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ABSTRACT

EPIGENETIC DETERMINANTS OF NUCLEOTIDE EXCISION REPAIR
EFFICIENCY

ARDA ÇETİN

MOLECULAR BIOLOGY, GENETICS, and BIOENGINEERING M.A. THESIS,
DECEMBER 2020

Thesis Supervisor: Asst. Prof. Ogün Adebali
Thesis Supervisor: Asst. Prof. Öznur Taştan Okan

Keywords: nucleotide excision repair, histone modifications, chromatin, machine
learning, UV lights, skin cancer

Passing through the atmosphere, UV components of sunlight reach the earth’s sur-
face. Long exposures of cells to UV-A and UV-B result in cellular dysfunctionalities
by causing DNA damage. Nucleotide excision repair (NER) is a mechanism that
identifies and removes bulky DNA adducts such as UV-induced dipyrimidines. NER
consists of two sub-pathways with respect to its damage recognition step: global
(G-NER) and transcription-coupled repair (TC-NER). TC-NER takes place on the
transcribed strand of the genes, whereas G-NER is globally active throughout the
genome. It has been reported some chromatin states affect the efficiency of NER
which consists of G-NER and TC-NER, in combination. TC-NER is associated with
transcription and related genomic features. However, epigenetic factors affecting
the G-NER efficiency has been underexplored. Here, we processed the genome-wide
datasets derived from DNA damage and repair maps as well as histone modification
maps of the three cell lines. With the genomic DNA damage, repair, and histone
modification datasets, we built machine learning models to reveal epigenetic factors
that can be predictive of NER and particularly G-NER efficacy. Our models re-
sulted in high accuracy prediction of DNA repair potential of the genomic regions.
We suggest that cells’ epigenetic architecture is likely the key determinant of global
DNA repair bias, therefore, mutagenesis in cancer.
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ÖZET

KESİP ÇIKARMALI DNA ONARIM ETKİNLİĞİNİN EPİGENETİK
BELİRLEYİCİLERİ

ARDA ÇETİN

MOLEKÜLER BİYOLOJİ, GENETİK ve BİYOMÜHENDİSLİK YÜKSEK
LİSANS TEZİ, ARALIK 2020

Tez Danışmanı: Dr. Ogün Adebali
Yardımcı Tez Danışmanı: Dr. Öznur Taştan Okan

Anahtar Kelimeler: kesip çıkarmalı DNA onarımı, histon modifikasyonları,
kromatin, makine öğrenmesi, UV ışınları, cilt kanseri

Atmosferden geçerek güneş ışığının UV bileşenleri yeryüzüne ulaşır. Hücrelerin UV-
A ve UV-B’ye uzun süre maruz kalması, DNA hasarına neden olarak hücresel işlev
bozukluklarına neden olur. Nükleotid ekzisyon onarımı (NER), UV ile indükle-
nen dipirimidinler gibi büyük DNA eklentilerini tanımlayan ve ortadan kaldıran bir
mekanizmadır. NER, hasar tanıma adımına bağlı olarak iki alt yolaktan oluşur:
global (G-NER) ve transkripsiyona bağlı onarım (TC-NER). TCR, genlerin tran-
skripsiyon zincirinde yer alırken, G-NER genom boyunca iki DNA zincirinde de
aktiftir. Bazı kromatin yapıları, G-NER ve TC-NER’den oluşan NER’in işley-
işini etkilediğini bildirilmiştir. TC-NER, yapıları transkripsiyon ve ilgili genomik
aktivitelerle ilişkilidir. Bununla birlikte, G-NER verimliliğini etkileyen epigenetik
faktörler yeterince araştırılmamıştır. Bu çalışmada, DNA hasarı ve onarım harita-
larından ve üç hücre hattının histon modifikasyon haritalarından türetilen genom
çapında veri kümelerini işledik. Genomik DNA hasarı, onarımı ve histon modi-
fikasyon veri kümeleriyle, NER ve özellikle G-NER’in etkinliğini tahmin edebilecek
epigenetik faktörleri ortaya çıkarmak için makine öğrenimi modelleri oluşturduk.
Modellerimiz, genomik bölgelerin DNA onarım potansiyelini tahmin etmede yük-
sek doğruluk sağladı. Makine öğrenmesi yaklaşımımız, histon modifikasyonlarının
kromatine, hasar türüne ve hücre tipine bağlı olarak, NER işleyişine etkisini göster-
miştir. Hücrelerin epigenetik mimarisinin muhtemel global DNA onarım eğiliminin,
dolayısıyla kanserde mutagenezin belirleyicisi olduğunu öne sürüyoruz.
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1. INTRODUCTION

Cell survivability depends on the maintenance and proper operations of the cellular
activities. Cellular activities enable cells to stay alive and provide cellular homeosta-
sis. Despite the occurrence of thousands of cellular activities within the cell, most
of the time they operate properly in healthy cells. Perhaps, as cellular activities are
running, various events and cellular processes could go wrong within the cell due to
the cell’s complexity or environmental factors. Most interestingly, all these highly
complex cellular events are arranged by the regulatory mechanisms to ensure the
sufficiency and the integrity of these cellular processes and their products. Moreover,
cells also have cellular defense mechanisms against the internal and external agents
which can disrupt the cellular functioning through DNA damaging (1 - 9). These
events and regulations are governed in an organelle called the nucleus. Depend-
ing on the expression of genes inside the nucleus, the functioning of many cellular
activities can change. A genome is the cell’s guidebook where all the information
necessary for cellular events lies for building and maintaining the cell. The genome,
the collection of all genetic materials of a cell, consists of chromosomes and the
number of chromosomes found within a cell may vary from organism to organism.
Chromosomes structurally consist of chromatins and they are the complex of DNA
and proteins. The proteins, which constitute chromatins, are called nucleosomes
(6). The nucleosomes are the complex which is formed by nine histone proteins (H1,
H2A, H2B, H3, and H4) and a DNA helix (8).

Each layer building the genome is needed for providing cellular functionality and
structural operations. It is also necessary for genome to fit inside the cell with an
organized manner. The utmost evolutionary reason for genomic condensation is
that the DNA at its naked form is larger than the size of a cell. Therefore, the
condensed DNA was an evolutionary step for the beginning of a prokaryotic life.
The compaction of the genome is provided by the coherent functioning of various
molecules including nucleosomes, chromatin remodelers, chaperones, etc. These ar-
rangements of chromatins for enabling or disabling cellular operations and providing
genomic integrity for cells are mainly governed by the interaction of histones, hi-
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stone modifications, DNA helix, and chromatin remodelers. Besides, compaction
is also necessary for protecting DNA from physical damages and making it more
manageable for controlling the cellular events. Despite this evolutionary mechanism
of cells to defend itself from a wide variety of agents, DNA might still get malfunc-
tioned. Thus, all cells have developed similar mechanisms which protect, and fix
DNA defects created by the harmful agents (10).

Organisms are exposed to various internal and environmental agents throughout
their life (9). These agents can damage DNA and then, affect the cell’s viability
depending on the rate of exposure. Cells having damaged DNA may experience
deficiencies in some cellular activities. These deleterious impacts of DNA damage
on the cells can also result in genomic instabilities (1). Consequently, these DNA
originated abnormalities or genomic instabilities may give rise to diseases such as
cancer (11). Another impact of these agents on the cells is the possibility of preserv-
ing UV damaged DNA in the daughter cells as hereditary information. Worse, the
impaired genome is transmitted to offspring of an organism, if damage cannot be
detected and repaired by the DNA regulatory mechanisms. Therefore, wide range
of DNA defense mechanisms developed to repair DNA damages and evade the risks
of transmitting disrupted genetic material to the progenies. If a damage on the
genome cannot be detected because of the malfunctioning of corresponding repair
mechanism, the damage will cause severe problems in an organism such as mutation
formation and fast aging (1). Thus, regulation of DNA defense mechanisms is as
important as the maintenance of the genome. That is the reason why every cell also
has cell cycle checkpoints to ensure about the integrity of the cell.

The ancestral organisms developed varied DNA defense mechanisms and with the
speciation (12, 13). Those are used against various genomic errors or damages. It is
highly important for a cell to detect and respond to damage instantly and properly
once it is encountered (14). However, some DNA repair pathways are often activated
more due to the presence of particular lesions in the genome (13).

Although there are many environmental and internal agents, which are potential
threats for a cell, some of them are more frequently encountered such as UV radi-
ation, ionizing radiation, free radicals and oxidation, hydrolysis, and the alkylating
agent such as cisplatin (2-9). UV light is one of the most seen DNA damage induc-
ing agents. Sun emits UV radiations (UV-A, UV-B and UV-C) and only a small
fraction of UV-A and B can reach to the earth surface (15). Despite the personal
precautions taken for protecting the body against sun’s deleterious impacts, UV
light results in bulky dipyrimidines.

UV damage is one of the major causes of skin melanoma in humans. Even tiny
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portions of UV radiation may be enough for cells to cause damage on the genome
depending on the exposure rate. The genome is structurally vulnerable against the
UV light due to genomic composition. These UV-induced DNA damages result in the
formation of DNA bulky adducts such as 6-4 pyrimidine pyrimidone photoproducts
([6-4]PPs) and cyclobutane pyrimidine dimers (CPD) on the genome (16, 17). To
cope with these deleterious impacts of UV light on the genome, various evolutionary
DNA protecting mechanisms have been developed. Besides, another damage forming
agent is a platinum-based drug called cisplatin, which is administered as an anti-
cancer drug against the number of cancers (18). Cisplatin is a chemotherapy drug
which generate cisplatin damages on the genome without distinguishing between
normal or cancer cells. The nucleotide excision repair pathway is the sole mechanism
which repairs the bulky DNA adducts on the genome caused by the UV-B light and
cisplatin drug DNA damages (19).

Many endogenous and exogenous agents disrupt the genome in different ways. De-
pending on their targets, variations in their molecular pathways, and functioning,
different DNA regulatory mechanisms continuously operates to keep the cell as
healthy as possible. Proofreading, mismatch repair and DNA damage repair mecha-
nisms maintain the genome in different ways by fixing dissimilar DNA errors and/or
damage products (10, 12). Excision repair is a damage repair mechanism. Excision
repair pathways are initiated once oxidized bases, alkylated bases, DNA adducts, or
DNA photoproducts kind of single strand originated DNA damages were identified
through the DDR process (2). Excision repair pathways eliminate DNA damage in
three general steps starting by the recognition of damage, removal of damage through
dual excision, and the resynthesis of correct nucleotides. Excision repair includes
two sub-repair mechanisms called nucleotide excision and base excision repair. The
main differences between BER and NER are their components, the origin of the
DNA damage, DNA damage repair targets, and the discarded fragments lengths (9,
13).

It was suggested that contrast to BER, NER pathways are specific to some damages
which substantially changes the helix structure of DNA (19). The nucleotide exci-
sion repair (NER), which has been detailly studied by many researchers, discards
mainly UV- and chemical-induced DNA adducts. Specifically, in placentals, NER is
the sole repair machinery correcting the bulky UV-induced DNA damages such as
DNA photoproducts and pyrimidine dimers. On the other hand, some of the organ-
isms, such as some bacteria, yeasts, and plants, directly repair the UV lesions by
the enzyme called photolyase. The first phase of NER begins with the identification
of damage products similar to the other repair mechanisms. The bulky DNA pho-
toproducts and pyrimidine dimers are either recognized by XPC and DDB or RNA
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polymerase. The recognized damage adducts are excised at both ends of the damage
by XPG and XPF. Afterwards, these dual-cut single stranded DNA fragments are
removed from the genome by TFIIH and XPC then DNA ligase and polymerase
seals DNA breaks. The malfunctioning of any step of the NER pathways causes
severe health problems and diseases such as Cockayne’s syndrome and Xeroderma
pigmentosum (20).

Although NER has evolved both in prokaryotes and eukaryotes, NER is not com-
pletely conserved between the organisms (21). NER may include similar mechanisms
for damage repair across organisms but there are still differences in the components
and the efficiency of NER in damage repair. For example, the number of repair
factors found in NER machinery is around 15-16 in humans, but this number is
lower in prokaryotes (15, 22, 23, 24). Conversely, unlike humans, additional helices
proteins involve in the NER process in prokaryotes (24). Also, the length of the
incision region varies between the prokaryotes and eukaryotes. In prokaryotes, the
size of the replaced oligomer is between 12 and 13 nucleotides long whereas it can
vary in length from 24 to 32 nucleotides in the eukaryotes (15, 20, 22, 23, 25 - 28).

NER pathways further divided into two sub pathways with respect to their dam-
age recognition steps: global nucleotide excision repair (G-NER) and transcription
coupled nucleotide excision repair (TC-NER). These two repair mechanisms differ
in which strand of DNA they function and the way of damage detection. These
two factors affect the rate of repair in two NER sub-mechanisms (29). TC-NER
removes bulky DNA lesion more effectively and rapidly than the G-NER (30). Two
sub-pathways use different constituents to sense the DNA damage but the later
steps of both NER pathways employ common factors. In the TC-NER pathway,
the identification of the bulky DNA adducts, and recruitment of repair complexes
are mainly mediated by the error-free polymerase. RNA Polymerase stalls once
it encounters damage and recruits repair complex proteins to the damaged region
(31, 32). Conversely, polymerase is not involved in the damage detection process of
G-NER pathway instead UV-DDB and XPC mediate DNA damage identification
and recruit NER factors to the damage region. So, TC-NER pathway requires few
molecules for the damage recognition step. Therefore, TC-NER pathway damage
detection is less time demanding and more effective process than G-NER pathway
when G-NER cannot efficiently repair the lesion on transcribed strands (33). Even
though the general steps of both NER pathways are similar, they also possess small
differences in the steps of repair. The reason lies under the differences between both
NER pathways. TC-NER is activated if a damage is detected during transcription.
However, unlike the TC-NER pathway, G-NER activity does not only rely on tran-
scription. Conversely, it can also be activated in the replication process as well. As
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the name implies, TC-NER removes the damages found on DNA transcribed strands
as it is a transcription dependent repair mechanism. On the contrary, the G-NER
pathway removes damages found on both strands (33).

It has been mentioned above that CPD and [6-4]PP damage products are formed on
the genome after cells are exposed to UV after a certain amount of time. CPD and
[6-4]PP are solely repaired by NER pathways, but these two damage types differ in
their composition, repair rate, and genome-wide distributions. It has been shown
on UV treated cells that unlike [6-4]PPs, CPDs are more uniformly distributed
and abundantly found over the genome (34). Moreover, [6-4]PPs are localized at
the DNA regions where the DNA wraps around the nucleosomes (35). Despite
the relative less abundance of [6-4]PPs on the genome compared to CPDs (36),
they are repaired at a faster rate by the G-NER and CPD damages are repaired
relatively effectively by TC-NER, but the exact reason of that repair tendencies is
not explained yet (37, 38, 39). Besides, unlike [6-4]PPs, CPDs are repaired more
effectively at the transcribed strand because their repair strongly influenced by TC-
NER (39). Therefore, [6-4]PP do not have strand-specific repair bias like CPD does.

Chromatin can act as a barrier for NER machinery in many instances because they
possess strict regulations to control complex cellular events. However, some chro-
matin structures can facilitate the repair. Therefore, chromatin, in general, requires
nucleosome rearrangements or modifications to allow transcription, replication, or
DNA repair events. Chromatin structure may also restrict the operations of poly-
merase enzymes or other molecules on the genome. However, in case of the need of
cellular activities, structural chromatin restrictions are lightened by the sets of reg-
ulatory molecules, such as histone modifiers, histone methylases, histone acetylases,
histone deacetylases, chaperons, and other molecules. In a decade, some chromatin
structure elements, which were thought to be related to repair, have been investi-
gated (40). Of those, chromatin remodelers were suggested to indirectly interact
with NER machinery. This indirect interaction between chromatin remodelers and
NER rely on the modifications of histones. Until now, only a small part of the
histone modifications (histone markers) has been associated with the NER and it
is confirmed that different enzymes add diverse modifications to various amino acid
residues of histones. The N-terminal tail acetylation of H3 and H4 histone pro-
teins by HATs were reported to be closely related with the chromatin remodelers
functioning such as H3K9ac. Yu et al. (2005) revealed that within a half an hour,
histone acetylation process begins at a repressed region in the UV-treated yeast
cells (41). The NER related factors and their mechanisms for damage detection
vary depending on the organism. For instance, in mammals, transcription factor
E2F1 and UV-DDB guides Gcn5 HATs to the DNA damage region (40, 42). Gcn5
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then adds acetylation group to the 9th lysine of H3 and this enables NER proteins
to access DNA damage with the help of chromatin remodelers. UV-DDB also in-
directly recruits chromatin remodelers to the DNA damage region as well. These
chromatin remodelers recognize H3K9 histone acetylation and act as an attachment
site for NER protein complexes at the damage site (40, 42). These findings indicate
that chromatin remodelers and HATs are some of the NER associated factors which
facilitate NER process by loosening chromatin structures.

In addition to acetylation, another histone PTM related with NER mechanism is his-
tone methylations. Histone methyltransferases (HMTs) add methyl groups to amino
acid residues of histones. They participate in the regulation of many biological pro-
cesses including DNA damage repair. Even though histones can be methylated at a
wide range of amino acid residues of H3 and H4 proteins, none of these methylations
have been directly related to repair. H3K79 and H4K20 methylations are some of
the characterized markers with the NER (44, 45). Researchers reported increased
formation of UV damage lesions in the yeast genome, where these modifications or
HMT coding genes were mutated (43, 44). The effect of H3K79 on repair was only
related to G-NER not with the TC-NER. It has been proposed that this modifica-
tion may loosen the chromatin structure at the G-NER regions (44) or can act as
a binding site for G-NER complex. Furthermore, H4K20 methylation serves as a
docking site for damage detection protein in double stranded break repair but not
much is known about its effect on NER (45). These suggests a possible relation-
ship between these histone modifications and the NER machinery. Nevertheless,
the explicit effect of histone methylations on NER is not fully comprehended. On
the other hand, histone phosphorylation and ubiquitylation modifications are other
PTMs which are suggested to be associated with the UV or cisplatin induced bulky
adducts repair.

Many factors affecting NER have been shown over the years but some of them, such
as histone markers, were not explicitly associated with NER yet. Previous studies
revealed that NER’s deficiencies in cells are a serious threat for cell’s vitality and
survivability. NER is one of the major DNA damage repair mechanisms which en-
ables the genome to be stabilized and maintained from various internal and external
agents. It has been unveiled that defective NER can foster the aging process and
disorders like Xeroderma pigmentosum and cancer (20). Furthermore, research con-
ducted on stem cells suggested that absence of an element from a NER pathway
complex contributes to the development of Signature 8 mutations (46). Besides,
cancer cells, which have distorted NER pathway, are more likely to respond to cer-
tain treatments. Therefore, the deficiency of NER in a cell can provide a significant
tool to diagnose and treat the particular type of cancer cells.
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The integrity of the genome highly depends on the removal of DNA lesions because
the unstable structure of the genome is likely to cause structural and functional
abnormalities which can lead to severe cellular problems or life-threatening issues
as mentioned above. NER machinery can be comprehended better if factors af-
fecting NER, such as chromatin accessibility and states, are unveiled more detailly
(47). As an example, chromatin structure, histone markers, histone remodelers,
and DNA damage repair mechanisms are intertwined and dependent quantities. So
that the compression of DNA molecules using nucleosomes is not enough to pre-
serve the genetic material of the cells alone hence genetic defense mechanisms have
been evolved to undo the effects of deleterious agents. However, DNA damage re-
pair mechanisms rely on both chromatin accessibility and protein availability which
is regulated through DDR. Similarly, chromatin structures require histone modi-
fications and chromatin remodelers for regulating their chromatin states. These
interrelated quantities are the constitutive parts of a big machine. Yet, the interac-
tion between the NER and histone modifications are not completely known (48, 49).
Therefore, the NER mechanism and its effectors need investigation for its complete
comprehension.

Genome-wide DNA damage and repair profiles might provide remarkable informa-
tion for understanding factors affecting NER mechanisms. Fortunately, the advance-
ment of NGS technologies accelerated many studies and resulted in the production of
many high throughput data in that field. The NGS technologies are not only limited
to genome-wide damage and its repair maps but also lots of other genome-wide high
throughput methods were developed such as ChIP-seq and DNase-seq. Frankly, all
NGS methods possess similar protocols because they developed based on common
NGS technologies. For instance, ChIP-seq is an important and frequently applied
method in many fields of biology. It can be utilized to find the regions bound by
proteins or protein modification of interest along the genome. ChIP-seq starts with
the cross-linking of protein of interest to the genome before digesting DNA with
DNase enzyme. This step is followed by the precipitation of shredded DNA, re-
moval of protein of interest, purification of DNA sequence, and sequencing these
DNA fragments. On the other hand, DNase I hypersensitivity regions can be pin-
pointed throughout the genome using DNase-seq method. It is a crucial method to
exhibit the handiness of chromatin structures or observe the gene regulatory regions
along the genome. The eXcision Repair sequencing (XR-seq) method is only one of
the products of the advanced NGS technologies. The eXcision Repair sequencing
(XR-seq) has been developed for obtaining DNA damage repair maps throughout
the genome (33). NER mechanism detects, binds, and cuts the damage region of
the DNA from both ends, results in dual-incised short fragments, and the correct
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sequences are added and ligated for sealing the gap. The novelty of XR-seq method
is its capability of capturing these duel-cut short-lived fragments of DNA before
they get degraded inside the cell (33). Moreover, XR-seq can identify the individ-
ual bases of dual incised short-lived DNA fragments at single nucleotide resolution
hence, it provides reliable results. XR-seq method has been applied on different
living organisms such as human, lemur, D. Melanogaster, S. Cerevisiae, E.coli and
A. thaliana (21, 33, 50 - 54). Detecting the short-lived fragments in single nucleotide
resolution starts with the immunoprecipitation of the excision product with alpha
TFIIH, followed by the adaptor ligation, precipitation, damage reversal, amplifica-
tion, and next generation sequencing (33). Next, with the similar approach, the
damage sequencing (damage-seq) has been developed for detecting the particular
position of the UV damage lesion on the genome at single nucleotide base resolu-
tions (55). Damage-seq method yields different outputs and respectively has more
complex procedures than XR-seq. In this method, unlike XR-seq, the length of frag-
ments is bigger and end repair is required previously. Biotin is attached to the end
of damage included fragments and it is used as a label for differentiating between
the damaged and damage-free DNA fragments (33, 55). However, unlike XR-seq’s
specificity for identifying the damaged point, damage-seq is highly sensitive method
in terms of detecting the exact damage position, yet, damaged bases need to be
pinpointed through bioinformatics analysis by seeking adjacent sequence, which is
not found at 5’ end of the amplicon, using reference genome.

Recently, high throughput sequencing methods have been utilized frequently in vari-
ous fields of biology, including bioinformatics, forensics, genetics, and biotechnology,
for many reasons such as identification or validation of cellular pathways and com-
plexes. XR-seq and damage-seq are specially tailored methods, which have been
specifically developed for acquiring genome-wide repair and damage maps, with
high precision (33, 55, 56). It has been reported that the genome-wide cisplatin
repair and damage maps, which were generated by XR-seq and damage-seq meth-
ods respectively, were not overlapping with each other (57). Damage repair (NER)
maps, which were generated by XR-seq, exhibited non-uniform repair hot and cold-
spot distributions throughout the genome. Conversely, damage-seq data showed
relatively homogeneous damage distribution patterns along the genome (33, 56). A
damage-seq experiment clarified that the heterogeneous damage repair was solely
the NER preference because damage had not been repaired at every genomic region
equally (55, 56). Therefore, to explore the causes of this NER repair tendency, fac-
tors affecting the NER efficiency were started to be investigated. It was proposed
that the active regions on the genome are repaired preferentially and more than the
less functional regions and this is also valid for the NER repair as well (55). The
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heterogeneous pattern of damage repair maps was associated with the chromatin
states and it is also reported that NER repairs the damage rapidly and with ease
at open chromatin regions (21, 25, 30, 33, 55, 56, 58). Similarly, other epigenetic
factors, such as histone modifications, histone remodelers etc. were stated to af-
fect NER tendency in damage repair (40, 45, 59). TC-NER overshadows G-NER
efficiency because of its effective and rapid functioning which were mentioned in
the above paragraphs. Thus, G-NER effectiveness and functioning at structurally
different genomic regions also require clarification. To the best of our knowledge
no research has been conducted before for linking the histone modifications and
G-NER machinery efficiency using a machine learning application. Therefore, NER
and the NER related factors must be identified and elucidated comprehensively to
understand the NER better. Here, we aimed to explore the relationship between
histone modifications and NER in order for explaining one of the causes of previ-
ously shown non-uniform genome wide NER pyrimidine dimers and photoproducts
repair preference (59). We have applied machine-learning techniques to identify the
epigenetic determinants of NER.
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2. PURPOSE

UV radiations, which are emitted from the sun, are the major cause of skin melanoma
and many other skin related syndromes. Only in USA, 196,060 people were diag-
nosed with skin melanoma in 2020 and approximately, 100,350 of those were invasive
and 95,710 had non-invasive skin melanoma according to the statistics of 2020 Skin
Cancer Foundation.

The sole UV lesion repair machinery in human cells is nucleotide excision repair and
this repair machinery decreases the chances of developing skin-related diseases such
as skin cancer. The repair maps of NER had revealed heterogeneous repair through-
out the genome whereas the genome-wide distributions of UV damage lesions were
homogeneous. We developed a machine learning model to predict the DNA repair
positions along the genome using histone modifications. To achieve this, we com-
pare the effect of histone modifications on the NER prediction with the chromatin
states. To train and test the model, we provided four types of next generation se-
quencing data, which are eXcision Repair sequencing, damage sequencing, DNase I
hypersensitivity sites sequencing, and chromatin immunoprecipitation sequencing,
to the model. We used three cell lines (HeLa, GM12878, and NHF1), which are
derived from different primary tissues, to show the relationship between the histone
markers and NER. Thus, this study will emphasize the interaction between NER
mechanism and histone markers as well as show the efficiency of G-NER, which is
overshadowed by TC-NER, in damage repair.
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3. METHOD

3.1 Cell culture, UV irradiation and cisplatin exposure

The XR-seq, damage-seq, ChIP-seq, and DNase-seq NGS data for HeLa, NHF1, and
GM12878 cell lines were retrieved from an online publicly available database Gene
Expression Omnibus (GEO). Therefore, any questions related with the experimental
setup and the data protocol should be answered by visiting each data’s corresponding
GEO accession numbers. During the research, ENCODE portal was frequently used
for data searching due to its user-friendly interface (ENCODE Project Consortium
2012, https://www.encodeproject.org/).

3.2 Data Collection

To monitor the model prediction performance in the different cell lines, HeLa,
GM12878, and NHF1 cells were used. These HeLa cells were exposed to UV ra-
diation for 12 minutes. Since TC-NER mechanism is not activated yet within 12
minutes by the cell, genome-wide UV damage (damage-seq) and its repair maps
(XR-seq) were generated within this time. Therefore, our HeLa cell XR-seq data
does not include TC-NER machinery repair activity. However, the remaining two
cell lines include both TC-NER and G-NER mechanisms for the damage repair.
These three cells either include different NER machineries or damage types (UV or
cisplatin damage). In GM12878, damage-seq and XR-seq 1.5hr data were retrieved
from GSE98025 and GSE82213, respectively. NHF1 cell line’s XR-seq data gener-
ated after one-hour UV exposure were from GSE67941 and DNA repair after four

11



hours XR-seq data were from GSE76391. The both 1- and 4-hours UV treatment
data on NHF1 cells line could be accessed at GSE98025.

In addition to XR-seq and damage-seq data in three cell lines, ChIP-seq and DNase-
seq data were also utilized for the analysis. ChIP-seq data were needed for mapping
the positions of histone markers genome-wide in three cell lines. The ENCODE IDs
of each histone modification data (ChIP-seq) can be found in Table 3.1. DNase-
seq data for the HeLa and GM12878 cell lines were accessed from GSE32970 and
GSE32970, sequentially. The DNase-seq datum for the normal skin fibroblast cell
line (NHDF) was obtained from GEO ID GSE2969.

Table 3.1 The list of histone modifications which were analyzed in this project and
their ENCODE IDs

HeLa ENCODE ID GM12878 ENCODE ID NHF1 ENCODE ID
H3K4me3 ENCSR340WQU; ENCSR000DUA; ENCSR000AOF ENCSR057BWO; ENCSR000DRY ENCSR000DPR
H3K36me3 ENCSR000DTZ; ENCSR000AOD ENCSR000DRW; ENCSR000AKE ENCSR000APP
H3K27me3 ENCSR000DTY; ENCSR000APB ENCSR000DRX; ENCSR000AKD ENCSR000APO
H3K4me2 ENCSR000AOE ENCSR000AKG ENCSR000APQ
H3K27ac ENCSR000AOC ENCSR000AKC ENCSR000APN
H3K79me2 ENCSR000AOG ENCSR000AOW ENCSR000ARW
H2AFZ ENCSR000AQN ENCSR000AOV -
H3K4me1 ENCSR000APW ENCSR000AKF ENCSR000ARV
H3K9ac ENCSR000AOH ENCSR000AKH ENCSR000APS
H3K9me3 ENCSR000AQO ENCSR000AOX ENCSR000ARX
H4K20me1 ENCSR000AOI ENCSR000AKI ENCSR000ARJ

3.3 Bioinformatics and Statistical analysis

3.3.1 Data preparation

The XR-seq, damage-seq, ChIP-seq, and DNase-seq data used in this project were
retrieved from GEO and ENCODE websites. Three different human cell lines were
analyzed in this project, HeLa, GM12878 and NHF1. Data retrieval and fasta format
conversions were performed using fastq-dump followed by the quality control through
FASTQC for all sequencing methods. All four types of NGS data were preprocessed
before given as an input to the machine learning model. Depending on the layout
of NGS data (single- or paired-ended), the data retrieval and format conversions
require alterations accordingly in data preprocessing step. The data preprocessing
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steps will be elucidated in the following paragraphs.

3.3.2 ChIP-seq and DNase-seq bioinformatics preprocessing

Some DNase-seq data were paired-ended. Preprocessing the paired-ended data differ
in some steps than the single-ended data such as downloading SRA files, SRA-fastq
file format conversions and the read alignments to the reference genome. Similar
protocol was applied for both ChIP-seq and DNase-seq preprocessing and they be-
gin with quality control for checking read lengths, GC content, and adaptors using
FASTQC tool. Individual reads’ alignment to the reference genome (hg19) is per-
formed using bowtie2. “.sam”-“.bam” to “.bed” file format conversions are performed
using samtools and bamtools. In case of read duplicates removal, Pickard’s MarkDu-
plicates command was used if necessary. Chromosome name and coordinate sorting
before mapping samples on the genome is performed either sort command or bed-
tools sort. Bedtools intersect is used for mapping DNase-I hypersensitivity or histone
marker coordinates on 5kb windowed hg19 human reference genome. These steps
were followed by data labeling for distinguishing between the different data types
and RPKM calculations using mapped reads’ count numbers.

3.3.3 Damage-seq bioinformatics preprocessing

Some damage-seq data were paired-ended therefore, data retrieval (using fastq-
dump), adaptor removal, and read alignment steps were altered accordingly. Pre-
processing steps differ depending on the NGS methods. In damage-seq, the pre-
processing begins with quality control (FASTQC). Adapter filtering/trimming step
is necessary for XR-seq and damage-seq because these NGS methods are ampli-
con based. Cutadapt tool was utilized for adaptor detection (adaptor sequence:
GACTGGTTCCAATTGAAAGTGCTCTTCCGATCT). In damage-seq, reads hav-
ing adaptors must be discarded from the dataset. Adaptor filtering is followed by
read alignments to reference human genome (hg19) using bowtie2, “.sam”-“.bam” to
“.bed” file conversions using samtools and bamtools, sequentially, removing duplicates
using Pickard’s MarkDuplicates, damage location filtering and identification using
bedtools flank and slop, finding pyrimidines, sorting damage positions and chromo-
some information (chr names and coordinates) using sort command or bedtools sort,
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mapping damage positions on the 5kb windowed human reference genome (hg19)
using bedtools intersect. These steps were followed by data labeling for distinguish-
ing between the different data types and conversion from damage-seq data mapped
read count numbers to RPKMs.

3.3.4 XR-seq bioinformatics preprocessing

The quality of reads coming from the XR-seq was checked using FASTQC. Quality
control step is necessary to understand the data reliability and improve data quality.
Quality control checks reads’ GC content, presence of adaptors, and their lengths.
During this operation, if data type related problems or bad sequencing methodology
originated issues were detected in the data, the preprocessing is shaped accordingly
to amend data quality. In case of paired-ended data, the following three steps
with specially designed paired-ended reads parameters should be applied: down-
loading SRA files and fastq file conversion using fastq-dump, adaptor removal, and
aligning reads to the hg19 genome. The 5’ end adaptors were removed from re-
pair data using cutadapt tool (adaptor sequence: TGGAATTCTCGGGTGCCAAG-
GAACTCCAGTNNNNNNACGATCTCGTATGCCGTCTTCTGCTTG). In XR-
seq, damage and pyrimidine identification steps do not exist. Adaptor filtering was
followed by aligning reads to human reference genome (hg19) using bowtie2, con-
version from “.sam”-.”bam” files to “.bed” file format using samtools and bamtools,
sequentially, removing duplicates using Pickard’s MarkDuplicates if necessary, sort-
ing chromosome names and coordinates using sort command or bedtools sort, and
mapping repair positions on 5kb windowed human reference genome (hg19) using
bedtools intersect tool. These steps were followed by data labeling for distinguishing
between the different data types and conversion from repair read count numbers to
RPKMs.

3.3.5 Gene annotation

Each gene inside the hg19 genome was divided into 4 repetitive gene seg-
ments such as 5kb upstream of transcription start sites (U_TSS), 5kb down-
stream of transcription start sites (D_TSS), 5kb upstream of transcription end
sites (U_TES) and intergenes by performing series of filtering and data edit-
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ing steps explained in the subsequent paragraphs. In order to attain the hg19
(GrCh378) genome’s gene annotations, the GTF file was downloaded from this
source (ftp://ftp.ensembl.org/pub/grch37/release-98/gtf/homo_sapiens/).

Initially, all the genes of hg19 genome were filtered. In the below steps, the strand
information of genes was preserved. During filtering step, each three gene segments
were decided to be accepted as 5kb long, and any overlapping regions and 10kb or
shorter genes were removed from the data using a python script. The transcrip-
tion start (TSS) and transcription end (TES) sites of each remaining genes were
determined, and a second filtering step was applied such that overlapping genes and
genes found within the 5kb vicinity of a gene were discarded (using bedtools merge
integrated with awk commands). At the end, there were three separate BED files
which include the information of either 5kb U_TSS, 5kb D_TSS or 5kb U_TES.
Each of these BED files were used as a reference genome for mapping NGS reads on
three gene segments.

The intergenic regions were obtained with the help of a genic regions (location of
genes). The genic regions were utilized as in their original state (without applying
any of the above-mentioned filtering steps) for detecting the intergenes correctly. We
have eliminated the unmappable regions from the dataset by matching mappable
damage-seq data coordinates with gene annotation file coordinates. This is because
if a read could be sequenced correctly, this indicates that this read is mappable. Also,
we have added 5kb to the upstream or downstream of each gene’s TSS coordinates by
considering their strand information for evading the risk of including gene regulatory
regions as a part of intergenic regions. To do this, we have assumed that gene
regulatory regions span 5kb long area on the genome. At the end, this BED file was
used for mapping NGS reads on the intergene segments.

3.3.6 Mapping reads on genes and intergenes

XR-seq, damage-seq, ChIP-seq, DNase-seq data samples were mapped on the hg19
reference genome, which had been divided into three gene and intergene segments,
using bedtools intersect -counts. The bedtools intersect parameters used for mapping
reads on four genomic segments were same as the parameters utilized at the whole
genome preprocessing steps.
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3.3.7 Data subsampling

Additionally, all NGS data reads were randomly subsampled according to the small-
est read number across all four NGS data. Therefore, read coverages differences of
four NGS data were evened up as much as possible. This step was performed for
observing the effect of equal read numbers on the model prediction.

3.3.8 Data representation: RPKM

RPKM refers to read per kilobase per million mapped reads. RPKM calculation
was required to be able to compare dissimilar sequencing methods and interpret
knowledge from them. This is a data normalization method for resolving the different
sequence coverage issues. So that RPKM enables us to deduce reliable information
from the different sequencing methods by correcting different sequencing depth and
length problems. The count information from four sequencing data were converted
into numerical values before feeding them to the model. Using the below formula,
read count values can be converted into RPKMs.

RPKM = Numberof readsmappedtogenome
Sizeof bins

1000 xTotalnumberof reads
106

After the labelling process, above calculation was performed on ChIP-seq, XR-seq,
damage-seq and DNase-seq bed files for having better read representation.

3.3.9 Data representation: Peak Calling

To select optimum read representation in the analysis, the Peaks and read count
numbers were assessed on model (data not shown). As a result, count numbers were
chosen to represent the reads.

To apply PeakCalling, MACS2 tool (https://github.com/taoliu/MACS) was uti-
lized. The sample and input data (BAM) for histone markers were found at GEO
with their corresponding GEO accession number. The parameters for macs2 were
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callpeak, –format as BAM and -g as hs (hs indicates hg19 human genome).

If a sequencing datum includes biological replicates, they were merged as a single
file. XR-seq and damage-seq data were further filtered and normalized for acquiring
repair regions where there is damage. For filtering damage data, if there is no
damage at a given 5kb region, it was discarded. Then, the repair divided by its
corresponding filtered damage for each given 5kb genomic segment. After a series
of trials and errors this filtering and normalization step were selected. First, if a
coordinate does not include damage that coordinate was not only removed from
damage-seq, but also removed from other three NGS data. Secondly, each damage
repair type (XR-seq: CPD and [6-4]PP) was divided by its corresponding damage
types (Damage-seq: CPD and [6-4]PP).

3.3.10 Data and the result demonstrations

The preprocessing data analysis were demonstrated via different types of plots. The
pairs, scatter, histogram, box plots, and heat maps which were created using ggplot2
library of programming language R. Only the scatter plots were included in this
research due to their sufficiency (see Appendix A). On the other hand, the model
prediction results were illustrated in Python programming language.

3.3.11 Data and code availability

The scripts run in this research are available at
https://github.com/CompGenomeLab/globalNERepair
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4. RESULT

4.1 Results

4.1.1 Strategy for predicting damage normalized repair levels in open and

closed chromatin using histone modifications

The Figure 4.1 details the steps of building a machine learning model that can
predict the level of NER. Using four different types of sequencing data types, we
constructed a dataset for predicting damage normalized repair regions where there
are high or low repair levels. Nevertheless, the main dataset, which we focused on for
predicting repair levels, is the ChIP-seq data (histone markers/modifications). The
genome was divided into 5kb windows (bins). Every read was mapped on the human
reference genome (hg19) and then, read count numbers of each sequencing data type
were acquired at the given bins. In order to overcome the depth of coverage and
breadth of coverage problems between the cross-NGS data, a normalization method
called RPKM as applied on the mapped read’s count values. To learn more about
the RPKM calculation please refer to Methods section and see “RPKM calculation”
subheading. RPKMs were calculated from the read’s count numbers and RPKM
values of DNase hypersensitivity sites, (9 - 12, 14, 60, 61) histone modifications,
repair levels (from XR-seq) and damage levels (from damage seq) were used as
inputs for the model after the additional data filtering and normalization steps (Fig.
4.1).

DNase hypersensitivity sites were utilized to classify 5kb windows as either open
(top third percent, highest, RPKM values) or closed (bottom third percent, low-
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est, RPKM values) chromatin. Similar to DNase-seq, the repair values, which were
normalized by damage values, were used to designate windows as high (top thirty
percent of RPKMs) or low (bottom thirty percent RPKMs) binary repair levels.
RPKM values of histone markers were used as predictors for the repair levels. In-
stead of using RPKM values of histone modifications directly for the predictions, we
decided to bin the RPKM values for each modification into four quartiles for ease of
interpretability. A cross-chromosome training and testing approach was used: 80%
of the genome was used for model training and the remaining 20% was used for
testing the machine learning models. Test samples were further segregated as open
or closed chromatin if needed and the same model was used to evaluate performance
on both states (Fig. 4.1).

Preprocessed data were directly used in three types of scatter plot analysis: G-NER
– histone markers, G-NER – DNase hypersensitivity sites, and histone markers –
DNase hypersensitivity sites. Chromatin accessibility and NER scatter plots were
showing positive correlations in both UV damage types. However, CPD damage
NER repair had the highest positive correlation with the chromatin states (see Fig.
A1. 17 - 18). The scatter plots analysis between UV damage G-NER repair and
histone modifications also displayed positive correlations in HeLa (see Fig. A1. 34
- 93). Between the UV lesion repairs, CPD damage repair had the highest pos-
itively increasing association with the histone markers (33). In both UV-induced
photoproduct repair, H3K36me3 and H3K36me3_1’s RPKM distribution patterns
demonstrated fewer positive correlations than the rest of the modifications excluding
H3K9me3, H3K27me3, and H3K27me3_1 (see Fig. A1. 34 - 93). Similar positive
trends were observed between the two chromatin states (euchromatin & heterochro-
matin) and same set of histone markers too. However, H3K36me3 were less posi-
tively correlated compared to other gene activity related modifications. H3K9me3
and H3K27me3 were the markers of inactive genes (59). Although they also pre-
sented some degree of positive correlation with the G-NER, they were not as signif-
icant as the linear positive sample distributions of other markers (see Fig. A1. 34
- 93). The sole unexpected correlations were from H3K36me3. H3K36me3 localizes
at the active genes and functions for gene activations like the H3K4 methylations
(62). However, H3K36me3s did not have the same pattern with H3K4me3 (see Fig.
A1. 37 - 39, 45 - 46). Normally, H3K36me3 is highest at gene bodies and starts
to lose enrichments as moving to upstream and downstream of gene bodies (59,
62). Thus, its insufficient positive correlation with the G-NER was not anticipated.
Any kinds of sequencing data related problems for H3K36me3s might be the reason
for this correlation results. On the other hand, UV radiation might have affected
the distribution of epigenetic markers within the cells which may end up with unex-
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pected results. In general, these raw data correlation plots may indicate that histone
modifications may be the determinants of G-NER efficiency.

Not only testing the genome-wide effect of histone markers on the repair, but also the
RPKM distributions of each histone marker at the four 5kb long genomic segments
were tested (Fig. 4.2). Four genomic segments are 5kb upstream of TSS (U_TSS),
5kb downstream of TSS (D_TSS), 5kb upstream of TES (U_TES) and intergenic
regions. For each of these regions, the same preprocessing, filtering, normalization,
and training-testing strategy were applied.

Figure 4.1 The demonstration of model development matrix which was used to
predict the damage repair.

Chromosome name and chromosome start, and end site coordinates are found at the
first three columns. DNase I hypersensitivity is found in the second column. Histone
markers’ discretized RPKM values can span from 9 up to 15 columns depending
on the cell line. The last column of the matrix consists of filtered and damaged
normalized binary repair values (High or low repair).

In Figure 4.2, the model training data were used for predicting CPD repair levels in
the whole- and compartmentalized genome for HeLa cells. The RPKM distributions
of each histone modification at the whole genome and four genomic segments (bins),
where there is high or low damage repair, were exhibited by split violin plots (Fig.
4.2). At the whole genome (first panel), we found out that the histone markers

20



were localized throughout the genome nearly independent from the heterogeneous
activity of G-NER. Even though most markers did not show an evident enrichment at
high/low damage repair regions, there were also small but undeniable histone marker
enrichments at these sites too such as H3K79me3, H3K27ac, H3K9ac, H3K4me3,
H3K4me3_1 (Fig. 4.2).

Figure 4.2 The illustration of model training set histone marker’s RPKM distribu-
tions’ in split violin plots.

RPKMs plotted on both the whole genome and four genomic segments where there
is high or low CPD damage repair. The first panel (All) indicates all RPKM dis-
tributions of the corresponding histone modifications. The second panel (U_TSS)
indicates the 5kb upstream of the transcription start site. The third is the 5kb
downstream of the transcription start site. The fourth and fifth are 5kb upstream of
the transcription end site and intergenes, sequentially. The positioning of the genes
at sense and antisense strands were considered during data extraction and calcula-
tion. The green histograms represent low repair at given genomic regions and the
red histograms declare the high repair at given genomic regions.

However, at U_TSS and D_TSS, some markers showed evidently higher RPKM
distributions in regions where there are high repair rates. For example, H3K9ac,
H3K79me2, H3K4me2, H3K27ac, H3K4me1 and H3K4me3 were enriched in 5kb
U_TSS regions where global NER efficiency is high (Fig. 4.2). A similar trend was
also observed in D_TSS which represents the part of a gene body. This observation
is consistent with previous published data which show the listed histone markers are
known to be enriched either at enhancer and/or promoter regions and involved in
transcription initiation or elongation events (45, 59, 62, 63).
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Conversely, at U_TES and intergenic regions, the distributions of histone modifica-
tion RPKM values did not exhibit large differences between the regions where repair
is high or low. The pattern of histone marker enrichments at U_TES and intergenic
regions was similar with their enrichment at the whole genome (first panel). On
the other hand, the 5kb vicinity of TSS, where repair sites are hotspots, depicted
higher RPKMs. (Fig. 4.2). Most histone markers were genomic segment depen-
dently increased or decreased at the repair sites but, still, some histone markers,
such as H3K36me3, H3K27me3, and H3K79me2, were found at the genomic regions
with relatively similar degrees (see Fig. A1. 1-4). However, findings show that his-
tone marker enrichments may also depend on damage type and the repair pathway.
For instance, H3K9me3 and H3K27me3s had higher RPKM values at regions where
there are low repair levels (Fig. 4.2). Besides, the same experiment conducted with
other damage types exhibited slight differences for some histone markers found at
the same genomic segments (see Fig. A1. 1).

4.1.2 Histone modifications can be used to predict genome wide repair

levels across cell-line, damage types and repair pathways

We trained our model using all histone modifications to predict genome-wide repair
levels across 3 different cell types: Hela, GM12878 and NHF1. See Figure. A1. 5 for
the repair prediction scores of histone markers on GM12878 and NHF1. GM12878
cell had been subjected to cisplatin damage and had both TC-NER and G-NER
for repairing inflicted damage. Similar to the GM12878, NHF1 had the same NER
machineries but it was exposed to the same damage source with the HeLa. For brief
information about cell lines and their features please visit Table 4.1. For the Hela
cell-line, repair was measured within 12 minutes after the UV exposure, during this
time frame only the global NER pathway is known to be active. Therefore, the
HeLa cell line provides an environment, which lacks the repair effects of TC-NER,
to monitor the efficiency of G-NER alone. In the data, cisplatin damage had two
biological replicates but in UV damage bulky adducts CPD and [6-4]PP alone had
two biological replicates hence, there were four replicates in HeLa and four replicates
in NHF1. Therefore, it is possible to see the same damage repair more than one
time in the analysis. For instance, two biological replicates of the UV damage repair
appear as [6-4]PP replicate A and [6-4]PP replicate B in Figure 4.3.

Here, we would like to show that histone modifications can be used to accurately
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Table 4.1 The cell lines and their corresponding damage sources and lesions, and
repair pathways involved

Cell Type Damage Type Repair Pathway Involved
HeLa UV (CPD, [6-4]PP) Global NER
NHF1 UV (CPD, [6-4]PP) Global + TC-NER
GM12878 Cisplatin Global + TC-NER

predict repair levels in HeLa cells (Fig. 4.3) as we as in other cell lines (see Fig.
A1. 5). In all three cell lines, there were good agreement between the AUC values
of damage repair biological replicates similar to the positive correlation observed in
the scatter plots between G-NER and histone modifications (see Fig. A1. 4, 34-93).
However, there were small differences in the repair prediction accuracies between
these cell lines. In HeLa cells, the NER prediction accuracies were slightly higher
than other two cells. This high UV damage repair prediction scores in HeLa cells
may be due to the high number of model inputs provided. In HeLa cell line, some
histone modifications were represented by more than one (different runs of same
ChIP-seq data) hence, providing more information to model may increase the repair
estimation.

Figure 4.3 The demonstration of model UV damage bulky adducts repair predictions
in HeLa cell.

The x-axis represents the correct repair estimations performed all along the genome
by the model and y-axis shows wrong repair predictions exhibited as correct by the
model. The vertical blue dotted lines indicate the AUC threshold (0.5) meaning
that it is not informative. The grey and yellowish colored curves are the plotted
recall values. The small box within the box shows the corresponding AUC score
(prediction accuracy) with respect to the damage type.
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Remarkably, the prediction accuracy was highest for the CPD damage repair in
Figure 4.3 (test AUC 0.95 in both Hela cells and NHF1 cells). For [6-4]PP, the
repair prediction accuracy was lower than that seen for CPD (Fig. 4.3). However,
repair pathways (global NER for HeLa and global + TCR NER for NHF1) did not
seem to affect the model prediction performance alone; cell line specific features
were likely to affect these model prediction scores at this time. The same is also
true for NER repair predictions in NHF1. Moreover, in the scatter plot analysis of
G-NER and histone markers CPD damage repair demonstrated more linear positive
trend with histone markers compared to other damage types (see Fig. A1. 34 - 63).
The difference between the accuracy of CPD and [6-4]PP could be explained by the
dissimilarities in CPD and [6-4]PP damage composition, their repair efficiency, and
the repair pathways that repair them.

Since there is only one damage type in GM12878, we only assessed the cisplatin
damage and its biological replicates’ repair performance. Finally, the cisplatin dam-
age repair level predictions (AUC = 0.92) in GM12878 cells were also high for both
replicates. Importantly, a distinct higher or lower repair accuracy was detected in
none of the cell lines. (Fig. 4.3).

Figure 4.4 The effect of all and individual histone modifications in HeLa cell line
repair.

The blue horizontal dots imply the model prediction accuracy for the repair, when
all histone modifications together. x-axis is AUC score (accuracy of model) and
y-axis is the histone modifications used as model input for prediction in the HeLa
cells. The bars represent the individual markers’ contribution to damage repair
prediction when they are used to predict alone. Green and grey boxes represent
the contribution of individual histone markers to the prediction of two biological
replicates of damage repair, replicate A and replicate B, respectively.
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Next, we trained decision stumps using individual histone modifications to establish
a baseline of classification performance. The impact of all histone modifications to
the overall model performance was also displayed in the graph using blue horizontal
dots. AUC scores of these decision stumps are shown in Figure 4.4 and Figure A1.
5. Not surprisingly, we observed that a model that integrates all features (dotted
horizontal line) outperforms better than models using single features. However, it
is interesting to note that the models using individual histone modifications are
also able to predict G-NER repair levels (Fig. 4.4). In Hela cells, decision stumps
individually using H3K9ac, H3K27ac, and H3K4me3_1 had AUC scores close to 0.8.
There was a discordance between the AUCs of some histone modifications such as
H3K4me3_1, H3K4me3_2, H3K4me3_3, H3K27me3, and H3K27me3_2. As stated
above, some histone markers were included more than one, such as H3K4me3_2 and
H3K4me3_3, in the same cell line (HeLa and GM12878). The reason was providing
more input to the model to enable it to interpret more reliable information. These
were supposedly the same histone markers but published by different lab groups
or different runs of the same experiment. The inconsistency of H3K4me3_2 and
H3K4me3_3 in HeLa or H3K4me3_1, H3K4me3_2 and H3K4me3_3 in GM12878
were likely due to the differences in the cell physiological states, such as cell cycles,
or lab protocols, which the experiments were performed accordingly, or the possible
experimental errors. Unlike model prediction results, HeLa cell preprocessed raw
data scatter plot analysis between the G-NER, and histone modifications exhibited
nearly similar positive correlations independent from the repetition of same histone
markers in the same cell line (see Fig. A1. 34 - 93). This is plausible because the
data content and quality between the preprocessed and training-testing may differ.

It is also interesting to note that despite the different cell types and histone marker
prediction values, the pattern of AUC prediction was overall similar for all cell types.
Almost the same set of histone markers were contributed to both damage type repair
in NHF1 and HeLa. The histone marker correlations with G-NER were also coherent
with the repair predictions in other two cell lines as well (Fig. A1. 5). For instance,
for both damage types, in HeLa cells, H3K9ac and H3K4me3_1 had higher pre-
diction accuracies while H3K9me3 and H3K27me3 had lower prediction accuracies
(Fig. 4.4). Similarly, in NHF1 cells, H4K20me1, H3K4me1, and H3K4me3 showed
high prediction accuracy while H3K9me3 and H3K27me3 showed low prediction ac-
curacies. As mentioned, there are different histone marker contribution rates and
genomic segment preference of them in the model prediction although the overall
contribution pattern of histone modifications to model repair predictions was same
(Fig. 4.2 and 4.4). It is well confirmed that different cell types may have different
patterns of histone modifications and this is part of what makes one cell type unique
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from another despite all cells from the same individual having the same genome. To
extend this, our results suggest that the pattern of cell-type specific histone mod-
ification contributions also manifests itself and, apparently, this cell-type specific
patterns of the histone modifications are predictive for repair efficiency levels (Fig.
4.4). These are also in line with our scatter plots findings between the G-NER
and each histone marker (see Fig. A1. 34 - 93). H4K20me1, H3K4me1, H3K4me3
and H3K4me2 exhibited relatively higher prediction accuracies at both bulky DNA
adducts repair in NHF1 cells (see Fig. A1. 5).

Finally, for cisplatin damage, the decision stumps (histone modifications), which
show high prediction accuracies, include H3K36me3_1, H3K79me3, H3K27ac,
H3K9ac and H3K36me3 in GM12878 cells (see Fig. A1. 5).

As we mentioned before, the RPKMs of each histone modification were binned into
quartiles (0,1,2,3). By doing this, we can quantify the levels of histone modifications
and train the model easily. For instance, if a given 5kb region in the genome has 0
value for H3K9ac then, we know that as compared to the genomic distribution of
H3K9ac, this region has a low level of H3K9ac. Similarly, a genomic region with a
3 for H3K9ac has high levels of this modification.

Decision stumps are based on a single cutoff of the level of a single histone modi-
fication. For instance, for H3K9ac, a possible decision stump might decide on the
repair levels by saying that a genomic region with H3K9ac value 0 or 1 is a low
repair region and H3K9ac value 2 or 3 is a high repair region.

The fact that some decision stumps, can make predictions for two bulky DNA
adducts (UV damage) repair levels up to AUC score 0.8, in case of H3K9ac,
H3K4me3, and H3K27ac, in HeLa cells. It is surprising and likely suggests a close
relationship between these histone modifications and G-NER in HeLa cells (Fig.
4.4). Slightly less (AUC score = 0.76) contribution of H3K9ac was also monitored
in GM12878 (see Fig. A1. 5). In all cases, technical replicates were in good agree-
ment. This suggests that the patterns that we found are likely to reflect the reality
(see Appendix A).
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4.1.3 Repair levels are predicted better for open chromatin regions com-

pared to closed chromatin regions

A)

B)

Figure 4.5 The demonstration of model repair predictions at different chromatin
states in HeLa cells.

The x-axis represents the state of chromatins and y-axis shows AUC score. The
vertical blue dotted lines indicate the AUC threshold (0.5) meaning that it is not
informative. The grey and yellowish colored curves are the plotted recall values.
The small boxes within each box show the AUC score (prediction accuracy) of the
model with respect to the damage type which was repaired. A) is for model CPD
damage repair prediction at both chromatin states and B) is for the same analysis
but for [6-4]PP damage repair.

Next, we aimed to determine how chromatin accessibility affects the NER prediction
levels (Fig. 4.5 and Fig. A1. 6). To do so, we separated only the test data into
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open and closed chromatin regions. This is because separating training data as well
did not enable us to observe chromatin state differences on the genome as clearly as
applied at the test data (data not shown). The same model (trained irrespective of
chromatin state, see Methods, Fig. 4.1) was then used to predict the repair levels
on the regions designated as open and closed chromatin.

When comparing CPD and [6-4]PP damage repair in HeLa cells, the former had
higher prediction accuracy irrespective of the chromatin type (Fig. 4.5). This is
because of the dissimilarities in their chemical compositions and their strand specific
repair rate differences. This same pattern was also seen when comparing repair level
predictions which ignored the chromatin states (Fig. 4.2).

The scatter plot analysis also demonstrated a more linear positive trend for CPD
damage repair at both histone markers and chromatins (see Fig. A1. 17, 18, 64 -
93). In HeLa cells, for both CPD and [6-4]PP bulky adducts, the accuracy of G-NER
prediction efficiency was higher at open chromatin than at closed chromatin (Fig.
4.5). The same pattern of repair was also observed in GM12878 cell lines for the
cisplatin damage repair (see Fig. A1. 6). However, in case of NHF1 cells, in both
CPD and [6-4]PP damage types, the differences between the prediction accuracies at
open and closed chromatin were smaller (see Fig. A1. 6). This might be explained
by the cell physiological dissimilarities (genomic and cell cycle differences), possible
cellular abnormalities after damage exposure or data related dissimilarities between
the cell lines.

A)
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B)

Figure 4.6 The effect of all and individual histone modifications on the repair effi-
ciency in HeLa cell line with different damage and chromatin conditions.

The blue horizontal dots imply the prediction accuracy for repair when all histone
modifications together incorporated. x-axis is AUC score (accuracy of model) and
y-axis is the histone modifications used in HeLa cells as model input for prediction.
The bars represent individual markers’ contribution to damage repair prediction
when they are used to predict alone. Green and grey boxes represent the contribution
of individual histone markers to the prediction of two biological replicates of damage,
replicate A and replicate B, respectively. A) exhibits the model prediction at open
chromatin states, B) is for same analysis at closed chromatin states.

To understand which histone modifications are best to contribute to repair collec-
tively or alone, we used decision stumps to predict repair levels at open and closed
chromatin states separately. The results for HeLa cells are shown in Figure 4.6 and
those for NHF1 and GM12878 are in Figure A1. 7. Apparently in all cell lines, dam-
ages were repaired preferentially better at open chromatin states which is coherent
with the DNA damage repair and DNase hypersensitivity scatter plots (see Fig. A.
15 - 18). In all cases, irrespective of the chromatin type, cell type, damage type or
repair pathway, a model incorporating all histone modifications performed clearly
better at predicting repair levels than individual decision stumps as in Figure 4.4.

Comparison between open and closed chromatin regions for HeLa showed that the
prediction accuracy was higher for open chromatins compared to closed chromatins
for all decision stumps (Fig. 4.6). Moreover, comparisons between CPD and [6-
4]PP damage types showed that accuracies of individual decision stumps were again
higher for the former. This bulky DNA adduct repair pattern also holds for NHF1
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cells and the HeLa cell scatter plot analysis as well (see Appendix A). The same
result and explanation are valid for the CPD and [6-4]PP bulky DNA adducts repair
rate differences which were mentioned at Figure 4.3 and 4.5 as well.

The prediction accuracy across two damage types were the same for open chro-
matin regions. For instance, in HeLa, both bulky DNA adducts (UV damage)
repair predictions at open chromatins, H3K27ac and H3K4me2 had higher accura-
cies compared to their neighbors (Fig. 4.6). This suggests that, in each cell line,
same histone modifications are related to repair irrespective of the damage type
but, the chromatin states seem to affect that repair prediction. Thus, chromatin
states is another significant factor and it is both coherent with the previous results
and previously published studies. Coherent with the deduction, histone markers
differed between open and closed chromatin regions (Fig. 4.6 and Fig. A1. 7). For
instance, in the case of open chromatin, repair levels of CPD and [6-4]PP were best
predicted by decision stumps using H3K27ac and H3K4me1. However, for the case
of predicting repair levels for closed chromatin, the decision stump using H3K36me3
was the best predictor irrespective of the damage type (Fig. 4.6). In NHF1 cell
line, H3K36me3, H4K20me1, and H3K79me2 were predictive for the repair in both
chromatin states although they lost effect on repair at closed chromatin states (see
Figure A1. 7). This variety in the histone marker contributions to repair may also
imply the role of histone modifications functioning, which could depend on damage
type and chromatin states, within the cell.

According to the scatter plots between the individual histone markers and DNase hy-
persensitivity sites in HeLa cell line, almost all histone markers, except H3K9me3,
were at some degree positively correlated with the accessible chromatin regions.
However, in these plots, especially H3K27me3 and H3K27me3_1 exhibited remark-
ably fewer positive correlations than the rest of the histone modifications. On the
other hand, H3K36me3 and H3K36me3_1 were more positively correlated than
H3K27me3s but not as strongly correlated as the other histone markers (see Figure
A1. 19 - 33). The model repair prediction with H3K36me3 at the closed chromatin
states did not match with its scatter plots analysis (Fig. 4.6). Similarly, H3K27me3
was enriched at the open states but not at close states compared to the findings
from scatter plots. However, the reasons for the discordant findings between histone
markers and chromatin accessibility can be due to the cell line specific distribution
patterns of H3K27me3 and H3K36me3 (63) and impacts of damage exposures on
the histone markers distributions. These possible reasons might also be valid for
explaining the unexpected findings between the H3K36me3 and NER correlation
analysis too (see Figure A1. 46 - 46, 60 - 61, 75 - 76, 90 - 91). Nevertheless, in gen-
eral, the scatter plots of histone modifications with the chromatin states or repair
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manifested compatibility with our raw data, data preprocessing and the knowledge
from the literature.

The highest open to closed chromatin differences were observed in GM12878 cell
lines (See Figure A1. 7). Cisplatin damage repair were best predicted by H3K27ac,
H3K36me3, H3K36me3_2, and H3K79me2 but they also lost their predictive
strength on repair at closed chromatin states (See Figure A1. 7). Therefore, there
is an obvious change at histone modifications for predicting the repair levels for
euchromatin and heterochromatin regions (Fig. 4.6). Repair levels can be predicted
better for the euchromatin regions (64). This is likely due to the dynamic differ-
ences at the heterochromatin sites and the reorganization differences at these sites
after the UV damage. The possible effect of histone markers on DNA repair is esti-
mated from their functions that might be associated with repair. However, histone
modifications are likely not to involve in DNA damage repair processes evidently.
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4.1.4 There are differences in the model’s repair predictions between the

four genomic regions

A)
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B)

Figure 4.7 The demonstration of model repair prediction at different genomic seg-
ments and chromatin states.

The y-axis represents the four genomic segments and x-axis is for indicating at which
circumstances the model function. The above 16 boxes are for model prediction for
CPD damage and the below 16 are for [6-4]PP repair. The vertical blue doted
lines indicate the AUC threshold (0.5) meaning that it is not informative. The grey
and yellowish colored curves are the plotted recall values. The small boxes within
each box show the AUC score (prediction accuracy) of the model for corresponding
damage type.

To understand whether the prediction repair levels differs or not depending on the
genomic regions, we generated datasets which contain samples from histone markers
and repair corresponding to genomic segments 5kb upstream of TSS, downstream
of TSS, upstream of TES and in intergenic regions, respectively, in Figure 4.7 (See
Methods and Fig. 4.1).

We found that in case of HeLa cells, for both CPD and [6-4]PP damage types,
genomic segments (U_TSS, D_TSS and U_TES) had higher prediction accuracies
for NER levels compared to the intergenic regions (Fig. 4.7). This is because
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intergenic regions were less informative for the model. Among the genomic regions,
D_TSS seems to have the highest prediction accuracy in both damage types. These
patterns hold across damage types (UV and Cisplatin) and cell lines (HeLa, NHF1,
GM12878) (See Figure A1. 8).

Apparently in all cell lines, damages were repaired better at open chromatin states
and more likely to repair CPD damage, which are coherent with the scatter plots
between DNA damage repair and DNase hypersensitivity sites as well as between
DNA damage repair and histone modifications, although the score differences were
not immense in Figure 4.7 (see Appendix A). In HeLa cells CPD repair, in case of
U_TES, the model predicted G-NER repair with higher accuracy at closed chro-
matin than open regions (Fig. 4.7). In general, similar repair predictions were
observed between the open and closed chromatin but still considerably dominant
accuracies were observed at the open chromatin states such as CPD damage repair
at D_TSS. However, observing a higher repair accuracy at closed chromatin regions
is exceptional (Fig. 4.7). This is likely to be a special instance for HeLa cells at
the U_TES regions or although our method had been checked, still this might be
originated from a methodological error.

In general, for these different genomic regions, it appears that predictions for open
chromatins were better than those for closed chromatins. In addition, differences
were also monitored between biological replicates of the damage repairs due to their
small sample sizes (Fig. 4.7 and Figure A1. 8).

A)
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B)

C)
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D)

Figure 4.8 The effect of all and individual histone modifications on model repair in
HeLa are illustrated

(see Figure A1. 9 for other cell lines). The blue horizontal dots imply the prediction
accuracy for repair when all histone modifications incorporated. x-axis is AUC score
(accuracy of model) and y-axis is the histone modifications used in HeLa as model
input for prediction. The bars represent individual markers contribution to damage
repair prediction. Green and grey boxes represent the contribution of individual
histone markers to the prediction of two biological replicates of the damage repair,
replicate A and replicate B, respectively. A) is for showing the effect of features on
repair at U_TSS. B) is for showing the effect of features on repair at D_TSS C) is
for showing the effect of features on repair at U_TES. D) is for showing the effect
of features on repair at intergenes.

The influence of histone modifications on the repair prediction was analyzed in-
dividually and collectively with respect to their enrichments on the four genomic
segments for HeLa cells in Figure 4.8. First, when all histone modifications were
incorporated as features for the model, the prediction accuracies were changing be-
tween the 9.1 - 9.9 for CPD and 8.8 – 9.2 for [6-4]PP repair depending on their
predictions at the genomic segments (Fig. 4.8). Therefore, histone modifications
evaluated together for the repair exhibit considerably preferable results than uti-
lizing them alone and, again, CPD predicted slightly better. These findings were
also encountered in the previous model predictions and scatter plot analysis results
too (see Appendix A). At U_TSS and D_TSS, the individual decision stumps had
higher AUCs compared to U_TES and intergenic regions. This is consistent with
the differences observed between the histones’ marker RPKM distributions at the
U_TSS and D_TSS compared to other genomic segments in Figure 4.2.
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Moreover, it is interesting to note that the pattern of decision stumps was different
across the genomic regions but nearly conserved for the damage types. For instance,
irrespective of the damage type, for U_TSS regions, H3K9ac, H3K27ac had high
AUC scores, while H3K9me3 and H3K36me3 had lower AUC scores (Fig. 4.8). The
patterns of high and low AUCs seem to be similar for U_TSS and D_TSS, but
different for U_TES and intergenic regions. This might be related to and reveal the
histone modifications primary enrichment region preferences on the genome and their
cellular functions. The scatter plot analysis and the previous literature (62) reported
that H3K36me3 enriches at the gene body and loses enrichments as moving towards
to TSS and TES (see Figure A1. 46 - 46, 60 - 61, 75 - 76, 90 - 91). Remarkably,
this enrichment trend is exactly the stated enrichment pattern of H3K36me3, which
can be seen in Fig. 4.8, but the chromatin accessibility incorporated results of
H3K36me3 were a bit of controversial in our research (Fig. 4.6 and 4.7).

Comparing individual histone markers’ repair prediction patterns to those seen for
the predictions at all genomic regions (Fig. 4.8), it seems that the patterns ob-
served for the whole genome are more than just being an average of every individual
marker’s effect on G-NER seen at each genomic segment. This is because gene anno-
tation was performed by applying series of filtering steps, in other words significant
amount of read information lost during these steps (see Methods). Moreover, some
modifications together appear to enhance the repair prediction levels at specific ge-
nomic segments (Fig. 4.4). Of course, this is related with predicting the repair on
more specified regions (genomic segments rather than whole genome) which enabled
more detailed monitoring of histone modifications effect on the repair.

In case of HeLa cells, decision stumps that exhibited high AUC scores across genomic
regions included H3K9ac, H3K27ac, and H3K4me3_1 (Fig. 4.8). Of these, H3K9ac
and H3K27ac were also shown to be one of the predictors most important for a
model that incorporated all histone modifications effect on the repair (Fig. 4.4
and Fig. 4.9). NHF1 and GM12878 exhibited intriguing similarities with the G-
NER efficiencies of HeLa cell. So that, same histone modifications contributed the
prediction of NER at same genomic segments as in HeLa except; H3K9me3 and
H3K27me3 were better predictors at D_TSS, and H3K27me3 were better predictor
at U_TES in GM12878. On the other hand, in NHF1, H3K9ac on intergenes worst
and H3K9me3 on U_TES were best effectors for the NER repair efficiency (see
Figure A1. 9).
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4.1.5 Feature importance using SHAP differs for repair types and cell

lines

So far, we have looked at the repair predictions levels across chromatin states and
genomic regions. In all cases, we have used decision trees for individual histone
modifications to estimate baseline prediction accuracies. In Figure 4.9, we took a
deeper look at models incorporating all histone modifications to find the ones that
are the most important for making decisions on repair levels. To do so, we used
SHAP values which will allow us to judge the model feature performance and in
other words, enhancer or suppressor impact of each histone markers on the repair.

Figure 4.9 Demonstration of individual histone modifications (feature) importance
for the model repair estimation performance.

All histone modifications were combined and introduced to develop the model.

An example SHAP plot depicting the prediction of CPD replicate A damage repair
level in HeLa cells for whole genome and all chromatin states is shown in Figure 4.9.
The features (histone modifications) were arranged in decreasing order of importance
in the model incorporating all features. In this case, H3K27ac ranks the highest in
importance of predicting repair levels. This evidently positive effect of H3K9ac on
CPD damage repair acquired from SHAP value analysis (Fig. 4.9) exhibits us the
direction of H3K27ac contribution at decision tree models in Figure 4.4 and 4.8.

Presence of H3K9me3 as the second most important feature was surprising, when we
are looking at decision stumps for individual histone modifications, because it did
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not exhibit strong prediction potential in different experimental setups (Fig. 4.2,
4.4, 4.6 and 4.8). It is also interesting to note that high values of H3K9me3 tend to
lead the model to predict that a given genomic bin has low repair. This might help
to explain why H3K9me3 is an important feature in combination with other histone
modifications despite having no prediction potential by itself. Except some histone
markers, the top four histone modifications did not differ in the repair prediction of
other UV-induced bulky adducts and their biological replicates (see Appendix A).

Figure 4.10 Three histone markers having the highest absolute SHAP values were
selected for each genomic segment in every cell line.

Columns represent histone markers specific to the given cell line and rows represent
genomic segments observed for each damage repair (UV and cisplatin) biological
replicates. First two rows of every cell line are for observing contributions of in-
dividual markers to model estimations on whole genome. The color-coded boxes
represent high absolute SHAP value. The light colors indicate their high signifi-
cance for the prediction. Conversely, darker colors are vice a versa.

To understand whether the patterns of feature importance in predicting repair levels
change across the cell lines, damage types, chromatin type, genomic regions, and the
replicates, we calculated the absolute SHAP values for all models and highlighted top
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3 most important histone modifications with a color code for each genomic segment
(Fig. 4.10). Since representation of genomic segments and the method of showing
SHAP scores of histone markers were not specific to reveal their relationship with
the NER, only the model features’ performances were assessed across conditions. A
square corresponding to a given histone modification and a genomic region is light
colored if it is among the top 3 most important features (highest absolute SHAP
values). If a histone modification is not among the top 3 most important features
for a given model, it is assigned a black color. The color spectrum between the
white (highest) and brownish (lowest) colors inside the colored boxes reveals the
magnitude of absolute SHAP values. Importantly, the absolute SHAP values do not
provide information whether these three modifications are positively and negatively
collaborated with the repair (Fig. 4.10).

It seems that patterns of histone modifications importance on model are defined
by damage types and cell lines. For instance, in case of HeLa cells, CPD damage
repair in H3K9ac, H3K9me3 and H3K4me1 seemed to be the most conserved and
important histone markers across genomic regions. However, in the same cell type,
for [6-4]PP damage, H3K9ac and H3K4me3_1 were mostly found across all genomic
regions. For Cisplatin damage, H3K79me2 appeared to be conserved across genomic
regions. Furthermore, no histone modification was common in three cell lines and
damage types excluding H3K4me3 (almost conserved).

In case of NHF1 cells, CPD and [6-4]PP damage repairs showed different feature
importance patterns (Fig. 4.10). However, it is important to bear in mind that
the repair pathways in NHF1 and GM12878 were different from the HeLa cells.
Moreover, it seems that despite the better prediction performance on open chromatin
regions as compared to closed chromatin regions, the underlying features, which are
important for making the prediction, remained almost unchanged within the damage
types (Fig. 4.10). This is true across cell lines, damage types, and genomic regions.

Finally, there were differences between the marker patterns across genomic regions.
For instance, at CPD damage repair in HeLa cells, H3K9me3 was not among the
top 3 most important features for making repair predictions at U_TSS and D_TSS.
Instead, H3K4me3_1 was the feature importance for making predictions at these
regions. Similar differences were also presented in GM12878 and NHFl. Although
there is no common histone marker found across all cell lines’ same genomic segments
or damage types; cell type and damage type specific conservations can be mentioned
(Fig. 4.10).
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5. DISCUSSION and CONCLUSION

The role of histone markers in DNA excision repair was researched before in 2016
on yeast cells (40). In this research, we have developed a ML model and used it as
a tool to show another NER pathways associated factor which is histone markers.
Moreover, we have studied G-NER, which is overshadowed by TC-NER inside the
cell, alone and together with the TC-NER for exploring the effect of histone modifi-
cations on G-NER’s efficiency. To perform these, various types of histone modifica-
tions were individually or collectively given to the ML model and that model used
to estimate the NER damage repair regions all along the genome. Thus, it became
possible to assess the predictive strength of each histone modification as well. If
histone markers can be used to predict the presence or absence of repair positions
correctly on the genome, that would unveil their interactions with the NER and
prove that histone markers can be another effector for the NER machinery. Our
ML model functions by assessing the relationship between genome-wide repair (XR-
seq), damage (damage-seq), posttranslational histone modifications (chip-seq), and
the (DNase-seq) chromatin accessibility (Fig. 4.1). During this process, many algo-
rithms had been evaluated for algorithm selection and then, the chosen algorithm
was tested with different inputs and parameters for the model development and op-
timization. Different filtering and normalization techniques were also tested on the
preprocessed data for providing better model inputs and having more biologically
meaningful findings (data not shown). After that ML model was utilized with four
different types of omics data which had been previously preprocessed. To assess the
model performance, we have conducted the time course analysis of [6-4]PP repair in
NHF1 cells by training and testing the model with initial time (1hr) and late time
points (4hr) (see Figure A1. 14). Moreover, to assess further, we ran our model
with three different cell lines which have either different NER machinery or damage
source (Table 4.1). We have explored histone modifications possible functions on the
NER efficiency and found that some histone markers are potentially crucial for the
damage repair. In the following paragraphs, novelty and limitations of the research,
project findings, pros-cons of machine learning (ML), and conclusion will be spoken,
sequentially.
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Although computational approaches have been used in our field since the begin-
ning of the advancement of NGS technologies, to the best of our knowledge, no ML
model was cooperated with the NGS data for exploring the interactions between
histone markers and the NER. Another novelty of this research is showing G-NER’s
efficiency alone on damage repair using a ML algorithm. We have succeeded to
acquire high NER prediction accuracies using histone modifications but ML model
development, understanding its findings, data quality, and experimental errors were
our project limitations. The data were retrieved from publicly available databases
and hence, the variation in the data quality, experimental procedure, experimental
errors, and data processing requirements were the factors affecting our model re-
liability. These obstacles were eliminated as much as possible during this project
by data preprocessing, filtering, and normalization steps but data related impacts
on our results could not be completely avoided. Moreover, some histone markers
can be seen more than one time in the analyses for the same cell line (GM12878
and HeLa). Their divergent effect on the analysis can be seen especially at Figure
4.6, 4.8 and 4.10. These modifications (e.g. H3K27me3, H3K36me3, or H3K4me3)
were from the different ChIP-seq data which had been uploaded to the databases
by various research labs. These ChIP-seq data were acquired either from different
research labs or same research labs’ different experimental runs. Therefore, the main
reason of inconsistency in the findings between the same histone markers is the data
dissimilarities and the errors during data generation. Similarly, in some cases, the
two biological replicates of the same damage repair exhibited different prediction
accuracies. They did not exhibit different accuracy results in Figure 4.3 and 4.5 but
in Figure 4.7, the differences between the replicates increased in the repair predic-
tion at U_TES and D_TSS genomic segments. This unstable repair accuracies can
be both related with the increased specificity in the analysis and data differences
between the replicates of same damage and repair data. As data were utilized at
more specific analysis conditions, the chances of having analysis errors and seeing
the impact of data quality on the model increase.

Three different scatter plot analysis were made by using the preprocessed raw data
to demonstrate the correlations between the histone modifications-G-NER machin-
ery, DNase I hypersensitivity sites-G-NER machinery, and DNase I hypersensitivity
sites-histone modifications in HeLa cells (see Appendix A). The ML model repair
prediction analysis and DNA damage repair-histone marker scatter plots revealed
a positive tendency in the CPD damage repair. This high CPD repair accuracies
and more positive correlations of histone markers with the CPD damage repair is a
known phenomenon. Although the exact reasons were not unveiled yet, the effective
repair rate of [6-4]PP and its particular localization at nucleosomal regions were
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most probably the causes (34). The swift repair of [6-4]PP by both NER pathways
cause less reads to be acquired during NGS because some portion of the [6-4]PP
damage have already been repaired until the DNA sequencing.

In addition, all histone modifications, which are anticipated to be positively corre-
lated, had linear positive sample distributions with the UV damage repair correla-
tions except H3K36me3 (see Figure A1. 45 - 46, 60 - 61, 75 - 76, 90 - 91). H3K36me3
showed less positive correlation with the G-NER. H3K27me3 were also exhibited low
positive correlation but it was expected to do so (59, 63). Considering the cell type
specific differences and condition of the genome after DNA damage treatment could
lead H3K27me3 and H3K36me3 to undergo genome-wide re-distribution (62, 63).
Furthermore, the repair predictions and scatter plot analysis of H3K36me3s and
H3K27me3_2 with chromatins were inconsistent. H3K36me3 contributed repair
with low accuracy at both chromatin states whereas H3K27me3 contributed repair
more at open regions with low accuracy. The AUC plots do not reveal the positive
or negative contribution strength of model features in model prediction. Similarly,
the effect of the presence or absence of a feature in the model prediction cannot
be known in these graphs too. Therefore, it is not possible to interpret informa-
tion about H3K36me3 and H3K27me3’s role in the model prediction. Maybe the
absence of H3K27me3 might be the reason for H3K27me3 to have more prediction
accuracy on open chromatins. Similar explanation can be made about H3K36me3
as well. The presence of H3K36me3 at open chromatins may be less important for
model but the absence of it (as a lone feature) on closed chromatins may contribute
to model much more. On the other hand, scatter plots only depicted the RPKM
values distribution trends on the plots but since ChIP-seq and DNase-seq data were
carried out in healthy cells as opposed to XR-seq and damage-seq, the sequencing
conditions of damage repair and epigenetics factors were dissimilar. This is be-
cause these results do not show the direct impact and real environmental instant
of histone markers and chromatins on damage repair process. That is the reasons
why inconsistent results were observed between the scatter plots and model repair
predictions. Beside scatter plot analysis, the genome-wide model NER prediction
analysis also revealed evidently important histone markers which we considered as
potential epigenetic modifications for the NER machinery (see Results). H3K9me3,
H3K4me3, H3K27ac, H3K36me3, H3K27me3, and the H3K79me2 were featured at
almost all analysis. Except H3K9me3 and H3K27me3, other four are known with
their enrichments at the active promoters, enhancers, or gene bodies. The H3K9me3
and H3K27me3 are signs for inactive genes and heterochromatin regions (59). Their
positive or negative effects on the model repair predictions attracted our attention
and their effects on repair were in line with their role in the other genomic events
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as well. Thus, we believe that they are considerable epigenetic modifications.

The previously mentioned machine learning related limitations and the data quality
divergences led the detection of some unexpected findings. Considering the previ-
ously published literature information of histone modifications, some of their behav-
iors in the model predictions were not anticipated. They exhibited damage, cell type,
and chromatin state dependent effects on the repair predictions. Thus, it is revealed
that the role of chromatins is not only on NER but also on histone markers as well.
Also, some modifications enriched almost at all four genomic segments (U_TSS,
D_TSS, U_TES, and intergenes) as opposed to their known genomic enrichment
patterns. H3K4me3_1 and H3K9ac were enriched at all three gene segments and
intergenes in HeLa cell (Fig. 4.8). However, they are known to be localized at
the transcriptionally active promoters (59). We assumed that transcription, gene
expression and DNA repair should have similar necessities to occur such as chro-
matin accessibility and protein availability (64). Therefore, we expected H3K9ac
and H3K4me3 to enrich more at U_TSS and decreasing its enrichment gradually
as moving through other genomic segments. Similarly, the unexpected chromatin
state dependent distributions of H3K36me3 and H4K20me1, were observed in scatter
plot correlation analysis (see Appendix). H3K36me3 was mostly enriched at D_TSS
open chromatins and lost its enrichments at other genomic segments in HeLa (Fig.
4.8). Like H3K36me3, H4K20me1 contributed to model mostly at D_TSS and lost
its enrichment at other genomic segments as well (Fig. 4.6 and 4.8). The corre-
lation plots between H3K36me3, H4K20me1 and DNase hypersensitivity exhibited
less positively increasing linear trends compared to H3K79me2 and H3K4me3 which
had similar functions with H3K36me3 and H34K20me1 (see Figure A1. 22 - 24, 30
- 32). These noncoherent prediction and correlation analysis differences between
the two histone markers and DNase hypersensitivity sites may be because of the
ChIP-seq data coverage differences, less data processing on the raw data before the
model training or UV damage related histone marker redistributions. Most of the
histone markers were utilized on the model prediction collectively and individually.
Interestingly, H3K9me3 and H4K20me1 contributed to model prediction in different
ways. The participation of H4K20me1 to model as a lone feature increased its fea-
ture importance on the repair prediction but its incorporation to prediction with the
other histone markers decreased its effect. The complete contrary role of H3K9me3
on the model were observed in results (Fig. 4.4, 4.6 and 4.8). Therefore, this may
indicate that their possible role in the damage repair process depends on the absence
or presence of other histone markers in the same genomic environment.

Each AUC plot shows recall and accuracy values of NER damage predictions in three
cell lines (Fig. 4.3, 4.5, and 4.7) and their corresponding bar graphs and horizontal
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blue dots are the qualitative representation of the effects of each decision stumps
and all histone markers for the model repair predictions (Fig. 4.4, 4.6, and 4.8). The
success of having high prediction accuracies from our model increased reliability of
the NER repair predictions and our claims. Also, our specially selected cell lines,
analysis, and developed XGBoost model enabled us to reveal relatively high G-NER
efficiency independent from the effect of TC-NER. The analysis exhibited not only
the effect of chromatins on G-NER damage repair but also the effect of chromatins
on the histone modifications (Fig. 4.5, 4.6, and 4.7). All histone modifications con-
tributed to model prediction dependent from the chromatin accessibility but some
of them were also revealed damage type and cell type dependent effects on NER effi-
ciencies (Fig. 4.4, 4.6, and 4.10). H3K9me3, H3K9ac, and H3K4me3 were important
factors for UV damage repair predictions in HeLa. On the other hand, H4K20me1,
H3K27me3, H3K4me1, and H3K4me3 were important factors in NHF1. Thus, some
histone markers contributed to model cell type dependently. Similarly, H3K9me3,
H3K36me3, H3K79me2, H2AFZ, and H3K4me3 were crucial markers for predicting
cisplatin damage repair (Fig. 4.10). Irrelevant from their localization at the four
genomics segments, H3K4me1 and H3K27ac seemed to be common histone markers
for CPD repair whereas H3K4me3 contributed [6-4]PP damage repair predictions.
Moreover, some histone markers were nearly equally involved in both UV damage
adducts repair predictions, and they are: H3K4me3, H3K4me1 and H3K27ac (Fig.
4.10). Therefore, there is also damage-type specific model contributions.

Damage types may have different repair rates due to their dissimilar chemical compo-
sitions and genome-wide distributions hence, NER machineries cannot repair these
damages with equal effort and time such as repair of CPD and [6-4]PP. There-
fore, having damage type specific model contributions of histone markers may me-
diate NER mechanism in reality to recognize lesions and help the repair process.
H3K9me3, H3K4me3 and H3K27ac were frequently seen in many model predictions
analyses so they are probably remarkable factors for the NER process. H3K4me3,
which affected the NER repair irrespective from cell type, was the only marker con-
tributed to model in every condition (Fig. 4.10). Even though, in this research, most
histone marker enrichment patterns on the gene regions were mostly in line with lit-
erature, there were also dissimilar enrichment patterns of some histone markers too
(Fig. 4.8). The all NER associated damage and cell line specific histone markers
were positioned at active gene regions except H3K9me3 and H3K27me3. H3K9me3
and H3K27me3 are repressors for the euchromatin structure (59, 62). Conversely,
H3K36me3, and H3K79me2 enrich at gene body (59, 62). Unlike the expected en-
richments of H3K36me3 and H3K79me2, they were found mainly at active enhancer
and promoter regions of the genes (Fig. 4.8). As stated above, the experimental
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result and literature differentiation can be associated with the consequence of un-
able to including UV treated ChIP-seq data to the research due to insufficient data
availability. Considering published gene enrichment patterns of histone markers,
their known functions, and the enrichment of two histone markers at the gene reg-
ulatory and start sites, we are still considering as having a potential for the repair.
Furthermore, H3K9me3’s contributions to model G-NER’s prediction at four gene
segments was not predictive (Fig. 4.8) and its enrichment in given 5kb windows
were, in fact, decreasing the chances of having repair at that genomic regions (Fig.
4.9). This is because H3K9me3 is a gene inactivation associated marker within
the cell (59) hence, we expect it to function as a suppressor for the damage repair
as well. The above listed histone markers’ contributions, which are cell, damage
type, and chromatin accessibility dependent, on the G-NER are also significant to
demonstrate its efficiency irrespective from the TC-NER. Although these findings
were acquired with relatively good prediction accuracies, more analysis needed for
unveiling exact molecular interaction between every histone modification and NER
pathways. However, it is also important to bear in mind that, there is no literature
information that rejects the findings of our model (45, 59, 62, 63, 65).

The time course analysis on the model was performed to assess the performance
and see the versatility of our model (see Figure A1. 14). Not surprisingly model
gave best outputs (AUC = 0.91) for [6-4]PP repair predictions when it was trained
with early time point and tested for early time (1hr) points again. This was a
consistent output considering the machine learning algorithm’s operation principle.
Most interestingly, model which was trained with early time point but tested at late
time point (4hr), exhibited relatively good performance (AUC = 0.78). These AUC
scores exhibit that even in least favorable conditions model can evaluate true and
false positives with relatively high accuracy.

We hope that our model can be one of the pioneers in this field to show researchers
the benefits and importance of artificial intelligence applications for detecting and
analyzing the cellular events . Although we are proud of our model and findings,
utilizing ML algorithms have their own difficulties and benefits. One of the major
toughness of using ML is it requires expertise of true algorithm selection for the
analysis if an algorithm is not written from scratch for that specific research pur-
pose. Understanding and interpreting the model outputs require a bit computer
and algorithmic knowledge. To develop a model, sufficient input (data) should be
provided for avoiding model from over- or under-fitting problems. Also, ML is sus-
ceptible to error and trustworthy results require assessment of model with different
combinations of inputs and statistical analysis of model inputs. On the other hand,
the major strengths of using ML are less time and effort needed to find interesting
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patterns and results. Secondly, making mistake does not cost as much as errors done
in the wet-lab and they are easily reversible. In addition, using machine learning
does not require users to be in one place physically and it is accessible for running
and editing at anytime and anywhere.

In conclusion, the good accuracies of our model during the tests allowed us to exhibit
another effector of NER pathways, histone markers, and the efficiency of G-NER in
bulky adducts repair. Thus, it is likely that the epigenetic determinants of G-NER
bias are also key for the mutagenesis in cancer. We also achieved to demonstrate
similar relationship, which had been observed between chromatins and NER pre-
viously, between histone markers and NER (47, 55, 64, 66, 67, 68). Beside their
relationship with repair, H3K9me3, H3K4me3, H3K27ac, H3K36me3, H3K27me3,
and H3K79me2 still need further detailed investigation for exploring their exact role
in the NER repair (40). Moreover, a research designed to discover the relationship
between chromatins, NER, and histone markers would provide better scientific proof
to confirm their crosstalk as well even though chromatins and histone modifications
were previously shown to be DNA repair related factors (69).
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