph.

This translation allows us to describe the algebraic and homological properties of

such ideals in terms of combinatorial data of graphs. In this work, we focus on the

results obtained by several authors in last two decades on the Castelnuovo-Mumford

regularity (or simply, regularity) of edge ideals. Regularity of ideals, modules or

sheafs is an important tool to understand their complexity. The interpretation of

regularity of modules in commutative algebra is given in terms of minimal graded

free resolutions of modules.

Let G be a simple finite graph on [n] and K = [x1, . . . , xn] be a polynomial ring

over a field K. Then I = (xixj : {i, j} ∈ E(G)) is called the edge ideal of G. In

fact, every squarefree monomial ideal generated in degree 2 can be interpreted as

an edge ideal. More generally, squarefree monomial ideals can be interpreted as

edge ideals of hypergraphs. Restricting to the class of edge ideals, the first question

that arises is for which classes of graph regularity of an edge ideal, denoted by

reg(I(G)), is minimal possible, that is reg(I(G)) = 2. It is equivalent to say that

when an edge ideal admits a linear resolution. The second question is that when an

edge ideal does not have a linear resolution, then what are the natural bounds for

it’s regularity and if these bounds can be improved for restricted classes of graphs.

Powers of edge ideals are also of particular interest and it is rapidly growing topic

in combinatorial study of powers of squarefree monomial ideals. In [48] and [3],

authors gave a detailed survey on regularity of edge ideals and their powers which

provides a guideline for our work.

A breakdown of the contents of this thesis is given as follows: In Chapter 1,

we give combinatorial and algebraic notation and definitions which will be used

in later chapters. Chapter 2 is dedicated to the study of regularity of edge ideals

of different classes of graphs. We divided Chapter 2 into 3 sections. In the first

section, we give basic properties of edge ideals and certain inductive results that

will be used in other subsections. In the second section, our main goal is to give a

detailed proof of Fröberg’s Theorem [20] that states that an edge ideal of a graph
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G has linear resolution if and only if complement graph of G is chordal. Other than

the original proof of Fröberg in [20], there are other proofs with different techniques

from several authors, (for example, [26], [39]). However, we will present the proof

given in [48]. In the last section, we have tried to collect most important and recent

results about the upper and lower bounds for regularity of some special classes of

edge ideals with proof. The most natural lower and upper bounds of regularity of

I(G) are the maximum size of an induced matching in G (see Theorem 2.3.2) and

the minimum size of a maximum matching in G (see Theorem 2.3.5), respectively. In

particular, in Theorem 2.4.9, Theorem 2.4.18, Theorem 2.4.20, Theorem 2.4.23 and

Theorem 2.4.24 we list some recent results which gives different classes of graphs,

for which the regularity for I(G) is ν(G) + 1 where ν(G) is the maximum size of an

induced matching in G. For each class of graphs, different techniques are used to

obtain reg I(G) = ν(G) + 1 and we have collected all these proof together here.

In Chapter 3, we focus on the powers of edge ideals. One of the main reason of

the interest in the study of regularity of powers of edge ideals is due to well knows

Theorem of Herzog, Cutkosk and Trung [10] and Kodiyalam [35], that states that

if I is a graded ideal of a standard graded K-algebra, then the regularity of Is is

asymptotically a linear function of s. In simple words, there exists constants a and

b such that reg(Is) = as+ b when s is large enough. To find the smallest number s0

when this equality holds, is a hard problem. In recent years, it has been the topic

of several papers, [2], [31], [6], [1], [30] etc, where authors tried to classify such s0 or

give some bounds for this function. In Chapter 3, we list some prominent results in

this direction.
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Chapter 1

Preliminaries

1.1 Combinatorial Preliminaries

First we recall some basic definitions and notions related to graph theory. All graphs

considered in this work will be finite simple graphs, unless stated otherwise.

Let G be a simple finite graph. We denote the vertex set of G by V (G) and the

edge set of G by E(G). Two vertices in G are called adjacent if they are connected

by an edge. A subgraph H of G is a graph with V (H) ⊆ V (G) and E(H) ⊆ E(G).

A subgraph H of G is called induced subgraph if for all x, y ∈ V (H), we have

{x, y} ∈ E(H) whenever {x, y} ∈ E(G). For any x ∈ V (G), we denote by G \ x the

induced subgraph of G on V (G) \ {x}.
The neighborhood of a vertex x in G is denoted by NG(x) and it is the set of

all vertices of G that are adjacent with x, that is NG(x) = {y : {x, y} ∈ E(G)}.
Morever we set NG[x] = NG(x) ∪ {x}. The degree of a vertex x ∈ V (G) is denoted

by deg(x) and is equal to |NG(x)|. A vertex of a graph is called a leaf if it has degree

one. The complement graph of G is denoted by Gc and it is the graph with the

same vertex set as of G and e ∈ E(Gc) if and only if e /∈ E(G). A graph is called

complete if every pair of its vertices is connected by an edge. A complete graph on

n vertices is denoted by Kn. A complete graph is also called a clique.

A walk in G is a sequence of vertices x0, x1, . . . , xn such that {xi−1, xi} ∈ E(G),

for all i = 1, . . . , n. A walk is called a path if xi 6= xj, for all 0 ≤ i < j ≤ n. The

length of a path on n+ 1 vertices is set to be n. The distance between two vertices

x and y is denoted by d(x, y) and is defined to be the number of edges in a shortest

path connecting them. A cycle in G is a sequence of distinct vertices x1, . . . , xn

such that {x1, xn} ∈ E(G) and {xi−1, xi} ∈ E(G) for all i = 2, . . . , n. A cycle on n

vertices has length n and is denoted by Cn. If the complement of a graph is a cycle
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then the graph itself is called anticycle.

Two vertices x, y ∈ V (G) are said to be connected if there is a path in G that

starts with x and end with y. A graph G is called connected if all pairs of its vertices

are connected, otherwise it is called disconnected.

A graph is called a forest if it does not contain any cycle as a subgraph. A

connected forest is called a tree. A chord in a cycle is the edge xixk where k 6=
i + 1, i− 1 for any i = 1, . . . , t. A graph G is called chordal if every cycle of length

n ≥ 4 in G has a chord. A graph G is said to be co-chordal if Gc is chordal.

A chordal graph
A co-chordal graph

Figure 1.1:

The intersection graph of a finite family of non-empty sets is obtained by repre-

senting each set by a vertex, and two vertices are connected by an edge if and only

if the corresponding sets intersect. We have following characterization of chordal

graphs in terms of intersections graph of family of subtree of a tree.

Theorem 1.1.1. [17] A graph is chordal if and only if it is the intersection graph
of subtrees of a tree.

Let H and K be two graphs with disjoint set of vertices. Then the union of H

and K is the graph G = H ∪K with vertex set V (G) = V (H)∪ V (K) and edge set

E(G) = E(H) ∪ E(K) together with edges obtained by connecting the vertices of

H with all the vertices of K. The disjoint union of H and K is a graph G that has

two connected components, namely, H and K.

A graph G is called a bipartite graph if its vertex set can be partitioned into two

disjoint sets X and Y such that {x, y} ∈ E(G) only if x ∈ X and y ∈ Y . It is a

well known fact that a graph is bipartite if and only if it does not contain cycles of

odd length. A bipartite graph is called complete if {x, y} ∈ E(G) for all x ∈ X and

y ∈ Y . A complete bipartite graph with |X| = n and |Y | = m is denoted by Kn,m.

A matching in a graph G is a set of pairwise disjoint edges. An induced matching

is a matching such that the induced graph on its vertex set contains the edges only

from the matching itself. A maximal matching is a matching of G which is not

contained in any other matching of G. The size of a matching is the number of
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edges in it. We denote by ν(G) the maximum size of an induced matching of G and

by β(G) the minimum size of a maximal matching of G.

A vertex cover of G is a subset of V (G) such that it intersects every edge of G.

A vertex cover is said to be minimal if none of its proper subsets is a vertex cover.

A subset of vertices of a graph is called independent if it does not contain any

adjacent vertices. If G can be partitioned into a clique and an independent set of

vertices, then it is called a split graph. In other words a split graph is a chordal

graph with a chordal complement.

Figure 1.2: A split graph

Let H1, H2, . . . , Hn be induced subgraphs of G. We say that H1, H2, . . . , Hn

covers the edges of G if E(G) = ∪ni=1E(Hi) as a union or a disjoint union. The

splitting cover number of G is the minimum number of induced split subgraphs to

cover the edges of G.

Theorem 1.1.2. [8, Theorem 4] Let G be a chordal graph. Then, the split cover
number of G is equal to β(G).

Let G be a graph and let a, b, c and d be four distinct vertices of G such that

{a, b} and {c, d} are edges in G. The edges {a, b} and {c, d} form a gap in G if there

does not exists any edge in G with one end point in {a, b} and other end point in

{c, d}. A graph is called gap-free if it does not have any pair of edges that form a

gap. In other words, G is a gap-free graph if it does not contain two vertex-disjoint

edges as an induced subgraph. Note that a graph G is gap-free if and only if Gc

does not contain C4 as an induced subgraph.

A graph isomophic to K1,3 is called a claw. More generally, a graph isomorphic

to K1,n is called n-claw. The unique vertex with degree n in K1,n is called the root.

A graph which does not contain a claw as an induced subgraph is called claw-free.

Similarly, a graph which does not contain an n-claw as an induced subgraph is called

an n-claw-free.
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A graph G is called diamond if it is isomorphic to the graph with vertex set

{x, y, z, w} and edge set {xy, yz, xz, xw, zw}. A graph which does not contain a

diamond as an induced subgraph is called diamond-free.

5-claw Diamond

A graph G is called a cricket if it is isomorphic to the graph with vertex set

{x1, x2, x3, x4, x5} and edge set {x1x2, x1x3, x1x4, x1x5, x3x4}. The co-chordal graph

in Figure 1.1 is a cricket. A graph that does not contain a cricket as an induced

subgraph is called cricket-free. Note that a claw-free graph is also cricket-free.

1.1.1 Simplicial Complexes

Let ∆ be a collection of subsets of [n] = {1, 2, 3, . . . , n}. The collection ∆ is called a

simplicial complex if for any F ∈ ∆ all subsets of F also belong to ∆. Each element

of ∆ is called a face of ∆. The dimension of a face F is |F | − 1. Thus, an edge of

∆ is a face of dimension 1 and a vertex of ∆ is a face of dimension 0. A maximal

face is called facet of ∆. The set F(∆) represents the set of all facets in ∆. If

F (∆) = {F1, . . . , Fr}, then we write ∆ = 〈F1, . . . , Fr〉.The dimension of a simplicial

complex, denoted by dim(∆), is max{|F | − 1 : F ∈ ∆}. A simplicial complex is

called pure if all of its facets have same dimension. A nonface of a simplicial complex

is a subset F ⊆ [n] such that F /∈ ∆. We denote by N (∆) the set of all minimal

nonfaces of ∆. The simplicial complex ∆ is said to be connected if for any two facets

F and T , there exists a sequence of facets F = F0, F1, . . . , Fk−1, Fk = T such that

Fi ∩ Fi+1 6= ∅.
For any W ⊆ V , we denote by ∆W the simplicial complex obtained by restricting

∆ to W and is given by ∆W = {F ∈ ∆ : F ⊆ W}. The Alexander dual of ∆, denoted

by ∆∨ is the given by

∆∨ = {[n] \ F : F /∈ ∆}

Example 1.1.3. Let ∆ = 〈{1, 2, 3}, {1, 3, 5}, {3, 4}, {2, 4}〉, then

N (∆) = {{1, 4}, {4, 5}, {2, 5}, {2, 3, 4}}.
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Figure 1.3: The geometrical realization of ∆

Also we can draw ∆ geometrically as shown in Firgure 1.3:

Let G be a graph. Then a subset of vertices in which no pair of vertices is

adjacent in G is called an independent set in G. The independence complex of G is

the simplicial complex ∆(G) whose facets are the independent sets in G.

Let ∆ be a simplicial complex and A ∈ ∆. Then the deletion and the link of A

is defined to be simplicial complexes respectively as follows:

del∆(A) = {B ∈ ∆ : A * B},

link∆(A) = {F ∈ ∆ : F ∩ A = ∅, A ∪ F ∈ ∆}.

Definition 1.1.4. A simplicial complex ∆ is vertex decomposable if either:

1. ∆ is a simplex, or

2. there exists a vertex v ∈ ∆ such that both del∆(v) and link∆(v) are vertex
decomposable and all facets of del∆(x) are facets of ∆.

The vertex v with the property in above definition is called the shedding vertex

of ∆. We say that a graph G is vertex decomposable if ∆(G) is vertex decomposable.

We say that G is pure vertex decomposable if ∆(G) is pure and vertex decomposable.

Now we give the following two lemmas which gives inductive method to determine

vertex decomposable graphs.

Lemma 1.1.5. [52, Lemma 20] Let H1 and H2 be two graphs such that V (H1) ∩
V (H2) = ∅ and G = H1 ∪H2. Then H1 and H2 are vertex decomposable if and only
if G is vertex decomposable.

Lemma 1.1.6. [13, Lemma 4.2] Let G be a graph, and suppose that x, y ∈ V (G)
are two vertices such that {x}∪NG(x) ⊆ {y}∪NG(y). If G\y and G\({y}∪NG(y))
are both vertex decomposable, then G is vertex decomposable.
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Proof. Let x, y ∈ V (G) be two vertices with the property in the statement. Firstly
note that del∆(y) = ∆(G \ {y}) and link∆(y) = ∆(G \ ({y} ∪ NG(y))), and they
both are vertex decomposable by the assumption. Then to verify Definition 1.1.4,
we have to check if every facet of del∆(y) = ∆(G \ {y}) is a facet of ∆(G). Let F
be a facet of del∆(y) and suppose that F ∪ {y} is a facet of ∆(G). Note that x ∈ F
because NG(x) ⊆ NG(y). But, x and y are adjacent since x ∈ NG(y), and hence x
and y cannot be both elements of F ∪ {y}. So, we have a contradiction. Hence F is
a facet of ∆(G), and we are done.

Definition 1.1.7. We say that a simplicial complex ∆ is shellable if its facets can
be orederd, say F1, . . . , Fk, such that for 1 ≤ i < j ≤ k, there exist some x ∈ Fj \ Fi
and some t ∈ {1, . . . , j − 1} with Fj \ Ft = {x}. If ∆ is also pure then we call it
pure shellable.

So we have the following useful theorem.

Theorem 1.1.8. [5, Theorem 11.3] If ∆ is a vertex decomposable simplicial complex,
then ∆ is also shellable.

1.2 Algebraic Preliminaries

We recall some fundamental notions for commutative rings. In the following text

R is a commutative Noetherian ring, that is, every ideal in commutative ring R

is finitely generated. The reasons for this assumption is that we will use these

definitions for standard graded algebras over fields, which are particular case of

commutative Noetherian rings.

For a ring R, the spectrum of R is set of all prime ideals in R and is denoted

by Spec(R). The set of minimal elements in Spec(R) is denoted by Min(R) whereas

the set of associated primes of R is denoted by Ass(R). For any ideal I of R, by

Min(I) and Ass(I), we mean Min(R/I) and Ass(R/I) respectively. Recall that a

prime ideal P is in Ass(I) if P is the annihilator of some element x ∈ R/I, that is,

P = I : x.

Let P ∈ Spec(R), then height of P is height(P ) = max{n : P0 ⊂ P1 ⊂ . . . ⊂
pn = P}. Then the Krull dimension of R, or simply, the dimension of R is defined

to be as follows:

dimR = max{height(P ) : P is a prime ideal inR}.

Note that, we have height(P ) = dimRP . We say that an ideal I ⊆ S is unmixed if

Min(I) = Ass(I).
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An element x ∈ R is called regular if for all y ∈ R with y 6= 0, we have xy 6=
0. In addition, let R be a local ring with the unique maximal ideal m. Then a

sequence of elements of x1, . . . , xn in m is called a regular sequence if xi is regular

on R/(x1, . . . , xi−1), for all i = 1, . . . , n. The maximal length of such a sequence if

called depth of R. A ring local ring R is called Cohen-Macaulay if dimR = depthR.

Let K be a field and S = k[x1, . . . , xn] be a polynomial ringin n indeterminates.

The product xa = xa11 x
a2
2 · · ·xann is called a monomial where a = (a1, . . . , an) ∈ Nn.

We denote by Mon(S) the set of monomials in S. A polynomial f in S is a unique

K-linear combination of elements in Mon(S) as follow:

f =
∑

v∈Mon(S)

bvv where bv ∈ K.

The support of a polynomial f in S, denoted by supp(f), is

supp(f) = {v ∈Mon(S) : bv 6= 0}.

An ideal I is called a monomial ideal in S if it is generated by monomials. A

monomial ideal is called squarefree if it is generated by squarefree monomials. We

denote the unique minimal set of generators of a monomial ideal I by G(I).

Remark 1.2.1. It is well known that the usual ideal operations applied on monomial
ideal again results in monomial ideals. In particular, If I and J are monomial ideals,
then we have

1. G(I + J) ⊂ G(I) ∪ G(J),

2. G(IJ) ⊂ G(I)G(J),

3. G(I ∩ J) = {lcm(u, v) : u ∈ G(I), v ∈ G(J)},

4. I : J =
⋂
u∈G(J) I : (v), where G(I : (v)) = {u/ gcd(u, v) : u ∈ G(I)}.

In the following text we will consider two different gradings on S. For this, we

first recall the following: The Z-grading on S is defined as follows: For a monomial

xa = xa11 x
a2
2 · · ·xann , the degree of xa is deg(xa) =

∑n
i=1 ai. Then S = ⊕i∈ZSi,

where S0 = K and each Si is K-vector space generated by monomials of degree

i. Note that 0 is assigned an arbitrary degree. One can see that S = ⊕i∈NSi
since there are no elements in S of negative degree. Each Si is called the i-th

graded component of S and a polynomial is called homogeneous of degree i if every

elements in its support is of degree i. A S-module M is called Z-graded if it admits
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a decomposition M = ⊕i∈ZMi as Z-module and SiMj ⊂ Mi+j for all i, j ∈ Z. If M

and N are two Z-graded S-modules then a S-module homomorphism φ : M → N

is a graded S-module homomorphism of degree i is deg(φ(m)) = i + deg(m) for all

m 6∈ Ker(φ). Moreover, for any S-module M and d ∈ Z, the Z-graded S-module

M(−d) is obtained by shifting M by d degrees, that is , M(−d)i = Mi−d, for all

i. In particular, note that if I is a graded ideal of S, that is, I is generated by

homogenous elements, then S/I naturally inherits Z-grading structure.

The Zn-grading on S is defined as follows: For a monomial xa = xa11 x
a2
2 · · ·xann ,

the multidegree of xa is set to be a = (a1, . . . , an). This shows that every monomial

has a unique multidegree. Then S is Zn-graded with S = ⊕a∈ZnSa, where each

Sa is K-vector space generated by monomial of degree a. In particular, Sa = 0 is

a 6∈ Nn. One can define the analouge of all definitions in previous paragraph in case

of Zn-grading as well.

1.2.1 Minimal free resolutions and homological invariants

Let M be a finitely generated Z-graded S-module and

0→ ⊕jS(−j)βp,j φp−→ · · · → ⊕jS(−j)β1,j φ1−→ ⊕jS(−j)β0,j φ0−→M → 0

be the minimal Z-graded free resolution of M . The numbers βi,j(M) = βi,j are

uniquely determined by M and are called (i, j)-th graded Betti numbers of M . The

integer i is called the homological degree of Fi = ⊕jS(−j)βi,j and j is called its

internal degree. More precisely, we have

βi,j(M) = dimK Tori(M,K)j

The length of the minimal graded free resolution is a homological invariant and

is called projective dimension of M and is denoted by proj dim(M). Then we have

proj dimM = max{i : βi,j(M) 6= 0 for some j}.

The Castelnuovo-Mumford regularity,( or simply, the regularity), is defined to be as

follows:

reg(M) = max{j − i : βi,j 6= 0} = max{j − i : Tori(M,K)j 6= 0}

When we consider Zn grading on M and S, then the minimal Z-graded free

resolution takes the following form

F : · · · −→
⊕
a∈Zn

S(−a)βi,a −→−→ · · · −→
⊕
a∈Zn

S(−a)βi,a −→
⊕
a∈Zn

S(−a)βi,a −→ N −→ 0
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The above form of F is called the minimal Zn-graded free resolution of M . The

numbers βi,a are called the multigraded Betti numbers of M . Note that βi,j =∑
|a|=j βi,a.

In the following text, by writing, minimal graded free resolution, we will mean

the Z-graded minimal free resolution.

Definition 1.2.2. Let N be a graded S-module. We say that N has a d-linear
resolution if its graded minimal free resolution is of the form

0 −→ S(−d− p)βp −→ · · · −→ S(−d− 1)β1 −→ S(−d)β0 −→ N −→ 0.

Remark 1.2.3. Let S = k[x, x1, . . . , xn]. Then the monomial ideal I = (xx1, . . . , xxn)
has a 2-linear resolution.

1.2.2 Some important results related to regularity

Below, we will list some of the important well-known properties and facts related to

regularity. Let I be a graded ideal of S. First note that reg(I) = reg(S/I) + 1. The

following lemma is an immediate consequence of the definition of regularity.

Lemma 1.2.4. A homogeneous ideal I generated in degree d has a linear resolution
if and only if reg(I) = d.

Proof. (⇒) If I has a linear resolution, then we have βi,i+j(I) = 0 for all j 6= d.
Then,

reg(I) = max{j − i : βi,j(I) 6= 0} = d.

(⇐) Now, assume that reg(I) = max{j − i : βi,j 6= 0} = d. Since I is generated in
degree d, we have β0,j = 0 for all j 6= d. Then β1,j ≥ d for all j. This implies that
β1,j = d. Continuing in this way, we see that I has a d-linear resolution.

If a graded ideal I in S is generated by a homogenous regular sequence in same

degree then we know the regularity for any power of I.

Lemma 1.2.5. [6, Lemma 4.4] Let x1, x2, . . . , xr be a regular sequence of graded
elements in S with deg xi = d for all i = 1, . . . , r. let I = (x1, . . . , xr). Then

reg(Is) = ds+ (d− 1)(r − 1),

for all s ≥ 1.

The following well known lemma is one of the main tool to relate the regularity

of modules in a short exact sequence and its proof is obtained by the induced long

exact sequence of Tor.
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Lemma 1.2.6. Let
0→M → N → P → 0.

be a short exact sequence of finitely generated graded S-modules, with graded homo-
morphisms of degree 0. Then

regN ≤ {regM, regP},

regM ≤ {regN, regP + 1},

reg p ≤ {regM − 1, regN}.

The following result is due to [32].

Theorem 1.2.7. Let I1, . . . , In be squarefree monomial ideals in S. Then

reg(S/
n∑
i=1

Ii) ≤
n∑
i=1

reg(S/Ii).

Let I be a square free monomial ideal with primary decomposition as follows

I = 〈x1,1, x1,2, . . . , x1,t1〉 ∩ 〈x2,1, x2,2, . . . , x2,t2〉 ∩ · · · ∩ 〈xk,1, xk,1, · · · , xk,tk〉,

Then the Alexander dual of I is denoted by I∨ and is defined to be

I∨ = 〈x1,1x1,2 · · ·x1,t1 , x2,1x2,2 · · ·x2,t2 , . . . , xk,1xk,1 · · ·xk,tk〉

Then we have the following theorem making the relation between the projective

dimension of I∨ and the regularity of I.

Theorem 1.2.8. [45, Terai] Let I be an square-free monomial ideal. Then proj dim(I∨) =
reg(R/I).

1.2.3 Stanley-Reisner Ideals

Let ∆ be a simplicial complex on [n] and S = K[x1, . . . , xn] be the polynomial ring

over the field K. For each F ∈ F(∆) we set

xF =
∏
i∈F

xi ∈ Mon(S).

The Stanley-Reisner ideal of a simplicial complex ∆ is denoted by I∆ and it is

defined to be the ideal generated by xF such that F /∈ ∆. It is easy to see that I∆

is generated by minimal non-faces of ∆, that is,

I∆ = 〈xF : F ∈ N (∆)〉.
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The quotient ring K[∆] = R/I∆ is called Stanley-Reisner ring and Krull dimension

of K[∆] is equal to dim ∆ − 1. The facet ideal of ∆ is denoted by I(∆) and it is

defined to be:

I(∆) = 〈xF1 , . . . , xFk
〉, where Fi ∈ F(∆) for all i = 1, . . . , k.

To each facet F ∈ ∆ we associate a monomial prime ideal PF as follows:

PF = (xi : i ∈ F ).

Example 1.2.9. Consider the simplicial complex in Example (1.1.3), then we have:

I∆ = (x1x2, x4x5, x2x5, x2x3x4),

and
I(∆) = (x1x2x3, x1x3x5, x3x4, x2x4).

13



Chapter 2

Regularity of Edge Ideals

In this chapter we introduce the edge ideal of graph and discuss their regularity.

The regularity of edge ideals has been a topic of dozens of articles in past two decades.

We collect the main results on this topic. In particular, we discuss Fröberg’s theorem

which characterize the edge ideals with linear resolution, that is, with regularity

equal to 2. Moreover, we also discuss the well known upper and lower bounds of

regularity of edge ideals.

2.1 Edge Ideals

Let G be a simple graph with the vertex set V (G) = {x1, . . . , xn} and the edge set

E(G). Let S = K[x1, . . . , xn] be the polynomial ring over field K. Here, for the sake

of simplicity, we are going to denote the vertices of G and variables of S by x′is. The

edge ideal I(G) associated to the graph G is the square-free monomial ideal defined

by

I(G) = (xixj : {xi, xj} ∈ E(G)).

Let I(G) =
⋂r
k=1 Pk be the minimal primary decomposition of I(G), where Pk =

(xk1 , xk2 , . . . , xkm). Note that the set of generators of each Pk = (xk1 , xk2 , . . . , xkm)

gives a minimal vertex cover of G. This can be easily seen because for any xixj ∈
I(G), we have xixj ∈ Pk if and only if either xi or xj is in Pk. This shows that the

generators of I(G)∨ correspond to the minimal vertex covers of G. The Alexander

dual I(G)∨ of I(G) is called the vertex cover ideal of G and is denoted by J(G).

Example 2.1.1. Consider the graph of G = C7 in Figure 2.1. Then

14



Figure 2.1

I(G) = (x1x2, x2x3, x3x4, x4x5, x5x6, x6x7, x7x1).

The minimal vertex covers of G are: {x1, x3, x5, x7}, {x1, x3, x5, x6}, {x1, x2, x4, x6},
{x1, x3, x4, x6}, {x2, x4, x6, x7}, {x2, x3, x5, x7}, {x2, x4, x5, x7}. So, the minimal pri-

mary decomposition of I(G) is:

I(G) = 〈x1, x3, x5, x7〉∩〈x1, x3, x5, x6〉∩〈x1, x2, x4, x6〉∩〈x1, x3, x4, x6〉∩〈x2, x4, x6, x7〉

∩〈x2, x3, x5, x7〉 ∩ 〈x2, x4, x5, x7〉

Hence, the Alexander dual of I(G) is

I(G)∨ = 〈x1x3x5x7, x1x3x5x6, x1x2x4x6, x1x3x4x6, x2x4x6x7, x2x3x5x7, x2x4x5x7〉,

Lemma 2.1.2. Let G be a simple graph and H be any induced subgraph of G. Then,

reg(H) ≤ reg(G).

The characteristic of base field plays crucial role in minimal graded free resolution

of an edge ideal because it affects the Betti numbers. In [46], Hibi and Terai showed

that 3rd and 4th Betti number of a Stanley Reisner ring are independent of char(K)

and this result was later improved by [33] where Katzman showed that 5th and

6th Betti number also have the same property. He also showed that if a simplicial

complex has less than 11 vertices, then the Betti numbers of it’s associated Stanley-

Reisner ring are independent of char(K). From this, we see that if a graph has less

than 11 vertices, then Betti numbers of I(G) do not depend on char(K). Katzman,

showed that there are exactly 4 non-isomorphic graphs on 11 vertices whose Betti

number do not agree for characteristic 2 and 0. Moreover, in [11], it is shown

that Betti numbers of an edge ideal of chordal graph are independent of char(K).

Throughout this work we will have char(K) = 0.
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We begin our discussion on the regularity of I(G) be giving the following exact

sequence. Let I be a graded ideal and f be an element of degree d in S. Then the

following sequences are exact:

0→ S/(I : f)(−d)
·f−→ S/I → S/(I + f)→ 0, (2.1)

Then in the view of Lemma 1.2.6, we obtain the following

Lemma 2.1.3. Let I ⊆ S be a monomial ideal, and let t be a monomial of degree

d. Then

reg(I) ≤ max{reg(I : t) + d, reg(I, t)}.

Moreover, if x is a variable appearing in I then

reg(I) ∈ {reg(I : x) + d, reg(I, x)}.

The inclusion mentioned in above lemma is due to [41]. Note that if x is a variable

that does not divide any generator of monomial ideal I then we have reg(I, x) =

reg I. Together with this, when we apply the above lemma to the case of edge ideal,

then we obtain very useful consequences. If x is an isolated vertex to G then we

can drop x from G and compute the regularity of I(G \ x) instead. This helps us

to reduce the discussion to the case when G does not have any isolated vertices.

Moreover, reg(I(G) : x) = reg I(G \ NG[x]) and reg(I(G), x) = reg I(G \ x) for

all x ∈ G(when we say x ∈ G it means x ∈ V (G)). Hence, Lemma 2.1.3 can be

translated as:

Lemma 2.1.4. Let x ∈ V (G). Then

reg(I(G)) ∈ {reg I(G \NG[x]) + 1, reg I(G \ x)}.

Lemma 1.2.7 can be stated as follow in the case of edge ideals.

Corollary 2.1.5. If G is a simple graph and G1, . . . , Gn subgraphs of G such that

E(G) = ∪ni=1E(Gi) is a disjoint union, then

reg(S/I(G)) ≤
n∑
i=1

regS/I(Gi).

An important consequence of Theorem [34] together with use of the Künneth

Formula from algebraic topology is the following:
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Corollary 2.1.6. Let G be the same as in the previous corollary and the union of

all E(Gi) be a disjoint union. Then

reg(S/I(G)) =
n∑
i=1

(S/I(Gi)).

In view of above corollary, one see that to understand the regularity of I(G), it

is enough to understand the regularity of the edge ideal of each of the connected

components of G.

2.2 Edge ideals with linear resolutions

The first question in studying of regularity of edge ideal is that for which classes of

graphs reg(I(G) = 2. It is equivalent to say that for which classes of graphs, I(G)

admits a 2-linear resolution (See Lemma 1.2.4). This question is answered by well

celebrated result of Fröberg (See, [20]) that states I(G) has a linear resolution if and

only if Gc is a chordal graph. In addition to the original proof in [20], one can find

other proofs of this result with different techniques, for example, in [26], [39]. We

are going to present the proof of Fröberg’s theorem by techniques presented in [48].

For this, we first introduce the notion of Betti splitting. Let I be a monomial ideal

with set of generator G(I) = {α1, . . . , αn}. Then, we partition G(I) into two sets:

G(I) = G(J) ∪ G(N),

setting J = 〈α1, . . . , αm〉 and N = 〈αm+1, . . . , αn〉. Note that we have I = J + N .

So, we can give the following definition.

Definition 2.2.1. I = J +N is called a Betti splitting if for all i and j, we have:

βi,j(I) = βi,j(J) + βi,j(N) + βi−1,j(J ∩N) (2.2)

We may have a numerous different Betti splitting. So, now we give an important

Betti splitting which is useful in the proof of our main theorem.

Theorem 2.2.2. [19, Theorem 2.3] Let I be a monomial ideal in R and let J

and N be two monomial ideals such that G(I) = G(J) ∪ G(N). Suppose that for

all homological degrees i and for all internal degrees j, βi,j(J ∩ N) > 0 implies

βi,j(J) = βi,j(N) = 0. Then, I = J +N is a Betti splitting.
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Proof. The following short sequence is exact:

0→ J ∩N → J ⊕N → I → 0. (2.3)

Then, (2.3) induces the following long exact sequence of homologies:

· · · −→ Tori(K, J ∩N)j −→ Tori(K, J)j ⊕ Tori(K,N)j −→ Tori(K, J +N)j −→

−→ Tori−1(K, J∩N)j −→ Tori−1(K, J)j⊕Tori−1(K,N)j −→ Tori−1(K, J+N)j −→ · · · .
(2.4)

Then, recall that βi,j(I) = dimR Tori(K, I)j, and fix i and j. In addition we break

our proof into two cases:

Case 1: Suppose that βi,j(J ∩ N) = 0. Then we seperate this case into two

subcases:

(1) By hypothesis, if βi−1,j(J ∩N) 6= 0 then βi−1,j(I) = βi−1,j(N) = 0, which implies

that Tori−1(K, J)j = Tori−1(K,N)j = 0. So, from 2.4 then we get the following

short exact sequence

0 −→ Tori(K, J)j ⊕ Tori(K,N)j −→ Tori(K, I = J +N)j −→ Tori−1(K, J ∩N)j −→ 0.

(2.5)

Now, recall that the dimension is additive in exact sequences. Then, from (2.5) we

get

βi,j(I) = βi,j(J) + βi,j(N) + βi−1,j(J ∩N)

for any i and j, which implies I = J +N is a Betti splitting.

(2) If instead we have βi−1,j(J ∩N) = 0, then from (2.5) we get the following exact

sequence

0 −→ Tori(K, J)j ⊕ Tori(K,N)j
φ−→ Tori(K, I = J +N)j −→ 0,

which implies φ is bijective, and from the properties of dimension we get again

βi,j(I) = βi,j(J) + βi,j(N) + βi−1,j(J ∩N).

Case 2 Suppose βi,j(J∩N) 6= 0 and from the hypothesis we get βi,j(J) = βi,j(N) = 0.

So, from (2.4) we get the following exact sequence

0 −→ Tori(K, I)j −→ Tori−1(K, J ∩N)j −→ Tori−1(K, J)j ⊕ Tori−1(K,N)j −→ · · · .
(2.6)

Then we seperate again it in two subcases
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(1) If βi−1,j(J ∩ N) 6= 0, then by our hypothesis we get βi−1,j(J) = βi−1,j(N) = 0

which implies Tori−1(K, J)j = Tori−1(K,N)j = 0. So, we get the following exact

sequence

0 −→ Tori(K, I)j −→ Tori−1(K, J ∩N)j −→ 0.

Hence βi,j(I) = βi−1,j(J ∩N), and we are done.

(2) If βi−1,j(J ∩ N) = 0, then Tori(K, I)j = 0, which implies βi,j(I) = 0. Hence,

from (2.6), (2.2) holds and we are done.

Following from here we give the following corollary.

Corollary 2.2.3. [19, Corollary 2.7] Let I ⊆ R = K[x1, . . . xn] be a monomial ideal.

Fix a variable xi, and set

J = 〈m ∈ G(I)|xi|m〉 and N = 〈m ∈ G(I)|xi - m〉.

If βi,j(J ∩ N) > 0 implies βi,j(J) = 0 for all i and j, then I = J + N is a Betti

splitting.

Proof. Firstly, we note that not all the multigraded Betti numbers of J and J ∩N
are zero at the ith position since all elements of these two ideals are divisible by xi.

Also, as xi does not divide any of elements of N , all multigraded Betti numbers of

N are zero at ith position. Therefore, for all i and for all j, βi,j(J ∩N) > 0 implies

βi,j(N) = 0. Hence, as βi,j(J ∩ N) > 0 implies βi,j(J) = 0 is from the hypothesis,

using Theorem 2.2.2 we get I = J +N as a Betti splitting.

Note that such a Betti splitting with fixed xi is called an xi-partition. From the

previous two results we get an important Theorem by Francisco, Ha and Van Tuyl.

This theorem is of plays a vital role in the proof of Fröberg’s theorem.

Corollary 2.2.4. (Francisco-Há-Van Tuyl’s Theorem)[19, Corollary 2.7] Let I ⊆
R = K[x1, . . . xn] be a monomial ideal. Fix a variable xi, and set

J = 〈m ∈ G(I) : xi|m〉 and N = 〈m ∈ G(I) : xi - m〉.

If J has a linear resolution, then I = J +N is a Betti splitting.

Proof. Assume that J has a linear resolution, which implies that it is generated by

elements with the same degree(say in degree d). Then, let a ∈ J with deg(a) ≥ d.

In addition, to have a in J ∩N by the construction of N we should have deg(a) > d.

So, J ∩N is generated in degree greater than J . Therefore, as the shiftings j cannot

be decreasing we have βi,j(J ∩ N) > 0 implies βi,j(J) = 0. Hence, using Corollary

2.2.3 we are done.
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Also we can state the following corollary.

Corollary 2.2.5. [48, Corollary 2.18] Suppose that G \ {x} is not the graph of

isolated vertices. Let NG(x) = {x1, . . . , xm}. Then

I(G) = (xx1, . . . , xxm) + I(G \ {x}) (2.7)

is a Betti splitting.

Proof. Note that (2.7) is an x-partition. Then, considering Remark 1.2.3 and using

Corollary 2.2.4 we finish the proof.

Example 2.2.6. Consider the edge ideal obtained from the graph in Figure 2.2.

Then

Figure 2.2

I = I(G) = (x1x2, x2x3, x3x4, x4x5, x5x6, x6x7, x7x8, x8x1, x1x4).

Set J = (x1x2, x1x8, x1x4) and N = (x2x3, x3x4, x4x5, x5x6, x6x7, x7x8). All gener-

ators of J are divisible by x1, and no generator of N is divisible by x1. Also note

that

J ∩N = (x1x7x8, x1x4x5, x1x3x4, x1x2x3, x1x5x6x8, x1x4x6x7, x1x2x6x7, x1x2x5x6).

Then, we get the following graded minimal free resolutions:

0→ S(−7)4 → S(−6)17 → S(−4)3⊕S(−5)24 → S(−3)12⊕S(−4)10 → S(−2)9 → I → 0,

0→ S(−4)→ S(−3)3 → S(−2)3 → J → 0,

0→ S(−6)3 → S(−5)9 → S(−4)6 ⊕ S(−3)5 → S(−2)6 → N → 0.
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and

0→ S(−7)4 → S(−6)14 → S(−4)2 ⊕ S(−5)15 → S(−3)4 ⊕ S(−4)4 → J ∩N → 0.

So, J has a linear resolution. Hence, from Corollary 2.7, I = J + K is a Betti

splitting. Indeed, if we consider the Betti numbers from the resolutions we see that

the equality in the definition of Betti splitting is satisfied.

Fix x ∈ V (G) and let NG(x) = {x1, . . . , xm}. Then we introduce the following

two notations:

Gi := G \ (NG(x) ∪NG(xi)) (2.8)

and G(x) is the graph with edge set:

{{y, z} ∈ E(G) : {y, z} ∩NG(x) 6= ∅, y 6= x, z 6= x}. (2.9)

With this notation, we give the following Lemma.

Lemma 2.2.7. [22, Corollary 4.3] Suppose that G \ {x} is not the graph of isolated

vertices. Let NG(x) = {x1, . . . , xm}. Then

(xx1, . . . , xxm) ∩ I(G \ {x}) = xI(G(x)) + xx1I(G1) + · · ·+ xxmI(Gm).

Proof. Let I = (xx1, . . . , xxm) and J = I(G \ {x}). Then

I ∩ J = 〈lcm(u, v) : u ∈ (xx1, . . . , xxm), v ∈ G(G \ {x})〉.

Therefore G(I ∩ J) is disjoint union of {xxixj : xixj ∈ E(G)} and {xxiyj : xiyj ∈
E(G)} and {xxiyjyk : yjyk ∈ E(G) but xiyj, xiyk /∈ E(G), }, where yi ∈ V (G) \
{x, x1, . . . , xm} for i ∈ {1, . . . ,m}. Therefore,

I ∩ J = xI(G(x)) + xx1I(G1) + · · ·+ xxmI(Gm).

Before we prove the main theorem in this section, we give the following charac-

terization for Gc to be chordal. Note that when we write Gc
(x) we mean (G(x))

c.

Lemma 2.2.8. [48, Lemma 2.23] Let G be a graph with x ∈ V (G) and G \ x is not

the graph of isolated vertices. Then the followings are equivalent:

1. Gc is chordal
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2. (a) (G \ x)c is chordal.

(b) Gc
(x) is chordal.

(c) Gi has no edges. (See (2.8))

Proof. Let NG(x) = {x1, x2, . . . , xm}.
(i)⇒(ii) Suppose that Gc is chordal. We know that (G \ x)c = Gc \ x. Since

being chordal is preserved by induced graphs of a chordal graph, we conclude that

(G \ x)c is chordal. We are done with (a).

Now we prove part (c). Suppose that there exists an i such that Gi has an edge, say

{u, v}. Then, {x, x1} and {u, v} belongs to G, but {x, u},{x, v},{xi, u} and {xi, v}
do not. So, we have a four cycle belonging to Gc induced by x, u, x1 and v. So we

have a contradiction with the fact that Gc is chordal. This completes the proof of

part (c)

Now we prove part (b). Let v1, . . . , vt be a minimal cycle in Gc
(x). Our aim is to

show that t = 3. Firstly note that:

V (Gc
(x)) = V (G(x)) = NG(x) ∪ {y : {y, xi} ∈ E(G), y /∈ NG(x) and xi ∈ NG(x)}.

(2.10)

Set A = {y : {y, xi} ∈ E(G), y /∈ NG(x) and xi ∈ NG(x)}. Then we seperate our

proof into four possibilities:

� If {v1, . . . , vt} ⊆ NG(x), none of these vertices is in A. As for all i = 1, . . . , t, vi

is a neighbor of x, then from the definition of G(x), any edge in G(x) is an edge

in G. So, any cycle in Gc
(x) is a cycle in Gc. Hence, the induced subgraph on

{v1, . . . , vt} in Gc is again a cycle. As Gc is chordal, we conclude t = 3.

� If only one vi belongs to A, then the same explanation is satisfied. So, again

the induced subgraph on {v1, . . . , vt} in Gc is a cycle. Hence, t = 3.

� If exactly two of v1, . . . , vt is in A, say vi and vj, then {vi, vj} /∈ E(G(x)), and

hence {vi, vj} ∈ E(Gc
(x)). By the minimality of the cycle v1, . . . , vt, we must

have {vi, vj} as one of the edges in the cycle. Also, in Gc, x is not adjacent with

any of elements in the cycle but vi and vj. Therefore, v1, . . . , vi, x, vj, . . . , vt is

a cycle in Gc. Hence, t = 3.

� Let three or more vertices of the cycle v1, . . . , vt belong to A, then, none of

them is adjacent with each other in G(x), in other words, they form a clique in

(G(x))
c of size ≥ 3. Hence t = 3, because v1 . . . vt is minimal cycle and contains

a clique.
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(ii)⇒(i) Let Gc has a cycle with length ≥ 4. As (G(x))
c is chordal, we must have

that cycle passing through x. Let x, v1, v2, . . . , vt with t ≥ 3 be this cycle. Then we

separate our proof into two cases:

� When t = 3. Then x, v1, v2, v3 is a cycle of length 4 in Gc. Then {x, v2},
{v1, v3} ∈ E(G). Also we note that v2 ∈ NG(x), but v1, v3 /∈ NG(x). Because

of this and as G \ (NG(x) ∪ NG(v2)) has no edge(from part(c)), one of v1 or

v3 should belong to NG(v2), because otherwise {v1, v3} would be an edge of

G \ (NG(x) ∪ NG(v2)). So, either {v1, v2} or {v2, v3} should be an edge of G.

But, this is in contradiction with the fact that both {v1, v2}, {v2, v3} ∈ E(Gc).

Hence, Gc is chordal.

� When t ≥ 4 we have x, v1, v2, . . . , vt a cycle in Gc. So, obviously

{x, v2}, {x, v3}, . . . {x, vt−1} ∈ E(G), which implies {v2, . . . , vt−1} ⊆ NG(x),

and {x, v1}, {x, vt} ∈ E(Gc), which implies v1, vt /∈ NG(x). Also, {v1, vt−1}, {vt, v2} /∈
E(Gc), so they belong to E(G), and we conclude that v1, v2 ∈ A, where A is

from (2.10). Then, as v1, vt /∈ NG(x) we have {v1, vt} /∈ E(G(x)), which implies

{v1, vt} ∈ E(Gc
(x)). In addition, all {v1, v2}, {v2, v3}, . . . , {vt−1, vt} belongs to

E(Gc
(x)). Hence, we have the minimal cycle v1, v2, . . . , vt in E((G(x))

c) where

t ≥ 4, which contradicts part (b).

This completes the proof.

Example 2.2.9. Consider the following graph G and its complement Gc.Note that

Gc is chordal. Then, choose x2 ∈ V (G). From the notation in (2.8), as NG(x2) =

The graph G The graph Gc

{x5, x6}, NG(x5) = {x3}, and NG(x6) = {x4, x3}, we have: G5 is the graph of the

isolated vertices x1, x4 and x2, and G6 is the graph of isolated vertices x1 and x2.

Also, G(x2) is the path x4, x6, x3, x5, and its complement is the path x3, x4, x5, x6,

which obviously is chordal.
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Finally, we give a proof of Fröberg’s Theorem.

Theorem 2.2.10. (Fröberg’s Theorem)[20] Let G be a graph. Then I(G) has a

linear resolution if and only if Gc is a chordal graph.

Proof. We break our proof into two cases:

Case 1: When V (G) = {x, x1, x2, . . . , xn} and E(G) = {{x, xi} : 1 ≤ i ≤
n}. Then, we have I(G) = (xx1, . . . , xxn), which from Remark 1.2.3 has a linear

resolution, and as G is an n-claw we have Gc as a complete graph of vertices V (Gc) =

{x1, . . . , xn}, which obviously is chordal.

Case 2: We use induction on the number of vertices of G. In the basis step

we show for |V (G)| = 1, 2, and 3. Statement holds trivially if |V (G)| = 1. Let

|V (G)| = 2, then we have I(G) = (xy), and it has a linear resolution, and also Gc

is chordal as it consist of only two isolated vertices. If G is edgeless then Gc is the

graph containing one edge, assertion is clear. Let |V (G)| = 3, then if we have one

isolated vertex, which means we have a path, we are done from the first case with

n = 1. If G is a cycle of length 3, that it is the graph C3, then Cc
3 consist of three

isolated vertices and it is chordal. Moreover, we have I(G) = (xy, xz, yz), which has

a 2−linear resolution. Hence, the theorem holds for any case where |V (G)| ≤ 3.

In addition, we continue with the inductive step, where we assume that our

theorem holds for any graph with |V (G)| ≤ n− 1. Now we prove it when |V (G)| =
n ≥ 4. Then there exists a vertex x such that G \ {x} is not a graph of isolated

vertices, because otherwise we would have Case 1. Then, from Corollary 2.2.5 we

have a Betti splitting I(G) = J + N , where J = (xx1, . . . , xxn) and N = I(G \ x).

So, we have

βi,j(I(G)) = βi,j((xx1, . . . , xxn)) + βi,j(G \ x) + βi−1,j(J ∩N), (2.11)

where from Lemma 2.2.7 we have

J ∩N = xI(G(x)) + xx1I(G1) + · · ·+ xxnI(Gn).

(⇒) Suppose that I(G) has a linear resolution. Then this implies that J and N

has a linear resolution because we have a Betti splitting, and clearly J ∩ N has

it too. By induction Gc
(x) is chordal. In addition, because of J ∩ N has a linear

resolution, it is generated in the same degrees. So, it cannot have degree three or

four generators, hence J ∩N = xI(G(x)). Hence, Gi has no edges for any i. Finally,

as J ∩N = xI(G(x)) has a linear resolution, then I(G(x)) also has. So, by induction

Gc
(x) is chordal. Therefore, applying Lemma 2.2.8 we conclude Gc is chordal.
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(⇐) Now, suppose Gc is chordal. From Remark 1.2.3, (xx1, . . . , xxn) always has a

linear resolution. By Lemma 2.2.8 we have all Gi have no edges, so J∩N = xI(G(x)),

where Gc
(x) is chordal. Then, by induction we get that J ∩N has a linear resolution.

Finally, from the Betti splitting formula (2.11) we conclude that I(G) has a linear

resolution.

Example 2.2.11. Consider the graph G in Example 2.2.9. Then, Gc is chordal,

and

I(G) = (x1x3, x3x5, x5x2, x2x6, x6x3, x4x6).

The graded minimal free resolution of I(G) is as follows:

0→ S(−4)3 → S(−3)8 → S(−2)6 → I(G)→ 0.

which is a 2-linear resolution and reg(I(G)) = 2.

2.3 Lower and upper bounds

In this part where we show results about the bounds of the regularity of any edge

Ideal of a simple graph. We will see that the role of the induced matching number

and the matching number of the graph is significant. So, before we start let us give

the following example.

Example 2.3.1. Consider the graph in Figure 2.3.

Figure 2.3

Then A = {e4, e5, e9} is a maximal matching and it is of minimum size. Also

B = {e1, e7} is an induced matching which is of maximal size. So

ν(G) = |B| = 2, and β(G) = |A| = 3.
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Theorem 2.3.2. [33, Lemma 2.2] Let G be a simple graph . Then,

reg(I(G)) ≥ ν(G) + 1.

Proof. Let ν(G) = k and A = {e1, . . . , ek} be the set of an induced matching of

maximum size in G. Then, let H be the subgraph of G which has V (H) = A.

Note that E(H) consists of disjoint edges. Therefore, by Corollary 2.1.6 we have

reg(S/I(H)) = k. So, reg(I(H)) = k+1. Hence, by Lemma 2.1.2 we are done.

As we are done with the lower bound of the regularity, we continue with the

upper bound of any edge ideal of a simple graph. Here we first give the proof of a

stronger result of reg(I(G)) which is bounded by co-chord(G), then we conclude the

weaker one which depends on β(G).

Definition 2.3.3. The co-chordal number of G is denoted by co-chord(G) and is

defined to be the least number of co-chordal subgraphs of G which cover the edges of

G.

Theorem 2.3.4. [53, Lemma 1] Let G be a simple graph. Then

reg(I(G)) ≤ co-chord(G) + 1

Proof. Let co-chord(G) = m and H1, . . . , Hm be a co-chordal cover of G. As Hc
i are

chordal for all i, from Fröberg’s Theorem we have for each i = 1, . . . ,m, reg(Hi) = 2.

This implies that reg(S/I(Hi)) = 1. Note that E(G) = ∪mi=1E(Hi). So, using

Corollary 2.1.5 we get reg(S/I(G)) ≤ m, which implies reg(I(G)) ≤ m+ 1.

Now, we give the following theorem which give us another upper bound even if it

is weaker than the previous one. Note that the reason why we give this weaker result

is that in general the computation of β(G) is much easier than the computation of

co-chord(G).

Theorem 2.3.5. [23, Theorem 6.7],[53, Theorem 11] Let G be a simple graph.

Then,

reg(I(G)) ≤ β(G) + 1.

Proof. Let {e1, . . . , em} be a maximal matching of minimal size in G. Also, let Hi

be the induced subgraph of G such that E(Hi) consists e1, . . . , em and all edges in

G adjacent to each ei for i = 1, . . . ,m. Then, H1, . . . , Hm forms a co-chordal cover

of G. Therefore, co-chord(G) ≤ β(G). So, from Theorem 2.3.4 we are done.
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Example 2.3.6. Consider the graph in Figure 2.3. Then

I(G) = (x1x2, x2x3, x3x4, x2x4, x3x5, x5x6, x4x6, x6x7, x7x8),

and its graded minimal free graded resolution is

0→ S(−7)3 → S(−6)13 → S(−4)5⊕S(−5)18 → S(−3)13⊕S(−4)8 → S(−2)9 → I(G)→ 0.

So, from Theorem 2.3.2 and Theorem 2.3.5 we have

reg(I(G)) = 4 or reg(I(G)) = 3.

From the graded minimal free resolution of I(G) we conclude that reg(I(G)) = 3.

Now consider a graph G in which V (G) can be partitioned into sets I0, I1, . . . , Ik

where I0 is an independent set and Ci is a clique for each i = 1, . . . , k. Also let Hi

be subgraphs of G which have those edges which are incident to at least one vertex

of Ii. Then Hi is partitioned to Ii as the clique and V (G \V (Ii)) as an independent

set, thus it is a split graph. So, H1, . . . , Hn is a split graph covering. Therefore, we

get the following theorem.

Theorem 2.3.7. [53, Theorem 2] Let G be a simple graph in which V (G) can be

partitioned into sets I0, I1, . . . , Ik as mentioned previously. Then

reg(I(G)) ≤ k + 1

Proof. Let H1, . . . , Hk be a split graph covering as mentioned previously. Then it is

a co-chordal covering of G. Hence by Theorem 2.3.4 we are done.

Now we discuss the regularity of an interesting class of graphs which is Gap-free

graphs. But, finding an exact value or an exact bound for the regularity of such

graphs is not easy. So, here we consider the more special case by adding one more

property to be satisfied which is that the graph should be also a claw-free graph.

Before proving the theorem about the regularity we prove a proposition which will

be used later. Recall that if x, y ∈ V (G), then d(x, y) denotes the length of the

shortest path between x and y.

Proposition 2.3.8. [12, Proposition 3.2] Let G be a gap-free graph. If x is a vertex

of maximal degree we have d(x, y) ≤ 2 for all vertices y ∈ V (G).
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Proof. Assume that for all y ∈ V (G) we have d(x, y) > 2. So, there exists y ∈ V (G)

such that d(x, y) = 3. Let deg(x) = k and NG(x) = {x1, . . . , xk}. We may choose

x1 such that {x1, z}, {z, y} ∈ E(G). By the assumption we have that {x, xi} and

{z, y} do not form a gap for any i ∈ {1, . . . , k}. So, there must be an ei ∈ E(G)

such that it has one endpoint in {x, xi} and one in {y, z} for each i ∈ {1, . . . , k}.
As we have d(x, y) > 1 and d(x, z) > 1, these ei’s cannot be incident to x. Also,

{xi, y} /∈ E(G) for all i ∈ {1, . . . , k}, as then d(x, y) ≤ 2 which contradicts the

assumption. So, {xi, z} ∈ E(G) for all i ∈ {1, . . . , k}. Hence, deg(z) > k, which

gives us a contradiction.

Theorem 2.3.9. [12, Theorem 3.4],[39, Theorem 1.2] Let G be a simple gap-free

and claw-free graph. Then

reg(I(G)) ≤ 3.

Proof. Here we use induction on the number of vertices of G. When |V (G)| =2

or 3, we have nothing to prove, as in any case the graph is gap-free and claw-free

and its regularity does not exceed 3. So we are done with the basis case. Assume

that the theorem holds when |V (G)| = n− 1. Let x be of the highest degree. Note

that by removing one of the vertices of G the graph remains claw-free and gap-free.

Therefore, both G \ x and G \NG[x] are claw-free and gap-free. Using induction we

conclude that reg(G \ x) ≤ 3. Now we prove that (G \NG[x])c is chordal.

Suppose that v1, . . . , vm form a cycle in (G \NG[x])c with m ≥ 4. Then, by Propo-

sition 2.3.8 we have all vertices of G have distance two to x. So, there is y ∈ G such

that {x, y} and {y, v1} are edges in G. Note that one of {y, v2} or {y, vm} should

be in E(G), because if not then {v2, vn} and {x, y} form a gap in G. So, without

loss of generality {y, vm} ∈ E(G). Then we have {x, y, v1, vm} is a claw in G, which

contradicts the assumption.

In addition, as (G\NG[x])c is chordal by Fröberg’s theorem we get reg(G\NG[x]) = 2

and by Lemma 2.1.4 we have reg(G) ∈ {reg(G \NG[x]) + 1, reg(G \ x)}. Hence, we

are done.

The same result is true for gap-free and cricket-free graphs. Note that a claw-free

graph is also a cricket free graph. The proof of the following theorem is similar to

that for gap-free and claw-free graphs.

Theorem 2.3.10. [2, Theorem 3.4] Suppose G is a cricket-free and gap-free graph.

Then

reg(I(G)) ≤ 3.
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We also have such a result which is generalized to gap-free and n-claw-free graphs.

Theorem 2.3.11. [2, Theorem 3.5] Let G be a simple gap-free and n-claw-free

graph. Then

reg(I(G)) ≤ n.

Proof. As for n = 3 we are done by the previous theorem, we assume that n ≥ 4.

Again we use induction on |V (G)|. The basis case is obvious and exactly the same as

the basis case in the previous theorem. Assume that the theorem holds for |V (G)|−1.

So, from induction we have reg(G \ x) ≤ n. By Lemma 2.1.4 it is enough to show

that reg(G \NG[x]) ≤ n− 1, so it is enough to show that G \NG[x] is (n− 1)-claw

free.

Let x1, x2, . . . , xm be an (n − 1)-claw in G \ NG[x] with root at x1. Then for any

y ∈ NG(x) we have that it is connected with x1 or all x2, . . . , xn in G. Otherwise,

we have {x, y} and {x1, xi} forming a gap in G, which would be a contradiction.

If x1 is connetcted to all elements of NG(x) then we have deg(x1) > deg(x), which

contradicts the assumption in the statement of the theorem. Therefore, there is a

v ∈ NG(x) such that it is not connected to x1, but it is connected to all x2, . . . , xm.

Also, knowing that x /∈ NG(xi) for any i ∈ {1, . . . ,m}, we get {x, v, x2, . . . , xm} as

an n-claw in G with root at v. Hence, we have a contradiction.

Example 2.3.12. Let G be the graph in Figure 2.4. Note that it is a gap-free and

4-claw-free graph. Then,

Figure 2.4

I(G) = (x1x2, x2x3, x4x3, x4x5, x6x5, x6x7, x7x1, x1x4, x1x5, x3x7, x6x2).
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So, the graded minimal free resolution of I(G) is as follow:

0→ S(−7)→ S(−5)4⊕S(−6)3 → S(−4)17⊕S(−5)2 → S(−3)23 → S(−2)11 → I(G)→ 0.

So, reg(I(G)) = 3 ≤ 4. Note that {x7, x1}, {x7, x3} and {x7, x6} form a claw in G.

Now we state a result about regularity of edge ideals of planar graphs. A graph

is called planar graph if it can be drawn in a way that no pair of edges cross. Even

though the regularity of a planar graph can be as large as desired we see that the

regularity of its complement is bounded.

Theorem 2.3.13. [53, Proposition 19] Let G be a planar graph. Then

reg(I(Gc)) ≤ 4.

The proof of this theorem is based on the arguments related to the “boxicity” of

G.

2.4 Exact Values

It is difficult to find the exact value for the regularity of an edge ideal. That is why

we do not know much about it. However, for some special cases we have good results.

We have seen that the induced matching number was essential for the bounds of the

regularity of edge Ideals. Now we will see that it plays a big role to find the exact

value of regularity of edge ideals of some special classes of graphs.

Definition 2.4.1. Let M be a finitely generated graded module in S. Then , M is

called sequentially Cohen-Macaulay(written SCM) if there exists a finite filtration

0 = Mo ⊂M1 ⊂M2 ⊂ · · · ⊂Mr = M,

of M by submodules Mi such that Mi/Mi−1 is Cohen-Macaulay, and

dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1).

Definition 2.4.2. We say that a simple graph G is Sequentially Cohen-Macaulay if

S/I(G) is Sequentially Cohen-Macaulay.

So, we have two general results. For any simplicial complex we should have the

property of shellability in order to have S/I∆ SCM.
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Theorem 2.4.3. [44] Let ∆ be a simplicial complex, and suppose that S/I∆ is the

associated Stanley-Reisner ring. If ∆ is shellable, then S/I∆ is sequentially Cohen-

Macaulay.

And, we have the following SCM property of any simple graph G.

Theorem 2.4.4. [49, Theorem 3.3] Let x ∈ V (G) be any vertex of G and set

H = G \ ({x} ∪NG(x)). If G is SCM, then H is SCM.

When G is a bipartite graph and it has the property of being SCM we have the

following useful property.

Theorem 2.4.5. [49, Theorem 3.9] Let G be a bipartite graph. If G is SCM, then

there exists a vertex x ∈ V (G) such that deg(x) = 1.

In addition, we can prove the following theorem in the case G is a bipartite

graph.

Theorem 2.4.6. [47, Theorem 2.10] Let G be a bipartite graph. Then the following

are equivalent:

1. G is SCM,

2. G is shellable,

3. G is vertex decomposable.

Proof. From Theorem 1.1.8 we have 3. ⇒ 2. and from Theorem 2.4.3 we get 2. ⇒
1. So to finish the proof we have just to show 1. ⇒ 3.

Here we use induction on |V (G)| = n. For n = 2 we have only one edge,

so its graph is SCM, and also the complex is a simplex which means it is vertex

decomposable. Hence, the theorem holds in this case. So, assume that we have n ≥
2. From Theorem 2.4.5 there exists a vertex x with degree 1 and let NG(x) = {y}.

Set Gx = G \ NG[x] and Gy = G \ NG[y]. Then from Theorem 2.4.4 we have

both of Gx and Gy SCM. So by induction we get both of them vertex decomposable.

Denote by H the graph Gx added the vertex x. Then, H is the same with the graph

G \ y, since x and y are adjacent. So, from Lemma 1.1.5, vertex decomposability of

Gx gives H vertex decomposable. Therefore, G \ y and G \ NG[y] both are vertex

decomposable. Note that here we get NG[x] ⊆ NG[y]. Hence, from Lemma 1.1.6 we

are done.
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From now on in this section we will use the following definition of a vertex

decomposable graph G which is equivalent with Definition 1.1.4.

Definition 2.4.7. We say that a vertex x of G is a shedding vertex if for every

independent set A in G \ NG[x], there is some vertex v ∈ NG(x) so that A ∪ v
is independent. A graph G is called vertex decomposable if either it is an edgeless

graph(a graph with no edges) or it has a shedding vertex x such that G \ x and

G \NG[x] are both vertex-decomposable.

We say that a vertex x in G is codominated if there is a vertex y ∈ V (G) \ x
such that NG[y] ⊆ NG[x].

Then, we have the following lemma for C5-free graph.

Lemma 2.4.8. [34, Lemma 2.3] Let G be a C5-free graph. If x is a shedding vertex,

then it is codominated.

Proof. We will prove this by contradiction. Let x be a shedding vertex such that

NG(x) = {x1, . . . , xm} and suppose that there is no such y ∈ V (G) \ {x} such that

NG[y] ⊆ NG[x]. Then, there exists a vertex zi ∈ NG(xi) ∩ (V (G) \ NG[x]) for all

i = 1, . . . ,m. If we have for some i 6= j, where i, j ∈ {1, . . . ,m}, zi adjacent to zj

then x, xi, zi, zj would form a cycle C5 as an induced subgraph of G, which would be

a contradiction. So, B = {z1, . . . , zm} form an independent set in G \NG[x]. Let A

be a maximal independent set which contains B. Then A is maximal independent set

in G\{x} also. As we assumed that x is a shedding vertex, we have a contradiction.

Hence, x is codominated.

From Theorem 2.4.6 any SCM bipartite graph is vertex decomposable. Also, any

bipartite graph has no odd cycle. So, in the following theorem (1) implies (2) and

(3).

Theorem 2.4.9. If G is a simple graph, then

reg(I(G)) = ν(G) + 1

in the following cases:

1. G is vertex decomposable graph and C5-free;[34, Theorem 2.4]

2. G is a (C4, C5)-free vertex decomposable graph;[4, Theorem 24]

3. G is sequentially Cohen-Macaulay bipartite graph;[47]
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Proof. We will prove only the first statement. We know from Theorem 2.3.2 that

for any graph, reg(I(G)) ≥ ν(G) + 1.

(1) Let G be a vertex decomposable and C5-free graph. From Theorem 1.2.8

we have just to show that proj dim(I(G)∨) ≤ ν(G). Let |V (G)| = n. We use

induction on the number of vertices n. If n = 2, then we have either a total

disconnected graph or a single edge graph. If G is totally disconnected then I(G)∨ =

0 and proj dim(I(G)∨) = 0. If G is a single edge graph then I(G)∨ = 〈x1, x2〉 and

proj dim(I(G)∨) = 1 ≤ 1. Note that in both cases the graph is obviously vertex

decomposable and C5-free graph.

So, let n ≥ 2. From the definition 2.4.7 there exists a shedding vertex x ∈ V (G)

such that bothG\{x} andG\NG[x] are vertex decomposable. Note that bothG\{x}
and G\NG[x] are C5-free graphs. Now, let NG(x) = {x1, . . . , xm}. By induction, we

have proj dim(I(G\{x})∨) ≤ ν(G\{x}) and proj dim(I(G\NG[x])∨) ≤ ν(G\NG[x]).

So, from Lemma 2.1.4 we have:

proj dim(I(G)∨) ≤ max{ν(G \ {x}), ν(G \NG[x]) + 1}.

Obviously ν(G\{x}) ≤ ν(G). So, we have to show that inequality holds for the other

part. From Lemma 2.4.8, x is codominated, hence there exists a y ∈ V (G \ {x})
such that NG[y] ⊂ NG[x]. Therefore, it is no problem if we add {x, y} to any of

induced matching in G \ NG[x], which will give us an induced matching of G. So

ν(G \NG[x]) + 1 ≤ ν(G). Hence, we are done.

Example 2.4.10. Let G be the graph in the following figure. Then,the edge ideal

related to this graph is as follows:

Figure 2.5

I(G) = (x1x2, x1x3, x4x3, x2x3, x2x4, x3x5, x4x5, x3x6, x5x6, x6x7).
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So, the graded minimal free resolution of I(G) is as follows:

0→ S(−6)⊕S(−7)→ S(−5)5⊕S(−6)5 → S(−4)14⊕S(−5)7 → S(−3)19⊕S(−4)3

→ S(−2)10 → I(G)→ 0.

G is vertex decomposable graph, such that ν(G) = 2 and reg(I(G)) = 3.

Definition 2.4.11. A graph G is said to be a weakly chordal graph if neither G nor

Gc contains any Cn, for n ≥ 5.

Note that the graph in Figure 2.5 is a (weakly) chordal graph. Let G be a graph.

Then, denote by GL the graph whose vertices are edges of G, and ei, ej ∈ E(G) are

nonadjacent in GL if and only if they form a gap in G. Note that any co-chordal

subgraph of G maps to a clique in GL. Also, if we denote by α(GL) the size of the

largest independent set in GL, then ν(G) = α(GL).

It is well known that if G is weakly chordal graph then GL is weakly chordal,

see [9]. Further, from [25] we have that every weakly chordal graph is perfect.

Definition 2.4.12. The clique cover of GL is defined to be the partition of the

vertices of GL into cliques. The minimal clique number of GL is denoted by θ(GL)

and is defined to be the minimum number of cliques needed to form a clique cover

of GL.

So, if G is a weakly chordal graph, then ν(G) = α(GL) = θ(GL). We know

that for any graph G, ν(G) ≤ co-chord(G). Hence, if G is weakly chordal then

θ(GL) ≤ co-chord(G).

Definition 2.4.13. We say that an edge {x, y} in G is a co-pair of the graph G, if

x and y are end vertices of any path Pk, for k ≥ 4, in Gc.

The following two propositions are well known when G is a weakly chordal graph.

Proposition 2.4.14. [43] If e ∈ E(G) is a co-pair of G, then G is weakly chordal

graph if and only if G \ e is weakly chordal.

Proposition 2.4.15. [15] Let G be a weakly chordal graph which has a gap in it.

Then, G contains co-pairs e and f such that they form a gap in G.

Lemma 2.4.16. [7, Lemma 6] Let G be a weakly chordal graph. If e is a co-pair of

G, then GL \ e = (G \ e)L.
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Proof. Firstly, note that the vertices of GL \ e and (G \ e)L consist of edges of G \ e.
If {x, y} ∈ E(G) is not one of the edges that form a gap in G, then removing it

from G never destroys the gap. If when we delete delete the edge {x, y} a new gap

is formed, then {x, y} must be the middle edge of a path P4 in G. So, x and y are

the end vertices of a path P4 in Gc. Hence, for any co-pair e in G, two edges form a

gap in G \ e if and only if they form a gap in G that does not include e. Thus, the

edge set of GL \ e and (G \ e)L are identical. Hence, (G \ e)L = GL \ e.

Observe that from the definition of θ(GL) every member of a clique cover of

GL can be assumed to be maximal, which is there is no other clique of GL which

contains it. The same is possible from Definition 2.3.3 for members of a co-chordal

cover of G.

Theorem 2.4.17. [7, Theorem 7] Let G be a weakly chordal graph. Then, every

maximal clique of GL is the edge set of a maximal co-chordal subgraph of G.

Proof. Here we use induction on |E(G)|. When G is an edgeless graph or a graph

with only one edge in it, then obviously the theorem holds. Assume that for any

weakly chordal graph with |E(G)| up to n − 1, the statement is true. Let G be a

weakly chordal graph such that |E(G)| = n. Now we have two cases:

Case 1: If G is gap-free, then G is co-chordal and GL is itself a clique, so we are

done.

Case 2: Suppose G has a gap. So, from Proposition 2.4.15 there are e1, e2 ∈
E(G), both co-pair edges of G forming a gap in G. Let C be a maximal clique of

GL. Note that C can not contain both e1 and e2. So, without loss of generality

choose e1 /∈ C. Hence, C is a maximal clique of GL \ e1. From Lemma 2.4.16

GL \ e1 = (G \ e1)L. Also, from Proposition 2.4.14, G \ e1 is weakly chordal. Hence,

by induction, C is the edge set of a maximal co-chordal subgraph of G \ e1, and

denote it by H. Note that H is also co-chordal in G. Now we claim that H is

a maximal co-chordal subgraph of G. Suppose that it is not. So, there exists a

co-chordal subgraph of G, call it H ′ such that C ⊂ E(H ′). As every co-chordal

subgraph of G maps to a clique of GL, then E(H ′) is a clique of GL such that

C ⊂ E(H ′). So, the maximality of C gives us a contradiction. Hence, C is the edge

set of a maximal co-chordal subraph of G.

Then, we get the following theorem. Note that any chordal graph is weakly

chordal. So, in this theorem (1) implies (2). Also, in [52, 18] we see that a chordal

graph is vertex decomposable and in [47] we can see that a vertex decomposable
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graph G is SCM. So, as any chordal graph is C5-free, we see that (2) of the following

theorem is also a consequence of Theorem 2.4.9.

Theorem 2.4.18. If G is a simple graph, then

reg(I(G)) = ν(G) + 1

in the following cases:

1. G is a weakly chordal graph;[53]

2. G is a chordal graph;[23]

Proof. Here we prove only the first one.

From Theorem 2.4.17 we get co-chord(G) ≤ ν(G). Hence, from Theorem 2.3.4

we get reg(I(G)) ≤ ν(G) + 1.

Definition 2.4.19. A graph G is said to be well covered if it has no isolated vertices

and all maximal independent sets have the same cardinality. Moreover, if |V (G)| is

equal to two times the cardinality of maximal independent sets, then G is said to be

very-well covered graph.

Note that in [21] we can see that in a well covered graph we have 2 height(I(G)) ≥
|V (G)|. Also we know that the complement of any maximal independent set is a

minimal vertex cover. So, if G is a well covered graph, then it is said to be a very-

well covered graph if and only if 2 height(I(G)) = |V (G)|. So, when G is a very-well

covered graph we can assume that |V (G)| = 2m, for m = height(I(G)). Note that

any bipartite well covered graph is a very-well covered graph.

For very-well covered graphs and unmixed bipartite graphs, the exact value of

regularity is known, as given in following:

Theorem 2.4.20. If G is a simple graph, then

reg(I(G)) = ν(G) + 1

in the following cases:

1. G is very well-covered graph;[37]

2. G is unmixed bipartite graph.[36]
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Note that if G is unmixed bipartite graph, then it is a very-well covered graph.

Therefore, (1) implies (2) in the Theorem 2.4.20. To prove (1), in [37], the authors

first prove the following.

Theorem 2.4.21. [37, Theorem 3.2] If G is very-well covered graph with |V (G)| =
2m and G is Cohen-Macaulay. Then reg(I(G)) = ν(G) + 1.

In the proof of above theorem, it is first proved that proj dim(I(G)∨) ≤ ν(G)+1.

Then the Theorem 2.4.21 follows from Theorem 2.3.2 and Theorem 1.2.8. Then, the

above result is improved by showing that, given any very-well covered graph G,

there exists an associated semidirected graph Ĝ, such that Ĝ is very-well covered,

Cohen-Macaulay and ν(G) = ν(Ĝ).

Definition 2.4.22. A graph G is said to be unicyclic if it is connected and contains

exactly one cycle. If Cn is the only cycle of G, then we denote by Γ(G) the collection

of all neighbors of the roots in the rooted trees attaching Cn.

In the following two theorems we can see that the regularity for an unicyclic

graph G is ν(G) + 1 ≤ reg(I(G)) ≤ ν(G) + 2.

Theorem 2.4.23. If G is an unicyclic graph with cycle Cn, then

reg(I(G)) = ν(G) + 1

when

1. n ≡ 0, 1 (mod 3)[1, 6, 29] or

2. ν(G \ Γ(G)) < ν(G).[1]

Theorem 2.4.24. If G is a simple graph, then

reg(I(G)) = ν(G) + 2

in the following cases:

1. G is an n-cycle Cn when n ≡ 2 (mod 3);[6, 29]

2. G is a unicyclic graph with cycle Cn when n ≡ 2 (mod 3) and ν(G \ Γ(G)) =

ν(G).[1]
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Chapter 3

Regularity of Powers of Edge

Ideals

In this chapter, we will discuss the regularity of powers of edge ideals. It is well

known that if a graded ideal has linear resolution, then it’s power need to have linear

resolution as well. Nevertheless, there are classes of graded ideals which admits the

property that if Is has linear resolution for all s ≥ 1. In context of edge ideals, it

is natural to ask that whether they have also this property. As stated in previous

chapter, we know that an edge ideal I(G) has linear resolution if and only if Gc

is chordal, that is, G is co-chordal. In [28, Theorem 3.2], Herzog, Hibi and Zheng

proved that if a quadratic monomial ideal has linear resolution then all of its powers

also have linear resolution. As a consequence of this, we have following result

Theorem 3.0.1. Let G be a simple graph. The edge ideal I(G) has a linear resolu-

tion if and only if I(G)s has a linear resolution for all s ≥ 1.

Therefore, the following corollary is obvious.

Corollary 3.0.2. A graph G is co-chordal graph if and only if reg(I(G)s) = 2s for

all s ≥ 1.

Now, the next natural question is if there exists a graph G such that I(G) do

not have linear resolution, but I(G)s has linear resolution for some s > 1. The

answer of this question is positive. This led to investigation of further classes of

graphs which have the property that even though their edge ideals does not have

linear resolution, but the higher powers of their edge ideals admit linear resolution.
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It is mentioned in [40, Proposition1.8] that if I(G)s has linear resolution for some s,

then Gc is C4-free. Also, in [40], Nevo and Peeva gave an example of a graph whose

complement is C4-free such that I(G)2 does not have a linear resolution. Based on

these observaion, they stated an open problem

Question 3.0.3. [40, Question 1.11] Is it true that Gc is C4-free if and only if I(G)s

has a linear resolution for every s� 0?

In particular, Nevo and Peeva raised the following question:

Question 3.0.4. [40, Question 1.11(2)] Is it true that I(G)s has a linear resolution

for all s ≥ 2 if Gc is C4-free and reg I(G) = 3?

The following result gives a positive answer of above question for special classes

of gap-free graphs.

Theorem 3.0.5. Let G be a simple graph. Then for s ≥ 2, reg(I(G)s) = 2s in

following cases:

1. G is a grap-free and cricket-free graph;[2, Theorem 1.2]

2. G is a gap-free and diamond-free graph[14, Theorem 4.9]

In particular, in above cases, I(G)s has a linear resolution.

3.1 Lower and Upper Bounds

In Chapter 2, we discussed some lower and bounds for I(G) in terms of ν(G) and

β(G). These invariants of graph play a vital role in bounds of regularity of higher

powers of I(G) as well. These bounds also helps us to study the aysmptotic linear

function of reg(Is) for s� 1.

Theorem 3.1.1. [6, Theorem 4.5] Let G be a simple graph with the edge ideal

I = I(G). Then

reg(Is) ≥ 2s+ ν(G)− 1,

for all s ≥ 1.

Proof. Let {e1, . . . , er} be an induced matching in G. Also, set ei := {x1, y1}. Let

H be the induced subgraph of G such that V (H) = {{xi, yi} : i = 1, . . . , r}. Then,
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I(H) = (x1y1, . . . , xryr) is a complete intersection i.e., it is generated by regular

elements. So, from Lemma 1.2.5 we have:

reg(I(H)s) = 2s+ (2− 1)(r − 1) = 2s+ r − 1 = 2s+ ν(G)− 1.

As shown in Corollary 4.3 of [6] that if H is an induced subgraph of G then

reg I(H)s ≤ reg I(G)s, we get the following

reg(I(G)s) ≥ reg(I(H)s) = 2s+ ν(G)− 1.

which completes the proof.

Then we continue with the upper bound with is similar to that just given, but

reduced to only bipartite graphs.

Theorem 3.1.2. [31, Theorem 1.1] Let G be a bipartite graph with edge ideal I =

I(G). Then

reg(Is) ≤ 2s+ co-chord(G)− 1,

for all s ≥ 1.

In relation to Question 3.0.4, Banerjee stated the following upper bound for

gap-free graphs.

Theorem 3.1.3. [2, Theorem 6.19] Let G be gap-free graph with edge ideal I =

I(G). Then

reg(Is) ≤ 2s+ reg(I)− 1,

for all s ≥ 2.

In a recent paper [27], Herzog and Hibi gave another interesting upperbound.

Theorem 3.1.4. Let G be a graph and ∆(G) be its independence complex. Then

reg(I(G)s) ≤ 2s+ dim ∆(G).

Let G be a simple graph where |V (G)| = n and |E(G)| = m. Hansen in

[24] has proved that the size of a maximum independent set is bounded by b1
2

+√
1
4

+ n2 − n− 2mc. This gives the following corollary.

Corollary 3.1.5. [27] Let G be a simple graph where |V (G)| = n and |E(G)| = m.

Then,

reg(I(G)s) ≤ 2s+ b1
2

+

√
1

4
+ n2 − n− 2mc − 1,

for all s.
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Many other upper bounds of size of maximal independent sets of G are known,

see [51]. One of them is known as Kwok’s upper bound given as exercise in [50],

which is n− m
D

, where D is the maximal degree among the degrees of vertices of G.

So, we have the following Corollary.

Corollary 3.1.6. Let G be a simple graph where |V (G)| = n and |E(G)| = m.

Also, let D be the maximal degree among the degrees of vertices of G. Then,

reg(I(G)s) ≤ 2s+ n− m

D
− 1,

for all s.

3.2 Exact Values for reg(I(G)s) for some special

classes of graphs

The asymptotic linear function of reg(Is) for s � 1 is of special interest. Due to

a theorem of Herzog, Cutkosky and Trung [10] and Kodiyalam [35], it is known

that if I is a graded ideal of a standard graded K-algebra, then the regularity of

Is is asymptotically a linear function of s. In simple words, there exists constants

a and b such that reg(Is) = as + b when s is large enough. In last couple of years,

several articles have appeared where authors studied this function. We point out

some prominent results in this direction.

When G is a cycle, then following theorem gives the regularity of I(G) and its

powers. Note that ν(Cn) = bn
3
c.

Theorem 3.2.1. [6, Theorem 5.2] Let G = Cn with edge ideal I = I(G). Then

reg(I) =

ν(G) + 1 if n ≡ 0, 1 (mod 3)

ν(G) + 2 if n ≡ 2 (mod 3)

for all s ≥ 2, we have

reg(Is) = 2s+ ν(G)− 1.

The above result was generalized for unicyclic graphs, which include whiskered

cycle graph as a particular case.
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Theorem 3.2.2. [1, Theorem 1.2] Let G be an unicyclic graph with edge ideal

I = I(G). Then

reg(Is) = 2s+ reg(I)− 2,

for all s ≥ 1.

Finally, we give an other list of some special graphs, for which reg I(G)s is

determined in terms of induced matching number of G.

Theorem 3.2.3. Let G be a simple graph. Then, for any power s ≥ 1

reg(Is) = 2s+ ν(G)− 1,

in the following cases:

1. G is a forest;[6, Theorem 4.7]

2. G is a very well-covered graph;[30, Theorem 5.3]
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[22] H. T. Há, A. V. Tuyl, Splittable Ideals and the Resolutions of Monomial Ide-

als, Tulane University, Department of Mathematics, 6823 St. Charles Avenue,

New Orleans, LA 70118, USA Department of Mathematical Sciences, Lakehead

University, Thunder Bay, ON P7B 5E1, Canada, Received 26 May 2006
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