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Abstract 

In this paper, we created a classification for major sources of uncertainty in projects and 

categorized the studies in project scheduling literature with respect to the uncertainty 

source(s) they address. In addition, we investigated the approaches and methods to manage 

uncertainty, and studied the literature regarding these methods. Project management 

predominantly models the randomness in duration of activities; however, studies modeling 

the uncertainty due to other sources are scarce. We focused on these sources of uncertainty 

and highlighted the promising areas of research. The results presented in this paper will help 

researchers to identify the research gaps in modeling project uncertainty.  
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1. INTRODUCTION 

With the change in the business paradigm over recent decades, projects have become another 

major way of doing work in today’s organizations alongside other processes. During the 

recent phase of industrial organization, constant change has become the fundamental rule of 

the game, and implementing change is usually organized through projects (Pich et al., 2002). 

Recently we have also observed an increase in the number of organizations that structure 

themselves as project organizations, such as in engineering, managerial and financial 

services companies and in technology firms. In any type and size of organization, it has 

become common practice to organize tasks as projects. This may be considered as a result of 

contemporary management practices, which have changed from a hierarchical and 

centralized nature to a more flat and decentralized one. Another factor that has affected 

private enterprises is the increasing competitive pressure that forces them to seek excellence 

in accomplishing the tasks. In this regard, organizing the tasks as projects serves to facilitate 

control, coordination and communication (Meredith and Mantel, 2005). Due to all these 

developments and advantages, organizations have become more project-driven and project 

management practices have become more critical.  
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All projects are subject to various uncertainties. During the execution phase, various 

problems such as inaccurate time estimates, procurement delays, authorization delays and 

disruptions, such as machine failures, may be encountered and they may make it more 

difficult to achieve the targets. All these examples represent circumstances where the 

decision makers, mostly the project managers, have “only partial information about the 

situation or outcomes” (Meredith and Mantel, 2005). This lack of complete information is an 

inevitable part of managerial decision making, and methods to handle uncertainty need to be 

developed. In their survey of 60 years of project management research, Padalkar and 

Gobinath (2016) concluded that empirical and deterministic perspectives dominate research, 

whereas research on non-deterministic methods remains weak and sporadic.  

 

Uncertainty in projects is classified in published literature mostly either by the source or the 

impact (Pich et al. 2002). Miller and Lessard (2001) roughly divided the types of 

uncertainties that arise in project management into three categories: market-related, such as 

demand, competition and the supply chain; completion related, such as technical, 

construction and operational; and institutional, such as regulatory, cultural and extra-

national. Focusing on the sources, Leifer et al. (2001) list four main groups: technical, 

market, organizational and resource uncertainties. Ward and Chapman (2003), on the other 

hand, name five: variability associated with estimates, uncertainty about the basis of the 

estimates, design and logistics, objectives and priorities, and fundamental relationships 

between project stakeholders. They suggest a move from project risk management towards 

project uncertainty management and emphasize the need to understand the origins of 

uncertainty before attempting to manage it. Atkinson et al. (2006) underlined that a 

necessary condition for effective project management is the management of uncertainty. 

They highlighted the association of the sources of uncertainty with the estimation, project 

participants, and stages of the project lifecycle.  

 

Pich et al. (2002) emphasized managerial approaches and listed four types of uncertainty in 

projects: variation, foreseen uncertainty, unforeseen uncertainty and chaos. In their thinking, 

variation refers to the random deviations that have small impacts. One commonly encounters 

such random deviations in every project. Chaos, on the other hand, happens rarely but 

creates great impact on project targets. Each type requires a different planning and control 

approach. In this regard, Huchzermeier and Loch (2001) underlined the value of managerial 

flexibility, specifically in managing R&D projects. They interchangeably used the terms 

uncertainty and variability, and focused on five types of variability: variability in market 

payoffs, budgets, product performance, market requirements and schedules. They modeled 
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the relationship between these uncertainty types and the economic value of managerial 

flexibility, such as expanding or abandoning the project, using real options theory. 

 

Concerning the impacts on project goals, Zhu et al. (2005) divided project uncertainty into 

two main groups: small deviations and disruptions. Deviations are commonly encountered as 

a result of random variations, particularly in the duration of activities. On the other hand, 

disruptions are rare, unexpected events, such as the occurrence of natural disasters or the 

unexpected departure of key team members. They are much more difficult to manage. The 

authors classified these disruptions according to their effect on the project structure:  

• Project network disruptions: New activities or precedence relations may be added or 

deleted in the network. 

• Activity disruptions: Activity times or resource demands of the activities may change. 

• Resource disruptions: Resource availability may change. 

 
We note that there are review papers on project management about uncertainty. Herroelen 

and Leus (2004) investigated the work on robust (proactive) and reactive project scheduling. 

In their further work, Herroelen and Leus (2005) grouped together and reviewed approaches 

for scheduling under conditions of uncertainty. They investigated these approaches under 

five headings: reactive scheduling, stochastic project scheduling, fuzzy project scheduling, 

robust scheduling and sensitivity analysis. Atkinson et al. (2006) focused on sources of 

uncertainty based on the results of a two-year study. They concluded that common practice 

in project management tends not to address many fundamental sources of uncertainty. This is 

particularly true in the conception and post-delivery stages of the project lifecycle or in 

“soft” projects where flexibility and tolerance of vagueness are necessary, and which 

emphasize the need for more sophisticated efforts to recognize and manage important 

sources of residual uncertainty. Recently, Vale and Carvalho (2017) presented a review that 

addressed risk and uncertainty in project management, especially in the context of innovation 

management. Hazir (2015) and later Pellerin and Perrier (2018) reviewed project monitoring 

and control studies. Ortiz-Pimiento and Diaz-Serna (2018) focused on uncertainty in activity 

durations within different problem settings, and on scheduling algorithms.  

 

Different from the review papers above, we investigated both the sources of uncertainty 

addressed, their classification together with their impact of uncertainty on project goals, and 

the management approaches adopted in published literature for mitigating the impact of 

uncertainty. We focused on project scheduling similar to the reviews of Herroelen and Leus, 

but differently in that we examined the literature from the perspective of sources of 

uncertainty In addition, we integrated the papers published over the last 20 years. We believe 
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that it is valuable to explore the recent approaches and trends, and summarized the progress 

in academic knowledge in this area.  

 

We summarized the contributions of this review study as follows: First of all, the 

classification of the sources of uncertainty is comprehensive and detailed. The reviews on 

sources of uncertainty and managing approaches cover the recent studies and examine the 

current research directions. In this regard, the review will help researchers to identify the 

research gaps in developing project plans under uncertainty. The results summarized might 

serve as a useful base for investigating and modeling the characteristics of various sources of 

uncertainty and their impacts on achieving project targets. In addition, the discussions might 

work as a basis for developing decision support systems (DSSs) that aid project managers to 

plan in uncertain environments.  

 
The paper is organized as follows: section 2 reports on the sources of uncertainty in projects 

and provides a classification of these sources under two main categories: (i) internally 

generated and (ii) externally generated. Under each category, subcategories of sources of 

uncertainty are defined and papers investigating those subcategories are reviewed. The 

papers cited in section 2 are then listed in a table with the subcategory/subcategories of the 

sources of uncertainty indicated for each paper, thus associating each subcategory to the 

corresponding references. In section 3 we investigated five fundamental scheduling 

approaches to manage project uncertainty. These approaches are stochastic scheduling, fuzzy 

scheduling, sensitivity analysis, reactive scheduling and robust scheduling (Herroelen and 

Leus, 2005). Taxonomy of the papers based on these approaches is presented in a summary 

table. Section 3 concludes with a critical analysis of the approaches. A number of 

conclusions and research directions are provided in section 4.  

 

2. SOURCES OF UNCERTAINTY IN PROJECTS 

 
We first classified the uncertainty into two broad categories with respect to the way the 

project is organized: internally and externally generated. Then more specific subcategories 

are defined. Figure 1 summarizes our classification scheme. Internally generated 

uncertainties relate to systems and resources that can directly be associated with the project, 

and they can largely be controlled by the organization. However, many other uncertainties 

are caused by factors external to the project and hence, cannot be controlled by the 

organization. These are considered to be externally generated uncertainties.  
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We note that it is difficult to make a clear distinction between internal and external sources 

of uncertainty in many cases since the factors causing uncertainty often interact with, or 

trigger, each other. For example, changes in market conditions or economic parameters are 

externally generated. Project managers cannot control them but such changes can cause 

managers to reconsider project priorities, which are internally defined organizational factors. 

In addition, economic uncertainty can affect the budgets and resource availability. In the 

following section, subcategories are discussed in detail. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Project Uncertainty Sources and Their Classification 

 

2.1. Internally Generated Uncertainties 

These are the factors that are directly related to the project and are, to a large extent, 

controlled by the organization. We classified them as factors related to the organization, 

work content and resource availability.  

2.1.1. Organizational  

The objectives and priorities of the organizations, their structure, managerial approaches, 

responsibilities and management authority, communication channels and relations with 

stakeholders and other organizations are the factors that significantly affect the success of the 

projects. Considering the organizational factors, Petit (2012) investigated how uncertainty 

affects the project portfolios and develops a conceptual framework that includes the 

environment, strategy, organizational structure, constraints, corporate governance and 

project portfolio characteristics.  
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Ward and Chapman (2008) focused on the project stakeholders, whom they considered to be 

a major source of uncertainty, and make a detailed analysis on the uncertainties stemming 

from the stakeholders. They proposed a generic project uncertainty management framework 

to employ in order to analyze stakeholders and related uncertainty management issues. They 

concluded that for a systematic approach to stakeholder management, project uncertainty 

differing management processes would be needed in the stages of the project lifecycle.  

 

Petit and Hobbs (2010) reported an empirical study investigating the management of project 

portfolios in dynamic environments. Organizational factors might change during the 

execution of the projects. Following these changes, the contracting organization might also 

reassess its objectives and priorities regarding these projects. To give an example, a specific 

project might be re-prioritized, more resources could be allocated to the project, and the 

project manager might be asked to speed up the project delivery. Communicating this time-

based objective, and revising the project strategy and plans becomes an important task for 

the project manager.  

 

Jorgensen and Wallace (2000) dealt with the interaction of project cost estimation and 

managerial flexibility. In this context, they defined managerial flexibility as the ability or 

option to make changes as the project is running. They indicated that a static deterministic 

model leads on average to lower costs than the actual cost; whereas, a static, stochastic 

model results on average in higher costs than the cost of applying an optimal dynamic 

strategy. The project managers exercising managerial flexibility often update the schedules 

during the execution of the project by rerunning the static model to reduce the expected cost. 

Jorgensen and Wallace designated the expected cost reduction as the value of flexibility. 

They proposed a simulation-based algorithm for obtaining an estimate of the expected total 

cost. 

 

Dealing with multiple projects simultaneously can be a source of complexity in 

organizations. In multi-project organizations, the over commitment of resources and faulty 

scheduling decisions can result in unjustified resource deficiencies in other projects. This can 

lead to uncertainties in resource management (Engwall and Jerbrandt, 2003). 

The initial and critical step in project planning is defining the requirements and the work 

content, and then breaking the work content into manageable work packages. 
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2.1.2. Work Content (WC)  

From the operations management perspective, project management emphasis is given to 

defining the goals, mostly expressed as time or cost-based targets, creating the work 

breakdown structure (WBS) and scheduling the activities to attain these goals. Most of the 

scheduling studies either assume deterministic project parameters or only activity durations 

as random. In fact, the work content, which could broadly be defined as the effort required 

for completing all the project activities, is random (Tereso et al., 2004a; Elmaghraby, 2005). 

The required effort to perform an activity can broadly be calculated by multiplying the 

amount of resource use and the activity duration, and expressing it in units of man-hours or 

machine-hours. These two variables are dependent and activity time varies with the amount 

of resources allocated. As a result, activities can be performed in different modes where each 

corresponds to processing with different technologies or resource assignments, and hence 

with a different time and cost setting.  

 

The work content approach focused on the variability of the overall effort instead of 

analyzing the variables separately. The required effort was estimated and the activity 

durations were modeled as a consequence of resource allocations, not as a separate source of 

uncertainty (Tereso et al., 2004a; Elmaghraby, 2005). We reviewed both approaches, i.e., the 

studies that investigated the components of the work content individually as either resource 

use or activity duration, and jointly as the work content. 

 

Tereso et al. (2004a) associated randomness to the work content of each activity. The 

resources assigned to an activity can be subject to randomness or might be deterministic. 

Activity duration is determined by its work content and the resources allocated. They 

considered only one resource and took the resource allocation for each activity to be a 

deterministic decision variable defined within a specified interval. The total cost is the sum 

of the resource cost and the tardiness cost. The dynamic programming (DP) approach they 

proposed is applicable to any probability distribution of the work content of the activities. 

Because of the computational burden of the DP model, they proposed two approximation 

schemes. Tereso et al. (2004b) applied the electromagnetism approach (EMA) of Birbil and 

Fang (2003), and later, Tereso et al. (2007) suggested an evolutionary algorithm (EVA) 

approach for further computational improvement. An extension to multiple resources is 

provided by Tereso et al. (2008). They employed DP, EMA and EVA, where EVA turns out 

to be the most promising solution procedure. 

 

In many projects activity durations deviate from the estimates. Activities usually take more 

time or require more resources than planned due to inaccurate estimation of these variables, 



 8 

and/or unexpected events faced during execution. Sometimes rework might be required. In 

all these cases the amount of effort spent increases. In some other cases, it might be 

necessary to change the processing sequence of the activities, mainly due to the changes in 

technical requirements. Such changes require altering the project network and time planning. 

Considering all these cases, we classified the major factors that create uncertainty in the 

work content into four groups: the activity durations, resource use, requirement changes and 

quality problems. 

• Activity Durations: Inaccurate estimation is the major source of deviation in activity 

durations.  

• Resource Use: The quantity of resources to complete a particular activity might not 

be correctly predicted. 

• Requirement Changes:  Changes in organizational or customer requirements, or in 

technical processes, might lead to changes in the work content. As a result, the 

project network might need to be modified. Also, new activities or precedence 

relations might be added into, or deleted from, the project network. Deadlines might 

also change. 

• Quality Problems: Rework might be needed due to quality problems, in which case 

there may be delays. 

 

Lack of clear specifications, expertise or in-depth analysis and the complexity of the 

estimation process are the principal sources of inaccurate estimates, both in activity durations 

and in use of resources (Ward and Chapman, 2003). In addition to estimation problems, 

project managers often face quality problems. On the other hand, changes in customer 

requirements usually result in scope deviations and a need for re-planning. All these cases 

mean redefining the project parameters: the activity durations, resource requirements, quality 

requirements, precedence relations and the project network. Next, we summarized the 

studies that focused on the uncertainty in these parameters. We will investigate the studies 

that address the randomness in activity durations in section 3.3 on stochastic project 

scheduling. In this section, we focused on the remaining three types of uncertainty. 

 

When deviations from the baseline plan are observed and are judged to threaten the 

completion of these activities on time, project managers usually allocate extra resources such 

as additional workers or extra machinery to these activities. This creates fluctuations in the 

amount of resources allocated to each activity and variability in total resource usage. Nozick 

et al. (2004) considered this variability. They considered that the mean and/or the variance of 

durations might decrease with resource allocations and proposed a nonlinear mixed integer 

program to schedule the projects to minimize the total resource investment. Note that 
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employing additional resources to reduce activity durations, namely project crashing, also 

results in cost uncertainty.  

 
Tavares et al. (1998) modeled the randomness in both the cost and duration of activities, and 

optimized the discounted cost of the project and the risk of not meeting the deadline. Hazir et 

al. (2011) addressed the trade-off in time and cost, and formulated optimization models in 

which interval uncertainty is assumed for the unknown cost parameters. Likewise Gutjahr 

(2015) addressed multi-mode scheduling and modeled both duration and cost as random 

variables. Maravas and Pantouvakis (2012) modeled the uncertainty in cost and duration 

using fuzzy numbers. Considering the uncertainty in costs, as well in duration, due date and 

budget, Jeang (2015) investigated the impact of learning by using simulation and statistical 

analysis. Zhang and Elmaghraby (2014) dealt with the financial management of projects 

under uncertainty, where the duration and cost of activities are random variables and hence, 

the cumulative cost at each time point becomes a random variable. They approached the 

issues involved in relation to the Earned Value Method. Through scenario analysis, using 

Monte Carlo sampling and Gantt chart analysis, they developed an envelope around the 

cumulative cost at any point throughout the project duration. They employed multiple 

methods of expenditure in activities and two payment models:  (i) payments made according 

to a fixed time schedule, and (ii) payments made at milestone events. They concluded that 

the financial status over the project duration is not affected by the activities’ duration 

distribution or the choice of cost function, but is greatly affected by the payment schedule. 

 

In many projects, scope changes are commonly encountered. Williams et al. (1995) 

addressed design changes and examined the effects on project costs. These changes might 

require project networks to be redrawn. In this regard, Artigues and Roubellat (2000) 

proposed an algorithm to insert new activities into the project network with general 

precedence relations in a resource constrained problem setting with multiple modes and 

cumulative constraints. They minimized the effect of the insertion on maximum lateness. 

Artigues et al. (2003) present a polynomial insertion algorithm based on which they propose 

scheduling algorithms for the static resource-constrained project scheduling problem 

(RCPSP) and for rescheduling in a dynamic RCPSP setting with the objective of minimizing 

the resulting makespan. Özdamar and Alanya (2001) examined software development 

projects and considered uncertainty in both task durations and in network topology, 

specifically start-to-start precedence relationships among activities. These network changes 

are mainly caused by the common use of database and program modules, and design 

problems might result from changes in precedence relations. Recently, Vaagen et al. (2017) 

investigated the complexity in planning engineer-to-order projects due to design uncertainty, 
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which covered changes in specifications. Uncertainty in technical information also brings 

uncertainty in the project network. To manage this uncertainty, they proposed developing 

activities that are common in alternative designs, and postponing design-specific decisions. 

 

Bordley et al. (2019) focused on contract related uncertainties, specifically the deadline 

uncertainties, which are usually due to changes in requirements. Changes in the deadline 

might result from stakeholder requests or internal units. Failures in certain activities might 

cause inevitable delays. Deviation from the deadline might lead to penalties (tardiness cost) 

or bonuses. Regarding this, Estevez-Fernandes (2012) introduced a theoretical gaming 

approach to share the penalties as well as the rewards within projects. 

 

Even though the quality of the project deliverables is one of the three major performance 

criteria – together with project cost and duration – the majority of the studies do not 

explicitly address quality. This is indeed an unexpected observation considering that Tukel 

and Rom (2001) reported in their empirical study conducted in the USA, that quality, as the 

primary measure of success for project managers over all stages of a project and meeting 

customer needs, was their primary objective. Quality requirements affect the effort required 

or more broadly the work content. In this regard, Tukel and Rom (1997) developed mixed 

integer programming models to minimize the rework time and rework cost in an RCPSP 

setting. Rework is shown to have an impact on project completion time and project budget, 

particularly in projects with relatively higher complexity.  

 

Kim et al. (2012) defined individual activity quality as the conformance to a project 

contractor’s requirements. Non-conformance required rework or modification. They 

proposed a mixed integer linear programming (MILP) model to solve the time–cost tradeoff 

problem by considering the potential quality loss cost resulting from excessive crashing – 

besides the actual crashing cost. They did not assign a grade against nonconformance to an 

activity but assumed conformance and nonconformance as the only two states, which they 

claimed were of more practical relevance, since contractors do not usually accept quality 

degradation. Models considering quality levels, on the other hand, were proposed by Babu 

and Suresh (1996), and Tareghian and Taheri (2006, 2007).  

   

Tiwari et al. (2009) considered a multi-project environment where projects are separate and 

independent but require the same resource mix. Here the workforce is of heterogeneous skill 

levels that can perform work on more than one activity but at different skill/quality levels. 

This can lead to variations in the quality of the end products/services. Depending on the 

individual or the team assigned to perform a task, rework might be required afterwards by 



 11 

another individual or team with different skill levels. They formulated the problem as a 

multi-mode, resource-constrained project scheduling problem (MRCPSP) with the objective 

being the minimization of the makespan but with acceptable activity quality levels secured 

through rework. The model can be employed to demonstrate the bottlenecks for critical 

resource skills and the advantages of having a flexible workforce; hence the need for cross 

training.  

 

2.1.3. Resource Availability  

A major source of uncertainty in the availability of resources is caused by breakdowns. Even 

though breakdowns have been commonly studied in machine scheduling (Aytug et al., 

2005), studies addressing the uncertainty in availability of resources in project scheduling are 

scarce. Focusing on renewable resources, Lambrechts et al. (2008a, 2011) developed 

procedures to generate robust schedules, and Lambrechts et al. (2008b) integrated 

rescheduling procedures to recover after a disruption. Fu et al. (2015) aimed to predict the 

effect of resource breakdowns and repairs, and improving the robustness of resource 

allocations. In contrast, Deblaere et al. (2011a) focused on reactive scheduling to recover 

from disruptions in both non-renewable and renewable resources.  

 

Regarding the availability of resources, cash-flow planning is vital in projects. There are 

many studies that model cash flows and optimize financial objectives; mostly the net present 

value (NPV). The majority of them assume that the timing and amount of flows are known; 

however, there are only a few that address the inherent uncertainty. Boute et al. (2004) 

investigated the real options approach, which created the flexibility to adapt a response to 

newly available information. Wiesemann et al. (2010) maximized the expected NPV of a 

project by considering a discrete set of alternative scenarios, which corresponded to the 

realization of the uncertain variables: activity durations and cash flows. Sobel et al. (2009) 

formulated dynamic programming models based on the continuous-time Markov chain to 

schedule a project so as to maximize the expected NPV for a project setting where the client 

and the contractor are the same. They took into account uncertainty in activity durations, 

costs and revenues. 

 

Yang and Chang (2005) investigated the uncertainty in the supply of resources and funding 

in repetitive construction projects. Having defined the supply of resources and funding as 

random variables, they converted the associated stochastic constraints to their respective 

deterministic equivalents for solving the model with chance-constrained programming 

(CCP). The underlying assumption was that the availability of all the resources and funding 

was independent. They applied the model to a housing project comprising 100 units of 
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housing and verified the solution by Monte Carlo simulations. The deterministic solution 

obtained using the mean values for the variables resulted in an optimistic solution compared 

to the CCP solution. 

 

Maintaining cash availability throughout the project is crucial for the project manager to 

prevent any discontinuity in cash flow. An objective along those lines would be the 

minimizing the contractor’s maximum cumulative gap between cash out and cash in.  Ning 

et al. (2017) investigated this problem in a multi-mode setting with stochastic activity 

durations. They solved the problem using two different metaheuristic procedures and 

reached the following conclusions: the problem of capital shortage can be addressed by 

inserting time buffers properly and choosing less expensive activity modes.  

 

Özdamar and Dündar (1997) and Özdamar (1998) focused on financial risks, particularly in 

housing construction projects. In addition to integrating the uncertainty in cash flows, they 

also considered multiple modes for performing the activities. Recently, Hazir et al. (2016) 

addressed financial risks as well and examined the delays in payments by the client firms. 

The model featured delays that are dependent on the financial structure of the clients and that 

these delays could significantly alter the NPV of the projects. Regarding the risks, budgeting 

is crucially important for projects. Existing studies usually assume a known static project 

budget; however, the funds to support the project might deviate from the original estimate 

during execution. Firms control many projects and consider various financial alternatives at 

the same time. Therefore addressing the budget uncertainty is important. In his model, Yang 

(2005) characterized the budget as a random variable in a time–cost tradeoff problem setting, 

and solved the problem using CCP. A higher degree of uncertainty was shown to represent a 

tighter financial constraint resulting in extra contingency duration.  

 

2.2. Externally Generated Uncertainties 

 
Externally generated uncertainties mainly contain logistics and procurement, environmental, 

socio-political, market, and technological factors. 
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2.2.1. Logistics and Procurement Factors 

Variability in procurement lead times and disturbances due to problems with suppliers are 

commonly encountered in projects. Availability and on-time delivery of materials, 

equipment and labor during a project lifecycle can seriously affect the project delivery. 

Recently many firms favor the use of subcontractors and the procurement process has 

become more complicated and contains more uncertainty. Problems in coordinating the work 

between different subcontractors can cause delays to the project delivery. 

 
Yeo and Ning (2006) focused on the problems of uncertainty and variation in major 

equipment procurement. They conducted a survey to explore time uncertainty in the 

procurement of major equipment and explored the relationship between time buffers and 

procurement lead times. Dixit et al. (2014) used fuzzy integer programming to model 

uncertainty in activity durations and in lead times.  

 

Xu et al. (2016) integrated project and supply chain management decision making in 

recurrent projects. They focused on the construction industry and addressed uncertainty in 

procurement lead times. They used dynamic programming for modeling the integration 

problem and conducted sensitivity analysis to show the impact of uncertainty. Likewise, Liu 

et al. (2017) addressed uncertainty in construction supply chains, but instead, made use of 

multi-objective optimization and fuzzy theory for modeling. 

 
2.2.2.  Environmental Factors 

For some industries, the impact of natural events and environmental concerns is vital. For 

instance, in the construction industry, weather conditions are one of the main causes of 

project delays and the need for rescheduling. Acabes et al. (2014) focused on the uncertainty 

due to seasonal factors, such as any meteorological factors or adverse weather conditions 

that might affect completion of the activities. Using Monte Carlo simulation and sensitivity 

analysis, they investigated how activities contributed to project risks, specifically the risks of 

delays in project delivery. 

 

We also noted that in some cases, abandoning the projects could be a logical decision. To 

give an example, for some mega construction projects, environmental damage might not be 

fully predicted, or the social and financial impacts could have been underestimated, at the 

investment phase.  In project assessments, real options theory has been widely implemented. 

It allows integration of the possibility of abandoning a project due to a catastrophic event 

(see Schwartz & Zozaya-Gorostiza (2003), for an IT investment decision).  
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2.2.3. Socio-Political Factors  

Laws and regulations, and political and social pressures, are among the elements of the 

environment in which the project lifecycle takes place and which can change over time.  For 

example, changes in health and safety regulations, or government environmental or taxation 

policy might affect the attainment of project targets. 

 

Al-Tabtabai and Alex (2000) focused on political risks in international construction projects 

and developed a neural network model to estimate the impacts of political uncertainty on 

project cost. Klastorin and Mitchell (2013) considered a broad range of events that could 

disrupt the ordinary course of projects. These events included social or political events, such 

as strikes and regulatory actions. In their model, they assumed that such a disruptive event 

would stop all direct labor-related work on the project for a specific time period, but that 

overheads and indirect work would continue, and these expenses would accrue.  

 

2.2.4. Market Factors 

Market conditions, factor prices and demand may alter during the project execution. 

Fluctuations in the exchange rates and factor prices may cause uncertainty in costs. For 

instance, variations in material costs or exchange rates could have a serious impact on the 

total cost. This was demonstrated by Zhang et al. (2011) on how to select multinational 

projects under foreign exchange rate uncertainty. Petit and Hobbs (2010) studied new 

product development uncertainty. Due to high uncertainty inherent in the early stages of new 

product development, companies spend great effort on deciding on the features to develop 

for securing success in a market. A similar uncertainty arises in the case of make-or-buy 

decisions made in the earlier stages of new product development projects. Such market 

uncertainties can have an impact and also lead to uncertainties in their relations with 

suppliers. 

 
2.2.5. Technological Factors 

New process and product alternatives may emerge during the execution of the project. For 

instance, the introduction of new materials and methods during the execution of a project can 

change the project plan considerably. 

 

Shenhar and Dvir (1996) classified projects into two dimensions: uncertainty and 

complexity. Under uncertainty, they focused on technological uncertainty and distinguished 

between four types: slow tech, medium tech, high tech and super high tech. Low tech 

projects such as road construction use existing technologies and well established methods, 

whereas super high tech projects depend completely on new technology. Concerning 
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complexity, they differentiated between three levels: assembly, system and array. In 

assembly, a number of components are combined into a single unit. Systems consist of a 

collection of subsystems and interactive elements – built or developed – that perform a wide 

range of functions or activities. Arrays are defined as building, developing or adding to a 

large widespread collection of systems functioning together to achieve a common purpose. 

Shenhar (2001) concluded that project management techniques would differ across levels of 

uncertainty and complexity, and showed that uncertainty is associated with the way technical 

problems are resolved, whereas complexity is related to the administrative aspects of project 

management. 

 
De Reyck and Leus (2008), and Creemers et al. (2015) addressed R&D projects that face 

technological uncertainty, where in this context technological uncertainty refers to an 

environment where the project might fail as a consequence of the failure of an activity. They 

maximized the expected NPV of the project. De Reyck and Leus (2008) employed a branch-

and-bound (B&B) algorithm to achieve optimal solutions for an R&D project with uncertain 

activity outcomes. Creemers et al. (2015) extended the work of De Reyck and Leus to 

include uncertain activity durations and the option of alternative technologies producing the 

same result. They employed stochastic dynamic programming to achieve optimal solutions. 

Ranjbar and Davari (2013) dealt with the alternative technology problem for R&D projects, 

where each technology has a cost and a probability of failure. The objective was to maximize 

the expected NPV of the project. They proposed a branch-and-bound algorithm to solve the 

problem optimally.  

 
2.3. A Classification of Literature Based on Sources of Uncertainty 

We summarized the classification of literature based on sources of uncertainty in Table 1. 

Papers only considering variability in activity durations are not included since there is a vast 

amount of literature on this. Our review revealed that studies addressing the uncertainty due 

to other sources are scarce. Resource-related variability, both in requirements and 

availability, has occasionally attracted the attention of researchers. Other sources of 

uncertainty have rarely been examined in project-planning studies. These sources of 

uncertainty should be addressed more often to model project environments more realistically 

and to generate schedules protected against various kinds of uncertainty.  
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Table 1. Literature Analysis Based on Sources of Uncertainty *   
 

*Studies that address only variability in activity durations are not included. 

Author(s) 
(Ordered wrt Publication Year ) 

Organizational 
Factors 

Activity 
Durations 

Resource 
Usages 

Requirement 
Changes 

Quality 
Problems 

Resource 
Availability Logistics Nature & 

Environment 
Political 
& Social Market Technology 

Shenhar & Dvir (1996)           X 
Tukel & Rom (1997)     X       
Ozdamar & Dundar (1997), 
Ozdamar (1998)      X      

Tavares et al. (1998)   X X         
Williams et al. (1995)    X        
Al-Tabtabai & Alex (2000)          X   
Artigues & Roubellat(2000)    X        
Ozdamar & Alanya (2001)  X  X        
Tukel & Rom (2001)      X       
Artigues et al. (2003)    X        
Engwall & Jerbrandt (2003)  X           
Schwartz & Zozaya-
Gorostiza (2003),         X    

Boute et al. (2004)      X    X  
Nozick et al. (2004)  X X         
Yang (2005)      X      
Yang & Chang (2005)      X      
Yeo & Ning (2006)        X     
De Reyck & Leus (2008)           X 
Lambrechts et al. (2008a)      X      
Lambrechts et al. (2008b, 
2011)  X    X      

Ward & Chapman (2008) X           
Sobel et al. (2009)  X    X      
Tiwari et al. (2009)     X       
Petit & Hobbs (2010) X         X  
Wiesemann et al. (2010)   X    X      
Deblaere et al. (2011)  X    X      
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Table 2. Literature Analysis Based on Uncertainty Sources * (Continued) 

 
Hazir et al. (2011)   X         
Zhang et al. (2011)          X  
Kim et al. (2012)     X       
Maravas & Pantouvakis 
(2012)  X X         

Petit (2012) X           
Klastorin & Mitchell (2013)         X   
Ranjbar & Davari (2013)           X 
Acabes et al. (2014)        X    
Dixit et al. (2014)       X     
Zhang &Elmaghraby (2014)  X X         
Creemers et al. (2015)  X         X 
Fu et al. (2015)   X    X      
Jeang (2015)  X X         
Gutjahr (2015)  X X         
Hazir et al. (2016)  X    X      
Xu et al. (2016)        X     
Liu et al. (2017)       X     
Vaagen et al. (2017)    X        
Bordley et al. (2019)    X        
*Studies that address only variability in activity durations are not included.
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3. APPROACHES TO MANAGE PROJECT UNCERTAINTY 

To minimize the effect of unexpected events on project performance, five fundamental 

scheduling approaches have been discussed in published literature: stochastic scheduling, 

fuzzy scheduling, sensitivity analysis, reactive scheduling and robust (proactive) scheduling 

(Herroelen and Leus, 2005). This classification is depicted in Figure 2. Details of each 

approach and implementations with project management will be given in the following 

sections. We also refer to the handbooks on project scheduling (Demeulemeester and 

Herroelen, 2002, and Schwindt and Zimmermann, 2015) for methodological analysis. 

 

 
Figure 2. Taxonomy Based on Herroelen and Leus (2005) 

 
3.1. Reactive  Project Scheduling 

Modifying or re-optimizing a schedule in the face of disruptions is called reactive 

scheduling. If a baseline schedule is prepared before execution, this approach is known as 

predictive–reactive scheduling. On the other hand, the schedule could be dynamically 

constructed, and this approach is called dynamic scheduling. The term “rescheduling” is also 

widely used in published literature. It is sometimes even used as a synonym for “reactive 

scheduling” (Aytug et al., 2005). 

 

When and how to reschedule are the major questions in reactive scheduling. For timing, two 

approaches exist. In event-driven scheduling, rescheduling is performed when an unexpected 

event is observed; whereas in a periodic policy, rescheduling is performed at the beginning 

of each period. Corrective action in the case of disruptions may be taken as either full or 

partial rescheduling. In full rescheduling, all the available tasks are rescheduled, whereas in 

partial scheduling only a part of the current schedule is updated. For further discussion on 
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these approaches and applications, the readers are referred to Sabuncuoğlu and Goren (2009) 

for machine scheduling and to Herroelen and Leus (2004) for project scheduling. Even 

though there are a large number of reactive machine scheduling applications in published 

literature, reactive scheduling applications for projects are scarce.  

 

Simulation is a commonly used technique in reactive project scheduling. Yang (1996) 

conducted a simulation study to show the impacts of rescheduling on project makespan. He 

found that a simulated annealing heuristic was more effective in generating the schedules 

compared to simple dispatching rules. He also demonstrated that the frequency of 

rescheduling considerably affects the project completion time and that the effect of 

rescheduling depends on the tightness of precedence and resource constraints. If they are 

very loose or very tight, the gain achieved through rescheduling is minimal. Using 

simulation, Van de Vonder et al. (2007b) assessed predictive–reactive resource constrained 

project scheduling procedures. Schedule stability and timely project completion probability 

were both considered as performance criterion. In another study, Van de Vonder et al. 

(2007a) presented heuristics for repairing resource constrained project baseline schedules 

and used simulation to compare the performances. 

 

Zhu et al. (2005) formulated an integer linear program to recover from project disruptions. 

They considered disruptions in activity durations, in the network and in resource 

availabilities, and then modeled the recovery options. In addition to rescheduling, they 

allowed activity mode changes and allowed increases in the resource availabilities. They 

optimized a composite objective function, which is a function of the project makespan, 

schedule stability and recovery cost, and decided among the following recovery options: 

changing the finish times or modes of the activities, and increasing the resource 

availabilities. 

 

Deblaere et al. (2011a) addressed multi-mode resource constrained project scheduling and 

modeled both resource and activity duration disruptions. They developed precise reactive 

scheduling procedures and a tabu search heuristic for repairing a disrupted schedule. The 

tabu search heuristic was found to be effective in finding solutions to minimize the 

rescheduling costs. Their rescheduling procedures followed a “railroad scheduling policy”, 

i.e., no activity can be started before its baseline start time. 

 

3.2. Robust Project Scheduling 

In proactive or robust scheduling, variability is incorporated into the models, and schedules 

that are less vulnerable to disruptions are sought. Herroelen and Leus (2005) divided 
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schedule robustness into two groups: solution robustness (stability) and quality robustness. 

In this paper, we use this classification. The solution robustness is defined as the insensitivity 

of the activity start times with respect to variations in the input data. On the other hand, 

quality robustness is defined as insensitive to schedule performance, such as project 

makespan, with respect to disruptions. Quality robust scheduling aims to construct schedules 

in such a way that the value of the performance measure is affected as little as possible by 

disruptions.  

The most popular approach of project management aiming for quality robustness is critical 

chain project management (CCPM), introduced by Goldratt (1997) who applied the theory of 

constraints (TOC) to project management. CCPM stresses the identification and control of 

system constraints so as to improve the performance of the overall system. Buffers are 

employed as protection mechanisms against uncertainty and are controlled to monitor project 

performance. Safety factors are eliminated from individual activities and aggregated at the 

end as a project buffer. This allows risk pooling; delays in one activity can be compensated 

by the safety factor removal from another activity. Herroelen and Leus (2001) used 

simulation to show the weaknesses and strengths of CCPM and test the effect of the 

scheduling mechanism on makespan.  

 

Inspired by the newsvendor problem, Trietsch (2006) developed an optimization model with 

linear costs for early and late delivery in determining the size of the feeding buffers. To 

improve the CCPM buffer management system, Peng and Huang (2014) formulated an 

optimization model; Hu et al. (2016) integrated activity sensitivity information. Zhang et al. 

(2016) adjusted the project buffers by analyzing the resource constraints and level of 

resource association between the activities. By contrast, Zhang et al. (2018) considered the 

different phases of the projects and allocated a project buffer to each phase, and controlled 

the buffer dynamically. 

 

Herroelen and Leus (2003) formulated mathematical programming models to construct 

stable (solution robust) project schedules. They developed a linear programming (LP) model 

and some benchmark heuristics. Their LP model allowed a single activity disruption, where 

the duration of one activity increased during the schedule execution. Leus and Herroelen 

(2004) adapted the stability model to the resource constrained networks using resource flow 

networks. These networks model the number of resource units transferred between the 

activities as a flow of resources among activities. In their model, only a single resource type 

was considered and the branch-and-bound method was used to solve the problem. Van de 

Vonder et al. (2005, 2006) analyzed the trade-off between quality robustness and solution 
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robustness. They used a scheduling mechanism that was adapted from the float factor model 

of Tavares (1998). This model shifts activity start times from their earliest start times in the 

same proportion as the slack values for all the activities. Van de Vonder et al. (2005) relaxed 

the resource constraints and concentrated on stability. Van de Vonder et al. (2006) extended 

the activity dependent float factor model to the resource-constrained environment. In these 

studies, the quality robustness was measured by the probability that the project will end by 

the project due date. Lambrechts et al. (2008a) and Van de Vonder et al. (2008) proposed 

heuristics for solution robust scheduling and compared the performances of the proposed 

heuristics using simulation. Al Fawzan and Haouari (2005) developed a dual-objective 

model for the RCPSP and optimized the solution robustness and makespan. Li and 

Demeulemeester (2016) modeled the robust resource leveling problem by considering 

solution robustness. 

 
To develop efficient scheduling algorithms, researchers have also worked on developing 

substitute measures that provide a good estimate of robustness. Chtourou and Haouari 

(2008), and Khemakhem and Chtourou (2013) developed predictive indicators for resource-

constrained networks. Lamas and Demeulemeester (2016) proposed using the joint 

probability that each activity starts exactly at its baseline starting time as a measure of 

robustness. Lambrechts et al. (2011) took resource breakdowns into account and proposed 

three substitute measures that used uncertainty information. Hazir et al. (2010) focused on 

the discrete time/cost trade-off problem (DTCTP) and presented a simulation study to test 

the robustness measures at different uncertainty settings. 

 

In addition to developing heuristic buffer insertion mechanisms, and focusing on scheduling 

algorithms, robust optimization has been used to develop project plans for more than a 

decade. It is a well-known mathematical programming technique with many application 

areas that aims to build solutions that are insensitive to parameter uncertainty (Gabrel et al., 

2014). Yamashita et al. (2007) formulated scenarios for uncertain durations and modeled the 

robust resource availability cost problem. Cohen et al. (2007) and Hazir et al. (2011) 

assumed interval uncertainty and respectively studied the continuous and discrete time–cost 

trade-off problem. Bruni et al. (2018) made use of Bertsimas and Sim’s (2003) modeling 

approach – like Hazir et al. (2011) – and allowed only a given number of activities to reach 

their worst-case parameters simultaneously but in different ways, and addressed the RCPSP. 

Assuming intervals for activity durations, Conde (2009) brought a minimax regret approach 

to the critical path problem. To formulate the robust RCPSP, Artigues et al. (2012) used 

regret-based objectives, Chakrabortty et al. (2017) examined different forms of uncertainty 
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sets for activity duration, and Bruni et al. (2017) adopted an adjustable approach where 

resource allocation is first made and then the starting times are adjusted. 

 

More and more studies focused on combining robust planning and reactive procedures. We 

refer the readers to Lambrechts et al. (2008b) for a proactive–reactive scheduling 

application. Instead of developing the proactive plans and reactive procedures separately and 

then combining them, Davari and Demeulemeester (2017) proposed total integration. They 

formulated an integrated problem with a combined cost function, which included the cost of 

baseline schedule and cost of reacting. As a continuation of this study, Davari and 

Demeulemeester (2018a) investigated the reaction policies in depth: selection-based 

reactions and buffer-based reactions, and found that buffer-based ones are much more 

effective. Bendotti et al. (2017) recently addressed the development of reactive and proactive 

solutions to the CPM-scheduling problem by maximizing the so-called anchorage level, 

which is the number of equally valued decisions in the solutions of the baseline and real 

instances. Zheng et al. (2018) worked on the resource constrained scheduling problem with 

NPV maximization criterion and uncertain durations. To ensure robustness they added time 

buffers in the baseline schedule, and in addition, integrated two reactive scheduling models 

into their algorithm. 

 

3.3. Stochastic Project Scheduling 

The stochastic resource constrained project scheduling problem (SRCPSP) is the stochastic 

extension of RCPSP. In SRCPSP, activity durations are modeled as random variables with 

known probability distributions or with some other known information on activity durations. 

Typically, no baseline schedule is created. The objective is usually the minimization of the 

expected makespan. For other objectives, the reader can refer to Rostami et al. (2018).  

 

For solving SRCPSP, Stork (2001) proposed exact branch-and-bound algorithms. Another 

exact algorithm using the Markov chain method was suggested by Creemers (2015). Both of 

these exact approaches can solve small problems of 30 and 60 activities created by a ProGen 

instance generator (Kolisch and Sprecher, 1996). Rostami et al. (2018) recently presented a 

new class of policies and generalized some of the existing classes in published literature. 

Chen et al. (2018) examined the performance of 17 resource-based priority rule heuristics on 

SRCPSP, where 15 of these rules were already being applied to RCPSP and the remaining 5 

rules were suggested by the authors. They employed the justification technique to further 

improve the solutions obtained (Valls et al., 2005). They reported that latest finish time 

(LFT) and statistical latest finish time (SLFT) performed best for solving the SRCPSP. They 

compared their results with the metaheuristics and concluded that, despite their simplicity, 
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the best priority rules can compete with state-of-the-art heuristics. LFT and SLFT work as 

well as the best existing metaheuristics for large size instances and medium variance, and 

LFT and SLFT outperform all other metaheuristics proposed so far when the variance is 

high. Deblaere et al. (2011b) addressed the SRCPSP by following a proactive approach. In 

addition to a project execution policy, a vector of predictive activity starting times was 

determined. 

 
Golenko-Ginzburg and Gonik (1997) proposed a resource-based priority policy to obtain a 

feasible solution for the SRCPSP. The various renewable resource types assigned to 

activities were assumed to be fixed, and hence, have no influence on the random durations of 

the activities. They tested their algorithm on only one instance with 36 activities and one 

resource. In a consecutive paper, Golenko-Ginzburg and Gonik (1998) removed the above 

restriction and let the amount of renewable resources assigned to an activity be a variable. 

This way the density function of the activity duration also becomes a function of the 

resources allocated to that activity. For simplification, they replaced the actual problem to be 

solved at each decision point by the knapsack resource reallocation problem, which has been 

shown to be NP-complete. They proposed a lookover algorithm for an exact solution and a 

heuristic one for relatively larger problems. 

 
Tsai and Gemmill (1998) suggested a tabu search algorithm with multiple tabu lists, 

randomized short-term memory and multiple starting schedules to obtain resource-based 

priority policies. They compared their tabu search results over the Patterson instance set 

(Patterson, 1984) modified to introduce the stochastic dimension. Ballestin (2007) proposed 

three sampling and three genetic procedures and concluded that the underestimation can be 

huge when the deterministic makespan is used as an estimate of the expected makespan – 

except when the variability is very small. Ballestin and Leus (2009) employed an adapted 

version of the greedy randomized adaptive search procedure (GRASP) to generate solutions 

for SRCPSP, which are shown to outperform other heuristic algorithms in published 

literature. They compared the expected makespan versus other objectives: service level, 

makespan variance and expected tardiness. As a result of computational experiments they 

concluded that for most practical purposes, focusing only on expected makespan would 

suffice. Bruni et al. (2011, 2015) proposed building a baseline schedule that was protected 

against possible disruptions, and hence, partially bridging the gap between the stochastic and 

robust scheduling research. They realized this through decoupling the problem by treating 

the dynamic and stochastic aspects separately and by imposing joint chance constraints at 

each decision point.  
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Fang et al. (2015) proposed an estimation of distribution algorithm (EDA) employing a class 

of resource-based scheduling policies to solve the SRCPSP. Being an evolutionary 

metaheuristic, the EDA adopts an activity list representation to encode individuals and use as 

the fitness value for an activity list π, where the expected makespan is defined as the average 

makespan of a predefined number of scenarios of π. Offspring sampling is based on a 

probability matrix, and a local search procedure is applied to improve the solutions. The 

probability matrix is updated using a population-based updating mechanism. The initial 

population is obtained using regret-based biased random sampling using the LFT priority 

rule. They reported that the proposed procedure is quite competitive compared to state-of-

the-art heuristics for the SRCPSP and yields the best performance if the variance of the 

activity duration is medium to large.  

 

Scheduling policies (or scheduling strategies) dynamically make scheduling decisions at 

decision points corresponding to the start time of activities, and since the activity durations 

are random variables, these policies do not result in a deterministic schedule but rather in 

different schedules (Möhring et al., 1984, Demeulemeester and Herroelen, 2006). Chen et al. 

(2018) referred to static and dynamic scheduling policies and elaborated on different 

subclasses of static scheduling policies. 

 

Gutjahr et al. (2000) proposed a heuristic version of the stochastic branch-and-bound (B&B) 

algorithm combined with Monte Carlo simulation to solve the stochastic discrete time/cost 

trade-off problem (DTCTP). The expected total cost is the sum of the tardiness and problem 

costs, which they minimized by choosing from a discrete set of measures with a static 

assignment to activities. Mitchell and Klastorin (2007) minimized the expected total cost, 

defined as the sum of the direct, indirect and incentive costs. For that purpose, they 

developed a heuristic algorithm applicable to any general distribution of activity durations. 

They also showed that the deterministic approximation approaches, such as Program 

Evaluation and Review Technique (PERT), produce biased results. Zhu et al. (2007) 

addressed the project scheduling problem of setting target finish times under uncertain 

activity durations and a crashing budget constraint. The uncertainty is represented by discrete 

scenarios. They employed two-stage integer linear stochastic programming, where target 

times are determined in the first stage and a detailed project schedule in the second stage. 

The overall objective is to balance the cost associated with the target times and the expected 

cost of deviating from these target times. Kang and Choi (2015) presented an adaptive 

approach for the crashing problem, reducing activity durations with some additional cost 

where each activity can have a due date. Klerides and Hadjiconstantinou (2010) employed 

decomposition-based stochastic programming to model the stochastic time/cost trade-off 
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problem (STCTP). They considered the minimization of project duration subject to a 

specified budget, and the minimization of the total cost subject to a completion deadline. 

Godinho and Branco (2012) constructed an adaptive model for multi-mode scheduling under 

uncertainty. The total cost function consisted of the project cost and tardiness cost. 

Scheduling policies are defined based on a set of thresholds obtained through a search, and 

then evaluated it with a Monte Carlo simulation. Starting times of the activities are compared 

with this set of thresholds so as to define the processing mode. 

 

Assuming stochastic durations, Shen et al. (2010) modeled a resource investment decision 

model, which integrated the trade-off between the costs of risk for hedge investments with 

the expected penalties of surpassing the project deadline. They formulated a two stage 

stochastic programming model and a chance-constrained optimization model, which 

considers the probability of meeting the constraints and integrates confidence levels for the 

constraints, individually or jointly. Yang (2005) transformed the stochastic budget constraint 

into a deterministic equivalent by using chance-constrained programming. Recently, Wang 

and Ning (2018) presented three uncertain chance-constrained programming models for 

scheduling projects, and Davari and Demeulemeester (2018b) developed an efficient branch-

and-bound algorithm for the chance-constrained RCPSP. 

 

Gonik (1999) minimized the expected total storage and penalty costs of renewable resources 

for random activity durations in the presence of a due date when the resources are prepared 

and delivered at planned time points such that an activity cannot start earlier than the 

delivery of the required resources. Thus, there is a penalty cost for late delivery and a storage 

cost for early delivery. The decision variables were then the delivery times of the resources 

required. He proposed a coordinate descent method around the delivery times with 

simulation runs embedded into its search process. Golenko-Ginzburg et al. (2000) dealt with 

a multi-project decision environment with random activity durations. A due date and a 

minimum probability of meeting this due date were associated with each project. A fixed 

amount of each type of resource to be used by all projects was provided. They employed a 

coordinate descent method where the coordinates referred to the starting times of the projects 

and the fixed amounts of resources, and they performed the search process using simulation.   

 

Golenko-Ginzburg et al. (2001) addressed a similar problem, but this time they distinguished 

between two types of resources. Type A resources are rare and expensive and are brought 

from outside the project management system for a short time and for a small number of 

activities. An activity cannot start earlier than the delivery of the required A resources. Type 

B resources, on the other hand, are regular renewable resources managed from a central pool 
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of resources. It is assumed that each project is realized independently with its own due date 

and a minimum probability of meeting this due date. The objective is the minimization of the 

sum of expected non-operational costs for each project consisting of leasing and maintaining 

B resources, the cost of idle time for A resources, a fixed amount paid to the customer in 

case of tardiness, as well as per unit time of tardiness and the cost of project storage for each 

time unit, if finished early. They proposed a simulation model with two sub-models, one 

employing coordinate wise cyclic optimization and the other integer programming for the 

allocation of the B resources.  

 

NPV maximization criterion and uncertainty of activity durations have also been addressed 

using stochastic approaches. Buss and Rosenblatt (1997) found optimal activity delays with 

respect to earliest start times. Creemers (2018a) recently studied the times and distribution of 

the NPV. To determine the optimal scheduling policies, Creemers et al. (2010) used 

stochastic DP based on the continuous-time Markov chain described by Kulkarni and 

Adlakha (1986). In a more recent study, Creemers (2018b) improved the computational 

performance. Hermans and Leus (2018) investigated the case where preemption of resources 

was allowed and showed the optimal case for a non-preemptive policy. 

 

3.4. Fuzzy Project Scheduling 

Fuzzy programming has attracted the attention of many researchers as an alternative 

paradigm to address project scheduling problems with uncertainty, motivated by the 

pioneering work of Bellman and Zadeh (1970). Instead of using random variables, uncertain 

parameters are modeled as fuzzy numbers and the constraints are defined with the use of 

fuzzy sets and membership functions. Membership functions might allow some constraint 

violations and measure the degree of satisfaction of the constraints. The advocates of the 

fuzzy activity duration approach claim that probability distributions for the activity durations 

are usually unknown due to reasons like the lack of accurate historical data. They also claim 

that activity durations estimated by human experts are potentially inaccurate. For details of 

the theory and applications of fuzzy programming, we refer to Zimmerman (2001). 

 

Studies on fuzzy project scheduling have substantially increased in the last 15 years. Hence, 

only a certain number of them are reviewed below. 

 

Hapke and Slowinski (1994, 1996) generated a set of schedules applying twelve dispatch 

rules and selected the schedule with the least fuzzy makespan. Wang (2002, 2004) 

concentrated on product development projects and used fuzzy set theory to generate robust 
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schedules. Özdamar and Alanya (2001) addressed software development projects using 

fuzzy functions to model uncertainty in the durations of activities.  

 

Chen and Tsai (2011) combined the time–cost trade-off problem into one with fuzzy 

parameters and formulated a linear program (LP) with fuzzy coefficients. LP was also used 

by Zareei et al. (2011) to calculate the earliest and latest event times in fuzzy project 

scheduling problems. Çebi and Otay (2015) optimized multiple criteria by making use of 

fuzzy multi-objective linear programming. They employed project completion time, total 

project cost, the earliest time of an important event and any event to which management pays 

special attention, as the multiple criteria. Xu et al. (2012) and Tavana et al. (2014) also 

addressed multi-objective decision making, and focused on the trade-offs in project time 

planning. To model conflicting goals, Liang (2010) employed fuzzy goal programming. 

Gang et al. (2013) solved the multi-mode, multi-project resource allocation problem 

(MRAMPSP) under fuzzy random environments with a dual-level approach under stochastic 

activity durations and costs – defined as the sum of the resource costs and the total tardiness 

penalty for the multiple projects. The decision maker at the upper level, the company 

manager, seeks to allocate the company resources to multiple projects at the lowest total 

cost, where the costs are defined as above. At the lower level, each project manager tries to 

schedule the allocated resources in such a way as to minimize the duration of the project they 

manage.  

 

3.5. Sensitivity Analysis 

Sensitivity analysis has been widely used in mathematical modeling. We refer to Borgonovo 

and Plischke (2016) for a review of available methods and recent developments, and to Hall 

and Posner (2004) for relevant examples. We stress that applications of sensitivity analysis 

to project scheduling problems are very limited in published literature.  

 

Gálvez and Capuz-Rizo (2016) applied different sensitivity analysis techniques to find out 

the parameters that had the largest effect. Hajdu and Bokor (2016) examined the impact of 

probability distributions for activity durations on project completion time and concluded that 

the accuracy of the three-point estimation is significantly more important than the type of the 

probability distribution. 

 

We summarized the classification results for literature based on uncertainty management 

approaches in Table 2. We noted that there are more robust scheduling studies than the 

reactive scheduling applications. Interestingly, we found only one paper published in 

reactive scheduling between 2009 and 2016. However, the researchers seem to have 
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refocused their attention on the reactive approach, especially on its combination with a 

robust approach, in the last three years. Stochastic project scheduling is not included in the 

table since it has been studied for a long time and there is a vast amount of literature on it.  

 

3.6.  A Critical Analysis of the Approaches 

During project execution, various problem characteristics, such as resource availability or 

processing times, may change due to disruptions like machine breakdowns. These changes 

generate additional information. Therefore, reactive scheduling also allows the process to 

take into consideration new information encountered during the execution of the project, and 

scheduling with new information naturally improves the project performance. At this point, 

some immediate questions arise: When to reschedule? How to reschedule? What is the effect 

of rescheduling on stability? 

 

There are three alternatives possible in response to the question of when to schedule: 

periodic scheduling, continuous scheduling and adaptive scheduling. In periodic scheduling, 

the schedule is revised periodically, whereas in continuous scheduling, the schedule is 

revised after a number of events occur that change the system state. In adaptive scheduling, 

on the other hand, scheduling is performed when a predetermined amount of deviation from 

the original schedule is observed. It is also possible to combine these approaches and 

develop hybrid methods. When-to-schedule policies have been investigated in many machine 

scheduling studies (Sabuncuoglu and Goren, 2009). In project scheduling, policies need to be 

developed together with a thorough analysis of the advantages and disadvantages of these 

policies. 

 

In how-to-schedule decisions, full and partial rescheduling are the alternatives. All the 

available tasks are re-planned in full rescheduling, whereas in partial rescheduling only a 

part of the current schedule is updated. Full rescheduling is better in terms of project 

performance. On the other hand it requires more computational effort than partial 

scheduling. Partial rescheduling is preferable when stability is considered. In order to decide 

which method to use, the performance differences of these methods should be calculated. As 

rescheduling frequency increases, the system responsiveness increases. On the other hand, 

rescheduling too often increases system instability. A compromise between stability and 

project performance should be aimed for in the rescheduling research. 

 

Combining reactive and robust project scheduling improves project performance. This 

combined approach is relatively new in scheduling literature and referred to as “proactive–

reactive scheduling”. As shown by Lambrechts et al. (2008b) proactive–reactive scheduling 
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protects against disruptions through the combination of a proactive scheduling procedure and 

a reactive improvement procedure.  

 

Stochastic programming uses probabilistic models to describe uncertain data in terms of 

probability distributions. Typically, the average performance of the system is examined and 

an assumption for the expected probability distribution is taken. Stochastic programming 

models are usually computationally demanding, but when accurate distributional information 

is available, stochastic programming has the advantage of incorporating this available 

distribution information. If the decision maker either does not have, or cannot access this 

information, other approaches are more appropriate. As projects are temporary and unique, 

and have a finite duration and distinguishing characteristics, managers cannot have access to 

probability information in many real-life projects. 

 

The major advantage of robust approaches over stochastic programming is that no 

assumptions about the uncertainty of data are required regarding the underlying probability 

distribution. On the other hand, as worst-case conditions are emphasized in robust 

optimization, in some cases the expected performance of the generated solutions might be 

worse when compared to the solutions generated using stochastic programming.    

 

Sensitivity analysis investigates the dependence of the model output on its input parameters. 

Generally the effect of small perturbations on the optimal solution is analyzed. Sensitivity 

analysis is distinctively different from stochastic programming, robust optimization and 

fuzzy modeling, since it analyzes the impacts of parameter changes on the performance of 

the selected solutions, but it does not address uncertainty in the modeling phase. 

 

4. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

In this study, we investigated and comprehensively discussed the models and algorithms for 

project modeling under conditions of uncertainty. The main contribution of this paper is the 

presentation of a classification scheme based on the sources of uncertainty in project 

management, and reviewing the current studies modeling these sources. A further 

contribution is the extensive investigation of the techniques and approaches to manage 

uncertainty. Finally we underline the research gaps and discuss the future research 

perspectives. 

 
Regarding the methods, stochastic scheduling has been widely studied in project 

management for decades. Reactive, robust and fuzzy scheduling have all increased in 
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popularity among researchers during the last 20 years. In addition to the buffer insertion and 

reactive policy design studies, applications of different robust optimization methods have 

recently attracted the attention of researchers. The applications of fuzzy methods have also 

rapidly increased.  

 

An important role of this survey was to highlight the research areas that are worth further 

investigation, and emphasize their practical needs. We have summarized some possible 

directions for future work as follows: 

 

• The fact that the relatively excessive amount of work put into managing uncertainty in 

activity durations compared to those related to other sources of uncertainty indicates the need 

for further research in those other areas. Uncertainty in activity durations is a result of 

various sources and uncertainty is considered only implicitly through the management 

approaches. Hence, research into reducing the impact of the individual sources of uncertainty 

would be crucial in improving the effectiveness of project planning.  

• The studies addressing the uncertainty due to other sources, especially the 

organizational and external factors such as the environment or market related ones are scarce 

(see Table 1). Regarding the uncertainty in resources, randomness in availabilities has been 

investigated relatively more than the requirements.  

• Existing studies generally investigate either a single source of uncertainty or study a 

source such as resource availabilities with random activity durations. Research investigating 

multiple sources, their relationships and developing models to deal with combined sources 

are promising. To give an example: in many large-scale infrastructure projects, timing of 

cash payments is uncertain as well as the durations and resource usages. Moreover, 

uncertainty in financial markets and their impact on the discount rates should not be 

neglected. However, as RCPSPs are already NP-hard (Blaziewicz et al., 1983), integrating 

all these uncertain factors would make the problems even more difficult to solve. Developing 

efficient solution algorithms to solve real-life examples would indeed be a challenge.  

• In real-life projects, usually multiple alternatives exist to execute resource-use activity. 

Multi-mode scheduling problems have practical implications, as they model the time/cost or 

time/resource relationships in processing activities. In the domain of project scheduling, few 

studies address multi-mode scheduling under conditions of uncertainty. This research field is 

still quite open. See Hazir et al. (2015) for a discussion on different robust optimization 

approaches and the potential application areas in multi-mode scheduling problems.  

• Although quality is cited among the triple performance measures for project managers, 

together with project duration and cost, there are only a few studies explicitly addressing 

quality, let alone handling uncertainty, in quality assurance. 
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• Protection of the environment and efficient use of natural resources have become 

crucial elements in project planning. Studies addressing environmental objectives and 

uncertainty are also scarce. Time, cost, quality and sustainability have all become critical 

dimensions of project performance. In that sense, optimization models that address multiple 

criteria as well as integrating uncertainty are better adapted to the requirements of industry. 

There is a need for further studies on multiple criteria methods. 

• When we examine the methods, the literature on reactive scheduling has mainly 

considered the machine environments. There is a need for further studies in reactive project 

scheduling, especially with algorithms, to determine when to react and how to react in an 

uncertain environment so as to minimize the effect of disruptions on project performance.   

Proactive and reactive planning are complementary aspects of scheduling. Models 

combining robust scheduling and reactive scheduling are quite recent. This combined 

approach is valuable as the baseline schedule might be created by the maximization of a 

robustness measure, and a reactive policy might be integrated into the algorithm. By 

developing such predictive–reactive approaches, managers could benefit both from the 

anticipation and stability of the proactive approach and the responsiveness of the reactive 

approaches. A problem of interest for project managers would be where the robustness cost 

and the adjustment cost of the baseline schedule are to be balanced through the integration of 

proactive and reactive scheduling.  

• In addition to scheduling, design of project control systems is crucial to minimize the 

deviations from the project plan during the execution phase. Scheduling/rescheduling and 

monitoring and control tools have usually been studied separately. However, integration of 

these functions can facilitate information sharing, coordination and effective resource 

allocation. Control policies need to be set when considering the schedules and objectives, 

and control data is valuable to make rescheduling decisions. Despite its importance, this 

relationship has not been studied theoretically in sufficient depth. How to combine the 

scheduling algorithms with monitoring and control procedures that define effective 

intervening strategies in case of disruptions is an open research question (see Hazir and 

Schmidt (2013) for an example of an integrated model). 

• The practical impact of the models and algorithms that we discussed could be realized 

by developing integrated DSSs. They are essential elements of the DSS and comprise the 

modeling and optimization modules of an integrated DSS. These DSSs counsel project 

managers to generate protected schedules that help to proactively minimize the deviations 

from the project objectives. DSSs, which guide the managers in determining the possible 

need for corrective actions, such as rescheduling during execution, are also required. They 

need to include optimization models that work to determine the timing and magnitude of 

corrective actions. Therefore, OR tools, which have been widely applied to modeling and 
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solving project scheduling problems, could also be embedded in the modeling bases of 

DSSs. Integrating the DSS into widely used commercial software packages would be very 

valuable in practice, as it enhances the scheduling functions of these packages. 
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Table 2. Literature Analysis based on Uncertainty Management Approaches* 

Author(s) 
(Ordered wrt. Publication Year) 

Reactive 
Scheduling 

Robust Scheduling Fuzzy 
Scheduling 

Sensitivity 
Analysis Stability Quality Robustness 

Hapke and Slowinski  (1994, 1996)    x  
Yang (1996) x     
Tavares (1998)   x   
Herroelen and Leus (2001)   x   
Ozdamar and Alanya (2001)    x  
Wang (2002, 2004)    x  
Herroelen and Leus (2003)  x    
Leus and Herroelen (2004)  x    
Al-Fawzan  and Haouari  (2005)  x    
Zhu  et al. (2005) x     
Van de Vonder et al. (2005, 2006) x x    
Tukel et al. (2006)   x   
Trietsch (2006)   x   
Cohen et al. (2007)   x   
Van de Vonder et al. (2007a) x     
Van de Vonder et al. (2007b) x x    
Yamashita et al. (2007)   x   
Chtourou and Haouari. (2008).   x   
Lambrechts et al. (2008a) x     
Lambrechts et al. (2008b) x x    
Van de Vonder et al. (2008)  x    
Conde (2009)   x   
Hazir et al. (2010,2011)   x   
Liang (2010)    x  
Chen and Tsai (2011)    x  
Deblaere et al. (2011a) x     
Lambrechts et al. (2011)  x    

               * Stochastic project scheduling is not included 
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Table 2. Literature Analysis based on Uncertainty Management Approaches (Continued) * 

 Author(s) 
(Ordered wrt. Publication Year ) 

Reactive 
Scheduling 

Robust Scheduling Fuzzy 
Scheduling  

 

Sensitivity 
Analysis Stability Quality Robustness 

Xu et al. (2012)    x  
Zareei et al. (2011)    x  
Gang et al. (2013)    x  
Khemakhem and Chtourou (2013).   x   
Tavana et al. (2014)    x  
Peng and Huang (2014)   x   
Cebi and Otay (2015)    x  
Gálvez and Capuz-Rizo (2016)      x 
Hajdu and Bokor (2016)     x 
Hu et al. (2016)   x   
Li and Demeulemester (2016)  x    
Zhang et al. (2016, 2018)   x   
Bruni et al. (2017, 2018)   x   
Bendotti  et al. (2017) x  x   
Chakrabortty et al. (2017)   x   
Davari and Demeulemester (2017, 2018a)  x x x   
Zheng et al. (2018) x  x   

 

* Stochastic project scheduling is not included 
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