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Abstract 

Cellular solids have been utilized in many engineering applications for thermal insulation, 

their high specific out-of-plane compressive strengths and stiffnesses, their sieving 

capabilities, and in-plane energy absorption properties. With the advances in additive 

manufacturing, numerous novel 2D cellular solid designs have emerged. In-plane 

properties of 2D cellular solids have attracted attention for their intriguing behaviour 

under compressive, tensional and shear loads.  

As structures deviate from common geometries such as square, triangular, or hexagonal, 

analytical and numerical methods to predict effective elastic properties get dramatically 

more convoluted. Thus, analytical models in particular have been limited to the simpler 

designs. Moreover, validating and/or characterizing experimental analyses of novel 

geometries are often limited in scope due to size effects and inconsistent constraints 

among the test specimens and practical structures.  

This study presents a new approach that amalgamates virtual and real-life static analysis 

of cellular structures of repeating cells. Representative equivalent structures for testing, 

i.e. analogue test specimens are determined using parametric FEM analysis. Analogues 

for hexagonal honeycomb arrays are manufactured and tested under compression. 

Compressive moduli of the selected analogues exhibit great consistency between 

numerical and experimental analyses. The approach sets a framework for future research 

in using analogues for determination of in-plane properties of numerous other 2D cellular 

solid designs. 
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Deneysel Analoglar Kullanılarak Altıgen Bal Peteği Yapıların Düzlem İçi Tek 

Eksenli Basma Modülünün Belirlenmesi 

Barış Emre Kıral 

Malzeme Bilimi ve Nanomühendislik 

Yüksek Lisans Tezi, 2020 

Tez Danışmanı: Prof. Dr. Melih Papila 

Anahtar Kelimeler: 2B hücreli katılar, birim hücreler, etkin elastisite modülü 

öngörüsü, sonlu ögeli çözümleme, mekanik testler, deneysel analog yapılar 

 

Özet 

Hücreli katı malzemeler, ısı yalıtımı, yüksek düzlem dışı bükülmezlik ve mukavemeti, 

eleme özelliği ve düzlem içi ve dışı enerji emme kapasitesi nedeniyle pek çok 

mühendislik alanında kullanılmaktadır. Eklemeli üretimdeki gelişmeler ile pek çok özgün 

iki boyutlu (2B) hücresel yapı tasarımı ortaya çıkmıştır. 2B hücreli katıların basma, 

çekme ve kesme altındaki davranışı özellikle ilgi çekmektedir. 

Yapılar kare, üçgen, altıgen gibi alışılmış yapılardan uzaklaştıkça etkin elastik 

özelliklerin analitik ve numerik yöntemlerle öngörülmesi çarpıcı biçimde karışık bir hal 

almaktadır. Bu nedenle, özellikle analitik çözümler daha basit şekillerle sınırlı kalmıştır. 

Buna ek olarak özgün şekilleri nitelendirmek ve/veya doğrulamak için yapılan deneysel 

testler, boyut etkileri ve deney-gerçek yapı arasındaki tutarsız kısıtlama koşulları nedeni 

ile sınırlı bir şekilde yapılabilmektedir. 

Bu çalışma tekrarlayan 2B hücreli yapıların denenmesi için zahiri ve gerçek durağan 

çözümlemeyi birleştiren bir yaklaşım sunmaktadır. Fiziksel test için temsili eşdeğer aday 

yapılar önerilmiş ve sonlu elemanlar çözümleme yöntemi ile sanal olarak tasarımlanmış 

ve tekrarlayan referans yapı sonuçlarına göre sınanmıştır. Bu deneysel analog yapılar 

daha sonra üretilmiş ve basma altında test edilmiştir. Seçilen analog yapıların basma 

modülleri numerik ve deneysel çözümlemeler arasında tutarlılık göstermiştir. Bu 

yaklaşım ile, gelecekte pek çok diğer hücreli yapıların özelliklerinin deneysel analoglar 

kullanılarak belirlenmesi için bir çerçeve ortaya konulmuştur. 
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1 Introduction 

 

1.1 General Introduction 

Cellular solids are low assemblies of cells with solid edges or faces, packed to fill a 

desired space efficiently. These structures can be found both in nature and manufactured 

synthetically.  

Cellular solids are used in many applications for their thermal insulation properties, their 

high specific compressive strengths and moduli, their buoyancy, and their 

filtration/sieving capabilities. Early applications of honeycombs were mostly done to 

utilize their out-of-plane properties; however, some recent studies have focused on 

buckling and localized and progressive deformation behavior of honeycombs under in-

plane compressive loads.  

Out-of-plane[1]–[9] and in-plane[3], [6], [10]–[27] properties of honeycomb core 

structures have been studied both experimentally and theoretically. Theoretical works 

ranges from analytical calculations to Finite Element Method analysis (FEM) for 

determination of mechanical properties.  

In this work, various physical analogues are studied under compression. Low-

deformation compressive moduli of these structures are then correlated to the 

corresponding larger array. 

One of the most important properties of these solids are their relative densities. Relative 

density can be expressed as[28]: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝜌∗

𝜌𝑠
      

where 𝜌∗ is the density of the cellular material and 𝜌𝑠 is the density of the solid comprising 

the walls of the cellular solid. Commercial cellular solids can have relative densities 

ranging from 000.1 to 0.5; after which cell walls are too thick to warrant the use of cellular 

solids. With increasing relative density, the cell walls thicken and the voids within the 

structure shrink. 

Hexagonal honeycombs are among the simplest, but most effective arrangement of cells. 

This shape gathers a lot of attention as hexagonal honeycombs are found in nature where 

evolution lead to such arrangements to maximize packing and stacking. Synthetic 

 
(Eq. 1) 
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hexagonal honeycombs can also be made in several ways: they can be pressed into half-

hexagon shaped strips which can then be adhered together, can be cast into moulds in a 

liquid state to harden later on, can be processed in top-down approaches such CNC 

milling from a bulk solid, or lastly, with the advent of additive manufacturing, 3D printed 

in a bottom-up approach. 

Figure 1 summarizes the deformation mechanism under compression. The compression 

mechanics of a hexagonal honeycombs initiate with bending of cell walls. If the material 

behaves linearly elastic under compression, then this bending region of the compression 

exhibits the effective elastic modulus of the honeycomb. Following this region of 

compression, additional loads will start to crush individual cells progressively. The first 

crushed cells can initiate at any point of the honeycomb but will usually cause a cascading 

collapse of neighboring cells perpendicular to the load. This crushing of cells will plateau 

the stress-strain profile until a point where a sufficient number of cells are crushed. After 

this point, the bulk material starts carrying the load and a sudden peak in the stress-strain 

profile is observed. 

 

 

 

 

 

Figure 1. Behavior of honeycombs under in-plane compression 

(Adapted from Ashby; Gibson; ‘Cellular Solids’ 1997) 
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1.2 Analytical Models for Calculating Effective Modulus 

The bending of cell walls can be described by 5 equivalent material constants: 𝐸1
∗ 

(Young’s modulus of the honeycomb in 1-direction), 𝐸2
∗ (Young’s modulus of the 

honeycomb in 2-direction), 𝐺12
∗  (shear modulus of the honeycomb in 1-2 direction), 

𝜈12
∗ , 𝜈21

∗  (Poisson’s ratios of the honeycomb in 1-2 and 2-1 directions respectively). The 

five properties are not independent, and the following reciprocity relation holds: 

𝐸1
∗𝜈21

∗ =  𝐸2
∗𝜈12

∗   

In the linear region, deformation occurs mostly by the bending of inclined walls[16], [19], 

[29]–[31], and walls parallel to the load exhibit negligible deformation. Thus, 𝐸1
∗ and 𝐸2

∗ 

can be approximated by the bending of walls non-parallel to the load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

Figure 2. Dimensions and orientations in a regular 

hexagonal unit cell. 

Figure 3. Forces and moments acting on inclined members under 

compression in the 1-direction (a) and 2-direction (b). 

(Eq. 2) 
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For direction 1, the moment bending the cell walls can be expressed as: 

𝑀 =  
𝑃𝑙𝑠𝑖𝑛𝜃

2
 

The force P causing the bending moment can be expressed as: 

𝑃 =  𝜎1(ℎ + 𝑙𝑠𝑖𝑛𝜃)𝑏 

From Roark and Youngs standard beam theory (1976), the total deflection δ of the beam 

can be expressed as: 

𝛿 =  
𝑃𝑙3𝑠𝑖𝑛𝜃

12𝐸𝑠𝐼
  

where I, the second moment of inertia is: 

𝐼 =  
𝑏𝑡3

12
 

Then the strain in the 1 direction, 𝜀1, becomes: 

𝜀1  =  
𝛿𝑠𝑖𝑛𝜃

𝑙𝑐𝑜𝑠𝜃
 

Plugging in equations 4, 5 and 6 into equation 7 yields: 

𝜀1  =  
𝜎1(ℎ + 𝑙𝑠𝑖𝑛𝜃)𝑏𝑙3𝑠𝑖𝑛𝜃

12𝐸𝑠
𝑏𝑡3

12

𝑠𝑖𝑛𝜃

𝑙𝑐𝑜𝑠𝜃
  =   

𝜎1(ℎ + 𝑙𝑠𝑖𝑛𝜃)𝑙2𝑠𝑖𝑛2𝜃

𝐸𝑠𝑡3𝑐𝑜𝑠𝜃
 

Since  

𝐸1
∗  =  

𝜎1

𝜀1
, 

Then: 

𝐸1
∗  =  

𝜎1

𝜎1(ℎ + 𝑙𝑠𝑖𝑛𝜃)𝑙2𝑠𝑖𝑛2𝜃
𝐸𝑠𝑡3𝑐𝑜𝑠𝜃

 =   
𝐸𝑠𝑡3𝑐𝑜𝑠𝜃

(ℎ/𝑙 + 𝑠𝑖𝑛𝜃)𝑙3𝑠𝑖𝑛2𝜃
 =  (

𝑡

𝑙
)

3 𝐸𝑠𝑐𝑜𝑠𝜃

(ℎ/𝑙 + 𝑠𝑖𝑛𝜃)𝑠𝑖𝑛2𝜃
 

Similarly, for direction 2, the moment bending the cell walls can be expressed as: 

𝑀 =  
𝑊𝑙𝑐𝑜𝑠𝜃

2
 

The force W causing the moment can be expressed as: 

 

 

 

(Eq. 3) 

 

 

 

(Eq. 4) 

(Eq. 5) 

(Eq. 6) 

(Eq. 7) 

(Eq. 8) 

(Eq. 9) 

(Eq. 10) 

(Eq. 11) 
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𝑊 =  𝜎2𝑙𝑏𝑐𝑜𝑠𝜃 

From Roark and Youngs standard beam theory (1976), the total deflection δ of the beam 

can be expressed as: 

𝛿 =  
𝑊𝑙3𝑐𝑜𝑠𝜃

12𝐸𝑠𝐼
 

where I is once again, the second moment of inertia: 

𝐼 =   
𝑏𝑡3

12
 

Then the strain in the 2 direction, 𝜀2, becomes: 

𝜀2  =  
𝛿𝑐𝑜𝑠𝜃

ℎ + 𝑙𝑠𝑖𝑛𝜃
 

Plugging in equations 12, 13 and 14 into equation 15 yields: 

𝜀2  =    
𝜎2𝑙𝑏𝑐𝑜𝑠𝜃𝑙3𝑐𝑜𝑠𝜃

12𝐸𝑠
𝑏𝑡3

12

𝑐𝑜𝑠𝜃

ℎ + 𝑙𝑠𝑖𝑛𝜃
  =  

𝜎2𝑙4𝑐𝑜𝑠3𝜃

𝐸𝑠𝑡3(ℎ + 𝑙𝑠𝑖𝑛𝜃)
  =   

𝜎2𝑙3𝑐𝑜𝑠3𝜃

𝐸𝑠𝑡3(ℎ/𝑙 + 𝑠𝑖𝑛𝜃)
 

 

Since  

𝐸2
∗  =  

𝜎2

𝜀2
, 

Then: 

𝐸2
∗ =

𝜎2

𝜎2𝑙3𝑐𝑜𝑠3𝜃
𝐸𝑠𝑡3(ℎ/𝑙 + 𝑠𝑖𝑛𝜃)

   =  (
𝑡

𝑙
)

3 𝐸𝑠(ℎ/𝑙 + 𝑠𝑖𝑛𝜃)

𝑐𝑜𝑠3𝜃
 

For regular hexagonal arrays in which θ = 30°, we see isotropic behaviour: 

𝐸1
∗

𝐸𝑠
 =  

𝐸2
∗

𝐸𝑠
 = 2.3 (

𝑡

𝑙
)

3

 

For large deformations, the effects of axial and shear loads on the non-parallel wall 

deflections become non-negligible. For high deformations, stress-strain profile becomes 

nonlinear. The bending deflections are magnified: 

(Eq. 12) 

(Eq. 13) 

(Eq. 14) 

(Eq. 15) 

(Eq. 16) 

(Eq. 17) 

(Eq. 18) 

(Eq. 19) 
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𝛿𝑙𝑎𝑟𝑔𝑒 = 𝛿𝑠𝑚𝑎𝑙𝑙

1

1 −
𝑃𝑎𝑥𝑖𝑎𝑙

𝑃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

 

where 𝑃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙is the Euler load. For this reason, linear studies and models only govern 

honeycombs in low-strain regimes. 

The Poisson’s ratios of hexagonal arrays can be expressed as: 

𝜈12 
∗  =  −

𝜀2

𝜀1
 =  

𝑐𝑜𝑠2𝜃

(ℎ/𝑙 + 𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃
 

and 

𝜈21 
∗  =  −

𝜀1

𝜀2
 =  

(ℎ/𝑙 + 𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃

𝑐𝑜𝑠2𝜃
 

For regular hexagonal arrays in which θ = 30°, we see that 𝜈12 
∗ = 𝜈21 

∗ = 1. For 

honeycombs in which θ < 0°, a negative Poisson’s ratio is observed. 

The relative density can also be defined by a simple geometric relation: 

𝜌∗

𝜌𝑠
=  

𝑡/𝑙(ℎ/𝑙 + 2)

2𝑐𝑜𝑠𝜃(ℎ/𝑙 + 𝑠𝑖𝑛𝜃)
 

which reduces to  

𝜌∗

𝜌𝑠
=  

2

√3

𝑡

𝑙
 

for regular honeycombs. 

1.3 Refining the Analytical Model 

This analytical model can be improved upon by expressing the deflections of the inclined 

members as the sum of deflections due to axial, shear and bending deformations[32]:  

 

𝛿1 =  𝛿𝑎𝑐𝑜𝑠𝜃 +  𝛿𝑠𝑠𝑖𝑛𝜃 +  𝛿𝑏𝑠𝑖𝑛𝜃 

(Eq. 20) 

(Eq. 22) 

(Eq. 21) 

(Eq. 23) 

(Eq. 24) 

(Eq. 25) 
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The axial deflection can simply be expressed from Hooke’s Law: 

𝛿𝑎  =  
𝐹1𝑙𝑏𝑐𝑜𝑠𝜃

𝐸𝑠𝑏𝑡
 

The shear deflection can be expressed by Timoshenko beam theory (1970): 

𝛿𝑠  =  
𝐹1𝑙𝑏

3𝑠𝑖𝑛𝜃

12𝐸𝑠𝐼
(2.4 + 1.5𝜈𝑠 (

𝑡

𝑙𝑏
)

2

) 

The bending deflection can by expressed by Roark and Youngs standard beam theory 

(1976): 

𝛿𝑏  =  
𝐹1𝑙𝑏

3𝑠𝑖𝑛𝜃

12𝐸𝑠𝐼
 

Plugging equations 26, 27 and 28 into equation 25: 

𝛿1 =  
𝐹1𝑙𝑏𝑐𝑜𝑠𝜃

𝐸𝑠𝑏𝑡
𝑐𝑜𝑠𝜃 +  

𝐹1𝑙𝑏
3𝑠𝑖𝑛𝜃

12𝐸𝑠𝐼
(2.4 + 1.5𝜈𝑠 (

𝑡

𝑙𝑏
)

2

)𝑠𝑖𝑛𝜃 +  
𝐹1𝑙𝑏

3𝑠𝑖𝑛𝜃

12𝐸𝑠𝐼
𝑠𝑖𝑛𝜃 

 

Using the relations: 

𝜀1  =  
𝛿1

𝑙𝑐𝑜𝑠𝜃
, 

𝜎1  =  
𝐹1

𝑏(ℎ + 𝑙𝑠𝑖𝑛𝜃)
 

𝐸1
∗  =  

𝜎1

𝜀1
 

The modulus in the 1-direction then becomes: 

Figure 4. Deflection of inclined member represented as the sum of 

deflections from axial, shear and bending loads. 

(Eq. 9) 

(Eq. 26) 

(Eq. 27) 

(Eq. 28) 

(Eq. 29) 

(Eq. 31) 

(Eq. 30) 

(Eq. 32) 
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𝐸1
∗  =  𝐸𝑠 (

𝑡

𝑙𝑏
)

3 𝑐𝑜𝑠𝜃

(ℎ/𝑙 + 𝑠𝑖𝑛𝜃)𝑠𝑖𝑛2𝜃
𝐴 

where: 

𝐴 =
1

1 + (2.4 + 1.5𝜈𝑠 + 𝑐𝑜𝑡2𝜃) (
𝑡
𝑙𝑏

)
2 

Similarly, the modulus in the 2-direction becomes: 

𝐸2
∗  =  𝐸𝑠 (

𝑡

𝑙𝑏
)

3 (ℎ/𝑙 + 𝑠𝑖𝑛𝜃)

𝑐𝑜𝑠3𝜃
𝐵 

Where  

𝐵 =
1

1 + (2.4 + 1.5𝜈𝑠 + 𝑡𝑎𝑛2𝜃 +
2(ℎ𝑏/𝑙𝑏)

𝑐𝑜𝑠2𝜃
 ) (

𝑡
𝑙𝑏

)
2 

 

1.4 Limitations of Analytical and Experimental Models 

1.4.1 Geometric Changes in Stiffness 

Analytical models neglect the change of stiffness due to geometrical changes. When the 

walls of the hexagonal array are under stress, their shapes change, resulting in a change 

in their effective stiffness. This instantaneous change in shape affects how the geometry 

will respond to additional incremental load. 

  

 

 

 

 

 

 

 

Figure 5. Change in dimensions and orientations of load-carrying 

members causing a change in effective stiffness. 

(Eq. 33) 

(Eq. 34) 

(Eq. 35) 
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Numerical analysis like finite element method can capture these small changes. In 

ANSYS® Academic Research Mechanical, Release 19.2, this effect can be accounted for 

with the ‘Large Deflection’ option. 

1.4.2 Isotropic Assumption 

Classical analytical models were theorized for isotropic materials.  There have been 

efforts to modify them for laminated multi-material walls[5]. Honeycombs made from an 

assorted layup of fiber reinforced composites are also of increasing interest which can 

greatly complicate the stiffness response of the honeycomb. In the case of orthotropic 

materials like continuous fiber reinforced polymer matrix composites, Wang and Wang 

(2018) theorized that Ashby and Gibson’s analytical honeycomb stiffness model can be 

adapted by modifying the moments and the longitudinal forces to behave in accordance 

to composite’s A (extensional-stiffness), B (coupling-stiffness) and D (bending stiffness) 

matrices from Classical Laminated Beam Theory (CLBT).  

With these modifications in mind, for an orthotropic honeycomb, the moments and 

longitudinal force becomes: 

𝑀 = 𝐵𝜀𝑥 + 𝐷
𝑑2𝑤

𝑑𝑥2
 

𝑁 = 𝐴𝜀𝑥 + 𝐵
𝑑2𝑤

𝑑𝑥2
 

where: 

𝐴 =  ∑ 𝐸𝑠𝑖(𝑧𝑖 − 𝑧𝑖−1)

𝑛

𝑖=1

 

𝐵 =  
1

2
∑ 𝐸𝑠𝑖(𝑧𝑖

2 − 𝑧𝑖−1
2)

𝑛

𝑖=1

 

𝐷 =  
1

3
∑ 𝐸𝑠𝑖(𝑧𝑖

3 − 𝑧𝑖−1
3)

𝑛

𝑖=1

 

where Esi is the elastic modulus of ith ply, and zi is the distance between the bottom 

surface of the bottom ply to top surface of the ith ply. 

If no normal cell wall stress is assumed, we are left with the bending moment that works 

to bend the inclined cell walls of the honeycomb: 

(Eq. 37) 

(Eq. 36) 

(Eq. 40) 

(Eq. 39) 

(Eq. 38) 
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𝑀 = (𝐷 −
𝐵2

𝐴
)

𝑑2𝑦

𝑑𝑥2
 

where x is the longitudinal and y is the transverse direction of the laminate comprising 

the cell walls. Since (D-B2/A) is the effective flexural rigidity, the effective modulus of 

the honeycomb becomes: 

𝐸1
∗  =  𝐸𝑠 (

𝑡

𝑙𝑏
)

3 𝑐𝑜𝑠𝜃

(ℎ/𝑙 + 𝑠𝑖𝑛𝜃)𝑠𝑖𝑛2𝜃
 (𝐷 −

𝐵2

𝐴
) 

𝐸2
∗  =  𝐸𝑠 (

𝑡

𝑙𝑏
)

3 (ℎ/𝑙 + 𝑠𝑖𝑛𝜃)

𝑐𝑜𝑠3𝜃
(𝐷 −

𝐵2

𝐴
) 

 

1.4.3 Size Effect 

Furthermore, cellular solids are, in practice, finite objects, and the boundary conditions 

imposed upon them in real life differ from numerical studies with periodic boundary 

conditions. Several works have been done on the ‘size effect’ on the response of 

honeycombs[33]–[36]. 

The same honeycomb will react to in-plane compression differently depending on how 

many cells are found in the particular structure, even after normalization by area. 

Generally, an increasing (axial # of cells / transverse # of cells) ratio will result in an 

increase in effective modulus[37]. 

 

 
Figure 6. Different shapes of honeycombs with equally dimensioned 

unit cells. Different boundary conditions result in different moduli. 

(Eq. 43) 

(Eq. 42) 

(Eq. 41) 
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Onck, Andrews and Gibson (2001) determined that there exists a relation between α (the 

width of the honeycomb divided by width of a single cell 𝐷 = √3𝐿, refer to Figure 7), 𝐸∗ 

(effective modulus of the honeycomb) and 𝐸𝑖𝑛𝑓
∗  (effective modulus of the same 

honeycomb extending in 1 and 2-directions to infinity): 

α = 
𝑊

𝐷
 𝐸∗

𝐸𝑖𝑛𝑓
∗  

1 ≤ α < 2 1

2𝛼
 

2 ≤ α < 3 41

28𝛼
 

3 ≤ α < 4 165

67𝛼
 

8 ≤ α < 9 7.45

𝛼
 

16 ≤ α < 17 15.45

𝛼
 

 

 

 

1.5 Research Hypothesis 

 

Contrary to numerical analysis, it is significantly challenging, if not impossible to apply 

periodic boundary conditions to an experimental setting. To realize or simulate these 

boundary conditions practically, a unit cell can be designed to be a representation of a 

reference array. This unit cell by design, when tested experimentally, should exhibit the 

behavior of the reference array despite its much-reduced size and preparation cost.  

 

 

 

 

 

Table 1. Relationship between α, E∗ and 

Einf
∗  in a regular hexagonal honeycomb. 

(Adapted from Onck, Andrews and 

Gibson ‘Size effects in ductile cellular 

solids. Part I: modeling’ 2001) 

Figure 7. W and D lengths in size 

parameter ‘α’. 

Propose a unit 

cell design to 

simulate the 

constraints 

within an array. 

Investigate the 

correct geometry 

using parametric 

analyses. 

Test 

experimentally 

to confirm the 

hypothesis. 

Figure 8. Flowchart summarizing research steps. 
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2 Methods 

2.1 Representative Element and Reference Array Design 

Computational representative volume elements (RVE) have been investigated in 

thoroughly for in-plane behavior of honeycombs[32], [38], [39]. Some of these 

representative volume elements are shown in Figure 9. 

 

 

These RVE’s are sections taken from the whole structure and they can be stacked 

periodically to create the infinite array.  

To design a representative test element that would practically simulate an array of many 

cells, constraints must be implied so that a repeating unit cell within the array would react 

similarly to deformation. 

If a single unit cell (for hexagonal honeycombs, a single hexagon) is isolated and tested 

under compression, the non-inclined walls are free to translate in the transverse direction 

(Figure 10).  

 

 
Figure 9. RVE’s under periodic boundary conditions from various research*. 

*: a) Malek, Sardar; Gibson, Lorna Effective elastic properties of periodic hexagonal honeycombs, 2015 

b) Zhao, Yang; Ge, Meng; Ma, Wenlai The effective in-plane elastic properties of hexagonal honeycombs with 

consideration for geometric nonlinearity, 2020 

c) Chen, Yu; Hu, Hong In-plane elasticity of regular hexagonal honeycombs with three different joints: A 

comparative study, 2020 
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However, within an array under a distributed load, the transverse translation of non-

inclined walls of a unit cell in the center of the array is constrained by the neighboring 

unit cells (Figure 11) as the whole assembly should work in concert. This causes the non-

inclined walls to act as rigid bodies that anchor the bending inclined walls. Note that 

moving away from the central cell to the sides, the number of neighboring cells in each 

of the sides of the cell starts to differ. And getting closer to the array’s edge, this disparity 

of prohibitive structures causes the cells to undergo transverse deformation. Thus, the 

overall array structure will exhibit transverse deformation (Figure 12). 

 

 

 

Figure 10. Deformation of an isolated unit cell under compression. 

Figure 11. Deformation of a central cell within the array. 
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When designing a representative testing cell, this constrained deformation of non-inclined 

walls must be considered. A single basic repeating unit cell tested experimentally does 

not simulate the larger array accurately. Instead, the basic repeating unit cell was extended 

to include the complete joint structure and segments of its closest neighboring unit cells. 

When this so called ‘spider-web’ structure (Figure 13) is enclosed by a shell, the 

prohibitive effect of the original neighboring cells can be simulated. To generalize the 

approach for enclosing these shells, 3 models are proposed that could arguably be 

applicable to any periodic 2D cellular structure (Table 2). The dimensions for strain 

calculation and stress normalization were based on the deformation of the spider-web 

structure (Figure 14). 

 

 

 

Figure 12. Transverse directional deformation of an array under 

compression in the 2-direction (y-axis in the image). Note that the 

central array experiences no transverse deformation and the edges show 

maximum transverse deformation (red and dark blue) 
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Designation Description Visualization 

10x10 

Reference 

Array 

(RA) 

A larger array with 10 

cells in the 1-direction 

and 10 cells in the 2-

direction 

 

Representative 

Element 1 

(RE-α) 

A RE enclosed by a 

parametric shell, with 

vertexes on closest joints 

 

Representative 

Element 2 

(RE-β) 

A RE enclosed by a 

parametric shell, with 

vertexes on closest 

neighboring cell centers 

 

Representative 

Element 3 

(RE-γ) 

A RE surrounded by 

closest neighboring 

cells, enclosed by 

parametric shell 

 

 

 

 

 

Table 2. Geometries of reference array and representative elements 

Figure 13. The spider-web structure and the constraints imposed on these 

structures by an enclosed shell. 



16 

 

Note that these representative elements are no longer typical unit cells. They cannot 

be added together with a periodicity to form the targeted larger array. Representative 

elements are separate, but equivalent structures to the larger array for investigation of in-

plane elastic properties. 

A specific thickness of this enclosing boundary is expected to exhibit the compressive 

response of the larger array. This thickness varies with the wall thickness, the wall length, 

and the inclined wall angle of the simulated array. Thus, this boundary thickness ‘t_b’ 

behaves akin to the material constants of a bulk material. 

 

  

   

 

 

 

 

Figure 14. Dimensions of RA (top-left), RE-α (top-right), RE-β (bottom-

left) and RE-γ (bottom-right) for FEM and experimental analysis. 
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The dimensions for strain, stress and relative density calculation for each specimen are: 

 

Where F is the force reaction due to displacement boundary condition. 

 

2.2 Finite Element Analysis 

ANSYS® Workbench 19.2 Static Structural Module was used to conduct the FEA 

Simulations. A linear elastic model was selected to represent the PLA specimen. To 

determine elastic modulus and Poisson’s ratio, dog bone specimens were printed and 

tested in tension with a UTM. Print orientation of the dog bone sample was kept the same 

as honeycomb and unit cell specimens to account for the same anisotropy inherent in 3D 

printing. Longitudinal and transverse 350 Ohm Omega strain gauges were used in unison 

to measure the Poisson’s ratio. Values of E=2780 MPa and v=0.25 were in agreement 

with the literature[40] [41].  

 

 

Specimen Stress 

(1-direction) 

Strain 

(1-direction) 

Stress 

(2-direction) 

Strain 

(2-direction) 

RA 𝑭

(𝑳𝒊𝟐) 𝒃
 

𝜟𝑳𝒊𝟏

𝑳𝒊𝟏

 
𝑭

(𝑳𝒊𝟏) 𝒃
 

𝜟𝑳𝒊𝟐

𝑳𝒊𝟐

 

RE-α 𝑭

(𝑳𝒊𝛂𝟐) 𝒃𝛂

 
𝜟𝑳𝒊𝛂𝟏

𝑳𝒊𝛂𝟏

 
𝑭

(𝑳𝒊𝛂𝟏) 𝒃𝛂

 
𝜟𝑳𝒊𝛂𝟐

𝑳𝒊𝛂𝟐

 

RE-β 𝑭

(𝑳𝒊𝛃𝟐) 𝒃𝛃

 
𝜟𝑳𝒊𝛃𝟏

𝑳𝒊𝛃𝟏

 
𝑭

(𝑳𝒊𝛃𝟏) 𝒃𝛃

 
𝜟𝑳𝒊𝛃𝟐

𝑳𝒊𝛃𝟐

 

RE-γ 𝑭

(𝑳𝒊𝛄𝟐) 𝒃𝛄

 
𝜟𝑳𝒊𝛄𝟏

𝑳𝒊𝛄𝟏

 
𝑭

(𝑳𝒊𝛄𝟏) 𝒃𝛄

 
𝜟𝑳𝒊𝛄𝟐

𝑳𝒊𝛄𝟐

 

Table 3. Stress and strain definitions for all specimens in the 1 and 2-

directions. 

 Figure 15. Mechanical tests of PLA for modulus determination. 
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Figure 16. Typical mesh applied to specimens (left) and a specimen 

under deformation showing maximum principal stress (right). 

Table 4. ANSYS® Workbench simulation parameters. 

Large deflection was enabled to simulate geometric effects on elasticity. Weak springs 

with forces in the order of 0.001% or less of the reaction forces were used to eliminate 

mechanical instability. Meshes around the joints were refined edgewise to capture joint-

related deflections more accurately. Boundary conditions fixed the geometry with 0 

D.O.F. on the bottom edge/edges for RA, RE-α, RE-γ and on the bottom face for RE-β. 

A constant displacement was applied from the top edge/edges of RA, RE-α, RE-γ and on 

the top face for RE-β. D.O.F. were restrained in the other two axes. These boundary 

conditions were selected to simulate the testing conditions in a compression test.  

 

 

 

 

Analysis 

Type 

Geometry 

Type 

Solver 

Type 

Weak 

Springs 

Large 

Deflection 

Inertial 

Relief 

Material 

Model 

Static 

Structural 

3D Direct On On Off Linear 

Elastic/ 

Isotropic 

# of 

Steps 

Load BC Constraint 

BC 

Load BC Constraint 

BC 

Input 

Parameters 

Output 

Parameter 

1 Displacement 

u(y), 

u(x)=u(z)=0 

Fixed 

Support 

Displacement 

u(y), 

u(x)=u(z)=0 

Fixed 

Support 

t_w, t_b Force 

Reaction 

(y) @ 

Supports 

Element 

Size 

Element 

Type 

Element 

Order 

# of 

Elements 

Along Walls 

Mesh 

Refinement 

Meshing 

Method 

Meshing 

Algorithm 

2 mm SOLID186 Quadratic >10 3, Around 

Joint Edges 

Tetrahedrons Patch 

Conforming 
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The following procedure was followed for the parametric analysis of all specimens: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Import R, L and M 

‘Skeleton’ geometries of 

RA, RE-α, RE-β, and 

RE-γ specimens with 

arbitrary and minimal 

wall thicknesses into 

ANSYS® SpaceClaim 

Parametrize wall and 

boundary thicknesses 

and link data to ANSYS 

Static Structural Module 

Apply displacement to induce 5% overall 

strain on the specimen. Restrain opposite side 

of the specimen. Select boundary conditions 

(BC) to simulate the loading conditions of a 

mechanical test as best as possible. 

Do a 20 sub-step analysis.  For RA, 

parametrize the wall thicknesses. For 

RE-α, RE-β, and RE-γ specimens, 

parametrize both wall and boundary 

thicknesses. Probe force reactions due 

to displacement. 

If the results converge, 

normalize the force values 

with area of the cross-

section of specimen to get 

the stress values 

If the results do not converge due to 

highly distorted elements, either 

increase weak spring stiffness, or re-

mesh using nonlinear adaptive region 

with strain energy coefficient of 0.85 

For RA specimens, use 

linear regression to fit a 

line to the stress-strain 

curve of the array to find 

the elastic modulus. 

Import Linear Elastic 

material properties 

acquired from 

mechanical testing 

For RE-α, RE-β, and RE-γ 

specimens, do a preliminary 5 step 

analysis with varying boundary 

thicknesses to determine the 

approximate range containing the 

representative boundary thickness. 

This will capture the local shape of 

the boundary thickness vs stress 

curve with greater accuracy. 

For RE-α, RE-β, and RE-γ specimens, 

use up to 6-degree polynomials to fit the 

boundary thickness-stress curves. Use 

the Newton-Raphson Method to find the 

representative boundary thickness.  

Figure 17. Flowchart for FEM analysis 
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Specimens were modelled 

parametrically in 

SOLIDWORKS 2018 

software. 

Models were sliced for 3D 

printing using PrusaSlicer 

2.0 software. 

Specimens were printed in 

batches in a Prusa MK3S FDM 

Printer with the 3-direction 

coinciding with printer’s Z-axis. 

2.3 Design and 3D Printing of Specimens 

Arrays and representative elements were modeled in SOLIDWORKS® using parametric 

dimensions for wall thickness, boundary thickness, and wall length. A sufficiently high 

depth of 24mm was selected among all specimens to ensure no buckling occurs during 

compression testing. Models were exported in ‘.stl’ format to be sliced in PrusaSlicer® 

2.0 software. 

Specimens were sliced with their out-of-plane orientation coinciding with the printer’s z-

axis. This was done to eliminate the need for supports during printing and keep material 

properties constant in the in-plane axes. 

Physical analogues were manufactured using a Prusa® MK3S FDM printer in batches. 

All specimens were printed with Esun® PLA+ filament (silver color). Several printing 

parameters were tested to optimize layer adhesion, gap fill, stringing, bed adhesion, hot 

end wobble and other printing artifacts. An enclosure was used to keep the chamber 

temperature slightly higher than room temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Flowchart for FDM manufacturing. 
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Printing parameters:  

Layer 

Height 

Nozzle 

Temperature 

Print Bed 

Temperature 

Max Print 

Speed 

Nozzle 

Diameter 

Perimeter 

Width 

Infill 

Percentage 

0.2 mm 210° (PLA+)  

245° (PETG) 

250° (ABS+) 

60° (PLA+)  

90° (PETG) 

100° (ABS+) 

80 mm/s 0.4 mm 0.46 mm 100% 

Extrusion 

Multiplier 

Number of 

Perimeters 

Infill Angle # of 

Top/Bottom 

Layers 

Seam 

Alignment 

Infill/Perimeter 

Overlap 

Retraction 

Compensation 

0.94 1 40° 5/4 Random 25% 0.03 mm 

 

 

2.4 Mechanical testing 

Uniaxial compression tests (up to %5 contraction) were performed with a Zwick/Roell 

Z100 Universal Testing Machine. A strain rate of 5 mm/min was utilized. Thin aluminum 

tape was adhered to both compression plates and were allowed to be indented during the 

test. This negligible deformation in the larger scope of things prevented slippage when 

applying edge loads as shown. The rotating ball joint of the mobile compression plate 

were also fixed perpendicularly to the load direction to reduce the D.O.F. The force 

readings were done through a 100kN load cell. Displacement readings were done from 

the crosshead movement. 

 

 

 

 

Table 5. 3D printing parameters. (Parameters may vary with different 

printers and filament brands) 

Figure 19. Schematic of the compression jig. 



22 

 

 

 

 

 

 

 

Figure 20. Testing setup (left), 3D printed specimens (right). 

 

Figure 21. Close up of RE-α_1 loaded on the face (left) and RE-α_2 

loaded on the edge (right). 
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3 Results & Discussion 

3.1 FEA Results 

3.1.1 Naming Convention 

Specimens are grouped as 4 different geometries: RA (reference array), RE-α 

(representative element alpha), RE-β (representative element beta) and RE-γ 

(representative element gamma). These geometries have 3 subgroups: R (for ‘regular’), 

L (for ‘larger’) and M (for ‘mixed’: a mix of long and short cell walls). Throughout this 

work, R, L and M specimens have been color coded: R in red, L in cyan, and M in 

green. Each of these subgroups have 5 different wall thickness specimens, denoted with 

_0.46t_w, _0.92t_w, _1.38t_w, _1.84t_w and _2.30t_w. Refer to Figure 22 and Figure 

23 for visualization of several example specimens. All specimens are investigated in both 

_1 and _2 directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. RA_R_2.30t_w (left), RA_L_2.30t_w (middle), RA_M_2.30t_w 

(right). Shapes are to scale within the figure. 

Figure 23. Top row: RE-α_R_1.38t_w (left), RE-α_L_1.38t_w (middle), RE-

α_M_1.38t_w (right). Middle row: RE-β_R_1.38t_w (left), RE-β_L_1.38t_w 

(middle), RE-β_M_1.38t_w (right). Bottom row: RE-γ_R_1.38t_w (left), RE- 

γ_L_1.38t_w (middle), RE- γ_M_1.38t_w (right). Shapes are to scale within the 

figure. 
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3.1.2 List of Virtual Test Specimens 

 

Designation Wall 

Thickness 

(mm) 

l (mm) h (mm) θ 

(°) 

Es 

(MPa) 

νs Relative 

Density 

# of 

Cells 

Parametric 

Boundary 

(Yes/No) 

RA_R_0.46t_w 0.46 9 9 30 2780 0.25 0.059 100 No 

RA_R_0.92t_w 0.92 9 9 30 2780 0.25 0.118 100 No 

RA_R_1.38t_w 1.38 9 9 30 2780 0.25 0.177 100 No 

RA_R_1.84t_w 1.84 9 9 30 2780 0.25 0.236 100 No 

RA_R_2.30t_w 2.30 9 9 30 2780 0.25 0.295 100 No 

RA_L_0.46t_w 0.46 18 18 30 2780 0.25 0.030 100 No 

RA_L_0.92t_w 0.92 18 18 30 2780 0.25 0.059 100 No 

RA_L_1.38t_w 1.38 18 18 30 2780 0.25 0.089 100 No 

RA_L_1.84t_w 1.84 18 18 30 2780 0.25 0.118 100 No 

RA_L_2.30t_w 2.30 18 18 30 2780 0.25 0.148 100 No 

RA_M_0.46t_w 0.46 4.5 9 30 2780 0.25 0.094 100 No 

RA_M_0.92t_w 0.92 4.5 9 30 2780 0.25 0.189 100 No 

RA_M_1.38t_w 1.38 4.5 9 30 2780 0.25 0.283 100 No 

RA_M_1.84t_w 1.84 4.5 9 30 2780 0.25 0.378 100 No 

RA_M_2.30t_w 2.30 4.5 9 30 2780 0.25 0.472 100 No 

RE-α_R_0.46t_w 0.46 9 9 30 2780 0.25 - 1 Yes 

RE-α _R_0.92t_w 0.92 9 9 30 2780 0.25 - 1 Yes 

RE-α _R_1.38t_w 1.38 9 9 30 2780 0.25 - 1 Yes 

RE-α _R_1.84t_w 1.84 9 9 30 2780 0.25 - 1 Yes 

RE-α _R_2.30t_w 2.30 9 9 30 2780 0.25 - 1 Yes 

RE-α _L_0.46t_w 0.46 18 18 30 2780 0.25 - 1 Yes 

RE-α _L_0.92t_w 0.92 18 18 30 2780 0.25 - 1 Yes 

RE-α _L_1.38t_w 1.38 18 18 30 2780 0.25 - 1 Yes 

RE-α _L_1.84t_w 1.84 18 18 30 2780 0.25 - 1 Yes 

RE-α _L_2.30t_w 2.30 18 18 30 2780 0.25 - 1 Yes 

RE-α _M_0.46t_w 0.46 4.5 9 30 2780 0.25 - 1 Yes 

RE-α _M_0.92t_w 0.92 4.5 9 30 2780 0.25 - 1 Yes 

RE-α _M_1.38t_w 1.38 4.5 9 30 2780 0.25 - 1 Yes 

RE-α _M_1.84t_w 1.84 4.5 9 30 2780 0.25 - 1 Yes 

RE-α _M_2.30t_w 2.30 4.5 9 30 2780 0.25 - 1 Yes 

RE-β _R_0.46t_w 0.46 9 9 30 2780 0.25 - 1 Yes 

RE-β _R_0.92t_w 0.92 9 9 30 2780 0.25 - 1 Yes 

RE-β _R_1.38t_w 1.38 9 9 30 2780 0.25 - 1 Yes 

RE-β _R_1.84t_w 1.84 9 9 30 2780 0.25 - 1 Yes 

RE-β _R_2.30t_w 2.30 9 9 30 2780 0.25 - 1 Yes 

RE-β _L_0.46t_w 0.46 18 18 30 2780 0.25 - 1 Yes 

RE-β _L_0.92t_w 0.92 18 18 30 2780 0.25 - 1 Yes 

RE-β _L_1.38t_w 1.38 18 18 30 2780 0.25 - 1 Yes 

RE-β _L_1.84t_w 1.84 18 18 30 2780 0.25 - 1 Yes 

RE-β _L_2.30t_w 2.30 18 18 30 2780 0.25 - 1 Yes 

RE-β _M_0.46t_w 0.46 4.5 9 30 2780 0.25 - 1 Yes 
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RE-β _M_0.92t_w 0.92 4.5 9 30 2780 0.25 - 1 Yes 

RE-β _M_1.38t_w 1.38 4.5 9 30 2780 0.25 - 1 Yes 

RE-β _M_1.84t_w 1.84 4.5 9 30 2780 0.25 - 1 Yes 

RE-β _M_2.30t_w 2.30 4.5 9 30 2780 0.25 - 1 Yes 

RE-γ_R_0.46t_w 0.46 9 9 30 2780 0.25 - 1 Yes 

RE-γ_R_0.92t_w 0.92 9 9 30 2780 0.25 - 1 Yes 

RE-γ_R_1.38t_w 1.38 9 9 30 2780 0.25 - 1 Yes 

RE-γ_R_1.84t_w 1.84 9 9 30 2780 0.25 - 1 Yes 

RE-γ_R_2.30t_w 2.30 9 9 30 2780 0.25 - 1 Yes 

RE-γ_L_0.46t_w 0.46 18 18 30 2780 0.25 - 1 Yes 

RE-γ_L_0.92t_w 0.92 18 18 30 2780 0.25 - 1 Yes 

RE-γ_L_1.38t_w 1.38 18 18 30 2780 0.25 - 1 Yes 

RE-γ_L_1.84t_w 1.84 18 18 30 2780 0.25 - 1 Yes 

RE-γ_L_2.30t_w 2.30 18 18 30 2780 0.25 - 1 Yes 

RE-γ_M_0.46t_w 0.46 4.5 9 30 2780 0.25 - 1 Yes 

RE-γ_M_0.92t_w 0.92 4.5 9 30 2780 0.25 - 1 Yes 

RE-γ_M_1.38t_w 1.38 4.5 9 30 2780 0.25 - 1 Yes 

RE-γ_M_1.84t_w 1.84 4.5 9 30 2780 0.25 - 1 Yes 

RE-γ_M_2.30t_w 2.30 4.5 9 30 2780 0.25 - 1 Yes 

 

 

 

3.1.3 Reference Array Simulations 

Up to 5% strain, all specimens except for RA_M specimen in the 2-direction exhibited 

linear elastic behavior. The RA_M specimen in the 2-direction underwent buckling below 

5% strain for wall thicknesses of 0.46, 0.92, 1.38 and 1.84 mm. For these specimens, the 

point at which the curve abruptly changed slope was taken as the limit. Corresponding 

representative element analyses were done with these new limits in mind. Increasing 

relative density resulted in an exponential increase in compressive moduli. Specimens 

with similar relative density, regardless of specimen size, exhibited equal moduli 

(RA_R_0.46t_w & RA_L_0.92t_w, RA_R_0.92t_w & RA_L_1.84t_w). In Figure 24, 

the dashed curves represent the ‘L’ type (large) specimens, the solid curves 

represent the ‘R’ type (regular) specimens and the diamond-marked curves 

represent the ‘M’ type specimens. X and Y axes are shown in logarithmic scale. 

Table 6. Naming of virtual test specimens. 
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Figure 24. Effect of Cell Wall thickness of RA on the honeycomb 

elastic modulus under compression in the 1-direction (top) and 2-

direction (bottom). 
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3.1.4 Representative Element Simulations  

In figures Figure 25 to Figure 30, the dashed cyan curves, the solid red curves and the 

solid green curves represent ‘L’, ‘R’ and ‘M’ type specimens, respectively. The faint 

dashed curves show the parametric analysis of various boundary thicknesses. The black-

bound diamond markers show the corresponding representative boundary thickness 

‘t_b*’ that causes the representative element to exhibit modulus equivalent to the 

reference array ‘AR’ for the same wall thickness ‘t_w’ and the array stress that they 

exhibit for 5% contraction.   

The shape of the curve, or concavity discussion have been investigated in depth in section 

3.3.1. 

3.1.4.1 RE-α Simulations  

Investigating the array moduli vs representative boundary thickness ‘t_b*’, Re-α 

specimens exhibited an exponential growth relation for R, L & M specimens in the 1-

direction (Figure 25 - middle graph). In the 2-direction, R and L specimens exhibited 

exponential growth whereas the M specimen exhibited logarithmic growth (Figure 26- 

middle graph). Re-α_M_1 specimen also exhibited an inflection point that might be 

attributed to the small sample size of the data pool.  

Investigating the relative density vs representative boundary thickness ‘t_b*’, Re-α 

specimens exhibited an logarithmic growth relation for R, L & M specimens in the 1-

direction (Figure 25 - bottom graph). In the 2-direction, R and L specimens exhibited a 

linear growth relation whereas the M specimen exhibited a logarithmic growth relation 

(Figure 26- bottom graph). 

For the Re-α_M_2.30t_w_2 specimen, varying the boundary thickness did not result in a 

convergent solution. This is due to increasing dimension of the specimen and the total 

displacement not scaling with this increase. For Re-α_M specimens, this analogue was 

valid in a relative density range of 0 < 
𝜌∗

𝜌𝑠
 < 0.38. 

 

 

 



28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Top: Parametric boundary thickness analysis of RE-α in the 1-direction. 

Middle: Array modulus vs boundary thickness of RE-α in the 1-direction.     

Bottom: Relative density vs boundary thickness of RE-α in the 1-direction. 
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Figure 26. Top: Parametric boundary thickness analysis of RE-α in the 2-direction. 

Middle: Array modulus vs boundary thickness of RE-α in the 2-direction.       

Bottom: Relative density vs boundary thickness of RE-α in the 2-direction. 
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3.1.4.2 RE-β Simulations  

Similar to RE-α specimens, for array moduli vs representative boundary thicknesses 

behavior, Re-β specimens exhibited an exponential growth relation for R, L & M 

specimens in the 1-direction and R, L, M specimens in the 2-direction. Re-β_M_2 

specimen exhibited 2 inflection points which could be contributed to limited sample size.  

For relative density behavior vs representative boundary thicknesses, Re-β specimens 

exhibited a logarithmic growth relation for R and M specimens and linear relation for L 

specimen in the 1-direction. R and L specimens exhibited a linear relation in the 2-

direction, whereas the M specimen exhibited a logarithmic growth relation. Re-β_M_2 

specimen exhibited 1 inflection point which could again be contributed to limited sample 

size. 

For Re-β_M_1.84t_w_1 and Re-β_M_2.30t_w_1 specimens, varying the boundary 

thickness did not result in a convergent solution. This is due to increasing dimension of 

the specimen and the total displacement not scaling with this increase. For Re-β_M 

specimens, this analogue was valid in a relative density range of 0 < 
𝜌∗

𝜌𝑠
 < 0.28. 
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Figure 27. Top: Parametric boundary thickness analysis of RE-β in the 1-direction. 

Middle: Array modulus vs boundary thickness of RE-β in the 1-direction.       

Bottom: Relative density vs boundary thickness of RE-β in the 1-direction. 
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 Figure 28. Top: Parametric boundary thickness analysis of RE-β in the 2-direction. 

Middle: Array modulus vs boundary thickness of RE-β in the 2-direction.       

Bottom: Relative density vs boundary thickness of RE-β in the 2-direction. 
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3.1.4.3 RE-γ simulations  

For array moduli vs representative boundary thickness behavior, Re-γ specimens 

exhibited an exponential growth relation for all specimens. 

For representative boundary thicknesses vs relative density behavior, Re- γ specimens 

exhibited a linear relation for all specimens. 

This analogue was valid for all attempted relative densities: of 0 < 
𝜌∗

𝜌𝑠
 < 0.47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Top: Parametric boundary thickness analysis of RE-γ in the 1-direction. 

Middle: Array modulus vs boundary thickness of RE-γ in the 1-direction.       

Bottom: Relative density vs boundary thickness of RE-γ in the 1-direction. 
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Figure 30. Top: Parametric boundary thickness analysis of RE-γ in the 2-direction. 

Middle: Array modulus vs boundary thickness of RE-γ in the 2-direction.       

Bottom: Relative density vs boundary thickness of RE-γ in the 2-direction. 
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3.1.5 Representative Ratio for Analogous Specimens 

Parametric boundary thickness analysis showed that for every wall thickness value, there 

exists an appropriate boundary thickness that simulates the larger array ‘RA’. Table 7 & 

Table 8 outlines these representative boundary thickness (t_b*) along with the modulus 

of the reference array and how it compares to Ashby/Gibson analytical model (1999) and 

Malek/Gibson iteration of the same model (2015). Note that the RA FEM results lie in 

between the two models for all specimens. If the size effect from Onck’s work (2001) is 

adapted to RA, we see that: 

𝛼 =
𝑊

𝐷
 

For 1-direction, for values of W=8H and D=H, α=8. 

For 2-direction, for values of W=10H and D=H, α=10. 

Referring back to Table 1 for 1-direction, the 
𝐸∗

𝐸𝑖𝑛𝑓
∗  value of 

7.45

𝛼
 is in good agreement with 

the data (Table 7, comparing FEA modulus to the analytical models) for relative densities 

≥ 0.236 for R-type specimens (such as RA_R_1.84t_w and RA_R_2.30t_w), for all 

relative densities for L-type specimens, and for relative densities ≤ 0.189 for M-type 

specimens.  

Then, 
𝐸∗

𝐸𝑏𝑢𝑙𝑘
∗  can be calculated for α=10 using the experimental data of L-type specimens 

in the 2-direction. Averaging values of L-type specimens FEA modulus/Ashby-Gibson 

modulus: 

𝐸∗

𝐸𝑖𝑛𝑓
∗  = 

10.99

𝛼
  [for 10 ≤ α < 11] 

Thus, for 1-direction, 
𝐸∗

𝐸𝑖𝑛𝑓
∗  comes out to be 0.931 and for 2-direction 

𝐸∗

𝐸𝑏𝑢𝑙𝑘
∗  comes out to be 

1.099 meaning a 10x10 array simulates an infinite array with less than 10% deviation. 

The relative densities (RD) of arrays are calculated from (Eq. 23). 

A new concept is introduced as the representative ratio (RR) where: 

𝑅𝑅 =  
𝑡_𝑏∗

𝑡_𝑤
 

(Eq. 44) 

(Eq. 45) 

(Eq. 46) 
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For specimen subgroups that exhibit ≤ 5% standard error in RR can be considered to have 

a linear relation between t_b* and t_w. This is shown highlighted in Table 7 and Table 8 

as the dark green colored cells. 
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3.2 Mechanical Testing Results 

A preliminary experiment was done to test the consistency between mechanical testing 

and FEM analysis. Same dimensions of RA_R was used, except for the wall thickness, 

which was 0.74 mm, which was due calibration of the printer (for latter specimens, 

geometries were printed accurately). Results showed very similar moduli for both the 

virtual and real-life test. 

 

 

 

 

 

 

 

Taking the perimeter width limitation of an FDM printer into consideration, accurate 

manufacturing for wall thicknesses < 1.84 mm was unfeasible. 3 sets of specimens were 

printed with the RA_R_1.84t, RE-α_1.84t, RE-β_1.84t and RE-γ_1.84t geometries using 

the 3 most common FDM plastics: PLA, PETG and ABS. All three plastics were Esun® 

brand 1.75mm diameter gray colored filaments. Boundary thicknesses were selected from 

FEM analysis to match the corresponding arrays. Refer to Figure 32, Figure 33 and Figure 

34 for the results of these mechanical tests. 

Results revealed well matched array and representative element moduli. The fact that 

t_b*’s were the same for 3 different materials suggests that the properties of the 

representative elements are independent of compressive modulus and Poisson’s ratio. 

 

 

 

 

 

Figure 31. Comparison between FEA analysis and mechanical testing of 

RA_R specimen.  
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Figure 32. Mechanical test data of PLA array and representative elements 

in 1-direction (left) and 2-direction (right)  

Figure 33. Mechanical test data of PETG array and representative 

elements in 1-direction (left) and 2-direction (right)  

Figure 34. Mechanical test data of ABS array and representative 

elements in 1-direction (left) and 2-direction (right)  
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3.3 Choosing the Most Applicable Geometry 

3.3.1 Consistency of Response 

When choosing the best representative element, a consistency between array modulus vs 

t_b and relative density vs t_b curve shapes of R, L and M type specimens are desired so 

that structures are predictive for all aspect ratios of the same geometry. By inspecting the 

concavity, or the sign of the second derivative of the curves in the middle (AM vs t_b) 

and bottom (rel. density vs t_b) graphs in figures Figure 25 to Figure 30, we can outline 

the behaviour of the geometries and how they change with varying honeycomb 

parameters such as h/l ratio or θ.  

For this goal, 2nd degree polynomial trendlines were fitted to array modulus vs t_b and 

relative density vs t_b curves. 

Curves with 𝑓′′(𝑥) >
𝑀𝐴𝑋([𝑦])

𝑀𝐴𝑋([𝑥])
(0.01) were considered as concave up (increasing), 

Curves with 𝑓′′(𝑥) < −
𝑀𝐴𝑋([𝑦])

𝑀𝐴𝑋([𝑥])
(0.01) were considered as concave down (increasing), 

Curves with  −
𝑀𝐴𝑋([𝑦])

𝑀𝐴𝑋([𝑥])
(0.01)  ≤ 𝑓′′(𝑥) ≤

𝑀𝐴𝑋([𝑦])

𝑀𝐴𝑋([𝑥])
(0.01)   were considered as linear. 

Where MAX(x) is the maximum function, [y] is the data set of the y axis and [x] is the 

data set of the x axis. 

In this regard, RE-α_1, RE-β_1, RE-γ_1 and RE-γ_2 specimen groups retained 

concavity among all geometries. 

 

 

 

 

 

Specimen 

Type

Array Modulus vs 

t_b

Relative Density 

vs t_b

Specimen 

Type

Array Modulus vs 

t_b

Relative Density vs 

t_b

Specimen 

Type

Array Modulus 

vs t_b

Relative Density 

vs t_b

RE-α_R_1 (+) (-) RE-β_R_1 (+) (-) RE-γ_R_1 (+) (-)

RE-α_L_1 (+) (-) RE-β_L_1 (+) (-) RE-γ_L_1 (+) (-)

RE-α_M_1 (+) (-) RE-β_M_1 (+) (-) RE-γ_M_1 (+) (-)

RE-α_R_2 (+) ≃0 RE-β_R_2 (+) (+) RE-γ_R_2 (+) (-)

RE-α_L_2 (+) ≃0 RE-β_L_2 (+) (-) RE-γ_L_2 (+) (-)

RE-α_M_2 (-) (-) RE-β_M_2 (+) (-) RE-γ_M_2 (+) (-)

Table 9. The sign of 2nd derivative of the trendline functions of array modulus vs t_b 

and relative density vs t_b among all representative elements. A positive 2nd 

derivative indicates up-increasing concavity, a negative 2nd derivative indicated 

down-increasing concavity and values close to 0 indicate linear behavior. 
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3.3.2 Scalability of Response 

RE-α_R_0.46t and RE-α_L_0.92t, RE-α_R_0.92t and RE-α_L_1.84t specimen pairs 

have the same relative density (and therefore l/t) values. Thus, the representative ratio of 

boundary thickness/wall thickness should be same for these geometries. This will exhibit 

a region of overlap (Figure 35, Figure 36 and Figure 37) in representative ratio vs relative 

density curves of R, L and M geometries. RE-α_2, RE-β_1, RE-γ_1 and RE-γ_2 exhibit 

this scalability. The geometries that show discrepancy in this regard are outlined in Table 

7 & Table 8 with bold, larger red and bold, larger cyan numbers. Numbers of the same 

color, in the same RR column should be equal to exhibit scalability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Boundary thickness/wall thickness ratio vs relative density of 

RE-α specimens.  

Figure 36. Boundary thickness/wall thickness ratio vs relative density of 

RE-β specimens.  

Figure 37. Boundary thickness/wall thickness ratio vs relative density of 

RE-γ specimens.  
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3.3.3 Range of Application 

Some specimens, regardless of how much the boundary thickens, will not converge to a 

solution due to having an invariable initial height of the inner bound specimen (Figure 

38). RE-α_1, RE-β_2, RE-γ_1 and RE-γ_2 specimen subgroups exhibited applicable 

representative boundary thicknesses on all attempted relative densities. 

 

 

 

 

 

 

 

 

 

 

3.4 Data Fitting for Determination of b_t for Target Relative Densities 

Curve fitting was done on specimens that showed scalability (RE-α_2, RE-β_, RE-γ_1 

and RE-γ_2) in MATLAB® R2020a Academic. Refer to figures Figure 39 through 

Figure 42 for trendline & residual plots of these specimens. Coefficients and goodness 

of fit parameters are outlined in Table 11. Using these plots and equations, it is possible 

to predict the representative boundary thickness of these geometries. Experimental 

specimens can then be manufactured and tested under compression to simulate the 

behaviour of the specific array. 

Specimen Type Relative Density Range Specimen Type Relative Density Range Specimen Type Relative Density Range

RE-α_R_1 0.059 ≤ ρ*/ρs  ≤ 0.295 RE-β_R_1 0.059 ≤ ρ*/ρs  ≤ 0.295 RE-γ_R_1 0.059 ≤ ρ*/ρs  ≤ 0.295

RE-α_L_1 0.030 ≤ ρ*/ρs  ≤ 0.148 RE-β_L_1 0.030 ≤ ρ*/ρs  ≤ 0.148 RE-γ_L_1 0.030 ≤ ρ*/ρs  ≤ 0.148

RE-α_M_1 0.094 ≤ ρ*/ρs  ≤ 0.472 RE-β_M_1 0.094 ≤ ρ*/ρs  ≤ 0.283 RE-γ_M_1 0.094 ≤ ρ*/ρs  ≤ 0.472

RE-α_R_2 0.059 ≤ ρ*/ρs  ≤ 0.295 RE-β_R_2 0.059 ≤ ρ*/ρs  ≤ 0.295 RE-γ_R_2 0.059 ≤ ρ*/ρs  ≤ 0.295

RE-α_L_2 0.030 ≤ ρ*/ρs  ≤ 0.148 RE-β_L_2 0.030 ≤ ρ*/ρs  ≤ 0.148 RE-γ_L_2 0.030 ≤ ρ*/ρs  ≤ 0.148

RE-α_M_2 0.094 ≤ ρ*/ρs  ≤ 0.378 RE-β_M_2 0.094 ≤ ρ*/ρs  ≤ 0.472 RE-γ_M_2 0.094 ≤ ρ*/ρs  ≤ 0.472

Table 10. Relative density range of applicability of boundary walls among 

all representative elements  

Figure 38. Even at extreme boundary thicknesses, few specimens did not 

reach the stress of the array exhibited at 5% strain. This is due to initial 

height of the specimen not scaling with the overall size of the specimen. 
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Figure 39. RR vs RD fitting (left) and residuals (right) of RE-α_2 

specimens.  

Figure 40. RR vs RD fitting (left) and residuals (right) of RE-β_1. 

specimens.  

Figure 41. RR vs RD fitting (left) and residuals (right) of RE-γ_1. 

specimens.  

Figure 42. RR vs RD fitting (left) and residuals (right) of RE-γ_2. 

specimens.  
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3.4.1 Data Fitting Example Case 

When designing a regular honeycomb structure that will be subject to compression in 

the 2-direction, a relative density of 0.236 is desired by the engineer for its toughness. 

Using this curve, the representative ratio is: 

𝑅𝑅 = (−0.00061)(0.236)−2.048 + 2.276 = 𝟐. 𝟐𝟔 

Using Equation 24 and a chosen l length of 9mm: 

0.236 =  
2

√3

𝑡

9
 

𝑡 = 𝟏. 𝟖𝟒 

The engineer can manufacture a RE-α type specimen with h = l = 9 mm, t_w = 1.84 

mm and t_b* = (2.26)(1.84) = 4.15 mm and test it under compression to infer the 

compressive response of the structure in 2-direction. This is in fact, one of the 

mechanical test cases outlined in this work. 

 

 

 

 

 

Table 11. Fitting parameters and goodness of fit data of RE-α_2, RE-β_1, 

RE-γ_1 and RE-γ_2  

Fit Equation p1 p2 p3 SSE R2 Adjusted R2 RMSE

RE-α_2 (p1)xp2+p3 -0.00061 -2.048 2.276 0.02109 0.9611 0.95 0.05488

RE-β_1 (p1)x+p2 3.08 1.084 - 0.03903 0.9407 0.9333 0.06985

RE-γ_1 (p1)x+p2 2.885 2.348 - 0.0227 0.9599 0.9549 0.05327

RE-γ_2 (p1)x+p2 1.577 1.427 - 0.01433 0.9189 0.9087 0.04232
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3.5 Future Work 

Representative element approach should be tested in shear to accompany the compressive 

response in 1 and 2-directions. The geometries should be diversified to include more 

irregular shapes such as auxetic or chiral honeycombs. Example representative elements 

are shown in Figure 43. Hexagonal array tests should be replicated with anisotropic 

materials such as fiber reinforced composites to see if the reference element boundary 

relations hold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43. Applying the representative element approach to re-entrant (top 

row), tetra-chiral (middle row) and hybrid (bottom row) honeycombs. 
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4 Conclusion 

Material constants were obtained through mechanical testing of 3D printed plastic. Using 

these material constants, parametric finite element analyses were done on preliminary 

representative geometries theorised to simulate the elastic response of hexagonal 

honeycombs.  

All representative element types were able to simulate the corresponding larger array. 

However, among 3 element types, only RE-γ was consistent in shape, scalability, and 

range among regular, scaled up, and irregular geometries. For hexagonal honeycombs, a 

unit cell surrounded by its immediate neighbors and a parametrized outer shell can work 

as an analogue for prediction of larger arrays. For analysis in solely 1-direction, the 

approach of RE-β (bounding the unit cell with vertices on neighbouring cell centers) was 

valid. For analysis in solely 2-direction, the approach of RE-α (bounding the unit cell with 

vertices on neighbouring joints) was valid. 

Due to size effect, the representative boundary thicknesses will vary when simulating 

different size and aspect ratio arrays. However, the modulus of the 10x10 array was within 

10% deviation from the modulus of an infinite array with the same geometric parameters, 

making it a decent size array for laying this framework. 

Mechanical tests confirmed that for RE-α_R, RE-β_R and RE-γ_R, the representative 

boundary thicknesses simulated the reference arrays successfully. The representative 

elements exhibited moduli very similar to their respective reference arrays. The variation 

of material used suggested that t_b* prediction is independent of material properties. 

This approach of using experimental analogues can be used where novel array designs 

are proposed, but their properties cannot be determined by the size limitations of either 

the manufacturing or testing equipment, or cost limitations as representative elements use 

much less material in comparison.  
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