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ABSTRACT

IMPROVED HEURISTICS FOR W–SET AND K–TREE GENERATION ON
FINITE STATE MACHINES

KAMİL TOLGA ATAM

COMPUTER SCIENCE AND ENGINEERING M.Sc. THESIS,
DECEMBER 2020

Thesis Supervisor: Assoc. Prof. Hüsnü Yenigün

Keywords: Finite State Machines, State Identification Sequences, W-sets, K-sets,
K-trees

Finite State Machine (FSM) based testing methods utilize State Identification Se-
quences which are used to identify the states of a black box implementation as cor-
responding to the states of an FSM given as the specification. There are different
types of state identification sequences. Some of these state identification sequences
are not guaranteed to exist for all specifications. There is one particular type of
state identification sequences, W-set based state identification sequences, which are
known to exist for any minimal, deterministic, completely specified FSM. Although
W-set based state identification sequences are known for a very long time, most of
the works in FSM based testing literature do not prefer to use them when testing
for an implementation without a reliable reset feature, since the length of W-set
based state identifications sequences in this case are exponential in the cardinality
of the W-sets. There are some recent works that suggest reducing the length of the
W-set based state identification sequences. In fact, instead of W-sets, which are sets
of preset experiments, these new methods can make use of so-called K-sets, which
are set of adaptive experiments that again always exist. Furthermore, these new
methods suggest applying not all elements of W–sets/K-sets, but instead an adap-
tive structure, called a K-tree is used to orchestrate the application of the elements
of the K-set. However, there are no extensive experimental studies for these new
methods. In addition, no algorithms are given for the construction of K-trees. In
this work, we first present some W-set construction algorithms to construct better
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W-sets, in terms of both the cardinality and the total length of the sequences. We
compare our W-set algorithms experimentally to the algorithms that exist in the
literature. We also present algorithms to constructs K-sets and K-trees. Finally,
we present an extensive experimental study for state identification sequences. The
results show that, although W-set based state identification sequences have been
considered practically infeasible due to the exponentially long sequences, the us-
age of K-trees make state identification sequences very short and practically usable.
Utilizing K–sets in the generation of K–trees also yields better results than utilizing
W–sets.
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ÖZET

SONLU DURUM MAKİNELERİNDE W–KÜMESİ VE K–AĞACI TÜRETİMİ
İÇİN SEZGİSEL ALGORİTMALARIN İYİLEŞTİRİLMESİ

KAMİL TOLGA ATAM

BİLGİSAYAR BİLİMİ VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ,
ARALIK 2020

Tez Danışmanı: Doç. Dr. Hüsnü Yenigün

Anahtar Kelimeler: Sonlu Durum Makineleri, Durum Saptama Dizileri,
W–kümeleri, K–kümeleri, K–ağaçları

Sonlu Durum Makinesi (FSM) bazlı test yöntemleri, Durum Saptama Dizileri adı
verilen, kara-kutu olarak verilen bir makinedeki durumların tasarımdaki durumlarla
örtüşüp örtüşmediğini saptamaya yarayan dizileri kullanır. Bilinen farklı durum sap-
tama dizisi çeşitleri vardır. Bu durum saptama dizilerinden bazılarının her tasarım
için var olacağı kesin değildir. Ancak, bir durum saptama dizisi çeşidinin - W–
kümesi bazlı durum saptama dizileri - indirgenmiş, gerekirci, ve tam belirtimlenmiş
tüm sonlu durum makineleri için her zaman bulunduğu bilinmektedir. W–kümesi
bazlı durum saptama dizileri uzun süredir bilinmesine karşın, literatürdeki birçok
güvenli tekrar başlatma özelliği olmayan makineler için geliştirilen yöntemler tarafın-
dan tercih edilmemektedir. Bunun sebebi, W–kümesi bazlı yöntemlerin ürettiği
dizilerin uzunluğunun W–kümesindeki eleman sayısına göre üstel olarak artmasıdır.
Bazı güncel çalışmalar, W–kümesi bazlı durum saptama dizilerinin uzunluklarının
düşürülebileceğini önermektedirler. Aslında bu yöntemler, önayarlı deneylerden
oluşan W–kümeleri yerine, uyarlanabilir deneylerden oluşan K–kümelerini de kul-
lanabilmektedirler. K–kümeleri de W–kümeleri gibi her indirgenmiş, gerekirci ve
tam belirtimli tüm sonlu durum makineleri için bulunmaktadırlar. Bundan da öte,
bu yeni yöntemler W–kümesinin/K–kümesinin tüm elemanları kullanılmadan da bir
durum saptama dizisi üretilebileceğini öne sürmektedirler. Bu yöntemlerde, sonlu
durum makinesinin bir durumu için hangi W–kümesi/K–kümesi elemanlarının kul-
lanılacağını saptamak adına, uyarlanabilir bir yapı olan K–ağaçları kullanılır. Fakat,
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literatürde bu yeni yöntemlerle alakalı bir deneyli çalışma henüz yapılmamıştır.
Buna ek olarak, K–ağaçlarının nasıl üretileceği ile alakalı bir algoritma da ver-
ilmemiştir. Bu çalışmada, öncelikle daha iyi W–kümeleri (hem eleman sayısı hem de
toplam uzunluk bakımından) oluşturulması için W–kümesi oluşturma algoritmaları
sunulmaktadır. BuW–kümesi algoritmaları literatürdeki diğer algoritmalarla deney-
sel olarak karşılaştırılmaktadır. Aynı zamanda bu çalışmada, K–kümesi ve K–ağacı
üretimi için algoritmalar da önerilmektedir. Son olarak, durum saptama dizileri
ile ilgili kapsamlı bir deneysel çalışma sunulmaktadır. Bu deneysel çalışmalar, W–
kümesi bazlı durum saptama dizileri tarihsel olarak pratikte kullanışsız gözükse
de, K–ağacı yardımıyla oluşturulduğunda, bu durum saptama dizilerinin çok kısa
ve kullanışlı sonuçlar ürettiklerini göstermektedir. Ayrıca, K–ağacı üretilirken K–
kümelerinin kullanılması da W–kümelerine göre bir avantaj sağlamaktadır.
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1. INTRODUCTION

Software testing is crucial, as it can greatly enhance the reliability of a system
and reduce the development and maintaining cost of a software project. Finite
state machine (FSM) models have been widely used as a mechanism to reflect the
abstract behaviour of a software system. In recent years, even several web interactive
frameworks (such as React.JS and Redux) have used the state machine approach
(Banks & Porcello, 2017). In this technique, what user sees in a web page is defined
to be a reflection of the state of the web page software. With such common usage
of finite state machines, FSM-based testing approaches have been developed to test
not only software but sequential circuits, communication channels and web systems
(Binder, 2000; Chow, 1978; Friedman & Menon, 1971; Haydar, Petrenko & Sahraoui,
2004; Holzmann & Lieberman, 1991).

Once a system N is implemented and the corresponding FSM M is known, testing
involves determining whether N is a correct implementation of M . In this case,
N is given as a block box, where the test suite can only apply inputs and observe
the outputs. This kind of tests are often applied as checking sequence experiments,
where a series of specific input sequences are applied to the system N . Then, the
outputs of the real system N is compared to the outputs of corresponding FSM
M . In this test suite, the sequences are specifically derived for testing two different
aspects of a state machine: first, to check whether each state in N can be identified
as corresponding to a state M , and second, to check whether N and M have the
same state transitions. Both of these checks are achieved by using sequences called
state identification sequences (SISs) . State identification sequences are known to be
produced by using distinguishing sequences (Gonenc, 1970; Hennie, 1964; Kohavi,
1978; Ural, Wu & Zhang, 1997), unique input-output sequences (Aho, Dahbura, Lee
& Uyar, 1991; Sabnani & Dahbura, 1988; Vuong, 1989), W–sets (also known as
characterizing sets) (Hennie, 1964; Kohavi, 1978; Kohavi, Rivierre & Kohavi, 1974;
Lee & Yannakakis, 1996) and K–sets (Jourdan, Ural & Yenigün, 2016).

Distinguishing sequences are either preset or adaptive; preset distinguishing sequence
(PDS) is a flat sequence; whereas adaptive distinguishing sequence (ADS) is a de-
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cision tree based on outputs of states. Both PDS and ADS of an FSM produce
a unique output for each state of the FSM. A unique input-output sequence is an
input-output sequence pair (x,y) for a state s such that the output sequence y is
produced by the application of the input sequence x only if the FSM is in the state
s. A W–set is a set of sequences such that for every state pair {si, sj} in the FSM
there exists a sequence x in the W–set such that si and sj produce different output
sequence for x. K–set is similar to W–set with a single difference: elements are
partial decision trees, similar to ADSs.

Distinguishing sequences and unique input-output sequences are not guaranteed to
exist for all FSMs. Showing whether an FSM has a PDS or whether the state of an
FSM has unique input-output sequence is PSPACE-complete (Lee & Yannakakis,
1994), though showing whether an FSM has an ADS can be achieved in polynomial
time complexity (Lee & Yannakakis, 1994). On the other hand, W–sets and K–
sets can be found for every FSM, given that it is completely specified and minimal.
Therefore, W–set/K–set based methods can be applied on a broader class of FSMs.
To the best of our knowledge, there is no prior work that shows a particular poly-
nomial upper-bound for the time complexity of W–set generation algorithms. It is
obvious that W–set algorithms have polynomial upper bound, since the cardinality
of W–set is polynomial and the cost of each sequence is also polynomial. However,
in this document we give a particular polynomial upper bound for the W–set con-
struction algorithms we suggest. Soucha & Bogdanov (2020) shows that K–sets can
be built in polynomial time, as well.

Once an SIS is found for the FSMM , it should be applied on the implementation N
and the FSM M . Due to this fact, the length of the SIS is important. Throughout
the literature, algorithms have been compared by the length of the SIS they pro-
duced. Each of these algorithms tried to bring a different approach for producing a
shorter SIS from the very same W–set given. However, another way to improve (re-
duce) the SIS length is to optimize the W–set. If the SIS generation algorithms are
fed a W–set with less elements and/or smaller elements, this might greatly improve
the performance of the algorithms. Though, for more sophisticated SIS algorithms
that compile an intermediate data structure - like K–trees in Jourdan et al. (2016)
and similar structures implied in Kohavi (1978); Kohavi et al. (1974) -, these two
qualities of W–sets may not be important at all.

In this work,

• We propose improved algorithms for W–set generation in Chapter 4. Some of
these algorithms strictly aim to produce a W–set with a lower cardinality and
a lower average item length.
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• We then propose another W–set generation algorithm that is optimized for
K–tree generation in Chapter 4, as well. K–tree is the main intermediate data
structure that Kohavi (1978); Kohavi et al. (1974) and Jourdan et al. (2016)
works with. We need to address that, the term K–tree was coined and K-
trees are formally defined by Jourdan et al. (2016). It is only our optimistic
interpretation that Kohavi (1978); Kohavi et al. (1974) intended to create a
K–tree like data structure.

• We share the results of the experiments that we performed in order to com-
pare the performances and the quality results of these W–set algorithms in
Chapter 6.

• We propose an algorithm to generate K–trees from any W–set or K–set given
for an FSM in Chapter 5. Although Jourdan et al. (2016) shows how K–trees
can be used for SIS generation, they do not provide any methods for generating
K–trees. The algorithm that we propose is an open-ended algorithm that can
be tuned by the usage of any scoring procedures. We put forth four such
procedures in the same chapter, as well.

• Lastly, in Chapter 7, we perform an experimental study by implementing all
of the available W–set/K–set algorithms, the K–tree generation algorithm and
SIS generation techniques to make a quality comparison of the SIS generation
algorithms existing in the literature.
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2. DEFINITIONS AND NOTATION

In this chapter, we briefly mention the concepts that we build our work upon and
define the notation that we will use to explain them throughout the document.

A deterministic finite state machine (FSM) is defined by a quintuple M =
(S,I,O,δ,λ) where S is a finite set of n states, I is a finite alphabet consisting of p
input letters (or simply inputs), O is a finite alphabet consisting of q output letters
(or simply outputs), δ : S× I → S is a partial transition function and λ : S× I →O

is a partial output function.

In an FSM M , for a state s ∈ S, an input x ∈ I and an output y ∈ O; δ(s,x) = s′

indicates that state s is taken to state s′ and λ(s,x) = y indicates that state x
produces output y, both when input letter x is applied.

An FSMM is considered to be complete or completely specified if the partial functions
δ and λ are functional. In simpler terms, the functions δ and λ should be defined for
each pair 〈s,x〉 ∈ S× I exactly once. In this document, we consider only complete
FSMs.

A sequence w ∈ I? is called an input word (or simply word). The definitions of δ and
λ functions can be extended to accommodate words in the following manner: For a
state s ∈ S, an input x ∈ I and a word w ∈ I?, we define δ(s,x.w) = δ(δ(s,x),w) and
λ(s,x.w) = λ(s,x).λ(δ(s,x),w) where ε is empty sequence and δ(s,ε) = s, λ(s,ε) = ε.

An FSM M is called strongly connected if for any two states si, sj ∈ S there exists a
word w such that δ(si,w) = sj .

A word w ∈ I+ is said to separate the states si and sj if λ(si,w) 6= λ(sj ,w). In this
case, w is named a separating sequence (or separating word) for si and sj . Take the
states s3 and s6 from the example FSM M1 given in Figure 2.1. The outputs of
these two states to the word bab are 011 and 010 respectively. In this case, the word
bab separates this state pair {s3, s6} and is called a separating sequence for {s3, s6}.
In contrast, ba does not separate {s3, s6}; because they give the common output 01
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Figure 2.1 An example complete, minimal and strongly connected FSM M1

to the word ba. Two states si and sj are called equivalent in the absence of any
such separating sequences. Building from this definition, two FSMs Mi and Mj are
equivalent if each state si from Mi can be mapped equivalent to a state sj from Mj

and each state sj from Mj can be mapped equivalent to a state si from Mi.

A word w∈ I+ is said tomerge the states si and sj if λ(si,w) =λ(sj ,w) and δ(si,w) =
δ(sj ,w). For example, the states s2 and s5 from the example FSM M1 (given
in Figure 2.1) are merged by the word aa, because λ(s2,aa) = λ(s5,aa) = 10 and
δ(si,w) = δ(sj ,w) = s6.

An FSM M is defined to be minimal if no equivalent FSMs for M with less states
than |SM | can be found. By combining this definition and the concept of separation,
a natural and an obvious consequence follows:

Lemma 1. In a minimal FSM M , each state pair {si, sj} must have a separating
sequence.

Proof. The proof of this lemma comes from contradiction. We may start by assum-
ing that M is minimal but there exists a state pair {si, sj} that does not have a
separating sequence. By definition, these states are equivalent. Then, as we have a
pair of equivalent states si and sj , we can merge them into a single state and the
resulting FSM M ′ is equivalent to M . As M ′ is produced by reducing the state size
of M by 1, now we have an equivalent FSM to M that has less state than it. This
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contradicts with the minimality of M .

For an FSMM , a setW = {w1,w2, . . . ,wr} of input sequences is called a W-set (or a
characterizing set) if for each state pair {si, sj} of M , at least one element of W is a
separating sequence. For example, W1 = {aa,ab,bb,baa} is a W–set for the example
FSM M1 given in Figure 2.1. One can easily check that any pair of states of M1 can
be separated by using at least one of the sequences in W1.

In literature, the term state identification sequence (SIS) is used as a broad term, as
stated in Chapter 1. Basically, a state identification sequence is used to identify a
state of an implementation as being similar to a state of the specification. When a
single sequence, e.g. a distinguishing sequence, is available, then the application of
this sequence at a particular implementation state is sufficient to identify the state
of the implementation. However, when no such “single sequence identification” is
possible, then multiple sequences need to be applied at the same implementation
state. For example, when one has to use a W-set for state identification purposes, the
elements of the W-set have to be applied to the same implementation state. This
property that several sequences need to be applied at the same implementation
state, requires repeated applications of the elements of the W-set using a particular
strategy. One such strategy is given by the following recursive definition for a state
identification sequence based on a W-set W = {w1,w2, . . . ,wm} (Gargantini, 2004;
Hennie, 1964):

(2.1)
β1 = w1

βr = (βr−1t
i
r−1)nwr

This equation is used to construct an SIS for a state si. In this equation, tij is called
a transfer sequence, which takes the FSM back to state si after the application of
wj at si. In other words, tij is sequence such that δ(si,wjtij) = si.

Here, the state identification sequence is βm. The implementation N corresponding
to the FSM M produces the same output as M produces when starting from the
state si when βm is applied, then N has a state similar to si of M and this state is
the state of N right before the application of the last wm.

Although SIS is a general term (e.g. a distinguishing sequence is also an SIS), in
this work we always use the term SIS to denote an SIS based on a W–set or a K–set.

An adaptive distinguishing sequence (ADS) for an FSM is a rooted tree with n leaves.
Every node in the ADS is assigned a state set S′ ⊆ S and an input letter x ∈ I. The
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root is labeled by S, the set of all states. If a node has a singleton state set, then this
node is a leaf node for the tree. Every edge in the ADS is labeled with an output
letter y ∈ O where the edges leaving the same node have different labels. Consider
a (non–root) node v in an ADS and let v′ be the parent of v. Let w ∈ I+ be the
input sequence obtained by concatenating the input symbols from the root to v′

(including v′), and let β ∈ O+ be the output sequence obtained by concatenating
the output symbols on the edges from the root to v (including the edge from v′ to
v). A state s ∈ S is in the set of states of v ⇐⇒ λ(s,w) = β. In addition, if the
input label of v is x, then the node v has an outgoing edge labeled with λ(δ(s,w),x)
for each s in the states of v.

A partial adaptive distinguishing sequence (PADS) - also known as incomplete adap-
tive distinguishing sequence (IADS) - is a generalization of ADS such that the num-
ber of leaves need not be n and the leaf nodes need not have singleton state sets.
With this property, a PADS does not necessarily separate all state pairs from each
other, rather it creates a partition of states that need not have n blocks. A PADS
Y is said to separate a state pair {si, sj} if there exist a node v in Y such that si is
in the state set labeling v and sj is not.

For an FSMM , a set Y = {Y1,Y2, . . . ,Yr} of PADSs is called a K-set if for each state
pair {si, sj} of M , at least one element of Y separates si and sj . An example K–set
Y ′ is given in Figure 2.2 for the sample FSM M1.

A K–tree T for an FSM M is a rooted tree with n leaves, where each leaf is labeled
by a distinct state of M . Non-leaf nodes of a K–tree are labeled by PADSs and
implicitly contain a set of states of M . The root node contains S. For any non-leaf
node v ∈ T and two states si and sj that v contains, si and sj are contained by
different children of v ⇐⇒ Yv separates {si, sj}.
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Figure 2.2 A K–set Y ′ = {Y ′1 ,Y
′

2} for the FSM M1, where Y
′

1 is the PADS on the
left and Y ′2 is the PADS on the right

Y ′1

Y ′2 Y ′2
s2 s4 s5 s6
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(s1, s7) (s3, s8)

Figure 2.3 A K–tree T1
′ for the FSM M1, generated from the K–set Y ′
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(s2, s5, s7) (s1, s4) (s6, s8)

Figure 2.4 Another K–tree T2
′ for the FSM M1, generated from the K–set Y ′
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3. RELATED WORK

This chapter is organized into two sections. In Section 3.1, we talk about the
previous approaches for W–set generation. In Section 3.2, we go over the previous
approaches for W–set based state identification sequence generation.

3.1 Related W–set Work

The literature for W–set (also known as characterizing set) generation methods is
not thick. The first algorithm described for W–set generation was proposed in Gill
(1962). Gill’s algorithm works in a partitioning fashion. The partition starts with
a single block of all states and an empty W–set. In each iteration, a non-singleton
block is taken, the separating sequence of a pair in this block is applied to the
states in that block and the block is broken into multiple blocks. In this process,
the separating sequence that is used is added to the W–set. The process basically
stops when all the blocks are singletons. This naive and straight-forward algorithm
has been the base algorithm in the literature for quite a long time, despite having
two obvious weaknesses: First, the algorithm misses the opportunity to see that, a
sequence that is used for dividing a partition can indeed divide other partitions as
well. Secondly, the algorithm does not include a useful post-processing opportunity:
prefix elimination. In a W–set W where wi,wj ∈W , if wj is a prefix of wi, then
W \{wj} is still a W–set. The reasoning is straight-forward: two states si, sj that
are separable by wj must give different outputs to wj by the definition of separation.
As wi has the prefix wj , the first |wj | output letters of si and sj as response to wi
must be different as well. This imply that wi must separate all state pairs that are
separable by its prefix wj .

These two deficits of Gill’s algorithm show that the version of this algorithm bears an
inherent redundancy. However, in Chapters 6-7, we favor Gill’s algorithm by adding
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prefix-elimination; because we want to make a fair comparison of the algorithms
that we propose in this document. The original depiction of Gill’s algorithm is
given below as Algorithm 1.

Algorithm 1: Gill’s W–set building algorithm
input : An FSM M = (S,I,O,δ,λ), a W–set W
output: A W–set W for M

1 W = ∅; // W: current W–set, initially empty
2 Π = {S}; // Π: state partition, initially all states are in a single block
3 while Π has a non–singleton block do
4 take a non–singleton block B ∈Π and remove B from Π
5 take a pair {si,sj} such that si,sj ∈B
6 let u be a separating sequence for {si,sj}
7 partition B into blocks B1,B2, . . . ,Bk such that

∀s,s′ ∈B ;s,s′ ∈Bi for someBi ⇐⇒ λ(s,u) = λ(s′,u)
8 Π = Π∪{B1,B2, . . . ,Bk}
9 insert u to W

10 end

Another W–set generation technique proposal in the literature was made in
Vasilevskii (1973). The mechanics of this technique is pretty simple. The tech-
nique keeps track of state pairs that are not separated yet, which initially should be
all state pairs. It then finds the “Next” sequence that can separate an unseparated
state pair in each iteration. “Next” happens in lexicographical order. The process
stops when the current unseparated pairs set is empty. We abstain from calling
this proposal an algorithm; because how the next sequence should be determined is
unclear. If we consider a simple loop enumerating all input sequences lexicographi-
cally, it will start with the first letter (let’s say a) and the first letter will not change
for a huge number of iterations. Then, we know that any pair that is “merged” by a
cannot be solved by a sequence starting with a. Even though we limit the maximum
input sequence length to n−1 (as this number is the upper-bound for the length of a
separating sequence (Gill, 1962)), the algorithm has a great chance of iterating over
all the sequences of length at most n−1 starting with a and still has not completed
the W–set. As Vasilevskii (1973)’s proposal does not include any other detail on the
iteration mechanism, we may suggest that this technique is either too expensive or
incomplete.

In Gargantini (2004), another algorithm for W–set generation is described. The
algorithm is nearly identical to Gill’s algorithm, with a slight difference. Gargantini’s
algorithm fixes the first weakness of Gill’s algorithm that we mentioned above. It
processes and breaks all the blocks (not only the block of consideration) when adding
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a new input sequence to W–set. To the best of our knowledge, this algorithm had
not appeared in the literature in this exact way. Gargantini (2004) neither shows a
reference for this idea, nor claims that it is novel. The algorithm is given below as
Algorithm 2.

Algorithm 2: Gargantini’s W–set building algorithm
input : An FSM M = (S,I,O,δ,λ), a W–set W
output: A W–set W for M

1 W = ∅; // W: current W–set, initially empty
2 Π = {S}; // Π: state partition, initially all states are in a single block
3 while Π has a non–singleton block do
4 take a non–singleton block B′ ∈Π
5 take a pair {si,sj} such that si,sj ∈B′

6 let u be a separating sequence for {si,sj}
7 forall non-singleton block Bi ∈Π do
8 partition Bi into blocks Bi

1,B
i
2, . . . ,B

i
k such that

∀s,s′ ∈Bi ;s,s′ ∈Bi
j for someBi

j ⇐⇒ λ(s,u) = λ(s′,u)
9 Π = Π∪{Bi

1,B
i
2, . . . ,B

i
k}\{Bi}

10 end
11 insert u to W
12 end

During literature scan, we ran into the paper Miao, Liu & Mei (2010), which pro-
posed a new W–set generation algorithm and comments on the previous approaches.
We examined the new algorithm they proposed and could not get a clear idea on
how they suggested to separate state pairs that cannot be separated by a single
input letter. The time complexity analysis they made on their own algorithm yields
to a time complexity of O(n2). However, it brings suspicion that they did not in-
corporate the number of input letters p into the time complexity analysis. Their
time complexity analysis also does not examine the more complex part where the
states are carried with multiple input letters to find a separation point. The fact
that this process might take n−1 times in the worst case (Gill, 1962) adds even a
bigger doubt on the time complexity analysis made by the authors. One upside is,
they apply prefix-elimination as the last step of their algorithm and also comment
that Gill’s algorithm lacks prefix elimination for bad. This is a point that we agree,
as we explained above as well. The W–set algorithms that we propose in Chapter 4
(except one, for a valid reason) also make use of this technique. We do not present
the pseudo-code of the algorithm Miao et al. (2010) proposes, as their paper has one
already.

Another attempt to reduce the W–set was made in Bulut, Jourdan & Türker (2019).
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Their algorithm took a different road and formed a breadth-first search tree of input
letters to make all separation attempts with as short sequences as possible. This
breadth-first search tree might expand until the depth n−1, as this number is the
upper-bound for the length of a separating sequence (Gill, 1962). Different from
Gill’s approach, this algorithm keeps track of state pairs to be separated. In the
beginning, all non-identical state pairs are included in this collection. At each depth,
the permutations of input letters on the newly generated leaf nodes are applied to
all non-separated state pairs. The sequences are added to the W–set as long as
they can separate a non-separated state pair. This algorithm proves to produce
better W–sets than Gill’s algorithm (in terms of both cardinality and total length),
in exchange of a performance penalty. Due to the exhaustive breadth first search
approach, the algorithm shows exponential time complexity. In this algorithm, the
input sequences of length 1 are almost always guaranteed to be included in the W–
set. With this being said, it is obvious that this algorithm is prone to excessive
growth if prefix elimination is not applied. Still, we do not see any mention of this
technique in the original paper. However, similarly to Gill’s algorithm, we will also
consider this algorithm with prefix elimination during our empirical work in this
document. We do not give the pseudo-code of this algorithm neither, as it is given
in the original paper in a clear way.

3.2 Related W–set Based State Identification Work

In this section, we go over the approaches in the literature about W–set based state
identification sequence generation. We explained in Chapter 1 that there are other
SIS generation categories, but we exclusively worked on the W–set based methods for
this document; hence we only recite the previous methods on this specific category
of SIS methods.

The first W–set based SIS generation technique was proposed in Hennie (1964).
The formula that Hennie generated is given in Equation 2.1. The rationale behind
the formula is the following simple hypothesis: “If an FSM gets applied the same
input sequence sufficiently many times, the last state it will reside in must be a
state it previously applied the input sequence at”. More specifically, this number
is n+ 1 for an FSM with n states. Additionally, if the input sequence causes the
same output sequence generated by the FSM repeatedly, Hennie shows that this
output repetition gets guaranteed after n+1 times. At this point, another sequence
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from the same W–set can be chosen and applied. By this, the method makes sure
that two different sequences are applied to the same state of the implementation.
This process is repeated recursively to ensure that all W–set elements (sequences)
are applied to this same state of the implementation. The outputs produced reveal
which state it is.

Hennie’s idea is laid out confidently; but the resulting SISs seem to be quite long
(Rezaki & Ural, 1995). The main reason of this length are (i) there are n+ 1
repetitions used and (ii) the length is exponential in the number of elements in the
W-set. Hennie, in the same paper, suggests a method that can make the length of
the SISs shorter. He puts forth that, if there are p states that give the same output
to the previously applied W–set elements, then instead of n+ 1, p+ 1 applications
of the input sequence could be sufficient. Although this claim looks promising,
Hennie does not give a clear definition of this idea and unfortunately does not prove
his point. We did not find any authors that referred to or used this idea for SIS
generation (except Jourdan et al. (2016)), they rather sticked to the original proposal
with n+1 iterations. Jourdan et al. (2016) consider the possibility of applying only
p+ 1 repetitions. Our work is also based on Jourdan et al. (2016). In the rest of
this document, we will refer to Hennie’s incomplete idea (that p+ 1 repetitions can
be used) as Hennie Improved.

In Lee & Yannakakis (1996), the authors of the survey mention Hennie’s original
formula, but they “correct” the formula to use n iterations rather than n+ 1. No
other changes were done on Hennie’s formula other than this.

In two papers by Kohavi et al., specifically Kohavi (1978); Kohavi et al. (1974),
another approach to SIS generation was mentioned. They propose an adaptivity
based approach, where the states are partitioned according to their outputs to an
applied input sequence. Then each partition is applied a different series of W–set
elements and the partitioning continues until singleton partitions are reached. We
understand that, this idea resembles the K–tree concept we defined in Chapter 2.
Kohavi et al. also use a different iteration count than Hennie. The first element
of W-set is applied n+ 1 times, similar to Hennie. All other partitions/nodes use
n′+1, where n′ is the state count of their grandest parent node except the root. In
Figure 3.1, a partial K–tree T3 is given to illustrate the working of this method. In
T3, with Kohavi’s method, the iteration count of the node labeled by S is |S|+ 1,
which is identical to Hennie’s iteration count for all steps, n+1. On the other hand,
the iteration counts of the nodes labeled by S′, S′′ and S′′′ (and any other children
of these nodes) are all |S′|+ 1. With this approach, Kohavi et al.’s method is able
to use lower iteration counts and avoid applying all W–set elements for the state
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Figure 3.1 An example partial K–tree T3

identifications. However, we would like to remind that, Kohavi et al. does not give
any formal definition of their method and the inference that they intended to use a
K–tree-like structure is our optimistic take to their assertion.

Lastly, Jourdan et al. (2016) proposes a novel method for SIS generation, which
we adhere to in this document as JUY. This paper defines the construct K–tree
and proposes a SIS generation formula based on K–trees. The formula that was
proposed by this paper still bears the same DNA as Hennie’s, with only iteration
count changes. With their definition of the formula, each partition/node on the
K–tree may use l+ 1, where l is the state count of the partition/node itself. If we
take the example partial K–tree T3 again, the iteration count of the node labeled by
S is still |S|+ 1 and the iteration count of the node labeled by S′ is |S′|+ 1. These
two are identical to Kohavi’s iteration counts. However, the iteration counts of the
nodes labeled by S′′ and S′′′ are calculated as |S′′|+ 1 and |S′′′|+ 1 respectively by
JUY. This means that as we get deeper on the K–tree, the iteration count keeps
decreasing, unlike Kohavi et al’s proposal. Another addition is, K–tree definition
made in Jourdan et al. (2016) is compatible with PADS. So, a K–tree can be built
by using a K–set as well. This situation gives another upper hand to the proposal
JUY.
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4. CONTRIBUTIONS ON W–SET GENERATION

W–sets are utilized in many FSM-based testing methods (Hennie, 1964; Kohavi,
1978; Kohavi et al., 1974; Lee & Yannakakis, 1996). Decreasing the cardinality and
average element length of w–sets surely contributes to all of these methods. Hence,
we propose three new algorithms in sections 4.1, 4.2 and 4.3 which aim to improve
these two aspects. Apart from that, we have K–tree algorithms which are introduced
in Section 5. These K–tree algorithms also use W–sets and can benefit from the
improvements achieved by these new W–set algorithms. In Section 4.4, we propose
another W–set algorithm that does not compete to improve W–set cardinality or
average element length, but specifically enhance the K–tree quality.

In most of our algorithms, we use a separating pair graph generated from FSMs.
The definition is given below.

Definition 1 (Given as Distinguishing Automaton in Definition 3 of Güniçen, İnan,
Türker & Yenigün (2014)). The separating pair graph G = (V,E) of FSM M =
(S,I,O,δ,λ) is a directed graph where the set of nodes and the set of edges are
defined as follows:

V = {{si, sj} | si 6= sj , si, sj ∈ S}∪{Merged,Separated}

E ⊆ V × I×V is a set of edges labeled with the input symbols of the FSM M .

∀{si, sj} ∈ S×S, where si 6= sj, and ∀x ∈ I,

• ({si, sj},x,Separated) ∈ E iff λ(si,x) 6= λ(sj ,x)

• ({si, sj},x,{δ(si,x), δ(sj ,x)}) ∈ E iff λ(si,x) = λ(sj ,x) and δ(si,x) 6= δ(sj ,x)

• ({si, sj},x,Merged) ∈ E iff λ(si,x) = λ(sj ,x) and δ(si,x) = δ(sj ,x)

On a separating pair graph, for any graph vertex v corresponding to a state pair
{si, sj} of FSM M , the label of a path from v to Separated is a separating sequence
for {si, sj}. Hence, non–existence of a path from vertex v to Separated means
that the states si and sj are equivalent. Using this observation, the minimality
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of an FSM can simply be performed by checking the backward reachability of all
vertices corresponding to state pairs from the vertex Separated. Similarly, shortest
separating sequences of state pairs can be discovered by a backward breadth first
search from Separated. Similarly, a shortest separating sequence of states si and
sj can be found by finding a shortest path from the vertex {si, sj} to the vertex
Separated in the separating pair graph. One can find shortest separating sequences
of all state pairs by using a single backward Breadth First Search starting from the
vertex Separated.

s1

s2 s3

a/0

b/0

b/1

a/0

a/0

b/1

Figure 4.1 A small example FSM M2

s2, s3

s1, s3

Mer.Sep.

s1, s2

a

b

a
b

a

b

Figure 4.2 The separating pair graph of the FSM M2 in Figure 4.1

Constructing the separating pair graph, checking the minimality of the FSM using a
separating pair graph, and finding shortest separating sequences of all states pairs
using a separating pair graph can all be performed in time O(pn2).

The algorithms in the upcoming sections all use state pairs for the sake of imple-
mentation simplicity. Designing the same algorithms by using state blocks is also
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possible. Due to implementing these algorithms via the state pairs approach, they
have higher theoretical time complexities than what is normally possible. However,
the time complexity analysis depends on the worst cases which we do not observe
in reality and the run-times of our algorithms are pretty competitive, as Chapter 6
shows. The details of this situation is given in detail in Section 4.5.

4.1 The Algorithm: Chassis

As explained in the previous sections, a W–set consists of such sequences that each
pair of states in the FSM can be separated by at least one of them. A very basic
and inefficient observation is: A collection of the separating sequences of every pair
makes a W–set. This is theoretically correct due to the fact that every pair is
guaranteed to have a separating sequences in the set, which naturally qualifies for a
W–set. In practice, this method builds W–sets with n× (n−1)/2 elements. We can
do better than this. As an enhancement, we may append a procedure that iteratively
eliminates some of the sequences from the set and checks if it still is a W–set. This
approach seems to yield a much smaller W–set for the FSM, but then the creation
process is prolonged a lot. In the removal step of each sequence, all the remaining
pairs should be checked against the remaining sequences in the set, in order to see
whether they still can be separated with the remaining sequences or not. Although
this approach may not be a fast method, it shows us that a subset of the set of all
separating sequences can be used as a W–set. By this last inference, we can tweak
the method such that we start with an empty set and populate it with separating
sequences, rather than starting with separating sequences of all pairs and reducing
from that point. By this last modification, we conclude the design of our algorithm
called Chassis (CHAracterizing Set using Separating Sequences), which
is given below as Algorithm 3.
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Algorithm 3: Chassis
input : An FSM M = (S,I,O,δ,λ)
output: A W–set W for M

1 compute the shortest separating sequence w{i,j} for every state pair si,sj ∈ S
2 W = ∅; // W: current W–set, initially empty
3 Z = {{si,sj} | si 6= sj ,si,sj ∈ S}; // Z: set of pairs yet to be separated
4 while |Z|> 0 do // we still have non-separated pairs, need to add more

sequences to W

5 take any pair {si,sj} ∈ Z
6 Z = Z \{{s′i,s′j} ∈ Z | s′i and s′j are separated by w{i,j}}
7 insert w{i,j} to W
8 end
9 Remove the sequences from W that are prefixes of some other sequences in W .

Algorithm 3 follows the approach developed in the previous paragraph. First, the
algorithm computes the shortest separating sequences of every state pair at line 1.
This is achieved by using separating pair graph as explained in Definition 1 and ap-
plying backwards breadth first search on it. Later, a current form of W–set is stored
in W , which is initially empty. The algorithm also keeps track of non-separated
state pairs in Z, which initially has all possible state pairs.

The main algorithm continues until all state pairs of FSM M has a separating
sequence in W . In every iteration, we take a random state pair {si, sj} from the
non-separated state pair set Z. The shortest separating sequence w{i,j} of this state
pair is applied to every state pair in Z. The state pairs which are separated by
this sequence (including {si, sj} ) are removed from Z. This process is guaranteed
to remove at least one state pair from Z in each iteration, because a pair must be
separated by its own shortest separating sequence naturally. Hence, the iteration is
also guaranteed to stop. By the end of the algorithm, we may have included some
unnecessary sequences in the W–set. If a sequence wi ∈W is a prefix of another
sequence wj ∈W , wj is capable of separating all the pairs that wi can. In this case,
wi can be removed from W safely. The last step of the algorithm traverses W and
handles these mentioned cases.

The precomputation part of Algorithm 3 (line 1) generates the separating pair graph
and computes the shortest separating sequences of each state pair from it. This step
has the time complexity of O(pn2) as mentioned in the beginning of this chapter.
The symbol n denotes the number of states in the FSM and p denotes the number
of input letters. The loop in line 4 may iterate at most n− 1 times; because this
loop adds a sequence to the W–set and a W–set can contain at most n−1 elements
(Sandberg, 2004). For each iteration of the loop, all the remaining state pairs in
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Z are tested with a separating sequence. The remaining state pairs in Z might be
as many as n× (n−1)/2. Sandberg (2004) also shows that the length of a shortest
separating sequence of a state pair in an FSM is at most n− 1. Consequently, the
loop portion of Algorithm 3 has theoretical time complexity of O(n4). Merged with
the precomputation part, the time complexity of the algorithm can be described as
O(pn2 +n4). Although this might seem high, we do not observe this high upper
bound much in practice. So, this algorithm does perform well in real life, as our
experiments in Chapter 6 show.

Figure 2.1 shows an example FSM M1 for remarking the differences between the
characteristics of the algorithms that we propose in this document. When Chas-
sis (Algorithm 3) is applied to M1, the resulting W–set is {aa,ab,bb,baa}. We note
that this result has cardinality of 4 and total letter count of 9.

The algorithm Chassis behaves similarly to Gill’s algorithm (given as Algorithm 1)
internally. Although Gill’s algorithm traces the progress of the separation in state
partitions and our algorithm Chassis traces it as a set of unseparated state pairs,
the decision mechanisms are the same. There are two improvements that Chassis
accomplishes over Gill’s algorithm: (i) all partitions are divided during the addition
of a sequence to the W–set, (ii) prefix-elimination is applied for removing redundant
elements from the W–set. As we explained in Section 3.1, the first improvement was
used in Gargantini (2004) to depict a “traditional” method for W–set generation and
the second improvement was briefly mentioned in Miao et al. (2010). At this point,
Chassis is an algorithm that uses both of these approaches to propose a simple
and easy-to-implement solution for W–set generation. Due to the fact that these
improvement ideas were discovered and mentioned before us, we do not assert that
this is a completely novel algorithm. However, we believe that Chassis combines
the previously mentioned - but not stressed - approaches and declare it as a whole
package, which also creates the chassis (base) for our novel algorithms proposed in
the rest of this chapter.

4.2 The Algorithm: Chassis-C

Our first algorithm, as explained in the previous section, follows a simple approach
for creating W–sets: It picks from the existing shortest merging sequences of state
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pairs and remove all the pairs that are separated by this sequence. This technique
starts a new W–set element in every iteration and may result in a relatively high
number of elements in the W–set. An observation during the implementation of
Chassis was that some pairs indeed got closer to being separated by the sequences
applied, but were not pursued to the end. For instance, we may consider a sequence
w being applied to all state pairs, including pair {si, sj}. After the application of w,
assume that {si, sj} is taken to another pair {s′i, s′j} where s′i 6= s′j but the output
sequence generated by the application of w to si and sj are the same. At this point,
the pair {si, sj} is neither separated nor merged. Any such pair may be eligible for
separation by applying few more letters; however, Chassis (Algorithm 3) and its
predecessors (Gill’s and Gargantini’s algorithms) ignores the progress achieved on
these pairs and start over with a brand new sequence. This observation yielded us
to create our second algorithm called Chassis-C. which is the ”Chained” derivation
of Chassis.

Algorithm 4: Chassis-C
input : An FSM M = (S,I,O,δ,λ)
output: A W–set W for M

1 compute the shortest separating sequence w{i,j} for every state pair si,sj ∈ S
2 W = ∅; // W: current W–set, initially empty
3 Z = {{si,sj} | si 6= sj ,si,sj ∈ S}; // Z: set of pairs yet to be separated
4 while |Z|> 0 do // we still have non-separated pairs, need to add more

sequences to W

5 copy Z into Z
6 initialize u= ε

7 while |Z|> 0 do
8 take a pair {si,sj} ∈ Z such that |w{i,j}| is minimum amongst all pairs in Z
9 u= u.w{i,j}

10 Z = {{δ(s′i,w{i,j}), δ(s′j ,w{i,j})} |
{s′i,s′j} ∈ Z , s′i and s′j are not separated nor merged by w{i,j}}

11 end
12 Z = Z \{{s′i,s′j} ∈ Z | s′i and s′j are separated by u}
13 insert u to W
14 end

In this algorithm, we again start with the standard step of shortest merging sequence
calculation. Similarly to Algorithm 3 (Chassis), we initialize an empty W–set in
the beginning denoted byW , and also set Z which holds all the state pairs available:
this set Z indicates the pairs left to be separated. After the initial steps, the main
loop starts just like Algorithm 3. Differently from it, Algorithm 4 (Chassis-C) does
not create a new sequence every time it considers a shortest separating sequence of
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a state pair, but it creates W–set elements out of the concatenation of the several
of these sequences.

In every iteration of the while loop in Line 4, we copy the currently active (non-
separated) state pairs into a new set Z, to be able to track them per iteration. We
initialize an empty sequence u which will hold the concatenation of several shortest
merging sequences. The inner loop in Line 7 continues as long as we can find an
unmerged and unseparated state pair left in Z. The state pair {si, sj} in Z with the
minimum |w{i,j}| is chosen in each iteration and w{i,j} is appended to u. The state
pairs in Z that are merged or separated by w{i,j} are removed from Z and the other
state pairs are considered to move with the input sequence w{i,j}. The reason we
remove merged pairs from Z is that they cannot be separated anymore by adding
more letters naturally: such pairs has to be separated by another W–set sequence
to be generated later on. Once we finish off all the state pairs in Z, all the state
pairs in Z that are separated by u are removed. The reason we remove separated
pairs from Z is that these pairs are not going to be needed to process in the rest of
the algorithm anymore. The new sequence u is ready and it is inserted into W , our
current W–set.

Lemma 2. The body of the loop on line 7 in Algorithm 4 is iterated at most n−1
times.

Proof. During the process of Algorithm 4, each iteration of the loop on line 7 sep-
arates at least one state pair, hence two states from each other. Internally, states
of the FSM are partitioned by the sequences formed so far, and the addition of a
subsequence w{i,j} in an iteration has to increase the cardinality of this partition by
at least one, because this subsequence separates a state pair. Having n states, the
cardinality of the partition grows up to n during the lifetime of the algorithm. By
this observation, the loop can iterate at most n−1 times.

Lemma 3. For a W–set W = {w1,w2, . . . ,wk} that Algorithm 4 generates,

k∑
i=1
|wi| ≤ (n−1)2

Proof. Lemma 2 already shows that there can be at most n−1 iteration of the loop
on line 7, each iteration of which adds a subsequence w{i,j} into the W–set. Each
of these subsequences are taken from a shortest separating sequence of a state pair,
whose length can be at most n− 1 (Sandberg, 2004). Therefore, the total number
of input letters in a W–set generated by Algorithm 4 can be at most (n−1)2.
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Although the nested loop structure in Algorithm 4 seems to create a high running
complexity, by using an amortized analysis, we show that it is not more expensive
than Algorithm 3.

The precomputation part (line 1) has the time complexity of O(pn2) as mentioned
earlier. The length of a separating sequence for a state pair in an FSM may be at
most n− 1 (Sandberg, 2004). The cardinality of Z may at most be n× (n− 1)/2
(which is the number of all state pairs). When we combine these two results, the
cost of each execution of line 10 itself is O(n3). Lemma 2 implies that line 10
can be visited at most n− 1 times. Therefore, the total cost of line 10 during the
execution of Algorithm 4 is O(n4). Together with the precomputation, the total
cost of Algorithm 4 is O(pn2 +n4). Similarly to Algorithm 3, Algorithm 4 performs
much faster in practice than the theoretical complexity analysis shows, as well.

Once Chassis-C (Algorithm 4) is applied on the example FSM M1 given in Fig-
ure 2.1, the W–set {aabba,bab} is produced. We note that this result is better than
Chassis in both departments, with cardinality of 2 and total letter count of 8.

4.3 The Algorithm: Chassis-CT

In Chassis-C (Algorithm 4), we create longer sequences by concatenating multiple
shortest merging sequences of some state pairs. We prolong a sequence as long as we
can find an available state pair (a pair that is not merged neither separated). During
our manual testing of Chassis-C, we observed that we had very limited number
of available state pairs in the last few steps of this sequence extension. Those few
remaining state pairs might actually be separated by the sequences of the W–set
that were generated later than the sequence of consideration. This observation gives
the idea that last few extensions for the sequences might be redundant and hence
unnecessary, when the sequences that are inserted later are considered. As a result,
we see that it might be possible to apply some trimming to decrease the average
length the sequences that Algorithm 4 presented in the previous section generates.
This brings us to the following improved version of Chassis-C, named Chassis-CT
(Trimmed derivation of Chassis-C):
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Algorithm 5: Chassis-CT
input : An FSM M = (S,I,O,δ,λ)
output: A W–set W for M

1 let W = {w1,w2, . . . ,wk}†† be a W–set computed for M by Algorithm 4
2 for i= k−1 to 1 do // the last sequence cannot be trimmed
3 let w′i be the shortest prefix of wi such that W \{wi}∪{w′i} is still a W–set
4 if w′i = ε then
5 W =W \{wi}
6 else
7 W =W \{wi}∪{w′i}
8 end
9 end

The implementation of the trimming, however, is more complicated. First, let us
define Sαwi

, the set of states of pairs that an extension α of a sequence wi ”notes to
separate”:

Sαwi
is a set consisting of pairs of states {s,s′} ∈ Sαwi

such that

• for all j < i, λ(s,wj) = λ(s′,wj) (i.e. no sequence that comes before wi can
separate these pairs),

• λ(s,w′iα) 6= λ(s′,w′iα) (i.e. wi = w′iα separates these pairs),

• λ(s,w′i) = λ(s′,w′i) (i.e. the trimmed form w′i of wi cannot separate s and s′).

In Algorithm 4, each extension of a sequence is noted to separate a set of state pairs
as defined above. While trying to remove an extension α of a sequence wi ∈W ,
the set of state pairs Sαwi

that were noted to be separated by α will no longer be
separated by wi. If some other set of sequences come out to separate all these pairs,
then trimming wi by removing the extension α is safe. However, when wi is trimmed
like this, the other sequences that guarantee the separability are not safe to change
from thereafter. So, for each trimming, some sequences should be locked for future
updates (trims). Because of this reason, the order of sequence selection becomes
important.

In Algorithm 4, the generation method and order has some effect over this choice.
Given two different sequences wi,wj ∈W , if wi is generated before wj (i.e, i < j), we
know that wi cannot separate any pair wj is noted to separate; because, this “noting
to separate” notion is used for separating a state pair that is active (not separated
by any earlier sequence). We can consequently say that, while trimming a sequence

††We consider the elements of W as sorted with respect to the order of insertion of the sequences into W by
Algorithm 4. That is, we let W = {w1,w2, . . . ,wk} where wi is inserted into W before wj if i < j.
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wj , any sequence wi such that i < j does not need to be checked or locked. By this
observation, we chose to traverse the sequences backwards, i.e. starting from the
last generated one towards the first. By this choice, we make sure that we do not
lock any sequence before it is processed for trimming. The last sequence wk cannot
be trimmed as it does not have any successors to cover for the state pairs to be left
uncovered.

Lemma 4. The W–set W that Algorithm 5 generates cannot be further trimmed.

Proof. The proof is by construction. We may start by assuming that W–set W ,
which is the output of this algorithm, can be trimmed. This requires that some
sequence wi ∈ W can be trimmed. Let us assume that wi = w′iα and α can be
trimmed.

Note that, by definition of Sαwi
, no pairs of states {s,s′} ∈ Sαwi

can be separated by
wj for some j < i.

In addition, by the design of Algorithm 5, for at least one pair of states {s,s′} ∈ Sαwi
,

there exists no wj , j > i, that separates {s,s′}. Since, if there were such wj , j > i,
that separates s and s′, Algorithm 5 would have trimmed α already and such wj ,
j > i did not get altered after the processing of wi.

The time complexity analysis of Algorithm 5 must definitely start by referring to the
one of Algorithm 4. The time complexity of Algorithm 4 is found as O(pn2 +n4) in
Section 4.2. After the W–set is generated by Algorithm 4, we consider subsequences
of W–set elements and check if the state pairs that these subsequences “note to
separate” can be separated by the following W–set sequences. Each state pair in
the FSM is noted to separate only once in a W–set. It means that we iterate over at
most n×(n−1)/2 state pairs, and each one only once. We may need to apply all the
following sequences in the W–set to a state pair and each input letter applied adds
up to the complexity. So, we need to analyze the total number of input letters that
a W–set generated by Algorithm 4 may have. Though, Lemma 3 already proves
that this number is upper-bounded by (n− 1)2. So, in Algorithm 5, each of our
n× (n−1)/2 many state pairs might be tested with a total of at most (n−1)2 input
letters. This shows that, the trimming part (line 2–9) of the algorithm has the
time complexity of O(n4). By merging with the time complexity of Algorithm 4,
which produces the W–set that gets trimmed, the total complexity of Algorithm 5
combined is O(pn2 +n4).

Once Chassis-CT (Algorithm 5) is applied on the example FSM M1 given in Fig-
ure 2.1, the W–set {aab,bab} is produced. We note that Chassis-CT is indeed able
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to improve the W–set that is received from Chassis-C, by trimming the two letters
ba from the end of the first sequence. With this, we note that Chassis-CT resulted
in a W–set of cardinality 2 and total letter count 6.

4.4 The Algorithm: Chassis-P

This last W–set algorithm aims to generate a W–set that is suitable for using in K–
tree generation. As explained in Chapter 2, a K–tree for an FSMM can be generated
from any W–set given forM . However, the properties of this W–set crucially affects
the quality of the K-tree and therefore of the state identification sequence. For
such reasons, generating a W–set with the shortest elements or the least number
of elements are not a concern for the usage in K–tree based SIS methods. Indeed,
even the inverse might be true. By this motivation, we designed the following W–
set generation algorithm that mimics the process of a K–tree generation, called
Chassis-P (Partitioned derivation of Chassis).

Algorithm 6: Chassis-P
input : An FSM M = (S,I,O,δ,λ)
output: A W–set W for M

1 compute the shortest separating sequence w{i,j} for every state pair si,sj ∈ S
2 W = ∅; // W: current W–set, initially empty
3 Π = {S}; // Π: state partition, initially all states are in a single block
4 while Π has a non–singleton block do
5 take a non–singleton block B ∈Π and remove B from Π
6 Z = {{si,sj} | si 6= sj ,si,sj ∈B}
7 initialize u= ε

8 while |Z|> 0 do
9 take a pair {si,sj} ∈ Z such that |w{i,j}| is minimum amongst all pairs in Z

10 u= u.w{i,j}

11 Z = {{δ(s′i,w{i,j}), δ(s′j ,w{i,j})} |
{s′i,s′j} ∈ Z , s′i and s′j are not separated nor merged by w{i,j}}

12 end
13 partition B into blocks B1,B2, . . . ,Bk such that

∀s,s′ ∈B ;s,s′ ∈Bi for someBi ⇐⇒ λ(s,u) = λ(s′,u)
14 Π = Π∪{B1,B2, . . . ,Bk}
15 insert u to W
16 end
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In this algorithm, the first two lines are shared with all the previous algorithms
proposed in this document so far. On line 3, we create a partition struct. A partition
is basically a set of blocks, where blocks are a set of states. Initially, the partition
Π consists of a single block that contains all the states. Beginning from this point,
we will refine Π until all the states are single in a dedicated block.

In each iteration of the loop on line 4, the algorithm takes a non–singleton block B
from Π. Singleton blocks are already divided as much as they can, so they become
out of consideration. The operations between line 5 to line 15 are done only for
creating a sequence that divides the block B to as many blocks as possible. The
approach we use for generating this sequence is very similar to the one of Algorithm 4
(Chassis-C). In fact, lines 7-12 of Algorithm 6 are identical to the lines 6-11 of
Algorithm 4. However in Algorithm 4, the state pair set Z is global to the execution
and gets updated during the loop. But in Algorithm 6 (Chassis-P), we compile Z
in every iteration from scratch and it consists of the pairs of all the states from B.

During the design of the algorithm, it was possible to choose an approach similar to
the one of Gill’s algorithm (or the base algorithm Chassis) by picking the separating
sequence of a state pair and not extending it further. Considering the fact that we
do not mind the cardinality of the W–set generated with Chassis-P, this seems
like a good method. However, having a single sequence divide a group of states
to a large number of group of states is preferable while constructing a K–tree, in
order to minimize the height of K–tree. The height is the most crucial property
of a K–tree in SIS generation; because the height of the K–tree directly affects the
depth of recursion in the formula. As this W–set generation method is designed
specifically for K–tree generation, we chose to use an approach similar to the one of
Algorithm 4 which creates longer sequences, which should divide blocks into large
number of blocks at once.

At the very end of each main loop iteration, the new sub-partitions of B is calculated
and added to the partition Π. Eventually, the main loop must terminate. This
is guaranteed; because, we create a sequence consisting of at least one shortest
separating sequence of some state pairs of B. This shortest separating sequence
must put the two states that constitute the state pair into different blocks. This
shows that the block B must be divided into at least two blocks in each iteration
and hence, all blocks in Π must reach to the cardinality of 1 eventually.

Algorithm 6 analyzes state pairs by using partitions of states, differently than Algo-
rithm 4. However, the worst time complexity still can be referred from Algorithm 4.
The reason is the following: Algorithm 6’s worst case does create totally unbalanced
partitions, such as a partition with only two blocks one of which has only one state
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and the other with k−1 states. This way, the algorithm will have to process all the
pairs generated by the k−1 states, which will lead to the greatest amount of pairs
processed in total. In the worst case of Algorithm 4, the algorithm separates only
one state from the others and all the other states stay together. This scenario is
exactly the same scenario as the worst case of Algorithm 6. That’s why, these two
algorithms share the same worst case time complexity of O(pn2 +n4).

4.5 A Note on the Complexity of W–set Algorithms

Algorithms 3–6 all use state pairs for tracking the current separation situation. As
we briefly mentioned in the beginning of this chapter, the same information can be
encoded and tracked in state partitions. In several sections of this chapter, we noted
that the concept of state pairs getting separated and removed from a waiting list
is internally equivalent (for our purposes) to a set of states getting partitioned and
some blocks becoming singletons (possessing a single state). Therefore, it is also
possible to design and implement the above-mentioned algorithms by using state
partitioning technique.

For a given set of states of size k, tracking the state pairs and applying inputs to
those state pairs has the complexity of O(k2); because k states make up k×(k−1)/2
pairs. Each state occurs in k−1 state pairs and during the application of inputs to
those pairs, each state is redundantly checked k−1 times. In the state partitioning
technique, this extra theoretical cost is avoided. This is why the same logic that
Algorithms 3–6 implements can be implemented in a time complexity of O(pn2 +
n3) rather than O(pn2 +n4) that we showed above. However, in practice, at least
for the size of FSMs used in our experiments, the performance of the algorithms
are competitive enough. On top of this, using pairs decreases the implementation
challenges, which made us choose this technique.
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5. CONTRIBUTIONS ON K–TREE GENERATION

In the previous chapter, we introduced several methods to generate W–sets. W–sets
are widely used for generating state identification sequences in FSM-based test-
ing (Hennie, 1964; Kohavi, 1978; Kohavi et al., 1974; Lee & Yannakakis, 1996;
Rezaki & Ural, 1995). The elements of W–sets are sequences and these sequences
are used for identifying states. However, it is known that instead of applying a se-
quence directly, adaptivity can also be used, which yields to a tree structure known
as PADS. When we have a set of PADSs instead of a set of sequences, this is called
a K–set (Jourdan et al., 2016). Jourdan et al. (2016) also introduces the concept
K–tree. K–tree is defined as a rooted tree where the root and intermediate nodes are
labeled by the elements of K–set and the leaf nodes are labeled by the states of the
FSM. A path from the root to a leaf in a K–tree gives a sequence of K–set elements
that the leaf state can be located by. The K–tree concept has been shown to help
create short SISs by Jourdan et al. (2016), but a clear method of K–tree generation
has not been recommended: The way that PADSs should be placed and organized
in the K–tree is left open. In this chapter, we propose several heuristic methods
to generate efficient K–trees. Efficiency here is defined by how short state identifi-
cation sequences are created from the K–trees. These K–tree generation methods
can be applied on any W–set/K–set given. Originally, K–trees are known to process
K–sets only, but it is possible to convert a W–set to K–set implicitly by representing
a sequence w = x1x2 . . .xk as a PADS in the form of a complete tree, where every
node at depth i in this tree is labeled by the input letter xi in the sequence w. An
example of this conversion is given in Figure 5.1. Hence, we say that a K–tree can
be built by using a W–set as well.

We propose a greedy K–tree building heuristic in this section. The pseudo-code is
given in Algorithm 7.
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Algorithm 7: Our K–tree building algorithm
input : An FSM M = (S,I,O,δ,λ), a K–set W
output: A K–tree K for M

1 r = (S,−) // r: root node, has all states and is initially unlabeled
2 initialize the K–tree K with root r
3 initialize the working queue Q= [r]
4 while |Q|> 0 do
5 remove the next node V = (SV , `V ) from Q

6 foreach PADS wi in W do
7 if wi does not occur on the path from r to V then
8 calculate the partition Πi = {B1

i ,B
2
i , . . . ,B

k
i } such that

∀s,s′ ∈ SV ;s,s′ ∈Bj
i for someBj

i ⇐⇒ λ(s,wi) = λ(s′,wi)
9 calculate†† the score ci of Πi induced by wi

10 end
11 end
12 let w∗ be the PADS in W that induces the partition Π∗ = {B1

∗ ,B
2
∗ , . . . ,B

k
∗}, which has

the lowest score c∗
13 set label `V = w∗

14 foreach Bx
∗ ∈Π∗ do

15 if |Bx
∗ |> 1 then

16 create a new child V x = (Bx
∗ ,−) of V

17 insert Vx into Q
18 else // |Bx

∗ |= 1
19 create a new child V x = (Bx

∗ ,s) where s is only state in Bx
∗

20 end
21 end
22 end

This algorithm constructs a K–tree in a breadth-first manner. In addition to the
labels of K–tree nodes, Algorithm 7 also keeps track of a set of states corresponding
to a K–tree node. Therefore, there are two pieces of information for each node
tracked by Algorithm 7. The set of states SV and the label `V of a node V is
represented as the pair (SV , `V ) in Algorithm 7.

It starts with a single root node r = (S,−), corresponding to the set of all states,
where “−” indicates that the label for the node is not decided yet. In every step, a
non-singleton node (i.e, a node having more than one state) is processed. This node
is labeled by a PADS wi ∈K and new children nodes are created depending on the
partitioning induced by wi. This PADS wi is chosen by using the score functions
proposed in the upcoming sections. These score functions calculate a score called
unseparability index on the partitions that the candidate K–set elements create. The

††The calculation here is done by using any of the score functions we introduce in the upcoming sections of
this chapter.
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Figure 5.1 An example PADS that is equivalent to the sequence w = cad where the
output alphabet of the FSM is O = {0,1}

K–set element that creates the partition with the lowest score is chosen. Beware that,
by the definition of K–tree, having a K–set element twice on a path is redundant and
hence unnecessary. Therefore, the algorithm considers the K–set elements that do
not occur on the path from the root node to the current node, only. The process of
dividing nodes into new children nodes continues until all leaf nodes are singletons.

The following sections propose the cost functions mentioned and explain the devel-
opment processes of them. All these functions are defined with two parameters:

• w : The PADS of consideration

• Π = {B1,B2, . . . ,Bk} : The partition induced by w

The score calculated by the score functions can be called “the score of w” or “the
score of Π”. We use both notations in this document interchangeably. The experi-
mental comparisons of these score functions are given in Chapter 7.

5.1 Cost Function on Partition Cardinality

There are only few parameters to work with in this problem at hand. One of the
primitive ways to approach this problem is considering the number of blocks the
partition Π has. In the optimal case, we would want to have a partition that has
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singleton blocks only, hence being a perfect division. In this case, we could call w
“an ADS for the given set of states”, which can separate all the possible state pairs
single-handedly. In practice, running into such a partition is not probable in high
state counts. However, this example is still good for showing that high block count
is a desired property in a partition for our purpose.

Finally, we can conclude that the cardinality of Π can be used within the score
calculation. At this point, we would like to remind that the lower score should
be better in the score functions we design, due to the way we chose to implement
Algorithm 7. Because our observations show that high block count is desired, the
value of the score function must be inversely proportional to the cardinality of Π.

As a result of all these conclusions drawn, we propose the cost function Φcar as the
following:

(5.1) Φcar(w,Π) = 1
|Π|

5.2 Cost Function on Largest Block Size

The cost function ΦCAR, which is introduced in the previous section, indicates a
good and simple measure of how well a state set is partitioned. If the number of
disconnected state sets (i.e, blocks) is higher, we can consider it a more successfully
refined partition. However, there are some edge cases which this simple approach
cannot cover. The most obvious unwanted case is when there are many small blocks
and one huge block.

As an example, let us think two partitions Π1 and Π2, where the cardinalities of
the blocks of Π1 go as 6− 6− 2− 2 and the cardinalities of the blocks of Π2 go as
1−1−1−1−12. In this case, if we use ΦCAR as our cost function, c1 gets calculated
as 1

4 and c2 gets calculated as 1
5 . As c2 < c1 , Algorithm 7 picks Π2. As Jourdan

et al. (2016) explains, the length of the SISs derived from a K–tree for a state grows
exponentially with the depth of that state in the K–tree. Due to this, isolating few
states in one step at the expense of leaving many states in the same block may not
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be desirable. By this observation, we decided to work in the direction to improve
the worst case created by the previous cost function (Φcar).

The worst case (i.e. the longest SIS) will be due to the largest block size in the
partitioning, due the exponential dependence between the length of the state iden-
tification sequence and the cardinality in the set of states. Therefore in order to
improve the worst case, one has to consider minimizing the largest cardinality block.
As Algorithm 7 chooses the alternative with a smallest cost, we can consider the
cost of a partitioning Π as the size of the largest block in Π as follows:

(5.2) Φlbs(w,Π) = max
B∈Π
{|B|}

Although not strictly enforcing it, Φlbs also aims to provide that the cardinality of Π
is large. It is easy to see that, given a partition Π with a total of Y states, Y

Φlbs(Π) is
a lower bound for the number of blocks in this partition Π. Thanks to this property
of Φlbs, it also bears some functionality of Φcar.

5.3 Cost Function on Sum-Squares of Block Sizes

From the previous sections, it is obvious that Φlbs is a good candidate that per-
forms well in theory and it also covers for the pitfalls of Φcar. However, Φlbs has
no mechanism to check beyond the biggest block. We may extend the example
from the previous section, such that Π1 has blocks with cardinalities 6− 6− 2− 2,
Π2 with 1− 1− 1− 1− 12 and also Π3 with 6− 4− 3− 3. While using Φlbs as the
score function, Algorithm 7 chooses either Π1 or Π3, because both have the same
score of 6. However, Π3 is definitely better than Π1, as Π3 has a better distribution
of block sizes when the largest is omitted. The problem grows even larger once we
add Π4 with the block sizes 6− 1− 1− 1− 1− 1− 1− 1− 1− 1− 1. Π4 is the best
partitioning that one can reach with a Φlbs score of 6. Π4 has the same Φlbs score
with Π1 and Π3, although Π4 is way better than Π1 and Π3. Φcar seems to be able
to detect that Π4 is the best partition in this scenario, but it is already known to
have some other issues, as explained in Section 5.2.

From the discussion above, it is obvious that we need a solution where the number
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of blocks in the partition is preferred to be as high as possible, and the block sizes
are preferred to be distributed as evenly balanced as possible. Mathematically, this
can be accomplished by applying a sum-square approach, as follows:

(5.3) Φssq(w,Π) =
∑
B∈Π
|B|2

Consider a set S′ ⊆ S of states and a partitioning Π for S′, where k = |Π| is the
number of blocks in Π. The minimum (hence the best) score from Φssq can be
achieved when every block B ∈Π has exactly |S′|/k states. So, we can tell that Φssq

satisfies the even distribution requirement.

From the aspect of the other requirement, which is optimizing for the number of
blocks, Φssq also calculates lower scores for the partitions that have higher block
counts. Because, all the block cardinalities are squared then summed, and the
sum-square of many small numbers is smaller than the sum-square of few greater
numbers. Consequently, we may argue that this score function is competent in terms
of both requirements we described above.

5.4 Cost Function on Sum-Squares of Block Sizes and Height of PADS

The sum-square approach that Φssq uses gives pretty good results as we lay further
in Chapter 7. Yet, there is one improvement we propose for Φssq. As one can notice,
we declared the generic Φ function with two parameters: w - the PADS that causes
the partitioning and Π - the partition. But, the three functions we proposed until
this point do not utilize the characteristics of w, ever.

State identification sequences (SIS) are calculated for a state from a given K–tree.
The path from the root of the K–tree to the leaf node labeled by the state is con-
sidered for this calculation. The PADSs labeling the nodes on this path are used to
construct the SIS. Therefore, the heights of the PADSs used in the construction af-
fect the length of the SISs. Hence, minimizing the heights of PADSs selected during
K–tree generation might become another objective of our score function. However,
by both intuition and experimenting, we realised that the distribution of the par-
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tition is still a lot more important than the heights of PADSs. In other words,
minimizing the magnitude of the sum-square in the score must be the main objec-
tive. Only when two alternatives have the same sum-square value, one can consider
minimizing the heights of the PADSs.

(5.4) Φssh(w,Π) = z× (
∑
B∈Π
|B|2︸ ︷︷ ︸

Φssq

) +h(w)

The score function Φssh in Equation 5.4 combines these two objectives. The notation
h(w) in this equation denotes the height of the PADS w. The sum-square component
(which is the result of Φssq at the same time) is multiplied by a constant z. This
constant z is used in order to prioritize the sum-square component, as reasoned in
the previous paragraph. This constant z must be selected large enough to make
sure that even a smallest decrease in the sum-square component is prioritized over
the largest possible decrease in the PADS height component.
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6. COMPETITIVE W–SET EXPERIMENTS

In Chapter 4, we presented four new algorithms for generating W–sets for a given
FSM. These algorithms go by names Chassis (Algorithm 3), Chassis-C (Algo-
rithm 4), Chassis-CT (Algorithm 5) and Chassis-P (Algorithm 6). The first
three of these are designed to be used for general purposes. Hence, they try to
minimize the cardinality and total number of input letters for the W–sets. The last
of them (Chassis-P) does not aim any minimization in these two parameters, as
we explained in Chapter 4. Because of this, in this chapter, we present the results
of experiments that we made on Chassis, Chassis-C and Chassis-CT, but not
Chassis-P. We give comparative results with many different FSM configurations.
As a baseline, we also implemented the W–set algorithm from Gill (1962) and the
W–set algorithm from Bulut et al. (2019). These two algorithms will be referred as
Gill and BJT in the rest of this document. However, please note that we could
not run BJT at configurations higher than 512 states due to the exponential time
complexity of this algorithm with respect to n (Bulut et al., 2019).

The experiment in this chapter is performed on a machine running on 64 bit Ubuntu
16.04.7 equipped with 16GB RAM and an Intel Xeon E5-1650 clocked at 3.20GHz.
All the algorithms are implemented in C++ and compiled with gcc 5.4.0. The
standard flag -std=c++0x, the optimization flag -O3 and the release mode flag
-DNDEBUG are used for compilation.

We determined a total of 54 different configurations (n,p,q), where the num-
ber of states n ∈ {128,256,512,1024,2048,4096}, the number of input letters p ∈
{2,16,128} and the number of output letters q ∈ {2,16,128}. For each configura-
tion, we generated 500 random FSMs. The randomness of the FSMs is achieved
by setting each δ(s, i) to a uniformly random state from S and each λ(s, i) to a
uniformly random output letter from O.

The table below shows the results of the W–set experiments. For each configuration
and algorithm, average cardinality and total number of input letters of the W–set
are given, along with the average run-time of the algorithms in microseconds.
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BJT Gill Chassis Chassis-C Chassis-CT
n p q Crd Tlen t(µs) Crd Tlen t(µs) Crd Tlen t(µs) Crd Tlen t(µs) Crd Tlen t(µs)

128 2 2 7.00 21.68 2253 7.75 24.16 159 6.67 20.84 353 2.25 18.23 368 2.25 14.94 382
16 2.29 3.97 2650 2.16 4.28 61 2.09 4.05 100 1.99 5.07 109 1.99 3.97 125
128 2.00 2.39 2770 2.00 2.41 67 2.00 2.39 61 1.39 2.80 66 1.39 2.38 77

16 2 15.65 18.60 2373 17.00 26.93 160 12.88 16.98 288 2.39 17.09 329 2.39 14.13 341
16 4.84 4.95 2824 7.31 7.43 59 5.68 5.79 105 1.99 5.03 105 1.99 3.97 117
128 2.25 2.25 2850 2.39 2.39 65 2.38 2.38 58 1.39 2.80 64 1.39 2.38 75

128 2 17.45 17.87 5657 26.81 27.27 150 18.82 19.26 283 2.39 17.08 312 2.39 14.16 327
16 3.83 3.83 4478 7.33 7.33 58 5.70 5.70 101 1.99 5.03 99 1.99 3.97 110
128 2.26 2.26 3682 2.39 2.39 63 2.38 2.38 56 1.39 2.80 61 1.39 2.38 74

256 2 2 7.94 25.25 39985 8.23 27.24 338 7.58 24.67 1375 2.30 21.58 1338 2.30 17.16 1356
16 2.57 4.94 56049 2.50 4.98 139 2.39 4.78 438 2.00 5.78 481 2.00 4.44 469
128 2.00 2.85 58864 2.00 3.22 160 2.00 2.87 302 1.64 3.55 347 1.64 2.86 356

16 2 16.71 22.30 40202 17.60 33.34 359 13.85 20.26 1236 2.32 20.20 1294 2.32 16.44 1316
16 6.41 6.63 56821 9.85 10.11 142 7.25 7.47 510 2.00 5.74 464 2.00 4.43 445
128 2.90 2.90 59406 3.30 3.30 160 3.11 3.11 298 1.64 3.55 345 1.64 2.86 348

128 2 44.55 45.55 51496 50.57 54.75 401 28.92 31.14 1616 2.32 20.17 1262 2.32 16.40 1283
16 4.27 4.27 63808 9.94 9.94 158 7.34 7.34 541 2.00 5.74 476 2.00 4.43 475
128 2.79 2.79 63256 3.30 3.30 171 3.11 3.11 302 1.64 3.55 307 1.64 2.86 332
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512 2 2 8.22 27.62 674591 8.29 30.70 877 7.99 27.51 6147 2.30 24.41 5563 2.30 19.19 5651
16 3.01 6.01 960855 3.27 6.56 370 2.96 5.93 1909 2.00 6.56 1960 2.00 5.00 2009
128 2.00 3.00 1014089 2.00 3.94 395 2.00 3.06 1294 1.87 3.92 1519 1.87 3.06 1568

16 2 17.74 26.39 683222 18.02 34.03 980 14.40 23.29 5688 2.35 23.17 5496 2.35 18.77 5552
16 11.27 12.27 963605 14.60 19.76 420 7.99 9.27 2552 2.00 6.52 1953 2.00 5.00 2000
128 3.34 3.34 1081518 4.60 4.60 447 4.04 4.04 1532 1.87 3.92 1670 1.87 3.06 1741

128 2 63.20 67.32 732090 88.60 133.57 1149 33.26 39.02 8166 2.35 23.16 5326 2.35 18.74 5369
16 15.61 16.10 999389 18.30 18.97 445 12.49 12.98 2938 2.00 6.52 1992 2.00 5.00 2012
128 3.08 3.08 1035910 4.60 4.60 412 4.04 4.04 1466 1.87 3.92 1584 1.87 3.06 1594

1024 2 2 – – – 8.50 33.78 2703 8.21 30.02 29017 2.32 27.46 24613 2.32 21.34 25150
16 – – – 3.97 7.98 1085 3.38 6.80 8562 2.00 7.33 9504 2.00 5.43 9564
128 – – – 2.01 4.01 1027 2.00 3.21 5773 1.98 4.23 7760 1.98 3.22 7811

16 2 – – – 18.85 34.90 2864 15.06 26.60 27916 2.39 26.13 24342 2.39 20.72 25103
16 – – – 18.96 34.05 1283 8.44 10.54 11330 2.00 7.31 9431 2.00 5.42 9499
128 – – – 6.63 6.93 1013 5.57 5.87 6756 1.98 4.22 7641 1.98 3.21 7631

128 2 – – – 128.01 253.46 3278 29.43 39.11 34535 2.38 26.11 24636 2.38 20.77 25307
16 – – – 39.36 52.66 1331 12.98 14.60 13988 2.00 7.31 9463 2.00 5.42 9545
128 – – – 6.71 6.94 1018 5.64 5.88 6716 1.98 4.22 7513 1.98 3.21 7547
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2048 2 2 – – – 9.11 36.38 8587 8.68 33.53 167172 2.35 30.58 124961 2.34 23.39 126727
16 – – – 4.01 8.25 3366 3.85 7.92 41677 2.00 8.05 46237 2.00 5.99 46368
128 – – – 2.01 4.02 3059 2.01 3.66 27180 2.00 4.70 32602 2.00 3.66 33160

16 2 – – – 19.12 35.37 9362 15.97 29.77 148622 2.37 29.14 123177 2.37 22.92 124318
16 – – – 18.19 34.19 4265 10.11 12.73 58263 2.00 8.04 45522 2.00 5.98 45463
128 – – – 12.55 15.16 3005 6.53 7.50 36178 2.00 4.70 31436 2.00 3.66 32350

128 2 – – – 128.65 256.65 10087 25.08 38.88 149263 2.37 29.14 123467 2.37 22.91 124141
16 – – – 104.06 204.94 4538 11.35 13.94 59930 2.00 8.04 46804 2.00 5.98 46781
128 – – – 13.98 16.79 3018 6.85 7.83 36256 2.00 4.70 31607 2.00 3.66 32472

4096 2 2 – – – 10.73 42.89 29993 9.76 38.70 835729 2.34 33.62 649338 2.33 25.25 652553
16 – – – 4.02 9.69 12109 3.89 8.80 190763 2.00 8.74 222821 2.00 6.47 222886
128 – – – 2.05 4.10 10271 2.04 4.06 119195 2.00 5.06 157004 2.00 4.00 157079

16 2 – – – 20.41 40.01 32970 17.81 35.54 662494 2.51 32.59 641890 2.50 24.89 645212
16 – – – 16.67 32.67 13211 8.25 11.85 220593 2.00 8.72 219938 2.00 6.48 219987
128 – – – 16.44 32.02 10240 5.57 6.91 142010 2.00 5.06 155354 2.00 4.00 155261

128 2 – – – 128.20 256.20 34730 23.40 41.11 665746 2.51 32.59 648834 2.50 24.89 649394
16 – – – 128.09 256.06 13803 9.22 12.86 219487 2.00 8.72 218505 2.00 6.48 218668
128 – – – 51.93 99.17 10373 5.89 7.26 143043 2.00 5.06 154178 2.00 4.00 154194

Table 6.1 Quality and run-time results of W–set algorithms
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In Table 6.1, cells corresponding to the algorithm BJT with n > 512 are left blank.
Because, due to the exponential time complexity, we could not afford to test BJT
beyond state size of 512. The new algorithms that we propose, namely Chassis,
Chassis-C and Chassis-CT all perform slower than Gill and faster than BJT
as the results indicate. These experimental time results are in correlation with our
expectations; as BJT works in exponential time complexity and Gill is implemented
in a much less complex way (i.e. by tracking sets of states, instead of sets of pairs of
states) than our algorithms. Please recall that, Chassis, Chassis-C and Chassis-
CT can be altered to run faster, as we noted on Section 4.5. All three of our
algorithms run in similar speeds where the fastest is Chassis-C. The fact that
Chassis-CT takes nearly the same time as Chassis-C is a sensible result; because
Chassis-CT is identical to Chassis-C apart from the trimming process. This
trimming process takes quite an insignificant time, thanks to the shallow W–sets
Chassis-C is capable of producing. We even observe smaller times in Chassis-CT
than Chassis-C occasionally, due to small measurement errors.

Figure 6.1 Average cardinality of the W–sets that each algorithm generates, for
p= 2 and q = 2

In terms of quality (e.g, cardinality and total number of input letters in W–sets),
the performances of our algorithms Chassis, Chassis-C and Chassis-CT show
an increasing pattern; such that Chassis-CT is the best among three and Chassis
is the worst. This is the expected result considering the development order and the
analysis power of the algorithms.

Figures 6.1–6.4 summarize the quality results of the experiments we made on the W–
set algorithms. For p = q = 2, our algorithms, especially Chassis-C and Chassis-
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Figure 6.2 Average cardinality of the W–sets that each algorithm generates, for
p= 128 and q = 128

CT, generate better W–sets in terms of both cardinality and total number of input
letters. Even though Chassis-C and Chassis-CT might find worse W-sets for some
small number of FSMs, they are much better than the other algorithms in general.
Chassis also seems to present better results than Gill and comparable results to
BJT. On the most extreme case p = q = 128, algorithms show similar quality on
small state sizes. When p and q are as large as this, separability is quite common
and finding small W–sets is of high possibility. This is the reason why all algo-
rithms produce good results and become indistinguishable for n= 128,p= q = 128.
However, as state size grows, Chassis-CT and BJT become prominent. This is an
expected result for BJT, as it works in a breadth first manner for finding the short-
est sequences in all cases. Still, Chassis-CT is able to produce competitive results
against BJT, which soon becomes practically infeasible due to the exponential time
complexity. Consequently, Chassis-CT becomes the only algorithm that produces
results of high quality by maintaining practical feasibility in high state sizes.
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Figure 6.3 Average total number of input letters of the W–sets that each algorithm
generates, for p= 2 and q = 2

Figure 6.4 Average total number of input letters of the W–sets that each algorithm
generates, for p= 128 and q = 128
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Figure 6.5 Average running time (in µs) of each W–set algorithm given in
logarithmic scale, for p= 2 and q = 2

Figure 6.6 Average running time (in µs) of each W–set algorithm given in
logarithmic scale, for p= 128 and q = 128
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7. K–TREE AND STATE IDENTIFICATION SEQUENCE

EXPERIMENTS

In Chapter 6, we objectively analyzed our new W–set algorithms and compared
them to two algorithms from the literature. In these comparisons, we did not con-
sider them in the K–tree generation context; they were compared in their generic
features (i.e, total number of input letters and cardinality). In this chapter, we
focus on experimenting the work that we did on K–tree generation. We also make a
comparative study where the K–tree based SIS generation techniques are compared
to other W–set based SIS generation techniques.

The experiments in this chapter are performed on a machine running on 64 bit
Ubuntu 14.04.6 equipped with 128GB RAM and an Intel Xeon E5-2690 clocked at
2.90GHz. The programs are implemented in C++ and compiled with gcc 4.8.4.
The standard flag -std=c++0x, the optimization flag -O3 and the release mode flag
-DNDEBUG are used for all compilations.

For all experiments in this chapter, we again used random FSMs. The
FSM configurations that we use are the following: the number of states n ∈
{128,256,512,1024,2048,4096}, the number of input letters p ∈ {2,16,128} and the
number of output letters q ∈ {2,16,128}. For each configuration, we generated 500
random FSMs. The randomness of the FSMs is achieved by setting each δ(s, i) to a
uniformly random state from S and each λ(s, i) to a uniformly random output letter
from O.
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7.1 Score Function Experiments

We introduced Algorithm 7 for K–tree generation in Chapter 5. In this algorithm, a
cost function must be used for deciding which W–set/K–set element should be picked
for a particular K–tree node. In Sections 5.1–5.4, we proposed four score functions
to be used within Algorithm 7. These score functions aim to assess the quality of a
candidate partition that might be created for the K–tree node of consideration.

For the upcoming experiments, we needed to choose one of these score functions.
Because, there are a huge amount of different FSM configurations and several SIS
generation methods to test. In this case, repeating all experiments four times for
each score function would be infeasible. Hereby, we designed an intermediate exper-
iment for finding the most effective score function and used only the winner function
in the subsequent experiments. The result of this experiment is given in this section.

The score functions in this experiment are compared by the average SIS length cal-
culated from the K–tree that the score function generates. The shorter SIS length is
better in this scenario. For K–tree generation, one needs to have a W–set generated
for the FSM. For this W–set generation task, we picked Chassis-CT algorithm.
The reason is the superior quality results that it possesses, as shown in Chapter 6.
Once K–tree is ready, we use the technique that Jourdan et al. (2016) proposes to
calculate the SIS lengths from the given K–tree.

For the score function Φssh, we mentioned in Section 5.4 that a parameter z should
be picked. For this experiment and on-wards, we pick z as the cube of the total
number of states in the partition Π, which is an argument of our score functions.
Formally, z = ( ∑

B∈Π
|B|)3 .
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n p q Φcar Φlbs Φssq Φssh

128 2 2 40.0761 41.4280 40.0071 39.9971
16 6.5976 6.6605 6.6013 6.6013
128 4.8931 4.9945 4.8855 4.8855

16 2 31.7427 32.3980 31.7112 31.7112
16 4.3792 4.4118 4.3837 4.3837
128 3.0846 3.1236 3.0903 3.0903

128 2 29.6765 30.2327 29.6442 29.6442
16 4.0239 4.0521 4.0273 4.0273
128 2.7341 2.7667 2.7400 2.7400

256 2 2 44.4586 45.5338 44.4162 44.4161
16 8.7503 8.8394 8.7535 8.7535
128 4.9836 4.9915 4.9770 4.9770

16 2 35.7845 36.4945 35.7561 35.7561
16 5.6709 5.7356 5.6724 5.6724
128 3.1266 3.1306 3.1214 3.1214

128 2 33.7946 34.4210 33.7707 33.7707
16 5.1572 5.2098 5.1582 5.1582
128 2.8524 2.8570 2.8489 2.8489

512 2 2 50.9905 52.2253 50.9384 50.9380
16 9.3826 9.3966 9.3672 9.3672
128 2.8554 2.8554 2.8554 2.8554

16 2 39.8251 40.3661 39.7841 39.7841
16 5.9272 5.9383 5.9252 5.9252
128 2.3939 2.3939 2.3939 2.3939

128 2 37.6010 38.1334 37.5705 37.5705
16 5.4212 5.4301 5.4197 5.4197
128 2.3179 2.3179 2.3179 2.3179
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1024 2 2 57.4760 58.6102 57.4419 57.4413
16 9.1692 9.1772 9.1740 9.1740
128 3.6140 3.6153 3.6140 3.6140

16 2 44.2634 44.8843 44.2577 44.2577
16 6.2031 6.2059 6.2032 6.2032
128 2.7347 2.7350 2.7347 2.7347

128 2 41.6493 42.2245 41.6434 41.6434
16 5.6913 5.6935 5.6914 5.6914
128 2.5889 2.5891 2.5889 2.5889

2048 2 2 63.4012 64.6209 63.3859 63.3853
16 9.8294 9.8952 9.8313 9.8313
128 3.9674 3.9710 3.9675 3.9675

16 2 48.2013 48.9618 48.1855 48.1855
16 6.5608 6.5916 6.5617 6.5617
128 2.8156 2.8185 2.8157 2.8157

128 2 45.2429 45.9208 45.2283 45.2283
16 5.9681 5.9931 5.9689 5.9689
128 2.6479 2.6502 2.6479 2.6479

4096 2 2 70.2362 71.1661 70.2074 70.2063
16 12.5508 12.5775 12.5507 12.5507
128 3.1108 3.1200 3.1108 3.1108

16 2 54.0321 55.1123 54.0222 54.0222
16 8.0509 8.0698 8.0525 8.0525
128 2.5784 2.5816 2.5784 2.5784

128 2 50.3250 51.2519 50.3169 50.3169
16 7.1188 7.1336 7.1199 7.1199
128 2.4843 2.4869 2.4843 2.4843

Table 7.1 Average length of State Identification Sequences generated by using
different score functions

By looking at Table 7.1 and Figures 7.1-7.2, it is clear that Φssq and Φssh are two
algorithms that provide better quality. The better of these two is not very obvious
at the first glance. However, a more keen comparison reveals that Φssh produces
shorter SISs by a very small margin. For this reason, the rest of the experiments
that this chapter presents are conducted by using the score function Φssh.
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Figure 7.1 Average length of State Identification Sequences generated by each score
function, for p= 2 and q = 2

Figure 7.2 Average length of State Identification Sequences generated by each score
function, for p= 128 and q = 128
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7.2 Experiments on the Use of Implied K–trees

The ultimate purpose of this chapter (Chapter 7) is to make an experiment that
compares the known state identification sequence (SIS) generation techniques. Some
of these techniques directly work on W–sets, whereas the technique that Jourdan
et al. (2016) suggests requires a K–tree. Another technique that Kohavi (1978) and
Kohavi et al. (1974) suggest is not very clear on the data structure and implemen-
tation details. However, we will assume that these papers put forth a structure
identical to a K–tree for the usage of their technique. After all, we may say that we
have two SIS generation techniques that require building a K–tree.

Given any W–set or K–set, Algorithm 7 can build a K–tree. However, the way
that Chassis-P (Algorithm 6) creates partitions and trace them independently
is identical to the one of our K-tree building algorithm, Algorithm 7. Therefore,
Chassis-P already creates a specific sequence for every candidate K-tree node. In
other words, Chassis-P itself implies a K-tree. Therefore, we can even go ahead and
argue that Chassis-P creates a K-tree implicitly. At the same time, what Chassis-
P produces is a W–set on its own and this W–set can be fed to Algorithm 7 to
produce another K–tree. Our K–tree algorithm, Algorithm 7, considers all available
W–set/K–set elements at each step and makes use of a heuristic score function for
picking the best sequence possible. Therefore, we suggest that using the natural K–
tree implied by the progress of Chassis-P might in fact be worse than reiterating
its resulting W–set by Algorithm 7. The same situation applies for the algorithm
that Soucha & Bogdanov (2020) suggests for K–set creation (to be called Soucha
in this document). Soucha also follows an approach similar to Algorithm 7 and
may be said to imply a K–tree. We also wonder whether applying Algorithm 7 on
the resulting K–set of Soucha is better or worse than using the implied K–tree by
this algorithm.

For testing these above-mentioned questions, we designed an experiment where first,
the implied K–trees of Chassis-P and Soucha are considered (see columns “Raw”
in Table 7.2). Second, we also used Algorithm 7 to generate K–trees with the
resulting W–sets and K–sets of these two algorithms (see columns “Algorithm 7”
in Table 7.2). Once K–trees are ready, we use the technique that Jourdan et al.
(2016) proposes to calculate the SIS lengths from the given K–trees and present
these results below.
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Chassis-P Soucha
n p q Raw Algorithm 7 Raw Algorithm 7

128 2 2 30.7055 30.5116 27.2898 27.2088
16 3.6973 3.6989 3.3274 3.3276
128 1.7924 1.7906 1.6801 1.6801

16 2 24.8563 24.9214 18.8454 18.9010
16 3.1735 3.1737 2.6012 2.6012
128 1.7178 1.7178 1.6357 1.6357

128 2 23.4052 23.4843 16.4660 16.5093
16 3.0439 3.0441 2.4077 2.4077
128 1.7025 1.7025 1.6357 1.6357

256 2 2 34.6929 34.4259 31.4371 31.2237
16 4.1669 4.1707 3.8584 3.8584
128 2.0488 2.0484 1.9548 1.9548

16 2 27.9491 28.1818 23.0730 23.1450
16 3.5448 3.5452 3.0723 3.0723
128 1.9711 1.9711 1.8770 1.8770

128 2 26.4721 26.7112 20.5365 20.6118
16 3.4061 3.4065 2.8509 2.8509
128 1.9550 1.9550 1.8770 1.8770

512 2 2 38.8786 38.3884 35.7593 35.4582
16 4.6685 4.6711 4.3956 4.3957
128 2.2047 2.2047 2.1220 2.1220

16 2 31.3023 31.5534 26.6935 26.7859
16 3.9463 3.9464 3.5804 3.5803
128 2.1144 2.1144 2.0169 2.0169

128 2 29.5964 29.8595 24.3309 24.4262
16 3.7889 3.7890 3.3567 3.3566
128 2.0954 2.0954 2.0124 2.0124
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1024 2 2 43.1536 42.6713 40.4096 39.8640
16 5.0353 5.0379 4.8878 4.8879
128 2.2595 2.2595 2.1997 2.1997

16 2 34.5141 34.8498 30.2084 30.3215
16 4.2405 4.2407 4.0384 4.0383
128 2.1646 2.1646 2.0861 2.0861

128 2 32.5722 32.9146 27.6665 27.7842
16 4.0659 4.0660 3.8050 3.8049
128 2.1434 2.1434 2.0617 2.0617

2048 2 2 47.4192 46.8336 45.2098 44.3971
16 5.4205 5.4231 5.3397 5.3399
128 2.3442 2.3442 2.2966 2.2966

16 2 37.6385 38.0556 33.7499 33.8843
16 4.5110 4.5118 4.4116 4.4114
128 2.2297 2.2297 2.1647 2.1647

128 2 35.3364 35.7559 31.0186 31.1442
16 4.3035 4.3042 4.1670 4.1669
128 2.2043 2.2043 2.1365 2.1365

4096 2 2 51.6908 50.9676 49.4912 48.5964
16 5.8670 5.8709 5.7367 5.7369
128 2.4625 2.4625 2.4283 2.4283

16 2 40.8922 41.2724 37.2678 37.4097
16 4.8678 4.8691 4.6773 4.6772
128 2.3405 2.3405 2.2909 2.2909

128 2 38.0769 38.4608 34.0794 34.2312
16 4.6151 4.6165 4.4810 4.4809
128 2.3105 2.3105 2.2567 2.2567

Table 7.2 Average length of State Identification Sequences generated by using
Chassis-P and Soucha directly or reiterated by Algorithm 7
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Figure 7.3 Average length of State Identification Sequences generated by
Chassis-P AND Soucha, without and with Algorithm 7, for p= 2 and q = 2

Figure 7.4 Average length of State Identification Sequences generated by
Chassis-P AND Soucha, without and with Algorithm 7, for p= 128 and q = 128

By these results, we see that applying Algorithm 7 yields to similar results as skip-
ping it, for these two algorithms. Therefore, it was up to our decision to use or not
use it. All other W–set algorithms that we have considered in this paper have to
be used with a K–tree building algorithm, that is Algorithm 7. In order to ensure
uniformity in the methodology and implementation, we choose to use Chassis-P
and Soucha with Algorithm 7 as well.
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7.3 State Identification Sequence Experiments

In this section, we aim to assess the performance of the SIS construction method
given in Jourdan et al. (2016) (referred as JUY in this document) by combining sev-
eral findings from the rest of this chapter. We realize this assessment by comparing
JUY’s quality results with other SIS generation methods in the literature. These
methods indeed use W–sets/K–sets and several W–set/K–set generation algorithms
are proposed and mentioned in this document. We will use some of these in the ex-
periments of this section. Using all methods and parameters would force us to make
too many experiments. Because of this, we picked only some of the W–set/K–set
generation algorithms and we fixed some parameters as explained in sections 7.1-7.2.
The chosen W–set/K–set generation methods are: Gill, Chassis-CT, Chassis-P
and Soucha. The SIS generation algorithms that we use for comparison are: Hen-
nie (Hennie, 1964), LeeYann (Lee & Yannakakis, 1996), Hennie+ (discussed in
Hennie (1964), proven in Jourdan et al. (2016)) and Kohavi (Kohavi, 1978; Ko-
havi et al., 1974). We recite that the algorithm Kohavi is our interpretation of
the original proposed technique, as we stated in the beginning of Section 7.2. Such
interpretation was a must, because the original proposals lack any clear formal defi-
nition. The interpretation that we made on the algorithm is indeed a favorable one,
by assuming that they intended to use a K–tree constructed similarly to Jourdan
et al. (2016). For the algorithms Kohavi and JUY, we build a K–tree by using
Algorithm 7 proposed in this document. Such a K–tree is constructed even for W–
set/K–set methods Chassis-P and Soucha which imply a K–tree naturally, as we
concluded in Section 7.2. When the K–set algorithm Soucha is used, the only SIS
generation algorithm that can be used is JUY; because K–sets consist of PADSs
and other SIS generation algorithms do not bear the notion of PADS. The results
of the experiment are given below.
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Gill Chassis-CT Chassis-P Soucha
n p q Hennie LeeYann Hennie+ Kohavi JUY Hennie LeeYann Hennie+ Kohavi JUY Hennie LeeYann Hennie+ Kohavi JUY JUY

128 2 2 2.87e019 2.66e019 3.91e004 9.42e003 8.00e002 1.45e005 1.42e005 2.34e002 4.64e001 4.00e001 1.34e024 1.22e024 3.10e007 4.00e001 3.02e001 2.71e001
16 1.31e005 1.28e005 1.40e001 1.23e001 1.23e001 9.27e002 9.20e002 6.08e001 7.21e000 6.60e000 6.07e004 5.95e004 7.46e001 5.34e000 3.70e000 3.33e000

128 1.22e003 1.20e003 1.14e001 1.09e001 1.07e001 3.08e002 3.06e002 7.33e000 5.41e000 4.89e000 5.85e002 5.78e002 7.57e000 2.56e000 1.79e000 1.68e000
16 2 1.63e040 1.39e040 3.26e009 3.61e005 6.56e003 2.12e004 2.08e004 4.27e002 3.84e001 3.17e001 9.00e037 7.77e037 2.63e009 3.41e001 2.46e001 1.88e001

16 1.06e021 9.78e020 9.76e002 8.51e001 4.24e001 4.10e002 4.07e002 2.77e001 5.02e000 4.38e000 1.04e005 1.01e005 4.31e001 4.85e000 3.17e000 2.60e000
128 5.99e004 5.87e004 7.85e000 7.39e000 7.39e000 1.54e002 1.53e002 4.58e000 3.60e000 3.09e000 2.54e002 2.51e002 4.86e000 2.50e000 1.72e000 1.64e000

128 2 2.49e062 1.98e062 2.62e018 1.73e011 1.43e007 1.68e004 1.65e004 3.46e002 3.61e001 2.96e001 7.15e037 6.17e037 3.03e009 3.26e001 2.31e001 1.65e001
16 8.36e020 7.68e020 8.51e002 7.39e001 3.68e001 3.27e002 3.24e002 2.23e001 4.67e000 4.03e000 8.10e004 7.92e004 3.46e001 4.72e000 3.04e000 2.41e000

128 4.62e004 4.53e004 6.36e000 5.99e000 5.99e000 1.21e002 1.20e002 4.00e000 3.25e000 2.74e000 2.02e002 2.00e002 4.28e000 2.49e000 1.70e000 1.64e000
256 2 2 5.87e020 5.67e020 8.26e004 7.05e004 1.53e003 1.12e006 1.10e006 5.02e002 5.00e001 4.44e001 7.74e036 7.27e036 1.06e009 4.60e001 3.41e001 3.11e001

16 8.98e006 8.88e006 2.62e001 2.23e001 2.23e001 2.18e003 2.17e003 1.03e002 9.39e000 8.75e000 1.71e006 1.69e006 1.77e002 6.04e000 4.17e000 3.86e000
128 3.52e003 3.50e003 6.82e000 6.62e000 6.50e000 1.21e003 1.20e003 1.95e001 5.48e000 4.98e000 3.43e003 3.41e003 2.01e001 3.08e000 2.05e000 1.95e000

16 2 3.88e048 3.57e048 1.64e009 2.06e007 5.63e004 7.40e004 7.34e004 7.02e002 4.21e001 3.58e001 2.22e065 1.99e065 8.85e012 3.95e001 2.78e001 2.30e001
16 1.51e029 1.44e029 3.67e004 5.62e002 1.28e002 9.46e002 9.43e002 4.34e001 6.34e000 5.67e000 3.27e007 3.22e007 1.29e002 5.43e000 3.54e000 3.07e000

128 2.35e010 2.30e010 1.40e001 1.29e001 1.29e001 5.46e002 5.44e002 9.94e000 3.56e000 3.12e000 1.87e003 1.85e003 1.06e001 3.01e000 1.97e000 1.88e000
128 2 1.01e140 8.01e139 4.18e033 9.76e010 1.77e006 5.94e004 5.90e004 5.60e002 4.00e001 3.38e001 1.71e065 1.53e065 3.84e013 3.80e001 2.63e001 2.05e001

16 1.21e029 1.15e029 3.20e004 5.56e002 1.26e002 7.69e002 7.66e002 3.50e001 5.83e000 5.16e000 2.62e007 2.58e007 1.03e002 5.29e000 3.41e000 2.85e000
128 1.87e010 1.83e010 1.13e001 1.04e001 1.04e001 4.31e002 4.30e002 8.30e000 3.29e000 2.85e000 1.48e003 1.47e003 8.92e000 2.99e000 1.96e000 1.88e000

512 2 2 6.82e023 6.70e023 4.22e004 6.96e004 2.56e003 9.37e006 9.31e006 1.20e003 5.63e001 5.09e001 2.94e047 2.84e047 7.43e010 5.20e001 3.80e001 3.53e001
16 5.91e008 5.88e008 4.72e001 3.93e001 3.91e001 4.99e003 4.98e003 1.56e002 1.00e001 9.37e000 1.58e009 1.57e009 3.45e002 6.80e000 4.67e000 4.40e000

128 1.60e004 1.59e004 3.12e000 2.93e000 2.91e000 3.79e003 3.79e003 4.61e001 3.11e000 2.86e000 8.64e003 8.61e003 4.70e001 3.27e000 2.20e000 2.12e000
16 2 4.01e057 3.84e057 3.49e011 3.30e009 8.78e005 3.45e005 3.43e005 1.65e003 4.63e001 3.98e001 5.02e106 4.64e106 5.93e014 4.52e001 3.11e001 2.67e001

16 2.95e049 2.85e049 3.36e004 4.47e001 2.01e001 2.15e003 2.15e003 6.10e001 6.58e000 5.93e000 8.94e009 8.87e009 5.73e002 6.10e000 3.95e000 3.58e000
128 3.41e017 3.36e017 2.84e001 2.19e001 2.18e001 1.60e003 1.60e003 2.06e001 2.60e000 2.39e000 5.36e003 5.34e003 2.15e001 3.16e000 2.11e000 2.02e000

128 2 1.32e264 1.09e264 2.12e014 1.09e009 6.81e005 2.73e005 2.72e005 1.31e003 4.40e001 3.76e001 9.79e106 9.06e106 2.43e017 4.35e001 2.94e001 2.43e001
16 1.25e060 1.20e060 1.87e009 1.92e003 2.21e002 1.75e003 1.74e003 4.88e001 6.08e000 5.42e000 7.05e009 6.99e009 4.52e002 5.95e000 3.79e000 3.36e000

128 2.63e017 2.60e017 2.23e001 1.73e001 1.72e001 1.25e003 1.24e003 1.66e001 2.52e000 2.32e000 4.17e003 4.16e003 1.74e001 3.14e000 2.10e000 2.01e000
1024 2 2 1.36e029 1.35e029 1.93e005 9.34e005 9.57e003 5.51e007 5.49e007 3.46e003 6.27e001 5.74e001 1.29e062 1.26e062 4.63e013 5.85e001 4.23e001 3.97e001

16 1.10e011 1.09e011 7.45e001 6.67e001 6.60e001 3.44e004 3.44e004 1.71e002 9.76e000 9.17e000 7.52e008 7.50e008 8.01e002 7.44e000 5.04e000 4.89e000
128 8.11e004 8.09e004 4.22e000 4.03e000 4.03e000 9.91e003 9.90e003 9.71e001 3.88e000 3.61e000 1.65e005 1.65e005 9.90e001 3.44e000 2.26e000 2.20e000

16 2 7.73e064 7.57e064 1.38e015 8.36e012 1.99e007 1.62e006 1.62e006 3.85e003 5.05e001 4.43e001 4.57e181 4.31e181 5.17e015 5.07e001 3.44e001 3.02e001
16 4.11e067 4.02e067 2.06e002 2.92e001 2.92e001 1.28e004 1.28e004 5.86e001 6.72e000 6.20e000 4.55e013 4.53e013 4.30e003 6.66e000 4.24e000 4.04e000

128 1.05e023 1.04e023 6.52e001 2.86e001 2.79e001 3.81e003 3.81e003 3.84e001 2.95e000 2.73e000 1.15e005 1.15e005 4.03e001 3.34e000 2.16e000 2.09e000
128 2 – – 5.99e011 3.91e011 9.32e006 1.24e006 1.23e006 2.86e003 4.79e001 4.16e001 3.82e184 3.59e184 3.75e016 4.88e001 3.25e001 2.77e001

16 2.03e145 1.93e145 6.74e005 2.38e001 2.38e001 9.98e003 9.96e003 4.67e001 6.20e000 5.69e000 3.54e013 3.52e013 3.41e003 6.49e000 4.07e000 3.80e000
128 1.09e023 1.08e023 5.34e001 2.39e001 2.33e001 2.91e003 2.91e003 2.98e001 2.81e000 2.59e000 8.76e004 8.75e004 3.15e001 3.32e000 2.14e000 2.06e000
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2048 2 2 3.12e038 3.10e038 2.67e006 3.93e007 5.54e004 1.15e009 1.15e009 1.35e004 6.85e001 6.34e001 3.85e084 3.80e084 5.75e015 6.49e001 4.65e001 4.43e001
16 5.33e011 5.32e011 1.24e002 1.17e002 1.10e002 2.51e004 2.51e004 1.35e002 1.05e001 9.83e000 1.73e012 1.72e012 2.19e003 8.14e000 5.42e000 5.34e000

128 7.38e005 7.37e005 6.55e000 6.37e000 6.37e000 2.28e004 2.28e004 1.93e002 4.51e000 3.97e000 2.44e006 2.44e006 1.96e002 3.92e000 2.34e000 2.30e000
16 2 1.48e074 1.47e074 1.97e018 3.39e016 7.15e008 6.36e006 6.36e006 7.92e003 5.45e001 4.82e001 5.77e302 5.52e302 1.04e016 5.64e001 3.76e001 3.37e001

16 7.28e070 7.20e070 1.49e002 5.13e001 5.13e001 1.06e004 1.06e004 5.10e001 7.21e000 6.56e000 2.52e024 2.51e024 5.28e005 7.32e000 4.51e000 4.41e000
128 1.60e054 1.59e054 5.06e002 7.46e000 6.57e000 8.30e003 8.30e003 7.15e001 3.38e000 2.82e000 8.24e005 8.23e005 7.67e001 3.79e000 2.23e000 2.16e000

128 2 – – 4.86e014 1.29e015 3.88e008 4.73e006 4.72e006 5.87e003 5.15e001 4.52e001 – – 1.16e015 5.41e001 3.53e001 3.10e001
16 – – 4.91e001 4.05e001 4.05e001 8.44e003 8.43e003 4.08e001 6.62e000 5.97e000 1.84e024 1.83e024 3.83e005 7.11e000 4.30e000 4.17e000

128 9.91e060 9.81e060 3.66e002 6.06e000 5.41e000 6.12e003 6.12e003 5.32e001 3.22e000 2.65e000 6.07e005 6.06e005 5.72e001 3.76e000 2.20e000 2.14e000
4096 2 2 4.64e052 4.63e052 1.13e008 3.25e009 3.56e005 1.35e010 1.35e010 8.38e004 7.53e001 7.02e001 1.13e114 1.12e114 7.85e018 7.13e001 5.06e001 4.85e001

16 6.29e013 6.28e013 1.15e002 1.23e002 9.37e001 5.52e004 5.52e004 1.75e002 1.33e001 1.26e001 1.17e014 1.17e014 7.20e003 8.81e000 5.87e000 5.74e000
128 1.06e007 1.06e007 1.13e001 1.11e001 1.11e001 4.98e004 4.98e004 3.96e002 3.87e000 3.11e000 1.01e007 1.01e007 4.02e002 4.27e000 2.46e000 2.43e000

16 2 2.18e088 2.17e088 2.24e018 1.61e022 1.28e011 3.58e009 3.58e009 4.75e005 5.98e001 5.40e001 – – 1.68e014 6.25e001 4.08e001 3.73e001
16 6.75e063 6.72e063 1.32e002 9.73e001 9.67e001 2.32e004 2.32e004 6.89e001 8.77e000 8.05e000 1.41e034 1.41e034 2.08e007 7.89e000 4.87e000 4.68e000

128 7.87e063 7.84e063 6.33e000 5.38e000 5.38e000 1.78e004 1.78e004 1.42e002 3.34e000 2.58e000 3.79e006 3.79e006 1.55e002 4.16e000 2.34e000 2.29e000
128 2 – – 1.72e020 1.60e021 7.28e010 2.49e009 2.49e009 3.31e005 5.61e001 5.03e001 – – 3.05e016 5.97e001 3.80e001 3.41e001

16 – – 1.13e002 7.31e001 7.31e001 1.79e004 1.79e004 5.32e001 7.83e000 7.12e000 2.13e034 2.13e034 1.14e007 7.63e000 4.61e000 4.48e000
128 9.06e214 8.93e214 4.84e000 4.39e000 4.39e000 1.24e004 1.24e004 9.95e001 3.24e000 2.48e000 2.65e006 2.65e006 1.09e002 4.13e000 2.31e000 2.26e000

Table 7.3 Average state identification sequence lengths of several techniques, tested with different W–set/K–set generation algorithms
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Figure 7.5 Average length of SISs generated by various techniques, with a W–set
generated by Gill, given in logarithmic scale, for p= 2 and q = 2

Figure 7.6 Average length of SISs generated by various techniques, with a W–set
generated by Gill, given in logarithmic scale, for p= 128 and q = 128
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Figure 7.7 Average length of SISs generated by various techniques, with a W–set
generated by Chassis-CT, given in logarithmic scale, for p= 2 and q = 2

Figure 7.8 Average length of SISs generated by various techniques, with a W–set
generated by Chassis-CT, given in logarithmic scale,for p= 128 and q = 128
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Figure 7.9 Average length of SISs generated by various techniques, with a W–set
generated by Chassis-P, given in logarithmic scale, for p= 2 and q = 2

Figure 7.10 Average length of SISs generated by various techniques, with a W–set
generated by Chassis-P, given in logarithmic scale, for p= 128 and q = 128
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Figure 7.11 Average length of SISs generated by JUY, with W–sets/K–sets
generated by several algorithms, given in logarithmic scale, for p= 2 and q = 2

Figure 7.12 Average length of SISs generated by JUY, with W–sets/K–sets
generated by several algorithms, given in logarithmic scale, for p= 128 and q = 128

With any W–set/K–set generation algorithm, we observe that Hennie and
LeeYann perform significantly worse than the other three techniques. Because
of the very high magnitude of SISs they produce, we were not able to place them in
the figures 7.5–7.12, even though we drew these figures in logarithmic scale. Some
cells of Table 7.3 that belong to Hennie and LeeYann are also left blank; because
those length results caused the 64-bit floating point number to overflow.
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In figures 7.5–7.10, we present the lengths of the SISs generated by Hennie+,
Kohavi and JUY, with W–set algorithms Gill, Chassis-CT and Chassis-P sep-
arately. Such a figure was not possible for Soucha, because it produces a K–set and
only JUY is able to process K–sets. In these figures, it is clear that JUY outper-
forms the other two techniques in every scenario. Kohavi seems to perform better
than Hennie+ in most scenarios, with the exception where the W–set algorithm is
Gill and p,q values are low. The difference between JUY and Kohavi is generally
not very huge; however with a W–set generated by Gill, this is not valid. Gill is
an algorithm that produces W–sets with high cardinality, as shown in Chapter 6.
Although JUY and Kohavi uses the same K–tree, Kohavi is prone to calculate
a significantly longer SIS as the K–tree depth starts to grow large. As JUY does
not have this deficit, it performs better than Kohavi, especially when paired with
Gill, which produces high cardinality W–sets that result in K–trees with greater
height. The results of Hennie+ become better when using Chassis-CT, because
Hennie+ works directly on the W–set without producing K–tree and is affected
by the structure of the W–set greatly. Considering the fact that Chassis-CT pro-
duces very minimal W–sets -as shown in Chapter 6- observing the best results of
Hennie+ with Chassis-CT is meaningful.

In figures 7.11 and 7.12, we compare the effects of W–set/K–set methods on the
SIS generation process. The only SIS generation technique that can work with
all W–set/K–set algorithms is JUY, that is why we use JUY as the base of this
comparison. For two different p,q configurations, the results are clear that Soucha
helps produce the best (shortest) SISs, followed closely by Chassis-P. Chassis-CT
also performs much better compared to Gill. This result is expected, considering
that Chassis-CT was developed for general W–set optimization, whereas Chassis-
P and Soucha were considered for K–tree generation.

In Figure 7.6, all three SIS techniques show a suspicious trend. Normally, the SIS
lengths are expected to grow greater as the state count of the FSM increases. In
Figure 7.6, Kohavi and JUY show an inverse trend starting from n = 2048: the
resulting SISs become smaller. Hennie+ joins them at n= 4096. We designed and
performed another set of experiments in order to analyze this strange behaviour of
the SIS techniques, which is seen only when paired with Gill’s W–set generation
algorithm. In these experiments, we focused on FSMs with p = q = 128 and we
analyzed the characteristics of the W–sets that Gill’s algorithm creates, and how
these characteristics shift as the state count goes from 1024 to 2048 and also from
2048 to 4096. The first very clear observation is: “The sequences in the W–set that
Gill’s algorithm creates consist of sequences with length 1 or 2 only, for p= q = 128”.
After this observation, we analyzed the ratio of sequences with length 2.

59



Figure 7.13 Ratios of the number of sequences of length 2 in the W–sets that are
created by Gill’s algorithm, for varying n values, p= q = 128

In Figure 7.13, we presented the ratios of the number of sequences of length 2 to all
sequences in the W–sets by Gill’s algorithm. We wish to emphasize that, sequences
of lengths 3 or more are not observed ever within this experiment with p= q = 128.
Hence, the inverse of this figure might be considered as the density of sequences of
length 1. From the figure, we observe that W–sets for FSMs with n = 1024 have
sequences of single letters mostly always. This phenomenon changes slightly for
n = 2048. Once we hit n = 4096, most of the sequences in the W–sets are of two
letters (80%−100%).

We believe that, this increase in the density of the sequences with 2 letters explain
the improvement in the SIS lengths. Longer sequences divide the states into parti-
tions with higher cardinalities, and this situation yields better SISs naturally. The
reason that Kohavi and JUY react earlier to this at n = 2048 is that they work
with a K–tree and our K–tree algorithm (Algorithm 7) has a heuristic process to
pick the sequences giving a better partitioning earlier in the process. Even if there
are a few sequences of length 2, Kohavi and JUY are able to take advantage of the
existence of such sequences by using them earlier in the K-tree. Hennie+, on the
other hand, processes the W–set sequences in the order they are produced. There-
fore it still hits sequences with length 1 mostly at n = 2048 and can only improve
when the frequency of 2-length sequences vastly increases at n= 4096.
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8. THREATS TO VALIDITY

During the implementation of the methods mentioned in this document, we imple-
mented several techniques to tackle any errors in the code base.

First of all, all the FSMs that we use for this work must be complete, minimal
and strongly connected. This requirement is mentioned in Chapter 2. We ensure
the completeness of all the FSMs that we produce by assigning the results of the
transition and output functions (δ and λ respectively) for every state-input pair.

For every random FSM that we generate, we apply Tarjan’s algorithm (Tarjan, 1972)
that we implemented in our project to check the strongly connectedness of the FSM.
If the FSM is not strongly connected, we try to pick a random state from one of
the connected components and direct one of its transitions (picked randomly again)
to a random state from another connected component. We apply this technique for
a maximum of 20 times and apply Tarjan’s algorithm after every iteration. If the
FSM becomes strongly connected in any step, we stop. If the FSM cannot become
strongly connected after 20 trials of re-connection, we discard the FSM and start
generating a new one.

Once we have an FSM that is complete and strongly connected, ensured by the
methods given above, we check the minimality of the FSM. Lemma 1 shows that
each state pair of a minimal FSM must have a separating sequence. For checking
this, we create the separating pair graph of the FSM, as defined in Definition 1.
Every state pair in the original FSM has a corresponding node in this separating
pair graph. If a state pair is separable, its corresponding node in the separating
pair graph must have a path to the node Separated in the graph. If all the nodes
in the separating pair graph have paths to Separated, then we say that the FSM is
minimal. For checking this situation, we apply an inverse breadth-first search from
Separated and see whether we can discover all the nodes in the graph. If all nodes
are discovered, the FSM is ensured to be minimal. In order to check whether we
created the transitions in the separating pair graph correctly, we run a procedure to
check whether each node in the separating pair graph is built correctly by reversing
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the building algorithm.

In Chapter 4, we propose new W–set algorithms and we also have few W–set algo-
rithms from the literature, as we mention in the experimental chapter, Chapter 6.
We implemented these W–set algorithms and these implementations need a vali-
dation. For this purpose, we also implemented a checking procedure to validate
whether the resulting input sequence sets are indeed W–sets. This procedure ap-
plies the input sequences from the set to all state pairs in the FSM and checks
whether each pair can be separated by at least one of the input sequences. As this is
the definition of a W–set -as given in Chapter 2-, this validation works for ensuring
a set is a W–set.

In Algorithm 7, we present a way for building K–trees. For validating the implemen-
tation of this algorithm in our code base, we again constructed a checking procedure
which utilizes the definition of a K–tree. In a K–tree, each leaf indicates a single
state from the FSM. If we take all the nodes from the root to this leaf node, the
collection consisting of the sequences/PADSs on this path must separate this state
from all the other states. Therefore, we find such collections for each state of the
FSM and check whether each state is separated from all the other states by its
collection. This check tells whether the tree we created is a K–tree.
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9. CONCLUSION

Proper testing of software - especially in big projects - saves a lot of resources
and human power and make the software a lot more durable and a lot less error-
prone. Therefore, automated testing and debugging have been fields of constant
development and research. Although being a sub-branch of automated testing, the
development of FSM-based testing has been slower and more gradual. Still, we
know that FSM-based testing has good potential and broad use cases. While the
generation and usage of ADSs and PDSs are well researched and presented, not all
FSMs have these sequences, unfortunately. Therefore, more complicated methods
like W–set based methods have to be developed and improved. These methods were
known to produce very long test sequences. The K–tree concept that Jourdan et al.
(2016) proposed is finally able to reduce the magnitude of the length of SIS to 10s
from 1020s, albeit not practically presented by the original paper. The original paper
also did not present any direction on how to build the K–tree from scratch and how
well it performs for FSMs that have more than a few states.

In this work, we studied the W–set based testing topic in general. However, we also
looked at K–set based methods, which can be generically included in theW–set based
testing topic. We developed an algorithm (Algorithm 7) that builds a K–tree from a
given W–set or K–set. This algorithm constructs a K–tree in breadth-first manner
and optimizes the distribution of W–set/K–set elements in the K–tree such that the
SIS generated from the K–tree becomes minimal. We presented the tests and the
results are promising. We showed that Jourdan et al. (2016)’s technique generates
SISs no longer than 100 in any case (for FSMs with up to 4096 states), when paired
with a good W–set and our K–tree building algorithm (Algorithm 7). This sets a
new bar on the standard length of the state identification sequences. In the future,
new heuristics on K–tree generation and novel W–set generation algorithms can
be proposed to further improve this SIS quality. In this document, we performed
experiments only up to 4096 states. It can be also investigated how the K–tree
will expand if the state count is vastly increased. We know by experience that the
height of the K–tree is a critical factor in the length of the SIS generated. Therefore,
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this investigation may be beneficial in knowing whether these novel techniques are
cardinality-proof. In such a future work with higher state counts and K–tree heights,
we expect that the superiority of Jourdan et al. (2016)’s K–tree technique will be
even more obvious.

Another part of our contribution in this work was on W–set generation methods.
W–set is a set of sequences where every state pair in an FSM can be separated
by at least one of the items of this set. By this property, W–sets are used for not
only K–tree building but also many other SIS methods. Therefore, development
of W–set algorithms that can build compact W–sets are greatly important. In this
work, we proposed four W–set construction algorithms. Three of these were general-
purpose algorithms, which served the purpose of building compact W–sets, in terms
of the cardinality and in terms of the average length of the sequences in W–sets.
By this, we aimed to create algorithms that can be used for any past or future W–
set based SIS generation techniques. We performed experiments and compared the
performance of these W–set algorithms to algorithms existing in the literature. Our
algorithms -especially Chassis-CT- yielded a much better performance in terms
of the compactness, with acceptable execution speeds. The last of these four W–
set algorithms was intended for specifically K–tree based SIS generation method,
where the compactness of the W–set itself is totally discarded. In this technique,
the elements of the W–set were decided in a way that they would fit perfectly in
the nodes of the K–tree to be constructed. This indeed happened. The last W–
set algorithm that we proposed (Chassis-P) performed the best among all W–set
algorithms in terms of the quality of the resulting K–trees. It only performed worse
than Soucha (a K–set algorithm) by a very small margin, in K–tree SIS results.
However, this is natural; because K–sets are more efficient data structures than W–
sets (similar to the ADSs vs. PDSs) and the small margin Soucha gains over our
W–set algorithm Chassis-P may easily be explained by this difference.

A possible improvement of our implementation can be to use excessive sequence
pruning while generating SISs. To explain what we mean by excessive sequence
pruning, first let us consider a node of the K-tree labeled by a K-set element Y and
set of states S′ ⊆ S. Furthermore let s ∈ S′ be a state and w be the sequence of
inputs suggested to be used in the SIS generation for s by the K-set element Y at this
node. Finally, let w′ be the shortest prefix of w such that ∀s′ ∈ S, λ(s,w′) = λ(s′,w′)
if and only if λ(s,w) = λ(s′,w). In other words, w′ is the shortest prefix of w that
has the same distinguishing power as w for s when one considers the states in S. In
this case, we can in fact use w′ instead of w for the generation of SIS of s for this
particular K-tree node. Our algorithms do use this observation.
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However, it is possible to take this observation one step further in the following
way. Let w′′ be the shortest prefix of w such that ∀s′ ∈ S′ (that is, instead of the
entire set of states S, only the states labeling the corresponding K-tree node are
considered) λ(s,w′′) = λ(s′,w′′) if and only if λ(s,w) = λ(s′,w). In other words, w′′

is the shortest prefix of w that has the same distinguishing power as w for s when
one considers only the states in S′. In this case, we can in fact use w′′ instead of w for
the generation of SIS of s for this particular K-tree node. This improved approach
is not used in our implementations which would possibly yield even shorter SISs.
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