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Abstract In this study, we considered a bi-objective, multi-project, multi-mode resource-
constrained project scheduling problem. We adopted three objective pairs as combinations of the 
net present value (NPV) as a financial performance measure with one of the time-based 
performance measures, namely, makespan (Cmax), mean completion time (MCT), and mean flow 
time (MFT) (i.e., minCmax/maxNPV, minMCT/maxNPV, and minMFT/maxNPV). We developed 
a hybrid non-dominated sorting genetic algorithm II (hybrid-NSGA-II) as a solution method by 
introducing a backward–forward pass (BFP) procedure and an injection procedure into NSGA-II. 
The BFP was proposed for new population generation and post-processing. Then, an injection 
procedure was introduced to increase diversity. The BFP and injection procedures led to improved 
objective functional values. The injection procedure generated a significantly high number of non-
dominated solutions, thereby resulting in great diversity. An extensive computational study was 
performed. Results showed that hybrid-NSGA-II surpassed NSGA-II in terms of the performance 
metrics hypervolume, maximum spread, and the number of non-dominated solutions. Solutions 
were obtained for the objective pairs using hybrid-NSGA-II and three different test problem sets 
with specific properties. Further analysis was performed by employing cash balance, which was 
another financial performance measure of practical importance. Several managerial insights and 
extensions for further research were presented. 

Keywords Backward–forward scheduling, hybrid bi-objective genetic algorithm, injection 
procedure, maximum cash balance, multi-objective multi-project multi-mode resource-
constrained project scheduling problem. 
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1 Introduction 

With the changing business paradigm in recent decades, great emphasis has been placed on project-
based work. We have observed an increase in the number of companies that provide engineering, 
managerial, and financial services and technological firms that structure themselves as project 
organizations. In line with these developments, the relevance and importance of effectively dealing 
with multiple simultaneous projects have increased. The on-time completion of these projects by 
meeting the quality requirements without exceeding the allocated budget is a major task. This task 
provides a great challenge for project owners and managers. Project planning and scheduling are 
the major tools used to meet this challenge. Project scheduling serves the engineering and 
management functions of the organization, as it is used to generate schedules in line with the 
organizational objective(s). Project scheduling, as a tool, supports the project manager in the 
evaluation of different alternatives and creates a time, resource, and risk management plan for the 
project implementation. The resulting project schedule is the so-called baseline schedule, which 
not only represents the initial plan but also constitutes the backbone for the control and monitoring 
of the project during its implementation. Project scheduling serves as the project manager that 
determines ways to minimize the deviations from the planned schedule and cost throughout the 
project implementation. 

The core problem underlying project scheduling in project organizations is the resource-
constrained project scheduling problem (RCPSP). The RCPSP is a complex, NP-hard problem 
(Blazewicz et al., 1983). In recent decades, an extensive amount of work has been accomplished 
for developing exact and heuristic algorithms for the solution of RCPSP and its extensions, such 
as multi-mode RCPSP (MRCPSP), multi-project RCPSP (RCMPSP), and multi-project, multi-
mode RCPSP (MRCMPSP) (Özdamar and Ulusoy, 1996; Herroelen and Demeulemeester, 1998; 
Brucker et al., 1999; Kolisch and Padman, 2001; Herroelen and Leus, 2005; Hartmann and 
Briskorn, 2010). A rich body of literature in multi-project scheduling under resource scarcity is 
available. 

Apart from task complexity, we have observed relational complexity in project 
management resulting from multiple stakeholders with conflicting interests; this situation can lead 
to disagreements about project goals and priorities among tasks and features of the project outcome 
(Pich et al., 2002). A multi-objective programming approach can be employed to handle relational 
complexity. This study deals with the bi-objective MRCMPSP. The minimization of the makespan 
of projects (minCmax) is a common and frequently used objective in project scheduling. This 
objective is crucial because it allows—among other things—the early release of renewable 
resources for subsequent projects and helps prevent the possible violation of imposed deadlines 
(Demeulemeester and Herroelen, 2002). The maximization of the net present value (NPV) of 
projects (maxNPV) is another significant objective in project scheduling. Many researchers and 
practitioners prefer the NPV as a financial performance measure because it can effectively reflect 
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the financial aspects of the decision environment (Gu et al., 2015). The objective is to minimize 
the NPV when only the costs are involved. The parallel processing of projects, namely, 
concurrency, in construction environments has gained great acceptance since the 1990s. 
Concurrent engineering, a term referring to the parallel execution of tasks, has been used by 
practitioners to minimize project lead times (Ahmad et al., 2016). In addition to Cmax and NPV, 
the project manager may also be interested in minimizing the mean flow time of individual projects 
(minMFT) to ensure that the mean throughput times of projects are reduced, thereby leading to a 
general reduction in the work-in-progress (Herroelen and Leus, 2001). The objective minMFT also 
reflects the increasing attention of the contractors to reduce non-value adding activities further and 
wasted time and resources because the competition is fierce in the world today (Sacks et al., 2017). 
The minimization of the mean completion time for individual projects (minMCT) can be 
considered another relevant time-based objective. A decision maker may seek a project schedule 
that strategically uses renewable resources, thereby leading to acceptable project completion times. 
When a contractor carries out multiple projects, each of which pertains to different clients, a key 
factor of success for the contractor is to meet their individual time-based requirements. The MCT 
can be closely associated with customer satisfaction and may lead to favorable cash profiles. We 
do not consider deadlines for projects and penalties for their violations because the minimization 
of MCT and Cmax explicitly refers to project terminations as soon as possible. 

The financial impact of reducing the duration of a project is essential information, which 
the decision maker uses in the project-scheduling phase. Vanhoucke (2009) has presented a study 
on the trade-off between Cmax and NPV for RCPSP. In that formulation, a soft deadline constraint 
is imposed to allow a project deadline violation at a certain penalty cost. All the payments and 
receipts throughout the duration of an activity are discounted up to the completion time of the 
activity to represent the cash flow associated with it. The objective function is the sum of the 
discounted cash flows of the activities and the penalty cost. This framework is considered a multi-
objective optimization model because the Cmax and NPV are included in the objective function. 
Khalili et al. (2013) have simultaneously considered the bi-objective problem of minCmax and 
maxNPV for RCPSP by approximating the Pareto front. Two meta-heuristic algorithms are 
employed for solving the bi-objective RCPSP: multi-population genetic algorithm (GA) (Cochran 
et al., 2003) and two-phase sub-population GA (Chang et al., 2005). 

The analysis of the trade-off between Cmax and NPV is a problem of interest in project 
scheduling. Cmax and NPV intuitively conflict, but they can be mutually supporting under certain 
conditions. Smith-Daniels and Aquilano (1987) have demonstrated this notion in a case where the 
resources are renewable, and a lump sum payment is made at the termination of the project. 
Activity costs are dependent on activity durations and are incurred at the start of activities. Ulusoy 
and Özdamar (1995) have investigated the mutual support of these two objectives under certain 
circumstances. The authors have considered two different models. In the first one, activity-related 
cash outflows take place at the start of the activity, and a lump sum payment occurs at the 
completion of the project. The activity-related costs depend on the total resource demand required 
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by the activity to complete it. The second model is a multi-mode version of the first one. 

In addition to the trade-off between Cmax and NPV, the trade-offs between MFT and NPV 
and between MCT and NPV are relevant when managing multiple projects. The reason is as 
follows: Cmax, by definition, only refers to the completion time of the last project and, as such, is 
an aggregate measure over all the projects. However, each project is an entity in itself, possibly 
with different owners and project managers. Hence, measures to follow individual projects in a 
multi-project environment are important. 

In this study, we investigate three bi-objective cases for MRCMPSP in detail: (i) the 
minimization of Cmax and the maximization of NPV (minCmax/maxNPV), (ii) the minimization of 
MFT and the maximization of NPV (minMFT/maxNPV), and (iii) the minimization of MCT and 
the maximization of NPV (minMCT/maxNPV). We aim to gain a wide perspective of the decision 
problem by dealing with three different bi-objective models.  

The contributions of this study are threefold. (i) We cope with a niche area in MRCPSP, 
which includes multi-project and multi-objective aspects. The literature review below reveals a 
few studies in this area. We propose minMFT, minMCT, maxNPV, and minCmax as objectives in 
this complicated problem structure. We further analyze our results from the perspective of 
maximum cash balance (CB) (i.e., the maximum cumulative gap between cash inflow and outflow) 
for a multi-project scheduling environment. (ii) We reveal important managerial insights 
concerning the preferences among the objectives used for multi-project scheduling. Moreover, we 
elaborate on the effects of changing renewable resource capacities on schedules, that is, increasing 
or decreasing the activity progress rates. Lastly, we analyze the CB diagrams of different schedules 
to find the possible interactions between renewable resource capacities and CB. (iii) Our aim is to 
develop an algorithm for generating solutions at acceptable computational times for arriving at the 
conclusions stated in (i) and (ii) by comparing the solution procedure proposed here. Although 
NSGA-II is used in this work, we propose two different improvements: one for local search and 
post-processing using backward–forward pass (BFP) procedure to find better solutions and the 
other one for enlarging the set of non-dominated solutions by an injection procedure. Our main 
focus is not to propose a competitive algorithm for scheduling tasks but to improve an existing 
algorithm and its capabilities. 

In the next sections, we first present the relevant studies from the literature, followed by 
the mathematical programming formulation of our problem. Thereafter, we explain the adopted 
solution methodology and extension of that methodology with BFP and injection procedures. We 
then carry out an extensive computational study that discusses the results regarding the impacts of 
BFP and the injection procedures and the relationships among the three bi-objective problems. 
Finally, we conclude the study by summarizing the key findings and presenting several managerial 
insights and future research avenues. 
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2 Literature review 

Efforts have been recently exerted to bring theory and practice together in project scheduling for 
dealing with the real-life concerns of project practitioners. This situation has drawn the attention 
of researchers to the modeling and solution of—among others—MRCMPSP and multi-objective 
RCPSPs. Wauters et al. (2016) have reported about the results of the nine algorithms for multi-
project scheduling in the final competition of the MISTA 2013 Challenge. All submitted 
algorithms were heuristic procedures in which some included exact components. The primary 
objective of the Challenge was to minimize the total project delay. The secondary objective was 
to minimize the total project duration, which was employed as a tiebreaker. To the best of our 
knowledge, a few studies have simultaneously analyzed RCPSP with its multi-objective and multi-
project aspects. The current literature can be classified into three approaches:  

(i) Representing the multiple objectives in a single objective function and solving the 
problem as a single objective optimization problem.    

(ii) Treating the objectives in vector form and seeking an approximation set to the Pareto 
front.  

(iii) Approaching the problem in an interactive way, wherein the decision maker guides the 
search through the feasible solutions by the choice of parameters, such as the weights 
of the involved multiple objectives.  

All the studies reported below treat single mode problems unless otherwise stated, that is, they 
are multi-objective RCMPSPs.   

The study by Liu and Wang (2009) is an example of the first approach. The authors have aimed 
to minimize the overall Cmax of projects and the flow time of individual projects by combining 
them in a single weighted objective function. Individual projects are also assigned weights to 
represent the importance of these projects to the decision maker. The abovementioned authors 
have implemented a greedy search algorithm to find effective solutions under resource constraints. 
Xu and Feng (2014) have developed a particle swarm optimization algorithm for MRCMPSP 
under a fuzzy random environment. The weighted combination of the overall Cmax and individual 
prioritized project Cmax, project cost consisting of fixed, variable, and crashing costs of activities, 
and quality of projects are accepted as objectives. Then, they were combined into a single 
formulation with a weighted sum approach. Wang et al. (2014) have proposed a cloud GA to solve 
a multi-objective RCMPSP with time, cost, quality, and robustness as the objectives. The objective 
function is defined as the weighted sum of the utility function of each objective. Riise et al. (2016) 
have studied the practical application of project scheduling. The operational surgery scheduling 
problem is modeled as MRCMPSP with generalized time and application-specific additional 
constraints and is solved with an iterative search algorithm. Taking an arriving patient as a project, 
the authors have considered numerous performance measures, such as the number of unscheduled 
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patients, patient waiting times, child early objective (children surgery must be scheduled in the 
morning), and finishing early in the day (e.g., Cmax), which are represented as the weighted sum.  

We group the following recently published papers under the second approach (Kucuksayacigil 
and Ulusoy (2018) provides an extensive review). Gang et al. (2013) have solved multi-mode and 
multi-project resource allocation problems with a bi-level approach under stochastic activity 
durations and costs defined as the sum of resource costs and the total tardiness penalty for the 
multiple projects. The decision maker at the upper level, that is, the company manager, seeks to 
allocate the company resources to multiple projects at the lowest total cost where the costs are 
defined as above. At the lower level, each project manager tries to schedule the allocated resources 
for minimizing the duration of the project that they manage. Singh (2014) has solved the problem 
via a hybrid method consisting of priority rules and an analytical hierarchy process application 
used for assigning weights to projects. The overall Cmax and cost of multi-projects are considered 
as objectives. Can and Ulusoy (2014) have created a hierarchical model for the problem, as 
proposed earlier by Speranza and Vercellis (1993), which regards each project as a macro-activity 
and solves the NPV maximization problem. The authors have implemented a post-processing 
scheme to minimize Cmax. Moreover, the authors have developed an exact solution method and a 
GA for solving the problem. Shahsavar et al. (2015) have considered three objectives in a resource-
constrained multi-project problem setting. The objectives are the minimization of the overall Cmax 
of the projects, the total cost associated with the resources, and the variability of the resource usage. 
The authors have employed three self-adaptive GAs to generate non-dominated solutions. One 
hundred and eighty problems are solved by an evaluation using five performance metrics.  

No attempt has been made regarding the solution for multi-objective MRCMPSPs using the 
interactive multi-objective approach. Gagnon et al. (2005) have introduced a triple objective model 
for RCPSP that considers Cmax, resource availability cost, and the amount of each resource type 
allocated as objectives. The authors have used the tabu search to obtain non-dominated solutions. 
All non-dominated solutions found during the search are stored in a dominance tree, and they are 
available to the project manager for examination.  

Our exhaustive literature review points out that RCPSP has been studied with several 
modifications, such as the transfer times of resources and the dynamic arrival of projects, due to 
the demands by industrial partners. Multi-skill RCPSP has gained increasing attention from 
research practitioners. The stochastic nature of problem parameters and reactive/proactive 
scheduling is another aspect that has drawn attention. The decentralized scheduling and rework 
possibility of activities are other significant research themes encountered in the literature survey. 
The literature review indicates that solution techniques based on the Pareto front is much more 
pervasive than those combining objectives into a single expression. Numerous metaheuristic 
methods (and hybrid forms) have been proposed and implemented. NSGA-II shows superior 
performance in many cases and gains appreciation from research practitioners. The review also 
indicates that NSGA-II and other evolutionary algorithms have been constantly improved by 



 7 

deriving new modules, integrating heuristic methods, and undergoing optimization procedures. 
The abovementioned review discloses that the literature addressing the multi-objective 
MRCMPSP is scarce. The bi-objective pairs (minMFT/maxNPV) and (minMCT/maxNPV) have 
not been investigated before even in a single project decision environment. This work also aims to 
fill that gap in the literature for these types of decision problems. 

3 Mathematical formulation of the problem  

As previously stated, we focus on the bi-objective MRCMPSP in this work. MRCMPSP is a 
combinatorial optimization problem, and it can be described as follows: |𝑃𝑃| projects exist, each of 
which has �𝐽𝐽𝑝𝑝� activities, excluding the dummy source and sink activities. Each activity of a project 
utilizes |𝑅𝑅| different renewable and |𝑁𝑁| non-renewable resources and has �𝑀𝑀𝑝𝑝𝑝𝑝� execution modes. 
The mode 𝑚𝑚 of an activity reflects the technological mix selected to execute that activity. Here, 
technological mix is defined as a combination of resources, such as machines, skilled workers, 
process lines, and suppliers. A likely decrease in the duration of the corresponding activity is 
expected with the increase of the technological mix level of a mode as well as an increase in the 
associated cost. Each mode 𝑚𝑚 of an activity has a duration 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝 and renewable and non-renewable 

resource requirements 𝑟𝑟
^
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑛𝑛

^
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, respectively. The dummy activities have zero duration 

and resource requirements. The activities are assumed to be non-preemptive, that is, an activity 
cannot be interrupted whenever it is executed. The project activities have precedence relations. 
Here, we assume finish-to-start precedence relations with zero-time lags. No precedence relations 
are assumed to exist among projects. Renewable and non-renewable resources have capacities, 
which should not be exceeded for a schedule to be feasible. The capacities of renewable resources, 
𝑟𝑟𝑝𝑝𝑟𝑟, are expressed as units per period and can vary over the time horizon. By contrast, the capacities 
of non-renewable ones, 𝑛𝑛𝑝𝑝, are specified over the whole project duration. If the resource capacities 
are specified a priori, then a resource portfolio has already been determined for a given budget. 
The problem lies in determining the schedule, start of activity, and completion times as well as 
their execution modes to ensure that the precedence constraints are satisfied, the resource 
capacities are not exceeded, and the problem objectives are simultaneously optimized.  

Table 1 Notations for the mathematical formulation 

Notations Definitions 
𝐻𝐻, 𝑡𝑡 Time horizon and time period index, 𝑡𝑡 = 1, . . . ,𝐻𝐻 
𝑃𝑃, 𝑝𝑝 Set of projects and project index, 𝑝𝑝 = 1, . . . , |𝑃𝑃| 
𝐽𝐽𝑝𝑝, 𝑗𝑗 Set of activities in project 𝑝𝑝 and activity index, 𝑗𝑗 = 1, . . . , �𝐽𝐽𝑝𝑝� for project 𝑝𝑝 
𝑀𝑀𝑝𝑝𝑝𝑝, 𝑚𝑚 Set of modes of activity 𝑗𝑗 in project 𝑝𝑝 and mode index, 𝑚𝑚 = 1, . . . , �𝑀𝑀𝑝𝑝𝑝𝑝� for project 

𝑝𝑝 and activity 𝑗𝑗 
𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝 Duration of activity 𝑗𝑗 of project 𝑝𝑝 in mode 𝑚𝑚 
𝑅𝑅, 𝑟𝑟 Set of renewable resources and renewable resource index, 𝑟𝑟 = 1, . . . , |𝑅𝑅| 
𝑁𝑁, 𝑛𝑛 Set of non-renewable resources and non-renewable resource index, 𝑛𝑛 = 1, . . . , |𝑁𝑁| 
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𝑟𝑟
^
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Amount of renewable resource 𝑟𝑟 required by activity 𝑗𝑗 of project 𝑝𝑝 in mode 𝑚𝑚 

𝑛𝑛
^
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Amount of non-renewable resource 𝑛𝑛 required by activity 𝑗𝑗 of project 𝑝𝑝 in mode 𝑚𝑚 

𝑟𝑟𝑝𝑝𝑟𝑟 Capacity of renewable resource 𝑟𝑟 in period 𝑡𝑡 
𝑛𝑛𝑝𝑝 Capacity of non-renewable resource 𝑛𝑛 
𝐸𝐸𝑝𝑝𝑝𝑝, 𝐿𝐿𝑝𝑝𝑝𝑝 Earliest and latest completion times of activity 𝑗𝑗 in project 𝑝𝑝 
𝐶𝐶 Set of all pairs of activities with immediate predecessor relationship; for example, 

(𝑖𝑖, 𝑗𝑗) ∈ 𝐶𝐶 means that activity 𝑖𝑖 precedes activity 𝑗𝑗 
𝒙𝒙 Set of decision variables 
𝑉𝑉 Number of objective functions 
𝑓𝑓𝑘𝑘(𝒙𝒙) 𝑘𝑘𝑟𝑟ℎ objective function, 𝑘𝑘 = 1, . . . ,𝑉𝑉 
𝒇𝒇(𝒙𝒙) Vector of objective functions 

The precedence relations among activities are demonstrated with a directed acyclic 
activity-on-node graph. The multiple projects are represented as a composite project network in 
general with dummy source and sink nodes. Table 1 provides the notation for the mathematical 
formulation. Eqs. (1) to (7) exhibits the mathematical formulation for the problem denoted by MF. 
This formulation is an extension of the single objective formulation given by Talbot (1982). 

MF 

 Opt 𝒇𝒇(𝒙𝒙) = [𝑓𝑓1(𝒙𝒙),𝑓𝑓2(𝒙𝒙), . . . ,𝑓𝑓𝑣𝑣(𝒙𝒙)], (1) 
subject to  

 
� � 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟 = 1

𝐿𝐿𝑝𝑝𝑝𝑝

𝑟𝑟=𝐸𝐸𝑝𝑝𝑝𝑝

�𝑀𝑀𝑝𝑝𝑝𝑝�

𝑝𝑝=1

,    ∀𝑝𝑝 ∈ 𝑃𝑃,∀𝑗𝑗 ∈ 𝐽𝐽𝑝𝑝, (2) 

   
 

− � � 𝑡𝑡𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟

𝐿𝐿𝑝𝑝𝑝𝑝

𝑟𝑟=𝐸𝐸𝑝𝑝𝑝𝑝

�𝑀𝑀𝑝𝑝𝑝𝑝�

𝑝𝑝=1

+ � � �𝑡𝑡 − 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝�𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟

𝐿𝐿𝑝𝑝𝑝𝑝

𝑟𝑟=𝐸𝐸𝑝𝑝𝑝𝑝

�𝑀𝑀𝑝𝑝𝑝𝑝�

𝑝𝑝=1

≥ 0,     ∀𝑝𝑝 ∈ 𝑃𝑃,∀𝑖𝑖, 𝑗𝑗 ∈ 𝐽𝐽𝑝𝑝,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐶𝐶, (3) 

   
 

�� � � 𝑟𝑟
^
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟+𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝−1

𝑝𝑝=𝑟𝑟

�𝑀𝑀𝑝𝑝𝑝𝑝�

𝑝𝑝=1

�𝐽𝐽𝑝𝑝�

𝑝𝑝=1

|𝑃𝑃|

𝑝𝑝=1

≤ 𝑟𝑟𝑝𝑝𝑟𝑟,     ∀𝑟𝑟 ∈ 𝑅𝑅 and ∀𝑡𝑡 ∈ [1,𝐻𝐻], (4) 

   
 

�� � � 𝑛𝑛
^
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟

𝐿𝐿𝑝𝑝𝑝𝑝

𝑟𝑟=𝐸𝐸𝑝𝑝𝑝𝑝

�𝑀𝑀𝑝𝑝𝑝𝑝�

𝑝𝑝=1

�𝐽𝐽𝑝𝑝�

𝑝𝑝=1

|𝑃𝑃|

𝑝𝑝=1

≤ 𝑛𝑛𝑝𝑝,     ∀𝑛𝑛 ∈ 𝑁𝑁, (5) 

   
 𝐸𝐸𝑝𝑝𝑝𝑝 ≤ 𝑡𝑡𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟 ≤ 𝐿𝐿𝑝𝑝𝑝𝑝            ∀𝑝𝑝 ∈ 𝑃𝑃,∀𝑗𝑗 ∈ 𝐽𝐽𝑝𝑝,∀𝑚𝑚 ∈ 𝑀𝑀𝑝𝑝𝑝𝑝,∀𝑡𝑡 ∈ [1,𝐻𝐻], (6) 
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 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟 = �1, if activity 𝑗𝑗 of project 𝑝𝑝 in mode 𝑚𝑚 ends in period 𝑡𝑡

0, otherwise                                                                              . (7) 

 ∀𝑝𝑝 ∈ 𝑃𝑃,∀𝑗𝑗 ∈ 𝐽𝐽𝑝𝑝,∀𝑚𝑚 ∈ 𝑀𝑀𝑝𝑝𝑝𝑝,∀𝑡𝑡 ∈ [1,𝐻𝐻]  
Eq. (1) demonstrates the vector optimization problem for V  conflicting objectives. Eq. (2) 
represents the assignment constraints that require each activity to be completed exactly once. 
Precedence relations among the activities are maintained by inequality (3). Renewable and non-
renewable resource limitations are enforced by inequalities (4) and (5), respectively. Doubly 
constrained resources are also covered by this formulation (Talbot, 1982; Węglarz et al., 2011). 
Constraint set (6) imposes lower (𝐸𝐸𝑝𝑝𝑝𝑝) and upper bounds (𝐿𝐿𝑝𝑝𝑝𝑝) on the completion times of the 
activities. Variables 𝐸𝐸𝑝𝑝𝑝𝑝 and 𝐿𝐿𝑝𝑝𝑝𝑝 can be obtained by performing forward and backward recursions 
on the resource unconstrained version of the problem using the mode with minimal duration. In 
backward recursion, the completion of the dummy sink activity is set to a known heuristic 
completion time, 𝐻𝐻. If such an estimate is unknown, it is set to the sum of the maximum durations 
of all activities. The decision variables 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟 are defined in Eq. (7). 

The assumption of no precedence relation among the projects can be easily removed. 
Different types of precedence relations can be considered when creating a composite network. A 
project may precede not just another one but also an activity or a set of activities in another project. 
Minimum delays may exist between two consecutive projects. If so desired, these possible 
extensions can be incorporated into MF without causing additional difficulty. 

The assumptions made concerning the cash flows in the projects are as follows. (i) The 
activity costs are incurred at their completion. Dummy activities are excluded because no cost is 
defined for them. (ii) A lump sum payment is received at the termination of each project. (iii) Each 
project starts with an upfront investment, which can be interpreted as a relatively large-scale 
expense to make assets ready for executing the activities (set-up costs). All these financial 
parameters enable us to calculate the NPV of a given multi-project schedule by using an 
appropriate discount factor. 

As mentioned in the Introduction, the objective functions dealt with in this work are Cmax, 
NPV, MCT, and MFT over a set of projects. The calculation of these objective functions for a 
given schedule is described below. 

Completion time of project p = Cmax,p = argmax𝑟𝑟�𝑡𝑡𝑥𝑥𝑝𝑝𝑝𝑝(𝑝𝑝)𝑝𝑝𝑟𝑟�, where 𝑗𝑗(𝑝𝑝)  is the last activity of 
project p, and 𝑗𝑗(𝑝𝑝) =  argmax𝑝𝑝�𝑡𝑡𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟�.   

Starting time of project p = 𝑆𝑆𝑝𝑝 =  argmin𝑟𝑟 �𝑡𝑡𝑥𝑥𝑝𝑝𝑝𝑝(𝑝𝑝)𝑝𝑝𝑟𝑟 − 𝑑𝑑𝑝𝑝𝑝𝑝(𝑝𝑝)𝑝𝑝�, where 𝑗𝑗(𝑝𝑝) is the first scheduled 

activity of project 𝑝𝑝 , and 𝑗𝑗(𝑝𝑝) =  argmin𝑝𝑝�𝑡𝑡𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟 − 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 0�. 
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NPV of project 𝑝𝑝 discounted to 𝑆𝑆𝑝𝑝 = 𝑁𝑁𝑃𝑃𝑉𝑉𝑝𝑝 = lump sum payment realized at Cmax,p discounted to 
𝑆𝑆𝑝𝑝 − (the investment cost realized at 𝑆𝑆𝑝𝑝 + sum over each activity in project 𝑝𝑝 of activity execution 
costs discounted to 𝑆𝑆𝑝𝑝). 

Overall Cmax of projects = 𝐶𝐶𝑝𝑝𝑚𝑚𝑚𝑚 = max
𝑝𝑝

 𝐶𝐶𝑝𝑝𝑚𝑚𝑚𝑚,𝑝𝑝, 

Overall NPV of projects = 𝑁𝑁𝑃𝑃𝑉𝑉 = ∑ (𝑁𝑁𝑃𝑃𝑉𝑉𝑝𝑝𝑝𝑝  discounted to 𝑡𝑡=1), 

Mean completion time = 𝑀𝑀𝐶𝐶𝑀𝑀 = ∑ 𝐶𝐶𝑝𝑝𝑚𝑚𝑚𝑚,𝑝𝑝/𝑝𝑝 |𝑃𝑃|, 

Mean flow time = 𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ (𝐶𝐶𝑝𝑝𝑚𝑚𝑚𝑚,𝑝𝑝 − 𝑆𝑆𝑝𝑝)/𝑝𝑝 |𝑃𝑃|. 

4 Solution methodology 

The approach used in this study was based on the approximation of the Pareto front that aimed to 
provide the decision maker(s) with a set of non-dominated solutions from which to choose. A 
solution here was a vector of 𝑉𝑉 objective functions that corresponded to conflicting objectives 
under consideration. 

4.1 Definition 

A solution 𝑎𝑎 dominates another solution 𝑏𝑏 if all the objective components of 𝑎𝑎 are at least as good 
as those of 𝑏𝑏. Moreover, at least one objective component of 𝑎𝑎 is strictly better than that of 𝑏𝑏. If 𝑎𝑎 
is not dominated by any other solution in the set of solutions, then 𝑎𝑎 is said to be non-dominated. 

In this study, NSGA-II was utilized to handle the multiple objectives (Deb et al., 2002). 
NSGA-II was particularly preferred due to its wide popularity and superior performance in project 
scheduling literature and its observed effectiveness in practical engineering problems (Balouka et 
al., 2016; Xiao et al., 2016; Wang and Zheng, 2018). NSGA-III was recently proposed by Deb and 
Jain (2014) to cope with the simultaneous optimization of numerous objectives (typically, more 
than three). Moreover, NSGA-III was developed to increase diversity of non-dominated solutions. 
In the sequel of this paper, we implemented NSGA-II because we focused on the bi-objective 
version of a project scheduling problem. We also implemented an injection procedure to obtain a 
diverse set of non-dominated solutions. 

The NSGA-II parameters, namely, population size, number of generations, crossover rate, 
and mutation rate, were determined by an extensive fine-tuning experiment. Apart from the 
standard GA operators, NSGA-II has a non-dominated sorting procedure and crowding distance 
operator as additional mechanisms. We contributed to NSGA-II by applying BFP (Özdamar and 
Ulusoy, 1996; Li and Willis, 1992) to the NSGA-II solutions as an improvement procedure. 
Ballestín and Blanco (2015) reported that BFP or its modifications were versatile techniques that 
could be employed for the solution of multi-objective RCPSPs. As previously pointed out, we also 
applied an injection procedure to increase the diversity in the NSGA-II solution set. 
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4.2 Individual representation  

An individual was represented by a double list consisting of the precedence feasible activity list 
(henceforth, we will call it the feasible list) and the feasible mode list (Hartmann, 2001; Ulusoy et 
al., 2001). In the feasible list, the activities were placed into genes to ensure that all the 
predecessors of an activity appeared before it. The mode list consisted of modes assigned to 
activities from their mode sets. Fig. 1 presents an example of feasible and mode lists for a problem 
with seven activities and a single renewable resource. In this figure, the activities and their 
predecessors and assigned modes are listed in the table on the left. Each activity in the feasible list 
is placed into its gene after all its predecessors have already been assigned to the previous genes. 
In the mode list, each gene shows the assigned mode selected from the mode set of the 
corresponding activity. If multiple activities, which can be placed, are present while placing an 
activity into a gene, then we select one of them with equal probabilities. 

 

Fig. 1 Example of the individual representation   

4.3 Initial population generation 

The initial population was generated by randomly creating feasible lists and their corresponding 
mode lists. A dummy source activity was placed into the first gene to create a feasible list. 
Thereafter, a set of activities, which could be placed into the current position, was created for the 
second gene. An activity was randomly selected by assuming equal probabilities of selection from 
this set and placed into the second gene. The set of eligible activities for the third gene was updated, 
and this procedure was repeated until all of the genes in the feasible list were filled. A mode for 
each activity was randomly selected from the corresponding mode set of the activity. Kolisch and 
Drexl (1997) verified that the associated feasibility problem for two or more non-renewable 
resources (|𝑁𝑁| ≥ 2) was NP-complete. This condition for NP-completeness was indeed also valid 
the test problems we employed in this study. The strategy for handling the cases, where the mode 
selections are not feasible with regard to the non-renewable resource capacities, is explained in 
Section 4.5.  

4.4 Scheduling the activities 
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After the feasible and mode lists were obtained, the start and completion times were assigned to 
the activities by using a schedule generation scheme. Demeulemeester and Herroelen (2002) stated 
that among the various schedule generation schemes, researchers commonly preferred the serial 
schedule generation scheme (SSGS) and parallel schedule generation scheme (PSGS) to the others. 
Both mechanisms demonstrated the same computational complexity for the same feasible list. 
However, we preferred the SSGS for generating the schedules in this study because a schedule 
generated by this scheme belonged to the set of active schedules (Kolisch, 1996).  

 

Fig. 2 Example of an SSGS application 

We applied the SSGS to the given individual representation in Fig. 1 to generate a schedule 
displayed in Fig. 2. The resource requirements for the assigned modes in the mode list in Fig. 1 
are provided in the table in Fig. 2. The capacity of the renewable resource was seven units. At each 
step of building the schedule, the algorithm selected the activity from the next gene of the feasible 
list and scheduled it considering the precedence relations and resource usages. Here, for instance, 
activity 1 was first scheduled. Once activity 1 was finished, activity 3 was scheduled, followed by 
activity 2. The earliest precedence feasible period that activity 2 could be assigned to was period 
4. Activities 2 and 3 were simultaneously processed for one period—the duration of activity 2, and 
their joint resource usage was five units. This assignment of activity 2 was also resource feasible. 
Activity 4 was scheduled next according to the feasible list. Given that the predecessors of activity 
4 were activities 2 and 3, the earliest time it could be assigned was when both activities were 
finished, which would be period 9. In the whole duration of four periods of activity 4, the resource 
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requirement would be six units because no other activity had yet been simultaneously assigned 
during its execution periods. Hence, the scheduling of activity 4 starting at period 9 and lasting for 
four periods was precedence and resource feasible. The next activity to be scheduled was activity 
6. Activity 6 could only be scheduled once activities 1, 3, and 4 were finished due to its precedence 
relations. The earliest period that activity 6 could be assigned was period 13. In the whole duration 
of three periods of activity 6, the resource requirement would be seven units because no other 
activity had yet been simultaneously assigned during its execution periods. Hence, the scheduling 
of activity 6 starting at period 13 and lasting for three periods was precedence and resource 
feasible. The schedule generation continued along the same lines, thus resulting in the schedule in 
Fig. 2. 

4.5 Chromosome evaluation 

In NSGA-II, the fitness value of an individual is given by its so-called rank value, which is defined 
as follows. Within the set of all individuals, the subset of non-dominated individuals constitutes a 
Pareto front designated to be of rank 1. If certain individuals are left after this subset is eliminated 
from the set of all individuals, then the process is repeated, thereby resulting in a Pareto front of 
rank 2. This process continues until all individuals are assigned to a Pareto front.  

Some individuals might be infeasible with respect to non-renewable resource usage 
because we randomly generated the initial population as explained in Section 4.3. In such cases, 
we assigned a relatively high rank value to such individuals to secure their elimination in the 
consecutive generations of the algorithm. Test problem sets A, B, and C used in this work for the 
computational study were not restrictive in this respect, thereby resulting only in few infeasible 
instances. Thus, we adopted the strategy of assigning a relatively high rank rather than devising a 
repair mechanism, forming a new list from scratch, or a combination of the above.  

We also assigned relatively high rank values to individuals that are infeasible with respect 
to non-renewable resources generated in the intermediate stages of the algorithm. Infeasibility can 
only result from non-renewable resources. The SSGS schedules the activities in a way that 
renewable resource usages do not exceed the specified capacity of the renewable resources. 

A crowding distance operator was used particularly for binary tournament selection and 
population reduction to maintain diversity (Deb et al., 2002). The crowding distance of an 
individual measures its gap from the neighboring individuals on the same front in the objective 
space using the Euclidean distance. An individual with a large crowding distance is preferable.  

4.6 Forming the next generation 

We implemented a one-point crossover and a two-point crossover modified to accommodate their 
use for multiple modes (Hartmann, 2001). The multi-component uniform order-based crossover 
(MCUOX) proposed by Sivrikaya-Şerifoğlu (1997) was the third crossover mechanism 
implemented in this study. 
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A mutation operator was applied to the feasible and mode lists. On the feasible list, for 
every position 𝑗𝑗, the activities existing in position 𝑗𝑗 and 𝑗𝑗 + 1 were swapped with a probability 
equal to the mutation rate if the precedence relations were satisfied. Once this process was 
completed, the mutation was applied to the mode list. In every position 𝑗𝑗, the mode of the activity 
in position 𝑗𝑗  was mutated with a probability equal to the mutation rate (Hartmann, 2001). If 
mutation occurred, the current mode was randomly replaced by another mode, thereby indicating 
that the current one could also be preserved. 

Parent selection was performed in this study with binary tournament selection (Deb et al. 
(2002) used the same selection procedure in NSGA-II), in which the rank and crowding distance 
values determined the winner (Goldberg, 1989). Between two individuals, the one with the lower 
rank was selected as the parent, with the higher crowding distance being the tiebreaker in case of 
a tie of ranks.  

We let 𝑃𝑃𝑃𝑃𝑃𝑃 be the population size. Parent selection and generation of 𝑃𝑃𝑃𝑃𝑃𝑃 offspring were 
managed to ensure that a new individual list of size 2𝑃𝑃𝑃𝑃𝑃𝑃 was obtained. The reduction of this 
individual list to the population size 𝑃𝑃𝑃𝑃𝑃𝑃 was implemented as described in Deb et al. (2002).  

In this study, an external archive was kept on the side throughout the whole solution 
procedure to keep the recent set of non-dominated solutions. In each generation, we placed the 
copies of all rank 1 individuals into the archive and sorted them using the non-dominated sorting 
procedure. Accordingly, the dominated individuals were removed from the archive. 

4.7 Fine-tuning of parameters and performance measures 

The algorithm parameters, namely, population size, number of generations, crossover rate, and 
mutation rate, were determined by response surface optimization (Myers et al., 2016). Multiple 
output variables were optimized on the basis of multiple input variables. In our case, the input 
variables were the algorithm parameters, and the output variables were its performance measures. 
Najafi et al. (2009) provided an alternative application of the response surface methodology. In 
the published literature, several performance measures were proposed to evaluate a given set of 
non-dominated solutions. We preferred hypervolume (Zitzler and Thiele, 1998), maximum spread 
(Zitzler, 1999), and size of the set of non-dominated solutions because they did not require a 
reference set of non-dominated solutions.  

Large hypervolume values indicated optimal performance for an algorithm. Origin was 
selected as the nadir point for a bi-objective problem with two maximization objectives. In our 
case, we defined the nadir point of Cmax as the sum of the longest duration of each activity among 
its modes (denoted by 𝐶𝐶𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝 ) because Cmax was minimized. 

The maximum spread evaluated the spread of the approximation set across the objective 
space by measuring the size of the space covered by the set. When the problem was bi-objective, 
this metric was reduced to the calculation of the Euclidean distance between the two farthest points 
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in the bi-objective space. For instance, in Fig. 1, the maximum spread is equal to the Euclidean 
distance between the points with the minimum and maximum Cmax values. Zitzler (1999) suggested 
scaling of the objective values because the objective magnitudes might be quite different. 

 

Fig. 3 Example of the hypervolume, maximum spread, and size of the set of non-dominated 
solutions 

In this study, we found the maximum spread MS of a given approximation set as follows: 
we let Cmax and Cmax be the minimum and maximum values of Cmax in the approximation set, 

respectively. Correspondingly, we let 𝑁𝑁𝑃𝑃𝑉𝑉 and 𝑁𝑁𝑃𝑃𝑉𝑉 be defined in the same way. Thus: 

 

𝑀𝑀𝑆𝑆 = ��
𝐶𝐶𝑝𝑝𝑚𝑚𝑚𝑚 − 𝐶𝐶𝑝𝑝𝑚𝑚𝑚𝑚 

𝐶𝐶𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝 �

2

+ �
𝑁𝑁𝑃𝑃𝑉𝑉 − 𝑁𝑁𝑃𝑃𝑉𝑉

𝑁𝑁𝑃𝑃𝑉𝑉𝑝𝑝
�
2

, (8) 

where 𝑁𝑁𝑃𝑃𝑉𝑉𝑝𝑝 is a large value of the corresponding objective. 𝐶𝐶𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝  and 𝑁𝑁𝑃𝑃𝑉𝑉𝑝𝑝 should always be 
larger than the numerators to ensure that the maximum spread can stay between 0 and 1. 𝑁𝑁𝑃𝑃𝑉𝑉𝑝𝑝 
was determined as follows. We considered a multi-project instance where all lump sum payments 
of the projects were paid at time zero. Thereafter, we ordered all activities according to the 
increasing order of activity costs, thereby randomly breaking ties. The investments were assumed 
to occur at the end of each project. This situation represented the optimal hypothetical financial 
scenario (so-called ideal point) and thus would result in an upper bound on the NPV objective, 
namely 𝑁𝑁𝑃𝑃𝑉𝑉𝑝𝑝. We presented the formulation only for the bi-objective case, but it could be easily 
generalized to other multi-objective cases. 

In Fig. 3, we present a set of non-dominated solutions (grey points) obtained for the 
minCmax/maxNPV problem. Given that a nadir point was set, the hypervolume measure computed 
the sum of rectangular areas labeled 1, 2, 3, and 4. The maximum spread measured the Euclidean 
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distance between two farthest points, shown as the points at the corner of rectangular areas 4 and 
1 in this particular case. The size of the set of non-dominated solutions is four in Fig. 3. 

 

4.8 Fine-tuning experiments 

The 10-activity, 20-activity, and 30-activity problem sets from PSBLIB were utilized to apply 
response surface optimization (Kolisch and Sprecher, 1997). Five instances from each of these 
problem sets were selected to ensure that the portfolio of the selected instances was a good 
representative of all instances. The experiments involved operator and parameter combinations. 
Operator combination refers to the combinations of binary tournament selection and crossover 
types (one-point, two-point, and MCUOX). Hence, we have three operator combinations. By 
contrast, parameter combination implies a combination of crossover rate, mutation rate, population 
size, and number of generations. Table 2 shows the possible values that these parameters can take 
on.  

Table 2 Parameter ranges 

Parameter Range Increase in increments 
Crossover rate [0.6, 1.0] 0.1 
Mutation rate [0.01, 0.25] 0.04 

Population size [20, 100] 20 
Number of generations [25, 150] 25 

 

Most research on fine-tuning of GA parameters concluded with large crossover rates and 
small mutation rates, thereby resulting in relatively good solutions. Hence, we started with 
crossover and mutation rate ranges of 0.6 and 0.01, respectively. The corresponding increments 
were selected to cover sufficient search space. With regard to the population size and number of 
generations, we chose the bounds on the ranges and increments (Table 2) to maintain the size of 
the fine-tuning experiment at a reasonable level. The details of the fine-tuning experiments were 
reported in Kucuksayacigil and Ulusoy (2018). 

At the end of the fine-tuning experiments for the objective combination minCmax/maxNPV, 
the best population size and number of generation multiples were determined to be 1.25 and 2.5, 
respectively. For instance, the population size and number of generations for a 200-activity project 
network were set at 250 and 500, respectively. 

5 Incorporating the BFP procedure into NSGA-II 

The BFP procedure depends on the idea of assigning new start and completion times to the 
activities by applying left- and right-shifts to the scheduled activities. This procedure shifts the 
activities by using their slack time and includes two different pass processes. Backward pass 
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increases the start and completion times of the scheduled activities by applying right-shifts; 
forward pass decreases them by applying left-shifts. A single backward pass followed by a forward 
pass constitutes one iteration in the BFP procedure. The BFP procedure must not violate the 
resource and precedence constraints. Fig. 4 presents a pseudo-code for the BFP procedure. Once 
the BFP procedure was applied to an individual, the decision maker was provided with a list of 
non-dominated solutions, which more likely improved objective function values than those of the 
original solutions on which BFP had been applied. 

 

Fig. 4 Pseudocode for the BFP procedure 

BFP was applied in two different modes. The first mode was designated here as “BFP on 
the Archive,” where the archive referred to the set of non-dominated solutions on hand at the end 
of NSGA-II implementation. BFP was applied to this archive. In the second mode, BFP was not 
only applied at the end of NSGA-II implementation but also each time after a certain number of 
generations called the plateau length was generated. The second mode was designated as “BFP in 
the Intermediate Stages.” The objective combination minCmax/maxNPV was utilized to solve the 
A, B, and C sets of the test problems with both modes of BFP (refer to Section 7 for the problem 
sets and their descriptions). The result of the testing and statistical analysis indicated that the BFP 
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on the archive was superior to that in the intermediate stages (Kucuksayacigil and Ulusoy, 2018). 
On the basis of this result, only BFP on the archive mode was employed in the remainder of this 
paper.  

 

6 Incorporating the injection procedure into NSGA-II with BFP on the archive 

The diversity of NSGA-II with BFP on the archive can be increased through the injection of new 
solutions into the population while the algorithm is in progress. In this context, a new solution was 
defined as a solution in which the projects were executed in some feasible order in sequence 
without any delay between the projects. Hence, only one project was executed in each period. The 
solutions differed in the ordering of the projects. 

Injection was performed at every 𝐻𝐻 generation. Thus, deciding on the value of H and the 
number of new solutions to be injected into the population was critical. The number of generations 
𝐺𝐺 for problem set A was 350, and the population size 𝑃𝑃𝑃𝑃𝑃𝑃 was 176. After testing with a small 
number of values, we decided to perform injection every 40 generations and inject 50 solutions to 
the population at each injection. After satisfactory results were obtained, we employed the same 
multipliers in proportion to problem sets B and C. Specifically, ⌈0.284𝑃𝑃𝑃𝑃𝑃𝑃⌉  solutions were 
injected to the population after every 𝐻𝐻 = ⌈0.114𝐺𝐺⌉ generation, where ⌈∙⌉ represented rounding up 
to the nearest integer.  

From here on, NSGA-II with BFP on the archive and injection procedure was referred to 
as hybrid-NSGA-II. Fig. 5 presents a flowchart for the hybrid-NSGA-II.  
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Fig. 5 Flowchart of hybrid-NSGA-II 

 

7 Computational study  

A computational study was performed employing three different multi-project test problem sets 
A, B, and C introduced by Can and Ulusoy (2014). The authors used the single project instances 
presented in PSBLIB (Kolisch and Sprecher, 1997) and combined them into multi-project 
networks. Sets A, B, and C consisted of 81, 84, and 27 instances, respectively. A cost assignment 
technique was proposed by Can and Ulusoy (2014) because those instances did not have any cost 
and payment structure for the activities. Lump sum payments for dummy sink activities of projects 
and investment costs for dummy source activities of projects were defined. Different projects with 
individual renewable and non-renewable resource capacities were brought together to constitute a 
multi-project network. Hence, renewable and non-renewable resource capacities for the multi-
project network were specified. The discount rate was assumed to be 0.2885% per week (15% per 
year) in this study. The financial parameters were set in a way that each project had a positive 
NPV.  

A preprocessing operation was performed to eliminate non-executable modes, redundant 
non-renewable resources, and inefficient modes from the search space and to obtain the final 
version of the test problem sets (Sprecher et al., 1997). The final version of test problem sets A, 
B, and C is available from the corresponding author. 
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The algorithms were implemented in C# and run on a PC with 4 GB RAM and 3.00 GHz 
Intel Core 2 Quad Processor Q9650 (12M Cache, 1333 Mhz FSB). 

7.1 BFP on the archive for minCmax/maxNPV 

In this section, the impact of incorporating BFP on the archive into NSGA-II was tested. Table 3 
summarizes the results of NSGA-II and NSGA-II with BFP on the archive implementation. The 
CPU times of the algorithms presented in this study were reported by Kucuksayacigil and Ulusoy 
(2018). A test instance resulted in multiple non-dominated solutions and multiple Cmax values. The 
results in Table 3 manifest that the average of these Cmax values (ACmax) were first calculated for 
each instance. Then, the average of ACmax values for all the instances were computed (ACmax). 
With regard to the NPV, ANPV denoted the average of NPV values for each instance, and ANPV 
represented the average of ANPVs for all the instances.  

The same instances were used to run NSGA-II and BFP on the archive. We used paired t-
test with 0.05 confidence level whenever the difference between two data sets compared fit the 
normal distribution by using Andersen–Darling test with 0.05 confidence level. This task was 
carried out to conduct ACmax and ANPV comparisons. Otherwise, we used Wilcoxon signed-rank 
test with 0.05 confidence level, which does not require normality of the difference. p-values with 
(*) in Tables 3 through 9 indicate that the Wilcoxon signed-rank test was used to obtain the 
corresponding results.  

In the following analyses reported in Tables 3 and 4–6, null hypothesis H0 refers to the case 
of equality between the means of two data sets. On the one hand, the alternative hypothesis, HA, 
meant that one data set had a smaller/larger mean than that of the other. In the ACmax comparison, 
Table 3 shows that we have sufficient evidence to reject H0, thereby implying that NSGA-II with 
BFP on the archive outperforms NSGA-II in obtaining good ACmax values for all test sets. On the 
other hand, a significant improvement was not observed for ANPV except for problem set A, which 
reflected a statistically significant improvement for ANPV. 

Table 3 Comparison of the performances of NSGA-II and NSGA-II with BFP on the archive 

Test 
sets 

Number 
of 

instances 
ACmax ANPV 

  NSGA-II BFP on the 
archive 

p-
Value NSGA-II BFP on the 

archive 
p-

Value 
A 81 110.97 106.96 5E−15* 281,806 282,119 0.03* 
B 84 114.75 110.69 2E−15* 332,864 333,123 0.17 
C 27 108.31 104.44 9E−11 385,864 385,461 0.36* 

 

7.2 Effects of the injection procedure 
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We compared the solutions obtained by NSGA-II with BFP on the archive without implementing 
injection (the solutions presented in Table 3 under the BFP on the archive heading) and those 
acquired by hybrid-NSGA-II (recall that hybrid-NSGA-II was BFP on the archive with the 
injection procedure). This task was performed to analyze the effects of the injection procedure. 

Table 4 reveals that the injection procedure was effective in improving Cmax because we 
have sufficient evidence to reject the associated H0. This procedure is also effective in obtaining 
solutions with high NPV. 

Table 4 Effects of the injection procedure on 𝐀𝐀𝐀𝐀𝐦𝐦𝐦𝐦𝐦𝐦 and 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 

Test 
sets 

Number 
of 

instances 
ACmax ANPV 

  
BFP on the 
archive w/o 

injection 

Hybrid-
NSGA-II p-Value 

BFP on the 
archive w/o 

injection 

Hybrid-
NSGA-II p-Value 

A 81 106.96 112.99 3E−29 282,119 296,752 5E−15* 
B 84 110.69 118.42 8E−26 333,123 354,743 2E−15* 
C 27 104.44 110.99 7E−06* 385,461 400,699 1E−11 
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Fig. 6 Comparison of NSGA-II and hybrid-NSGA-II in four different instances, namely, upper 
left: A22_33, upper right: A33_12, lower left: B1514_22, and lower right: C3_23 

Fig. 6 demonstrates Pareto front approximations obtained with NSGA-II and hybrid-
NSGA-II algorithms in four different instances. Hybrid-NSGA-II obtained improved solutions, 
with a chance of presenting a large number of non-dominated solutions. The computational times 
for the NSGA-II algorithm and BFP on the archive and injection procedures are presented in 
Appendix A. 

Table 5 summarizes the corresponding AMFT  and AMCT  results obtained from the 
schedules resulting from the (minCmax/maxNPV) problem. The injection procedure was highly 
effective in reducing the mean completion and flow times of projects. 

As previously stated, new solutions were injected to maintain the algorithm diversity. 
Hence, we report the number of non-dominated solutions obtained with and without injection in 
Table 6 to illustrate the aforementioned concept. The table demonstrates that the injection 
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procedure helps find significantly non-dominated solutions because we have sufficient evidence 
to reject the corresponding H0. 

Table 5 Effects of the injection procedure on 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 and 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 

Test 
sets 

Number 
of 

instances 
AMFT AMCT 

  
BFP on the 
archive w/o 

injection 

Hybrid
-

NSGA
-II 

p-Value 
BFP on the 
archive w/o 

injection 

Hybrid
-

NSGA
-II 

p-Value 

A 81 84.73 60.80 5E−15* 88.59 76.54 5E−15* 
B 84 91.40 66.75 2E−15* 94.65 80.48 2E−15* 
C 27 79.32 61.40 7E−11 82.21 73.91 8E−09 

 

Table 6 Comparison of the number of non-dominated solutions with and without injection 

Test sets Number of 
instances Average number of non-dominated solutions 

  BFP on the archive w/o 
injection Hybrid-NSGA-II p-Value 

A 81 2.58 5.57 4E−12* 
B 84 2.85 7.29 1E−21 
C 27 3.37 7.37 5E−07 

 

Table 7 Hypervolume metric for NSGA-II and hybrid-NSGA-II 

Test sets Number of 
instances Hypervolume 

  NSGA-II Hybrid-NSGA-II p-Value 
A 81 0.116 0.136 1E−16 
B 84 0.131 0.155 3E−21 
C 27 0.137 0.171 7E−11 

 

Table 8 Maximum spread metric for NSGA-II and hybrid-NSGA-II 

Test sets Number of 
instances Maximum spread 

  NSGA-II Hybrid-NSGA-II p-Value 
A 81 0.031 0.101 2E−22 
B 84 0.029 0.128 2E−32 
C 27 0.038 0.142 5E−13 
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Table 9 Size of the set of non-dominated solutions for NSGA-II and hybrid-NSGA-II 

Test sets Number of 
instances Size of the solution set 

  NSGA-II Hybrid-NSGA-II p-Value 
A 81 2.802 5.568 6E−11* 
B 84 2.762 7.286 2E−23 
C 27 3.037 7.370 4E−08 

We compared the algorithms on the basis of their average objective function values. The 
algorithms should also be compared on the basis of some performance metrics, such as the 
previously defined hypervolume, maximum spread, and size of the set of non-dominated solutions. 
Tables 7, 8, and 9 report such comparisons with the corresponding p-values. The tables illustrate 
that hybrid-NSGA-II provides solutions with higher hypervolumes, maximum spreads, and larger 
sets of non-dominated solutions. Figures 8, 9, and 10 in Appendix B provide visual support for the 
statistical tests reported in Tables 7, 8, and 9. These performance metric values were calculated for 
the objective combination minCmax/maxNPV. Although we computed the hypervolume metric, the 
objective function values were normalized because their scales were different. By contrast, 
maximum spread employs by definition normalized values of the objective functions (Eq. [8]). 

 

7.3 Solutions for minMFT/maxNPV and minMCT/maxNPV 

In this section, we reported the results of the three bi-objective problems obtained by processing 
instance sets A, B, and C. We reported the results for those two parameters—out of ACmax, ANPV, 
AMFT, and ANPV—that were present in the objective combination at hand. Then, the average 
values for the remaining two objectives were calculated using the schedules obtained for the 
objective combination. For example, we calculated the AMCT and ANPV values for the objective 
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combination of minMCT/maxNPV. In this way, we could compare the impact of the objective 
combination considering the remaining two objectives. 

Table 10 Comparison of results for different objective combinations from Set A 

Objective 
combinations Hybrid-NSGA-II 

 ANPV AMFT AMCT ACmax 
minCmax/maxNPV 296,752 60.8  76.5 112.99 
minMFT/maxNPV 278,305 37.7 103.7 194.1 
minMCT/maxNPV 302,253 49.3 69 125.1 

 

Table 11 Comparison of the results of the different objective combinations from Set B 

Objective 
combinations Hybrid-NSGA-II 

 ANPV AMFT AMCT ACmax 
minCmax/maxNPV 354,743 66.7  80.5 118.4 
minMFT/maxNPV 311,640 42.7 140 266 
minMCT/maxNPV 363,284 56.1 73.7 132.4 

 

Table 12 Comparison of the results of the different objective combinations from Set C 

Objective 
combinations Hybrid-NSGA-II 

 ANPV AMFT AMCT ACmax 
minCmax/maxNPV 400,699 61.4  73.9 111 
minMFT/maxNPV 356,321 38.5 131.7 259.8 
minMCT/maxNPV 407,492 50.5 64.3 128 

Tables 10, 11, and 12 present the relevant results for each objective combination for 
problem sets A, B, and C, respectively. The value for an objective in the objective combination 
investigated in that row was written in italics. 

In all problem sets, AMCT , AMFT , and ACmax  reached their best values when the 
corresponding objective was part of the objective combination ANPV. The highest values for all 
problem sets were reached for the objective combination minMCT/maxNPV. This finding was 
consistent with the cash flow structure adopted here with a lump sum payment at the termination 
of and the positive return from each project.  

One other point that attracted attention was that AMCT had its highest value for all problem 
sets for the objective combination minMFT/maxNPV. This result implied that in a given period, 
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the number of projects being processed in general was relatively low, thereby allowing a higher 
number of resource allocations and leading to smaller flow times. This notion further implied that 
the projects were less densely distributed, thereby increasing the completion times. The objective 
combination led to the smallest ANPV values over all the problem sets. This result was mainly 
due to the lump sum payment at the termination of each project. Hence, increasing the completion 
time values decreased the contribution of the lump sum payments to the total NPV of the projects.   

Similar to AMCT, ACmax, also had its highest value for all problem sets for the objective 
combination minMFT/maxNPV. A similar line of thought could be deduced for ACmax to that 
given above for AMCT. 

A substantial difference existed between AMFT values when the objective combinations 
were minCmax/maxNPV and minMCT/maxNPV. This situation was essentially a result of 
obtaining different start and completion times for projects by changing the modes of activities.  

7.4 Different perspective of looking at the schedules 

NPV has been widely preferred to point out the financial success or failure of project schedules. 
However, from the perspective of the contractor, the mechanism by which frequent payments are 
received and the level of cash available during on-going management of projects are not revealed. 
Cash availability is a crucial financial necessity for a contractor to run the business continuously 
(Goldratt, 1997). An objective reflecting this necessity is the minimization of the maximal 
cumulative gap of the contractor between cash inflow and outflow (Ning et al., 2017). The 
difference is designated as the CB. We use the convention that a positive CB implies that the 
contractor is in need of compensation for cash (such as borrowing). By contrast, a negative CB 
represents that the contractor has cash on hand. If we calculate CB for every period once a schedule 
is obtained and the cumulative sum of these values, then we obtain the CB diagram for the 
contractor. Hence, we can determine the maximum of this cumulative series. We do not consider 
this performance measure in this study. In this section, we demonstrate the CB diagrams for two 
sample schedules and state relevant managerial insights. 

The example compares CB diagrams of schedules pertaining to A21_11 and A21_21 
instances. A21_21 differs from A21_11 in renewable resource capacities, with the former having 
larger capacities (A21_21 and A21_11 have 25 and 19 units and 19 and 14 units of renewable 
resource capacities, respectively). All remaining properties of these two instances are retained for 
comparison. 
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Fig. 7 CB diagram of instances A21_11 and A21_21 

Fig. 7 illustrates the CB diagrams of the schedules of A21_11 and A21_21. Given that the 
latter has substantial renewable resource capacities, its projects are completed early (A21_11 and 
A21_21 have overall Cmax of 157 and 107, respectively). Furthermore, A21_11 takes longer to 
complete its first project to the last one compared with A21_21 because its tighter renewable 
resource capacities do not allow for more frequent completion of projects. The CB diagrams 
initially increase due to the execution of activities and project initiations. The diagrams increase 
until a lump sum payment is received (reflected as decreases). We observe a dramatic increase in 
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the CB diagram for A21_21 because the number of projects initiated in this instance is large. Both 
CB diagrams nearly have the same slope until period 84. A21_21 can schedule 109 activities, 
whereas A21_11 can schedule only 78 activities until period 84, which is in line with our 
expectation. Our detailed analysis reveals that approximately 20% of the non-dummy activities of 
instance A21_21 are quickly executed by selecting different modes.  

We derive two important managerial insights out of this case. First, the mode change is an 
important strategy tool for the project contractor. The contractor is able to reach the desired 
outcome by changing the modes of activities. Second, we examine the reason behind the small 
slope of the CB diagram of A21_21. Accordingly, we find that a large CB has a negative impact 
on the NPV, which is one of the objectives used for solving these instances. Specifically, if several 
activities are scheduled at earlier times, then the NPV decreases. Hence, we can state that maxNPV 
and minimization of maximum CB are non-conflicting objectives to a certain degree. 

8 Discussion of computational results 

The computational study has resulted in the following managerial insights for decision 
environments in project management where bi-objective multiple projects are simultaneously 
executed:  

(i) The computational results clearly indicate that an attempt to reduce the mean flow time 
of projects by adopting minMFT/maxNPV as an objective combination has an extremely negative 
impact on NPV, completion times of the projects, and the overall Cmax. Hence, unless the decision 
maker prefers short flow times for the projects above all the other objectives for some reason, this 
objective combination is not recommended from the NPV perspective.   

(ii) Higher values obtained for NPV are generally in line with finishing each project as 
early as possible, that is, minimizing the mean completion times of the projects (minMCT) rather 
than decreasing the overall Cmax (minCmax). This situation is due to the positive NPV resulting 
from the combination of the financial parameters together with the lump sum payment at the 
termination of each project. Competitive due dates can be quoted to the client when the project 
completion times are reduced.  

(iii) The modification of the modes of activities, that is, increasing or decreasing the 
activity progress rates, is a significant strategy tool for the contractor. This step is also applied to 
the performance measure CB. The completion times of the projects and the overall Cmax 
considerably decrease with the increase of the capacities of renewable resources. Thus, seeking a 
clever policy for assigning modes to activities is definitely rewarding. 

(iv) The objective combination minMCT/maxNPV still leads to acceptable values for the 
overall Cmax. This combination also leads to smaller MFT values compared with the 
minCmax/maxNPV objective combination. The results obtained for the mean objective values by 
minCmax/maxNPV are relatively close but inferior to those obtained by minMCT/maxNPV. By 
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contrast, the results obtained by minMFT/maxNPV are preferable. The above discussion indicates 
that the decision makers can limit themselves to analyzing the schedules provided by the non-
dominated solutions obtained by the objective combinations minMCT/maxNPV and 
minCmax/maxNPV given the decision-making process is restricted to NPV, Cmax, MFT, and MCT. 

9 Conclusions 

In this work, we studied bi-objective decision problems in project management, namely, 
minCmax/maxNPV, minMFT/maxNPV, and minMCT/maxNPV, in the case of multi-project, 
multi-mode RCPSP. An extensive computational study was performed using existing sets of test 
problem data that had been extended to include for each project an initial investment cost, activity 
costs, and a lump sum payment at the termination of the project. In the computational study, we 
also analyzed a financial performance measure referred to as CB.  

We implemented hybrid-NSGA-II, which was superior to NSGA-II in terms of finding 
non-dominated solutions with better objective function values. Hybrid-NSGA-II could find a 
number of non-dominated solutions with great diversity, thus enlarging the decision space and 
extensively providing a versatile choice for the decision maker.  

The problem investigated in this study was indeed rich, as several extensions for further 
research could be suggested. An interesting line of research would be to investigate different 
payment structures other than the lump sum payment due at the termination of each project. 
Examples for such payment structures could be found among others in Ulusoy et al. (2001), Malek 
et al. (2005), and Leyman and Vanhoucke (2016).  

The analysis of the marginal impact of increasing the budget available and its allocation to 
different resource capacities on the objectives under consideration is another research area of 
particular practical and theoretical interest. This problem is referred to as the capacity planning 
problem in multi-project environments (Gademan and Schutten, 2005; Besikci et al., 2015). The 
solution procedure proposed here can be employed in the analysis of different scenarios for 
capacity planning. 

Other objective functions, such as the minimization of the maximum CB and mean 
weighted tardiness of the projects, that have not been considered here can be applied. For example, 
due dates can be incorporated into the problem definition to consider tardiness, adding a new 
dimension of interest. 

Appendix A: CPU times 

In Table 13, we list the computational times of NSGA-II and the proposed BFP on the archive and 
injection procedures. A hybrid-NSGA-II algorithm is obtained by combining these procedures. 
The CPU times in Table 13 demonstrate the results for the solution of the instances with 
minCmax/maxNPV. The BFP on the archive procedure apparently requires less than a second 
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because it is not a repetitive process. In addition, its solution time only depends on the number of 
non-dominated solutions. The computational times of the injection procedure are less than 1/3 of 
NSGA-II over the instances considered, but it has considerable positive impact on the algorithm 
(Tables 4–6). The reported CPU times are obtained for a subset of test problems covering the 
spectrum of a different number of activities for comparison. The algorithms are implemented in 
C# and run on a PC with 8 GB RAM and 2.7 GHz Dual-Core Intel Core i5. 

Table 13 Sample of CPU times for NSGA-II, injection, and BFP on the archive 

Instances Number of 
activities 

CPU times (seconds) 
NSGA-II Injection BFP on the archive 

A11_11 140 819 175 0.13 
A12_11 140 730 262 0.21 
A13_11 140 721 155 0.10 
A21_11 140 970 303 0.16 
A22_11 140 980 279 0.09 
A23_11 140 923 325 0.05 
A31_11 140 1046 382 0.09 
A32_11 140 1165 313 0.08 
A33_11 140 1212 394 0.06 

B1010_11 100 249 23 0.13 
B1012_11 120 505 66 0.12 
B1014_11 140 744 181 0.10 
B1016_11 160 1317 276 0.22 
B1018_11 180 2026 304 0.11 
B1020_11 200 2508 391 0.09 
B1030_11 300 11857 2670 0.34 

 

Appendix B: Performance metrics 

Figures 8, 9, and 10 illustrate the hypervolume, maximum spread, and size of the set of non-
dominated solutions obtained with NSGA-II and hybrid-NSGA-II performed on different problem 
sets. The hybrid-NSGA-II results in better solutions in terms of these performance measures over 
problem sets A, B, and C. 
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Fig. 8 Comparison of NSGA-II and hybrid-NSGA-II for problem set A 
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Fig. 9 Comparison of NSGA-II and hybrid-NSGA-II for problem set B 
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Fig. 10 Comparison of NSGA-II and hybrid-NSGA-II for problem set C 
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